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Abstract: Many symmetry breaking patterns in grand unified theories (GUTs) give rise to
cosmic strings that eventually decay when pairs of GUT monopoles spontaneously nucleate
along the string cores. These strings are known as metastable cosmic strings and have
intriguing implications for particle physics and cosmology. In this article, we discuss the
current status of metastable cosmic strings, with a focus on possible GUT embeddings and
connections to inflation, neutrinos, and gravitational waves (GWs). The GW signal emitted
by a network of metastable cosmic strings in the early universe differs, in particular, from the
signal emitted by topologically stable strings by a suppression at low frequencies. Therefore, if
the underlying symmetry breaking scale is close to the GUT scale, the resulting GW spectrum
can be accessible at current ground-based interferometers as well as at future space-based
interferometers, such as LISA, and at the same time account for the signal in the most recent
pulsar timing data sets. Metastable cosmic strings thus nourish the hope that future GW
observations might shed light on fundamental physics close to the GUT scale.
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1 Introduction

The formation of topological defects is a generic feature of cosmological phase transitions [1].
Such defects are tied to spontaneous symmetry breaking in extensions of the Standard
Model (SM), in particular in grand unified theories (GUTs). They include Nielsen-Olesen
strings [2], ’t Hooft-Polyakov monopoles [3, 4], unstable “dumbbells” or “X-strings” connecting
a monopole-antimonopole pair [5], and other composite defects [6].

Monopoles would overclose the universe and must therefore be avoided or diluted by
inflation. Domain walls will reach a scaling regime, but will still lead to an overclosure
problem. On the contrary, cosmic strings evolve towards a scaling regime where their fraction
of the total energy density remains constant. Together with characteristic signatures in the
cosmic microwave background and in gravitational lensing, the stochastic gravitational-wave
background (SGWB) from cosmic strings is a potentially very interesting messenger from
the early universe (for reviews and references, see, e.g., refs. [7–9]).

For a large class of supersymmetric GUTs with symmetry breaking chains avoiding the
monopole problem, cosmic-string formation is unavoidable [10]. Making use of supersymmetric
hybrid inflation [11, 12], the string scale is close to the GUT scale, a prominent example being
the breaking of B−L, the difference between baryon and lepton number [13]. String scales
below the GUT scale are also possible and may be related to intermediate-mass right-handed
neutrinos, which could render the SGWB a probe of thermal leptogenesis [14].

Pulsar timing array (PTA) observations [15–17] can probe the string tension of stable
cosmic strings down to Gµ ≲ 10−10 [18], where G denotes Newton’s constant and µ is the
energy per unit length of the string. These observations have now entered a new phase with
evidence for a common-spectrum process at nanohertz frequencies first reported in refs. [19–
22], followed by evidence for Hellings-Downs angular correlation, the smoking-gun signal
of a SGWB, reported by PTA collaborations across the world in refs. [23–26]. Beyond the
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astrophysical interpretation in terms of inspiraling supermassive black-hole binaries [27–29],
possible cosmological interpretations include stable and metastable cosmic strings [30–35]
(see, e.g., refs. [29, 36, 37] for an overview of possible cosmological signals). However, the
originally favoured GUT-scale strings with a tension in the range Gµ ≃ 10−(8···6) are firmly
excluded by these results, as they would lead to too large an SGWB signal in the PTA band.

However, in theories where strings couple to monopoles, strings can decay by quan-
tum tunneling into string segments connecting monopole-antimonopole pairs [38]. In the
semiclassical approximation, the decay rate per string unit length is given by [39–41]

Γd = µ

2π exp (−πκ) with κ = m2
M

µ
, (1.1)

where mM is the monopole mass. Given the exponential dependence of the decay rate on the
parameter κ, and considering monopole masses larger than the string scale, metastable strings
have generally been assumed to be effectively stable (see, e.g., refs. [7, 14, 38]). However, a
particularly interesting phenomenology is obtained for metastable cosmic strings with

√
κ ∼ 8.

Such values can indeed be obtained for SO(10) models with B−L strings [42]. In this case, the
cosmic-string network survives for about an hour (redshift z ∼ 107) until monopole production
becomes efficient, which implies that at high frequencies the resulting GW spectrum resembles
that of stable cosmic strings, whereas at lower frequencies, corresponding to GWs sourced
at later times, the spectrum is strongly suppressed [43–45]. As a result, metastable cosmic
strings can not only provide a good fit to the PTA signal for GUT-scale string tensions [32, 37],
but moreover, they can also easily evade any bounds at PTA scales while still yielding a
strong signal at higher frequencies [43], i.e., in the frequency bands relevant for LISA [46]
and ground-based interferometers [47–49].

In this article, we will discuss the current status of metastable cosmic strings. Section 2
deals with a minimal but representative example model: the breaking of SU(2)R × U(1)B−L

down to U(1)Y by an SU(2)R Higgs triplet and two SU(2)R Higgs doublets with quantum
numbers suitable for an embedding in SO(10). The computation of the SGWB signal is
presented in section 3, with an emphasis on the theoretical prediction for the spectral tilt of
the GW spectrum. Some aspects of stable and quasi-stable strings are reviewed in section 4,
and the role of inflation is described in section 5. We conclude in section 6.

2 Metastable strings

Metastable strings are a characteristic prediction of GUTs that lead, via several steps of
spontaneous symmetry breaking, to the SM gauge group GSM = SU(3)C × SU(2)L × U(1)Y .
Strings with tensions above the electroweak scale result from the spontaneous breaking of a
U(1) group that commutes with GSM. Similarly, monopoles arise once a non-Abelian gauge
group is broken to a subgroup containing a U(1) factor. Then, if the U(1) symmetry involved
in the production of monopoles partially overlaps or coincides with the U(1) symmetry
responsible for string formation, the strings become metastable, i.e., pairs of monopoles and
antimonopoles spontaneously nucleate along the strings by quantum tunneling.

SM extensions giving rise to strings must feature a gauge group of at least rank 5.
Starting from an exceptional Lie group at high energies, we can, e.g., consider the following
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symmetry breaking chain,

GSM ⊂ SU(5) × U(1)X ⊂ SO(10) ⊂ E(6) ⊂ . . . , (2.1)

where SU(5) refers to the Georgi-Glashow SU(5) GUT group or to the flipped SU(5) model.
Another possibility is to consider a sequence featuring an extended electroweak sector,

GSM ⊂ SU(3)C × SU(2)L × SU(2)R × U(1)B−L ⊂ GPS ⊂ SO(10) ⊂ E(6) ⊂ . . . , (2.2)

where GPS = SU(4) × SU(2)L × SU(2)R denotes the Pati-Salam group.
If a symmetry group G is broken to a subgroup H, the quotient M = G/H corresponds

to the manifold of degenerate vacuum states. The types of defects that may be formed in the
symmetry breaking are governed by the topology of M, which is encoded in the homotopy
groups πn(M). Topologically stable strings can form if the first homotopy group is nontrivial,
π1(M) ̸= I, i.e., there are loops in M that cannot be contracted to a point. Similarly,
topologically stable magnetic monopoles can arise if the second homotopy group is nontrivial,
π2(M) ̸= I, so that there exist non-contractable two-dimensional surfaces in M. We shall be
particularly interested in two-step symmetry breakings G → H → K, where the homotopy
group G/K is trivial, but the homotopy groups of the individual steps, G/H and H/K, are
nontrivial. In this case, metastable defects can form.

A simple example is the breaking of SO(10) to the Standard Model group via SU(5).
The result crucially depends on the chosen Higgs representation [6]. The breaking chain

SO(10) 45→ SU(5) × U(1) 45⊕126→ GSM × Z2 (2.3)

yields stable monopoles and, in the second step, also stable strings. On the contrary, for
the closely related symmetry breaking with a 16-plet,

SO(10) 45→ SU(5) × U(1) 45⊕16→ GSM , (2.4)

the homotopy group of M = SO(10)/GSM is trivial, π1(M) = I, and there are no topologically
stable strings. However, cosmologically interesting metastable strings can now form.

Metastable strings can break apart into segments in consequence of quantum tunneling
events leading to the spontaneous nucleation of monopole-antimonopole pairs. Eventually,
string decay leads to a population of short string segments where each segment has a monopole
on one end and an antimonopole on the other. In the example in eq. (2.4), monopoles are
formed both in the first and second breaking step, where the latter also determines the
string energy scale. Besides, there are also other composite topological defects, which can
be created in other symmetry breaking chains. One example are Z2-strings, also known as
“necklaces”, which correspond to one-dimensional string-monopole-string configurations, i.e.,
configurations where two strings are attached to each monopole [50, 51]. More details and
references on composite topological defects can be found in refs. [45, 52, 53].

Realistic GUTs require large Higgs representations in order to break the GUT gauge
group down to the SM, which complicates their analysis. On top, nonsupersymmetric models
are sensitive to large radiative corrections and hence suffer from a severe naturalness problem.
This observation triggered the investigation of even more complicated models in the literature:
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supersymmetric GUTs with even more complicated Higgs sectors. In view of this situation, it
is important not to loose sight of the fact that conventional spontaneous symmetry breaking
is not the only way in which a fundamental GUT gauge group can be reduced to the SM
gauge group. Higher-dimensional theories such as orbifold GUTs or string theory represent
intriguing alternatives that deserve consideration (a review and references can, e.g., be found
in ref. [54]). In these constructions, the fundamental GUT gauge group is first partially
broken in a geometric way, namely, by the compactification of extra dimensions, and only
the remnant subgroup remaining after this first step is further reduced to the SM group via
conventional spontaneous symmetry breaking. For these reasons, we will restrict ourselves to
the simplest possible case leading to metastable strings in the following, the first embedding
in eq. (2.2), which may mark the end of a long symmetry breaking chain, which we, however,
do not specify in detail,

GSM ⊂ SU(3)C × SU(2)L × U(2) , U(2) = SU(2)R × U(1)B−L/Z2 . (2.5)

In order to break this group down to GSM, we consider a Higgs triplet U ∼ (3, 0) of SU(2)R

alongside a pair of Higgs doublets of SU(2)R, S ∼ (2, q) and Sc ∼ (2̄,−q), that carry charges
±q under U(1)B−L. The breaking of SU(2)R leads to monopoles while the breaking of
U(1)B−L implies strings, yielding the necessary ingredients for metastable strings. Also, note
that we divide out a Z2 factor in eq. (2.5), which is necessary to avoid double counting of
the center of SU(2)R, which consists of the identity element and its negative, {I,−I}, and
which is also contained in U(1)B−L. For earlier discussions of defects in U(2) models with
triplet and doublet Higgs fields but without supersymmetry, see refs. [52, 55–57].

2.1 Strings from supersymmetric B−L breaking

The prospects to explain the recent PTA signal in terms of a SGWB from metastable cosmic
strings motivate us to consider large string tensions. We are specifically interested in symmetry
breaking scale far above the electroweak scale, at least of the order of vs ∼ 1013 GeV. It is
reasonable to expect unbroken supersymmetry at such high energies, which is why we will
focus on supersymmetric models of symmetry breaking in the rest of this paper, following
the analysis presented in ref. [42].

Our starting point is a supersymmetric Abelian Higgs model with two chiral superfields
S and Sc and a gauge singlet ϕ that gives rise to spontaneous B − L breaking. The fields S
and Sc carry charge q and −q under U(1)B−L, respectively, and the Kähler potential and
superpotential of the model (we use the same conventions as in ref. [58]) are given by

K = S†e2gqV S + S†
ce

−2gqV Sc + ϕ†ϕ , P = 1
4 WW + λϕ

(
v2

s − SSc

)
. (2.6)

Here, V is a vector superfield, W is the supersymmetric field strength, and vs is the scale
of spontaneous symmetry breaking, which we can choose to be real and positive. From the
auxiliary fields of the vector and chiral superfields, we can derive the scalar potential,

V = 1
2D

2 + |FS |2 + |FSc |2 + |Fϕ|2 , (2.7)
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where the F and D terms follow from solving the associated equations of motion,

D = −gq
(
|S|2 − |Sc|2

)
, (2.8)

F ∗
S = λϕSc , F ∗

Sc
= λϕS , F ∗

ϕ = −λ
(
v2

s − SSc

)
. (2.9)

The scalar potential and the kinetic terms for the scalar and vector fields constitute the
bosonic part of the Lagrangian,

Lb = −1
4FµνF

µν − (DµS)∗(DµS) − (DµSc)∗(DµSc) − ∂µϕ
∗∂µϕ− V , (2.10)

with covariant derivatives Dµ = (∂µ + igqAµ)S and DµSc = (∂µ − igqAµ)Sc, and where Aµ

is the vector component in the vector multiplet V , Fµν is the corresponding field strength,
and where chiral superfields and their scalar components are denoted by the same symbols.

The vacuum manifold of the model is described by a D-flat direction, |S|2 = |Sc|2,
which represents a flat moduli space of vacuum states with unbroken supersymmetry and
spontaneously broken U(1)B−L symmetry,

S = vs e
iα , Sc = S∗ , ϕ = 0 . (2.11)

The particle excitations around the true vacuum are best described if we expand the fields
S and Sc around their vacuum expectation values (VEVs),

S = vs e
iα + S′ , Sc = vs e

−iα + S′
c . (2.12)

In this field basis, we then find that the Goldstone multiplet (S′ − S′
c) /

√
2 is “eaten” by

the massless vector multiplet V , which results in a massive vector multiplet with mass
mV =

√
2gqvs. Similarly, the orthogonal linear combination (S′ + S′

c) /
√

2 and the singlet
field ϕ fuse in a massive chiral multiplet with mass mS = λvs.

As in the nonsupersymmetric case, the vacuum manifold M is the circle S1, which has a
nontrivial first homotopy group, π1(M) = Z. The model thus admits exited states in the form
of topologically stable strings. On the supersymmetric moduli space, i.e., along the D-flat
direction, these strings are described by the Nielsen-Olesen string solutions [2]. Static strings
along the z axis and with winding number n correspond to field configurations of the form

S = vs f (ρ) eniφ = S∗
c , A0 = 0 , Ai = − n

gρ
h (ρ) ∂iφ , (2.13)

where we work in cylindrical coordinates (ρ, φ, z) and with boundary conditions

f (0) = h (0) = 0 , f (∞) = h (∞) = 1 . (2.14)

Strings described by these field configurations exhibit a total magnetic flux along the
string of 2nπ/g with n ∈ Z \ {0} and a string tension (i.e., energy per unit length) of

µ = 2πv2
s B (β) = πm2

V

(gq)2 B (β) with β = m2
S

m2
V

= λ2

2g2 . (2.15)

Here, the parameter β measures the ratio of the Higgs and vector boson masses; and B is a
slowly varying function of β, normalized such that B → 1 in the Bogomol’nyi limit β → 1 [8].
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If β < 1, the strings will have larger Higgs-field cores than gauge-field cores, m−1
S > m−1

V ,
which gives rise to type-I strings, in analogy to similar condensed-matter systems. Type-I
strings are stable and attracted towards each other.

The model defined in eq. (2.6) is intriguing, as it features a singlet field ϕ that can
be identified as the inflaton in supersymmetric hybrid inflation [11, 12]. It is, moreover,
straightforward to extend it by adding supersymmetry breaking terms and by coupling it
to a set of chiral right-handed-neutrino superfields. Extensions of the model along these
lines can account for leptogenesis, dark matter, and a stage of cosmic inflation in accord
with recent bounds on the primordial scalar spectral index in observations of the cosmic
microwave background [13, 59]. Scenarios of this type also give rise to stable cosmic strings
with tension Gµ ∼ 10−7, where the specific value of the string tension is dictated by the
other phenomenological aspects of the model, in particular the energy scale of inflation. For
stable strings, such large string tensions have, however, been known to be in conflict with
PTA measurements for many years [15, 16], which renders such scenarios unviable.

2.2 Monopoles from supersymmetric SU(2) breaking

Next, we turn to topologically stable ’t Hooft-Polyakov monopoles [3, 4] produced by the
spontaneous breaking of SU(2) to U(1). To implement this breaking, we consider an SU(2)
triplet Ua (a = 1, . . . , 3) and work with the following Kähler potential and superpotential,

K = U †e2gV U , P = 1
8 tr [WW ] . (2.16)

Here, V = V aT a denotes the SU(2) vector superfield and the (T a)bc = −iϵabc are the SU(2)
generators in the adjoint representation. The bosonic Lagrangian of the theory is given by

Lb = −1
4F

a
µνF

aµν − (DµU
a)∗(DµUa) − igϵabcD

aU b∗U c + 1
2D

aDa + F a∗
U F a

U , (2.17)

with gauge-covariant derivative (DµU)a = ∂µU
a − g ϵabcA

b
µU

c and non-Abelian field strength
tensor F a

µν = ∂µA
a
ν − ∂νA

a
µ − g ϵabcA

b
µA

c
ν .

In passing, we mention that the Lagrangian in eq. (2.17) corresponds to the bosonic
Lagrangian of SU(2) Super-Yang-Mills theory with N = 2 supersymmetry. Supersymmetric
UV completions of the SM of this type can occur in certain orbifold compactifications.
Starting with a supersymmetric Pati-Salam or SO(10) theory in five or six dimensions, orbifold
constructions can lead to an N = 2 sector with gauge group SU(2)R in four dimensions. The
total gauge group containing SU(2)R as a subgroup is then spontaneously broken down to
the SM in subsequent symmetry breaking steps.

The classical theory defined by the potentials in eq. (2.16) features again a moduli space
spanned by the flat direction Ua = u/

√
2 δa3 modulo gauge transformations. Thanks to the

large symmetry of the theory, this flat direction is preserved at the quantum level as well as
when nonperturbative corrections are taken into account. The flat direction is therefore also
present in the full theory, where it interpolates between two phases: a confinement phase
with monopole condensation at small values of u and a perturbative Higgs phase at large
values of u [60]. In the following, we will be concerned with the Higgs phase of the model,
which corresponds to field values u much larger than the confinement scale Λ.
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As in the previous case of the Abelian Higgs model, the vacuum degeneracy along the
flat moduli space can be lifted by coupling the superfield U to a new gauge singlet superfield
ϕ′ via a superpotential term of the form

P = 1
8 tr [WW ] + λ′

2 ϕ
′
(
v2

u

2 − UTU

)
, (2.18)

where vu is a mass scale that we can choose to be real and positive and which sets the scale
of spontaneous SU(2) breaking. The new superpotential in eq. (2.18) now only exhibits
N = 1 supersymmetry, as the new term breaks N = 2 supersymmetry. Next, we derive the
equations of motions for the auxiliary fields contained in V , U , and ϕ′,

Da = ig ϵabc U
b∗U c , F a∗

U = λ′ϕ′ Ua , F ∗
ϕ′ = −λ′

2

(
v2

u

2 − UTU

)
. (2.19)

Instead of a supersymmetric moduli space, we now find a supersymmetric vacuum at

Ua = vu√
2
δa3 , ϕ′ = 0 , (2.20)

where the value of UTU is now fixed and Ua is determined up to an SU(2) rotation. Meanwhile,
one rotation of the fields Ua still represents an unbroken symmetry, despite the fact that UTU

has nonvanishing expectation value, which means that a U(1) subgroup of SU(2) survives
in the new ground state after symmetry breaking. The particle spectrum of the theory now
consists of: a massless vector multiplet, V 3; a charged vector multiplet with mass mV = gvu

that has “eaten” the Goldstone multiplets U1,2; and a massive chiral multiplet with mass
mU = λ′vu/

√
2 composed of the multiplets U ′3 = U3 − vu and ϕ′.

After symmetry breaking, the theory contains excited states in the form of topologically
stable monopoles. To see this, note that the vacuum manifold M is a 2-sphere S2 spanned by
the SU(2) rotations acting on the fields Ua in the ground state, just like in the nonsupersym-
metric case. The vacuum manifold thus has nontrivial homotopy group π2 (M) = Z, which
indicates the existence of monopole solutions. The simplest monopole configuration is the
“hedgehog” solution [3, 4], corresponding to radial field profiles of the form

Ua = vu√
2
f (r) x

a

r
, Aa

0 = 0 , Aa
i = h (r) ϵaij

xj

gr2 . (2.21)

Now, r denotes the radial coordinate in spherical coordinates rather than cylindrical coordi-
nates, r = (xixi)1/2, and the functions f and h are subject to the boundary conditions

f (0) = h (0) = 0 , f (∞) = h (∞) = 1 . (2.22)

From eq. (2.21), we read off that the scalar field profile points into the radial direction,
Ua ∝ ϕ̂a ≡ xa/r. The same is therefore true for the unbroken symmetry generator. Similarly,
one obtains the following gauge-invariant magnetic field strength at large distances,

Bi = −1
2 ϕ̂

a ϵijk F
a
jk = xi

gr3 , (2.23)
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which allows us to identity the magnetic charge of the monopole, 4π/g. In general, the
monopole mass is 2nπ/g with n ∈ N, i.e., the ’t Hooft-Polyakov monopole corresponds to
n = 2. The mass of the monopole is subject to the Bogomol’nyi bound [61],

mM ≥ 4πmV

g2 = 4πvu

g
, (2.24)

where the equal sign holds in the Prasad-Sommerfield limit λ′/g → 0 [62]. For nonzero values
of the ratio of coupling constants, λ′/g, there exist no analytical expressions for the functions
f and h in eq. (2.21). One therefore has to resort to numerical solutions of the field equations,
which show that mM is a monotonically increasing function of the Higgs mass. In the limit
λ′/g → ∞, one finds in particular an upper bound mmax

M ≃ 4πmV /g
2 × 1.79 [63, 64].

2.3 Monopoles and metastable strings

Let us now combine the constructions in sections 2.1 and 2.2 and discuss metastable B−L
strings decaying into short string segments with monopoles and antimonopoles on their ends.
Defects of this type form if we embed the electroweak part of the SM gauge group, GEW =
SU(2)L×U(1)Y , in the group G221 = SU(2)L×SU(2)R×U(1)B−L/Z2 and spontaneously break
G221 down to GEW in two steps. Hypercharge Y then follows from the linear combination
of the neutral SU(2)R and U(1)B−L generators, Y = T 3

R + (B − L) /2. The two symmetry-
breaking steps in this model break SU(2)R × U(1)B−L/Z2 to U(1)Y and end on the vacuum
manifold M = U(2)/U(1) = S3. This manifold contains the union of the vacuum manifolds of
stable strings and monopoles, S1 ∪ S2, and has trivial homotopy groups π1 (M) and π2 (M).
The model thus neither features topologically stable monopoles nor strings. Instead, we will
see that it can give rise to metastable strings or unstable dumbbells.

In order to break U(2) = SU(2)R×U(1)B−L/Z2 down to U(1)Y , we shall work with similar
Higgs representations as in sections 2.1 and 2.2. Specifically, we introduce a B−L-neutral
SU(2)R triplet U as well as two oppositely B−L-charged SU(2)R doublets S, Sc,

U ∼ (3, 0) , S ∼ (2, q) , Sc ∼
(
2̄,−q

)
, (2.25)

under SU(2)R ×U(1)B−L. Defects in nonsupersymmetric U(2) models with triplet and doublet
Higgs representations were previously discussed, e.g., in refs. [52, 55–57]. In the following, we
are, however, interested in the supersymmetric version of the model, which we construct by
choosing the Kähler potential K and superpotential P as a combination of eqs. (2.6), (2.16),
and (2.18), supplemented by an additional mass term in P ,1

K = U †e2gV U + S†e2(gṼ +g′qV ′)S + S†
ce

−2(gṼ +g′qV ′)Sc + ϕ†ϕ+ ϕ′†ϕ′ ,

P = 1
8 tr [WW ] + 1

4 W
′W ′ + 2hST

c Ũ S

+ λ′

2 ϕ
′
(
v2

u

2 − UTU

)
+ λϕ

(
v2

s − ST
c S
)

− hvu S
T
c S .

(2.26)

Here, U =
(
U1, . . . , U3)T is the triplet field written as a vector in the triplet representation;

Ũ = Uaτa/2 is the triplet field written as a matrix in the doublet representation; V = V aT a

1Our model is different from standard left-right-symmetric models, as we work with neutral triplets. In
left-right-symmetric models, the triplets typically carry U(1) charge and thus occur in pairs [65, 66].
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is the SU(2)R vector field in the triplet representation; Ṽ = V aτa/2 ≡ TR is the SU(2)R

vector field in the doublet representation; V ′ is the U(1)B−L vector field; and W and W ′ are
the supersymmetric SU(2)R and U(1)B−L field strengths. The covariant derivative in the
bosonic sector, induced by the Kähler potential, is given by DµS = ∂µS + i(gṼ + g′qV ′)S.

The terms involving the Yukawa coupling h are introduced for the following reason: first,
the trilinear coupling, coupling the fundamental triplet Ua to the composite triplet ST

c τ
aS

ensures that a U(1) subgroup survives after symmetry breaking. Without this term, the
initial U(2) group would in general be broken completely, which in our case would mean
that no hypercharge gauge group U(1)Y would remain in the electroweak sector. Second,
the mass term for the pair of doublet fields, i.e., the last term in P in eq. (2.26), ensures
that U(2) symmetry breaking results in a supersymmetric vacuum with ⟨P ⟩ = 0. This serves
the purpose to separate the energy scales of SU(2)R and U(1)B−L breaking from the energy
scale of supersymmetry breaking. Without this mass term, we would generically expect a
contribution to the gravitino mass from the U(2) sector of the order of ⟨P ⟩/M2

P ∼ hvuv
2
s/M

2
P.

However, if ⟨P ⟩ = 0 after U(2) symmetry breaking, we retain the possibility that a separate
supersymmetry-breaking sector results in a hierarchically smaller gravitino mass.

As in sections 2.1 and 2.2, the model exhibits again D-flat directions that are lifted by
the coupling to the singlets ϕ and ϕ′. The supersymmetric true vacuum then corresponds to

Ua = vu√
2
δa3 , S = Sc = vs

(
1
0

)
, ϕ′ =

√
2hv2

s

λ′vu
, ϕ = 0 . (2.27)

The fundamental triplet Ua and the composite triplet ST
c τ

aS are parallel in this vacuum
configuration, as desired, thanks to the Yukawa coupling h ̸= 0 in eq. (2.26). As mentioned
above, this is necessary to keep an unbroken U(1) symmetry in the vacuum. Without the
Yukawa coupling h, the relative orientation of Ua and ST

c τ
aS would not be fixed.

Next, let us discuss the mass spectrum of the model. In order to identify the mass
eigenstates, we must shift the chiral multiplets around their vacuum expectation values,

U3 = vu√
2

+ U3′ , S =
(
vs + S0′

S−

)
, Sc =

(
vs + S0′

c

S+

)
, ϕ′ =

√
2hv2

s

λ′vu
+ ϕ̂ . (2.28)

Then, by inspecting the terms linear in the vector fields V , Ṽ , and V ′ in the Kähler potential
in eq. (2.26), we can identify the Goldstone multiplets,

Π∓ = 1√
v2

u + v2
s

(
vu U

∓ + vs S
∓) , Π0 = 1√

2

(
S0′ − S0′

c

)
, (2.29)

where U± =
(
U1 ∓ iU2) /√2, which are respectively “eaten” by the vector multiplets

V ± = 1√
2

(
V 1 ∓ iV 2

)
, VX =

(
cos ΘV 3 + sin ΘV ′

)
, (2.30)

with tan Θ = 2g′q/g. The vector multiplet orthogonal to these two fields,

VY = − sin ΘV 3 + cos ΘV ′ , (2.31)
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remains massless, while the vector multiplets V ± and VX acquire masses

m2
V = g2

(
v2

u + v2
s

)
, m2

X = g2

2 cos2 Θv2
s . (2.32)

In addition to the Goldstone multiplets Π± and Π0 and vector multiplets V ±, VX , and VY ,
we are left with six chiral multiplets, Σ±, Σ0, U3′, ϕ, and ϕ̂. The mass matrix of these fields
follows from the quadratic part of the superpotential,

Pm = −2
√

2h
(
v2

u+v2
s

vu

)
Σ−Σ+−λ′ vu√

2
ϕ̂U3′−

√
2vs

(
λϕ−hU3′

)
Σ0−hv2

s

vu
U3′U3′ , (2.33)

where the linear combinations

Σ± = 1√
v2

u + v2
s

(
−vs U

± + vu S
±) , Σ0 = 1√

2

(
S0′ + S0′

c

)
, (2.34)

are orthogonal to the Goldstone multiples Π± and Π0, respectively. We emphasize again
the role of the Yukawa coupling: in absence of the h-dependent terms in eq. (2.33), the
superpotential Pm simply corresponds to the mass terms discussed in sections 2.1 and 2.2,
i.e., the mass terms for SU(2)R and U(1)B−L breaking in isolation.

For suitably chosen parameter values, the model discussed in this section allows us to
break SU(2)R ×U(1)B−L down to U(1)Y in two subsequent steps, each of which corresponding
to a cosmological phase transition in the early universe. In the first step, a nonvanishing triplet
expectation value ⟨Ua⟩ breaks SU(2)R to U(1)R; and then in a second step, nonvanishing
doublet expectation values ⟨S⟩ and ⟨Sc⟩ break U(1)R × U(1)B−L down to U(1)Y . Note
that analogous symmetries are present in the electroweak sector, where SU(2)L contains the
subgroup U(1)L and where U(1)L × U(1)Y contain in turn the electromagnetic subgroup
U(1)Q; even though electroweak symmetry breaking does not involve any Higgs triplets.

Up to now, we treated the U(1)B−L gauge coupling times the charge of the doublet fields,
qg′, as a free parameter. This is no longer possible as soon as one begins to consider embeddings
of our model in either of the symmetry breaking chains in eqs. (2.1) and (2.2). In Pati-Salam
or SO(10) GUT extensions of the SM, the Higgs doublets S and Sc are embedded into
Pati-Salam (4, 1,2) ∼ χL and

(
4̄, 1, 2̄

)
∼ χc

R representations, or into 16, 16 representations
of SO(10), respectively [see eq. (2.4)]. Here, the Higgs doublets S, Sc are identified as the
“lepton doublets” in χL, χc

R. For the Pati-Salam embedding, the covariant derivative in
the bosonic sector reads DµχL = ∂µχL + i

(
gT a

RV
a + g′ 1

2 (B−L)V ′
)
χL. The normalization

condition g′2/4 tr
[
(B−L)2] = g2tr

[
(T 3

R)2] then implies g′√2/3 = g, which corresponds to
the mixing angle tan Θ = −

√
3/2. The covariant derivative with the two U(1) factors U(1)R

and U(1)B−L then reads DµχL = ∂µχL + ig
(
T 3

RV
3 +

√
3/2 1

2 (B−L)V ′)χL. Note that the
field S carries charge ±1/2 with respect to the generators T 3

R and 1
2(B − L), respectively.

Embedding the doublets S, Sc in 16-, 16-plets Φ, Φc of SO(10), as in eq. (2.4), implies
that heavy Majorana neutrino masses must be generated by the nonrenormalizable operator

Ln = 1
M∗

hij S
TLc

iS
TLc

j ⊂ 1
M∗

hij ΦcψiΦcψj . (2.35)

Here, the fields Lc
i = (nc

i , e
c
i)T , i = 1, . . . , 3, denote the SU(2)R doublets of right-handed

neutral and charged leptons that are contained in the SO(10) 16 representations ψi of matter,
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and hij are Yukawa couplings. Alternatively, one can follow eq. (2.3) and break SO(10) with
126-, 126-plets Φ̃, Φ̃c containing the SU(5) singlets S̃, S̃c. Heavy neutrino masses are now
generated by the renormalizable couplings

Ln = hijS̃L
c
iL

c
j ⊂ hijΦ̃ψiψj , (2.36)

as assumed, e.g., in ref. [13]. The VEVs of S̃, S̃c leave a Z2 discrete symmetry unbroken,
which leads to topologically stable strings.

The cosmological realization of the two symmetry-breaking stages in our model (in the
form of cosmological phase transitions) leads to the formation of defects: monopoles in the
first step and strings in the second step. For a monopole-string-antimonopole configuration,
the magnetic fluxes of the string and the (anti)monopole have to match2 (see, e.g., ref. [52]).
The string solution with lowest energy has winding number n = 1. As the symmetry breaking
field S has charge 1/2, it carries magnetic flux 4π/g. This can be matched by a n = 2
monopole with mass mM ∼ 4πvu/g. Together with the string tension µ ≃ 2πv2

s , we then
obtain for the parameter κ, which controls the metastability of cosmic strings,

κ = m2
M

µ
∼ 8π
g2
v2

u

v2
s

. (2.37)

In supersymmetric theories, one expects g2 ∼ 1/2 at the unification scale. This implies√
κ ∼ 7 vu/vs. As we shall see in the following section, metastable strings can be relevant

for GWs in the PTA band for
√
κ ≳ 8, which corresponds to vu ≳ vs. Note that the model

predicts confined as well as unconfined magnetic flux for the monopole, which is estimated
as 4π/g sin2 Θ (for a discussion, see ref. [52]).

An important open question concerns the range of validity of the relation in eq. (2.37).
The size of the magnetic cores of the monopole and the string are given by m−1

V and m−1
X ,

respectively. The string decay rate will also be affected by the false vacuum cores, whose size
is given by the Higgs masses mU and mS for monopole and string, respectively. Moreover,
eq. (2.37) uses estimates for the mass and tension of an isolated monopole as well as an isolated
string, respectively. So far, no calculations have carried out for spatially extended composite
defects. As vu approaches zero, the semiclassical approximation used in the derivation of
eq. (2.37) breaks down, and metastable strings turn into dumbbells that decay immediately.

In the case where SU(2)R × U(1)B−L is broken to U(1)Y by VEVs of the doublets S and
Sc only, dumbbells or X-strings form, which are completely analogous to the Z-strings of the
SM [5]. For | tan Θ| =

√
3/2, X-strings are known to be unstable [57, 67–69].

Metastable strings are a generic feature of GUTs. The supersymmetric breaking of
U(2) = SU(2)R × U(1)B−L/Z2 is the simplest example (albeit a representative one) of a
much richer structure that occurs in realistic GUTs. It is an intriguing prospect that the
metastability of cosmic strings might be tested with gravitational waves, which would provide
direct information about the energy scales of GUT symmetry breaking stages.

2Note that, in the U(2) model, this is only possible if g′q and g are integer multiples of each other. This is
guaranteed by the Pati-Salam embedding.
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3 Stochastic gravitational-wave background

The SGWB sourced by a metastable cosmic-string network was recently computed in ref. [70]
(see also refs. [44, 45]). As for stable cosmic strings, a population of string loops with number
density ◦

n(ℓ, t′) radiates GWs with the power density per frequency [9, 71]

Pgw(t′, f ′) = Gµ2
kmax∑
k=1

ℓ

f ′
◦
n
(
ℓ, t′

)
Pk , (3.1)

where f ′ = 2k/ℓ indicates the GW frequency, emitted by a loop of length ℓ oscillating in
its kth harmonic excitation; t′ is the time of GW emission and Pk = Γ/(k4/3ζ[4/3]) with
Γ ≃ 50 is the power emitted by a single loop (assuming the emission is dominated by the
contribution from cusps). Integrating over t′, we obtain the spectral energy density in GWs
today normalized by the critical energy density,

Ωgw(t0, f) = 16π(Gµ)2

3H2
0f

∑
k

kPk

∫ zi

0

dz′

H(z′)(1 + z′)6
◦
n(2k/f ′, t(z′)) . (3.2)

Here H(z) is the Hubble parameter, we have switched the time-variable to redshift z, and
the argument of the loop number density ensures that we are accounting for all GWs emitted
at frequency f ′ such that after red-shifting, they are observed at frequency f today.

The remaining challenge is to determine the loop number density ◦
n(ℓ, t′). In the limit of

stable cosmic strings, we adopt the velocity-dependent one-scale (VOS) model [72, 73] within
the Nambu-Goto framework, in which one-dimensional string loops are formed at a fixed
fraction α of the horizon and then shrink due to GW emission, ℓ(t) = αt′ −ΓGµ(t−t′). In this
case, the loop number density can be determined analytically by solving the corresponding
kinetic equation, up to integration constants which can be extracted from simulations [74].
For example, in a radiation-dominated background, this yields

◦
n

rad
∞ (ℓ, t) = B

t3/2(ℓ+ ΓGµt)5/2 Θ(αt− ℓ) , (3.3)

where B = 0.18 and α = 0.1 are obtained from a fit to numerical simulations. The subscript
∞ (for κ → ∞) refers to stable cosmic strings.

For metastable cosmic strings, the kinetic equations are modified to take into account
the decay of string loops to segments through the formation of a monopole-antimonopole
pair, as well as the formation of segments from longer segments and super-horizon strings [70].
If the monopoles carry no unconfined flux, the segments themselves can have cosmological
lifetimes and contribute to the SGWB [40, 75]. However, as demonstrated in ref. [70], the GW
spectrum generated by cosmic string loops alone provides a good approximation to the full
spectrum in most of the parameter space, even when there is a contribution from segments.
Moreover, the example in section 2 has unconfined flux. We therefore focus on the GW
spectrum from string loops, in which case the key change compared to stable cosmic strings
is an additional decay term in the kinetic equation for the loop number density accounting
for the monopole-antimonopole formation on the loops. Matching the number density to
eq. (3.3) at early times, t ≪ ts = 1/Γ1/2

d , then yields for the loop number density of the
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Figure 1. GW spectrum from metastable cosmic strings with a string tension of Gµ = 10−7 (blue)
and Gµ = 10−9 (green). Different line styles indicate different string lifetimes, ranging from

√
κ = 7

(dashed) over
√
κ = 8 (solid) to the limit of (quasi-)stable strings

√
κ ≳ 9 (dotted). The gray-shaded

areas indicate the sensitivity of current (solid) and planned (dashed) GW experiments. The orange
region indicates the preferred region of the possible SGWB signal observed by PTAs.

metastable cosmic string network at t > 1/Γ1/2
d ,

◦
n

rad
(ℓ, t) = B

t3/2(ℓ+ ΓGµt)5/2 e
−Γd[ℓ(t−ts)+ 1

2 ΓGµ(t−ts)2] Θ(αts − ℓ− Γµ(t− ts)) . (3.4)

Here, the exponential factor accounts for the decay of the loops at t > ts through the
generation of monopoles, and the Heaviside function ensures that loop formation only occurs
at t < ts. For expressions for the loop number densities involving evolution during the
matter-dominated era as well as expressions for the number densities of super-horizon strings
and segments, see ref. [70].

Figure 1 shows the GW spectrum obtained by inserting eq. (3.4) (and corresponding
expressions for the matter-dominated era) into eq. (3.2). The dotted black curves show the
limit of stable cosmic strings, κ → ∞, whereas the colored curves show the prediction for
the spectrum for two different values of the ratio of the symmetry breaking scales κ and the
string tension µ. Large frequencies correspond to GWs produced at early times, and hence
the spectrum produced by stable and metastable strings is identical, featuring a plateau at

Ωplateau
gw ≃ 128π

9 B Ωr

(
Gµ

Γ

)1/2
, (3.5)

where Ωrh
2 = 4.15 · 10−5 is the density parameter of radiation today. At lower frequencies,

the earlier decay of the metastable cosmic string loops suppresses the GW signal, leading to
a drop in the spectrum proportional to f2. This drop sets in at a frequency [70]

flow ∼ 3 · 10−9 Hz
(50

Γ

)3/4
(

10−8

Gµ

)1/2

exp
(

−π
(
κ

4 − 16
))

. (3.6)

GWs from metastable strings can be observed if their decay happens sufficiently late such
that their redshifted frequencies are not much below flow. On the observational side, a
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lower cutoff on the measurable frequencies at PTAs is given by the observation times, i.e.,
fPTA ∼ (10 yr)−1 ≃ 3 nHz. The cutoff flow depends exponentially on κ, and from eq. (3.6)
one reads off that the condition for a potential discovery of GWs at PTAs, flow ≲ fPTA,
requires

√
κ ≳ 8. Note that the predicted f2 spectrum is remarkably different from the

f3 scaling expected for causal GW sources (including, e.g., GWs from domain walls) and
is due to the fact that the cosmic-string network acts as a GW source over time scales
much larger than a Hubble time.

PTA collaborations across the world have recently reported the observation of a stochastic
common-spectrum process [19–22] showing evidence for Hellings-Downs spatial correlations [23–
26], the hallmark signature of a SGWB. While the most plausible source remains supermassive
black-hole binaries, the observed tension with common astrophysical population models [28, 29]
motivates a thorough investigation of a possible cosmological contribution. Upcoming data
will improve our understanding of the spectral tilt, the isotropy and the presence of resolvable
individual sources in this SGWB, which will all help to distinguish an astrophysical from a
cosmological origin. With these promises and caveats in mind, we now focus in more detail
on the GW signal of metastable cosmic strings in the PTA frequency band. As shown in
refs. [32, 45, 70], this could explain the observed GW signal for 10−11 ≲ Gµ ≲ 10−7 and√
κ ≳ 8. For models of hybrid and tribrid inflation compatible with these values, see, e.g.,

refs. [43, 76, 77]. From eq. (2.37), one reads off that
√
κ ≃ 8 can be achieved if the two

symmetry breaking scales vu and vs are close to each other. Metastable cosmic strings thus
lead to observable effects at PTAs for vu ≳ vs. If the astrophysical origin of the currently
observed signal should be confirmed, which corresponds to interpreting the current PTA
data as an upper bound on a cosmological signal, this would shift the interest to the region
vu ≲ vs (or to smaller values of Gµ), which remains compatible with such a constraint while
still allowing for a large SGWB signal in the LISA and LIGO bands.3

Within the approximations mentioned above, the GW spectrum from metastable cosmic
strings only depends on two parameters, the string monopole mass mM and the string tension
µ, or, dropping the logarithmic dependence on the Yukawa couplings, the two symmetry
breaking scales vu and vs. Interpreting the PTA data as a SGWB, the current data [23–25]
indicate an amplitude of 10−10 ≲ ΩPTA

gw h2 ≲ 10−9 at the PTA peak sensitivity fPTA = 3 nHz.
The spectral index nt = d ln Ωgw/d ln f is less constrained and varies more significantly across
the different data sets, 0 ≲ nt ≲ 3, with the PPTA data set preferring slightly smaller values,
the EPTA 10.5 year data set preferring larger values and the NANOGrav data lying in
the middle. Upcoming data and analysis will significantly improve the measurement of the
spectral tilt, allowing a distinction between different SGWB sources. Remarkably, within the
framework of metastable cosmic strings, the two observables ΩPTA

gw and nt allow to determine
the two model parameters, vu and vs.

This is shown in figure 2, where we fix the amplitude of the GW spectrum at f = 3 nHz
to two distinct reference values, ΩPTA

gw h2 = 5 · 10−10 (left) and ΩPTA
gw h2 = 10−9 (right), and

3The described connection between PTA observation times and GUT-scale parameters may appear surprising,
but an analogous case is known from neutrino physics. Neutrino mass differences

√
∆m2 ∼ 0.05 eV could

only be discovered in atmospheric neutrino oscillations because the oscillation length is L ∼ 104 km (earth
diameter) [78]. Smaller mass differences, e.g.

√
∆m2 ∼ 0.005 eV, would have remained unobserved.
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Figure 2. U(1) symmetry breaking scale vs (solid green, left axis) and ratio κ1/2 between monopole
mass and string tension (dashed blue, right axis) as a function of the predicted spectral tilt nt

of the SGWB, assuming an amplitude ΩPTA
gw h2 ≃ 5 · 10−10 (left) and ΩPTA

gw h2 ≃ 10−9 (right) at
f = 3 nHz. The grey region indicates values Gµ > 1.5 · 10−8 (Gµ > 1.6 · 10−7) which are disfavoured
by LIGO-Virgo-KAGRA (LVK) for a logarithmic (linear) prior on the amplitude of the SGWB signal
in the LVK band [79].

show how a future improved measurement of nt (x-axis) would determine the GUT-scale
symmetry breaking parameters (on the two vertical axes).4 The limit of stable cosmic strings
requires Gµ ≃ 4 · 10−11 (7 · 10−11) yielding nt ≃ 0.7 (0.6) to reproduce this SGWB amplitude
for ΩPTA

gw h2 = 5 · 10−10 (10−9). As the cosmic-string lifetime and hence κ is reduced, the
string tension µ needs to be increased to maintain the same SGWB amplitude at 3 nHz.
For quasi-stable strings, an increase in Gµ comes with a decrease in nt, until with a further
decrease of κ the f2 part of the spectrum enters the PTA band and the spectral index starts
increasing again. For large string tensions (large vs), the desired SGWB amplitude can
only be achieved by significantly reducing the string lifetime (reducing κ), recovering the
asymptotic f2 scaling. Of course in this case, unless the reheating temperature is very low or
a non-standard cosmological history is invoked [44, 80] (see, e.g., ref. [81]), the SGWB will
exceed the bound Ωgw ≤ 5.8·10−9 (1.7·10−8 for a linear prior) set by the LIGO-Virgo-KAGRA
(LVK) collaboration in the 100 Hz range [79]. If the current preference for a spectral index
larger than nt ≃ 1 persists, this moreover disfavours the limit of stable strings resulting in a
sweet spot with vs = few × 1014 GeV and

√
κ ≃ 8.3 (see also ref. [37]).

We conclude this section by drawing attention to some theoretical uncertainties and open
questions in the calculation of the GW spectrum. Our calculations here are based on the
Nambu-Goto action, taking cosmic strings to be infinitely thin, and moreover we focus on
the GW emission by cusps on the cosmic string loops. Alternatively, cosmic strings can be
modeled using lattice simulations of classical field theory (Abelian Higgs model) and one
may consider GW emission from kinks as well as GW bursts. For reviews and more detailed
discussions, see refs. [9, 82]. In summary, a robust understanding of the substructure on
string loops remains challenging but is crucial to accurately estimate the GW spectrum.

4Since the cosmic string signal is not a perfect power law over the frequency range of PTAs, the precise value
of the tilt nt (both in the model prediction and signal reconstruction) depends on the underlying assumptions.
Here, for concreteness, we determine nt by linearly interpolating between the signal predictions at 2 and 4 nHz.
Note that nt is related to the often quoted tilt α of the dimensionless characteristic strain and to the spectral
index (−γ) of the timing-residual power spectral density as nt = 2α + 2 = 5 − γ.
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4 Stable and quasi-stable strings

The GW spectrum of metastable strings in the PTA frequency band and above agrees with
the one of stable strings for monopole-mass–string-tension ratios

√
κ ≳ 9 [70]. These strings

are usually referred to as quasi-stable. They can explain the PTA results for Gµ = 10−(11···10),
corresponding to a spectral tilt of 0 ≲ nt ≲ 0.8 [30, 31, 33–35], where the upper bound is
relatively sensitive to the details of the modelling of the cosmic-string network [34].

Many studies have explored possible connections between an intermediate string scale
vs ∼ 1013 GeV and other predictions of supersymmetric and nonsupersymmetric GUT models.
In nonsupersymmetric SO(10) models, requiring gauge coupling unification together with
an intermediate string scale significantly restricts the allowed symmetry breaking chains.
Moreover, the unification scale has to be large enough such that the proton decay rate is
smaller than current experimental bounds [83, 84]. The situation is similar in supersymmetric
SO(10) models [85]. Since SO(10) GUTs with a large string scale around 1013 GeV generically
contain heavy Majorana neutrinos, weakly interacting neutrinos with sub-eV Majorana masses,
as well as leptogenesis are naturally incorporated. The discussion of SO(10) models can be
extended to E6 models where new types of monopoles and strings appear [86].

One may also consider extensions of SO(10) models with a Peccei-Quinn symmetry whose
breaking yields an axion [87]. The model predicts two types of monopoles, related to the
GUT scale and an intermediate scale, and in addition topologically stable strings produced
at an intermediate scale below 1013 GeV. The related SGWB is too weak to be observed
by PTAs or LVK, but can be detected at SKA, LISA and ET/CE. On the other hand, for
baryogenesis after primordial-back-hole evaporation as discussed in ref. [88], the predicted
scale of the B−L strings is too large to be consistent with PTA data. These are some
examples of the discriminating power of SGWB signals in the PTA band.

So far, we have assumed that a fundamental GUT is broken to the SM by a sequence
of symmetry breakings that are all realized by the Higgs mechanism. One can then expect
a plethora of topological defects produced in cosmological phase transitions as sources of
a SGWB. However, it is far from obvious that all symmetry breakings are realized by the
Higgs mechanism. Nonsupersymmetric GUTs suffer from severe fine-tuning problems, and
supersymmetric GUTs with realistic fermion mass matrices require large Higgs representations,
which make them almost intractable. Attractive alternatives are GUTs in higher dimensions
and in string theories. Compactification to four dimensions will then reduce the GUT group
to a subgroup whose further breaking to the SM group could then proceed via the Higgs
mechanism (for a review and references, see, e.g., ref. [54]). This still leaves room for some
topological defects. Clearly, the discovery of monopoles or evidence for strings in a SGWB
would be extremely valuable as a guide to a grand unified theory beyond the SM.

5 Cosmological defects and inflation

Metastable cosmic strings require two steps of spontaneous symmetry breaking. In the first
step, an SU(2) group, which may be embedded in some GUT group, is broken to U(1),
leading to monopoles as topological defects. In the second step, a U(1) group is spontaneously
broken leading to strings as topological defects. This U(1) group must not be orthogonal
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to the U(1) contained in SU(2) in order to allow the string to split into segments having
monopoles and antimonopoles at the ends.

Between the SU(2) and U(1) phase transitions an inflationary period must have taken
place in order to dilute the produced monopoles but to keep the cosmic strings. In fact,
one of the motivations for cosmic inflation has been the “monopole problem” of GUTs in
standard cosmology (see, e.g., ref. [89]). One may worry that a mass ratio of

√
κ ∼ 8 between

the topological defects sourced by these phase transitions does not leave enough space for
an inflationary period. However, while the chronological order of the symmetry breaking
stages in hybrid inflation is set by the Higgs masses, these are linked to the corresponding
symmetry breaking scales (or Higgs vacuum expectation values) through Yukawa couplings.
This leaves enough freedom to implement hybrid inflation [42].

In the supersymmetric SU(2)R × U(1)B−L model discussed in section 2, inflation is
naturally realized by means of F -term hybrid inflation [11, 12]. The two singlets, needed in
the superpotential to ensure SU(2)R and U(1)B−L breaking, play the role of inflatons. In
combination with the supersymmetric SM and right-handed neutrinos, a consistent picture
of inflation, leptogenesis and dark matter is obtained for a large scale of B−L breaking,
vs ∼ 1015 GeV [13, 43, 77]. Alternatively, one can consider sneutrino tribid inflation in a
gauged U(1)B−L extension of the supersymmetric SM. Metastable strings are again obtained
by embedding the model in SO(10) [76]. Depending on the pattern of supersymmetry breaking,
one obtains gravitino dark matter [77]. Note that in all SO(10) models the precise connection
between GUT masses and couplings and the monopole-mass–string-tension ratio

√
κ is an

open question that remains to be investigated.
Monopoles and strings have also been considered in nonsupersymmetric SO(10) models

with an intermediate string scale vs ∼ 1013 GeV. The inflaton is introduced as a GUT-singlet
scalar field whose potential is generated by radiative corrections. Monopoles and strings may
be present today at an observable level, and stochastic GWs may respect PTA and LVK
bounds and only become visible at LISA, SKA, BBO and ET/CE [86]. The formation of
monopole-antimonopole-string configurations may lead to a suppression of the GW spectrum
at PTA frequencies [90, 91].

In GUT models with monopoles and metastable strings the incorporation of inflation is
of crucial importance. One is then faced with the challenging problem to treat gauge coupling
unification, fermion masses, proton decay, baryogenesis, (potentially) supersymmetry breaking
and dark matter, together with inflation and the formation of a cosmic string network in a
quantitatively consistent way. In the examples mentioned above, some progress has been
made, but there is much room for improvement. Evidence for (metastable) strings from a
SGWB would be a key element to guide us toward grand unified theories.

6 Conclusions and outlook

The evidence for a gravitational-wave background at nanohertz frequencies recently reported
by PTAs around the globe [23–26] opens a new window to study the evolution of our universe.
The observed signal at nanohertz frequencies, ten orders of magnitude below the LIGO-Virgo-
KAGRA band, may have an astrophysical origin — inspiralling supermassive black-hole
binaries — but it might also be a remnant of events in the early universe.
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One possible cosmological interpretation of the observed signal are metastable cosmic
strings, which have a strong theoretical motivation in the framework of GUTs. The corre-
sponding GW spectrum is characterized by two parameters: the string tension µ = 2πv2

s ,
where vs is the associated symmetry breaking scale, and the ratio between monopole mass
squared and string tension, κ = m2

M/µ, which determines the lifetime of the string network.
The signal in the most recent PTA data sets [23–25] is well described by a power law

with a characteristic amplitude of the order of 10−10 ≲ Ωgwh
2 ≲ 10−9 and a positive spectral

tilt, 0 ≲ nt ≲ 3, around the current PTA peak sensitivity of roughly 3 nHz. In terms of the
parameters of metastable cosmic strings, this implies a string tension 10−11 ≲ Gµ ≲ 10−7

and a decay parameter
√
κ ≳ 8, where the upper (lower) bound on Gµ (

√
κ) arises from

the constraints set by ground-based interferometers on the amplitude of the SGWB. As
illustrated in figure 2, a value of the spectral tilt nt ≳ 1, as preferred by the most recent
PTA data, favours values vs ≥ few × 1014 GeV, close to the GUT scale. Such large values
of the string tension will be conclusively tested once the LIGO and Virgo ground-based
interferometers reach design sensitivity in the coming years [79].

In order to distinguish metastable cosmic strings from other interpretations of the SGWB
signal at PTA frequencies, a more precise determination of the spectral tilt will be important.
Moreover, like most other cosmological signals, the SGWB from metastable cosmic strings
is largely isotropic, as opposed to the significant anisotropies, and the possible presence
of resolvable sources, which are expected for a GW signal from supermassive black-hole
binaries [92–94]. Future pulsar observations and combinations of existing PTA data sets
will shed light on these questions in the near future. In addition, GW observations in
other frequency bands are an extremely powerful probe of the cosmic-string hypothesis,
as the predicted signal spans many orders of magnitude in frequency: smaller frequencies
would be valuable to test the characteristic f2 behaviour of the spectrum, current and
future ground-based detectors will be able to distinguish GUT-scale metastable strings from
intermediate-scale stable strings, and the space-based interferometer LISA will probe string
tensions down to values well below the current reach of PTAs. If upcoming observations
point to an astrophysical origin of the current PTA signal, the results presented here can be
interpreted as upper bounds on Gµ and κ, demonstrating the potential of ground- and space-
based interferometers to probe the remaining parameter space of GUT-scale cosmic strings.

On the theoretical side, the calculation of the GW spectrum has to be improved in several
ways. Most importantly, a precise and robust understanding of the substructure of string
loops is crucial for the estimation of the SGWB. In addition, the large value of vs suggested
by the recent PTA data calls for further explicit studies of metastable strings in GUT models.
As explained in section 2, the value

√
κ ≃ 8.3 hinted at by the data requires the energy scales

vu and vs of the symmetry breakings leading to monopoles and strings, respectively, to be
close to each other. This is a strong constraint on GUT model building that remains to be
investigated, with consequences for neutrinos, leptogenesis and inflation.
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