4 Juillet 1989

MEMORANDUM

A: S.Battisti, P.Tetu

De: C.Dutriat

Copies: J.P.Delahaye, H.Koziol, K.H.Schindl

Sujet: TESTS LPF JUIN 1989

1. SEMGRID

- a. V -- MSH 15 :
 - Fonctionnement correct (1a)
 - Display UMA correspondant (1b)
 - Affichage TV par dico dime incomplet et inversé (1c)
- b. $IIII^2 = MSII 20$:
 - Fonctionnement correct (2a)
 - Display, UMA, correspondent (2b)
 - Affichage TV (2c)
 - Vérification de l'énergie moyenne par, rapport à l'acceptance de EPA : les dipôles sont alimentés à 436 Ampères, ce qui correspond à une énergie de 500 Mey. (2d.)
 - Remarque : la précision en valeur absolue de l'acceptance de EPA n'est pas meilleure que 0.5% . La concordance est excellente .

q. HIP - MSH 20:

• _ Display et indication d'énergie corrects (3)

2. STRE- SCAN

a., WBS 25 :

1.4

Mesure du bruit sans faisceau (4)

 Positionnement "à partir des courbes 5 à 14 a et b , on constate un décalage smoyen de +1,9mm dans les 2 plans entre WBS 25 et UMA 25 (voir tableau No. 1), Les variations autour de ces valeurs sont de ±1mm. L'erreur sur les UMA est estimée à ±0,5mm. l'erreur d'évaluation de la position memogenne, qu WBS à ±0,25mm. Tout se passe comme si le centre mécasnique du WBS se trouve à 3mm. du centre théorique du faisceau (voir tableau No 2). Il est improbable que cela soit dû à une erreur mécanique.

LIL L	IMA (1	TRAJ. ELE	CTRONS	<u>. 321</u>	\$5-\$7-15157 ;
Inten	site(EB)	Horizontal(m	 Vertical 	1(mm)	
UNA 13	- 9 27.8	.7	.1		
UHA 15	-933.1	1.5	.1		
UMA 22	8.0	111.1	111.1		
UHA 25	0.0	111.1	111.1		
UHA 27	3	Tii. :	111.1		
UNA 29	0.0	111.1	111.1		
UNA 38	8.8	111.1	111.1	HCH T	ntens.(E8)
UNA 31	8.8	111.1	111.1		
UNA 32	8.8	111.1	111.1	FCHQ1	-7979 2
LINA 33	8.9	111.1	11107	Line -	-4202 4
1140 34	9.0	111 1	111 1	LICHIC	-941 2
1840.55	9.9	. 111 1	111 1		-976 1
1160.36	- 3	111 1	111 1		-310.1
UNA 37	9.9	111 1	4 • • •	HURDI	9.0 E
	.7	111 1	111 1	11.00	.0
HIE 22	8.9	111.1	111.1		
HTD 35	0.0	111.1	111.1	NHEA	5 199
					- · · ·

LIL UMA (56) TRAJ. ELECTRONS

1222-22-27-15;57;53

Inten	site(E8)	Horizontal(mm)	Vertical		
JMA 13	-213.3	1.3	.1		
UMA 15	-431.9	1.3	1		
'JMA 22	-197.6	. 2	.2		
UMA 25	-195.5	-1.6	-2.1		
UMA 27	-1.4	111.1	111.1		
UMA 29	9.0	111.1	111.1		
UMA 30	0.0	111.1	111.1	ACH.	Intens. (E8)
り加当 31	9.9	111.1	111.1		
UMA 32	8.0	111.1	111.1	ECH01	-384.4
3 M A 33	0.0	111.1	111.1	ac#11	-313.7
UMA 34	9.9	111.1	111.1	£7712	-116.5
<u>1940</u> 35	3.3	111.1	111.1	£ 11 4	-115.5
UMA 36	3	111.1	111.1	acket	-=.4
JMA 37	2.2	4 4 4 4 • • • • • •	 	-1799	.÷
-im 00	• 7	111.1	111.1		
-1E 22	9.0	111.1	• • • • •		
-IP <u>I2</u>	3.0	111.1	111.1	- He	45 130

MEMORANDUM

4 Juiliet 1989

A: S.Battisti, P.Têtu

De: C.Dutriat

Copies: J.P.Delahaye, H.Koziol, K.H.Schindl

Sujet: TESTS LP1 JUIN 1989

1. SEMGRID

- a. V MSH 15 :
 - Fonctionnement correct (1a)
 - Display UMA correspondant (1b)
 - Affichage TV par dico dime incomplet et inversé (1c)
- b. IIIF = MSII 20:
 - Fonctionnement correct (2a)
 - Display, UMA correspondent (2b)
 - Affichage TV (2c)
 - Vérification de l'énergie moyenne par rapport à l'acceptance de EPA : les dipôles sont alimentés à 436 Ampères, ce qui correspond à une énergie de 500 Mey. (2d.)
 - Remarque : la précision en valeur absolue de l'acceptance de EPA n'est pas meilleure que 0.5% . La concordance est excellente .

q. HIP - MSH 20:

• ____ Display et indication d'énergie corrects (3)

2 STRE- SVIRE-SCAN

- a., WBS 25 :
 - Mesure du bruit sans faisceau (4)

 Positionnement "à partir des courbes 5 à 14 a et b e on constate un décalage smoyen de +1,9mm dans les 2 plans entre WBS 25 et UMA 25 (voir tableau No.1), Les variations autour de ces valeurs sont de ±1mm. L'erreur sur les UMA est estimée à ±0,5mm. l'erreur d'évaluation de la position is moyenne, qu WBS à ±0,25mm. Tout se passe comme si le centre mécagrique du WBS se trouve à 3mm. du centre théorique du faisceau (voir tableau No.2). Il est improbable que cela soit dû à une erreur mécanique.

- Proposition : modifier le logiciel .
- Parasite à haute intensité avec convertisseur : tableau No 3 . Deux paramètres influencent la production de parasites :
 - la tension de polarisation (surtout sur le plan vertical)
 - l'intensité du faisceau (surtout sur le plan horizontal)
- Mesure à basse intensité sans convertisseur : position du faisceau déviée par DHZ 14 et DVT 14 (courbes 6, 7 et 8)
- b. WBS 28 :
 - Mesure du bruit (15)
 - Mesure faisceau : fonctionnement correct (16a)
 - Positionnement : comparaison avec la moyenne des UMA 27 29 , les différences sont de + 2,6mm. en II et + 0,3mm. en V (16b)
- c. WBS 82 :
 - Mesure du bruit (17)
 - Mesure du faisceau sans dump (18)
 - Mesure du faisceau avec dump (19)
- d. WBS 14 :
 - Mesure du bruit (20)
 - Mesure du faisceau amplificateur V changé (21)
 - Mesure du faisceau avec dump (22)

Christian Dutriat

Date: 26.6.89 Time: 11.01

LPI-TESTS JUIN 1989 - TABLEAU NO 1

 COURBE No	DHZ14	DVT14	WBS25H	UMA25H	WBS25V	UMA25V	HWBS-HUMA	VWBS-VUMA
 5a+5b	8A	0A	+1,2mm	-1,6mm	+1,2mm	-2,1mm	+2,8mm	+3,3mm
6a+6b	8A	OA	+1mm	-1,2mm	+1mm	-1,5mm	+2,2mm	+2,5mm
7a+7b	4A	OA	+1,6mm	-0,4mm	+1mm	-1,4mm		·
8a+8b	4A	7A	+1,6mm	-0,4mm	+2,2mm	-0,4 mm		
9a+9b	8A	0A	+1mm	-0,6mm	+0,9mm	-0,2mm	+1,6mm	+1,1mm
10a+10b	8A	OA	+1mm	-0,6mm	+0,8mm	-0,3mm	+1,6mm	+1,1mm
11a+11b	8A	OA	+0,9mm	-1,2mm	+0,9mm	-0,5mm	+2,1mm	+1,4mm
12a+12b			+0,8mm	-0,7mm	+0,9mm	-0,3mm	•	
13	1A	9A	+2mm		+2,2mm			
14a+14b	10A	9A	+0,6mm	-0,7mm	+2mm	+0,1mm	+1,3mm MOYENNE: +1,93mm	+2,1mm MOYENNE: +1,91mm

Date: 28.6.89 Time: 9.16

LPI-TESTS JUIN 1989 - TABLEAU NO 3

•

_	COURBE No	INTENSITE	U pol.	Parasite H	Parasite V
	9a+9b	2,4*10E11	-300V	5%	20%
	10a+10b	2,8*10E11	-300V	15%	80%
	11a+11b	2,8*10E11	-450V	20%	5%
	12a+12b	2,4*10E11	-450V	10%	5%
	13	2,2*10E11	-450V	5%	5%
	14a+14b	2,7*10E11	-450V	35%	20%

LIL UMA	1 (1) TRAJ.	ELECTRONS	-يود:	0: 0 7-15:57:
Intensi te	(E8) Horizon	ital(mm) Vertic	cal(mm)	
UNA 13 -92	7.8.	7 .:	<u>.</u>	
UNA 15 -93	3. 1 1.	5 .:	1	
UMA 22	e.e 111.	1 111.3	1	
UNA 25 (0.0 111.	1 111.	1	
UHA 27 ·	3 Tii.	: 111.	1	
UNA 29 I	9.9 111.	1 111.	1	
UNA 38 (8.8 111.	1 111.2	I HCH I	ntens. (F8)
UNA 31 (9.0 111.	1 111.5		
UNA 32 0	9.0 111.	1 111.	ECHAI	-3939.6
UNA 33 (9.9 111.	1 111		-4792.4
UNA 34 6	B.O 111.	1 111.1	HCH12	-941 2
UNA 55 1	9.6 111.	1 111.1	HCH14	-976.1
UNA 36 -	-3 111.	1 111.1		9.9
UNA 37 (9.9 111.	1 111.1	HIPAO	.6
HIZH OO	.7 111.	1 111.1		••
HIE 22 (9.9 111.	1 111.1		
Hito 35 (3.0 111.	1 111.1	NHEA	5 199

TESTS LPI JUIN 1989 _ TABLEAU Nº 2 -

LIL UMA (56) TRAJ.

RAJ. ELECTRONS

1222-22-27-15;37;53

Inten	site(E8)	Horizontal(mm)	Vertical	(36 2	
JMA 13	-213.3	1.3	.1		
UMA 15	-431.9	1.3	1		
'JMA 22	-197.6	. 9	,2		
UMA 25	-195.5	-1.6	-2.1		
UMA 27	-1.4	111.1	111.1		
UMA 29	9.0	111.1	111.1		
UMA 30	9.9	111.1	111.1	ACH	Intens. (ES)
UMA 31	9.0	111.1	111.1		
UMA 32	0.0	111.1	111.1	EC#01	-384.4
3 M A 33	9.0	111.1	111.1	ach1:	-313.7
UMA 34	9.9	111.1	111.1	CH12	-125.6
3M4 35	3.3	111.1	111.1	£ 914	-126.6
UMA 36	3	111.1	111.1		-=.4
UMA 37	2.2	4 4 4 4 4 4 4 4	 	-1725	. 3
HIM 00	• 7	111.1	111.1		
HE 22	.0.0	111,1			
-19 12	3.9	111.1	111.1	-	AS 130

.

LIL UMA 6 TRAJ.

RAJ. ELECTRONS

1989-35-37-20:44:14

Inten	site(E8)	Horizontal(mm)	Vertical		
UNA 13	-196.6	.8	.1		
UNA 15	-196.6	.8	-2.0		
UNA 22	-109.2	.9	.1		
UNA 25	-110.8	-1.2	-1.5		
UNA 27	-37.7	-2.2	2.3		
UNA 29	-36.6	.3	1.1		
uha 38	-35.3	-1.6	1.3	HCH In	ntens.(E8)
UNA 31	-35.0	7	9		
UNA 32	-36.Z	.2	.1	ECH01	-289.9
UMA 33	-36.6	2	1.3	HCH11	-133.3
UMA 34	-36.4	.3	.7	HCH12	-114.2
UHA 35	-36.3	7	3.4	HCH14	-107.5
UHA 36	-35.4	1	3.5	HCH37	-98.6
UHA 37	-36.4	.9	3	HIP00	.3
HIH 00	ົ .3	111.1	111.1		
HIE 22	-30.1	1.2	-2.8		
HIP 22	9.9	111.1	111.1	NHEAS	5 199

LIL UMA TE TRAJ.

TRAJ. ELECTRONS

1999-00-07-20:46:17

Ir	nten	site(E8)	Horizontal(mm)	Vertical		
UHA	13	-101.3	.8	.1		
UHA	15	-106.6	2.7	-2.0		
JHA	22	-107.8	1.7	.1		
UHA	25	-189.5	4	-1.4		
UHA	27	-98.6	-2.0	2.7		
UHA	29	-96.4	.2	1.0		
UHA	39	-94.6	-1.6	.7	HCH	Int <mark>ens.</mark> (E8)
UHA	31	-9 3.3	6	5		
uha	32	-9 7.2	.3	.5	ECH91	-289.9
UMA	33	-97.8	2	.9	HCH11	-129.0
UHA	34	-9 7.2	.3	.6	HCH12	-114.2
UH A	35	-95.8	6	3.5	HCH14	-107.5
UHA	36	-95.2	1	4.8	HCH37	-35.0
UHA	37	-97.5	.9	7	HIP99	.3
HIM	00	• •3	111.1	111.1		
HIE	22	-89.7	2.6	-3.0		
HIP	22	0.0	111.1	111.1	HE	45 198

LIL UMA (86) TRAJ.

. E ETRONS

Īſ	nter	site(E8)	Horizontal(mm)	Vertical
UHA	13	-196.6	.8	.1
UNA	15	-196.6	2.7	-2.0
UHA	22	-108.9	1.7	1.4
JHA	25	-110.8	4	4
UHA	27	-97.6	-2.2	2.7
UHA	29	-95.4	.3	1.0
UHA	30	-9 3.3	-1.2	.6
UHA	31	-92.4	7	5
UHA	32	-95.9	1	.7
UHA	33	-95.6	1	1.0
UNA	34	-95.9	.6	.3
UHA	35	-94. 4	6	3.4
SHA	ЭЕ	-93.9	5	4.2
HA	37	-96.5	.6	5
HIH	90	.3	111.1	111.1
HIE	22	-80.1	1.2	-2.3
₩I₽	22	9.3	111.1	111.1

LIL UMA (96) TRAJ. POSITROMS

1993-95-97-21:12:49

Intens	ite(E8)	Horizontal(mm)	Vertical	(mm)	
- SMA 13 -	E436.7	.5	2		
3 HA 15 -8	2383.4	1.1	3		
- 346 22	2967.4	1.3	.5		
	27 98.0	6	2		
.944 ET	-11.5	-1.9	2.7		
JNA 23	-1.7	.1	.8		
JNA 38	5	111.1	111.1	SICH 1	Intens. (EB)
JHA 31	3	111.1	111.1		
100 BE	3	111.1	111.1	ECM01	-4419.2
1 HA 33	2.8	111.1	111.1	WCM11	-2627.3
	.3	111.1	111.1	WCH12	-2350.8
.MA 25	3	111.1	111.1	WCM14	-2257.5
344 36	2.9	111.1	111.1	WCM37	0.0
1 46 37	.3	111.1	111.1	HIP99	.3
HIN 88	• .3	111.1	111.1		
HE ≊	5.3	111.1	111.1		
4IF <u>22</u>	3.8	111.1	111.1	NHE	5 97

LIL UMA (10) TRAJ.

J. POSITRONS

1989-86-87-21:23:32

Intens	site(EB)	Horizontal(mm)	Vertical	(mm)	
UNA 13 ·	-2999.6	.5	9.9		
UMA 15 -	-2799.3	1.4	4		
UNA 22 -	-3353.2	1.1	.2		
UNA 25 -	-3264.8	6	3		
UNA 2 7	-27.2	3	2.9		
una 29	-6.8	11.7	.8		
uma 39	-1.9	-1.8	-5.9	HCH I	ntens.(E8)
UNA 31	-1.2	111.1	111.1		
UNA 32	7	111.1	111.1	ECH91	-5292.0
UHA 33	4	111.1	111.1	HCH11	-3113.2
uma 34	.3	111.1	111.1	HCH12	-2794.6
UNA 35	9.9	111.1	111.1	HCH14	-2648.8
uha 36	•7	111.1	111.1	HCH37	8.0
UNA 37	.3	111.1	111.1	HIP99	.5
HIM 98	.3	111.1	111.1		
HIE 22	8.8	111.1	111.1		
HIP 22	3.8	111.1	111.1	NHEA	S 97

LIL UMA (1) TRAJ.

J. POSITRONS

1983-88-87-21:15:34

Intens	site(E8)	Horizontal(mm)	Vertical	(mm)	
UNA 13 -	-2948.6	.5	0.1		
UNA 15 -	-2836.6	1.6	5		
UNA 22 -	-3427.2	1.6	.3		
UNA 25 -	-3282.8	-1.2	5		
UHA 27	-29.6	1.3	3.9		
UNA 29	-5.4	15.3	-1.4		
UMA 38	-1.2	111.1	111.1	HCH I	intens.(EB)
UNA 31	-1.2	111.1	111.1		
UNA 32	3	111.1	111.1	ECH01	-5481.4
UNA 33	0.0	111.1	111.1	HCH11	-3156.2
UMA 34	.7	111.1	111.1	HCH12	-2834.1
UNA 35	3	111.1	111.1	HCH14	-2678.9
UNA 36	1.0	111.1	111.1	HCH37	8.8
UNA 37	.3	111.1	111.1	HIP99	.5
HIN 00	· .3	111.1	111.1		
HIE 22	9.9	111.1	111.1		
HIP 22	0.0	111.1	111.1	NHEA	6 97

LIL	ł	3MA	(126)				1383-	85-8 7-21:25:23
			\smile	IRHJ.	P05111	KUTS		
Ir	nter	nsite(E	8)	Horizon	tai(mm)	Vertical	(mm)	
UHA	13	-2410.	1		5	.1		
UMA	15	-2383.	4	1.	5	2		
UHA	22	-2869.	4	1.	1	.3		
UHA	25	-2991.	6	'	7	3		
UHA	27	-23.	8		1	3.2		
UNA	29	-5.	4	13.	2	.8		
UNA	39	-1.	6	-1.1	3	-7.2	HCH I	ntens.(E8)
LINA	31	-1.	2	111.	1	111.1		
ENA.	32	-	7	111.	-	111.1	FEM91	-4396.1
LINA	33	-1.	1	111_	-	111.1		-2584.3
(640)	34	-	3	111.	-	111.1		-2329.9
1540	35	-1-	3	111	-	111 1		-2223 1
IMA	36	9	а А	111	1	111 1	10117	- 9
1 840	37	-	3	111	1	111 1	LIDGO	.0
нты	86	.0	3 0	111.	L 1		HIF OO	
HIE	22	ρ.	9 9	111	± t	111 1		
HTP	22	Ø.	Â	111.	1	111.1		S 97
	-		-	****	÷	*****		

LIL UMA (14) TRAJ.

AJ. POSITRONS

1923-06-07-21:38:24

Intens	site(EB)	Horizontal(mm)	Vertical	(mm)	
UNA 13 -	-2815.3	.5	.1		
UNA 15 -	-2739.0	1.2	1		
UNA 22 -	-3272.6	.8	1.3		
UHA 25 ·	-3196.8	7	.1		
UHA 27	-22.1	9	3.5		
UNA 29	-5.0	13.2	.8		
UNA 30	-1.2	- 9 .2	-7.2	HCH I	intens.(E8)
UNA 31	-1.2	111.1	111.1		
UHA 32	7	111.1	111.1	ECH91	-5181.5
UNA 33	-1.1	111.1	111.1	HCH11	-3835.8
UHA 34	0.0	111.1	111.1	HCH12	-2719.9
UNA 35	-1.8	111.1	111.1	HCH14	-2588.6
UHA 36	0.0	111.1	111.1	HCH37	9
UHA 37	. 3	111.1	111.1	HIP99	.5
HIN 00	.3	111.1	111.1		
HIE 22	9.9	111.1	111.1		
HIP 22	0.0	111.1	111.1	NHE	NS 97

LIL UMA (16) -RHJ.

RAJ. ELECTRONS

ىرى ويىدو ئەرسا ۋساياقىرى

];	ten:	site(E8)	Horizontal(mm)	vertical	(mm)	
	13	-54.0	2.3	.1		
- inc	12	-54.0	.5	-3.2		
HA	22	-69.6	1.1	.1		
1	Ξ	-71.1	7	-, 9		
JHA	27	-64.6	-1.7	2.1		
JHA	æ	-46.8	.1	1.2		
344	38	-41.8	-1.3	1.1	WCH I	ntens.(E8)
JHO	31	-41.3	7	8		
3444	32	-42.4	1	.2	ECM01	-120.1
SHA	33	-42.7	2	1.4	WCM11	-104.6
UNA:	34	-42.8	.3	.7	WCM12	-69.7
	35	-41.0	3	2.9	WCM14	-69.7
UHA	36	-38.4	.1	3.6	WCHST	-104.3
	37	-39.4	.6	-1.1	HIP99	.5
HIN	99	• 1	111.1	111,1		
HIE	22	-35.3	-4.6	-2.1		
-15	<u> </u>	2.3	* * * *	444 4 ••••	NHEO	E 100

LIL UMA (18) TRAJ.

AJ. ELECTRONS

1989-86-87-15:87:17

Intens	ite(E8)	Horizontal(mm)	Vertical	(mm)	
UMA 13	-64.0	2.3	. 1		
UMA 15	-64.0	.8	1		
UHA 22	-79.2	1.1	9 .9		
UMA 25	-71.4	9	8		
UMA 27	-54.9	-1.7	£.3		
1 MA 29	-63.2	.3	1.0		
3 m a 38	-51.7	-1,2	1-1	I MCM	ntens. (ES)
UMA 31	-61.4	5	8		
<u>140</u> 32	-63-8	2	.2	ECM01	-298.3
UMA 33	-64.1	2	1.4	WCM11	-194,5
UMA 34	-64.1	.2	• •	WCM12	
UMA 35	-63.2	4	2.9	WCM14	
UMA 36	-52.3	 1	3.6	WCM37	-10 5. 2
JMA 37	-54.8	.3	-1.1	HIP99	.5
-IM 00	• •	111.1	* * * * *		
4IE <u>22</u>	-53.7	-6.0	-2.3		
-IF <u>22</u>	9.0	111.1		NHEA	5 199

COMPTE-RENDU DE LA REUNION DU GROUPE HI DU 20 FEVRIER 1989

1. <u>Séminaire HI</u> :

PSB à 1 GeV : pourquoi et comment ?

N. Rasmussen présente le "projet 1 GeV" dans son aspect définitif, les avantages que le PS a tiré et tirera de l'augmentation de l'énergie du PSB à l'éjection (voir annexes 1 à 12).

2. Les travaux de l'arrêt machine 1989 :

B. Dumas signale que les travaux d'entretien et d'amélioration, selon planning, se sont déroulés normalement.

Il rappelle en particulier que le nouvel accès contrôlé en bas de l'ascenseur, au niveau du tunnel, sera opérationnel dès lundi 20 février 1989.

3. <u>Démarrage des machines</u> : (P. Tétu, H. Schönauer, G. Daems)

Les plans de démarrage des Linac I, II et du PSB seront respectés.

Le Booster fournira le faisceau de production avec les anneaux II et III tandis que les anneaux IV et I feront l'objet de 2 études séparées pour trouver l'instabilité à 600 MeV et la mise au point de la contre-réaction rapide sur la cavité.

Enfin, G. Daems rend attentif l'opération sur le fait que le PLS, les AFG et les ST ont été modifiés (sans oublier le remplacement du computer console PSB) ce qui peut engendrer de petites surprises ...

L'ordinateur TEMPX, actuellement un NORD 10S, est échangé contre un NORD 100 CX.

4. <u>Divers</u>

a. Dans quelques années, il se pourrait que les éléments constituants du complexe AAC soient destinés au centre de recherche soviétique de SerpuKHOV pour vivre un deuxième ... printemps et permettre des collisions ppb à 3 TeV dans l'UNK. Ceci dans le cadre des échanges, d'une collaboration scientifique renouvelée entre le CERN et l'URSS.

b. Le Directeur Général s'intéresse et encourage particulièrement le programme d'accélération des IONS S¹⁶⁺ (dont on tachera de doubler l'intensité par rapport à 1987) et plus tard le projet d'accélération de Pb⁸²⁺.
Les machines sur lesquelles il faudra travailler en particulier sont le LINAC I, le Booster et le SPS. c. L'expérience ISOLDE, raison d'être de la machine SC, pourrait à l'avenir être servie par la ligne ML du Booster avec les cycles parasites. Les études en cours diront si l'énergie et l'intensité du Booster seront satisfaisants à ces fins.

d. Pour terminer, il faut constater que malgré toutes ces perspectives, on ne trouve pas de candidats pour le poste ouvert (recrutement interne) de Booster Supervisor.

L. Magnani

-

PSB à 1GeV |1 Pourquoi et comment? Diminuer Portes à l'injection au PS lies aux - Point de fonctionnement (PS) - Stopbances To Remed Energie plus élevér => DQ moine important (Laslett sume shift) Ewiter les stopbances (PS) 2Qu+Qy=19 et Qv=6, Qy=6

RF Dipole Mettre dux paquets dans un por son

Distribuer l'intensité des paquets longitudinalement quand elles arrivent an tPS.

Point de fonctionnement et stopbandes, explications 12

- Les particules éxécutent des oscillations transversalles (betatroniques) determinées par l'optique de le machine
- Chaque particule a sa fréquence d'oscillation ; verticulement et horizontalement.
- On peut alors charactériser chaque particule par le nombre d'oscillations qu'elle éxécute dans le deux plans.
- Til Diagramme de Q
 Chaque particule ⇒ un point dans le plan, à un moment donné
 - Point de forctionnement = point
 correspondant au particule en centre du foiseeau. = oscillations infinument petiter.
 - Les points des autres particules sont distribués dans zone en forme de losange ('cravate')
 Stoplandes Si le nombre d'oscillations par tour est entien, il y a danger: Accumulation d'erreur =) instabilité

THE TUNE DIAGRAM (Fig. 1)

The sume diagram of Fig. 1 confirms that the PS works at injection with tune shifts crossing the two integer stop bands. (, & () In this diagram the fourth-order stop bands have not been indicated, with the exception of the "Montague' space-charge stop band, at $2Q_{\mu} - 2Q_{\nu} = 0$.

3Qv=19

We will successively consider the dipolar, quadrupolar, sextupolar, and "Montague' resonances.

Cor .

Fig. 1 The tune diagram

Extraits du rapport CERN/PS 87-89 27 nov 1987 par Y. Baconnier.

Energie plus élevée => paquets plus contts (synchrotroniques) - Oscillations longitudinales dans le paquet. Diminunt gland l'energie angmente Explication physique simple? Hamilton, Liouville (pas simp) F Plande phase

Z

4

Apris 1/4 oseillation synchrotrouique au \$5 (~ 0.3 ms)

$$I = \frac{h n_0 \Omega_0}{p_0 R_0} \overline{w^2} 2\pi \left[\frac{2 - 2\pi p_0 R_0}{e \cdot \hat{V} h n_0 \Omega_0 \cos \phi_0} \right]^{\frac{1}{2}}$$

= $\overline{w^2} \left[\frac{-(2\pi)^3 h n_0 \Omega_0}{p_0 R_0 e \hat{V} \cos \phi_0} \right]^{\frac{1}{2}}$ = invariant. (36)

ce, for sinusoidal oscillations, $2\hat{W}^2 = 2W^2$, the peak value \hat{W} varies under abatic changes of parameters as

$$\underbrace{\overset{\bullet}{\mathcal{E}}}_{\mathbf{Q}} = \widehat{\mathbf{W}} = \left[\frac{-\mathbf{p}_0 \ \mathbf{R}_0' \ \mathbf{V} \cos \phi_0}{\mathbf{n}_0 \ \Omega_0} \right]^{\frac{1}{2}}$$
(37)

adiabatic variation of phase amplitude is obtained similarly, starting

$$I = \oint \Delta \phi \, dW = \oint \Delta \phi \, \frac{dW}{dt} \, dt = \left(\overline{\Delta \phi \, \frac{dW}{dt}} \right) \, \frac{2\pi}{\Omega_s}$$
(38)

proximating (25) for small amplitudes $\Delta \phi$, with $\phi = \phi_0 + \Delta \phi$, one has

$$\frac{dW}{dt} = \frac{e \hat{V}}{2\pi} [\sin \phi - \sin \phi_0] \approx \frac{e \hat{V}}{2\pi} \cos \phi_0 \Delta \phi$$

ading to

$$\hat{\Delta \phi} \propto \left[\frac{-\eta_0 \,\Omega_0}{p_0 \,R_0 \,\hat{V} \cos \phi_0} \right]^{\frac{1}{4}}$$
(39)

com (39) one sees that, during acceleration, p_0 increasing and the other arameters constant, the phase excursion $\Delta \phi$ is reduced as the one-fourth ower of the momentum. This is loosely called "adiabatic damping" of mase oscillations, although in fact, with (37), it is evident that $\hat{W} \cdot \Delta \phi$ invariant, Liouville's theorem holds and there is no damping of the area a the phase plane.¹

ie in
$$\frac{\Delta E}{R_0}, \Phi$$
 plane $Si_0 = Si_0$ not in the $\Delta E, \Phi$ plane
 Φ (CAS Nov. 1976)
Can b lie constant during accelliation.

In case of a constant $|\varphi_{S}|$ during acceleration, the bucket width $|\phi_{e}|$ From (9-3) the bucket height is, for a sinusoidal voltage:

Denxieme-partie. <u>Commant augmenter l'énergie</u> de le machine? Les particulés doivont être aménées à une vitere superieure =) Frequence d'acceleration * (fr= BC 2.TR) Combien?

 $T = \pm mo^2 = \pm mp^2 c^2; \quad m = \frac{mo}{\sqrt{1}78^2}$ de petit livre gaune (youpie!) (CERN MPS-S)/int DL/70/4) $\Rightarrow T$ et β à 8/5MeV et 1GeV Augmentation de la frequence ; $\approx 3,5^{\circ}/o$

(pour une augmentation de l'energie de = 23 %)

element concerné: V CO

r ok.

À la roitesse accorae, il faut déployer plus de force pour déflèchir les particules, = il faut augmenter la nigidité magnétique compian? $(Bev = m \frac{e}{e}) \Rightarrow Be = \frac{mv}{e} = \frac{e}{e}$ Du petit livre game => le momentum pargunante de 14,5% Bl euss.

8

La plupart des éléments magnétiques permettent cette charge supplimentaire Certain demandationt des modifications.

Les modifications le plus importantes

système d'au de reproidissement: - Faible contenu d'axygène - Pression augmenté (+40%)

Kickers Générateurs d'impulsions: - Tousion de sortie: 1 Switch Thyrestorm; temps de monte: V - Ligne de voi dissement \Rightarrow Bii'Spark gap : Adaptation à la Lonsion plus élévée
Nouvelles Éraversées #T ceramiques pour les ainants (vise)

Aimant de déflixion (dipoles) Aimant principal: Puissance OK, amelioration Leas mivean L'aimant de déflexion (BTM. BH210): - Reckichion de l'élitrefèr de 140mm à 110 mm (+ dombre à Niche) (manseurne délicati) []] <u>RF dipole</u>: Accord Outour de la nouvelle préquence d'éjection <u>Instrumentation</u>: Réfection du'gate timing'et distribution pour les pois de le lighe de transfer (Bro) <u>Transverse feedback</u> <u>Utilisation de teate la prissance</u> disponible = Impedance kicker. eta:t necessaine

10

TF Resultats

F	SB BAS H	V => / Ce V	17/189 45
N N			
PRAMETRE	815 TeV	Gev	CONTENTAIRES
		000) (U.C.38) -	
PLS LINES CENT	T/DRAX/QHAX/2001 (C	redine/Onel/2020	CSTCC/INTE/Ane 1/408me
	-16V: NO		
to Onlink DE my Linne' (PPn)	858		
TREWARANCE THE	1079	434	"PULLE TINIA"
1.1.1.1.1			
BS	4.941 Tim	5.657	
BS.	13 701 -14.5		
P	1.481 Gevic	1.696	
ß	0.1448 - 244%		9 2114 (tepieus)
R(PSE)	S997 G	6860 (688	
I-MAIN MAGNET (PES)	2789.5 A	3193 - (319	6)
U(Bur)	8453 mV	4676 (9682)	SIOA = AV
B(PS)	702 G		
20.0/	124-21-4	A ALLAND A ROPERT	
TRANSFER EVEN	NTS (VAL. Corv	TAADE)	
Reuken	29.6W	-33.9	
BESKPA14LA	29.3LV	33.5	
BEZVERALLA	30.0 LV		
BEIKFAILA	202 8 8	248.0	
E BSW	3620 A	- 4145	
STY BVT10	218.3 A	249.9	
BTA BVT40	218.0 A	2496	
BT3 DVT20 (PPM)	-19.6 A	-22.3	
BT DUTZA	171.0	A95.8	
BT4, A SHV40	1564 A		
BTYKFAIO	32.960	37.7	
BTA KPA AO	52.0EV	-M.15(-10)	
RTZDYTLO (PPM)	\$2.0 (78.0)A	95.1(92.0)	71.4 (63.9)
BT2 DVT40 (PPT)	° A	0	5.75 (8.8) (51.40.86)
BTBVT20		228.5	
BTSMV20	2512 A	287.6 (285.1	8)
STQNOAD (DEF)	135.0 A)	(AS6.S	The second s
BTANO 20 (Foc)	125.6 A	143.6	
BTQNO30 (DEF)	470 0 A	197. 2 67. 5	
BLONOZO (PPH)(DE)	-100.0 1	(-115.7	
BTKFA20	23.0 W	26.3	O(PISHBLE)
	terre terre	· · · · · · · · · · · · · · · · · · ·	
MEASURING LI	<u>ve</u>		na a ser
BTSHEAD (+HL) (PPH)	-265.2 9	-303.7	
BTHEHZO	542.0 (~400)1	626.0	ENTREFER Ay + 44 cm
STHQNOLO (FOC)	60.0 A	5.9% _22.2	
STHONOLO (DEP)	- 40 0 1	(· · · · · · · · · · · · · · · · · · ·
TIMINES	•	-	· · · · · · · ·
		500	
BX EFBL (PPH, USER)	410 443	002	•
BX. EPELA (PPt. USER)	410 11	200	ning and an and an and an
BLC (PRESETEN BERN)	364 ms	434 -	
BX.RFT (HWSPEC)	` •	470	
recorbingson RF	DIPOLE	· · · · ·	• • • • •
BTSMU20		0	4350 A(1450)]
BTDVTSO	õ	ō	-4.55A(-7.5.) (Noninal
ST KRF (bù dair)	0	0	17.63(16.31) > (ACTVIL 31.40.88 [contrat 3.68]]
			Position a. 21
	•	۵	

Ċ,

BRAFGODE, BRAFGOFO, BRAGAREBOL, BRN AFGVRF, BRNAFGCAGRANIO, BRGNS

41 2 (89	Sinama	vot uicd, for compreison only uicd in 1987 .	Not ujed Vied Nov,87 To oct 28	uled sinks Nov. 88	wowe reavise botravitive MACHING STUDIES	H2
	BUNCH ENUTH N P TARL.	ιŇ	I N	25.3	R.	
ГЦ	PS Pccel. L	3,5en2 8 Eu2	2,55612	7,55613	(2) √8 €1	
L S L	wrewitry 35 ewrey	9612.	9 E12	1/7Sets	20E13	
× ×	the second	&AS Nev 1 GeV	۲ ده. ۲ ۲ ه.	1962	AGeV	
Å Å	Nr. of Ze Rives	×	n	9	*	
BETHS		728 AT 50 hey	בסוגרבה הד רטוביליאר נעפטינאר גיאר בפיראו גועש)	LUCLIFE ALOUNG FE INJECTION ANLD TRANCI- TION ENERGY	רישורה האניא אל וואד גישו האנדגאט גישו האנדגאע גישו שיני	
Rebucion	KEN	Acception OP A Sinkle RIB RINI	Z RINGS (10 BUNCHEZ) RECONDINED IN THE PSB-PS LINE BY AN RE DIDGE (FUNNEL- LINE) INTO S PS BUCKETS	2 RINGS (20 BUNUTES) MERGED INTO' 5 BUCKETS BY OVARIADATIC RF HANIPULATIONS - AT 25 Gey/C (THERGING, OF PARS OF RUNCHES) - AT 25 Cey/C (TREWILE INCERSE OF HAMANIC NUMBER)	(Possigle Runder Development) 4 Pinge (20 BUNCHES) INTEARD INTO 10 BS BUCKETS BY FUNNELING, FOLLOWED 27 THE PROCESS GIVEN MBOVE	

Dis-c.r. <u>Chefs de Groupe</u> (12) Billinge R. - DI Allardyce B - SC Bouthéon M. - OP Coull L. - PO Fiander D. - RF Jones E. - DI Madsen J.H.B. - LP Pedersen F. - AR Perriollat F. - CO Riboni P. - ML Schindl K. - HI Simon D. - PA

<u>Associates</u> (6) Blechschmidt D. Dekkers D. Haseroth H. Koziol/H. Lefeyre P. Wilson E.

<u>Opérateurs Booster</u> (8)

- M. Arruat
- E. Chevallay
- G. Cyvogt
- G. Jubin
- B. Mangeot

E. Ovalle

- S. Pasinelli
- M. Ruette

Le Dallic G.

Distribution <u>Groupe HI</u> (31 + 3)L. Bernard R. Boudot G. Bourgeois C. Carter H. Charmot M. Damiani B. Dumas Ch. Dutriat G. Gelato B. Hadorn G. Henchoz C.E. Hill J. Knott M. Le Gras L. Magnani R. Nettleton P. Odier F. Prost N. Rasmussen J.P. Romero G. Royer K. Schindl J.D. Schnell H. Schönauer U. Tallgren E. Tanke P. Tétu S. Tirard J.L. Vallet D. Warner M. Weiss G. Amendola (étudiant) A. Margot (apprenti)

M. Moret

Personnes éventuellement intéressées (32)

Baillod J.M.	Malandain E.
Blas F.	Metais M.
Boillot J.	Metzmacher K.D.
Brouet M.	Nitsch F.
Burlet A.	Raich U.
Chaintreuil R.	Renou A.
Daems G.	Royer J.P.
Danloy L.	Schneider G.
Dehavay C.	Simitsch R.
Fiebiger H.	Sullivan A.H.
Gailloud R.	Valbuena R.
Gendre F.	Van Cauter W.
Girardini M.	Völker F.
Godenzi B.	Vretenar M.
Henny L.	
Krusche A.	
Labeye J.F.	
Laudet S.	