PROPOSITIONS DE MESURES DE CALIBRATIONS DES STATIONS D'OBSERVATION

PAR LA DYNAMIQUE DU FAISCEAU

Suite à la réunion sur les stations d'observation du faisceau du (CR: Note 68-4) il s'agit ici de proposer au groupe CO un essai complet de mesures des valeurs des calibrations de ces stations.

Le but de cet essai est triple :

- Il permet de contrôler les valeurs inquiétantes (valeurs absolues et évolution dans le temps) que nous avions observées et d'avancer les valeurs absolues précises après avoir obtenu des recoupements par différentes mesures.
- Mené consécutivement à des réglages et mesures directes des calibrations (Groupe SR), il donne au groupe CO le moyen de contrôler celles-ci et de voir l'effet des réglages effectués.
- Cet essai donnera les éléments nécessaires à la mise au point d'une méthode simple et rapide à effectuer régulièrement (groupe CO) pour suivre dans le temps l'évolution des valeurs de ces calibrations.

I. DIFFERENTES METHODES DE MESURE

- A. CALIBRATIONS GLOBALES (Valeurs moyennes sur l'ensemble des stations)
 - 1. <u>Comparaison entre la lecture R.F. de position radiale moyenne et</u> la mesure de la position radiale moyenne de l'orbite fermée.

Applications Moyenne et haute énergie - stations radiales. (cf. Note sur la mesure de la position radiale MPS/DI 68-2 par Y. Baconnier)

R_{CO} position radiale moyenne en mm équivalents de l'orbite fermée mesurée à l'impulsion B.

N indication du compteur de position radiale.

 R_N valeur de la position raidale à partir de la mesure du compteur. R_N valeur de R corrigée et ramenée en mm équivalents.

Le facteur de calibration est $C_1 = \frac{R_{NC}}{R_{CO}}$

$$R_{\rm NC} = \sqrt{1.35} \times f \times R_{\rm N}$$

Le facteur de correction f est indiqué, en fonction de l'énergie cinétique T, dans le tableau suivant.

(Le temps de comptage de la différence de fréquence entre le quartz et la R.F. étant fixe, $\tau = 11.23$ ms, tel que à 22 GeV $\frac{dN}{dR} = f^{-1} = 1$ il faut dR appliquer une correction f dépendant de l'énergie, <u>calculée</u> dans la note d'Y. Baconnier)

Quant à la valeur absolue de la position radiale : théoriquement les quartz sont calculés tel que aux énergies auxquelles ils correspondent

Mais la mesure durant 11.23 ms, il faut une correction d'instant de mesure de la position radiale de ~ 70 gauss pour être au milieu de cet intervalle (impulsion de mesure B_N).

De plus les <u>mesures</u> effectuées montrent que l'écart de valeur absolue trouvé peut être interprèté comme une erreur de champ ΔB (cf. Y. Baconnier), donc demanderait une nouvelle valeur de l'impulsion de mesure B_{NC} (Tableau).

T cinétique GeV	В	^B N	B _{NC}	f ⁻¹	√1.35 f ⁻¹
8	423	416	414	0.63	0.54
10	519	512	509	0.78	0.67
18	900	894	891	0.96	0.83
22	1091	1 0 84	~1081	1	0.86

Inconvénient Cette mesure manque trop de précision en ce qui concerne le facteur C_1 , car ΔB a été mesuré et toute erreur de champ a une trop grande importance,

Cette méthode simple, directement applicable à l'IBM 1800 avec le CODD, doit être abandonnée tant que le problème de la valeur absolue du champ n'est pas règlé.

2. <u>Comparaison entre le changement de position radiale R.F. et celui</u> <u>de l'OF (Perturbations)</u>.

Applications (idem 1).

Il s'agit au moyen de deux perturbations de valeurs différentes de mesurer au même instant B, deux orbites de position radiale moyennes R_{CO1} et R_{CO2} , correspondant à deux valeurs du compteur N_1 et N_2 , mesurées à l'instant B_{NC} (environ).

$$\Delta R_{CO} = R_{CO1} - R_{CO2}$$

$$\Delta N = N_1 - N_2$$

$$\Delta R_{NC} = f \sqrt{1.35} \Delta N$$
la calibration
$$C_2 = \frac{\Delta R_{NC}}{\Delta R_{CO}}$$

Cette méthode annule l'erreur de valeur absolue du champ et l'instant de l'ecture de position radiale (pourvu que la perturbation soit constante à cet instant) joue peu; on pourra prendre B_N ou B_{NC} .

La sensibilité peut être augmentée par un déplacement assez grand, c'està-dire un AN important.

Cette méthode est applicable à la 1800 et au CODD. Elle peut être combinée à d'autres méthodes (cibles, spiralisation).

3. Méthodes de spiralisation du faisceau.

Applications Injection, moyenne et haute énergie.

Il s'agit de laisser spiraliser le faisceau (sans R.F.) à travers la chambre et de mesurer dans chaque station la différence de position ΔR faisceau entre deux instants Δt , et de comparer $\Delta R = v \Delta t - v$ étant la vitesse de spiralisation (en mm équivalents).

Cette méthode est a priori basée sur la constance de v (donc de α , "momentum compaction") à travers la chambre et le long de l'orbite. Ceci n'est pas réalisé, α n'est constant que pour une machine linéaire.

Au contraire les variations de v d'une station à l'autre peuvent donner des indications sur les défauts d'ordre ≥ 2 .

Ici il faut, pour éliminer cette influence, faire la moyenne ΔR des distances de spiralisation ΔR lues dans chaque station.

Les stations sont assez nombreuses et réparties de manière à ce que cette moyenne soit significative et que l'on puisse prendre la vitesse moyenne, c'est-àdire $\alpha = 0.027$. (Une spiralisation symétrique par rapport au centre de la chambre peut aussi éliminer directement des défauts centrés d'ordre impair : sextupolaires et décapolaires).

La calibration moyenne des stations est :

$$C_3 = \frac{\Delta R}{\Delta R} \frac{v \Delta t}{\Delta R}$$

$$\frac{\text{Injection}}{v} = \frac{dR}{dt} = -1.17 \alpha \frac{R}{-\frac{9}{B_0}} \frac{dB}{-\frac{9}{-\frac{1}{C}}} = \frac{R}{-\frac{1}{C}} = \frac{147.7 \text{ g}}{\frac{dB}{-\frac{9}{-\frac{1}{C}}}}$$

$$v = -30.17 \text{ cm/ms} (33.14 \ \mu\text{s/cm}) \qquad \alpha = 0.027$$

ou si l'on mesure Δt en tours (6.67 $\mu s/tour)$

$$v = 0.201 \text{ cm/tour}$$

Moyenne et haute énergie, le plus simple est de mesurer ΔB_0 en unités d'impulsion B.

$$\Delta R_{th} = -1.17 \quad \alpha R_{0} -\frac{\Delta B}{B_{0}} = -3.16 -\frac{\Delta B}{B_{0}}$$
$$= -3.16 -\frac{\Delta B}{B_{0}}$$

Dans une première approximation on peut prendre B_0 égal à l'impulsion de déclenchement de T_B ; il serait plus juste d'écrire :

$$dR = -1.17 \quad \alpha R_{0} - \frac{dB}{B_{0}} = -3.16 - \frac{dB}{B_{0}}$$

$$\Delta R = \int_{0}^{B_{0} + \Delta B_{0}} \Delta R = -3.16 \left[\log R_{0} \right]_{0}^{B_{0} + \Delta B_{0}}$$

$$\Delta R = -3.16 \log \left(1 + \frac{\Delta B}{R_{0}} \right)$$

$$\Delta R_{N} \sim -3.16 - \frac{\Delta B}{R_{0}} \left(1 - \frac{\Delta B}{R_{0}} \right)$$
La correction relative est $\frac{\Delta B}{2B}$, de l'ordre de quelques $^{\circ}/_{0}$

<u>Remarque</u>. Le problème d'observation du faisceau après un temps de spiralistion correspondant à ΔB est celui de lecture d'une orbite au temps $T_{B} + \Delta B$ (il suffit de choisir une valeur entière de ΔB).

Le dégroupage du faisceau, au bout de quelques ms nécessaires pour une spiralisation raisonable, est partiel; il restera suffisamment de particules groupées (Σ lu) pour que les stations ignorant le continu nous donnent avec assez de précision la position radiale $\frac{\Delta}{\Sigma}$. Ceci pourra être vérifié lors du premier essai.

<u>Inconvénient</u> En tant que valeur absolue, cette méthode est basée sur la connaissance précise de $\alpha = 0.027$, donc est entachée de l'erreur liée à la détermination et la constance à travers la chambre de ce coefficient.

Mais elle est une excellente méthode, simple, applicable au CODD et à l'ordinateur, pour suivre l'évolution dans le temps de la calibration globale, et peut être faite en même temps qu'une mesure d'ouverture globale à haute énergie ou qu'une mesure d'orbite de routine à l'injection. Nous verrons que des recoupements sont possibles en associant cette méthode à d'autres (cibles, perturbation).

4. <u>Méthode spéciale pour l'injection - Changement de la position</u> moyenne de l'orbite fermée.

On peut déplacer globalement l'orbite fernée à l'injection dans les deux directions :

radialement	-	il suffit de déplacer le moment d'injection
verticalement	-	il suffit d'ajouter un courant constant dans toutes
		les corrections verticales (correction commune).

Mais il est difficile de calculer précisément ce changement tant que l'on ne domine pas les effets transversaux à l'injection.

Cette méhode serait avec la 1800 et le CODD très rapide mais nécessite un programme de calcul et une meilleure connaissance des effets non linéaires à l'injection.

B. CALIBRATIONS INDIVIDUELLES DES STATIONS

1. Déformations calculables d'orbites

Ces méthodes reposent sur la comparaison entre la déformation théorique d'orbite calculée et la déformation d'orbite mesurée par l'effet de déflexions.

Déflecteurs possibles :

Injection - Radialement

- enroulements de culasse (BL W) individuels. Assez long actuellement à cause de la condition Σi = 0 sauf en section 59 où le nouvel enroulement est alimenté séparément.
- enroulement de 6^e harmonique, rapide, demande l'emploi
 d'un programme de calcul, et l'effet dépend beaucoup
 de Q méthode difficile pour obtenir de la précision.

- Verticalement

bobines de correction individuelles.

Moyenne et haute énergie

- Radialement

dipôles (Kickers) radiaux. enroulement de déformation. (Bump coils) enroulements spéciaux pour déformation en section 1.

- Verticalement

dipôles verticaux (Kickers).

<u>Déformation mesurée</u> procède par différence entre orbite mesurée avec ou sans déflexion - sans changement de position radiale moyenne.

<u>Déformation calculée</u>. Il faut une mesure précise de Q (facile en dehors de l'injection).

Xi déplacement en section droite Ni en mm équivalents.

Pj déflexion en section droite Nj en mm équivalents.

Le déplacement théorique en section Ni (0 < N < 100)

Xi =
$$\frac{1}{2 \sin \pi Q}$$
 Pj cos $\frac{2\pi}{100}$ Q (50 - |Ni - Nj|)

Calcul de la déflexion équivalente P

$$\begin{cases} \beta_{\rm F} = 21.7 \\ \beta_{\rm D} = 16.0 \end{cases}$$

 β_1 est la valeur locale dans la section droite du déflecteur.

$$P = \frac{-e}{m_{o}C} - \frac{1}{\beta_{Y}} \sqrt{\beta_{F}\beta_{I}} \int B dI \qquad (en unités cohérentes)$$

soit
$$P = 0.694 - \frac{1}{\beta_{Y}} - \int B dI \qquad en section F$$
$$P = 0.507 - \frac{1}{\beta_{Y}} - \int B dI \qquad en section D$$

où

P déflexion en mm équivalent

B dl gauss-mètre dans le déflecteur

 $\dot{\beta},\gamma$ paramètres relativistes usuels

Injection

$$\beta \gamma = 0.331$$
 $P = 2.10 \int B dl$ (F)
 $P = 1.56 \int B dl$ (D)

- <u>plan vertical</u> dans les bobines normales $I = 0.625 \int B dl$ (I courant en Ampère lu au MCR)

P = 3.36 I (F)

soit

$$P = 2.50 I (D)$$

<u>plan radial</u> (BL W) deux enroulements en série sur deux aimants consécutifs; la déflexion équivalente, ramenée dans la section droite encadrée indépendante du type de section est environ (valeur usuelle) :

P ~ 37 I (I Ampère, lue au MCR)

Plus précisément :

Déflexion créée par 1 AT d'enroulement de culasse (On néglige la contribution de AT de BL W à la circulation du champ dans la carcasse, déjà magnétisée par le champ principal, ainsi que les fuites).

Le champ créé dans l'entrefer (1 = 10 cm)

$$H = \frac{NI}{1} = 10 \text{ AT/}_{m} \text{ par AT} = 4\pi 10^{-2} \text{ gauss/AT}$$

soit une déflexion de 50.35 rad/AT (un champ de 147.7 gauss provoque une déflexion de $2\pi/_{100}$ rad.), c'est-à-dire

$$P = \sqrt{\beta_F \beta_1} \cdot 50.35 \cdot 10^{-3} \text{ mm eq/AT}$$

dans un aimant $\beta_{l} \sim \frac{1}{2} (\beta_{\rm F} + \beta_{\rm D}) = 16.8$

<u>BL W normaux</u> alimentés en série sur 2 aimants consécutifs comprenant 20 tours par aimant. La déflexion <u>ramenée</u> dans la <u>section droite</u> milieu est : $P = 1.02 \times 20 \times 2 \cos{-\frac{\pi}{16}} = 39.8 \text{ mm eq/A}$ P = 39.8 I P mm eq

I Amp lu au MCR

BL W spécial 59 2 tours montés sur l'aimant 59 :

La déflexion sur l'aimant est

 $P = 1.02 \times 2 = 2.04 \text{ mm eq/A}$

et peut être ramenée à 2 déflexions dans les sections droites 59 et 60, égales à

$$\frac{2.04}{\pi} = 1.04 \text{ mm eq/A}$$

 $2\cos\frac{\pi}{16}$

soit

$$P_{59} = P_{60} = 1.04$$
 I I courant dans le BL W 59, en A,
lu au MCR.

Moyenne et haute énergie Dipôles actuels (carcasse des octupôles).

Pour avoir le déplacement en mm équivalents on peut se reporter aux tables de J. Rauft et W. Richter, mais on peut appliquer le calcul simple :

$$\int B dl = 18 gm/A$$

(d'après les courbes de S. Van der Meer PS/Int MM. 59-6)

On peut alors calculer P en fonction de l'énergie.

<u>Remarque</u>. Les dipôles haute énergie ne sont considérés comme linéaires que autour du centre; si l'orbite est très déformée à l'endroit du dipôle, il faut faire une correction due à la non-linéarité visible sur les courbes précédentes, que l'on peut interpôler à partir des données suivantes :

d cm	<u>∆∫Bdl</u> o/o ∫Bdl		
d ≤ 3.4 cm	. ≤ 0.3 o/o		
3.5	0.4		
4	1.3		
4.5	3		
5	6		
5.5	10		
6	15		

Ces données sont valables pour les dipôles radiaux ou verticaux

Effet d'une déformation d'orbite radiale sur la boucle d'asservissement

radial du faisceau. A priori pour une répartition de dipôles quelconque et un Q donné il n'y a aucune raison pour que la(ou le) station d'asservissement ne voit pas un changement lors de l'application d'une déformation d'orbite, donc ne produise pas un changement de position radiale moyenne, qui a deux effets :

- changement de Q (faible)
- impossibilité de faire l'orbite différence sans calculer cet effet important de changement de position radiale moyenne.

<u>Calculer</u> ce changement de position radiale moyenne de l'orbite. d₇₈ et d₈₇ sont les déformations d'orbites (en mm eq) créées par la répartition des dipôles en 78 et 87.

δr est le changement de position radiale correspondante.

- deux stations $\delta \mathbf{r} = \frac{1}{1.74} \begin{pmatrix} \frac{d}{-78} \\ 1.35 \end{pmatrix} + \frac{d}{87}$

- station 78 ou 87

 $\delta r = d_{78}$ ou d_{87}

δr est en mm équivalent.

Une vérification est obtenue en comparant au $\delta\,rc$ corrigé à partir du $S_{\rm N}$ observé sur le compteur

$$\delta rc = f \cdot \sqrt{1.35} \delta N$$

(Ici la calibration des stations d'asservissement n'intervient pas car il s'agit d'une méthode de zéro).

<u>Compenser ce δr </u> Il suffit de modifier le signal de perturbation de manière à se retrouver dans la même position radiale, donc au même Q, à chaque changement de l'intensité du courant dans les dipôles radiaux.

Eviter ce δr On peut trouver sous certaines conditions de position radiale (donc de Q), avec les dipôles radiaux existant, une répartition de dipôles évitant toute ráction de la boucle radiale :

- choisir une position radiale N telle que Q = 6.25 (elle varie avec l'énergie, environ entre 5 et 10 mm intérieurs entre 8 et 18 GeV dans les conditions actuelles).
- 2 stations 78/87 Q = 6.25

Les jeux + 5 +45, + 25 + 65, + 35 + 95 ne créent aucune déformation dans les intervalles [45,5] [65,25] [35,95]

Le déplacement maximum est égal <u>dans ce cas</u> à la déflexion produite par un dipôle et on peut écrire

$$X_{M_{3X}} = 0.694 - \frac{1}{\beta \gamma} \int B dl = 0.694 - \frac{1}{\beta \gamma} x 18 x I$$

(I courant en série, en A)

(Ex. T = 10 GeV, 10 A, $\beta \gamma = 11.6$, $X_{M} = 10.8 \text{ mm eq}$)

- 1 station - on peut obtenir des intervalles de déformation plus grands, et en deux mesures, on peut mesurer toutes les stations;
Jeux 85 - 65 avec 78 seule, pas de déplacement dans [65,85]

Le déplacement maximum X_{Max} a la même valeur que précédemment.

Calibrations.

- on peut alors effectuer le rapport entre Xi = dpl Théorique et
 Δd lue (différence orbite avec déformation orbite seule)
- on peut aussi porter d orbite déformée en fonction de Xi pour
- différents courants, la pente de la droite obtenue donne la calibration avec plus de précision et évite d'opérer sur des différences.

2. Emploi de cibles

Les cibles peuvent être combinées aux méthodes précédentes.

- il n'y a pas de cible au même endroit que des stations, donc la position du faisceau doit être calculée à partir d'un relevé d'orbite et de Q.
- il faut tenir compte de la grosseur du faisceau.
- dans la spiralisation sur cible, il faut éviter les effets non linéaires.

<u>Déformation</u> - radiale ou verticale **Placer** la cible à un maximum de déformation.

Mesurer le AR cible - les positions actuelles des cibles ne permettent pas de placer une cible à un maximum de déplacement avec les dipôles proposés. Il faudrait pour utiliser cette méthode prévoir une cible normale en 49 ou trouver une position convenable.

Spiralisation

```
- Faisceau position 1

position indiale lue RN_1

position moyenne orbite RCO_1

position faisceau par l'orbite (ou PQ) à l'endroit de la cible

X_1

position cible (intérieure) à la limite du faisceau C_1

T_p et photo de spiralisation.
```


La comparaison : distance de spiralisation $S \rightarrow \Delta t$, ΔB , ΔR_{th} ΔR_{th} , $C_2 - C_1$, $X_2 - X_1$ nous conne avec recoupement le facteur de calibration.

La comparaison $X_2 X_1$, $C_2 C_1$, $RN_2 - RN_1$, $RCo_2 - RCo_1$ nous donne des indications sur l'existence d'effets non linéaires.

Pour éviter ces effets, ainsi que celui d \mathfrak{a} $\Delta Q(R)$, il faudrait prendre deux cibles, ou deux stations à 4 + k 8 unités d'aimant de distance.

Il est possible de prendre pour X des station à 20 unités d'aimant. Quant aux cibles il faut des cibles spéciales.

> L'emploi de la cible 1 est recommandé car il existe un moniteur de charge. (Mais elle est petite).

II. SPECIFICATION D'UN PREMIER ESSAT

A. DEFORMATION RADIALE A 10 GeV

Lecture de position radiale N = B509Lecture d'orbite C0 = B519Station d'asservissement 78 seule.

- 1. Perturbation < B 500 Position radiale No telle que Q = 6.25 (No ~ 956, $f_{revol} = 475.377, f_{beta} = 119$)
- 2. Relevé orbite CO
- 3. Dipoles 85 65 génératrice B 500 sur le palier de I. Successivement I = ± 10 A, ± 15 A, ± 20 A (± 30 si possible) Relevé CO pour chaque I.
- 4. Essayer avec la cible 6 aprés l. et chaque courant I de 3. de mesurer la position du faisceau (6 Top ext.)
 Essayer avec 61 ROT uniquement pour les déplacements Ext.

B. DEFORMATION VERTICALE 10 GeV

- l. Mesurer N B 509 C0 et Q B 519
- 2. Dipole 94 B 500 sur le palier de I I = ± 10 A, ± 15 A (± 20 si possible) Relevé CO pour chaque I.
- 3. Cible 84 ToP Mesurer la position du faisceau après l. et chaque I de 2.

Remarque A et B - N ne doit pas changer avec I, s'il y a changement noter celui-ci et le compenser avec une perturbation.

C. SPIRALISATION A 10 GeV

- 1. Faisceau extérieur (perturbation) ($\sim 5 \text{ cm}$) N₁ CO₁ et Q à B 519
- 2. Cible 84 Top, position C₁, au bord du faisceau Faire T_B à B 519 Photo 1 Trace T_B + I_p Transfo. 2 Trace Train B
- 3. Faisceau intérieur (~5 cm) N₂ CO₂ et Q à B 519
- 4. Cible 84 Top, position C_2 , au bord du faisceau T_B à B 519 Photo cf. 2.
- 5. Faisceau en N_1 Cible 84 en C_2 T_B à B 519 Photo cf. 2.
- 6. Mêmes conditions que 5. $CO_3 = 519 + \Delta B$ Choisir ΔB (entier) tel que l'orbite soit environ en N₂
- 7. Opérations 2, 4 et 5 si possible avec cible 8.

D. INJECTION RADIALE

- ler tour sans R.F. faisceau réduit
 Orbite CO₁ (avec les corrections) Q sur les mêmes photos, orbite après 25 tours.
- 2. Orbite CO_2 avec $\Delta I = \pm 10$ A dans BL W 59 " CO_3 " " "

3. Si possible Repérer la position du faisceau après 25 tours dans les conditions 1 (quelques stations). Changer délai injection pour avoir la même position au 1er tour. Mesurer Q. Si on peut enlever les oscillations mesurer CO, .

E. INJECTION VERTICALE

- 1er tour faisceau réduit sans R.F. corrections CO₁ et Q.
- 2. CO_2 et CO_3 et Q avec $\Delta I = \pm 3$ A sans une correction
- 3. CO₄ corrections; changer fortement (si c'est possible d'enlever les oscillations) la correction commune Q -

Le dépouillement complet de ces mesures doit permettre

- d'essayer les méthodes
- de spécifier des mesures plus simples ou plus complètes
- de donner une valeur absolue des calibrations.

Précautions - Log. complet

- La disposition des cibles actuelles manque de souplesse pour ces mesures. On utiliserait les cibles 6 et 84 et peut-être 61 et 8
- 1 génératrice
- stations réglées.

Les critiques seront bienvenues.

P. Lefèvre

Distribution (ouverte)

J. Jamsek	G. Roux	opérateurs MCR
J.H.B. Madsen	G. Schneider	Y. Baconnier
G: Plass	G. Schulte	0. Barbalat
G. Rosset	E.i.C	A. Sørenssen
Pour information	H.G. Hereward	
D. Boussard	P.H. Standley	
PS/6402/PL/fm		

PROPOSITIONS DE MESURES DE CALIBRATIONS DES STATIONS D'OBSERVATION

PAR LA DYNAMIQUE DU FAISCEAU

ADDENDUM

- <u>Page 8</u>. Ligne 9 Lire : $\boldsymbol{\beta}_{D} = 12.0$
- <u>Page 9</u> . Lignes 16 et 18 Lire : 53.5 rad/AT (au lieu de 50.35)
- <u>Page 10</u>. Ligne 9 Lire : Pour avoir le déplacement en mm équivalents, on peut appliquer le calcul simple :
- <u>Page 13</u>. § 2. <u>Emploi de cibles</u>. <u>Déformation</u> radiale ou verticale Ajouter : Il est plus précis d'effectuer un palier du champ magnétique avec contrôle radial. Il faut alors simplement vérifier que lorsque la cible touche le faisceau, les perturbations employées pendant la montée sont revenues au niveau correspondant à la position radiale où l'orbite et Q sont mesurés.
- <u>Page 15</u> . § A. 4. Ajouter : Pour plus de facilité, la mesure peut être effectuée sur un palier de champ magnétique.

P. Lefèvre

Distribution

Cf. MPS/DL - Note 68-7

PS/6402/PL/fm

MPS/DL - Note 68-6 27 février 1968

EQUIPE D'ETUDE DE LA MACHINE

Notes sur la réunion du 23 février 1968

ESSAIS D'AMELIORATION DE L'EJECTION LENTE

par D. Dekkers

1. STRUCTURE EN TEMPS DE L'IMPULSION

Le but à atteindre est d'obtenir une impulsion (burst) aussi uniforme que possible pour permettre aux physiciens d'avoir un "taux d'accidentels" minimum.

- 1) <u>Compensation de la structure lente</u> (produite par l'ondulation du courant d'excitation de l'aimant principal).
 - a) Action à la source application d'une tension à la fréquence de l'ondulation à corriger et en opposition de phase avec celle-ci.
 - 50 Hz sur la commande de grille des mutateurs.
 - 600 Hz sur le ler étage du filtre électronique.
 - b) Correction par asservissement le signal d'un moniteur observant le faisceau éjecté commande l'excitation de 2 dipôles en parallèle (4,5) qui ont une action maximum au niveau du quadrupôle d'éjection.

L'ensemble de ces mesures a permis de réaliser une durée "utile" de l'impulsion égale aux 2/3 de sa durée nominale comparé à environ 1/3 auparavant.

La nouvelle alimentation Siemens avec son ondulation nominale de 20 Vpp (au lieu de 50 à 100 Vpp) devrait amener une amélioration.

2) <u>Structure R.F. - dégroupage</u>

La technique la plus efficace reste celle mise au point en 1965. Un déphasage amène le paquet près du point instable du diagramme de phase. On le laisse se déformer pendant l ms, puis on retourne sur le point stable, où l'on laisse les forces synchrotroniques agir pendant 3,2 ms avant d'arrèter leur action en ramenant rapidement le programme R.F. de 9,55 MHz à 2,7 MHz.

Cette méthode a l'inconvénient de produire des "pics" lorsque le programme passe par 3 MHz par suite de résonance avec la fréquence des oscillations bétatroniques.

On a pu éliminer ces "pics" par d'autres méthodes mais le dégroupage est alors moins bon.

L'augmentation du nombre de détecteurs et leur amélioration peut permettre d'avancer plus rapidement en ce domaine. Pour l'éjection lente une répartition uniforme en azimuth ne suffit pas, elle doit être accompagnée d'une distribution uniforme en énergie.

La complexité de cette question a été clairement soulignée par les différentes opinions qui se sont manifestées pendant la discussion.

3) <u>Théorie</u>

On est en train d'effectuer une analyse harmonique de la forme de l'impulsion pour en déterminer toutes les fréquences composantes et adopter les compensations adéquates:

On effectue des calculs théoriques sur la variation des paramètres de l'éjection (point fixe du diagramme de phase) en fonction des ondulations.

2. EFFICACITE DE L'EJECTION LENTE.

1) Lentille à septum

Son emploi pratique se révèle délicat car on a été obligé de faire un compromis entre l'efficacité de l'éjection et l'optique du faisceau éjecté.

La lentille donne des sauts de 5 à 7 mm ce qui permet d'envisager l'emploi de septum plus épais.

2) Cible "ombre"

Une telle cible a une action double :

- elle protège le septum en arrètant les particules qui sans cela viendraient le frapper;
- elle fait perdre de l'énergie aux particules qui la traversent et leur donne une trajectoire qui permet leur éjection.

Toutefois la cible "ombre" détériore l'optique du faisceau éjecté.

3) Oscillations verticales

Lorsque le Q radial passe de 6,25 à 6 pour l'éjection, le Q vertical traverse la résonance 6 1/3 ce qui entraine un grossissement vertical du faisceau. L'emploi d'un quadrupôle vertical a amélioré l'efficacité sans supprimer toujours ces résonances.

3. CONCLUSIONS

Les futurs travaux d'amélioration de l'éjection lente devraient comprendre les points suivants :

- suite des études du dégroupement;
- étude de l'optique verticale (mesure des dimensions du faisceau du PS);
- analyse du mouvement radial du faisceau éjecté.

<u>Distribution</u> (ouverte) PS/6400/0B/fm