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Abstract At the Large Hadron Collider (LHC), absolute
luminosity calibrations obtained by the van der Meer (vdM)
method are affected by the mutual electromagnetic interac-
tion of the two beams. The colliding bunches experience rel-
ative orbit shifts, as well as optical distortions akin to the
dynamic-β effect, that both depend on the transverse beam
separation and must therefore be corrected for when deriv-
ing the absolute luminosity scale. In the vdM regime, the
beam–beam parameter is small enough that the orbit shift
can be calculated analytically. The dynamic-β corrections
to the luminometer calibrations, however, had until the end
of Run 2 been estimated in the linear approximation only.
In this report, the influence of beam–beam effects on the
vdM-based luminosity scale is quantified, together with the
associated systematic uncertainties, by means of simulations
that fully take into account the non-linearity of the beam–
beam force, as well as the resulting non-Gaussian distortions
of the transverse beam distributions. Two independent multi-
particle simulations, one limited to the weak-strong approx-
imation and one that models strong-strong effects in a self-
consistent manner, are found in excellent agreement; both
predict a percent-level shift of the absolute pp-luminosity
values with respect to those assumed until recently in the
physics publications of the LHC experiments. These results
also provide guidance regarding further studies aimed at
reducing the beam–beam-related systematic uncertainty on
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beam–beam corrections to absolute luminosity calibrations
by the van der Meer method.
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1 Introduction

The determination of the absolute scale of the luminosity
delivered to the ALICE, ATLAS, CMS and LHCb experi-
ments at the LHC relies almost entirely [1] on the van der
Meer (vdM) method [2,3]. Luminosity calibrations, which
must be performed under specially tailored beam conditions,
use beam-separation scans, also known as vdM scans, to
relate the collision rate measured by a given luminometer
to the absolute luminosity inferred from directly measured
beam parameters. The proportionality between the measured
rate and the absolute luminosity is expressed in terms of a
“visible” cross-section denoted σvis, which is specific to the
luminometer and the counting method considered.

The accuracy requirements on σvis are driven by the
physics program. At the LHC, the comparison of the most
precisely measured cross-sections with the corresponding
theoretical predictions of the Standard model provide some
of the most stringent tests of higher-order calculations; they
also put strong constraints on parton-density distributions.
In particular, the experimental uncertainty affecting the fidu-
cial cross-sections for inclusive vector-boson production
(pp → Z + X, pp → W + X) is totally dominated [4–
6] by the systematic uncertainty in the integrated luminos-
ity, that in these three publications ranges from 1.8 to 2.5%;
reducing that uncertainty by a factor of three would make
it comparable to the combination of all other experimen-
tal uncertainties, and significantly improve the sensitivity of
the associated Standard-Model tests. For more experimen-
tally challenging processes such as t t̄ production, the overall
measurement uncertainty remains significantly impacted by
that on the luminosity [7,8], even with the recently achieved
sub-percent uncertainty on the Run-2 integrated luminos-
ity [9]. At the HL-LHC, the measurement of the absolute
Higgs couplings drives the accuracy specifications. Projec-
tions of the experimental and theoretical uncertainties that
should be achievable by then led to set a 1% goal on the over-
all integrated-luminosity uncertainty [10,11]. Since the latter
is known to receive comparable contributions from vdM cal-
ibrations, from rate-related instrumental non-linearities, and
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from long-term luminometer stability [9], the corresponding
target for vdM uncertainties at the HL-LHC has to remain
significantly smaller than this goal; it has been set to approx-
imately 0.6% by both the ATLAS and the CMS [11] Collab-
oration.

The beam parameters used to determine the absolute
luminosity during vdM scans are the particle populations
and transverse sizes associated with each colliding-bunch
pair. During a beam-separation scan, the mutual electro-
magnetic interaction between two opposing bunches induces
separation-dependent orbit shifts, as well as variations in
the transverse size and shape of each bunch, thereby dis-
torting the luminosity-scan curves from which the beam-
overlap integrals, or equivalently the convolved transverse
beam sizes, are extracted. Depending on the beam condi-
tions under which the scans are performed, the magnitude
of the resulting calibration bias – if left uncorrected – repre-
sents a significant fraction of, or can even exceed, the σvis

systematic-uncertainty budget.
The methodology first developed in Refs. [12,13] to quan-

tify the impact of beam–beam effects on the absolute lumi-
nosity scale has been adopted since 2013 by all LHC Collab-
orations. With as input the beam separation dialed-in at each
scan step, plus the measured bunch currents and convolved
beam sizes, the orbit shift induced by beam–beam deflections
was calculated analytically [14], and the optical distortion
associated with the dynamic-β effect was evaluated in the
linear approximation [13] using the MAD-X package [15].
The two effects impacted the luminosity scale in opposite
ways, resulting at the time in a net upwards correction to
σvis of 1–1.5% for vdM calibrations at

√
s = 13 TeV.

A recent reevaluation of this methodology, using a new
beam–beam simulation package specifically developed for
vdM-scan studies, revealed that the linear approximation
used in the MAD-X simulation results in a significant under-
estimate of the optical-distortion correction [16].

These findings motivated the studies reported in the
present paper, which is organized as follows.

After a brief overview of the vdM-calibration methodol-
ogy at the LHC and of the impact thereon of beam–beam
effects (Sect. 2), the relevant simulation tools are presented in
Sect. 3: the MAD-X package used in the original implemen-
tation [12,13]; the B*B package presented in Ref. [16], that
models beam–beam dynamics in the transverse plane under
the weak-strong approximation; and the long-established
COMBI [17] multiparticle code, that is more CPU-intensive
but can simulate beam–beam effects in the strong-strong
regime with the optional inclusion of longitudinal dynam-
ics. Following a systematic cross-validation of the latter two
packages, B*B is used in Sect. 4 to develop an easy-to-use
parameterization of beam–beam corrections to vdM scans in
the limit of round, initially Gaussian bunches of equal bright-

ness1 that collide at a single interaction point (IP) with zero
crossing angle. Deviations of the colliding-bunch configura-
tion from this idealized limit: non-Gaussian tails, elliptical
transverse bunch profiles, non-zero crossing angle, collisions
at multiple IPs, or unequal-brightness beams, are then either
accounted for using simulation-based adjustments to the ide-
alized parameterization, or found to be small enough to be
treated as a systematic uncertainty. These and other sources
of systematic uncertainty, such as tune or β∗ settings, that
may affect the beam–beam correction in the vdM regime are
consolidated in Sect. 5. An overall summary and a brief out-
look are offered in Sect. 6.

2 Luminosity-calibration methodology at the LHC

The vdM-scan formalism [2,3] that underpins the determi-
nation of the absolute luminosity scale at the CERN ISR,
RHIC and the LHC is summarized, for the simplest case,
in Sect. 2.1 below; generalizations of this formalism can be
found in Refs. [16,19,20]. At the LHC, because of both
instrumental and accelerator-physics reasons [1], vdM scans
are not performed during normal physics operation, but rather
under dedicated beam conditions (Sect. 2.2). Their two fun-
damental ingredients, the transverse beam separation and the
measured collision rate, are both affected by the beam–beam
interaction (Sect. 2.3), at a level that is significant on the scale
of the precision goals outlined in Sect. 1.

2.1 Absolute luminosity scale from measured beam
parameters

In terms of colliding-beam parameters, the bunch luminosity
Lb is given by

Lb = fr n1n2

∫
ρ̂1(x, y) ρ̂2(x, y) dx dy, (1)

where the opposing bunches are assumed to collide head-
on and with zero crossing angle, fr is the LHC revolu-
tion frequency, n1n2 is the bunch-population product and
ρ̂1(2)(x, y) is the normalized particle density in the trans-
verse (x–y) plane of beam 1 (2) at the IP.2 With the standard
assumption that the particle densities can be factorized into

1 There exist multiple definitions of the concept of beam brightness,
depending on the type of beam and the application considered [18]. In
the context of the present paper, the term brightness refers to the particle
density in transverse phase space. For round beams, it is defined as
B = n p/εN , where n p is the bunch population and εN the normalized
transverse emittance.
2 This paper uses a right-handed coordinate system with its origin at the
nominal IP, and the z-axis along the direction of LHC beam 1; the latter
circulates in the clockwise direction when the LHC rings are viewed
from above. The x-axis points from the center of the LHC ring to the
IP, and the y-axis points upwards.
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independent horizontal and vertical component distributions,
ρ̂(x, y) = ρx (x) ρy(y), Eq. (1) can be rewritten as

Lb = fr n1n2 �x (ρx1, ρx2)�y(ρy1, ρy2), (2)

where

�x (ρx1, ρx2) =
∫

ρx1(x) ρx2(x) dx

is the beam-overlap integral in the x direction (with an analo-
gous definition in the y direction). In the method proposed by
van der Meer [2] at the ISR (Fig. 1, top), the overlap integral
(for example in the y direction) can be calculated as

�y(ρy1, ρy2) = Ry(0)∫
Ry(δy) dδy

, (3)

where Ry(δy) is the collision rate, or equivalently the lumi-
nosity in arbitrary units, measured during a vertical scan at
the time the two beams are separated vertically by the dis-
tance δy . Because the collision rate Ry(δy) is normalized to
that at zero separation Ry(0), any quantity proportional to
the luminosity can be substituted in Eq. (3) in place of R.

Defining the vertical convolved bunch size �y [1] as

�y = 1√
2π

∫
Ry(δy) dδy

Ry(0)
, (4)

and similarly for �x , the bunch luminosity in Eq. (2) can be
rewritten as

Lb = frn1n2

2π�x�y
, (5)

which allows the absolute bunch luminosity at zero sepa-
ration to be determined from the revolution frequency fr,

the bunch-population product n1n2, and the product �x�y

which is measured directly during a pair of orthogonal scans.
If the transverse density profile of each beam B (B =

1, 2) can be described by a single Gaussian of width σi B

(i = x, y), the convolved widths are given by

�i =
√

σ 2
i1 + σ 2

i2 =
√

β∗
i1εi1 + β∗

i2εi2 (6)

where εi B is the geometrical emittance of beam B in plane
i, and β∗

i B is the corresponding value of the β function at the
IP.3 In such a case, the beam-separation dependence of the
collision rate is given by

Ri (δi ) = Ri (0) e
− δ2

i
2�2

i . (7)

The luminosity curve Ri (δi ) is also Gaussian, and �i coin-
cides with the standard deviation of that distribution. It is
important to note, however, that the vdM method does not

3 Throughout most of the present paper, and unless explicitly specified
otherwise, the IP β-function is implicitly assumed to be the same for
the two beams and in the two planes: β∗

x1 = β∗
y1 = β∗

x2 = β∗
y2 = β∗.

Fig. 1 Top: van der Meer method at the CERN ISR. Shown is the
monitor rate Ry(δy) as a function of the relative vertical separation δy
of the two beams (Figure reproduced from Ref. [21], © CERN). Bot-
tom: beam-separation dependence of the visible interaction rate mea-
sured at the ATLAS IP during a horizontal vdM scan in pp collisions
at

√
s = 8 TeV (LHC fill 3311), before (red circles) and after (purple

squares) noise and background subtraction. The subtracted contribu-
tions are shown as triangles. The scan curve is fitted to a Gaussian func-
tion multiplied by a sixth-order polynomial, plus a constant. (Figure
reproduced from Ref. [22], © CERN, CC-BY-4.0 license)

rely on any particular functional form of Ri (δi ): the quanti-
ties �x and �y can be determined for any observed luminos-
ity curve from Eq. (4) and used with Eq. (5) to determine the
absolute luminosity at δx = δy = 0.

In the more general case where the factorization assump-
tion breaks down, i.e. when the particle densities cannot be
factorized into a product of uncorrelated x and y components,
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Eq. (2) no longer holds, and a single pair of horizontal and
vertical scans is no longer sufficient to measure the overlap
integral in Eq. (1). One must then generalize the formalism
to the two-dimensional case [3], and scan over a grid in the
(δx , δy) beam-separation space to measure the product of the
convolved bunch widths [1,16]:

[�x�y] = 1

2π

∫
Rx,y(δx , δy) dδx dδy

Rx,y(0, 0)
. (8)

Here the square brackets highlight the fact that in the presence
of non-factorization, the quantity [�x�y] can no longer be
broken down into a product of two independent quantities.
Equation (5), however, remains formally unaffected, as do
Eqs. (9)–(10) below.

In terms of luminometer observables, the bunch luminos-
ity can be written as

Lb = μvis fr

σvis
, (9)

where μvis is the average number of inelastic collisions per
bunch crossing detected by the luminometer considered, and
σvis is the associated visible cross-section. Since μvis is a
directly measurable quantity, the calibration of the absolute
luminosity scale amounts to determining the visible cross-
section σvis. Equating the absolute luminosity computed
from beam parameters using Eq. (5) to that measured accord-
ing to Eq. (9), yields:

σvis = μvis,pk
2π �x�y

n1n2
, (10)

where μvis,pk is the visible interaction rate per bunch cross-
ing reported at the peak of the scan curve (Fig. 1, bottom).
Equation (10) provides a direct calibration of the visible
cross-section σvis in terms of the peak visible interaction rate
μvis,pk, the product of the convolved bunch widths �x�y,

and the bunch-population product n1n2.

In the presence of a significant crossing angle, the formal-
ism becomes more involved [16,19,23]. A non-zero crossing
angle in either the horizontal or the vertical plane widens the
corresponding luminosity-scan curve by the so-called geo-
metrical factor F :

F =
√

1 + tan2 θc/2 (σ 2
z1 + σ 2

z2)/(σ
2
c1 + σ 2

c2)

cos θc/2
. (11)

Here θc is the full crossing angle, σzB (B = 1, 2) are the
RMS bunch lengths of beams 1 and 2, and σcB the transverse
single-beam sizes in the crossing plane. The peak luminosity
is reduced by the same factor. The corresponding increase in
the measured value of �x or �y is exactly compensated by
the decrease in μvis,pk, so that Eqs. (4)–(10) remain valid,
and no correction for the crossing angle is needed in the
determination of σvis.

2.2 Beam conditions during van der Meer scans

The strength of the beam–beam interaction is tradition-
ally quantified by the linear beam–beam parameter, defined
as [18,24]:

ξx2 = n1 r0 Z1 Z2 β∗
x2

2π Aion,2 γ2 σx1(σx1 + σy1)
(12)

Here ξx2 is the horizontal beam–beam parameter experienced
by beam 2 (B2), the “witness beam”; n1 is the bunch popula-
tion of beam 1 (B1), the “source beam”; r0 = e2/4πε0m pc2

is the classical radius of the proton; Aion,B and Z B (B = 1, 2)

are the atomic mass number and charge number of the beam-
B particle type (proton or fully stripped ion); β∗

x2 is the value
of the B2 horizontal β function at the IP; γ2 is the relativis-
tic factor of the B2 particles, and σx1 (σy1) is the horizontal
(vertical) transverse RMS size of B1. Formulas for the other
beam and the other plane are obtained by interchanging B1
and B2, and/or x and y.

For the most frequent case of pp collisions, Eq. (12) takes
the more familiar form:

ξx2 = n1 r0 β∗
x2

2π γ2 σx1(σx1 + σy1)
.

In the case of equally populated, equally sized round beams,
this expression becomes much simpler:

ξ = nr0 β∗

4πγσ 2
0

(13)

where n is the bunch population, and σ0 = √
ε β∗ is the

nominal RMS beam size at the IP.
In 2018, during high-luminosity physics running in

proton-proton (pp) mode, the LHC collided up to 2544
bunches with typical initial intensities of 1.1×1011 p/bunch,
grouped in trains of 36 to 144 bunches with a minimum
interbunch spacing of 25 ns. Beams crossed with a half-
angle θc/2 of ±130µrad in order to mitigate the impact
of the long-range beam–beam interaction at parasitic cross-
ings. At the start of stable beams, the emittance was typ-
ically 2µm·rad [25], the single-bunch luminosity around
7.8 × 1030 cm−2 s−1 at IP1 and IP5, and the total lumi-
nosity close to 1.9 × 1034 cm−2 s−1 at each of these two
IPs. These values correspond to a pile-up parameter μ of
around 55 inelastic pp collisions per bunch crossing, and
to a bunch-averaged, head-on beam–beam parameter 〈ξ 〉 of
approximately 0.005. The brightness, however, varied sig-
nificantly along the bunch string, occasionally resulting in ξ

values as high as 0.007 for some of the bunches.
In contrast, during pp vdM scans (Table 1), the injected

emittance is deliberately blown up and the bunch popula-
tion significantly lowered, in order to reduce the impact of
beam–beam effects as well as minimize the unbunched-beam
fraction and the intensity of satellite bunches. The bunches
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are isolated rather than in trains, and their number is limited
to 152 at most, in order to eliminate parasitic crossings and
collide with zero crossing angle in the interaction regions
where the beam-line layout so permits. The β function at
the IP is increased such as to bring the pile-up parameter
μ down to around 0.5, i.e. in a regime where luminometers
are free of instrumental non-linearities; this carries the addi-
tional advantage that it significantly increases the transverse
luminous size, allowing a more precise measurement of its
beam-separation dependence [1,22].

2.3 Beam–beam-induced biases and their correction

The mutual electromagnetic interaction between colliding
bunches shifts their orbits, and therefore modifies their
transverse separation at the IP (Sect. 2.3.1); it also distorts
their transverse density distributions (Sect. 2.3.2). These two
effects depend on the nominal separation 
 dialed-in at each
scan step. Their combination impacts both the normalized
integrals (�x , �y) and the peak (μvis,pk) of the luminosity-
scan curves used in determining the absolute luminosity
scale. The strategy for correcting the resulting biases is out-
lined in Sect. 2.3.3; its detailed implementation is developed
in later chapters, in particular in Sects. 4.2.3 and 4.6.5.

2.3.1 Orbit shift

When two positively charged bunches collide with a non-
zero impact parameter, they experience a mutually repulsive
angular kick equivalent to that of a dipole located at the col-
lision point, the strength of which depends on the beam sep-
aration. In the round-beam limit and for pp collisions, the
angular kick experienced by a B2 bunch during a horizontal
beam-separation scan is given by [26]:

θ2x = 2r0n1

γ2

δx

δ

[
1 − e−δ2/2�2

R

δ

]
, (14)

and similarly for a vertical scan. Here δx (resp. δ) is the hor-
izontal (resp. total) beam separation, and �R = �x = �y is
the transverse convolved beam size. This formalism has been
extended by Bassetti and Erskine [14] and by Ziemann [27]
to the case of elliptical beams.

This angular deflection, first observed at the Stanford Lin-
ear Collider in e+e− collisions [26], can be measured using
beam-position monitors (BPMs) installed both upstream and
downstream of the IP, as illustrated in Fig. 2 for the LHC [28].

In a circular collider, the beam–beam angular kick expe-
rienced by each beam B (B = 1, 2) in the i-plane (i = x, y)

results in a shift of its position at the IP, given by [29]

δbb
i B = β∗

i B

2 tan(π Qi )
θi B, (15)

Fig. 2 Total beam–beam deflection angle (B1–B2) as a function of the
nominal separation 
 (denoted here by “knob setting”), during a vertical
vdM scan at the ATLAS IP in pp collisions at

√
s = 8 TeV (LHC

fill 3316). For each beam separately, the deflection angle is obtained
from the difference between the outgoing- and incoming-beam angles
measured by BPMs located in the LHC arcs outside the closed-orbit
bump used for the scans. The zero of the horizontal axis is arbitrary,
since only relative beam displacements matter. The vertical convolved
beam size, denoted here by �, is extracted from a fit to Eq. (14), shown
by the red curve, with as input the bunch-averaged population N. (Figure
reproduced from Ref. [28], © CERN)

where β∗ is the value of the β function at the IP and Qi

is the betatron tune. The actual beam separation at the IP δi

therefore differs slightly from the nominal separation 
i :

δi = 
i + δbb
i , (16)

where the beam–beam-induced change in beam separation,
hereafter denoted by “orbit shift”, is given by δbb

i = δbb
i1 −δbb

i2 .

Since δbb
i B is, to first order, proportional to the corresponding

beam–beam parameter ξi B (Eqs. (12) and (14)), the orbit
shift varies from one bunch to the next. The 
-dependence
of δbb

i mirrors that displayed in Fig. 2 for the deflection angle,
with a peak-to-peak swing of ±(1-2) μm under typical vdM-
scan conditions, to be compared to typical �i values in the
110–160µm range. The value of δbb

i changes from scan step
to scan step, thereby expanding in a non-linear fashion the
beam-separation scale, i.e. the horizontal axis of scan curves
such as that illustrated in Fig. 1b. As a result, the overlap
integral of Eq. (4) increases by typically 0.7–1.4% per plane,
corresponding to a positive correction to σvis in the 1.4–2.8%
range.

In practice, the correction for the beam–beam orbit shift
is implemented as follows. At each scan step and for each
colliding-bunch pair separately, δbb

i is calculated using the
Bassetti–Erskine formula [14], with as input the measured
bunch populations (n1, n2) and uncorrected convolved bunch
widths (�x , �y), as well as the beam energy, the β∗ setting
and the tunes. The separation-dependent collision rate Ri (δi )

is then integrated according to Eq. (4) to obtain the beam–

beam corrected values �
c,Orb
x and �

c,Orb
y , using the beam–
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Fig. 3 Beam–beam force exerted by the B1 (B2) source bunch as a
whole (red curve), as a function of the betatron amplitude of a B2 (B1)
test particle, for equally sized round beams. The amplitude is in units of
the RMS beam size. The green and brown lines correspond to the linear
component of the force at amplitudes of zero and 4σ respectively, and
are akin to the effect of a quadrupole. The short (long) double arrows
illustrate the range of transverse kicks experienced by a small (large)
amplitude particle for beams either in head-on collision (solid blue
lines), or transversely separated by 4σ (dashed magenta lines)

beam corrected separation δ (Eq. (16)) instead of the nominal
separation 
. The agreement of this simple analytical pro-
cedure with the predictions of self-consistent multi-particle
simulations will be addressed in Sect. 3.5.

2.3.2 Optical distortions

Not only does the electromagnetic field of the B1 bunch
deflect the B2 bunch as a whole: it also acts as a non-linear

lens that perturbs the trajectory of the individual particles in
that bunch, thereby modifying the transverse density distri-
bution of both bunches in a separation-dependent manner.

For small-amplitude particles and beams in head-on colli-
sion (Fig. 3, short blue arrows), the force is rather linear and
resembles that of a quadrupole (dotted green line), resulting
in a tune shift proportional to the beam–beam parameter ξ and
in the subsequent dynamic-β effect [13]. This “quadrupole
strength” is proportional to the derivative of the beam–beam
force; it is largest, and repulsive, for small-amplitude parti-
cles, changes sign around 1.6σ, and becomes weakly attrac-
tive at larger amplitude (dotted brown line).

If for simplicity one assumes that for a given beam sep-
aration, all particles are subject to the same quadrupolar-
like force (the strength and sign of which depend on the
beam separation), then the value of β∗ at the scanning IP
is modulated by the linear component of the beam–beam
force. This results in a modulation of the transverse beam
size, and therefore in a beam–separation-dependent modula-
tion of the actual luminosity; however the actual shapes of
the transverse density distributions projected on the x and y
axes remain unaffected by the quadrupolar-like force. This is
the approximation that was adopted in the first implementa-
tion of the optical-distortion correction [12,13], and that will
be further discussed in Sect. 3.1.

While for small amplitudes (short arrows) the force
remains approximately linear, at amplitudes larger than 1σ

(long arrows) it includes significant non-linear contributions.
Large-amplitude particles, therefore, experience a tune shift
and a β-beating that depend both on the particle amplitude
(short vs. long arrows) [30], and on the beam separation (blue
vs. magenta arrows). The resulting optical distortions include
not only a change in optical magnification as in Ref. [13], but

Table 1 Beam conditions
during vdM scans at the LHC.
Middle column: typical
parameters during the
2015–2018 pp scan sessions at√

s = 13 TeV. Right column:
reference parameters used for
the cross-validation of the
beam–beam codes described in
Sect. 3; the parameter values are
chosen to match those used in
the initial, MAD-X based
simulations of Ref. [13], which
were representative of 2011 vdM
scans at IP1 and IP5. In the
absence of the beam–beam
interaction, the simulated
bunches are assumed round in
the transverse plane, of equal
radius, and strictly Gaussian in
all three dimensions

Parameter Typical scans (LHC Run 2) Reference parameter set

Beam energy EB [TeV] 6.5 3.5

Nominal tune settings Qx /Qy 64.31/59.32 64.31/59.32

Normalized emittance εN [µm·rad] 2.2–3.5 4.00

IP1,5: β∗ [m] 19.2 1.50

IP2/8: β∗ [m] 19.2/24.0 –

IP1,5: θc/2 [µrad] 0 0

IP2: θc/2 [µrad] 70–195 (y) –

IP8: θc/2 [µrad] 450–550 (x) –

Transverse convolved bunch sizes �x ≈ �y [µm] 110–160 56.7

Bunch spacing [ns] ≥ 525 –

Number of colliding bunches 30–124 1

Bunch population n p [1011] 0.7–1.0 0.85

Linear beam–beam parameter ξ [per IP] 0.0022–0.0056 0.0026

Typical bunch luminosity @ IP1, 5 [cm−2 s−1] 3−8 × 1028 4 × 1029

Typical total luminosity @ IP1, 5 [cm−2 s−1] 2.5−9 × 1030 4 × 1029
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also distortions of the shape of the transverse density distribu-
tions. Describing their beam-separation dependence requires
numerical simulations, that are detailed in Sect. 3.

In practice, the correction for optical distortions is imple-
mented as follows. Separately for each scan step in a hor-
izontal and vertical vdM-scan pair, the luminosity-bias fac-
tor [L/L0]Opt associated with beam–beam-induced optical
distortions is extracted, as a function of the nominal separa-
tion 
i , from one of the multiparticle simulations described
in Sect. 3. Here L refers to the luminosity that would be
measured in the presence of beam–beam optical-distortion
effects, and L0 is the corresponding luminosity if beam–
beam effects were turned off altogether, all other conditions
remaining unchanged. The quantityL0 is dubbed the nominal
luminosity; it is akin to “Monte Carlo truth”, and is accessible
in the simulation only. The beam–beam corrected collision
rate Rc

i (δi ) is then computed by dividing the measured col-
lision rate by this simulation-based luminosity-bias factor:

Rc
i (δi ) = Ri (
i )

[L(
i )/L0(
i )]Opt
(17)

and used instead of Ri (δi ) in computing the beam–beam cor-
rected convolved bunch sizes �

c,Opt
x and �

c,Opt
y (Eq. (4)), the

peak rate μc = μvis,pk Rc
i (0)/Ri (0), and from these quanti-

ties the visible cross-section σ
c,Opt
vis (Eq. (10)).

2.3.3 Beam–beam correction strategy

Conceptually, the principle of the beam–beam correction to
vdM calibrations is to determine the visible cross-section
σ c

vis from the convolved bunch sizes and peak collision rates
corrected both for the orbit shift (Sect. 2.3.1) and for opti-
cal distortions (Sect. 2.3.2), i.e. corrected to the values (�c

x ,
�c

y , μc) that these observables would take if the beam–beam
interaction could be turned off during the scan. The quan-
tity σ c

vis is then the proportionality constant that translates a
measured visible interaction rate μvis into the corresponding
bunch luminosity Lb. It is important to note that even though
the actual luminosity is always modified by the beam–beam
interaction, including during head-on collisions typical of
routine physics running, beam–beam corrections are only
needed during scans, basically because the beam-separation
dependence of the beam–beam effects distorts the vdM-scan
curves. Once σ c

vis has been determined as specified above, it
can always be used to translate the measured collision rate
into luminosity units, irrespective of the extent to which this
collision rate has been enhanced by the beam–beam interac-
tion.

In practice, orbit-shift and optical-distortion corrections
must be applied on a bunch-by-bunch basis, with as inputs the
measured bunch populations (n1, n2) and uncorrected con-
volved bunch widths (�x , �y), as well as the beam energy,

the β∗ setting and the tunes. In many cases, these correc-
tions can be extracted from a one-time parameterization of
the simulation results in terms of the bunch-specific beam–
beam parameter value and of the nominal tunes Qx , Qy . This
procedure avoids the repeated use of CPU-intensive, time-
consuming multiparticle simulations; it is detailed in Sect. 4.

3 Beam–beam simulation codes

Beam-beam corrections to vdM calibrations were originally
based on MAD-X (Sect. 3.1). Since then, only the zero-
separation case has proven amenable to analytical treat-
ment (Sect. 3.2). Beam–separation-dependent effects have
been investigated using two independent multiparticle codes
dubbed B*B (Sect. 3.3) and COMBI (Sect. 3.4), that have
been extensively cross-validated (Sect. 3.5).

3.1 Linear approximation with MAD-X

Since the linear part of the beam–beam force is similar to
a quadrupolar field (Fig. 3), one expects the beam–beam
interaction to contribute additional focusing or defocusing,
thereby shifting the tunes and affecting the optical functions
all around the ring, including at the IP itself: this is known
as the “dynamic-β” effect. In the specialized case of equally
sized round beams colliding head-on at a single location, the
resulting change in the β function at the IP is given by [13]:

β∗

β∗
0

= 1√
1 − 4πξ cot(2πQ) − 4π2ξ2

(18)

where β∗
0 is the value of the unperturbed β function at the

IP, β∗ its value in the presence of the beam–beam interac-
tion and Q the tune. The beam–beam parameter ξ is pro-
portional to the derivative of the beam–beam force.4 Equa-
tion (18) implies that the beam–beam induced change in the
IP β function, and therefore in the IP beam-size squared
and in the luminosity, depends only on ξ and on Q. In addi-
tion, this dynamic-β effect is, to first order, proportional to ξ.

This is the physical motivation underlying the parameterized-
correction approach developed in Sect. 4.

In Ref. [13], the general-purpose optics code MAD-X [15]
was used to model the dynamic-β effect during simulated
vdM scans. In this software package, beam–beam elements
can be inserted at one or several IPs, and their impact on the
tunes and on the single-particle optical functions computed

4 The sign of the linear term in the denominator of Eq. (18) is flipped
compared to that in Eq. (3) of Ref. [13]. This is because the latter
follows the convention that ξ is negative (positive) for equal- (opposite-)
charge beams. In the present paper, in contrast, ξ is positive by definition
(Eq. (12)), and therefore Eq. (18) is adjusted so as to be applicable to
equal-charge beams.
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as a function of the beam separation 
. The procedure effec-
tively assumes that for a given beam separation, all particles
in the bunch experience the same beam–beam kick, equal to
that applied to a zero-amplitude particle for that particular
value of 
. Unperturbed bunches are implicitly supposed to
be strictly Gaussian, and to remain so in the presence of the
beam–beam interaction: only the change in optical magnifi-
cation between the LHC arcs and the IP is accounted for in
this method.

This study was carried out for the reference parameter
set listed in Table 1. The corrections were then adapted to the
beam conditions of different vdM sessions, using the assump-
tion that 
β/β∗

0 = β∗/β∗
0 − 1 scales linearly with the value

of ξ inferred from the beam parameters measured during
each scan. The simulated beam-separation dependence of
the transverse beam size squared, i.e. the value of (L/L0)−1,

is illustrated in Fig. 4. Under head-on conditions (
 = 0),

the intrinsically defocusing beam–beam force results in a
∼ 0.7% reduction of the beam size squared at the IP, i.e. to
an increase of the luminosity L. This apparent contradiction
results from the numerical value of the fractional tunes the
LHC optics was designed for (Eq. (18)). As 
 increases, the
tune shift and the dynamic-β effect weaken, change sign (in
the scanning plane only) around 
/σ 0 ∼ 1.6, then peak and
finally vanish asymptotically at very large separation. The
change in optical magnification at 
 = 0 is slightly different
in the x and y planes, because the corresponding fractional
tunes qx and qy differ by design; the difference in beam-
separation dependence also reflects the fact that the vertical
kick never changes sign during a horizontal scan, while the
horizontal kick does.

Historically, the optical-distortion correction to σvis pre-
dicted by MAD-X under typical Run-1 and Run-2 vdM condi-
tions lay in the 0.2–0.4% range, much smaller than that asso-
ciated with the orbit effect. For a long time, therefore, it was
considered small enough that even if imperfect, it remained
sufficiently accurate in view of the systematic uncertainty
assigned at the time to the overall beam–beam correction, as
documented e.g. in Refs. [12,22].

In hindsight, however, the limitations of applying the
MAD-X approach to beam–beam corrections may not have
been fully appreciated. Since at zero beam separation, the
slope of the beam–beam force is steepest for zero-amplitude
particles (Fig. 3, dotted green line), and since in MAD-X
all particles in the witness bunch are assumed to experience
the same linearized force, the dynamic-β effect predicted
by MAD-X at 
 = 0 is likely to be an overestimate; this
is confirmed analytically below. The situation is reversed at
large beam separation. When the beams are separated by
(for instance) 
 = 4 σ0, the derivative of the force at large
amplitude (say 3 to 4 σ0) is typically larger (dotted green line)
than at small amplitude (dotted brown line), suggesting that
MAD-X underestimates the optical distortions at large beam

Fig. 4 Beam-separation dependence of the transverse RMS beam sizes
during a simulated horizontal vdM scan. The unperturbed beams are
assumed to be round and perfectly Gaussian; their parameters are listed
in the right column of Table 1. The vertical axis is the ratio squared of
the actual beam size σ to its unperturbed value σ0; the horizontal axis
is the nominal beam separation in units of σ0. The MAD-X calculation
of the single-particle dynamic-β effect (blue curves) is compared to the
results of the B*B (square markers) and COMBI (red curves) multipar-
ticle codes. The dark- and light-colored curves and markers illustrate the
evolution, during the horizontal scan, of the horizontal and the vertical
beam size respectively. The green circular and triangular markers dis-
play the predictions of Eq. (22), that only apply at zero beam separation

separation. This conjecture, however, can only be confirmed
using multiparticle simulations.

3.2 Analytical estimate of optical distortions at zero beam
separation

The particle phase space at any location s along a storage ring
is described by an ellipse, the shape of which depends on s
in a manner described by the well known Courant-Snyder
parameters α, β and γ [18]:

Ju = 1

2
(γuu2 + 2αuupu + βu p2

u).

Here u = x, y is the deviation of the single-particle orbit
from the reference trajectory, pu = du/ds, and Ju is the
action variable that represents the invariant of the motion for
each single particle when the reference energy is not chang-
ing. The particle position in transverse phase space is fully
described by the action Ju and by the corresponding phase
variable φu defined as:

tan φu = −βu
pu

u
− αu . (19)

In addition to distorting the closed orbit, the beam–beam
interaction acts as a non-linear electromagnetic lens that
includes a quadrupolar term; the latter affects the optical
functions β and the betatron tunes of the individual par-
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ticles [30,31]. During a vdM scan and for each colliding
bunch, the quadrupolar component of the electromagnetic
field of the opposing bunch changes as a function of the rel-
ative transverse separations δi (i = x, y) between the beams
centroids, and of the single-particle transverse actions Jx and
Jy [31,32]. This results in a shift in the betatron tune, the so-
called detuning with amplitude, given by [33]:


Qx (Jx , Jy) = −ξx

∫ ∞

0

1

(1 + t)2 e− Jx +Jy
2ε(1+t)

×
[

I0

(
Jx

2ε(1 + t)

)
− I1

(
Jx

2ε(1 + t)

)]

× I0

(
Jy

2ε(1 + t)

)
dt

for the horizontal dimension. Here ξx is the beam–beam
parameter, I0 and I1 are modified Bessel functions of the
first kind, ε is the emittance (assumed equal in x and y), and
t is a bound variable. This integral can only be solved when
one action is zero, obtaining (for Jy = 0):


Qx (Jx ) = −ξx
2ε

Jx

[
1 − I0

(
Jx

2ε

)
e− Jx

2ε

]


Qy(Jx ) = −ξx

[
I0

(
Jx

2ε

)
+ I1

(
Jx

2ε

)]
e− Jx

2ε . (20)

For a zero-amplitude particle (Jx = Jy = 0) and beams in
head-on collision (δx = δy = 0), the change in tune is equal
to the beam–beam parameter ξx .

Head-on beam–beam β-beating can be derived from the
tune shift5 in Eq. (20) as:


βx

βx
(Jx , Jy) = −
Qx (Jx , Jy)

ξx
· 
β0

βx
(21)

where


β0

βx
= 
βx

βx
(0, 0)

is the linear β-beating or, equivalently, the β-beating at Jx =
Jy = 0.

In the zero-separation case, the β-beating averaged over
the particle distribution (assumed Gaussian) can be calcu-
lated as:


β

βx
=

∫ ∞

0
d Jx

∫ ∞

0
d Jy


βx

βx
(Jx , Jy)e

−Jx −Jy

≈ 0.633

β0

βx
.

For bunches colliding with zero transverse separation, there-
fore, the particle-action distribution is modified such that the

5 The overall minus sign in Eqs. (20) and (21) expresses the fact that
when the charges of the colliding bunches have the same sign, the tune
shift is negative, even though the beam–beam parameter remains posi-
tive by definition (Eq. (12)).

average beam–beam beating is reduced to about 63% of the
single-particle estimate computed in Ref. [13]. The corre-
sponding impact on the head-on luminosity can be derived
analytically, as follows.

The RMS single-beam size σx = √
βx ε, including the

action-dependent, beam–beam-induced β-beating given by
Eq. (21), is computed using the following relation:

x2 = 2βx Jx

(
1 + 
βx

βx

)
cos2 φx

= βx Jx

(
1 + 
βx

βx

)
(1 + cos 2φx ).

Assuming Gaussian particle-density distributions, this yields

σ 2
x =

∫ ∞

0
d Jx

∫ ∞

0
d Jy

∫ 2π

0

dφ

2π
x2e−Jx −Jy

= βx

(
1 +

∫ ∞

0
d Jx

∫ ∞

0
d Jye−Jx −Jy Jx


βx

βx
(Jx , Jy)

)

where, for simplicity, we used an emittance value of ε = 1.

The triple integral has an exact solution:

σ 2
x = βx

(
1 + 1

2


β0

βx

)
. (22)

This calculation implies that in head-on collisions, beam–
beam-induced linear β-beating of magnitude 
β0/β in both
the horizontal and the vertical plane, causes a relative lumi-
nosity change of


L

L
≈ −1

2


β0

β
. (23)

For collisions with zero transverse separation, in other words,
the beam–beam interaction changes the luminosity by only
half of what is expected from linear β-beating: this is con-
sistent with the COMBI predictions displayed in Fig. 4.

Using the reference parameter set in Table 1, for instance,
the beam–beam-induced linear β-beating amounts to about
−0.6%, leading to a head-on luminosity enhancement of
about 0.3%. During high-luminosity physics running typical
of LHC Run 2, the effect is computed to be two to three times
larger; it is both ξ - and tune-dependent (see Eq. (18)), and
therefore its magnitude changes as beam conditions evolve.

When beams are transversely separated, analytical com-
putations become impossible, forcing one to resort to numer-
ical simulations such as those described below.

3.3 Weak-strong limit: B*B

The B*B package [16] is a multiparticle-simulation program
developed specifically for assessing beam–beam biases in
vdM scans, that was optimized for speed by adopting sev-
eral simplifying assumptions. It aims at predicting the cor-
responding beam–beam corrections with better than 0.1%
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accuracy (for a given set of input parameters), so as not to
contribute significantly to the overall vdM-calibration uncer-
tainty. The code is written in C++; it can be used as a stan-
dalone application, or as a library available in C, C++, Python
and R.

The initial transverse particle density distributions ρ̂B(x, y),

where B = s, w refers to either the source (s) or the witness
(w) bunch, are modeled by a (linear combination of) two-
dimensional elliptical Gaussian(s). Since during typical vdM
scans at LHC, beam–beam-induced bunch-shape deforma-
tions remain small, they are taken as negligible when com-
puting the electromagnetic field of the source bunch, which
therefore remains unperturbed as a function of the trans-
verse beam separation. This makes it possible to precom-
pute this field over a two-dimensional grid in the transverse
plane at initialization time, and to use only fast interpolations
on all subsequent machine turns. The opposing, “witness”
bunch is represented by a set of O(1000) macroparticles,
that are transported around the ring using linear maps, with
as input the nominal (x, y) phase advance between consecu-
tive collision points. The B*B simulation, therefore, falls in
the “weak-strong” category in that it models the transverse
deformation of the density distribution of the witness bunch
(ρ̂w → ρ̂w + δρ̂w) caused by the electromagnetic field of an
unperturbed source bunch, the density distribution of which
remains unaffected. Effects such as coherent bunch oscil-
lations, or the distortion of the shape (and therefore of the
field) of the source bunch induced by the deformation of the
witness bunch, are therefore implicitly neglected.

The macroparticles are selected from a two-dimensional
(x, y) grid of betatron amplitudes, and assigned weights that
are precalculated from the initial Gaussian density distribu-
tion ρ̂w. Their initial betatron phase is chosen randomly; the
phase then samples the full [0, 2π ] interval over the next
O(100−1000) turns or so.

The overlap integral of the perturbed and unperturbed
bunches (Eq. (1)) is computed as the sum over macropar-
ticles, of the source-bunch density ρ̂s(xw, yw) evaluated at
the current location (xw, yw) of the macroparticle consid-
ered, and multiplied by the weight of that same macropar-
ticle. If the populations and initial transverse-density distri-
butions of the two colliding bunches are identical (n1 = n2

and ρ̂1(x, y) = ρ̂2(x, y)), the simulation needs to be run
once only; in the presence of any initial B1–B2 asymmetry,
it needs to be run twice, with the roles of the source and the
witness bunch swapped between the two beams. The overall
beam–beam bias affecting the overlap integral is approxi-
mated by

∫ (
ρ̂1 + δρ̂1

) (
ρ̂2 + δρ̂2

)
dx dy −

∫
ρ̂1ρ̂2 dx dy

≈
∫ (

δρ̂1 · ρ̂2 + ρ̂1 · δρ̂2
)

dx dy,

up to some physical constants and where the second-order
term

∫
δρ̂1 δρ̂2 dx dy is neglected.

The uncertainties arising from the manner in which the
beam–beam force is switched on in the calculation (gradually
or instantaneously), from the granularity of the simulation
(finite number of macroparticles, largest sampled transverse
amplitude, random choice of the initial phases), and from
other simulation-control parameters such as the number of
accelerator turns, are discussed in detail in Ref. [16] and
found to lie well below 0.1%.

Finally, even though the density distributions ρ̂s,w are only
two-dimensional, and therefore represent the projection of
the full six-dimensional distribution onto a plane perpendic-
ular to the beam axis, the B*B package is capable of sim-
ulating the geometrical effects that arise in the presence of
a non-zero crossing angle in a plane of arbitrary orienta-
tion [16]. Simulating longitudinal dynamics, however, and
in particular the potential impact of a finite crossing angle
on beam–beam corrections to the vdM calibration, requires a
fully six-dimensional treatment such as that outlined below.

3.4 Strong-strong model: COMBI

The COMBI code [17] has been developed over the years for
simulating, in a self-consistent manner, the coherent beam–
beam interaction between multiple bunches coupled by head-
on and/or long-range beam–beam encounters [34–36]. It
includes a first level of parallelization based on the Mes-
sage Passing Interface (MPI) [37], and a second one sharing
several CPUs per node using OpenMPI [38,39].

The code has been optimized to handle simultaneously
multiple bunches at several interaction points, thereby allow-
ing flexible collision patterns. The circumference of each
accelerator ring is modeled by a number of equally spaced
slots that define the possible bunch positions. At each loca-
tion one can assign an action (e.g. head-on or long-range
beam–beam interaction, linear or non-linear magnetic ele-
ment, Landau octupole, linear or non-linear map, etc.) that
will be executed when a bunch is present. The actions corre-
sponding to head-on or long-range beam–beam interactions
require one bunch from each beam in order to be performed.
Each macroparticle is tracked individually under the effect of
the preassigned actions, in either four or six dimensions. In
the LHC arcs, the macroparticles are transported by apply-
ing a linear transfer map to their coordinates, using phase
advances precomputed by MADX with, as input, the nomi-
nal optical configuration used during vdM sessions.

In B*B, the transverse density distribution of the source
bunch, and therefore its electromagnetic field, remain un-
changed from turn to turn; only the witness bunch contains
macroparticles, that are tracked over thousands of turns in
the transverse plane. Coherent effects, therefore, cannot be
modeled, and neither can longitudinal dynamics. COMBI, in
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contrast, describes the two partners in a colliding-bunch pair
as independent sets of macroparticles. In this paper, the ini-
tial, unperturbed density distributions are uncoupled single
Gaussians by default; however, arbitrary distributions, such
as a linear combination of Gaussians, can be used instead.

The beam–beam interaction can be described by differ-
ent models: a four-dimensional Gaussian lens [35,36], a six-
dimensional Gaussian lens [40,41], or a field computed from
the actual charge distributions by the HFMM method [42].
Multiple beam–beam encounters, and therefore the evolu-
tion of bunch parameters such as emittance or transverse
barycenter position, as well as coherent beam–beam effects,
are treated in a self-consistent manner: the particle trajecto-
ries affected by the beam–beam interaction modify the den-
sity distribution of the corresponding bunch, and the fields
produced by both partners are updated turn by turn from these
modified distributions. Whether these fields are estimated in
the Gaussian approximation, or by the HFMM method, yields
effectively identical results for the full range of beam–beam
parameter values considered in this paper (see Appendix A).

At a given IP, the luminosity per colliding-bunch pair can
be computed either analytically, using the Gaussian formal-
ism of Ref. [23], or by evaluating numerically the actual
overlap integral of the two colliding distributions. The first
method evaluates the luminosity from Eqs. (5)–(7) by sub-
stituting the single-beam sizes σi B with the RMS transverse
widths of the macroparticle distributions, and the separation
δ with the distance between the barycenters of these dis-
tributions. In the second method, the overlap integral of the
macroparticle distributions is computed using functionalities
developed specifically for this purpose. This is the approach
adopted throughout this paper, except where explicitly spec-
ified otherwise; the numerical-integration procedure and the
associated convergence studies are detailed in Appendix B.

3.5 Cross-validation of simulation codes

The full impact of the beam–beam interaction on the
beam-separation dependence of the luminosity-bias factor
[L/L0]Full BB(
) can be broken down as follows.

The impact of the orbit shift can be expressed either in
terms of the beam–beam induced distortion of the actual
beam separation δi , as discussed in Sect. 3.5.1 below, or in
terms of an orbit-related luminosity-bias factor, denoted by
[L/L0]Orb(
) for a given nominal separation 
. In phys-
ically intuitive terms, and in the context of a weak-strong
model such as B*B, the orbit shift results from applying to all
particles in the witness bunch the same electromagnetic kick,
computed from the field produced by the source bunch as a
whole and averaged over all particles in the witness bunch.
Since this is tantamount to a dipole kick, only the orbit of the
witness bunch is affected; the size and shape of the macropar-
ticle distribution remain invariant as |
| increases.

Fig. 5 Top: Bunch-centroid displacement δbb
i B due to the beam–beam

deflection during a simulated vdM scan, as predicted by COMBI, MAD-
X and B*B. The bunch parameters are listed in the right column of
Table 1. The horizontal axis is the nominal beam separation in units of
the unperturbed transverse beam size σ0. Bottom: difference between
the simulated orbit shift and that calculated analytically using Eqs. (14)–
(15), in units of σ0. The wiggles reflect the combination of a finite
sampling step (0.2 σ0) and of numerical noise

The impact of the optical distortions is quantified in terms
of the luminosity-bias factor [L/L0]Opt(
) first introduced
in Sect. 2.3.2. It results from the combination of beam-
separation and amplitude-dependent β-beating effects that
modulate the RMS transverse beam size (Sect. 3.5.2), and of

-dependent bunch-shape distortions that affect the beam–
beam overlap integral (Sect. 3.5.3).

The B*B and COMBI packages have been mutually
benchmarked, and their results compared to those obtained
either analytically (where possible) or using MADX. The
cross-package comparisons of the beam–beam induced orbit
shift and of the predicted optical distortions are based on the
reference parameter set of Table 1, and assume that in the
absence of the beam–beam interaction the transverse den-
sity distributions are strictly Gaussian. The consistency of
B*B and COMBI results at higher beam–beam parameters
is quantified in Sect. 3.5.4. All the results presented in this
section assume in addition that the beams collide only at the
IP where the vdM scan is taking place; multiple-IP effects
will be discussed in Sect. 4.6.

3.5.1 Beam–beam-induced orbit shift

Figure 5 displays the beam–beam-induced, single-beam orbit
shift (δbb

i B) at the IP, as simulated by MADX, B*B and
COMBI, and compares it to the analytical prediction. The
three models agree extremely well among themselves, and
their results are indistinguishable from those of the analytical
prediction.
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During a luminosity-calibration session, the bunches typ-
ically collide at more than one IP (Sect. 4.6); however per-
forming simultaneous beam-separation scans at different IPs
is carefully avoided. Under these conditions and to an excel-
lent approximation, the orbit shifts associated with slightly
misaligned collisions at a non-scanning IP remain static dur-
ing a beam-separation scan at another IP. Their impact on the
beam separation at the scanning IP is therefore expected to
remain constant during the scan, and has been neglected in
the simulations reported in this paper.

3.5.2 Impact of amplitude-dependent β-beating effects in
the Gaussian-bunch approximation

The beam-separation dependence of the transverse RMS
beam-size ratio (squared for easier interpretation in terms
of luminosity) is presented in Fig. 4. The results of B*B and
COMBI agree to better than 2 × 10−4.

At 
 = 0, both predict a decrease in beam-size squared
(or equivalently an increase in head-on luminosity) about
half of that obtained using MAD-X. This is remarkably con-
sistent with the analytical predictions of Eqs. (22) and (23):
in MAD-X, all particles in the witness bunch are subject to
the same quadrupole-like force as the zero-amplitude parti-
cle, while in B*B and COMBI, the slope of the beam–beam
force decreases and even changes sign as the betatron ampli-
tude increases (Fig. 3), resulting in a smaller overall change
in optical demagnification at the IP.

Amplitude detuning also explains the different 
-depe-
ndence of the beam sizes, with that in MAD-X being more
pronounced than in B*B and COMBI. At very large beam
separation, where the electromagnetic force becomes similar
to that of a distant, point-like charge, all three curves tend
towards a common asymptote. As for the different evolution
of the horizontal and vertical beam sizes during a scan, it
simply reflects the tune-dependence apparent in, for instance,
Eq. (18).

If one assumes that the optical distortions discussed above
modify the transverse RMS bunch sizes at the IP without
significantly affecting their initial, purely Gaussian shape,
Eqs. (5)–(7) apply. The combination of the beam–beam
induced orbit shift and of the optical distortions then yields
the following expression for the luminosity-bias factor dur-
ing a beam-separation scan in plane i (i = x, y):

L
L0 (
i ) = �0

x�
0
y

�x (
i )�y(
i )
e− 1

2 [(δi /�i )
2−(
i /�0

i )2] (24)

= (σ 0)2

σx (
i )σy(
i )
e− 1

4 [(δi /σi )
2−(
i /σ

0)2] (25)

where σx,y, �x,y,L (resp. σ0, �0
x,y,L0) are the RMS single-

beam sizes, the inverse of the overlap integrals and the lumi-

Fig. 6 Beam-separation dependence of the luminosity-bias factor
[L/L0]Full BB during a simulated horizontal vdM scan. The unperturbed
beams are assumed to be round and perfectly Gaussian; their parame-
ters are listed in the right column of Table 1. The horizontal axis is the
nominal beam separation in units of the unperturbed transverse beam
size σ0. The MAD-X (dashed blue) and COMBI (dotted grey) curves
are valid only in the Gaussian-bunch approximation (Sect. 3.5.2); the
COMBI (red curve) and the B*B markers (black squares) are obtained
from the overlap integrals of the multiparticle distributions (Sect. 3.5.3).
The green circular marker displays the prediction of Eq. (23), that only
applies at zero beam separation

nosity in the presence (resp. absence) of the beam–beam
interaction.

Combining Eq. (25) with the beam-size ratios shown
in Fig. 4 yields the beam-separation dependence of the
luminosity-bias factor [L/L0](
) in the Gaussian-bunch
approximation, as illustrated in Fig. 6 for MAD-X (dashed
blue) and COMBI (dotted grey). These curves are not sim-
ply the inverse of the beam-size ratios displayed in Fig. 4,
because they include in addition the impact, at a given nom-
inal separation, of the beam–beam induced orbit shift. At
zero and moderate separation (
/σ0 < 1). the luminosity
bias [L/L0] − 1 is positive and dominated by the dynamic-
β effect; as the separation increases, the orbit shift, which is
represented by the exponential term in Eq. (24), progressively
takes over.

3.5.3 Impact of optical distortions on the beam–beam
overlap integral

If the transverse-density distributions are sufficiently dis-
torted by the non-linearity of the beam–beam force, the
Gaussian-bunch approximation encapsulated in Eqs. (24)–
(25) is no longer valid, and the luminosity bias must be
calculated numerically from the beam–separation-dependent
overlap integrals of the macroparticle distributions. To this
effect, an integrator module, detailed in Appendix B, has been
developed for COMBI; B*B provides an equivalent func-
tionality [16]. The resulting beam-separation dependence of
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the luminosity-bias factor is shown by the red curve and
the black markers in Fig. 6. At each simulated scan step
(indicated by the markers), B*B and COMBI agree to better
than 2 × 10−4; the difference is not systematic, but fluctu-
ates around zero. The difference between the Gaussian-bunch
approximation and the numerically calculated overlap inte-
gral demonstrates that the non-Gaussian tails (or more pre-
cisely non-Gaussian deviations from the originally Gaussian
shape), that are induced by the beam–beam interaction, have
a significant impact on the luminosity as soon as 
/σ0 ≥ 0.2.

The excellent agreement between the two multiparticle sim-
ulations also demonstrates that strong-strong beam–beam
effects, that are modeled by COMBI but not by B*B, remain
negligible in the low beam–beam parameter regime consid-
ered here.

Since the predicted orbit effect is identical in all sim-
ulations (Fig. 5), the differences between MAD-X on the
one hand (Fig. 6, dashed blue curve), and B*B/COMBI on
the other (black markers/red curve), is entirely associated
with optical distortions. At zero separation, the difference
is entirely explained by amplitude detuning (Eq. (23)); once
the separation increases, beam–beam-induced non-Gaussian
tails play a growing role, as illustrated by the difference
between the red and grey curves.6

In the context of the beam–beam correction strategy out-
lined in Sect. 2.3, it is convenient to separate the full luminos-
ity bias presented in Fig. 6 into its optical-distortion and orbit-
shift components. The luminosity-bias factor associated with
optical distortions and denoted by [L/L0]Opt is defined as the
ratio, scan step by scan step, of the full luminosity-bias fac-
tor [L/L0]Full BB and of the bias factor [L/L0]Orb associated
with the orbit shift:

[L/L0]Opt(
) = [L/L0]Full BB(
)

[L/L0]Orb(
)
. (26)

Its beam-separation dependence is presented in Fig. 7. While
MAD-X overestimates the dynamic-β effect at zero sepa-
ration, it strongly underestimates the optical distortions at
medium and large beam separations. Since all models pre-
dict the same orbit effect, and since the optical distortions and
the orbit effect impact the overlap integrals in opposite ways,
their mutual cancellation is stronger in B*B and COMBI than
in MAD-X, resulting in a net overall beam–beam correction
of significantly smaller magnitude. This will be discussed
quantitatively in Sect. 4.

6 The very small difference, at zero separation, between the grey and
red curves in Fig. 6 may grow when the bunches collide not only at
the scanning IP, but also at additional IPs (Sect. 4.6). In this case, and
depending on the phase advance between IPs, beam–beam-induced non-
Gaussian tails at these additional IPs may contribute noticeably to the
overlap integral at the scanning IP, even for zero beam separation.

Fig. 7 Beam-separation dependence, during a simulated horizontal
vdM scan, of the luminosity-bias factor [L/L0]Opt associated with
the optical distortions, and of that induced by the beam–beam orbit
effect ([L/L0]Orb). The unperturbed beams are assumed to be round
and perfectly Gaussian; their parameters are listed in the right column
of Table 1. The horizontal axis is the nominal beam separation in units
of the unperturbed transverse beam size σ0. The MAD-X (dashed blue
line with markers), weak-strong B*B (black triangles) and strong-strong
COMBI (red curve) optical-distortion curves are obtained by dividing
the corresponding full beam–beam bias factor shown in Fig. 6 by that
predicted analytically for the orbit effect alone (green curve)

The beam-separation dependence of the optical-distortion
factor [L/L0]Opt predicted by B*B and COMBI (Fig. 7)
exhibits a characteristic S-shape or “wiggle”, the amplitude
of which increases with ξ (Fig. 8) and with the fractional
tunes (Fig. 12). The beam separation where the wiggle ampli-
tude exhibits either a peak (
 ∼ 1.6 σ0) or a dip (
 ∼ 3 σ0),

is determined by the shape of the particle-density distribu-
tion. This is because the latter dictates both the dependence
of the beam–beam force on the distance to the center of the
source bunch, and the transverse distribution of the witness
particles in the opposing bunch; an example will be offered
in Sect. 4.3 (Fig. 18).

Some intuitive insight into the beam-separation depen-
dence of [L/L0]Opt can be gained by conceptually separat-
ing what occurs in the Gaussian core of the witness bunch
from what happens to the large-amplitude particles in its non-
Gaussian tails. The grey curve in Fig. 6 reflects the evolution,
during the scan, of the transverse RMS bunch sizes (Fig. 4);
in a sense, therefore, it represents the impact of beam–beam
effects on the overlap of the Gaussian component of the par-
ticle distribution. The difference between the red and grey
curves, in contrast, reflects the beam-separation dependence
of the luminosity contribution of the non-Gaussian transverse
tails; the latter dominate the overall upward trend of the red
curve in Fig. 7, and are responsible for most of its S-shape.
A quantitative understanding of these features, however, is
accessible neither to analytical calculations nor to simple
physical arguments. It can only be obtained from simula-
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tions, because it requires taking into account, at each scan
step, the interplay between:

• the actual beam separation;
• the transverse bunch shapes;
• the non-linearity of the beam–beam force;
• the combined separation- and amplitude-dependence of

the force exerted by the source bunch as a whole on those
particles in the witness bunch that significantly contribute
to the luminosity at the scan step considered.

3.5.4 Beam-parameter dependence of beam–beam
corrections

The results in Figs. 6 and 7 were obtained using the ref-
erence parameter set in the right column of Table 1. This
corresponds to a beam–beam parameter ξ = 2.59 × 10−3,

at the low end of the ξ range explored during vdM scans
at

√
s = 13 TeV. The cross-validation of B*B and COMBI

was therefore repeated with a larger bunch current and a
smaller emittance, both typical of routine physics running
and corresponding to a beam–beam parameter value well
beyond the vdM range. The beam-separation dependence of
the optical-distortion luminosity-bias factor at these two ξ

values is presented in Fig. 8. While in perfect agreement at
low ξ, the two codes exhibit hints of a small but systematic
difference in the high-ξ regime when the beam separation
becomes large enough. This discrepancy is attributed to the
fact that B*B is intrinsically a weak-strong model, and there-
fore cannot account for coherent bunch oscillations, contrar-
ily to COMBI. This interpretation is confirmed by the com-
parison of the tune spectra predicted by the two packages:
even in the vdM regime, a π -mode peak is apparent in the
COMBI spectrum, but is missing (as it should be) from the
B*B spectrum.

Quantitatively, it turns out that throughout the vdM regime
and even in the high-ξ case considered here, the discrepancy
is of no practical significance. Since it manifests itself only in
the tails of the beams (
 > 2σ0), where the particle density
is low, the difference, between B*B and COMBI, in beam–
beam-induced distortions has only a very small impact on the
integral of the scan curves, i.e. on the perturbed transverse
convolved beam sizes (Eq. (4)). This can be quantified using
the methodology that will be presented in Sect. 4.2.4. For the
high-ξ setting illustrated in Fig. 8, the difference between
B*B and COMBI translates into a systematic uncertainty of
0.04% on the absolute luminosity scale. In typical vdM scans,
where ξ is lower by a factor of about 1.5, the inconsistency
becomes negligible; there the two simulation codes remain in
more than adequate agreement, validating the use of the less
resource-intensive B*B package for parameterizing beam–
beam corrections to vdM calibrations.

Fig. 8 Beam-separation dependence, during a simulated horizontal
vdM scan, of the luminosity-bias factor [L/L0]Opt associated with opti-
cal distortions, for the vdM reference parameter set (ξ = 2.59 × 10−3,

solid red curve and black filled triangles), and for a beam–beam param-
eter typical of routine physics running (ξ = 7.33×10−3, dashed purple
curve and blue open triangles). The COMBI (B*B) results are shown by
the straight-line segments (markers). The horizontal axis is the nominal
beam separation in units of the unperturbed transverse beam size σ0

4 Calculated impact of beam–beam dynamics on
luminosity calibrations

4.1 Methodology

The beam–beam biases affecting a vdM calibration are
accounted for by correcting the luminosity-scan curves, one
bunch pair at a time, according to the procedure outlined in
Sect. 2.3. While the orbit shift (Sect. 2.3.1) can be calculated
analytically, correcting for optical distortions (Sect. 2.3.2)
requires the knowledge of the beam-separation dependence
of the luminosity-bias factor [L/L0]Opt, such as that illus-
trated in Fig. 8. The latter can be obtained by running B*B
or COMBI with, as input:

• the interaction-region (IR) configuration (beam energy,
nominal or measured β∗ and crossing-angle values);

• the unperturbed tunes Qx and Qy (or equivalently the
unperturbed fractional tunes qx and qy), i.e. the values
of the horizontal and vertical tunes with the beam–beam
interaction switched off at the IP where the simulated
scans are taking place. Physically, these correspond to the
tune values that would be measured, for the bunch pair
under study, before the beams are brought into collision
at the scanning IP considered;

• the measured parameters of the bunch pair under study:
bunch population, horizontal and vertical beam sizes or
emittances, as well as the bunch length in case of a non-
zero nominal crossing angle.
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Since vdM calibrations must be performed on a bunch-by-
bunch basis, with possibly over 100 colliding-bunch pairs and
typically five to ten x–y scan pairs per scan session and per
IP, the approach sketched above can become unwieldy from
the computing viewpoint. This motivated the development of
a much lighter technique, based on the fact that at least in the
vdM regime and under some simplifying assumptions, beam–
beam biases, to a very good approximation, scale almost lin-
early with the beam–beam parameter ξ. This makes it pos-
sible to construct a simple polynomial parameterization of
the luminosity-bias curves, that is extracted from B*B or
COMBI simulations over a grid in beam-parameter space
and is applicable to most cases of practical interest for pp
vdM calibrations at the LHC. The impact of violating the
underlying assumptions is accounted for either by a contri-
bution to the systematic uncertainty that is associated with the
beam–beam correction procedure, or, in the case of multi-IP
effects, by a simulation-guided adjustment to the parameter-
ized correction.

Some cases do not lend themselves to the parameterization
technique, such as off-axis vdM scans, diagonal scans, or vdM
calibrations performed with a large crossing angle (which is
unavoidable at the LHCb IP).

An off-axis vdM scan is a horizontal (or vertical) beam-
separation scan where the beams are partially separated in the
non-scanning plane, i.e. in the vertical (or horizontal) direc-
tion. A diagonal scan is one in which the beams are scanned
transversely along an inclined straight line in the x–y plane,
rather than only along either the x or the y axis. Such “gener-
alized”, one-dimensional vdM scans are sometimes used to
measure and correct for non-factorization effects [22,43,44].
While the orbit-shift correction can still be calculated ana-
lytically using a more general form of the Bassetti–Erskine
formula, the increased dimensionality of the parameter space
makes it impractical to invest in general enough and pre-
cise enough a parameterization of optical-distortion effects.
In such a case, deriving the corrections from a large set of
fully simulated scans, labor- and CPU-intensive as it may be,
appears more tractable by comparison.

Allowing non-zero crossing angles also increases the
dimensionality of the parameter space, with similar impli-
cations. Therefore, except where explicitly stated otherwise,
the results offered in the remainder of this report are restricted
to the zero (or moderate) crossing-angle case, which covers
the needs of the ATLAS and CMS experiments (as well as
those of ALICE, at the cost of a slight increase in systematic
uncertainty).

This section is organized as follows. The parameteriza-
tion approach mentioned above is described in Sect. 4.2. The
associated “fully symmetric Gaussian-beam configuration”
assumes that in the absence of any beam–beam interaction,
the colliding bunches in beam 1 and beam 2:

• can be modeled by factorizable transverse-density distri-
butions, and exhibit a single-Gaussian profile in all three
dimensions. The impact of violating this assumption is
evaluated in Sect. 4.3;

• are round in the transverse plane (σx B = σy B, B = 1, 2).

The impact of violating this assumption is evaluated in
Sect. 4.4;

• intersect at zero crossing angle. The impact of violating
this assumption is evaluated in Sect. 4.5;

• collide only at the IP where beam-separation scans are
performed. The impact of violating this assumption is
evaluated in Sect. 4.6;

• are beam–beam symmetric, i.e. equally populated (n1 =
n2), of the same transverse size (σi,1 = σi,2, i = x, y),

and therefore subject to the same beam–beam parameter
(ξi,1 = ξi,2, i = x, y). The impact of violating these
assumptions is evaluated in Sect. 4.7.

4.2 Beam–beam correction procedure in the fully
symmetric Gaussian-beam configuration

The parametrization strategy relies on the fact that at fixed
tunes, beam–beam induced biases to the visible cross-section
depend only on the beam–beam parameter ξ (Sect. 4.2.1).
The simulated ξ - and tune-dependence of the luminosity-
bias functions (Sect. 4.2.2) leads to parameterizing them
by second-order polynomials that can be used, in the con-
text of the beam–beam correction procedure of vdM cali-
brations, as a proxy for full-fledged B*B or COMBI sim-
ulations (Sect. 4.2.3). Combining these parameterized bias
functions with hypothetical vdM-scan curves devoid of fit-
ting biases and of step-to-step fluctuations provides robust
and intuitive insight into the magnitude and beam-conditions
dependence of beam–beam corrections to luminosity calibra-
tions (Sect. 4.2.4).

4.2.1 Validation of the scaling hypothesis

To characterize the scaling properties (or lack thereof) of
beam–beam biases during vdM scans, pairs of horizontal
and vertical beam-separation scans were generated under the
assumptions above using B*B.7 The beam–beam parameter
spanned the range ξ ∼ 0.002−0.008, thereby covering from
vdM scans with low-brightness proton beams at the low end,
to conditions slightly above routine physics running at the
high end. The input beam energies, bunch populations, emit-
tance and β∗ values were chosen to be representative of vdM
scans during LHC Runs 1 and 2 (Sect. 2.2); also included
was a high-ξ setting representative of Run-2 high-luminosity

7 In view of the consistency of the B*B and COMBI results demon-
strated in Sect. 3, the B*B package was chosen for practical reasons,
first and foremost because it is less computationally expensive.
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Fig. 9 Beam-separation dependence, during a simulated horizontal
vdM scan, of the luminosity-bias factor associated with the beam–beam
orbit shift only (green squares), the optical distortions only (red trian-
gles), and their combination (black circles). The horizontal axis is the
nominal beam separation in units of the unperturbed transverse beam
size σ0. The beams satisfy the assumptions listed in Sect. 4.1. The input
unperturbed-tune and beam–beam parameter values are indicated at the
top; the other relevant parameters are EB = 6.5 TeV, β∗ = 19.2 m and
εN = 2.6µm·rad. The points are the results of the simulation; the lines
are intended to guide the eye

physics running. The unperturbed fractional tunes were con-
strained to satisfy qy = qx + 0.010 so as to reflect routine
LHC collision settings.

The primary output of the simulation is the beam-
separation dependence of the luminosity-bias factor
[L/L0]Full BB. An example is presented in Fig. 9, with a
value of ξ chosen to lie roughly in the middle of the vdM
range (Table 1). The orbit-shift bias factor [L/L0]Orb (green
squares) is computed analytically:

[L/L0]Orb(
) = e− 1
2 [(δi /�R)2−(
/�R)2] (27)

where 
 is the nominal separation in the scanning plane, δi

is computed using Eqs. (14) to (16), and �R =
√

�0
x �0

y

is the unperturbed, round beam-equivalent convolved beam
size that in this particular case satisfies �R = �0

x = �0
y =√

2 σ0. The optical-distortion bias factor [L/L0]Opt (red tri-
angles) can then be calculated using Eq. (26).

For given values of qx and qy , beam–beam-induced distor-
tions scale with the beam–beam parameter, in the sense that
they depend only on ξ. This can be proven mathematically,
both for the orbit shift (Eqs. (14)–(15)) and for the dynamic-
β effect at zero separation (Eq. (18)). That this remains true
at any beam separation, within the constraints of the fully
symmetric beam configuration and over the ξ range specified
above, can only be demonstrated by simulation. To this effect,
luminosity-bias curves such as those presented in Fig. 9 were

Fig. 10 Beam-separation dependence, during simulated horizontal
vdM scans, of the difference between the luminosity-bias factor (full
beam–beam effect) calculated for the collision parameters shown in the
legend, and that computed using the reference parameters (Fig. 9, black
circles) listed at the top of the present figure. For each parameter set, the
bunch intensity is adjusted such that the value of ξ remains the same.
The error bars are explained in the text

compared for different combinations of bunch populations,
beam energies, β∗ and emittance values that all correspond
to a given value of ξ ; they were found to be identical within
the statistics of the simulation.

An example is presented in Fig. 10, which displays the
difference, at each scan step, between the luminosity-bias
factor computed for three distinct sets of beam parameters,
and that associated with the parameters used in Fig. 9; all
four parameter sets correspond to ξ = 0.004. The error bars
represent the statistical uncertainty associated with the ran-
domization of initial conditions in the B*B code [16]; they are
computed as the error on the mean over eight different runs,
with different random seeds, for each beam separation and
each parameter set. The differences in luminosity-bias values
between the four beam-parameter sets and the reference set
are statistically consistent with zero, and never exceed 10−4.

The exercise was repeated for a range of ξ values, leading to
the conclusion that at fixed Qx and Qy , the luminosity-bias
curves indeed depend only on ξ, to better than 10−4 on the
absolute luminosity scale.

4.2.2 Beam–beam parameter and tune dependence of the
optical-distortion correction

The combined beam-separation and ξ dependence of the
luminosity-bias factor [L/L0]Opt is illustrated in Fig. 11. The
simulations shown span the full beam–beam parameter range
(2.04 × 10−3 ≤ ξ ≤ 7.83 × 10−3), and are carried out at
the nominal LHC tune settings (Qx = 64.31, Qy = 59.32).

A similar ξ -dependence is observed for [L/L0]Full BB and
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Fig. 11 Beam-separation dependence, during simulated horizontal
vdM scans, of the luminosity-bias factor [L/L0]Opt associated with
optical distortions, for several values of the beam–beam parameter ξ.

The horizontal axis is the nominal beam separation in units of the unper-
turbed transverse beam size σ0. The beams satisfy the assumptions listed
in Sect. 4.1. The input unperturbed fractional-tune values are indicated
at the top. The points are the results of the simulation; the lines are
intended to guide the eye

[L/L0]Orb (not shown). The beam–beam parameter depen-
dence of all three variables at fixed nominal separation is
found to be well modeled by a second-order polynomial of
ξ, the coefficients of which depend on the nominal separa-
tion.

Since both the orbit shift (Eq. (15)) and the dynamic-β
effect (Eq. (18)) depend on the unperturbed tunes, and as part
of investigating the systematic uncertainties associated with
beam–beam corrections, their sensitivity to the input tune
values was characterized by extending the above-described
simulations to an area in the (qx , qy) plane that encompasses
the full range of operational tune settings and of beam–beam
tune shifts expected during vdM sessions. Horizontal and
vertical beam-separation scans were simulated, for several
values of ξ, over a grid8 bounded by 0.2975 < qx < 0.3100,

with the vertical unperturbed fractional tune set to qy = qx +
δq where δq = 0.0075, 0.0100, 0.0125.

The combined beam-separation and tune dependence of
the luminosity-bias factor [L/L0]Opt is illustrated in Fig. 12
for ξ = 7.83 × 10−3. For a given nominal separation, the
lower the tunes, the more they approach the quarter integer,
and therefore the smaller (i.e. the closer to unity) the optical-
distortion bias factor becomes [13]. Similarly, the lower the

8 For technical reasons associated with the numerical evaluation of
overlap integrals in B*B [16], the input tune values had to be chosen
such that gcd(10000 qx , 10000 qy) = 1, where gcd refers to the greatest
common divider. This avoids integration over closed curves that may
lead to unexpected systematic effects.

Fig. 12 Beam-separation dependence, during simulated horizontal
vdM scans, of the luminosity-bias factor [L/L0]Opt associated with opti-
cal distortions, for several values of the unperturbed fractional tunes (qx ,
qy). The horizontal axis is the nominal beam separation in units of the
unperturbed transverse beam size σ0. The beams satisfy the assump-
tions listed in Sect. 4.1. The input ξ value is indicated at the top. For
each curve, the value of the horizontal tune is indicated in the legend;
the value of the vertical tune is set to qy = qx + 0.01. The points are
the results of the simulation; the lines are intended to guide the eye

tunes, the smaller (i.e. the further away from unity) the orbit-
shift bias factor [L/L0]Orb (not shown), albeit with a weaker
tune dependence. As a result, the tune dependence of the full
beam–beam-bias factor [L/L0]Full BB is slightly steeper than
that associated with optical distortions only: the lower the
tunes, the faster [L/L0]Full BB drops in magnitude (Fig. 13),
and therefore the larger the overall beam–beam correction to
the luminosity scale. In addition, the lower the tunes, the less
the optical distortions contribute to the overall beam–beam
bias to σvis.

4.2.3 Practical implementation of parameterized
beam–beam corrections

Concretely, given a measured vdM-scan curve such as that
displayed in Fig. 1 (bottom), the beam–beam correction pro-
cedure can be implemented as follows.

1. At each scan step in the i scanning plane (i = x, y),

correct the nominal separation 
i for the deflection-
induced separation shift δbb

i , as detailed in Sect. 2.3.1,
using Eqs. (14)–(16).

2. At each scan step in the i scanning plane, correct the
measured rate Ri (
i ) for the optical-distortion bias
as detailed in Sect. 2.3.2, using Eq. (17). The beam-
separation dependence of the luminosity-bias factor
[L/L0]Opt is either extracted directly from a set of B*B
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Fig. 13 Beam-separation dependence, during simulated horizontal
vdM scans, of the luminosity-bias factor [L/L0]Full BB associated with
the full beam–beam effect, for several values of the unperturbed frac-
tional tunes (qx , qy). The horizontal axis is the nominal beam separation
in units of the unperturbed transverse beam size σ0. The beams satisfy
the assumptions listed in Sect. 4.1. The input ξ value is indicated at the
top. For each curve, the value of the horizontal tune is indicated in the
legend; the value of the vertical tune is set to qy = qx +0.01. The points
are the results of the simulation; the lines are intended to guide the eye

or COMBI simulations, or, if the assumptions listed
in Sect. 4.1 can be considered valid, simply computed
using the polynomial parameterization described below.
The latter is valid only for on-axis, one-dimensional
vdM scans with zero crossing angle; other configura-
tions, and in particular off-axis one-dimensional scans
as well as two-dimensional grid scans in the (δx , δy)

beam-separation plane, require dedicated simulations.

The simulations described in Sect. 4.2.2 were used to
parameterize the optical-distortion luminosity-bias factor
[L/L0]Opt in bins of normalized nominal separation over
the range 0 ≤ 
i/σ0 ≤ 6, separately for x and y scans, by
polynomials of the form

[L/L0(ξR, qx , qy)]k = p0k + p1k ξR + p2k qx + p3k qy

+p4k ξ2
R + p5k q2

x + p6k q2
y

+p7kξRqx + p8k ξR qy

+p9k qx qy . (28)

Here the index k (k = 1, 25) labels the nominal-separation
bin in the scanning plane considered. The round-beam equiv-
alent beam–beam parameter ξR is defined as

ξR = nr0 β∗

4πγσ 2
R

, (29)

where the single-beam transverse RMS beam size σ0 in
Eq. (13) is approximated by its measured9 round-beam equiv-
alent σR = √

�x�y/2, thereby partially accounting for
a potential ellipticity of the beams at the IP. The input
fractional-tune values (qx , qy) are those of the unperturbed
tunes defined in Sect. 4.1. In the case where bunches collide
only at the IP where the scan is taking place, i.e. remain fully
separated, transversely and/or longitudinally, at the other
three IPs, these unperturbed tunes are identical to the nominal
LHC tunes, or equivalently to the values one would measure
before the beams are put in collision at the scanning IP. If,
however, some bunches also collide at one or more other IPs,
the unperturbed tunes input to the parameterization for those
bunches must take into account the beam–beam tune shift
arising from collisions at non-scanning IPs; a prescription to
this effect is offered in Sect. 4.6.

The parameterization above, that amounts to a second-
order Taylor expansion in ξR , qx and qy , was found sufficient
to approximate the exact simulation results to better than
10−3 on [L/L0] over most of the grid of simulated points in
(ξ, qx , qy , 
) space. The function defined by Eq. (28) is linear
in all 10 parameters plk . In each nominal-separation bin k, the
set of parameters p0k, . . . , p9k is determined by a weighted
linear least-square fit. A smooth dependence of [L/L0] on
the nominal separation, for given values of ξR , qx and qy ,
can be achieved by, for instance, cubic spline interpolation
between adjacent separation bins. Parameterizations based
on the same functional form were also constructed for the
orbit-shift and full beam–beam bias factors [L/L0]Orb and
[L/L0]Full BB, and achieved similar numerical accuracy.

Tabulated values of the parameters plk in separation steps
of 0.25 in 
/σR, for both vertical and horizontal scans and
over the full range of ξR and tune values defined earlier, have
been made available to all LHC experimental Collaborations.
The optical-distortion parameters, which are the most useful,
are documented in Appendix C, and are publicly accessible
in computer-readable form [45].

9 It will be shown in Sect. 4.2.4 that in the vdM regime, beam–beam
effects, if left uncorrected, lead to a percent-level underestimate of �x
and �y , and therefore of σR . The use of the measured transverse beam
size – as opposed to that of the experimentally inaccessible unperturbed
beam size – in estimating ξR therefore leads to a slight overestimate
of the beam–beam parameter input to the simulation. However, since
the overall beam–beam bias on the effective cross-section is typically
less than 1% (Fig. 16, black curve), a sub-percent overestimate of ξR
biases the overall beam–beam correction to σvis by 1–1.5% of itself.
This can usually be neglected in view of the much larger fractional
systematic uncertainties detailed in Sect. 5. Alternatively, the correction
can be iterated upon, by using as input to the second iteration a ξR value
based on the corrected effective single-beam size obtained from the first
iteration.
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4.2.4 Separation-integrated estimates of beam–beam
corrections to vdM calibrations

The beam–beam correction procedure detailed in the preced-
ing section is designed to be applied to measured vdM-scan
curves, one scan step at a time. One then extracts the beam–
beam corrected peak rate and convolved beam sizes needed
to calculate the visible cross-section (Eq. (10)) using a care-
fully chosen fit function. More often than not, the latter must
diverge from a perfect Gaussian in order to faithfully model
the data over the full beam-separation range.

In order to provide consistency checks on this intricate
analysis chain, as well as a physically intuitive, albeit approx-
imative, breakdown of the impact of individual beam–beam
effects on the luminosity calibration under study, the same
procedure can be applied to an x–y pair of hypothetical beam-
separation scan curves, that suffer from no statistical fluctu-
ations and that, in the ξR → 0 limit would be perfectly
Gaussian:

L0(
) ∝ 1

4πσ 2
0

exp

(
− 
2

4σ 2
0

)
.

Here and in the remainder of this paper, the “0” index indi-
cates a “nominal” quantity, i.e. one for which beam–beam
effects have been fully turned off in the simulation.

At a given nominal separation 
i in scanning plane i (i =
x, y), and with the beams transversely centered on each other
in the non-scanning plane, the luminosity in the presence of,
say, the full beam–beam effect is then calculated as

L(
i ) = L0(
i ) × [L/L0]Full BB(
i ) (30)

with [L/L0]Full BB(
i ) provided by the parametrization
detailed in Sect. 4.2.3, with input parameters representa-
tive of the actual beam conditions during the scans under
study. The impact of either the orbit shift or the optical distor-
tions alone can be evaluated by substituting [L/L0]Orb(
i )

or [L/L0]Opt(
i ) for [L/L0]Full BB(
i ) in Eq. (30).
One then defines “figures of merit” (FoMs) that charac-

terize the impact of beam–beam effects on vdM observables.

1. The peak-rate bias factor characterizes the dynamic-β
effect at zero beam separation:

μpk/μ
0
pk = L(
i = 0)

L0(
i = 0)
, (31)

and is sensitive to optical distortions only.
2. The beam-size bias factors characterize, in each plane,

the beam–beam impact on the convolved transverse
beam size:

�i/�0
i (i = x, y), (32)

where the overlap integrals

�i = 1√
2π

∫ L(
i ) d
i

L(
i = 0)
(33)

�0
i = 1√

2π

∫ L0(
i ) d
i

L0(
i = 0)
(34)

are calculated numerically, with their integrands smoo-
thed by cubic-spline interpolation.

3. The σvis-bias factor characterizes the beam–beam impact
on the absolute luminosity scale, and is given by the
product of the previous three FoMs:

σvis/ σ 0
vis = (μpk/μ

0
pk)

×(�x/�0
x ) × (�y/�0

y). (35)

As an illustration, Fig. 14 displays the beam–beam param-
eter dependence of the peak-rate bias factor for the full
beam–beam effect (black circles), the orbit shift only (green
squares), and the optical distortion only (red triangles). Since
at zero separation there is no orbit shift, only optical distor-
tions matter in this case.

The evolution of the horizontal beam-size bias factor is
presented in Fig. 15. While orbit shifts, if left uncorrected,
result in an underestimate of �x and �y , optical distortions
have the opposite effect, resulting in a partial cancellation of
the bias.

This is even more apparent in the visible-cross-section
bias curves (Fig. 16). While the full beam–beam effect on
the visible cross section remains below 1% over the whole ξ

range (black circles), individual contributions from the orbit
shift (green squares) and the optical distortion (red triangles)
can each lead to a 3 − 4% bias, a clear demonstration of how
much overcorrection can be expected from too approximate
a treatment of optical distortions.

In Figs. 14, 15 and 16, the curves are fits to quadratic
functions of ξR :

f (ξR) j = p0 j + p1 jξR + p2 jξ
2
R, (36)

where j labels the type of correction (orbit shift only, optical
distortion only, or full beam–beam). Even though the lin-
ear term is clearly dominant, a quadratic term is needed to
describe the evolution of all three FoMs to satisfactory pre-
cision over the full range of beam–beam parameter values.

The impact of beam–beam effects on the absolute-
luminosity scale can be expressed equivalently by either
the σvis bias factor σvis/ σ 0

vis, the visible cross-section bias
σvis/ σ 0

vis − 1 (typically a fraction of a percent), or a mul-
tiplicative correction factor ( σvis/ σ 0

vis)
−1 to the raw visible

cross-section. This FoM approach, that lends itself to a sim-
ple polynomial parameterization in terms of ξR , qx and qy ,
offers the advantage that its results are easy to interpret, as
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Fig. 14 Dependence of the peak-rate bias factor on the beam–beam
parameter, with beams colliding at the scanning IP only. The unper-
turbed tunes are fixed at the nominal LHC values (Qx = 64.31, Qy
= 59.32). The symbols display the simulation results; the curves are
described in the text. Since the orbit shift does not impact the peak-rate
bias factor, the red and black symbols and curves lie exactly on top of
each other

Fig. 15 Dependence of the horizontal beam-size bias factor on the
beam–beam parameter, with beams colliding at the scanning IP only.
The unperturbed tunes are fixed at the nominal LHC values (Qx = 64.31,
Qy = 59.32). The symbols display the simulation results; the curves are
described in the text

well as insensitive both to the quality of the fit to the measured
scan curves and to rate fluctuations, from one scan step to the
next, due for instance to counting statistics or beam-position
jitter. This technique also simplifies the evaluation of some
of the systematic uncertainties discussed in the remainder of
this chapter. It is, however, not recommended for determin-
ing the central value of the beam–beam correction on real
data, since it ignores the deviations of the actual scan curves
from a perfect Gaussian.

Fig. 16 Dependence of the σvis bias factor on the beam–beam param-
eter, with beams colliding at the scanning IP only. The unperturbed
tunes are fixed at the nominal LHC values (Qx = 64.31, Qy = 59.32).
The symbols display the simulation results; the curves are described in
the text

4.3 Impact of non-Gaussian unperturbed transverse beam
profiles

All the simulation results presented in this report so far make
the explicit assumption that in the absence of the beam–beam
interaction at the scanning IP, the unperturbed transverse
beam profiles, i.e. the particle density functions ρ̂B(x, y)

(B = 1, 2) in Eq. (1), can be perfectly modeled by the
uncorrelated x–y product of two single, one-dimensional
Gaussians. Should this not be the case, the beam-separation
dependence of the luminosity-bias curves will deviate from
that presented in Sect. 4.2. This is due both to the modi-
fied spatial dependence of the field generated by the source
bunch, and to the fact that the fraction of particles in the wit-
ness bunch that experience a given electromagnetic kick is
different from that in the pure-Gaussian case.

Both B*B and COMBI accept as input unperturbed
transverse-density distributions, functional forms that are
more general than a single Gaussian. In order to assess
the potential impact, on beam–beam corrections, of non-
Gaussian beams, a realistic model of ρ̂B(x, y) is needed,
or at least one that represents the “worst-case” deviation
from the ideal Gaussian shape while remaining represen-
tative of actual beam conditions during vdM-calibration ses-
sions at the LHC (Sect. 4.3.1). Taking into account potentially
non-factorizable unperturbed density distributions requires a
minor generalization of the beam–beam correction formal-
ism (Sect. 4.3.2). While the influence of non-Gaussian tails
on the beam-separation dependence of the luminosity-bias
factors appears sizeable, the resulting bias on the beam–beam
corrections to the visible cross-section remains moderate
enough to be treated as a systematic uncertainty (Sect. 4.3.3).

123



   17 Page 22 of 52 Eur. Phys. J. C            (2024) 84:17 

4.3.1 Single-bunch models

In a hadron collider, transverse-density distributions cannot
be calculated from first principles, and existing beam-profile
monitors, such as wire scanners or synchrotron-light tele-
scopes, have too limited a dynamic range to provide suffi-
ciently precise beam-tail measurements. The only remain-
ing experimental handle, therefore, is that provided by non-
factorization analyses such as those described in, for instance,
Refs. [9,22,46–48]. In this approach, the bunch-density dis-
tributions are modeled by the sum of two or three three-
dimensional Gaussians. A simultaneous fit to the beam-
separation dependence, during a vdM-scan pair, not only of
the luminosity but also of the position, size, shape and orien-
tation of the luminous region, makes it possible to estimate
the single-bunch parameters of each colliding-bunch pair.

In order to quantify the largest plausible impact of non-
Gaussian beam profiles on the beam–beam corrections cal-
culated in Sect. 4.2, single-bunch parameters were extracted
from the results of non-factorization analyses of a 2012, a
2017 and a 2018 vdM session. The former is representative
of Run-1 vdM conditions at the ATLAS IP, up to and includ-
ing July 2012 [22], the latter two of Run-2 vdM sessions
at the CMS IP, for which “bunch tailoring” in the injec-
tor chain [22,49] significantly reduced non-Gaussian tails.
In both cases, a “worst-case” parameter set (in terms of
deviations from a perfectly Gaussian shape) was selected
from the fitted parameters of the analyzed colliding-bunch
pairs. In order to separate the impact of non-Gaussian pro-
files discussed in this section, from that of elliptical beams
(Sect. 4.4) and of beam–beam imbalance (Sect. 4.7), as well
as to maximise the sensitivity of the study, in each parameter
set the most non-Gaussian transverse profile is assigned to
both planes and both beams.

In a first step, the particle density distribution input to B*B
is chosen to be factorizable by construction, and modeled by
the product of two uncorrelated double Gaussians:

ρ̂B(x, y) = ρx B(x) ρy B(y)

= 1√
2π

[
wn

σn
exp

(
− x2

2σ 2
n

)
+ ww

σw

exp

(
− x2

2σ 2
w

)]

× 1√
2π

[
wn

σn
exp

(
− y2

2σ 2
n

)
+ ww

σw

exp

(
− y2

2σ 2
w

)]

(37)

where B = 1 or 2, the labels “n” and “w” refer to the nar-
row and wide components of the distribution, and their rel-
ative population is constrained by ww = 1 − wn . The func-
tional form reflects the assumptions of unperturbed round
beams and of equal particle-density distributions (ρ̂1(x, y) =
ρ̂2(x, y)). The three parameter sets input to the B*B simu-
lation are listed in Table 2. The 2012 (2017) parameter set

clearly results in the most (the least) non-Gaussian shape,
as evidenced qualitatively by the combination of the largest
(smallest) beam-size ratio σw/σn and the largest (smallest)
weight of the wide component ww, and as quantified by the
single-beam kurtosis computed from the parameters listed in
the Table.10

The functional form chosen for ρ̂B(x, y) makes it possi-
ble to compute analytically the unperturbed convolved trans-
verse beam size �0 from the values of σn, σw, wn and ww,

using Eq. (4): these are listed in the top half of Table 3
(rows 3 to 6). The Gaussian-equivalent single-beam size
σ 0

SG, i.e. the transverse R.M.S. width of perfectly Gaussian
bunches that would yield the same unperturbed convolved
beam size as the non-Gaussian bunches studied here, is given
by σ 0

SG = �0/
√

2 (Eq. (6)). These definitions naturally lead
to using the “Gaussian-equivalent” beam–beam parameter ξ,

inferred from σ 0
SG using Eq. (13), as the common metric in

which to quantify the impact of non-Gaussian tails.

4.3.2 Beam–beam-correction formalism in the presence of
non-factorization

In a second step, and in order to explore the potential impact
of non-factorization on beam–beam corrections, the simplest
two-dimensional, non-factorizable double Gaussian:

ρ̂B(x, y) = wn

2πσ 2
n

exp

(
− x2 + y2

2σ 2
n

)

+ ww

2πσ 2
w

exp

(
− x2 + y2

2σ 2
w

)
(38)

is chosen as an alternative density-distribution model to be
input to B*B. Since by construction such a distribution cannot
be expressed as the product of uncorrelated horizontal and
vertical components, the concept of one-dimensional con-
volved beam size defined by Eq. (4) ceases to be meaning-
ful, and only the convolved–beam-size product [�x�y]2D

introduced in Eq. (8) remains amenable to physical interpre-
tation. Accordingly, the two beam-size bias factors �i/�0

i
(i = x, y) introduced in Eqs. (32)–(34) must be replaced by
the single quantity

[�x�y]2D

[�x�y]0
2D

=
∫ L(
x ,
y) d
x d
y∫ L0(
x ,
y) d
x d
y

×L0(0, 0)

L(0, 0)
, (39)

10 Deviations of a distribution from the strictly Gaussian shape can be
characterized by its kurtosis. This statistic is defined as �2 = m4/m2

2 −
3, where m4 and m2 are, respectively, the fourth and the second moment
of the distribution [50]. The kurtosis is zero for a Gaussian, positive for
a leptokurtic distribution with longer tails, and negative for a platykurtic
distribution with tails that fall off more quickly than those of a Gaussian.
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Table 2 Single-bunch
parameters representative of
strongly non-Gaussian
single-beam profiles during
ATLAS and CMS pp vdM scans
in 2012, 2018 and 2017. The
bunches are assumed to be
round and, within each
parameter set separately,
beam–beam symmetric, i.e. of
equal brightness for beam 1 and
beam 2

Date of vdM session July 2012 June 2018 July 2017
LHC fill number 2855 6868 6016

EB [TeV] 4.0 6.5 6.5

n p [1011 p/bunch] 1.1 0.85 0.84

β∗ [m] 11.0 19.2 19.2

qx , qy 0.31, 0.32 0.31, 0.32 0.31, 0.32

σn [µm] 57.9 85.0 84.0

σw [µm] 115 125 116

σw/σn 1.99 1.47 1.38

wn 0.634 0.670 0.840

ww = 1 − wn 0.366 0.330 0.160

Single-beam kurtosis �2 1.40 0.47 0.25

Table 3 Scan parameters
representative of strongly
non-Gaussian beam profiles
during ATLAS and CMS pp
vdM scans in 2012, 2018 and
2017, calculated analytically
from the single-bunch
parameters listed in Table 2

Date of vdM session July 2012 June 2018 July 2017
Single-beam kurtosis 1.40 0.47 0.25

Factorizable density distribution: Eq. (37)

�0 (from Eq. (4)) [µm] 107.1 137.3 125.4

σ 0
SG = �0/

√
2 [µm] 75.7 97.1 88.7

Gaussian-equivalent ξ [10−3] 6.04 3.04 3.61

Non-factorizable density distribution: Eq. (38)

�0
F (from Eq. (41)) [µm] 100.4 134.9 124.4

σ 0
SG = �0

F/
√

2 [µm] 71.0 95.4 88.0

Gaussian-equivalent ξ [10−3] 6.88 3.16 3.67

where the scan and the integration are carried out over a grid
in the two-dimensional nominal-separation space (
x ,
y)

that extends over ±5 σ 0
SG in both directions. The σvis-bias

factor defined by Eq. (35) then takes the more general form

σvis2D/ σ 0
vis2D = μpk

μ0
pk

× [�x�y]2D

[�x�y]0
2D

, (40)

where the subscript “2D” indicates that the two-dimensional
formalism introduced in Eq. (8) is used throughout the anal-
ysis.

Using ξ as a common metric for both the factorizable and
the non-factorizable case also requires a generalization of the
formula that expresses, in terms of single-beam parameters,
an observable that is akin to the transverse convolved bunch
size and that can be measured in a standard, one-dimensional
vdM scan. For instance, for a vertical scan with the beams
centered on each other in the horizontal plane, the measured
apparent convolved width is given by:

�yF = 1√
2π

∫
Rx,y(δx = 0, δy) dδy

Rx,y(δx = 0, δy = 0)
, (41)

which reduces to Eq. (4) when ρ̂(x, y) = ρx (x) ρy(y).

The subscript “F” emphasizes that while measurable, this
observable cannot be used in Eqs. (5) and (10) unless the
density distributions are factorizable. The importance of

this distinction is illustrated by the significant differences
between the top half (rows 3–6) and the bottom half (rows
7–10) of Table 3: even though both sets of scan parame-
ters are based on Table 2, their values are significantly dif-
ferent in the two cases, because the non-linear x–y corre-
lation built into Eq. (38) affects the beam-overlap integral
(Eq. (1)). These differences, the size of which appears cor-
related with the single-beam kurtosis, are indicative of the
magnitude of the non-factorization biases that can be intro-
duced, even in the absence of the beam–beam interaction,
by applying the one-dimensional, factorizable FoM formal-
ism of Sect. 4.2.4 to non-factorizable beams. In contrast, the
analysis strategy encapsulated in Eq. (40) guarantees that
non-factorizable correlations embedded in the unperturbed
density distributions cancel in the σvis2D ratio; the latter,
therefore, reflects the impact of beam–beam biases only. The
study of non-factorization biases proper lies beyond the scope
of the present report.

4.3.3 Impact of non-Gaussian tails on beam–beam-induced
biases

In the case of factorizable density distributions, the impact
of non-Gaussian tails on beam–beam corrections can be
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Fig. 17 Beam-separation dependence, during simulated vertical vdM
scans, of the luminosity-bias factor [L/L0]Orb associated with the
deflection-induced orbit shift, for single-Gaussian (red) and factorizable
double-Gaussian (black) bunch-density distributions that yield the same
unperturbed convolved beam size. The horizontal axis is the nominal
vertical beam separation. The bunch parameters are listed in the second
column of Table 2 (LHC fill 2855). The beams satisfy the assumptions
listed in Sect. 4.1, except (in the case of the black curve) that regarding
the single-Gaussian transverse profile

visualized by comparing the beam-separation dependence
of the luminosity-bias factors [L/L0] for a given set of non-
Gaussian beam parameters, to that computed for perfectly
Gaussian beams that in the absence of beam–beam effects,
would yield the same value of the unperturbed convolved
beam size �0, and therefore the same head-on luminos-
ity. This is illustrated in Fig. 17 for the orbit-shift effect.
In the single-Gaussian case (red curve), the steeper drop
of [L/L0]Orb with increasing separation, and its asymptotic
behavior for 
y ≥ 300µm, indicates that at such large sepa-
rations (
y > 4 σ 0

SG), the number of particles contributing to
the source field becomes negligible, so that the latter increas-
ingly appears to the witness bunch as a point source. In the
non-Gaussian case (black curve), the charge distribution is
more spread out, and the interplay between the source-field
distribution and the density distribution in the witness bunch
produces a less intuitive separation dependence.

The situation is reversed for optical distortions (Fig. 18):
the Gaussian beams are subject to larger optical distortions
at large beam separation (red curve), presumably because
in such configurations the tail particles in the witness bunch
experience a more intense source-field gradient when close to
the center of the source bunch. The tails of the non-Gaussian
beams, being subject to a more diffuse source-field distri-
bution, experience weaker gradients and correspondingly
smaller optical distortions (black curve).

In the case of non-factorizable distributions, a physi-
cally intuitive graphical representation of beam–beam biases
becomes impractical, since [L/L0] depends on both 
x and

Fig. 18 Beam-separation dependence, during simulated vertical vdM
scans, of the luminosity-bias factor [L/L0]Opt associated with optical
distortions, for single-Gaussian (red) and factorizable double-Gaussian
(black) bunch-density distributions that yield the same unperturbed con-
volved beam size. The horizontal axis is the nominal vertical beam sep-
aration. The bunch parameters are listed in the second column of Table 2
(LHC fill 2855). The beams satisfy the assumptions listed in Sect. 4.1,
except (in the case of the black curve) that regarding the single-Gaussian
transverse profile


y, and the curves in Figs. 17 and 18 must be replaced by
surfaces.

The impact of non-Gaussian tails on the corresponding
vdM calibrations is best summarized by the σvis-bias factors
presented in Table 4. These are all computed using Eqs. (39)–
(40), in order to ensure that factorizable and non-factorizable
models are treated identically; it has been verified that for
the factorizable models, the one-dimensional FoM formal-
ism detailed in Sect. 4.2.4 yields the same results within
0.01% of σvis, well within the expected accuracy of the
overlap-integral calculation (Sect. 3.3). Listed in this table
is the full beam–beam bias for either factorizable or non-
factorizable double-Gaussian models, for the corresponding
single-Gaussian model (that is factorizable by construction),
as well as for their difference DG−SG. This difference is also
listed after scaling it linearly to a common, arbitrary refer-
ence value of ξ = 5.6 · 10−3, that lies at the upper end of the
beam–beam parameter range covered by Run-2 vdM scans.
This simple-minded procedure, inspired by the roughly linear
dependence of the σvis bias factor on ξ apparent in Fig. 16,
allows direct comparisons across configurations correspond-
ing to different values of ξ.

Globally, non-Gaussian tails modify the σvis bias by an
amount that – for the models chosen here – varies from less
than 10% to about half of the bias itself. Predictably enough,
the larger the single-beam kurtosis, the larger the relative
impact of the tails. The non-factorizable models seemingly
predict a smaller influence of the tails than their factorizable
counterpart; this may however depend on the particular form
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Table 4 Visible cross-section
bias associated with the full
beam–beam effect, calculated
using B*B, for double- (DG)
and single- (SG) Gaussian
beams yielding the same
Gaussian-equivalent
beam–beam parameter ξ, and
difference between the two
(DG−SG). The unperturbed DG
transverse-density distributions
are described either by a
factorizable or by a
non-factorizable function; their
parameters are listed in Table 2.
The bunches are assumed to
collide at the scanning IP only

Date of vdM session July 2012 June 2018 July 2017
Single-beam kurtosis 1.40 0.47 0.25

Factorizable density distribution: Eq. (37)

ξ [10−3] 6.03 3.05 3.61

σvis2D bias [%]: DG −0.27 −0.15 −0.25

SG −0.57 −0.22 −0.27

DG−SG 0.30 0.07 0.02

DG−SG scaled to ξ = 5.6 · 10−3 0.28 0.13 0.03

Non-factorizable density distribution: Eq. (38)

ξ [10−3] 6.88 3.16 3.67

σvis2D bias [%]: DG −0.50 −0.17 −0.23

SG −0.64 −0.21 −0.25

DG−SG 0.14 0.04 0.02

DG−SG scaled to ξ = 5.6 · 10−3 0.11 0.07 0.03

of x–y correlation embedded into the specific functional form
chosen for ρ̂B(x, y). A practical proposal to translate the
results listed in Table 4 into a realistic systematic uncertainty
is offered in Sect. 5.2.1. Repeating the above studies using
more refined single-beam models extracted from future vdM
sessions may help refine the understanding of such biases.

4.4 Impact of beam ellipticity at the interaction point

In the fully symmetric beam configuration (Sect. 4.1), the
beams are round at the IP, and the beam–beam interaction can
be described by a single parameter ξ (Eq. (13)). In the more
general case where the transverse beam profile is an upright11

ellipse, for instance because of unequal horizontal and ver-
tical emittances or β∗ values, the horizontal and vertical
beam–beam parameters ξx and ξy (Eq. (12)) no longer coin-
cide, and the parametric approach described in Sect. 4.2.3 is,
strictly speaking, no longer applicable.

During vdM scans at the LHC, however, the round-beam
hypothesis is only moderately violated: the measured hori-
zontal and vertical IP-β functions typically differ by 10% or
less, the corresponding emittances by 30% at most, and the
increase in projected transverse beam size associated with a
non-zero crossing angle at the ALICE and LHCb IPs does
not exceed 15%.

To assess the impact of beam ellipticity on beam–beam
corrections, B*B is used to simulate vdM scans over a square
grid in (�0

x , �0
y) space (Fig. 19), with as input unperturbed

beams that satisfy the assumptions listed in Sect. 4.1 except
for the round-beam hypothesis. The chosen �0

x range is

11 In view of the minor impact predicted by the simulations described
in this section for upright (horizontal or vertical) elliptical beams, and
of the small residual transverse coupling measured at the LHC IPs,
the fully general case of beam ellipses tilted in the x-y plane is not
considered in the present paper.

slightly wider than that observed during Run-2 vdM scans
at

√
s = 13 TeV; the vertical/horizontal aspect ratio �0

y /�0
x

is varied from 0.7 to 1.4, corresponding to sampling the cor-
responding emittance ratio from 0.5 to 2.0, well beyond the
range observed during vdM-calibration sessions. The hori-
zontal and vertical beam–beam parameters cover the range
2.6 × 10−3 < ξx , ξy < 5.1 × 10−3 (Fig. 20). The grid
is chosen such that for a constant value of the round-beam
equivalent beam–beam parameter ξR , the horizontal and ver-
tical beam–beam parameters sample the full span allowed by
the range of chosen �0

x and aspect-ratio values. For example,
the group of five points at ξR ≈ 3.6 × 10−3 in Fig. 20 cor-
responds to the five diagonal points in Fig. 19; the residual
curvature is due to the fact that the grid is built from equally
spaced (�0

x , �0
y), rather than (ξx , ξy), values.

The resulting peak-rate, beam-size and visible cross-
section bias factors (Eqs. (31)–(35)) for elliptical configu-
rations are then compared to the same quantities calculated
using the round-beam parameterization (Eq. (36)) at the cor-
responding value of ξR . The results are illustrated in Fig. 21
for the visible cross-section. On the scale shown here, the
bias ( σvis/ σ 0

vis −1), and therefore the corresponding beam–
beam correction, seem to depend on ξR only; stated differ-
ently, the beam–beam-induced biases appear rather insensi-
tive to the aspect ratio. Upon closer inspection however, all
four FoMs do reveal an actual dependence on the �0

y /�0
x

aspect ratio, albeit a weak one. Since the orbit-shift effect
can be accurately calculated, even for elliptical beams, using
the Bassetti–Erskine formalism [14], only optical-distortion
biases matter. The difference between the bias calculated
by B*B for a given set of elliptical-beam parameters, and
that extracted from the round-beam parameterization using
the corresponding value of ξR , is displayed in Fig. 22. Its
dependence on the vertical/horizontal aspect ratio is close
to linear, and remains below 0.03% over the full range of
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Fig. 19 Grid of unperturbed transverse convolved beam sizes used to
characterize the impact of beam ellipticity on beam–beam corrections,
and their vertical/horizontal aspect ratio. The diamonds (circles) cor-
respond to elliptical (round) beams. The beam energy, bunch inten-
sity, IP-β function and unperturbed tunes are fixed at, respectively,
EB = 6.5 TeV, n p = 0.777 × 1011 protons/bunch, β∗ = 19.2 m and
(Qx , Qy) = (64.31, 59.32)

Fig. 20 Grid of beam–beam parameter values used to characterize the
impact of beam ellipticity on beam–beam corrections. The diamonds
(circles) correspond to elliptical (round) beams. The horizontal axis
shows the value of ξx defined by Eq. (12), the vertical axis the cor-
responding round-beam equivalent parameter ξR defined by Eq. (29)

beam parameters considered in this study. Its dependence
on ξR is illustrated by the spread over the three parameter
sets clustered at �0

x/�0
y ≈ 0.8 and 1.2. The beam–beam

parameter values considered in this study, and that are asso-
ciated with elliptical-beam configurations, span the range
3.0 × 10−3 < ξR < 4.2 × 10−3: this is representative of, but
does not quite cover, the full ξ range listed in Table 1. Even
if the mean value of ξR was doubled, however, the impact of
potentially elliptical beam profiles on the beam–beam cor-
rection to σvis would still remain well below 1 permil, and
can therefore be treated as a systematic uncertainty.

Fig. 21 Dependence of the visible cross-section bias on the round-
beam equivalent beam–beam parameter ξR , for optical distortions only
(red), orbit shift only (green), and full beam–beam effect (black).
The filled (open) markers tag the results of individual B*B simula-
tions assuming upright elliptical (round) beams; the orbit-shift bias
is calculated analytically using the elliptical-beam formula [14]. The
curves show the round-beam estimates based on the parameterization
of Eqs. (35)–(36). The points clustered around each ξR value correspond
to different settings of the �0

y /�0
x aspect ratio

Fig. 22 Aspect-ratio dependence of the difference in σvis bias associ-
ated with optical distortions, between the result of B*B elliptical-beam
simulations, and the corresponding round-beam estimate based on the
parameterization of Eqs. (35)–(36). The filled (open) markers tag the
results of individual simulations assuming upright elliptical (round)
beams. The points clustered around each value of the aspect ratio corre-
spond to different ξR settings. The horizontal dashed line corresponds
to no difference in σvis bias between round and elliptical beams. The
spread of the round-beam simulation results (open triangles) reflects the
numerical accuracy of the subtracted parameterization

4.5 Impact of non-zero crossing angle

In the presence of a significant crossing angle, the analysis
becomes considerably more involved, and a full exposition
thereof would exceed the scope of the present report. The dis-
cussion below is therefore focussed on assessing the beam–
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beam correction uncertainty associated with vdM scans at
zero nominal crossing angle, during which the actual, resid-
ual crossing angle does not exceed few tens of microradi-
ans: this covers most luminosity-calibration sessions at IP1
(ATLAS) and IP5 (CMS). The same treatment, albeit at the
cost of a small additional uncertainty, remains applicable to
scans at IP2 (ALICE) (and to some non-standard sessions
at IPs 1 and 5) that involve nominal crossing angles θc in
the 140–400µrad range. At IP8 however, the LHCb require-
ment for an unambiguous separation, in the crossing plane,
of beam-gas vertices from beam 1 and beam 2, leads to
θc settings of up to 1100µrad. Such large crossing angles
would require simulation studies more extensive than can be
reported here.

In the absence of any beam–beam interaction, the geo-
metric factor F defined in Eq. (11), and generalizations
thereof [16,19], provide an accurate description of the com-
bined impact of a non-zero crossing angle and of a finite
bunch length on the unperturbed apparent transverse beam
size in the crossing plane, as well as of the beam-separation
dependence of the unperturbed luminosity.

In the presence of the beam–beam interaction, the impli-
cations of a non-zero crossing-angle for the calculation of
beam–beam biases fall in two conceptually distinct cate-
gories.

• Geometrical effects in the transverse plane that depend
on the crossing angle and on the bunch length, such as
modifications of the transverse beam–beam overlap and
the calculation of the effective strength of the source field
experienced by the particles in the witness beam, are ade-
quately modeled [16] by the B*B package and well repro-
duced by COMBI simulations. B*B simulations, how-
ever, are intrinsically limited to four dimensions (hori-
zontal and vertical positions and angles), since the longi-
tudinal variables are “projected out” and the associated
dynamics implicitly neglected.

• Longitudinal dynamics, such as synchrotron motion or
beam–beam-induced transverse-shape variations along
the bunch, can be modeled by COMBI using the
6D beam–beam strong-strong model [41]. This model
divides particle distributions into slices along the length
of each bunch. The kick experienced by each macropar-
ticle in one beam is computed based on the statistical
moments of the charge distributions in each slice of
the opposing bunch; the computation is repeated for the
macroparticles in the other beam.

In order to properly account for longitudinal effects and
assess their importance, COMBI is chosen here to character-
ize the interplay of crossing-angle and beam–beam effects.
This first study is exploratory in nature and restricted to the
vdM regime.

As predicted analytically [16,51], the magnitude of the
orbit shift extracted from COMBI simulations for a purely
horizontal crossing angle of several hundred microradians,
is found consistent with that computed using the Bassetti–
Erskine formula with, as input:

• in the crossing (horizontal) plane, the effective convolved
beam size given by �x,e f f = F × �x , where F is the
geometric factor defined in Eq. (11) and �x is the hori-
zontal convolved beam size at zero crossing angle, given
by Eq. (6);

• in the non-crossing (vertical) plane, the vertical con-
volved beam size �y .

The dependence of the beam–beam-induced visible cross-
section bias on the full crossing angle is illustrated in Fig. 23
for a beam–beam parameter setting typical of Run-2 vdM
scans. For the configurations shown in this figure, the geo-
metric factor spans the range 1.0 < F < 1.09. Since this
factor impacts both σ 0

vis and σvis in an almost identical man-
ner,12 it cancels in the crossing-angle dependence of the ratio
σvis/ σ 0

vis. The absolute value of the σvis bias increases with
the angle, even though the “effective” beam–beam parameter
in the crossing plane (i.e. that calculated from the effective
transverse beam size) decreases. The difference between the
horizontal- and vertical-crossing configurations is due to the
difference between the x and y tunes. Also notable is the sen-
sitivity to β∗: the crossing-angle dependence of the beam–
beam bias is weaker for β∗ = 24 m than for β∗ = 19 m. The
results are insensitive to the assumed value of the synchrotron
tune, as well as to the chromaticity of the ring lattice (reduc-
ing the chromaticity to zero from its nominal setting of 15
units impacts the results by less than 0.01%). This suggests
that the effect is mostly geometrical in nature, as confirmed
by the qualitative agreement of the COMBI results with those
of a preliminary B*B study that covered a similar parameter
space.

In practical terms, the impact of the crossing angle on the
estimated beam–beam correction can be taken as the differ-
ence in visible cross-section bias between θc = 0 and the
actual crossing-angle value. For a nominally zero crossing
angle, the actual angle, as measured by the BPM system
or by K-modulation in the final-triplet quadrupoles, is of the
order of 10µrad: the associated shift in the beam–beam bias,
as read off Fig. 23 at β∗ = 19 m, does not exceed 0.01%.
For a nominal crossing angle around 150µrad, which is typ-
ical of ALICE vdM sessions, neglecting the crossing angle
would underestimate the beam–beam correction by less than

12 In the ratio σvis/ σ 0
vis, both numerator and denominator include a

geometric factor. In the case of σvis, the transverse convolved beam
size is in addition modified by the dynamic-β effect, resulting in a
0.07% increase in F in the worst case ( β∗ = 19 m, θc = 1000µrad).
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Fig. 23 Crossing-angle dependence of the visible cross-section bias
predicted by COMBI strong-strong, 6-dimensional simulations, for a
horizontal (blue) and a vertical (orange) crossing angle at β∗ = 19.17 m,
and for a horizontal crossing angle at β∗ = 24 m (green). The beam–
beam parameter value at zero crossing angle is indicated in the legend.
The beam energy, bunch intensity, normalized emittance, bunch length
and tunes are fixed at, respectively, EB = 6.5 TeV, n p = 0.783 ×
1011 p/bunch, εN = 2.95µm·rad, σz = 7.5 cm, Qx = 64.31, Qy =
59.32, Qs = 0.0023. The bunches are assumed to collide only at the IP
where the vdM scans are performed. The points are the results of the
simulation; the lines are meant to guide the eye

0.02%, a value small enough to be neglected. Crossing angles
in excess of 500µrad, however, induce still-to-be understood
biases of 0.1% or more (Fig. 23), and may require further
study.

4.6 Impact of multiple interaction points

4.6.1 Motivation and methodology

All results presented in this paper so far assume that the
beams collide at the scanning IP only, i.e. that they are fully
separated, either transversely or longitudinally, at the other
three IPs of the LHC. In practice however, this is often not the
case: to make optimal use of beam time during luminosity-
calibration scans at, say, the CMS IP, the experimental detec-
tors at some or all of the other IPs typically collect collision
data at fixed (most often zero) beam separation, thereby sig-
nificantly affecting the unperturbed-tune spectra and there-
fore the magnitude of beam–beam induced biases.

For a given colliding-bunch pair at a given scanning IP, the
number of non-scanning interaction points NNSIP is defined
as the average number of head-on collisions experienced,
at interaction points other than the scanning IP, by the two
members of the pair. The parameter NNSIP ranges from zero
when beams are fully separated at all but the scanning IP, to
NNSIP = 3 when both bunches in the pair collide at three
other IPs; it can assume half-integer values when the two

Fig. 24 Schematic layout of the LHC beams and interaction points.
Interaction points 1, 2, 5 and 8 house, respectively, the ATLAS, ALICE,
CMS and LHCb experiments. (Figure reproduced from Ref. [30], ©
CERN)

members of the pair experience different numbers of addi-
tional collisions.

Because IP1 (ATLAS) and IP5 (CMS) are separated by
half a ring circumference, all bunches that collide in IP1 also
collide in IP5, unless fully separated in the transverse plane at
the non-scanning IP. Each member of such a colliding-bunch
pair can optionally also collide in IP2 (ALICE) and/or IP8
(LHCb), both of which are located 1/8th of the ring away13

from IP1; however its collision “partner” at these IPs cannot
be the same as that at IPs 1 and 5, because of the ring layout
(Fig. 24). Injected-bunch patterns are optimized, on a fill-
by-fill basis, to achieve the desired sharing of collisions (or
absence thereof) among the four experimental detectors.

The parameter NNSIP, therefore, depends on the scanning
IP considered, and, for a given scanning IP, can vary along
the bunch string in a manner that depends on the injected-
bunch pattern. From 2010 to 2017, the most frequent con-
figuration during pp vdM scans at the ATLAS and CMS IPs
corresponded to NNSIP = 1 at IPs 1 and 5, i.e. to bunches
that collide in IP1 and IP5 only; from 2018 onwards, all four
scanning IPs had to deal with multiple non-scanning IPs, for
reasons of operational efficiency.

In order to characterize the impact of multiple collision
points on beam–beam corrections to luminosity calibrations,
COMBI was used to simulate vdM scans at one IP (e.g. IP1),
with additional head-on collision points optionally inserted
at one or more other IPs (in this example IP5, IP2 and/or

13 Up to a longitudinal shift of 11.24 m (30 RF buckets) at IP8, a require-
ment driven by the longitudinal asymmetry of the LHCb detector.
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Table 5 Beam conditions assumed for the multi-IP simulations
described in Sect. 4.6. The crossing angle θc is set to 0 at all IPs so as to
fully decouple the multi-IP study from potential longitudinal-dynamics
effects

Parameter Value

Beam energy EB [TeV] 6.5

Typical bunch population n p [1011] 0.78

Bunches colliding 1

εN [µm-rad] 2.9

IP1,5: β∗ [m] 19.2

IP2/8: β∗ [m] 19.2/24.0

θc [µrad] 0

�0
x = �0

y [µm] 128

Nominal tune settings Qx /Qy 64.31/59.32

Typical ξ [per IP] 0.0032

IP8). The bunch parameters are listed in Table 5. The beam
transport between consecutive IPs is modeled by linear maps
that reflect the nominal phase advance in the LHC rings dur-
ing the Run-2 vdM sessions at

√
s = 13 TeV (Table 6), and

head-on collisions are simulated at each non-scanning IP as
described in Sect. 3.4. The unperturbed beams satisfy the
assumptions listed in Sect. 4.1, except for the absence of
additional collisions.

This section is organized as follows. Multi-IP colli-
sions increase the beam–beam tune spread, thereby shifting
the means of the unperturbed-tune spectra to lower values
(Sect. 4.6.2). They also affect the peak-rate and beam-size
bias factors in a manner that depends on the phase advance
between consecutive collision points around the rings, but
that leaves the σvis bias almost totally insensitive to these
phase-advance values. The analysis can be greatly simpli-
fied by an astute choice of the reference “no beam–beam”
configuration (Sect. 4.6.3), up to a small residual ambiguity
that depends on the phase advance between the non-scanning
IP(s) and that where the scans are taking place (Sect. 4.6.4).
This approach naturally leads to an effective parameteriza-
tion of the impact of multi-IP collisions on beam–beam cor-
rections to vdM calibrations (Sect. 4.6.5). Candidate beam–
beam correction strategies in the presence of multi-IP colli-
sions are summarized in Sect. 4.6.6.

4.6.2 Impact of multiple interaction points on the tune
spectra

A comparison of simulated vertical-tune spectra for NNSIP =
0 and NNSIP = 1 is presented in Fig. 25. The single-IP beam–
beam parameter ξ is chosen to be typical of vdM scans in
pp collisions. For beams colliding at the scanning IP only
(NNSIP = 0), two narrow peaks appear: one near the nom-
inal tune (qy ≈ 0.320), and the other near qy − Y ∗ ξ,

where Y ≈ 1.1 is the Yokoya factor in the soft-Gaussian
approximation [52]. These peaks correspond to, respectively,
the so-called σ and π modes of coherent bunch oscilla-
tion. When beams collide in addition at one non-scanning IP
(NNSIP = 1), the peak of the σ mode is unaffected, but the
beam–beam tune spread roughly doubles and the π mode is
shifted further down, near qy −2Y ∗ξ. In both cases, the mean
tunes lie roughly half-way between the σ and π peaks, and
therefore differ by roughly −ξ/2 between the two configu-
rations. Adding a second non-scanning IP results in a further
widening of the tune spread, to roughly three times that for
NNSIP = 0, and in a correspondingly larger downward shift
of the mean tune.

4.6.3 Comparison of reference “no beam–beam”
configurations in the presence of one non-scanning IP

In Sects. 2, 3 and 4.1 to 4.5, it is implicitly assumed that
the beams collide at the scanning IP only. The beam–beam-
induced peak-rate, beam-size and luminosity-bias factors
defined in Sect. 4.2.4 are all expressed with respect to an
unambiguous reference configuration that corresponds to “no
beam–beam anywhere”, in which the “nominal ” reference
variables (σ0, μ0

pk, �0
x , �0

y , L0, σ 0
vis, . . .) are identified by

a “0” index.
In the presence of collisions at non-scanning IPs, however,

an ambiguity arises: should beam–beam-induced biases be
referenced to a configuration in which the beam–beam inter-
action is switched off at every single IP, or to one in which
the beam–beam interaction is switched off at the scanning
IP only, but remains active at the non-scanning IPs (if any)?

Confronting this question requires a more precise nomen-
clature than that used so far:

• when the reference configuration is one in which the
beam–beam interaction is switched off at all IPs, i.e. if
vdM observables are corrected to “no beam–beam any-
where”, the corresponding reference variables carry a “0”
index as before. In particular, the reference luminosity
Lno−bb at the scanning IP is equal to the nominal luminos-
ity defined in Sect. 2.3.2 (Lno−bb = L0). This is referred
to below as the “L0 normalization”;

• when the reference configuration is one in which vdM
observables are corrected to “no beam–beam at the scan-
ning IP only” even when the bunches considered also
collide at one or more other IPs, the corresponding ref-
erence variables carry a “u” index instead. In particular,
the reference luminosity Lno−bb at the scanning IP is
given by the unperturbed luminosity Lu (Lno−bb = Lu),
i.e. that which would be measured at the scanning IP if
the beam–beam interaction could be turned off at that IP
only. This quantity is accessible only in simulations; its
beam-separation dependence is in general notably dif-
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Table 6 Horizontal (μx) and
vertical (μy) betatron phase
advance between consecutive
collision points in the LHC
Run-2 vdM configuration for pp
collisions at

√
s = 13 TeV.

Beam 1 moves from the top to
the bottom row, beam 2 from the
bottom to the top row

Beam 1 Beam 2

From–to μB1
x [2π ] μB1

y [2π ] From–to μB2
x [2π ] μB2

y [2π ]
IP1–IP5 31.9757 29.6486 IP5–IP1 31.9844 29.7613

IP5–IP1 32.3343 29.6714 IP1–IP5 32.3256 29.5587

IP1–IP2 8.2960 7.6692 IP2–IP1 8.2728 7.9577

IP2–IP5 23.6797 21.9794 IP5–IP2 23.7116 21.8036

IP5–IP8 24.0891 21.3685 IP8–IP5 23.8146 21.9544

IP8–IP1 8.2452 8.3029 IP1–IP8 8.5110 7.6042

Full turn 64.3100 59.3200 Full turn 64.3100 59.3200

Fig. 25 Vertical coherent-tune spectra in collisions simulated using
COMBI, for head-on collisions at the scanning IP only (NNSIP = 0,

blue curve), and in the presence of head-on collisions at one additional
IP (NNSIP = 1, green curve). The beams satisfy the assumptions listed
in Sect. 4.1, except for the absence of additional collisions. The beam–
beam parameter ξ is set to 3.24 × 10−3 per collision, and the tunes to
their nominal value (Qx , Qy) = (64.31, 59.32)

ferent from that of L0. The same notation, and physical
meaning, are applied to the other reference variables. This
is referred to below as the “Lu normalization”;

• in the limiting case of collisions at the scanning IP only
(NNSIP = 0), Lu and L0 are one and the same, as are
all the other reference variables: there is no difference
between “nominal” and “unperturbed” quantities.

The beam-separation dependence of the Lu/L0 ratio, dur-
ing a vertical scan at IP1 and in the presence of head-on
collisions at IP5, is presented in Fig. 26 (blue lozenges).
Even though the unperturbed luminosity Lu is by defini-
tion unaffected by beam–beam effects at the scanning IP,
it exhibits a monotonic increase with beam separation when
compared to the reference luminosity L0. This seemingly
counter-intuitive observation is explained by the fact that the
horizontal axis in Fig. 26 is the nominal transverse beam size
σ 0, not the actual beam size during the scan; equivalently, the

actual relative separation, i.e. that normalized to the actual
unperturbed beam size, differs from the nominal relative sep-
aration, which is normalized to the nominal beam size. The
monotonic increase of theLu/L0 ratio therefore suggests that
in this particular configuration, the collisions at IP5 result in
an enlarged vertical convolved beam size at IP1 (�u

y > �0
y).

This interpretation is confirmed by the evolution, during the
scan, of the individual unperturbed single-beam sizes σ u

y B
(B = 1, 2) that is illustrated in Fig. 27 (open lozenges):
both are larger than σ0, they remain constant as a function
of the beam separation at the scanning IP, and their differ-
ence reflects the fact that the vertical phase-advance values
from IP1 to IP5 differ significantly between the two beams
(Table 6, top two rows).

Also shown in Fig. 26 is the luminosity-bias factor
[L/L0]Full BB in the L0 normalization (red squares), that dis-
plays an s-like shape superposed on the monotonic beam-
separation dependence of theLu/L0 curve. The ratio of these
two curves:

[L/L0]Full BB / (Lu/L0) = [L/Lu]Full BB

represents the luminosity-bias factor in the Lu normalization
in the presence of one non-scanning IP ; it is displayed as
filled green circles, and is highly reminiscent of the black
curve in Fig. 9.

This same luminosity-bias factor that is presented in
Fig. 26 for NNSIP = 1, is compared in Fig. 28 to the
equivalent quantity for NNSIP = 0. Up to a small system-
atic difference that represents the impact of the additional
head-on collisions that occur at the non-scanning IP, the two
curves are essentially identical. This observation suggests
that the beam-separation dependence of the beam–beam-
induced orbit-shift and optical-distortion effects is encap-
sulated in that of [L/Lu]Full BB, even in the presence of col-
lisions at the non-scanning IP(s). This interpretation is con-
firmed by comparing the separation dependence of the actual
single-beam transverse RMS sizes σi B (i = x, y; B = 1, 2)

with, and without, additional collisions at the non-scanning
IP. When NNSIP = 1 (Fig. 27), σy1 > σy2; these two quanti-
ties exhibit a very similar beam-separation dependence with
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Fig. 26 Beam-separation dependence, during a simulated vertical vdM
scan in the Run-2 configuration with one non-scanning IP, of the
luminosity-bias factors at the scanning IP associated with the unper-
turbed luminosity (Lu/L0, blue lozenges), with the full beam–beam
effect in the L0 normalization ([L/L0]Full BB, red squares), and with
the full beam–beam effect in the Lu normalization ([L/Lu ]Full BB, filled
green circles). The horizontal axis is the beam separation in units of the
nominal transverse beam size σ0

Fig. 27 Beam-separation dependence, during a simulated vertical vdM
scan, of the beam–size-bias factors at the scanning IP associated with
the full beam–beam effect (σy B/σ 0, filled squares) and of the corre-
sponding unperturbed quantities (σ u

y B/σ 0, open lozenges), separately

for B = beam 1 (blue) and B = beam 2 (red), using the L0 normalization
and in the presence of collisions at one non-scanning IP (NNSIP = 1).

The horizontal axis is the beam separation in units of the nominal trans-
verse beam size σ0

respect to the corresponding unperturbed beam size σ u
y B . A

direct comparison of the σy B/σ u
y B ratio with and without a

non-scanning IP (Fig. 29) shows that the two configurations
result in an almost identical beam-separation dependence,
the shape of which closely parallels that computed [13] in
the linear approximation using MADX, once the qualitative
impact of amplitude detuning is taken into account.

Fig. 28 Beam-separation dependence, during a simulated vertical vdM
scan, of the luminosity-bias factors at the scanning IP associated with
the full beam–beam effect, for NNSIP = 0 using the L0 normalization
(open circles), and for NNSIP = 1 using the Lu normalization (filled
green circles). The horizontal axis is the beam separation in units of
the nominal transverse beam size σ0. The span of the vertical scale is
identical to that of Fig. 26

Fig. 29 Beam-separation dependence, during a simulated vertical vdM
scan, of the beam–size-bias factors at the scanning IP associated with
the full beam–beam effect for NNSIP = 0 using the L0 normalization
(σy1/σ

0, open squares), and for NNSIP = 1 and using the Lu normal-
ization (σy1/σ

u
y1, filled green lozenges). For the sake of clarity, only

beam-1 results are displayed; the beam-2 points would be indistinguish-
able. The horizontal axis is the beam separation in units of the nominal
transverse beam size σ0. The span of the vertical scale is identical to
that of Fig. 27

The contrast in beam-separation dependence between
the nominal (L0) and the unperturbed (Lu) luminosity-bias
curves apparent in Fig. 26, and the “universality” of the
[L/Lu] luminosity-bias curves (Fig. 28), can be further char-
acterized by comparing the separation dependence of the
unperturbed luminosity Lu , computed numerically as the
overlap integral over the unperturbed macroparticle distribu-
tions, with that of its Gaussian-equivalent counterpart Lu

Geq.
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Fig. 30 Beam-separation dependence, during vdM scans simulated in
the Run-2 configuration with one non-scanning IP, of the luminosity-
bias factors at the scanning IP associated with the unperturbed luminos-
ity (Lu/L0, lozenges), and with the Gaussian-equivalent unperturbed
luminosity (Lu

Geq/L0, circles). The horizontal axis is the beam separa-
tion in units of the nominal transverse beam size σ0. The filled (open)
symbols corresponds to a vertical (horizontal) scan

The latter is defined as:14

Lu
Geq(δx ) = 1

2π�u
x,Geq�

u
x,Geq

exp

⎡
⎣−1

2

(
δx

�u
x,Geq

)2
⎤
⎦ ,

and similarly forLu
Geq(δy). It is calculated under the assump-

tion that the unperturbed macroparticle distributions are
Gaussian, and adequately described (for this particular pur-
pose) by the transverse RMS single-beam sizes σ u

i B (i =
x, y; B = 1, 2):

�u
i,Geq =

√
(σ u

i1)
2 + (σ u

i2)
2.

The comparison betweenLu andLu
Geq is presented in Fig. 30.

During the vertical scan (filled symbols), the unperturbed
luminosity (already shown in Fig. 26) and its Gaussian-
equivalent counterpart are almost exactly equal, except at
large separation (δy/σ

0 > 4); both increase with separa-
tion relative to L0. The same occurs during the horizon-
tal scan (open symbols), except that here both curves drop
with increasing separation, because the horizontal phase
advances are such that the dynamic-β effect at IP5 trans-
lates into smaller horizontal beam sizes at IP1. As already
documented [13] in the linear approximation, the dynamic-
β effect at the non-scanning IP(s) propagates to the scanning
IP, resulting in either larger or smaller unperturbed transverse
beam-sizes depending on the phase advance.

The fundamental observable of the van der Meer method is
the beam-separation dependence of the measured interaction

14 Some of the constants appearing in the complete formulas (Eqs. (5)–
(10)) are irrelevant here, and omitted for the sake of clarity.

rate. Intuitively therefore, one can argue that a separation-
independent change in unperturbed transverse beam size at
the scanning IP (Fig. 27, open symbols) should not bias the
σvis measurement, provided the shift in unperturbed tunes
is properly accounted for. The same reasoning is offered
in Ref. [13], where the argument is more straightforward:
in the linear approximation (Sect. 3.1), additional collisions
are tantamount to inserting a quadrupole-like perturbation at
the non-scanning IP(s), that in turn results in a small tune
shift accompanied by a β-beating wave around each ring.
In the more general case treated here, the excellent agree-
ment between Lu and Lu

Geq over most of the scanning range
(Fig. 30) indicates that the dominant effect is that of a beam-
and plane-dependent shift of the effective β∗ value, and of
the corresponding unperturbed RMS single-beam sizes. Non-
Gaussian tails associated with the non-linearity of the beam–
beam force at the non-scanning IP(s) have but a very minor
impact on the unperturbed transverse-density distributions at
the scanning IP.

As a first illustration of the magnitude of multi-IP effects
and of the quantitative impact, on beam–beam corrections, of
the difference between the green circles and the red squares
in Fig. 26, Table 7 compares the separation-integrated FoMs
(Sect. 4.2.4) extracted from a simulated vdM-scan pair at IP1,
with and without additional head-on collisions at IP5.

• In theLu normalization, and as expected from Fig. 28, the
hierarchy of the FoMs is very similar with (NNSIP = 1)

and without (NNSIP = 0) collisions at the non-scanning
IP. The beam–beam bias is systematically more nega-
tive for NNSIP = 1: this is qualitatively consistent with
the combination of a decrease of the mean unperturbed
tunes (Sect. 4.6.2), and of the tune-dependence of the
luminosity-bias curves (Fig. 13). As a result, the mag-
nitude of the overall beam–beam bias on σvis (row 7,
columns 3 and 4) increases substantially in the presence
of a non-scanning IP.

• For NNSIP = 1, the hierarchy of the FoMs is very dif-
ferent in the L0 and Lu normalizations, because the
dynamic-β effect at the non-scanning IP has a signifi-
cant impact on the transverse unperturbed beam sizes at
the scanning IP (Fig. 27). The fact that the �x (�y) bias is
more negative (positive) in the L0 normalization reflects
the fact that the unperturbed horizontal (vertical) beam
size at the scanning IP is smaller (larger) than its nominal
value (Fig. 30).

• In contrast, the σvis-bias values for NNSIP = 1 agree
to better than 0.005% between the L0 and Lu normal-
izations, indicating that in practice, the two normaliza-
tions yield equivalent beam–beam corrections. This can
be understood by examining the bottom half of Table 7,
that summarizes the impact of collisions at IP5 on the
unperturbed scan variables at IP1: �u

x decreases, �u
y
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Table 7 Fractional peak-rate, beam-size and σvis beam–beam-induced
bias on measured (rows 3–7) and unperturbed (rows 8–12) scan vari-
ables, for simulated vdM scans at IP1, with (columns 2–3) and without
(column 4) head-on collisions at IP5, using the nominal bunch param-
eters shown in Table 5 and the phase-advance settings listed in Table 6

NNSIP = 1 NNSIP = 0
Normalization:

FoM Lno−bb = Lno−bb = L0

L0 Lu (Lu = L0)
Beam-beam bias on measured scan variables [%]

μpk/μno−bb
pk − 1 0.346 0.410 0.431

Σx/Σno−bb
x − 1 -0.784 -0.454 -0.405

Σy/Σno−bb
y − 1 0.076 -0.323 -0.239

σvis/σno−bb
vis − 1 -0.365 -0.369 -0.215

Beam-beam bias on unperturbed scan variables [%]
μu
pk/μno−bb

pk − 1 -0.064 - 0
Σu

x/Σno−bb
x − 1 -0.331 - 0

Σu
y/Σno−bb

y − 1 0.401 - 0
σu
vis/σno−bb

vis − 1 0.004 - 0

increases by a little more, resulting in a small decrease of
the unperturbed peak interaction rate μu

pk; the net change
in σvis is at the 0.004% level. Physically, this expresses
the fact that the changes in the unperturbed transverse
convolved beam sizes and the unperturbed head-on lumi-
nosity are correlated such that the visible-cross-section
remains invariant, at least in the configuration simulated
here.

4.6.4 Sensitivity of beam–beam corrections to the phase
advance between IPs

The results presented in the preceding paragraphs indi-
cate that even though the separation dependence of the
luminosity-bias factors are very different in the L0 and Lu

normalizations (Fig. 26), these two reference configurations
appear to yield almost identical beam–beam corrections to
σvis (Table 7). What remains to be quantified is how robust
this conclusion is against large variations in the assumed
phase advance between consecutive IPs, as well as in the
presence of more than one non-scanning IP.

The study reported in Sect. 4.6.3 assumes the phase-
advance values between IP1 and IP5 that are listed in the top
two rows of Table 6; these correspond to one point in four-
dimensional phase-advance space (μB1

x , μB1
y , μB2

x , μB2
y ). To

address the first question above, the analysis detailed in
Sect. 4.6.3 was repeated while varying the horizontal and
vertical phase advance between IP1 and IP5 over most of
the [0, 2π ] range, while keeping the nominal tunes constant;
in order to keep the parameter space manageable, the B1

Fig. 31 Phase-advance dependence of the difference, between the L0

and theLu normalization, of the beam–beam induced σvis bias. The hor-
izontal and vertical axes represent the betatron phase advance between
IP1 and IP5, here assumed to be the same for B1 and B2. The color
scale quantifies the fractional inconsistency in σvis bias between the
two reference configurations; it ranges from −0.06 to +0.05% of σvis

and B2 phase-advance values were in addition constrained
to be the same, separately in the horizontal and the vertical
plane (μB1

x = μB2
x = μx , μB1

y = μB2
y = μy). vdM scans

were simulated at IP1 over a grid in (μx , μy) space, with
the bunches colliding head-on at IP5, and using the bunch
parameters listed in Table 5.

At each point in the (μx , μy) space, the luminosity-bias
curves and the corresponding separation-integrated FoMs
were computed in both the L0 and the Lu normalization.
The beam–beam-induced σvis bias, or equivalently the mag-
nitude of the overall beam–beam correction to the vdM-based
absolute luminosity scale, was found to depend slightly on
the choice of the reference “no beam–beam” configuration,
i.e. on whether the beam–beam correction is calculated in
the L0 or in the Lu normalization. The difference is phase-
advance dependent, and exhibits a clear periodic structure
(Fig. 31); periodic structures are also observed in such two-
dimensional maps of the luminosity-bias factor (not shown),
with different patterns for [L/L0] and [L/Lu].

These periodicities have been verified to arise neither from
statistical fluctuations, nor from numerical effects in the sim-
ulation.15 They are attributed to cross-talk between collision
points: beam–beam kicks at one IP induce separation- and
amplitude-dependent β-beating that propagates in a phase-
dependent manner to the next IP, where it slightly modifies

15 It is interesting to note that the interplay between beam–beam effects
at different IPs, and its sensitivity to the phase advance between IPs,
was observed at LEP-II already, where they could strongly affect the
instantaneous-luminosity balance between the four experimental detec-
tors [53].
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the transverse-density distributions and the particle-averaged
β functions; the tunes are affected as well. The superposition
of these effects across multiple IPs, in turn, modulates the
associated beam–beam-induced biases. This interpretation is
supported by the fact that the detailed shape of the simulated
tune spectra, that of the transverse luminosity profiles at the
witness IP, as well as that of the beam-separation dependence
of theL/Lu ratio at the scanning IP, are all observed to depend
on the phase advance between IPs. A deeper understanding
of these mechanisms may provide the key for resolving the
ambiguity between the L0 and Lu normalizations; as such,
they remain under active study.

Fortunately, these subtle effects have only a minor impact
on beam–beam corrections to vdM calibrations. The largest
amplitude of the L0-Lu discrepancy over the entire plane
amounts to 0.06% of σvis, which is smaller than, or at most
comparable to, the absolute accuracy of the B*B or COMBI
simulations. The reason why in Table 7 theL0 andLu normal-
izations yield essentially identical results, is that the Run-2
phase-advance between IP1 and IP5 happens to lie in a region
of the μx −μy plane where the inconsistency is the smallest.
In this case therefore, and for bunches that collide only in
these two IPs, the difference in σvis bias between the L0 and
Lu normalizations is negligible.

To assess the impact of more than one non-scanning IP,
the above phase scans were repeated for collision patterns
with up to three non-scanning IPs. To deal with the increased
dimensionality of the problem, the fractional phase advance
from IP1 to IP5 was fixed to 
μx = 
μy = 0.405, a choice
that in Fig. 31 corresponds to the largest absolute difference
in σvis bias between the Lu and L0 normalizations. With
that constraint, and with the overall tunes and the IP5-IP8
phase advances fixed at their nominal values, the horizon-
tal and vertical fractional phase-advance values from IP1 to
IP2 were scanned over the range [0, 2π ]. The study was then
repeated with the roles of IP2 and IP8 interchanged. In all
these configurations, the difference in σvis bias between the
Lu and L0 normalizations displays the same periodic pat-
tern as that in Fig. 31, and the largest absolute difference
in σvis bias between the two reference configurations does
not exceed 0.15% (for ξ = 0.006). While strictly speaking,
the ensemble of these scans does not constitute an exhaus-
tive sampling of the 12-dimensional phase-advance space (2
beams × 2 planes × 3 IP combinations), it suggests that the
largest possible disagreement between theL0 andLu normal-
izations amounts to 0.1–0.2% of σvis when considering the
full parameter space. Since the phase advance between LHC
IPs can be measured to a few degrees (∼ 0.015 × 2π) per
beam and per plane, the “operating point” in phase-advance
space is known to very good precision. In some cases there-
fore, the ambiguity on the σvis bias associated with the choice
of reference configuration can be significantly reduced, as

already demonstrated for bunches that collide in IP1 and IP5
only.

4.6.5 Parameterization of multi-IP effects

To gain further insight into multi-IP effects and account, in
a pragmatic fashion, for their impact on beam–beam correc-
tions to luminosity calibrations, COMBI was used to simulate
scans over the full range of beam–beam parameter values
typical of vdM sessions at

√
s = 13 TeV, using the Run-2

phase-advance settings (Table 6), both without (NNSIP = 0)

and with (1 ≤ NNSIP ≤ 3) head-on collisions at one or more
non-scanning IP(s).

The results are summarized in Fig. 32 for three repre-
sentative values of the single-IP beam–beam parameter ξ,

using the Lu normalization. Since both the orbit-shift and
the optical-distortion bias are sensitive to the unperturbed-
tune values (Sect. 4.2.2), the overall beam–beam bias on the
visible cross-section associated with a given value of ξ is
significantly affected by collisions at non-scanning IPs. Tak-
ing as an example the case of ξ = 6 × 10−3, the σvis bias
when colliding only at the scanning IP amounts to −0.55%
(orange circle). It grows to −1.0% for one non-scanning
IP (pale-brown lozenge), to −1.3% for two non-scanning
IPs (medium-brown lozenge), and to a little over −1.5% for
the worst case of NNSIP = 3 (darkest-brown lozenge).16 As
NNSIP increases by one unit, both the horizontal and the ver-
tical mean unperturbed tune decrease by approximately ξ/2;
as a consequence, the luminosity-bias curves shift down-
wards (Figs. 12, 13) and the σvis bias becomes accordingly
more negative. The impact of this “multi-IP tune shift” is
comparable in magnitude to the σvis bias for NNSIP = 0;
it varies from one bunch pair to another in a manner that
depends on the single-bunch parameters and on the value of
NNSIP associated with each-colliding bunch pair at the IP
where the scans are taking place. Fortunately however, this
effect lends itself to a simple parameterization.

The diagonal curves in Fig. 32 display the visible cross-
section bias for scans simulated at IP1 in the absence of colli-
sions at any non-scanning IP, but with both the horizontal and
the vertical unperturbed tune shifted by a quantity 
QmIP that
scales with ξ. For a given value of ξ, the intersections of the
corresponding diagonal curve (orange in the example above)
with the horizontal lines of the same hue corresponding to
NNSIP = 1, 2, . . . , determine the magnitude of the multi-IP
equivalent tune shift 
QmIP that needs to be applied simulta-
neously to the unperturbed horizontal and vertical tunes input
to the COMBI simulation to mimic the effect of collisions

16 Half-integer values such as NNSIP = 2.5 correspond to a bunch pair
that collides at IP1 and in which one of the bunches experiences three
additional collisions (IP5, plus both IP2 and IP8), while the other one
is involved in only two (IP5, plus either IP2 or IP8).
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Fig. 32 Horizontal lines, and markers at 
QmIP = 0: visible cross-
section bias in the Lu normalization, associated with vdM scans at
IP1, for bunch pairs that in addition collide head-on at a fixed num-
ber of non-scanning IPs, and with the tunes set to their nominal value.
The three sampled values of the single-IP beam–beam parameter ξ

are identified by the blue triangles (ξ = 2.7 × 10−3), green squares
(ξ = 4.0 × 10−3) and brown lozenges (ξ = 6.0 × 10−3). For a given
value of ξ, the lighter, medium and darker colors correspond to addi-
tional collisions at NNSIP = 1, 2, 2.5 and 3 non-scanning IPs respec-
tively (see text). Inclined curves and circular markers: visible cross-
section bias associated with vdM scans at IP1 with beams fully separated
at all other IPs (NNSIP = 0), as a function of the multi-IP equivalent
mean tune shift 
QmIP expressed in units of ξ. The circular markers at

QmIP/ξ = 0 show the value of the σvis bias corresponding to beams
colliding only at the scanning IP, with the unperturbed tunes set to their
nominal value. The vertical dashed lines correspond, from right to left,
to 
QmIP/ξ = −0.5, −1.0, −1.25 and −1.5, and approximately corre-
spond to the values of the effective tune shift 
QmIP where an inclined
curve associated with a given value of ξ intersects the corresponding
horizontal lines

at non-scanning IPs. The corresponding values of 
QmIP/ξ

are indicated by the vertical dashed lines in the figure.
A more telling representation of the same results is offered

in Fig. 33, which displays the multi-IP equivalent tune shift as
a function of the number of non-scanning IPs. The results are
consistent with a linear dependence that differs only slightly
from the naive scaling law

Fig. 33 Dependence of the normalized multi-IP equivalent tune shift

QmIP/ξ on the number of non-scanning IPs, for several values of
the single-IP beam–beam parameter ξ. The scanning IP is set to IP1,
and the σvis bias is calculated using the Lu normalization. The solid
magenta line represents a two-parameter linear fit to the points; the black
dashed line represents a naive parameterization of the form 
QmIP/ξ =
−0.5 × NNSIP


QmIP = −0.5 ξ NNSIP = −p1 ξ NNSIP (42)

inspired by the qualitative evolution of the tune spectra. The
purely empirical, two-parameter linear fit represented by the
purple solid line:


QmIP = p0 − p1 ξ NNSIP

provides a slightly better parameterization than Eq. (42), and
appears accurate at the level of 
QmIP ∼ ±0.05 ξ.

Figure 33 demonstrates that for a given scanning IP and
for all values of ξ, the normalized multi-IP equivalent tune
shift scales linearly with the number of non-scanning IPs. To
what extent this scaling is “universal”, i.e. how strongly it
depends on the choice of the IP where the scans are taking
place, is addressed by Fig. 34. Irrespective of the scanning
IP considered, the overall dependence of the σvis bias on the
number of scanning IPs is reasonably well represented by the
naive scaling law of Eq. (42), demonstrating that the dom-
inant effect is the downward shift of the mean unperturbed
tunes. There are, however, significant differences between
marker families, most notably between the red crosses (IP5)
and the cyan squares (IP8): these reflect the variety of phase-
advance patterns between the scanning IP and the other colli-
sion points. Similarly, within a given family, there exist sev-
eral bunch pairings between B1 and B2 that yield the same
number of additional collisions, but that correspond to differ-
ent phase-advance configurations. When IP5 is the scanning
IP, for instance, the configuration NNSIP = 2 can be achieved
with additional collisions at IP1 and at either IP2 or IP8; these
two cases can therefore yield slightly different σvis biases. To
minimize modeling errors, therefore, it is advisable that scal-
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Fig. 34 Visible cross-section bias in theLu normalization as a function
of the number of non-scanning IPs (lower horizontal axis), for the four
possible choices of scanning IP. The curve represents the dependence of
the σvis bias in the NNSIP = 0 case, but with the horizontal and vertical
unperturbed tunes shifted downwards by 
QmIP/ξ = −0.5 × NNSIP
(upper horizontal axis). For a given scanning IP, there exist several B1-
B2 bunch-collision patterns that yield the same value of NNSIP. The
beam–beam parameter and phase-advance values are listed in Tables 5
and 6 respectively

Fig. 35 Visible cross-section bias in theL0 normalization as a function
of the number of non-scanning IPs, for the four possible choices of
scanning IP. The results are extracted from the same simulations as
those in Fig. 34; only the reference configuration differs. The curve, the
axis scales and the legend are identical

ing parameterizations such as that illustrated by Fig. 33 be
developed for each scanning IP separately, preferably taking
into account the actual collision pattern experienced by each
bunch that collides at the scanning IP under consideration.

Pursuing the same strategy in the L0 normalization meets
with limited success (Fig. 35): for a given value of NNSIP,
the spread across different collision patterns is noticeably
larger than in the Lu normalization, even when restricted to
one given scanning IP. This observation reflects the same

underlying physics as the periodic structure in Fig. 31; its
implications are addressed below.

4.6.6 Beam–beam correction strategies in the presence of
multi-IP collisions

In summary, collisions at non-scanning IPs manifest them-
selves in two main ways. The widening of the tune spec-
tra and the resulting downward shift of the mean unper-
turbed tunes (Sect. 4.6.2) significantly increase the beam–
beam-induced bias on the absolute luminosity scale (Fig. 34),
mainly because of the reduced amplitude of the optical-
distortion bias (Sect. 4.2.2). This tune shift is accompanied
by a beam- and plane-dependent β-beating wave around
each ring [13], that translates into a sub-percent rescaling
of the unperturbed transverse single-beam sizes at the scan-
ning IP (Fig. 27). The latter causes significant distortions of
the luminosity-bias curves when using the L0 normalization
(Fig. 26), that depend strongly on the phase advance between
consecutive collision points.

The shift in unperturbed tunes (Sect. 4.6.2) has, by far,
the dominant impact on beam–beam corrections to vdM cal-
ibrations. It can be accounted for by simulating collisions
simultaneously at all relevant IPs, with the input tunes set to
their nominal value, and by correcting the luminosity-scan
curves to “no beam–beam anywhere”. This L0 normaliza-
tion is the approach adopted in Ref. [16]. The alternative is
to use the Lu normalization. It is inspired by the fact that
the fundamental observable of the vdM method is the beam-
separation dependence of the measured interaction rate. What
should matter, therefore, is the variation of the beam–beam
force during the scan: underlying, separation-independent
modifications of the unperturbed transverse-density distribu-
tions are expected not to affect the visible cross-section. In
the Lu approach, the luminosity-scan curves extracted from
the same multi-IP simulation as above are corrected to “no
beam–beam at the scanning IP only” (Sect. 4.6.3); the result-
ing luminosity-bias functions become much less sensitive to
the presence of non-scanning IPs (Fig. 28).

The L0 and Lu normalizations yield beam–beam correc-
tions that, depending on the phase advance between consecu-
tive IPs, either are indistinguishable (Table 7), or in the worst
case differ by at most 0.1–0.2% of σvis (Sect. 4.6.4). These
observations demonstrate that no phase-advance configura-
tion exists in which beam–beam induced β-beating would
significantly reduce the beam–beam bias on σvis.

The results of the full multi-IP simulations can be very
closely approximated by those of the much faster single-IP
simulation, with as input the same value of the beam–beam
parameter ξ, but with the unperturbed tunes shifted down-
wards by an amount 
QmIP that in the Lu normalization and
for a given scanning IP, scales with ξ and depends linearly
on NNSIP (Fig. 33). The scaling parameters are not fully uni-
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versal, in the sense that they depend slightly on the choice of
scanning IP (Fig. 34), or more fundamentally on the phase
advance between the scanning and non-scanning IPs.

The scaling prescriptions offered in Sect. 4.6.5 in the Lu

normalization account for collisions at non-scanning IPs to
better than 0.1–0.2% on σvis. It should be pointed out, how-
ever, that these simple-minded models reproduce only the
σvis bias extracted from the multi-IP simulation (to an accu-
racy limited by the phase–advance-dependent inconsistency
between the L0 and Lu normalizations), but that they are not
meant to reproduce the corresponding tune spectra. An addi-
tional minor limitation is that they assume that collisions at
non-scanning IPs occur with zero transverse separation, and
with zero crossing angle. These ad hoc recipes, therefore,
offer but a partial substitute for full-fledged simulations that
account in detail for every distinct multi-IP collision pattern,
separately for each member of every colliding-bunch pair
and for each scanning IP. For many purposes, however, these
simple scaling laws appear sufficiently accurate to cover most
beam conditions encountered so far during vdM sessions at
the LHC.

On the practical side, the Lu normalization offers several
advantages. First, by reducing the multi-IP problem to that of
a single collision point, it greatly simplifies the interpretation
of simulation results and the estimate of systematic uncer-
tainties. The Lu approach also automatically accounts for
the static (in the sense of separation-independent) change in
unperturbed beam size associated with the dynamic-β effect
at the non-scanning IPs. Finally, combining the parameteri-
zation of single-IP beam–beam biases offered in Sect. 4.2.3
with the scaling prescriptions of Sect. 4.6.5 provides a beam–
beam-correction procedure that is straightforward to imple-
ment, requires no or little investment by individual users in
complex, CPU-intensive simulations, and is in many cases
sufficient to calculate absolute bunch-by-bunch corrections
to vdM calibrations, or to estimate systematic uncertainties.
This is particularly valuable when dealing with five to ten
vdM-scan pairs that involve up to 150 colliding bunches with
different populations and emittances, arranged in multiple
collision patterns that each require a different multi-IP cor-
rection [9]: the computing overhead that would be associated
with simulating each of those configurations in detail is con-
siderable.

At the present level of understanding, there appears to be
no factual argument in favor of the L0 normalization. Even if
it eventually turns out that correcting to “no beam–beam any-
where” provides a more accurate correction in principle, the
potential reduction in systematic uncertainty remains mod-
erate (< 0.2%) when compared in quadrature to the overall
luminosity-calibration uncertainty (around 1%). In addition,
and because of the larger phase-advance sensitivity of the
L0 normalization, this hoped-for improvement could only
be secured by simulating separately each and every collision

pattern associated with the scanning IP under consideration.
Finally, the cumulative impact of the dynamic-β effect at the
non-scanning IPs, that can shift (Sect. 4.6.3) the underlying
unperturbed beam sizes σ u

i B at the scanning IP byO(0.5–1%)
per plane, per beam and per non-scanning IP, totally blurs
both the conceptual and the operational distinction between
the orbit-shift and the optical-distortion correction. This is
an additional reason why in the L0 normalization, a param-
eterization approach would be inapplicable: one must resort
to a combined, “full beam–beam” multiplicative correction
to the measured collision rate that can only be extracted from
a dedicated simulation that has been tailored, separately for
each colliding bunch, to the actual conditions of the vdM-
calibration session.

In conclusion, clarifying the origin of periodic structures
such as that in Fig. 31, and explaining why beam–beam cor-
rections are less sensitive to phase-advance effects in the Lu

(Fig. 34) than in theL0 (Fig. 35) normalization, remain topics
of active study. The ambiguity stands, therefore, as to which
of the two reference “no beam–beam” configurations (i.e.
which of the L0 or the Lu normalization) provides the most
accurate beam–beam correction in absolute terms. Pragmat-
ically, the practical advantages of the Lu normalization, and
the larger complexity in implementing the L0 normalization
in the vdM-data analysis, tilt the balance in favor of the former
– at least for now. Until the L0-Lu ambiguity is lifted, and
irrespective of the choice of normalization, it seems prudent
to cover the difference by assigning a phase–dependence-
related systematic uncertainty to the absolute magnitude of
the beam–beam corrections; an explicit prescription to this
effect will be offered in Sect. 5.3.

4.7 Impact of beam–beam asymmetry

The results presented so far in this chapter, with the exception
of those in Sect. 4.4, assume beams that are round in the
transverse plane (β∗

x B = β∗
y B = β∗

B and σx B = σy B = σB,

where B = 1, 2). In such a case, the distinction between
horizontal and vertical beam–beam parameters disappears,
and the beam–beam parameter of beam 2, defined in Eq. (12),
simplifies to

ξ2 = n1 r0 β∗
2

4π γ2 σ 2
1

, (43)

where σ1 is the transverse RMS size of beam 1. The same
formula, mutatis mutandis, is used to define ξ1.

The parameterization described in Sect. 4.2, and the results
derived therefrom, further assume that the beam–beam forces
are exactly balanced between the two beams, i.e. that ξ1 =
ξ2 = ξR (Eq. (29)). Beam-beam asymmetry occurs when this
assumption is violated, i.e. when ξ1 
= ξ2, which can arise
under three different scenarios (Sect. 4.7.1). Even though a
parametric approach can provide physically intuitive insight
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(Sect. 4.7.2), dedicated simulations are required to quantify
the impact of such asymmetries on the accuracy of the beam–
beam correction procedure (Sect. 4.7.3).

4.7.1 Beam–beam asymmetry scenarios

Consider first the case of a bunch-population asymmetry
(n1 
= n2, with β∗

1 = β∗
2 and σ1 = σ2), which can be

simulated in B*B by assigning different populations to the
source beam and to the witness beam. Since the source beam
in B*B remains unaffected by the beam–beam interaction,
and since the two beams are subject to different beam–beam
parameters, the simulation must be run twice, first with n1

and n2 assigned to, respectively, the source and the wit-
ness beam, and then with the inverse assignment. The pre-
dicted luminosity-bias curves, and the corresponding correc-
tions to the FoMs, are then given by adding the two sets of
results,17 implicitly assuming that strong-strong effects do
not play a significant role even in the presence of a large
bunch-population asymmetry (at least in the vdM regime).
This procedure was validated by confronting the B*B results
with those from COMBI for several asymmetric configu-
rations: even in the worst case considered (n2/n1 = 2,

ξ1 = 5.30 × 10−3, ξ2 = 2.65 × 10−3), the beam–beam
corrections calculated by the two packages agreed to better
than one part in 1600.

The B*B and COMBI results above are accurately repro-
duced by the parameterization detailed in Sect. 4.2.3, with as
input the beam-averaged beam–beam parameter:

〈ξ 〉 = ξ1 + ξ2

2
. (44)

This is a consequence of the fact that the ξ -dependence of the
FoMs is close enough to linear (Figs. 14–16) for the averaging
of the FoM values at two different ξ settings to be tantamount
to computing the FoM once, with 〈ξ 〉 as input.

The second scenario is that of a β-function asymmetry
(β∗

1 
= β∗
2 , with n1 = n2 and σ1 = σ2). This case is equiva-

lent to that of the bunch-population asymmetry above, since
only the product nkβ

∗
l (k, l = 1, 2 with l 
= k) plays a role

in Eq. (43). The bunch population nk of beam k controls the
scale of the beam–beam force beam k exerts on beam l, while
β∗

l determines how sensitive beam l is to this force.
In contrast to the above two scenarios, which involve only

scale effects, a beam-size or emittance asymmetry (σ1 
= σ2,

with n1 = n2 = n and β∗
1 = β∗

2 = β∗) modifies in different
ways the spatial distributions of the source field and of the
particles in the witness bunch, the trajectories of which are
affected by this field.

17 When B*B is run on a symmetric configuration, the scan is simulated
only once, and the luminosity-bias result is simply doubled to account
for the conceptual swap between the source and the witness beam.

4.7.2 Parametric characterization of beam–beam
asymmetries

A full characterization of beam–beam asymmetries requires
the two parameters ξ1 and ξ2. A physically intuitive param-
eterization can however be provided by a single, “effective”
beam–beam parameter ξ̄ , defined as

ξ̄ = ξ1σ
2
1 + ξ2σ

2
2

σ 2
1 + σ 2

2

, (45)

on the basis of the following argument.
Under the naive assumption that the optical distortion of

B1 induced by the field of B2 is proportional to ξ1, and that
it can be adequately represented by a small fractional change
λ1 in the value of σ1:

σ1 → σ1(1 + λ1),

where λ1 ∝ ξ1, one can show, using Eqs. (5) and (6) and after
a bit of algebra, that to first order in ξ1, the luminosity-bias
factor [L/L0]Opt,1 associated with the optical distortion of
B1 alone obeys

[L/L0]Opt,1 − 1 ∝ λ1σ
2
1

σ 2
1 + σ 2

2

∝ ξ1σ
2
1

σ 2
1 + σ 2

2

.

Applying the same argument to the optical distortion of B2
induced by the field of B1, and combining the impact of the
optical distortions of the two beams, it follows that

[L/L0]Opt − 1 ∝ ξ1σ
2
1 + ξ2σ

2
2

σ 2
1 + σ 2

2

= ξ̄ .

In the limit of equal beam sizes (σ1 = σ2), ξ̄ reduces to
〈ξ 〉, and as such properly characterizes bunch-population or
β∗ asymmetries. If instead the bunch populations are bal-
anced (n1 = n2 = n) but the transverse beam sizes differ

(σ2 
= σ1), then for a given value of �R =
√

σ 2
1 + σ 2

2 , the
effective beam–beam parameter can be written as

ξ̄ = 1

2

[
(σ2/σ1)

2 + (σ1/σ2)
2
] nr0 β∗

2πγ�2
R

, (46)

thereby incorporating the effect of beam-size asymmetries
in a single-parameter, but approximate, characterization of
the strength of the beam–beam interaction. In the limit of
σ2/σ1 = 1, ξ̄ reduces to the symmetric, round-beam equiv-
alent beam–beam parameter ξR (Eq. (29)).

4.7.3 Predicted impact of transverse beam-size
asymmetries

Since the beam–beam induced orbit shift depends only on the
convolved beam size �R (Sect. 2.3.1), but not on the σ2/σ1

ratio, only the beam–beam-induced optical distortion may be
affected by a beam-size asymmetry. It is natural, therefore,
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Fig. 36 Single-beam contributions to the beam-separation depen-
dence, during a horizontal vdM scan simulated using B*B, of
the luminosity-bias factor associated with the optical distortions
([L/L0]Opt, red curve and triangles), and of that induced by the beam–
beam orbit shift ([L/L0]Orb, green curve and squares). The unperturbed
beams are assumed to be round and perfectly Gaussian. Their bunch
populations are assumed equal (n1 = n2 = 0.78 × 1011 p/bunch), and
their transverse beam sizes differ by a factor of

√
2 (σ1 = 99.6µm,

σ2 = 70.5µm). The wide-beam contributions are shown by the filled
markers, the narrow-beam contributions by the dashed curves. The
beams collide only at the IP where the scan is taking place. The hor-
izontal axis is the nominal beam separation in units of the effective
transverse beam size σR = �R/

√
2

to characterize this effect by varying, in the simulation, the
common bunch intensity and the beam-size ratio, while keep-
ing �R constant. When using COMBI, this can be done in a
single step for each parameter set, since the spatial density
distributions of both bunches evolve simultaneously. When
using B*B, however, the source bunch remains unaffected.
Therefore the simulation must be run twice, first with σ1

and σ2 assigned to, respectively, the source and the witness
beam, and then with the inverse assignment, after which the
contributions of the two passes are combined.

Such a study is presented in Fig. 36, for a highly asym-
metric example in which ξ1/ξ2 = 2 and ξ̄ = 4.42 × 10−3.

When the wider of the two bunches (ξ1 = 5.30 × 10−3)

plays the role of the witness beam (triangles and squares), the
orbit-shift and optical-distortion contributions are of oppo-
site sign and of comparable magnitude; when the narrower
bunch (ξ2 = 2.65 × 10−3) becomes the witness beam
(dashed curves), the beam–beam parameter drops by a factor
of two, the orbit-shift contribution remains unchanged as it
should, but the optical-distortion effect becomes almost neg-
ligible. The combination of the two contributions, obtained
by multiplying the luminosity-distortion factors associated
with the two witness beams, is presented in Fig. 37. The two
beams contribute equally to the orbit effect, but the optical-
distortion is dominated by that experienced by the wider (i.e.
the weaker) of the two beams.

Fig. 37 Beam-separation dependence, during a horizontal vdM scan
simulated using B*B, of the luminosity-bias factor associated with the
optical distortions ([L/L0]Opt, red solid curve), and of that induced by
the beam–beam orbit shift ([L/L0]Orb, green dot-dashed curve), in the
presence of a beam-size asymmetry corresponding to ξ1/ξ2 = 2. The
single-beam parameters are listed in the caption of Fig. 36. The beams
collide only at the IP where the scan is taking place. The horizontal axis
is the nominal beam separation in units of the effective transverse beam
size σR = �R/

√
2

To quantify the impact of a transverse beam-size asym-
metry on beam–beam corrections to vdM calibrations, the
simulation protocol detailed above was repeated for several
configurations in which the bunch populations were sym-
metric (n1 = n2 = n), the beam-size ratio σ2/σ1 was varied
from 1.0 down to 0.65, and the convolved beam size was
kept constant at �R = 122µm. Two values of the common
bunch population were considered (n = 0.78 × 1011 and
n = 1.21 × 1011 p/bunch), near the lower end, and beyond
the upper end, of the bunch-intensity range used during vdM
scans; these translate into round-beam equivalent beam–
beam parameter values of, respectively ξR = 3.53 × 10−3

and 5.50×10−3. The visible cross-section bias σvis/ σ 0
vis −1

corresponding to each of these configurations, and com-
puted from luminosity-bias curves such as those displayed
in Fig. 37, is presented in Figs. 38 and 39.

As the beam-size ratio deviates more and more from unity,
ξ̄ grows (see Eq. (46)), and so does the σvis bias. Its depen-
dence on ξ̄ is almost linear (Fig. 38), with only a small
quadratic component. The scaling law, however, is approxi-
mate only, as evidenced by the slight relative misalignment
of the B*B curves at the interface between the two groups
(ξR ∼ 5.2). The dependence on the beam-size ratio (Fig. 39)
is well modeled by a third-order polynomial of σ2/σ1, the
coefficients of which depend on the n β∗ product. A system-
atic difference between COMBI and B*B becomes apparent
at large asymmetry, suggesting that coherent oscillations may
start to play a role in that regime. Quantitatively however, this
discrepancy is small enough in the asymmetry range of inter-
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Fig. 38 Dependence on the effective beam–beam parameter ξ̄ of the
visible cross-section bias σvis/ σ 0

vis − 1 associated with optical distor-
tions, as predicted by B*B (diamonds) or COMBI (triangles) simula-
tions, for low-intensity (open blue and red markers, bottom left) and
high-intensity (filled green markers, top right) colliding-bunch config-
urations that cover a wide range of beam-size asymmetries at constant
�R (see text). The beams collide at the scanning IP only. The σvis bias
in the fully symmetric configuration (σ1 = σ2) corresponds to the low-
est value of ξ̄ in each group, and is indicated by a horizontal black
line. The curves are second-order polynomial fits to the points, and are
intended to guide the eye. The arrows indicate the impact on the absolute
luminosity scale of a 20% beam-size imbalance (σ2/σ1 = 0.8)

Fig. 39 Dependence on the transverse beam-size ratio σ2/σ1 of the vis-
ible cross-section bias σvis/ σ 0

vis −1 associated with optical distortions,
as predicted by B*B (diamonds) or COMBI (triangles) simulations, for
low-intensity (red and blue bottom curves) and high-intensity (green
top curve) colliding-bunch configurations that cover a wide range of
beam-size asymmetries at constant �R (see text). The beams collide at
the scanning IP only. The σvis bias in the fully symmetric configuration
(σ1 = σ2) is indicated by a horizontal black line in each group. The
curves are third-order polynomial fits to the points, and are intended to
guide the eye. The arrows indicate the impact on the absolute luminosity
scale of a 20% beam-size imbalance (σ2/σ1 = 0.8)

Fig. 40 Impact of the beam-size asymmetry on the visible cross-
section bias σvis/ σ 0

vis − 1 associated with optical distortions, as sim-
ulated using either B*B (diamonds and circles) or COMBI (triangles).
Shown is the change is σvis bias between an asymmetric beam–beam
configuration characterized by a given setting of σ2/σ1 < 1, and the
corresponding symmetric configuration (σ2 = σ1). The top three curves
(green diamonds, red triangles and blue diamonds) correspond to the
data displayed in Fig. 39, when the beams collide at the scanning IP
only. The bottom two curves (circles) show the same results when the
beams also collide head-on at two non-scanning IPs. The open (filled)
symbols correspond to the low- (high-) intensity bunches (see text). The
curves are third-order polynomial fits to the points, and are intended to
guide the eye

est at LHC (at most 0.01% on σvis for σ2/σ1 > 0.9, i.e. for
an emittance imbalance of 20%) that it can be absorbed in a
systematic uncertainty.

The impact of the beam-size asymmetry on the absolute
luminosity scale, i.e. the difference in the σvis bias between
a given asymmetric configuration (in this example σ2/σ1 =
0.8) and the fully symmetric case (σ1 = σ2), is indicated
by the arrows. The same results are presented in Fig. 40 (top
three curves), on an expanded scale and after subtracting the
σvis bias corresponding to the symmetric configuration.

The results displayed in Figs. 36–39 assume that the beams
collide at the scanning IP only. Additional collisions at other
IPs lower the unperturbed tunes (Sect. 4.6.2): as a result, the
impact of the beam–beam-induced optical distortion is sig-
nificantly reduced (Fig. 12), and so is the impact of the trans-
verse beam-size asymmetry. This is illustrated by the two
bottom curves in Fig. 40, for the case of bunches colliding at
two non-scanning IPs (NNSIP = 2), that was modeled using
B*B to simulate single-IP collisions but with the unperturbed
tunes shifted as prescribed by Eq. (42). At the largest asym-
metry considered (σ2/σ1 = 0.65), the sensitivity of the σvis

bias to the beam-size asymmetry drops by more than a fac-
tor of two. In addition, the bunch-current dependence of this
bias, manifested by the difference between the filled and the
open circles, is several times smaller for the NNSIP = 2 case.
This occurs because the shift 
QmIP in unperturbed tunes
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is proportional to both ξ and NNSIP: when both are large
enough, this tune shift more than compensates the increase
in optical distortion at the scanning IP associated with the
increased beam–beam parameter experienced by the weaker
of the two beams.

During Run-2 pp vdM scans at
√

s = 13 TeV, the bunch
population n p rarely exceeded 1011 (Table 1), and the typ-
ical beam-size asymmetry σ2/σ1 hovered around 0.94, as
extracted from one of the non-factorization analyses outlined
in Sect. 4.3.1. In practice therefore, for these vdM sessions
the impact of beam–beam asymmetries on beam–beam cor-
rections to vdM scans does not exceed 0.02% (Fig. 40); such
a small number can be safely accounted for as a systematic
uncertainty in the absolute luminosity scale.

5 Systematic uncertainties

The sources of systematic uncertainty that may affect the
absolute magnitude of beam–beam corrections during vdM
scans, and that are detailed in Sect. 4, can be regrouped in
three categories: optical configuration of the LHC rings, devi-
ations from the fully symmetric Gaussian-beam configura-
tion, and collisions at multiple IPs. The associated uncer-
tainties are briefly elaborated upon in Sects. 5.1, 5.2 and 5.3
below; additional sources of potential bias are addressed in
Sect. 5.4. All the uncertainties are then added in quadrature,
and their combined magnitude compared in Sect. 5.5 to that
of the overall beam–beam correction itself.

The quantitative impact of each uncertainty on the σvis

bias, or equivalently on the magnitude of the beam–beam cor-
rection, is summarized in Table 8 for scans simulated using
three different collision patterns (NNSIP = 0, 1, 2). For each
uncertainty source, the beam conditions input to the simu-
lation are detailed in the chapters listed in the last column
of the table. Not all simulations, however, use exactly the
same beam conditions. In order to provide a self-consistent
picture of the relative magnitude of the various uncertain-
ties, and since the magnitude of the beam–beam bias, as well
as most of the uncertainties, scale with ξ, the uncertainties
listed in Table 8 are all expressed at a common value ξsim

of the beam–beam parameter; the details of this procedure
can be found either in the table itself, or in Sects. 5.1 to 5.3.
Because the chosen value of ξsim lies at the upper end of
the range covered during Run-2 vdM scans, Table 8 illus-
trates something of a “worst-case” scenario with respect to
the magnitude of the beam–beam correction and of the asso-
ciated systematic uncertainty. The numerical results listed in
that table should therefore not be applied blindly to estimat-
ing actual vdM-calibration uncertainties, but rather used as
guidance for a case-by-case and bunch-by-bunch error anal-
ysis of actual vdM-calibration data.

5.1 Optical configuration

5.1.1 β∗ uncertainty at the scanning IP

Since the σvis bias scales with the beam–beam parame-
ter (Sect. 4.2), any measurement error on ξ directly trans-
lates into an error of similar relative magnitude on beam–
beam corrections to the luminosity scale. Existing acceler-
ator instrumentation unfortunately does not allow accurate
enough a determination of the transverse single-beam sizes
that enter the definition of ξ (Eq. (12)). The horizontal and
vertical beam–beam parameters must therefore be redefined
in terms of two-beam observables that can be reliably mea-
sured:

ξx Av = n r0 β∗
x Av

π γ �x (�x + �y)
(47)

ξy Av = n r0 β∗
y Av

π γ �y(�x + �y)
. (48)

Here, β∗
x Av = (β∗

x1 + β∗
x2)/2 is the beam-averaged hori-

zontal β-function at the scanning IP, and similarly for β∗
y Av.

The quantity n = (n1 + n2)/2 refers to the beam-averaged
bunch population associated with the colliding-bunch pair
under study, γ = γ1 = γ2 is the common relativistic factor
(assumed here to be the same for B1 and B2), and �x and �y

are the convolved transverse bunch sizes. During vdM scans,
the observables n, �x and �y are measured on a bunch-
by-bunch basis to sub-percent accuracy [9,46–48], and the
uncertainty on the absolute beam energy is totally negligible
for the purposes of this paper. The main uncertainty affecting
the absolute scale of the beam–beam parameter, therefore, is
that associated with potential deviations of β∗ from its nom-
inal or assumed value.

The facts that the ξ dependence of the σvis bias is roughly
linear (Fig. 16), and that the measured value of ξx j (Eq. (12))
depends linearly on nk and β∗

x j ( j, k = 1, 2; j 
= k), justify
the use of the beam-averaged variables defined in Eqs. (47)–
(48) above. Furthermore, the very weak dependence of the
σvis bias on the �0

y/�0
x aspect ratio (Fig. 22) indicates that

“averaging” over x and y, in the sense of substituting the
round-beam equivalent parameter ξR (Eq. (29)) for the pair of
horizontal and vertical beam–beam parameters (ξx Av, ξy Av),

results in an acceptably small bias. What finally matters,
therefore, is the uncertainty on the beam- and plane-averaged
value of β∗ at the scanning IP.

The β∗ values at the LHC IPs are extracted from
optical-function measurements that are carried out for every
colliding-beam configuration as part of routine accelerator
commissioning. During the first few years of LHC operation,
these values were typically obtained using the phase-advance
method; k-modulation is now considered a more promising
approach [54]. It targets an absolute accuracy of a few per-
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cent on β∗
i B (i = x, y; B = 1, 2), provided sufficient beam

time can be dedicated to the measurement.
The absolute β∗-accuracy requirements associated with

beam–beam-correction uncertainties are rather modest. When
beams collide at the scanning IP only, and for ξ = 5.6 ·10−3,

a ±10% uncertainty in β∗ at the scanning IP, uncorre-
lated between beams (because the optics of the two rings
are almost completely independent) but correlated between
planes (because a focusing error presumably affects both the
horizontal and the vertical β-function) results in ±0.06%
uncertainty in σvis (Table 8). Treating this uncertainty as fully
uncorrelated (correlated) between beams and between planes
would decrease (increase) the corresponding σvis uncertainty
by a factor of

√
2. The absolute uncertainty increases to

0.10% (0.13%) for NNSIP = 1(2), but its magnitude relative
to the overall beam–beam correction remains about the same.

The ±10% β∗-uncertainty assumed in the example above
is very conservative, and is representative of the typical dif-
ference between the nominal, i.e. the dialed-in, β∗ setting and
the measured values. Smaller uncertainties can be achieved
by calculating ξ based on the measured β∗ values them-
selves, while accounting rigorously for the systematic β∗-
measurement uncertainties and for their correlation between
beams and between planes.

5.1.2 Nominal collision tunes

Figures 12 and 13 illustrate the sensitivity of the optical dis-
tortion and of the full beam–beam bias to the unperturbed
fractional tunes. Any deviation of (qx , qy) from their nomi-
nal setting results in an inaccurate prediction of the σvis bias.

For the purposes of the present discussion, a conserva-
tive uncertainty of ±0.002 is assigned to each of qx and qy ,
and is assumed to be correlated between beams (as could be
caused by, for instance, instrumental effects) and between
planes (because a focusing error presumably affects both the
horizontal and the vertical betatron frequency). The magni-
tude of this uncertainty is based on LHC operational expe-
rience,18 and is meant to cover setting errors, as well as
the stability of the unperturbed tunes, over the course of
the vdM-calibration fill(s). The corresponding uncertainty in
σvis (Table 8) dominates the overall beam–beam uncertainty.
It decreases slightly when the number of non-scanning IPs
increases, because the additional collisions lower the unper-
turbed tunes, thereby reducing the sensitivity of the optical
distortions to the exact values of the fractional tunes. The
same effect is responsible for the NNSIP-dependent sensitiv-
ity of σvis to beam–beam asymmetries (Fig. 40).

18 While tunes can often be measured to 0.001 or better before beams
are brought into collision, the beam–beam tune spread makes it quite
challenging to monitor the unperturbed LHC tunes while the beams are
colliding.

5.2 Deviations from the fully symmetric Gaussian-beam
configuration

Except where specifically stated otherwise, most of the
results presented in this paper, and in particular the parame-
terizations detailed in Sects. 4.2.3 and 4.6.5, are based on the
assumptions listed in Sect. 4.1. Each of these will be lifted,
one at a time, in the following sections, and their individ-
ual impact on beam–beam-correction uncertainties estimated
using the studies detailed in Sects. 4.3–4.7.

5.2.1 Non-Gaussian unperturbed transverse-density
profiles

Of the three single-bunch models described in Table 2,
the 2012 parameter set represents an extreme case, both
because this is the vdM session that revealed the largest
non-factorization biases at LHC ever [9,22], and because the
parameters in that Table are deliberately chosen to represent
the worst case among all scans and all bunches in a given vdM
session. The 2018 model emerges as the most appropriate to
estimate the uncertainty associated with non-Gaussian tails
in the unperturbed density distributions: not only is the kur-
tosis intermediate between that of the other two parameter
sets, but it also reflects the performance of the injector chain
in the fourth year of LHC Run 2, by which time procedures
had long stabilized and beam conditions could be considered
reasonably reproducible.

Since the factorizable double-Gaussian configuration sys-
tematically yields a larger deviation from the corresponding
single-Gaussian model than its non-factorizable counterpart
(Table 4), it is favored for the purpose of estimating system-
atic errors. The uncertainty listed in Table 8 for NNSIP = 0 is
therefore taken from the top half of Table 4. It is extrapolated
to the cases of one and two non-scanning IPs by assuming
that the fractional impact of additional collisions on the σvis

bias is dominated by the multi-IP tune shift (Sect. 4.6.2), and
thus insensitive to the shape of the unperturbed transverse-
density distributions.

The choice of the 2018 factorizable model to estimate the
impact of non-Gaussian tails is not devoid of some arbitrari-
ness. The uncertainties listed in Table 8, therefore, should
be considered as a first indication, albeit a prudent one. A
refined evaluation would require a more extensive character-
ization of the transverse-density distributions extracted from
non-factorization analyses, that could then be used to pro-
duce a wider palette of more realistic single-bunch models
for input to B*B or COMBI. In order to explore potential
correlations between systematic biases, one could in addi-
tion extend the existing studies to simulate bunches that are
not purely Gaussian and that in addition collide at multiple
interaction points.
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5.2.2 Beam ellipticity at the scanning IP

The dependence of the optical-distortion bias on the �y/�x

aspect ratio is summarized by Fig. 22, and does not exceed
±0.025% for ξR ≤ 4.2 · 10−3. Scaling this linearly to
the value of ξsim shown in Table 8 yields a beam–beam-
correction uncertainty of 0.03%, under the condition that the
orbit-shift correction take the actual ellipticity into account,
i.e. that it be computed using the Bassetti–Erskine formal-
ism [14] with, as input, the measured values of �x and �y .

5.2.3 Non-zero crossing angle

The crossing-angle dependence of the beam–beam bias in
the vdM regime is summarized by Fig. 23. The associated
systematic uncertainty is taken as the difference in σvis bias
between θc = 0 and the actual crossing-angle value; it is
listed in Table 8 for two values of the full crossing angle.

It should be emphasized that this small uncertainty is
applicable only at moderate crossing angles (θc ≤ 150µrad),
and only in the vdM regime (ξ ≤ 0.006, β∗ ≥ 10 m). For
larger crossing angles in the vdM regime, additional effects
may come into play. This may also be the case for scans
performed in the physics regime, even at moderate cross-
ing angle, when the beam–beam parameter becomes large
enough, and/or when β∗ becomes small enough ( β∗ ≤
30 cm) for the hourglass effect to no longer be negligible. Of
particular concern are the so-called “emittance scans”, that
are vdM-like beam-separation scans that are used to monitor
luminometer performance and transverse emittances during
routine LHC operation [55]: the study of their sensitivity to
beam–beam-induced biases remains mostly unexplored ter-
ritory.

5.2.4 Beam–beam imbalance

Of the three beam–beam-asymmetry scenarios considered in
Sect. 4.7, only the transverse-emittance imbalance (Sect. 4.7.3)
requires special attention, since bunch-current and β∗-
asymmetries are accounted for by the use of the beam-
averaged beam–beam parameters defined in Eqs. (47)–(48).
The emittance-asymmetry dependence of the σvis bias is con-
trolled by the combination of ξR and of the transverse beam-
size ratio σ2/σ1 (Eq. (46)); it also is sensitive to the number
of non-scanning IPs (Fig. 40).

The beam–beam-imbalance uncertainty is taken as the dif-
ference in σvis bias between an asymmetric beam–beam con-
figuration characterized by a given value of σ2/σ1 < 1, and
the corresponding symmetric configuration (σ2 = σ1); it is
listed in Table 8 for three values of the transverse beam-size
ratio. The ratio closest to unity (σ2/σ1 > 0.95), that emerged
as the most representative of typical beam conditions dur-
ing the 2015–2018 pp vdM sessions [9], is the one used

when computing the total beam–beam uncertainty (penulti-
mate row of Table 8). The NNSIP dependence is discussed in
Sect. 4.7.3, and is closely related to the tune-dependence of
the optical-distortion bias (Sect. 5.1.2).

5.3 Multiple interaction points

Two sources of uncertainty affect the beam–beam correc-
tion strategies in the presence of multi-IP collisions, that are
detailed in Sect. 4.6.6: the phase advance between consecu-
tive IPs (Sect. 4.6.4), and the parameterization of the multi-IP
equivalent tune shift 
QmIP (Sect. 4.6.5). These uncertain-
ties affect only those colliding-bunch pairs in which at least
one of the two opposing bunches experiences collisions at
one or more IPs other than the scanning IP (NNSIP > 0).

The phase-advance uncertainty arises from the currently
unresolved ambiguity in the choice of the reference “no
beam–beam” configuration, or, in more technical terms, from
the ambiguity between the L0 and the Lu normalizations
(Sect. 4.6.3). In the absence of any phase-advance informa-
tion, e.g. for a bunch pattern that mixes different collision
configurations that are all treated on the same footing, a
blanket systematic uncertainty of at most 0.2% appears ade-
quate (Sect. 4.6.4). This uncertainty can, in some cases, be
significantly lowered by simulating the actual collision pat-
tern associated with each colliding-bunch pair, with as input
the actual IP-to-IP phase advance per beam and per plane,
and by then comparing the results between the two reference
no-beam configurations. An illustration of the potential gain
provided by such a refined analysis is offered by the results
presented in Table 7 for the NNSIP = 1 case, a configuration
that applies to the 13 TeV pp vdM scans at IP1 and IP5 in
2015, 2016 and 2017 [9].

The uncertainty associated with the equivalent multi-IP
tune shift 
QmIP needs to be considered only when invok-
ing the parameterization of single-IP simulations proposed in
Sect. 4.6.5 and encapsulated in Eq. (42), to compute beam–
beam corrections in the presence of additional collisions.
This parametrization, that is illustrated by the magenta curve
in Fig. 34, is in good agreement with the simulation results
when IP5 is the scanning IP. The discrepancies that are appar-
ent for scans at some of the other IPs, reflect the variety
of phase-advance patterns between the scanning IP and the
other collision points. Varying the p1 parameter in Eq. (42)
by ±15% of its central value covers all the collision patterns
shown in Fig. 34, thereby providing a measure of the uncer-
tainty associated with this simplified procedure (Table 8).
More precise results, and a smaller uncertainty, could again
be obtained by simulating separately each of the collision
patterns associated with the B1 and B2 bunch strings circu-
lating in the LHC ring during the vdM-calibration session
under analysis.
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5.4 Other potential sources of systematic uncertainty

5.4.1 Long-range encounters

During pp vdM scans at the LHC, the bunches are lon-
gitudinally isolated, in the sense that consecutive bunches
are separated by more than 500 ns, rather than grouped in
trains with only 25 ns spacing. In addition, the fill pattern
is systematically optimized to avoid parasitic crossings, at
least at the scanning IP. This strategy eliminates separation-
dependent, long-range beam–beam kicks that might distort
the luminosity-scan curves.19

In contrast, during high-luminosity pp physics running,
consecutive bunches are typically separated longitudinally by
only 25 ns, the emittance is smaller than during vdM scans,
and the bunch current significantly larger. As a result, and in
spite of the non-zero crossing angle, long-range beam–beam
effects are known to significantly impact emittance scans in
several ways, most of which remain to be understood.

5.4.2 Lattice non-linearities

The strongest non-linearity is introduced by the beam–beam
interaction itself. However, non-linear magnetic elements in
the LHC rings also affect beam dynamics, potentially lead-
ing to additional distortions of the transverse particle-density
distributions. Because the LHC relies on the combination of
high chromaticity (Q′ ≈ 10−15 units) and of high Landau-
octupole currents to mitigate some strong impedance-driven
instabilities, the next largest optical non-linearities at beam
energies above 1 TeV are associated with the corresponding
sextupoles and octupoles [56]. As demonstrated experimen-
tally [57–59], machine imperfections contribute even less by
comparison, and are therefore neglected in the present study.

In order to quantify the impact of these magnets on the
σvis bias, both the chromaticity and the linear detuning with
amplitude introduced by the Landau octupoles were added
to the COMBI model. The chromaticity dependence of the
beam–beam bias is presented in Fig. 41 for two different
beam energies. As expected, the impact of the octupoles is
more important in the 2011 case because of the lower beam
energy: at zero chromaticity, powering the octupoles changes
the beam–beam bias from−0.155% to−0.130%, a reduction
in relative magnitude of about one sixth. In contrast, in the
2018 configuration the effect of the octupoles is three times

19 The situation is different during heavy-ion (HI) scans, which for
operational reasons are carried out in bunch-train mode with a non-
zero nominal crossing angle. However, the bunch charge is consider-
ably smaller than during pp vdM scans, and the beam–beam parameter
about an order of magnitude smaller. Parasitic crossings, therefore, are
no issue from the viewpoint of beam–beam corrections to HI vdM cal-
ibrations.

Fig. 41 Chromaticity dependence of the σvis bias predicted by
COMBI for pp vdM scans, with octupoles either under power (solid
curves) or left at zero current (dashed curves). The red curves corre-
spond to the 2011 configuration (EB = 3.5 TeV), the blue curves to
that in 2018 (EB = 6.5 TeV); the corresponding octupole currents are
indicated in the legend. The momentum spread and the synchrotron
tune are set to, respectively, 1.12 × 10−4 and 2 × 10−3. The beam–
beam parameter is set to ξ = 2.6 × 10−3, and the beams collide at the
scanning IP only

smaller, and almost negligible. As for the chromaticity, its
impact is negligible in both configurations.

The very low sensitivity of beam–beam corrections to
these non-linear elements can be understood as follows.
Octupoles act more strongly on larger-amplitude particles.
These barely contribute to the luminosity when the beams
collide head-on; the fractional contribution of the tails to the
overlap integral is highest at large beam separation, but there
the luminosity is the lowest. This is why modifying the tra-
jectory of the tail particles barely influences the separation-
integrated FoMs, and therefore the σvis bias.

Similarly, high chromaticity potentially enhances synchro-
betatron coupling; however since vdM scans are carried out
with relaxed β∗ settings and at zero crossing angle, this is of
no concern.

Even though lattice non-linearities are almost negligible
in vdM scans (Table 8), it remains important to check system-
atically the potential influence of the octupoles under oper-
ational scenarios where they are pushed to maximum power
to ensure beam stability: their impact on beam–beam uncer-
tainties may turn out to be no longer negligible, for instance
during emittance scans.

5.4.3 Numerical accuracy of polynomial parameterization

Propagating to the σvis bias the parameterization uncertain-
ties that affect the separation-dependent luminosity-bias fac-
tors (Eq. (28)) and that are discussed in Sect. 4.2.3, results in
an upper limit of 0.1% on the associated beam–beam uncer-
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tainty. This contribution should be ignored when resorting to
a full B*B or COMBI simulation at each scan point, rather
than to the parameterization.

5.5 Summary of systematic uncertainties

Adding in quadrature all the above uncertainties yields, for
the example examined here (ξsim = 5.6·10−3), a total beam–
beam uncertainty of 0.32–0.46%, depending on the number
of non-scanning IPs (Table 8). The corresponding value of the
beam–beam correction varies from 0.52 to 1.17%. The abso-
lute magnitude of the total uncertainty grows when NNSIP

increases from 0 to 2, but its magnitude relative to the correc-
tion itself decreases from about 60% to roughly 40% through
the mechanism discussed in Sects. 5.1.2 and 5.2.4.

Under operating conditions typical of actual vdM-calibration
sessions, the number of non-scanning IPs is at least one. For
NNSIP = 1, the four dominant uncertainty contributions, in
order of decreasing importance, are associated with the nomi-
nal tunes, non-Gaussian tails, multi-IP effects (in the absence
of collision–pattern-specific studies), and the β∗ uncertainty.
Estimating the uncertainty associated with non-Gaussian
tails, and verifying whether beam-size asymmetries might
contribute at a significant level, imperatively requires input
from the non-factorization analysis of luminous-region data.

It is worth noting that the larger NNSIP, the larger the
contribution of the orbit-shift correction relative to that of
the optical distortion. Qualitatively therefore, estimating pre-
cisely the effects that contribute only to the optical-distortion
uncertainty, viz. the beam ellipticity and the beam-size asym-
metry, becomes less critical as the number of non-scanning
IPs increases. In contrast, the β∗ and tune uncertainties affect
the magnitude of both the orbit shift and the optical distor-
tion, in a fully correlated manner.

The uncertainties detailed in Table 8 have been deliber-
ately estimated in a conservative fashion, and for the largest
value of the beam–beam parameter encountered during Run-
2 vdM scans in pp collisions at

√
s = 13 TeV. Most uncer-

tainties scale with ξ, either linearly or with a slightly positive
quadratic component. For the purposes of a rough estimate,
therefore, they can be safely extrapolated linearly to smaller
ξ values, that are more representative of typical vdM con-
ditions. A more precise determination of these uncertain-
ties requires a case-by-case analysis, possibly augmented by
some of the additional simulation studies suggested in some
of the preceding sections in this chapter.

6 Summary and outlook

Under conditions typical of vdM luminosity-calibration scans
in pp collisions at the LHC, beam–beam-induced orbit shifts

and optical distortions, if left uncorrected, bias the absolute
luminosity scale by an amount comparable to, or larger than,
the total luminosity-uncertainty budget. The magnitude of
the correction, which ranges from approximately 0.2 to 1.2%,
mainly depends on the beam–beam parameter ξ and on the
number of non-scanning IPs.

The contributions to the associated systematic uncertainty
are listed in Table 8 and elaborated upon in Sect. 5. The
total uncertainty amounts to roughly half of the correction
itself, and is dominated by tune-related effects, either directly
(accuracy and reproducibility of nominal-tune settings) or
indirectly (beam–beam tune shift at non-scanning IPs, phase
advance between consecutive IPs). The next most impor-
tant source of uncertainty is the potential deviation of the
unperturbed transverse bunch-density distributions from a
perfectly Gaussian shape. Simulating the impact of non-
Gaussian tails cannot be based on luminosity data alone: it
requires, as input, single-bunch parameters that can only be
extracted from the measured beam-separation dependence,
during the scan, not only of the luminosity but also of the
position, shape and orientation of the luminous region. These
single-bunch parameters are also crucial to quantify trans-
verse beam-size differences between the two beams, which,
if large enough, may become a significant source of uncer-
tainty.

The scope of the present paper is limited to beam-
separation scans in the vdM regime (ξ ≤ 6 · 10−3), under
beam conditions that deviate only moderately from round,
initially Gaussian bunches of equal brightness that collide
with a zero or small nominal crossing angle. In the course of
investigating the impact of actual departures from that ideal-
ized limit, several areas of further study have been identified,
most notably:

• improved single-bunch models of non-Gaussian tails
(Sect. 4.3), both factorizable and non-factorizable, that
are more sophisticated than the simple double-Gaussian
functions considered in Eqs. (37) and (38);

• the interplay between non-factorization, non-Gaussian
tails, and beam–beam corrections, and in particular the
application of beam–beam corrections to two-dimensional
grid scans;

• the ambiguity affecting the choice of the reference “no
beam–beam” configuration, i.e. the phase-dependence of
the difference between the L0 and the Lu normalizations
(Sect. 4.6);

• the characterization of optical distortions at large nominal
crossing angle (Sect. 4.5) in the vdM regime;

• the potential interplay between the impact of non-
Gaussian beams (Sect. 4.3), beam ellipticity (Sect. 4.4),
crossing angle (Sect. 4.5), and multi-IP effects (Sect. 4.6),
that have so far been treated as fully uncorrelated;
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• the extension of the ξ -scaling laws (Sect. 4.2) to the
physics regime (ξ ≤ 10−2), with emittance scans as the
primary use case;

• the combined impact, during emittance scans at low β∗
in the physics regime, of higher-beam–beam parameter
values and of the hourglass effect on the crossing-angle
dependence of beam–beam biases;

• the impact of parasitic crossings on the absolute accuracy
of emittance scans during routine physics running;

• the impact of lattice non-linearities on the absolute accu-
racy of emittance scans during routine physics running.
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Appendix A: Impact of non-Gaussian distortions of the
source field

Because B*B is fundamentally a weak-strong model, beam–
beam-induced shape-distortions of the witness bunch, i.e. of
the multiparticle distribution, influence neither the shape of
the source bunch nor the spatial dependence of the electro-
magnetic field it generates. The latter is computed once and
for all at initialization time, and remains static both turn-by-
turn and as a function of beam separation.

COMBI, in contrast, is based on a strong-strong model:
both bunches are represented by macroparticles; both play,

with respect to their partner, the dual roles of source and
witness bunch; and the electromagnetic fields they generate
are updated on a turn-by-turn basis, and therefore also at
each scan step. In order to estimate the impact of separation-
dependent, non-Gaussian field distortions caused by the
mutual interaction of the opposing bunches, the σvis bias
(Eq. (35)) has been computed using COMBI in two different
modes:

• for each witness bunch in turn, the field that its macropar-
ticles are subjected to, is computed under the assump-
tion that the transverse macroparticle distribution of the
source bunch is a two-dimensional Gaussian, with the
position of its centroid and its RMS widths computed
on every turn from the actual spatial distribution of the
“source” macroparticles. This procedure tracks the evo-
lution of the relative position and of the width of the
opposing multiparticle distributions, but the field calcu-
lation ignores potential deviations of the bunches from
their initial, perfectly Gaussian shape. This is the mode
in which all the COMBI results in this paper have been
obtained.

• for each witness bunch, the field it is subjected to is
computed by the HFMM method [42] from the actual
charge distribution in the source bunch. In this mode,
each macroparticle in the witness bunch is subjected to
an electromagnetic field computed as the vector sum of
the contributions of all the macroparticles in the source
bunch. Since this computation must be repeated on every
turn and for the opposing bunch, it is much more CPU-
intensive than the Gaussian-field approximation above.

Figure 42 displays the beam–beam-parameter dependence
of the σvis bias over a ξ range that extends all the way up to
25×10−3, more than four times the highest ξ value encoun-
tered in vdM scans, and significantly higher than the largest
per-IP beam–beam parameter that is sustained operationally
in the actual LHC rings. The two calculations agree within
1% or better; for the ξ range and the nominal tunes consid-
ered in Table 1, this translates into a σvis difference of less
than 0.005%. Computing the electromagnetic field as that
of an equivalent Gaussian, the parameters of which evolve
turn by turn, therefore constitutes a fully justified approxima-
tion whose impact on beam–beam corrections can be safely
neglected.
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Fig. 42 Top: ξ dependence of the beam–beam induced σvis bias, com-
puted either in the Gaussian-kick approximation (solid black line), or
with a self-consistent kick calculated using the HFMM field solver
(filled orange circles). Bottom: ξ dependence of the ratio between the
σvis-bias values computed by the two methods

Appendix B: Luminosity integration in COMBI

In COMBI, the calculation of the luminosity, or more pre-
cisely of the overlap integral (Eq. (1)), is based on a complete
description of the macroparticle distribution in the two col-
liding bunches: no assumption is made about the shape of the
density distributions when evaluating this integral. The latter
is calculated on a turn-by-turn basis, both at the scanning IP
and at the non-scanning IP(s), if any. The positions of all the
macroparticles are updated at each IP on every consecutive
turn, and each step in a beam-separation scan is initialized
and simulated separately.

The transverse distribution of the macroparticles, called
H B

x,y, is discretized, separately for the two beams B (B =
1, 2),on a two-dimensional grid in the x-y plane. The number
of cells in each grid is given by Ncells = n × m, where n and
m represent the number of bins in the x and y directions
respectively. The grid boundaries are located at a distance
ki × σ 0

i (i = x, y) from the center of the grid, where σ 0
i is

the initial, unperturbed nominal transverse beam size inferred
from the input emittance and β∗ values in the i plane; the
scale factor ki is typically set to 12 in both the positive and
the negative direction along the x and y axes. The cell area
is thus given by


S = 
x × 
y = 2kxσ
0
x /n × 2kyσ

0
y /m.

The separation between the two beams is taken into account
when filling two-dimensional histograms of the macroparti-
cle distributions.

Fig. 43 Visible cross-section bias as a function of the number of
macroparticles used to model the transverse-density distributions

Table 9 Parameter space used in the determination of the [L/L0]Opt
polynomial coefficients

Horizontal scans Vertical scans

0.002 ≤ ξR ≤ 0.007

0.2975 ≤ qx ≤ 0.3100 qy − 0.0125 ≤ qx ≤ qy − 0.0075

qx + 0.0075 ≤ qy ≤ qx + 0.0125 0.3075 ≤ qy ≤ 0.3200

With these definitions, the discretized macroparticle den-
sity distribution is given by

hB
x,y = H B

x,y

Npart 
S
,

where Npart is the total number of tracked macroparticles.
The overlap density of the two bunches, i.e. the product
ρ̂1(x, y) ρ̂2(x, y) in Eq. (1), is therefore represented by:

λx,y = h1
x,yh2

x,y .

The bunch luminosity can be calculated from the overlap
integral Iovlp as:

Lb = fr n1n2 Iovlp, (49)

where n1 and n2 are the bunch populations and fr the rev-
olution frequency. The overlap integral is estimated by the
two-dimensional trapezoidal method:

Iovlp � 1

4

x
y

(
λ0,0 + λm,0 + λ0,n + λm,n

+2
m−1∑
i=1

λi,0 + 2
m−1∑
i=1

λi,n + 2
n−1∑
j=1

λ0, j

+2
n−1∑
j=1

λm, j + 4
n−1∑
j=1

(m−1∑
i=1

λi, j

))
.
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Table 10 Parameterization of the [L/L0]Opt luminosity-bias factor as a function of the normalized nominal separation, for horizontal vdM scans.
The functional form is defined in Eq. (50)


k [σ0] p0k p1k p2k p3k p4k p5k p6k p7k p8k p9k

0.00 1.00944 − 9.9169 0.05163 − 0.10946 − 11.343 0.27849 0.51631 17.907 17.933 − 0.70617

0.25 1.0965 − 11.2335 − 0.37109 − 0.25749 − 15.156 0.8075 0.59757 21.37 19.207 − 0.38121

0.50 1.33057 − 14.2614 − 1.41804 − 0.75044 − 23.614 2.23701 1.09972 29.115 22.489 0.21938

0.75 1.6732 − 18.353 − 3.14234 − 1.28652 − 32.777 4.71339 1.58581 37.476 28.876 0.9846

1.00 2.09627 − 23.4765 − 4.63004 − 2.55265 − 38.221 3.68123 0.36501 50.199 34.146 7.71504

1.25 2.35234 − 28.0037 − 5.75125 − 3.10402 − 38.905 3.96085 − 0.21768 57.845 41.93 10.74776

1.50 2.5998 − 30.8986 − 6.20145 − 4.24446 − 36.073 8.14783 4.83319 59.119 50.075 4.06889

1.75 2.71221 − 32.1903 − 5.80054 − 5.33954 − 33.326 6.80135 5.92624 54.751 58.075 5.3906

2.00 2.68384 − 31.9924 − 4.60368 − 6.30519 − 25.565 5.92361 8.49128 47.367 63.795 3.25386

2.25 2.72577 − 30.6931 − 4.15275 − 7.00444 − 15.931 4.41796 8.97022 42.853 63.188 4.6426

2.50 2.71357 − 29.8333 − 3.31831 − 7.7255 − 17.797 − 0.48377 6.79757 35.712 67.066 11.47357

2.75 2.55328 − 28.5073 − 2.93845 − 7.07616 − 19.558 2.2039 8.83346 28.805 69.588 5.10042

3.00 2.63081 − 28.984 − 3.48143 − 7.0339 − 13.235 1.7513 7.59532 37.803 62.493 7.5962

3.25 2.51794 − 29.2876 − 3.37658 − 6.41585 − 9.579 2.73257 7.63313 38.021 63.687 5.42281

3.50 2.57552 − 30.733 − 3.87832 − 6.30735 − 5.79 3.30687 7.27443 49.126 58.156 5.87508

3.75 2.7132 − 34.1604 − 4.72201 − 6.34866 0.329 4.88899 7.5148 62.801 56.443 5.47604

4.00 2.80473 − 36.4992 − 6.20828 − 5.49987 − 0.487 1.89557 1.09204 77.16 50.842 15.98952

4.25 2.84402 − 40.437 − 7.01717 − 4.94963 5.671 5.45919 2.26449 89.531 51.974 11.6835

4.50 2.92941 − 42.1662 − 7.69945 − 4.84568 7.414 12.10344 7.25898 100.023 47.916 1.02831

4.75 3.00531 − 44.2824 − 8.94959 − 4.12019 4.043 8.3604 0.8071 119.399 36.595 12.11431

5.00 3.1174 − 47.4622 − 9.45872 − 4.32462 10.289 7.49102 − 0.57319 125.029 41.518 15.50293

5.25 3.08992 − 48.0346 − 9.55933 − 4.06527 9.796 14.24273 5.29776 139.651 29.582 2.65662

5.50 3.22545 − 51.1449 − 10.7063 − 3.79323 9.956 14.35667 3.04625 141.488 38.024 6.20924

5.75 3.25358 − 51.7947 − 11.62684 − 3.08922 7.899 12.51096 − 1.17893 151.272 30.874 12.68129

6.00 3.15344 − 50.9016 − 10.84895 − 3.228 7.762 19.8657 7.03849 145.734 33.547 − 3.89875

The instantaneous luminosity in Eq. (49) is calculated at
each turn, and the result is averaged over the total number
of selected turns. Typically a few hundred turns are neces-
sary for the result to stabilize. The reliability of this method
was confirmed by benchmarking it against analytical calcu-
lations, with the beam–beam effects turned off.

Figure 43 shows the evolution of the σvis bias as a func-
tion of the number of macroparticles used in the simulation.
The result converges to within 0.01% of its asymptotic value
for 5 × 106 macroparticles. Most of the simulation results
presented in this paper are based on 10 × 106 macroparticles
per bunch, implying that the results are numerically stable at
the 0.001% level.

The uncertainty associated with statistical fluctuations in
the discretization of the transverse-density distributions was
evaluated separately, and typically cancels out when comput-
ing luminosity ratios such as [L/L0]. It becomes significant
only at large beam separation, when the overlap integral is
computed from a small number of macroparticles in the tails.
At these scan points, however, the luminosity values are very

small, and therefore have a negligible impact on the estima-
tion of the beam–beam bias factors.

Appendix C: Parameterization of optical-distortion cor-
rections

The polynomial parameters p0k, . . . , p9k from which to cal-
culate the optical-distortion luminosity-bias factor

[L/L0]Opt(ξR, qx , qy |
k) = p0k + p1k ξR

+ p2k qx + p3k qy + p4k ξ2
R + p5k q2

x + p6k q2
y

+ p7kξRqx + p8k ξR qy + p9k qx qy (50)

defined in Eq. (28) of Sect. 4.2.3, have been tabulated, for
normalized nominal-separation values covering the range
0 < |
k/σ0| < 6 in steps of 0.25. Here the index k
(k = 1, 25) labels the nominal-separation bin 
k in the
scanning plane considered. This parameterization is valid in
the fully symmetric Gaussian-beam configuration with zero
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Table 11 Parameterization of the [L/L0]Opt luminosity-bias factor as a function of the normalized nominal separation, for vertical vdM scans. The
functional form is defined in Eq. (50)


k [σ0] p0k p1k p2k p3k p4k p5k p6k p7k p8k p9k

0.00 1.00627 − 9.8954 0.02224 − 0.06076 − 11.359 0.0568 0.18622 17.901 17.872 − 0.18399

0.25 1.20592 − 12.0782 − 0.02827 − 1.29247 − 17.815 0.1942 2.21186 19.01 24.368 − 0.28862

0.50 1.75762 − 17.6722 − 0.35287 − 4.51951 − 30.505 − 0.9264 5.84403 22.471 40.37 2.91383

0.75 2.47795 − 24.582 − 0.92069 − 8.60293 − 41.735 1.3187 13.56868 20.768 65.956 0.45508

1.00 3.16343 − 32.8235 − 1.16788 − 12.75235 − 55.11 − 0.3834 18.27023 29.422 85.709 4.49981

1.25 3.74028 − 38.7998 − 2.36278 − 15.28112 − 48.5 0.3875 21.25607 39.51 95.711 6.74987

1.50 3.96499 − 42.0778 − 3.06102 − 16.01822 − 37.845 − 1.1981 19.73221 36.839 108.559 12.15308

1.75 3.69522 − 40.042 − 3.62485 − 13.73364 − 31.695 − 1.4007 14.95999 39.742 98.388 14.38483

2.00 3.17695 − 34.3599 − 3.98479 − 10.06481 − 23.614 5.9537 15.52287 48.181 70.742 1.19056

2.25 2.54203 − 27.8488 − 4.42917 − 5.57026 − 15.667 5.2247 6.89102 46.516 50.153 4.09602

2.50 1.93646 − 21.3641 − 4.22219 − 1.90718 − 15.994 5.1956 1.34853 47.557 27.611 3.48476

2.75 1.64684 − 18.4268 − 4.50556 0.22396 − 11.197 5.0949 − 2.57366 49.259 16.174 4.5606

3.00 1.58403 − 17.9608 − 4.4421 0.56159 − 7.635 6.066 − 2.11206 48.03 16.126 2.48878

3.25 1.84422 − 21.9484 − 4.56541 − 0.96411 − 2.223 3.7746 − 2.00762 49.005 28.617 7.28473

3.50 2.32149 − 27.3088 − 4.57251 − 4.00249 1.528 4.2728 3.31839 48.531 47.316 6.31746

3.75 2.86007 − 35.4916 − 3.79586 − 8.17387 13.02 7.1856 13.85154 44.04 78.901 − 1.77626

4.00 3.52241 − 43.4275 − 3.74323 − 12.44714 15.761 2.4115 16.29906 43.702 105.987 7.26694

4.25 4.18491 − 52.8584 − 3.75654 − 16.63881 17.478 2.9322 23.4521 43.277 137.933 6.26266

4.50 4.82121 − 61.3184 − 4.12935 − 20.31864 25.852 − 1.7901 24.22835 37.512 171.614 16.6589

4.75 5.33928 − 68.7429 − 4.41872 − 23.34458 24.7 3.8166 33.91458 37.937 196.185 6.67136

5.00 5.80246 − 73.1287 − 3.19177 − 27.51882 20.495 18.7373 56.57897 38.918 210.435 − 26.21613

5.25 6.44223 − 79.2346 − 5.10161 − 29.74714 33.649 17.5226 56.18781 50.413 219.306 − 17.92498

5.50 7.17335 − 86.1747 − 5.53665 − 33.9533 35.037 6.9886 52.15683 35.086 257.011 3.99827

5.75 6.8188 − 87.1346 − 4.86936 − 32.37045 28.729 − 1.12 43.18943 42.423 253.701 17.49413

6.00 6.41896 − 87.7396 − 0.88027 − 33.73032 32.935 1.0047 53.37414 28.725 269.298 0.87602

non-scanning IPs, over the three-dimensional space of frac-
tional tunes (qx , qy) and round–beam-equivalent beam–beam
parameter (ξR) values defined in Table 9. The values of β∗,
γ, σ0 and n in Eq. (13) were chosen such that they cor-
respond to typical settings for pp vdM-calibration sessions
during Run 2 of the LHC.

The coefficients p0k, . . . , p9k are listed in Tables 10
and 11 for horizontal and vertical vdM scans, respectively;
they are also publicly accessible, in computer-readable form,
in Ref. [45]. In the unabridged tables, i.e. for the studies
reported in Sects. 4.2.3 and 4.2.4, all parameters were stored
with a number of digits corresponding to the precision of the
IEEE 754 double-precision floating-point data format. In the
tables below, the coefficients are listed with enough preci-
sion to reproduce the values of [L/L0]Opt in the unabridged
tables to at least five decimal digits. For verification purposes,
50×103 points were randomly chosen across the (ξR, qx , qy)

space defined in Table 9, and for each of these, 200 
 values
were randomly generated. The resulting [L/L0]Opt values,
obtained using the unabridged tables or the ones below, were
then compared. The maximum differences found in 10×106

evaluations were 5.4 × 10−6 and 9.5 × 10−6 for horizontal
and vertical scans, respectively.

The procedure to correct an x–y pair of experimentally
measured vdM-scan curves for beam–beam-induced optical
distortions is detailed below. It is valid only for on-axis,
one-dimensional vdM scans with zero crossing angle; off-
axis one-dimensional scans, as well as two-dimensional grid
scans in the (δx , δy)beam-separation plane, require dedicated
simulations.

1. For a given colliding-bunch pair, calculate the values of
σR and ξR from the measured bunch-current and uncor-
rected (�x , �y) values, following the prescriptions in
Sect. 4.2.3;

2. for that same bunch pair, calculate the values of the effec-
tive fractional tunes (qx , qy), following the prescription
in Sect. 4.6.5 with, as input, the nominal tune values (Qx ,
Qy), the appropriate number NNSIP of non-scanning IPs,
and the resulting multi-IP equivalent tune shift 
QmIP;

3. for each scanning plane (x and y) and each tabulated
value of the nominal separation 
k, calculate the cor-
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responding value of {[L/L0]Opt}k = [L/L0]Opt(ξR, qx ,

qy |
k) using Eq. (50), with the polynomial coefficients
taken from the relevant row of Table 10 or 11, as appro-
priate;

4. use all pairs of numbers (
k, {[L/L0]Opt}k) as input to
a suitably chosen numerical-interpolation algorithm20

that can return the value of [L/L0]Opt(
/σR) for any
nominal separation 
;

5. at each scan step, multiply the measured collision rate by
1/[L/L0]Opt(
/σR),where
 is the nominal separation
for the scan step and in the scanning plane considered.
This final step yields, for the bunch pair considered, the
horizontal and vertical vdM-scan curves corrected for
optical distortions.
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