ATLAS Forward Proton Time-of-Flight Detector Status & Performance in Run 2

Varsiha Sothilingam (KIP, Heidelberg University) On behalf of the ATLAS Forward Detectors

Forward Physics Interest

Beyond Standard Model:

- Photon induced processes
- Both intact forward protons
- Example: anomalous gauge couplings

Hard Diffractive Processes:

- Verify Standard Model predictions
- One or both protons intact
- Example: double Pomeron exchange jet production

UNIVERSITÄT HEIDELBERG ZUKUNFT **SEIT 1386**

AFP Far Station Setup

ATLAS Preliminary

√s = 13 TeV

Silicon Trackers (SiT)

- 4 Silicon Pixel sensor planes (16 x 20 mm^2) per station
- Tilt (14°) to increase reconstruction precision
- Proton trajectory reconstructed

with precision of 6 (30) μ m in x (y)

Advantage: full 4-momentum reconstruction of central detector objects

during stable collisions \rightarrow detect forward scattered protons

<u>Time-of-Flight System (ToF)</u>

- Cherenkov light produced in and guided by LQ bars
- Signal amplified, processed and delivered to ATLAS
- Timing measurements on both sides used to reconstruct primary vertex of protons in ATLAS detector

- AFP ToF L-shaped Quartz (LQ) bars
- Trains are formed of 4 bars in the same plane

Advantage: reduce combinatorial background events due to high pileup effects.

Events with reconstructed SiT tracks physically pointing to train k

 Over time, efficiency lowers due degradation of PMTs. • Efficiencies are independent of pile-up conditions

				_				_		<u> </u>	
%]	ATLAS Preliminary		~ %	Ē	ATLAS Preliminary -0.15		0.15 %	E	ATLAS Preliminary		
ω	√s = 13 TeV	train 0	- <mark>1.5</mark> ^ω	-	√s = 13 TeV	train 0	ω	-	√s = 13 TeV	train 0	
	_ run 331020	train 1]	-	run 336505	train 1	1	-	run 336506	train 1	-60
20	_ FAR-A	📥 train 2	-	20-	FAR-A	📥 train 2		20-	FAR-A	📥 train 2	-
		🔫 train 3				🔫 train 3		_		🔫 train 3	-

<u>Time Resolution</u>

• Time measurement of a single ToF channel:

Vertex Matching

• Timing values from both diffractive protons provide vertex position of scatted protons:

$$z_{ToF} = \frac{c}{2}(t_{FAR-C} - t_{FAR-A})$$

The z-resolution:
$$\Delta z = z_{ATLAS} - z_{ToF}$$

100

-100

bgd

300

z_{ATLAS} - z_{ToF} [mm]

200

calculated from time distributions between different channels of a given train.

> The overall time resolution of each ToF detector: $20(26) \pm 4(5)$ ps for side A(C).

• Signal: z_{ATLAS} from central diffractive objects and z_{ToF} from ToF Station • <u>Background:</u> hard vertex reconstructed in ATLAS + random (pile-up) protons in AFP

