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Abstract: We study towers of light particles that appear in infinite-distance lim-

its of moduli spaces of 9-dimensional N = 1 string theories, some of which notably

feature decompactification limits with running string coupling. The lightest tower in

such decompactification limits consists of the non-BPS Kaluza-Klein modes of Type I′

string theory, whose masses depend nontrivially on the moduli of the theory. We work

out the moduli-dependence by explicit computation, finding that despite the running

decompactification the Distance Conjecture remains satisfied with an exponential de-

cay rate α ≥ 1√
d−2

in accordance with the sharpened Distance Conjecture. The related

sharpened Convex Hull Scalar Weak Gravity Conjecture also passes stringent tests.

Our results non-trivially test the Emergent String Conjecture, while highlighting the

important subtlety that decompactification can lead to a running solution rather than

to a higher-dimensional vacuum.

ar
X

iv
:2

30
6.

16
44

0v
1 

 [
he

p-
th

] 
 2

8 
Ju

n 
20

23

mailto:metheredge@umass.edu
mailto:bheidenreich@umass.edu
mailto:jmcnamar@caltech.edu
mailto:t.rudelius@gmail.com
mailto:ignacio.ruiz@uam.es
mailto:irene.valenzuela@cern.ch


Contents

1 Introduction 1

2 The Distance Conjecture and Convex Hulls 5

2.1 Example: Type IIB on a circle 8

3 Heterotic String Theory in Nine Dimensions 13

3.1 A Puzzle in the SO(32) Slice of the Moduli Space 14

3.2 The Resolution: Sliding and Decompactification to a Running Solution 18

3.3 The E8 × E8 Slice of Moduli Space 25

3.4 The SO(16)× SO(16) Slice of Moduli Space 29

4 Other Nine-Dimensional Moduli Spaces with 16 Supercharges 31

5 Discussion 33

A Heterotic - Type I′ duality in nine dimensions 37

A.1 Equations of motion for the Type I′ dilaton and warp factor 38

A.2 Heterotic-Type I′ duality relations 40

A.3 Masses of BPS towers 44

B Kaluza-Klein modes for Type I′ in nine dimensions 45

B.1 Background fields 46

B.2 I′ KK masses 47

C Moduli space metric, flat coordinates and sliding 53

C.1 Flat coordinates 56

C.2 KK mode sliding 57

1 Introduction

While much of quantum gravity remains shrouded in mystery, some corners of the

landscape are relatively well understood. Asymptotic regimes of known moduli spaces

appear to display universal behavior, which has led to the development of a number
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of quantum gravity conjectures (known as Swampland conjectures) regarding such be-

havior. The oldest of these is the Distance Conjecture of Ooguri and Vafa [1], which

states:

The Distance Conjecture. Let M be the moduli space of a quantum gravity

theory in d ≥ 4 dimensions, parametrized by vacuum expectation values of massless

scalar fields. Fixing a point p0 ∈ M, the theory at a point p ∈ M sufficiently far

away in the moduli space has an infinite tower of light particles, each with mass in

Planck units (κ2
d = M2−d

Pl;d = 1) scaling as

m(p) ∼ exp(−α d(p, p0)) as d(p, p0)→∞ , (1.1)

where d(p, p0) is the length of the shortest geodesic in M between p and p0, and

α > 0 is some order-one number.

This conjecture has been extensively tested in a plethora of string theory compactifi-

cations [2–14] and plays a key role in the Swampland program [15–18], which aims to

determine the constraints that any EFT must satisfy to be UV completed in quantum

gravity.

Significant effort has been invested in sharpening and refining the Distance Conjec-

ture, both as a means to test it more stringently as well as to expand its consequences.

One notable refinement of the Distance Conjecture, proposed by [19], constrains the

microscopic nature of the tower of states:1

The Emergent String Conjecture. Every infinite-distance limit in the moduli space

of a quantum gravity theory is either an emergent string limit (featuring a fundamental

string with a weakly coupled tower of string oscillator modes) or a decompactification

limit (featuring a tower of Kaluza-Klein modes).

The Emergent String Conjecture is supported by all known string theory examples in

flat space [23–27] and holographic AdS compactifications [28–30], though it needs to be

slightly modified to account for the non-holographic AdS cases where infinite-distance

limits associated to free points in the dual conformal manifold feature a tower of higher

spin operators that are not necessarily dual to the fundamental string (see [29]).

Another notable refinement of the Distance Conjecture, proposed by [31], places a

sharp lower bound on the possible values of the exponential rate α in (1.1):

1Substantial work has also been done on a different class of refinements constraining the distance

travelled before light towers appears, see [3, 9, 20–22], but we will not discuss these conjectures further

in the present work.
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The Sharpened Distance Conjecture. The Distance Conjecture remains true with

the added requirement that

α ≥ 1√
d− 2

, (1.2)

where d is the spacetime dimension.

In fact, the sharpened Distance Conjecture and the Emergent String Conjecture are

closely related, since αosc = 1√
d−2

is precisely the exponential rate of the tower of

oscillator modes of a perturbative fundamental string, whereas Kaluza-Klein (KK)

modes typically have a larger exponential rate.

More concretely, the exponential rate for a KK tower in a toroidal compactification

is given by (see, e.g., [31])

α
(n)
KK =

√
d+ n− 2

n(d− 2)
, (1.3)

where d is the space-time dimension and n the number of decompactifying dimensions,

which is indeed larger than αosc = 1√
d−2

for d > 2.

Since (1.3) applies equally to the overall volume modulus of an arbitrary Ricci-flat

manifold, it is tempting to conclude that αosc and α
(n)
KK are the only possible values

for α compatible with the Emergent String Conjecture.2 However, we will see that

this is incorrect, since the exponential rate of a KK tower can differ and possibly

become smaller than (1.3) when the compactification metric is not a direct product

but instead involves warping. Warped compactifications have been extensively studied

in the context of string theory, but have not been discussed yet in the context of the

Distance Conjecture to the best of our knowledge.

In this paper, we will explore the Emergent String Conjecture and the sharpened

Distance Conjecture in the moduli space of N = 1 supersymmetric string theories

in nine dimensions, which arise from heterotic string theory compactified on a circle.

Our results are consistent with both conjectures provided that we clarify the Emergent

String Conjecture in an important way: some infinite-distance limits in moduli space do

not lead to either an emergent tensionless string or a higher-dimensional vacuum, but

rather to a higher-dimensional running solution. In other words, the decompactification

limits specified by the Emergent String Conjecture may or may not lead to vacuum

solutions of the higher-dimensional theory. The decompactification limit of Type I′

2To be precise, these α values are associated to certain “pure” emergent string and/or decompacti-

fication limits; there are often “mixed” limits that continuously interpolate between these, which have

intermediate values α as well. A sharper statement would be that |~ζ| as defined in §2 remains fixed at

one of these special values for each tower satisfying the Distance Conjecture. We will show, however,

that even this is false.
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string theory in nine dimensions with a nontrivial dilaton profile is a prototypical

example of the latter.

Nonetheless, we will show in simple examples that these running solutions still

feature Kaluza-Klein towers which satisfy the Distance Conjecture with α ≥ 1√
d−2

,

consistent with the sharpened Distance Conjecture of [31]. This is made possible by

the fact that the corresponding Kaluza-Klein modes are not BPS and consequently

their masses are a rather complicated function of moduli space position, so the expo-

nential rate changes depending on the asymptotic geodesic trajectory that bring us to

infinite distance. By careful computation, we determine this function and show that

the exponential rate for the KK tower can get as small as 5
2
√

7
in these nine dimensional

examples, which is still compatible with the bound α ≥ 1√
d−2

= 1√
7

in d = 9, but does

not correspond to one of the special values (1.3) for any integer n.

We will also show that these nine dimensional compactifications satisfy a “convex

hull” version of the Scalar Weak Gravity Conjecture (SWGC) [31–34] (reviewed below

in §2). This is especially remarkable in light of the aforementioned moduli-dependence

of the masses of the non-BPS particles, which implies that the convex hull varies as a

function of the moduli. We will further see that the Distance Conjecture itself resem-

bles a convex hull condition in each asymptotic region of moduli space (as proposed

previously in [33] under the name of the Convex Hull Distance Conjecture), but this

requires different convex hulls in different region of moduli space that do not obviously

combine into a single global picture.

The remainder of this paper is structured as follows: in §2, we review the sharpened

Distance Conjecture and the Convex Hull SWGC, introducing the machinery we will

need for our subsequent analysis and applying it to Type II string theory on a circle as

a warm-up example. In §3.1, we take a first look at heterotic string theory on a circle,

noting how the self-T-duality of the theory leads to a puzzle. In §3.2, we review how

decompactification limits of Type I′ string theory introduce new complications, leading

to ten-dimensional running solutions. We then explicitly compute the spectrum of

Kaluza-Klein modes for Type I′ string theory on a circle and show how this resolves the

puzzle mentioned above in a manner consistent with the sharpened Distance Conjecture

and the SWGC (leaving the details of the calculation to Appendices A–C). In §4 we

extend our analysis to other nine-dimensional theories of lower rank, thereby checking

the Distance Conjecture and its various refinements in a wide range of 9d theories with

sixteen supercharges. In §5, we conclude by summarizing our results and highlighting

interesting directions for future research.
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2 The Distance Conjecture and Convex Hulls

Consider a theory in d dimensions with a set of massless scalar fields (moduli) φi weakly

coupled to gravity, with action given by

S = Md−2
Pl;d

∫
ddx
√
−h
(
R

2
− 1

2
Gij∂µφ

i∂µφj + . . .

)
, (2.1)

where Gij is the field space metric and the geodesic field distance is given in Planck

units by

d(φ0, φ) =

∫ φ

φ0

√
Gijdφidφj . (2.2)

According to the Distance Conjecture, there will be a tower of particles that be-

comes exponentially light at every infinite-distance limit in this moduli space. To

understand precisely how this occurs as a function of the moduli, it is convenient to

define the scalar charge-to-mass vector of a particle of mass m as

ζi ≡ −
∂

∂φi
logm, (2.3)

following, e.g., [31, 33], where the derivative is evaluated with the d-dimensional Planck

mass held fixed. Associated to the moduli-space one-form ζi there is a dot product

ζ2 = ~ζ ·~ζ ≡ Gijζiζj defined by the inverse of the metric on moduli space Gij. In practice,

we pick an n-bein eiae
j
bδ
ab = Gij and write ζa = eiaζi in orthonormal components, which

has the advantage that the dot product of ~ζ vectors is the Cartesian dot product, but

at the expense of having to choose a frame at each point in moduli space.

To understand why ~ζ is the scalar charge-to-mass ratio, note that the moduli medi-

ate long-range forces between particles whose masses depend their vacuum expectation

values. The strength of these interactions is proportional to ∂φim, as can be read off

from the Lagrangian expanded about a given point in the moduli space

L ⊃ m2(φ)χ2 = (m2
0 + 2m0(∂φim)φi)χ2 + . . . . (2.4)

Thus, by direct analogy with gauge charges, µi = −∂φim are the scalar charges (the

sign being purely conventional) and µi
m

= −∂φi logm = ζi is the vector of scalar charge-

to-mass ratios.

Now consider the vicinity of some infinite-distance locus, commonly known as an

asymptotic region. Given a particle that is exponentially light in accordance with the

Distance Conjecture (1.1), the exponential rate at which its mass decreases is given by

the projection of the scalar charge-to-mass vector ~ζ along the corresponding geodesic

trajectory approaching the infinite-distance limit, i.e.

α = ~ζ · τ̂ , (2.5)
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where τ̂a = eai
∂λφ

i(λ)

‖∂λ~φ‖
is the normalized tangent vector to the asymptotic geodesic tra-

jectory ~φ(λ).

On the other hand, working by analogy to the Weak Gravity Conjecture [35] and

motivated by the connection to scalar forces, reference [32] proposed a Scalar Weak

Gravity Conjecture (SWGC), as follows:

Scalar Weak Gravity Conjecture. In a quantum gravity theory with massless scalar

fields (2.1), at every point in moduli space there exists a state with sufficiently large

scalar charge-to-mass ratio |~ζ| ≥ αmin for some order-one constant αmin.3

The SWGC is a local statement in moduli space, as it only involves the first derivatives

of the masses of states with respect to the moduli fields. Comparing with (2.5), it

is evident that there is some connection between this conjecture and the Distance

Conjecture, see, e.g., [2, 32, 33]. For instance, the Distance Conjecture implies that

a tower version of the SWGC holds at least asymptotically, with αmin equal to the

minimum allowed exponential rate (believed to be 1√
d−2

per the sharpened Distance

Conjecture [31]). Conversely, given a tower of particles satisfying the SWGC with this

value of αmin, |~ζ| ≥ αmin is the exponential rate at which the tower becomes light along

its own gradient flow trajectory (i.e. ∂λφ
i ∝ −∂im(φ)), and we recover the Distance

Conjecture for this particular asymptotic limit.

However, even in its tower form, the original version of the SWGC is too weak

to make a useful connection with the Distance Conjecture in theories with multiple

moduli, since only one particle/tower is required by the conjecture, and this is not

enough to satisfy the Distance Conjecture in all possible asymptotic limits. To address

this weakness, the conjecture has to be strengthened with some kind of convex hull

condition to account for the various directions in which different asymptotic limits lie.

As discussed below, there have been two notable attempts to do so [31, 33], with

different strengths and weaknesses. The first of these—the Convex Hull Distance

Conjecture—relies on certain global properties of the moduli space in asymptotic limits

and straightforwardly implies the Distance Conjecture. By contrast, the second—the

(sharpened) Convex Hull SWGC—is a purely local statement like the original SWGC,

relying on few preconditions, but it requires us to consider of both light and heavy

towers and the connection to the Distance Conjecture is non-trivial (see, e.g., [34]).

3More specifically, reference [32] required the existence of some (possibly higher dimensional) state

upon which the scalar force would act more strongly than the gravitational force. Further refinements

along these lines were proposed in [36–40]. In this paper, we are instead interested in the case where the

state is a particle and αmin is fixed not by a force condition but by its relationship to the exponential

rate in the (sharpened) Distance Conjecture.
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To introduce these conjectures, first note that in the presence of multiple moduli

fields, there can be asymptotic geodesics (say, with normalized tangent vector τ̂) that

are not parallel to the scalar charge-to-mass vector ~ζ of any tower. When this happens,

the exponential rate αmax(τ̂) of the leading (i.e., lightest) tower along such a geodesic

will be given as in (2.5) by the maximum value of ~ζ · τ̂ among the different towers that

exist in this asymptotic regime. Thus, the Distance Conjecture holds with minimum

rate αmin if and only if we have αmax(τ̂) ≥ αmin for all asymptotic directions τ̂ .4

In all examples checked so far in the literature [12, 31, 33, 41], the convex hull of

the ~ζ-vectors of the towers that become light remains unchanged as we move in a given

asymptotic region of the moduli space, even if the individual ~ζ-vectors move. When

this happens, the Distance Conjecture can be reformulated as in [33] as the following

convex hull condition:

Convex Hull Distance Conjecture. In any given asymptotic region of a quantum

gravity theory, the outside boundary of the convex hull generated by the ~ζ-vectors (2.5)

of all light towers must remain outside the ball of radius αmin in the range of directions

defining the asymptotic region.

This formulation of the Distance Conjecture is powerful because it encodes global infor-

mation about the different infinite-distance limits in a given asymptotic region rather

than each asymptotic geodesic independently.5 We will see that it also captures the in-

formation needed to derive the weakly coupled dual description that emerges at infinite

field distance.

However, it is not obvious at all whether this formulation of the Distance Conjecture

makes sense when the convex hull of the ~ζ-vectors of the towers changes as we move

in the moduli space. When this happens, it is useful to consider a closely related

statement that makes sense locally at any point in moduli space rather than in an

entire asymptotic region:

4The general procedure followed in this paper is to choose a slice of the tangent space of the moduli

space which has dimension equal to the codimension of the infinite-distance loci. This way all radial

vectors in the slice correspond to tangent vectors of geodesics approaching the infinite-distance loci.

However, it is also interesting to analyze higher dimensional slices such that not all the vectors are

associated to geodesics, and use the convex hull condition as a criterium to select what trajectories

could become geodesics in the IR upon adding a scalar potential. This has been used to put constraints

on the scalar potential from using only the Distance Conjecture (see [33]).
5It can also be used to either predict the existence of new light towers of states in an EFT or to

constrain the possible trajectories along which the Distance Conjecture is satisfied, and therefore, the

level of non-geodesicity that should be allowed in the asymptotic valleys of the scalar potential [33].

– 7 –



Convex Hull SWGC. In a quantum gravity theory with massless scalar fields (2.1),

at every point in moduli space, the convex hull generated by the ~ζ-vectors (2.5) of all

massive states contains a ball of radius αmin centered at the origin of the scalar charge-

to-mass vector space.

This conjecture has been extensively discussed and tested in [31] with the specific

choice αmin = 1√
d−2

(as motivated by the sharpened Distance Conjecture). Note that

the Convex Hull SWGC (applied to towers of states) differs from the Convex Hull

Distance Conjecture because it involves both light and heavy states, and is required to

hold everywhere in moduli space. In the remainder of this paper, we will refer to the

Convex Hull SWGC as simply the SWGC; the reader should take care not to confuse

this with the related but distinct version of the SWGC originally proposed in [32].

The goal of this paper is precisely to consider examples in which the ~ζ-vectors

change dramatically as we move in the moduli space and to determine the fate of the

various conjectures described above. In particular, we will explore in detail the case of

heterotic string theory compactified on a circle, where we will see that the ~ζ-vectors

of certain non-BPS towers are highly moduli-dependent in regions of the moduli space

corresponding to warped compactifications. Interestingly, we will see that all the above

conjectures still hold in a non-trivial way with αmin = 1√
d−2

. Moreover, we will see

that in each asymptotic region, the Distance Conjecture will still resemble a convex

hull condition, but will require different convex hulls in different regions that do not

obviously combine into any single global picture.

To illustrate our examples, we will employ two different types of plots. The first

of these is the SWGC plot, where we plot the various ~ζ-vectors of towers of states and

draw their convex hull. An example of a SWGC plot is illustrated in Figure 1(a), where

the towers are indicated by red dots and the convex hull is indicated by the light blue

region. The SWGC plot is defined at any fixed point in moduli space, and can change

as we move from point to point. The second plot is the max-α plot, where we plot the

exponential rate αmax(τ̂) of the leading tower as a function of the asymptotic direction

τ̂ . We illustrate a max-α plot in Figure 1(b), with the function αmax(τ̂) plotted in

blue. Notice that the exponential rate of a given tower is a function α(θ) of the angle

θ between ~ζ and τ , and is given by a sphere of radius |~ζ|/2 that goes through the point
~ζ and the origin, so that α(θ) varies between 0 and |~ζ|. The max-α plot is defined

globally in the moduli space, and doesn’t depend on any reference point.

2.1 Example: Type IIB on a circle

As an illustrative example, we consider the case of Type IIB string theory compacti-

fied on a circle. This theory was previously shown to satisfy the sharpened Distance
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(a) Convex Hull SWGC Plot (b) Max-α Plot

Figure 1: (a) Convex hull of the scalar charge-to-mass vectors. The Convex Hull

SWGC holds that this convex hull must contain the ball of radius αmin, which we take

to be 1√
d−2

in this paper. Points at which the boundary of the convex hull meets

the boundary of the sphere correspond to points at which the SWGC is saturated,

and in known examples these points are always populated by towers of string oscillator

modes. (b) Exponential rate αmax(τ̂) (in blue arcs) of the leading tower in the direction

τ̂ . We can see that αmax(τ̂) ≥ αmin if and only if the convex hull of ~ζ-vectors of towers

contains the ball of radius αmin. Each of the bubbles correspond to regions of asymptotic

directions in the moduli space with different leading towers, with the boundary between

them corresponding to directions along which two or more towers decay at the same

rate.

Conjecture and the SWGC in [31], and it will serve as a useful warmup for our primary

case of interest, namely heterotic string theory on a circle.

For simplicity, we will set the Type IIB axion C0 to vanish. Upon compactification

to nine dimensions, this leaves a flat two-dimensional moduli space parametrized by

the 10D dilaton Φ = log gs and the radius RIIB of the circle. We define a canonically

normalized dilaton by setting φ = −
√

2Φ (we include a minus sign so that large φ

corresponds to weak IIB string coupling) and radion ρ =
√

8
7

logRIIB. The 9d action

can be obtained from dimensionally reducing the Einstein-dilaton part of the 10d Type
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IIB effective action as follows:

SIIB ⊃
1

2κ2
10

∫
d10x
√
−Ge−φ/

√
2
{
RG + 2∂Mφ∂

Mφ
}

=
1

2κ2
9

∫
d9x
√
−g
{
Rg − (∂φ)2 − 8

7
(∂ logRIIB)2

}
=

1

2κ2
9

∫
d9x
√
−g
{
Rg − (∂φ)2 − (∂ρ)2

}
, (2.6)

whereGMN and gµν are respectively the 10-dimensional string frame and the 9-dimensional

Einstein frame metrics.

Type IIB string theory in ten dimensions features a fundamental string whose

tension is given by

T =
2πM2

Pl;10

(4π)1/4
exp

(
− φ√

2

)
. (2.7)

There is also a D-string with tension given by

T̃ =
2πM2

Pl;10

(4π)1/4
exp

(
+
φ√
2

)
. (2.8)

Upon dimensional reduction, each of these strings gives rise to a tower of string oscillator

modes as well as a tower of string winding modes. The former towers have characteristic

mass scales

mosc =
2πMPl;9

(4π)1/7
exp

(
− φ√

7
− ρ√

56

)
, m̃D-osc =

2πMPl;9

(4π)1/7
exp

(
+
φ√
7
− ρ√

56

)
, (2.9)

while the latter towers have characteristic mass scales

mw =
2πMPl;9

(4π)1/7
exp

(
− φ√

2
+

3ρ√
14

)
, m̃D-w =

2πMPl;9

(4π)1/7
exp

(
+
φ√
2

+
3ρ√
14

)
, (2.10)

There is also a tower of Kaluza-Klein modes with associated mass scale

mKK =
2πMPl;9

(4π)1/7
exp

(
−
√

8

7
ρ

)
. (2.11)

These five towers of particles yield scalar charge-to-mass vectors given by

~ζosc =

(
1√
8
,

1√
56

)
, ~ζD-osc =

(
− 1√

8
,

1√
56

)
~ζw =

(
1√
2
,− 3√

14

)
, ~ζD-w =

(
− 1√

2
,− 3√

14

)
(2.12)
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~ζKK =

(
0,

√
8

7

)
.

Notably, these vectors are independent of the vacuum expectation values of the dilaton

and the radion, so they do not change as we move in the moduli space. Relatedly, all

of the particles in these towers are BPS. The scalar charge-to-mass ratio of the KK

modes and winding modes becomes

|~ζKK| = |~ζw| = |~ζD-w| =
√

8

7
(2.13)

as expected from decompactifying one extra dimension [31], while

|~ζosc| = |~ζD-osc| =
1√
7

(2.14)

corresponds to the expected result for the oscillation modes of a critical perturbative

string [31].

These five scalar charge-to-mass vectors (and their convex hull) are plotted in

Figure 2. One can see that the convex hull contains the ball of radius 1√
d−2

, ensuring

that the SWGC is satisfied along these directions in moduli space. The points of

tangency, where the convex hull condition is only marginally satisfied, correspond to

emergent string limits.

Figure 3 depicts the function αmax(τ̂) corresponding to the exponential rate of the

leading light tower along each asymptotic geodesics moving in each direction τ̂ . As

discussed above, the sharpened Distance Conjecture requires αmax(τ̂) ≥ 1√
d−2

for all τ̂ ,

which is equivalent to the statement that αmax(τ̂) must lie outside the ball of radius
1√
d−2

for all τ̂ . This is indeed satisfied in our example. It is no coincidence that the

region bounded by αmax(τ̂) here strictly contains the convex hull of the generators,

shown in Figure 2.

Figures 2 and 3 also depict the various duality frames in the theory as a function

of location in moduli space. The region with φ > 0, ρ > 1√
7
φ corresponds to weakly-

coupled Type IIB string theory compactified on a large circle,6 as does the S-dual

region with φ < 0, ρ > − 1√
7
φ. The region with − 3√

7
φ < ρ < 1√

7
φ admits a (T-dual)

description as Type IIA string theory compactified on a large circle, as does the region

with 3√
7
φ < ρ < − 1√

7
φ. Finally, the region with ρ < 3√

7
φ and ρ < − 3√

7
φ is described by

11-dimensional M-theory compactified on T 2. In summary, the dilaton-radion moduli

space is divided into five duality frames: two of Type IIA, two of Type IIB, and one of

M-theory.

6Here, a large circle is one whose Kaluza-Klein scale mKK is lighter than the string scale, ms.
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Figure 2: Convex hull of the scalar charge-to-mass vectors for Type IIB string theory

on a circle. The convex hull generated by the Kaluza-Klein modes, the fundamental

string winding modes, and the D-string winding modes contains the ball of radius 1√
d−2

(gray), ensuring that the SWGC is satisfied. The five different duality frames of the

radion-coupling moduli space are coloured depicted in different shades, with the vertical

axis corresponding with the self-dual line.

Within each duality frame, an infinite-distance limit with αmax(τ̂) > 1√
d−2

corre-

sponds to a decompactification limit of the corresponding string/M-theory. Meanwhile,

a limit with αmax(τ̂) = 1√
d−2

corresponds to an emergent string limit. Every infinite-

distance limit falls into one of these two categories, as predicted by the Emergent String

Conjecture. Notably, the scalar charge-to-mass vectors are located precisely at the in-

terfaces between the different duality frames, so that we have as many leading towers

as boundaries between different duality frames.

This concludes our brief review of Type II string theory in nine dimensions. In

what follows, we will carry out a similar analysis for heterotic string theory in nine

dimensions, and we will see that the story is far more subtle due to the importance of

non-BPS particles.
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Figure 3: Max-α hull for Type IIB string theory on a circle (blue). Because this

hull contains the ball of radius 1√
d−2

(shaded gray), every infinite-distance limit in

the dilaton-radion plane features a tower of particles with α ≥ 1√
d−2

. Limits with

αmax = 1√
d−2

represent emergent string limits, while limits with α > 1√
d−2

represent

decompactification limits in some duality frame. There are five duality frames in the

dilaton-radion plane, two of Type IIB string theory (shaded red), two of Type IIA string

theory (shaded purple), and one of M-theory (shaded yellow). The red vertical line

depcts the Type IIB self S-dual line. This extends to the M-theory frame, corresponding

to decompactifying opposite cycles.

3 Heterotic String Theory in Nine Dimensions

In this section, we test the sharpened Distance Conjecture in the moduli space of

heterotic string theory compactified on a circle to nine dimensions, a theory with 16

supercharges and r = 17 vector multiplets. This theory has an 18-dimensional moduli

space of the form

M = M̂ × R, M̂ = SO(17, 1;Z)\SO(17, 1)/SO(17), (3.1)

where R parametrizes the dilaton and the Narain moduli space M̂ parametrizes the

radius of the circle and the 16 Wilson lines for the heterotic gauge fields.
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We will be primarily interested in two particular slices of this moduli space, depicted

in Figure 4, obtained by compactifying either the SO(32) or E8 × E8 ten-dimensional

heterotic theory on a circle with all Wilson lines turned off.7 Each slice is two dimen-

sional and flat, so it is parametrized by two moduli which we take, without loss of

generality, to be the heterotic dilaton φ (as in Section 2.1, φ = −
√

2 log gs, so that the

weak coupling limit corresponds to φ� 1) and the radion ρ associated to the heterotic

circle compactification (both being canonically normalized).

Depending on the values taken by these fields, the theory is best described by dif-

ferent dual descriptions, so we can split the moduli space into different duality frames

associated to the different weakly coupled (perturbative) descriptions that arise asymp-

totically (see Figure 4). Starting in the heterotic frame in the upper right-hand side

corner of the plots in Figure 4, we can move to smaller values of the radion and dilaton

and reconstruct the other duality frames by performing a series of T- and S-dualities.

A very detailed description of all these dualities can be found in [42]. As the heterotic

dilaton φ decreases (i.e., as we go to larger values for the coupling gs), the theory is

better described by its S-dual theory, which is Type I on a circle for the case of SO(32)

or M-theory on a torus for the case of E8 × E8. If we then also decrease the radius,

it is convenient to perform a T-duality and describe the theory in terms of Type I′ on

a circle. Moreover, these slices of the moduli space are self-dual, which means that

they exhibit a self-dual line below which the moduli space is a copy of the moduli

space above. In the above coordinates, the self-dual line occurs at ρ = 1√
7
φ (red line

in Figure 4), where the Kaluza-Klein photon enhances to an SU(2) gauge symmetry.

This self-duality corresponds to a T-duality in the heterotic frame.

3.1 A Puzzle in the SO(32) Slice of the Moduli Space

We begin by analyzing the different tower of states that emerge in the subspace of the

moduli space which has SO(32) gauge symmetry.

This theory features (among others) a tower of BPS Kaluza-Klein modes, a tower

of heterotic string oscillator modes, and a tower of BPS heterotic string winding modes.

These have the same dilaton and radion dependence as the Kaluza-Klein modes, fun-

damental string oscillator modes, and the fundamental string winding modes in Type

II string theory discussed above, i.e.,

~ζosc,h =

(
1√
8
,

1√
56

)
, ~ζw,h =

(
1√
2
,− 3√

14

)
, ~ζKK,h =

(
0,

√
8

7

)
. (3.2)

7 Note that there is an additional slice with SO(32) enhanced gauge symmetry, obtained by turning

on a Wilson line in the Z2 center of the global gauge group Spin(32)/Z2. We will comment briefly on

this additional slice below in §4.
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Figure 4: Relevant SO(32) and E8 × E8 slices of the moduli space of the N = 1 9-

dimensional theory with r = 17, parametrized by the canonically normalized heterotic

10-dimensional dilaton and radion, φ and ρ. The regions best described by heterotic,

type I′, and type I string theories, as well as M-theory, are respectively colored green,

blue, orange and yellow. The self-dual line is depicted in red, with ρ = 1√
7
φ. The

boundaries between the different regions have the same direction as several of the

towers depicted in Figures 9(a) and 9(b).

Note: The above color code for the different duality frames will be used in later figures

throughout this paper, though we will omit the labels.

The SO(32) heterotic string is S-dual to Type I string theory. Thus, the strongly

coupled regime of the heterotic string features a tower of Type I string oscillator modes

and Type I string winding modes, with moduli dependence matching that of the D-

string in Type IIB string theory, i.e.,

~ζosc,I =

(
− 1√

8
,

1√
56

)
, ~ζw,I =

(
− 1√

2
,− 3√

14

)
. (3.3)

Further, as mentioned above, heterotic string theory has the property of self-T-duality;

a circle compactification of SO(32) heterotic string theory with Wilson lines turned off

is T-dual to another SO(32) heterotic string theory, under which Kaluza-Klein modes

and winding modes of the heterotic string theory exchange. This implies the existence

of a dual phase of Type I string theory, with particles whose scalar charge-to-mass
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Figure 5: Two naive (i.e., incorrect) convex hulls of the scalar charge-to-mass vectors

in SO(32) heterotic string theory. The left convex hull is incompatible with the fact

that a tensionless Type I string emerges in the limit φ→ −∞, ρ/φ = − 1√
7
. The right

convex hull is incompatible with the existence of the Type I winding modes and requires

an unidentified mystery tower (shown in orange). The resolution to this puzzle lies in

the fact that the scalar charge-to-mass ratio vectors for Type I′ KK modes varies as a

non-trivial function of moduli space, as we will see in §3.2.

vectors are related to those of the original Type I phase by reflection across the self-

duality line, ρ = 1√
7
φ:

~̃ζosc,I(dual) =

(
− 1√

32
,− 5√

224

)
, ~̃ζw,I(dual) =

(
− 3√

8
,

1√
56

)
. (3.4)

These scalar charge-to-mass vectors are plotted in Figure 5.

Here, a puzzle presents itself: Figure 5 (left-hand plot) suggests that along the

infinite-distance geodesic with ρ→∞, ρ/φ = − 1√
7

(i.e. with tangent vector parallel to

~ζosc,I), the lightest tower of particles should be the tower of winding modes associated

with the dual Type I string. In reality, however, we know that this limit is actually an

emergent string limit well described by perturbative Type I string theory on a circle,

which means that the lightest tower of particles is the tower of Type I string oscillator

modes, with α = 1√
7
. Our naive picture is wrong!

In fact, we can argue that the decompactification limit associated to the Type I

winding modes is obstructed in certain regimes. To see this, it is more convenient
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to switch to the T-dual theory of Type I, which is Type I′. The regime of validity

of the Type I′ region is 1√
7
φ ≤ ρ ≤ − 1√

7
φ with φ < 0 from the perspective of the

heterotic variables, which is equivalent to weak coupling and small radius for Type I.

The Type I′ theory is an orientifold of Type IIA on a circle, and has two orientifold

planes O8− sitting at the endpoints of an interval, together with 16 D8-branes to

cancel the D-brane charge. The background which is dual to Type I with no Wilson

lines (i.e. such that the gauge group is SO(32)) has all the D8-branes sitting on top

of one of the orientifolds. The Type I′ string coupling then grows as we go from this

orientifold to the other one. Hence, for a given value of the Type I′ string coupling near

the O8− + D8′s, there is maximum value for the length of the interval, as otherwise

the string coupling would diverge at some regular point in between the orientifolds.

Thus, the decompactification limit is obstructed unless we also send the Type I′ string

coupling to zero fast enough. The limiting case occurs if we move along the self T-dual

line, for which the string coupling diverges precisely at the location of the O8− without

the branes.8 This implies, in particular, that the theory does not decompactify if we

move along an asymptotic geodesic whose tangent vector is parallel to ~ζI-osc, as this

would correspond to increasing the radius but also increasing the string coupling from

the Type I′ perspective (recall that winding modes of Type I are dual to KK modes of

Type I′). In particular, this means that the tower of dual Type I winding states do not

exist along the asymptotic trajectory in the direction of ~ζI-s.

Taking this reasoning into account, we could plot a new convex hull including only

the BPS states and the string oscillator modes while ignoring the Type I winding modes

(see Figure 5, right-hand plot). However, this convex hull would not contain the ball of

radius 1√
d−2

unless there is a new mystery tower with ~ζ =
(
− 2

3
√

2
,− 2

3
√

14

)
(orange point

in Figure 5, right-hand plot). If we were to take this mystery tower seriously, it would

have |~ζ| = 4
3
√

7
, which by (1.3) is equal to the exponential rate of a Kaluza-Klein tower

for a decompactification to an 18-dimensional vacuum. However, this convex hull is also

incorrect, since it is well known that the resolution of taking the infinite-distance limit

along the self-dual line is not a new 18 dimensional vacuum, but a running solution of

Type I′ in 10 dimensions. As explained above, this corresponds to the limiting case in

which the string coupling diverges in one of the orientifolds, and we simply recover 10

dimensional massive Type IIA with a running dilaton in the decompactification limit.

In what follows, we will explain how the apparent contradiction is resolved due to

the fact that the Type I winding modes are not BPS and their scalar charge-to-mass

vectors vary across moduli space. Furthermore, the fact that we are decompactifying

8The diverging coupling at the O8− leads to the enhanced SU(2) gauge symmetry along the self-

dual line, as described in [42].
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to a warped, running solution will also change the result for the scalar charge to mass

ratio of the KK towers, deviating from the unwarped result of |~ζKK| =
√

8
7
, (2.13).

3.2 The Resolution: Sliding and Decompactification to a Running Solution

To begin resolving the puzzle outlined in the previous section, we will focus on one of the

Type I′ regions of moduli space (shaded blue in Figure 9(a)). Taking an infinite-distance

limit φ→ −∞ with fixed 1√
7
φ ≤ ρ ≤ − 1√

7
φ corresponds to a decompactification limit

of weakly coupled Type I′ string theory to ten dimensions. However, as we now review,

such a decompactification limit leads not to a ten-dimensional vacuum, but rather to

a running solution.

Figure 6: Sketch of the O8-(O8+16 D8) brane-orientifold configuration needed to

obtain the SO(32) gauge group in Type I′, as well as the dilaton profile for B > 0.

As explained in [43] and rederived in Appendix A.1, type I′ theory compactified

on a interval x9 ∈ [0, 2π], with two orientifolds located at its extremes, x9
O8 = 0, 2π,

and 16 D8-branes located at {x9
i }16
i=1 ⊂ [0, 2π] (see Figure 6) results in a warped metric

GMN = Ω2(x9)ηMN and running dilaton gs,I′ = eΦI′ (x
9) given by

eΦI′ (x
9) = z(x9)−5/6 Ω(x9) = Cz(x9)−1/6, (3.5)
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with

z(x9) =

√
180

41
(α′I′)

2µ8C

{
B +

∫ x9

x90

16∑
i=1

τδ(τ − x9
i )dτ −

(∫ x9

0

16∑
i=1

δ(τ − x9
i )dτ − 8

)
x9

}
.

(3.6)

Here, µ8 is the coupling to the 9-form potential, and ν0, given by F10 ∧ ?F10 = ?ν2
0 is

proportional to the Romans mass of the massive Type IIA theory that arises between

the D8-branes. As explained in Appendix A.1, the expression of z(x9) greatly simplifies

for the brane configuration leading to the SO(32) and E8 × E8 gauge sectors. In this

first case,

zSO(32)(x
9) =

√
180

41
(α′I′)

2µ8C(B + 8x9), with B > 0 .

For later convenience, it is useful to define the dimensionless quantities Ω̂ =

Ω(α′I′)
−1/2 and Ĉ = C(α′I′)

−1/2, so that Ĉ, B are both dimensionless fields, and z(x9) ∼
Ĉ(B + 8x9) up to global numerical factors.

This non-trivial warping and dilaton background is important because it modifies

the masses (and therefore the scalar charge-to-mass ratio) of the Type I′ Kaluza-Klein

modes. We have seen previously that circle reduction of a 10-dimensional vacuum

solution leads to Kaluza-Klein modes whose masses scale with the radion ρ as

mKK ∼ exp

(
−
√

8

7
ρ

)
, (3.7)

which implies ∂ρ logmKK = −
√

8
7

everywhere in moduli space.

In the case of Type I′ string theory at hand, however, this simple calculation

no longer applies. Instead, the moduli dependence of the Kaluza-Klein mass must

be computed via a careful dimensional reduction of the 10-dimensional theory, which

requires an explicit computation of the Laplacian spectrum taking into account the

non-trivial warping. We present the computation in detail in Appendix B, while here

we only show the final result for the Type I′ KK mass:

mKK,I′ =

(∫ 2π

0

dx9Ω̂8e−2Φ̂I′

)−1/7

MPl;9. (3.8)

This is valid for both the SO(32) and E8 × E8 slices of moduli space.

As derived in Appendix A, the oscillator modes of the Type I′SO(32) string have a

mass of order

mosc,I′ =

(∫ 2π

0

dx9Ω̂2

)1/4(∫ 2π

0

dx9Ω̂8e−2ΦI′

)−11/28
(

16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9i

)1/2

MPl;9

(3.9)
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As a side remark, let us mention that this decompactification limit was also recently

discussed in [44] to argue from the bottom-up that this asymptotic limit in the 9d su-

pergravity moduli space should correspond to decompactifying to Type I′ string theory,

although their estimation of the KK mass and string scale disagree with our results.

Eqs.(25) and (26) of [44] imply mKK,I′ ∼ C−25/24 and mosc,I′ ∼ C−5/24, while the correct

result is mKK,I′ ∼ C−25/21 and mosc,I′ ∼ C−5/14, which are obtained after plugging (3.5)

into our results for the masses above (see e.g. B.2). In any case, this does not change

the fact that the KK mass is lighter than the string mass along the self-dual line, so

the qualitative results of [44] remain unchanged.

In order to plot the convex hull of all states, we also need to express the BPS masses

in the (B,C) variables. This can be done by identifying the 9-dimensional actions and

the microscopic interpretation of the BPS states from both the heterotic and Type I′

perspectives. This is done in Appendix A, and the result for the heterotic radius and

the heterotic dilaton in terms of the warping factor is given by

Rh ∼
(∫ 2π

0

dx9Ω̂2

)−1(∫ 2π

0

dx9Ω̂8e−2Φ̂I′

)1/7

M−1
Pl;9 (3.10)

gh ∼
√

2

π

(∫ 2π

0

dx9Ω̂2

)−1/2(∫ 2π

0

dx9Ω̂8e−2ΦI′

)3/2
(

16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9i

)−2

(3.11)

This, together with the relation between the string scales mosc,h = g
1/2
h mosc,I′ , is

enough to obtain the BPS heterotic KK and winding modes, mKK,h = R−1
h and

mw,h = m2
osc,hRh, in terms of the (B,C) fields. The explicit expressions are presented

in the Appendices in A.2 and A.3.

The final piece of information that we need to compute the scalar charge-to-mass

ratios is the moduli space metric Gab. This can be either computed from dimensionally

reducing the 10-dimensional Type I′ action, or more easily, by imposing that the scalar

charge-to-mass ratio of the BPS heterotic states which are purely KK or winding should

remain fixed at any point of the moduli space. The field space metric is computed using

both methods in Appendix C, which combined with the final expression for the different

tower masses in terms of B and C (see Appendix C.2) and using (2.3), leads to the

following result for the scalar charge to mass ratio vectors in the flat coordinates9

9As obtained in Appendix C.1, {φB , φC} are flat coordinates such that ds2MSO(32)
= dφ2B + dφ2C

given by (C.14)

φC =
10

3
√

7
logC +

5

2
√

7
log
[
(B + 16π)4/3 −B4/3

]
φB =

1

2
log

(B + 16π)2/3 +B2/3

(B + 16π)2/3 −B2/3
,
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(φB, φC) ∈ R>0 × R:

~ζosc,I′ =

(
1

4
,

3

4
√

7

)
, ~ζKK,h =

(
1,− 1√

7

)
,

~ζosc,h =

(
0,− 1√

7

)
, ~ζw,h =

(
−1,− 1√

7

)
, (3.13)

while for the Type I′ KK mode we have a slightly more complicated expression

~ζKK,I′ =

(
−3

2

[
2√

1− e−4φB
+ 1

]−1

,
5

2
√

7

)

=


(
−3

2

√
φB +O(φB), 5

2
√

7

)
for φB � 1,(

−1
2

+ 1
6
e−4φB +O

(
e−8φB

)
, 5

2
√

7

)
for φB � 1.

(3.14)

This formula (see (3.16) for its expression in the (φ, ρ) flat frame) is one of the most

important results of this paper. Unlike the previous towers, the scalar charge-to-mass

ratio of the Type I′ KK modes change as move in the moduli space, in such a way

that ~ζosc,I′ slides continuously along a segment of length 1
2

in the φB (equivalently B)

direction of the tangent space of the moduli space. In doing so, it interpolates between

the unwarped result
(
−1

2
, 5

2
√

7

)
when φB, B →∞ and the highly warped result

(
0, 5

2
√

7

)
at the self-dual line when φB, B → 0.

Since the above scalar charge to mass ratio is given in the flat coordinates (φB, φC),

we still need to make a change of coordinates to write them in terms of the flat frame

associated to the heterotic dilaton and radius, in order to compare the results with

Figure 5. The flat frames for the tangent spaces in different coordinates are simply

related by an O(2) transformation. Knowing that in this case the Jacobian matrix of

the coordinate change is positive definite, said transformation will be part of SO(2),

that is, a rotation. We can determine the transformation matrix Mϑ by imposing

that ~ζosc,h =
(

0,
√

8
7

)
in the (φ, ρ) flat frame, which leads to the rotation angle ϑ =

arccos
(
− 1

2
√

2

)
, and therefore

Mϑ =

− 1
2
√

2
−
√

7
8√

7
8
− 1

2
√

2

 , (3.15)

with the peculiarity that the sliding will occur in the φB direction, and with the φC axis corresponding

with the self-dual line. Any other flat frame will be related by a O(2) transfromation.
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which finally allows us to write ~ζKK,I′ from (3.14) in the (φ, ρ) flat frame:

~ζKK,I′ =

(
− 5

4
√

2
+

3

4
√

2

[
1 +

2√
1− e−4φB

]−1

,− 5

4
√

14
− 3

4

√
7

2

[
1 +

2√
1− e−4φB

]−1
)

=


(
−5
4
√

2
+ 3

4
√

2

√
φB,

−5
4
√

14
− 3

4

√
7
2

√
φB

)
+O (φB) for φB � 1,(

− 1√
2
− 1

12
√

2
e−4φB ,− 3√

14
+ 1

12

√
7
2
e−4φB

)
+O

(
e−8φB

)
for φB � 1 .

(3.16)

The final result for the scalar charge-to-mass ratios of the towers in the heterotic

variables is plotted in Figure 7. The upshot of this result is that the scalar charge-

to-mass vector representing the Type I′ Kaluza-Klein modes varies continuously as a

function of the moduli, sliding along the black dashed line in Figure 7 on one side of

the self-dual line. Similarly, the Kaluza-Klein modes of the dual Type I′ string slide

along the black dashed line on the other side.10 This implies that the convex hull of

the towers indeed changes as we me move in the moduli space.

A crucial consequence of the formula (3.14) is that the sliding of ~ζKK,I′ occurs

entirely as a function of the flat coordinate φB, which has the interpretation as the

perpendicular distance to the self-dual line. Thus, if we move along any asymptotic

geodesic that is not perpendicular to the self-dual line, φB will grow arbitrarily large as

we move towards the asymptotic region, and ~ζKK,I′ will approach the unwarped result(
−1

2
, 5

2
√

7

)
exponentially quickly. If we are only interested in tracking the dependence

of the exponential rate as a function of direction, then, the sliding will happen instan-

taneously right as our asymptotic geodesic becomes parallel to the self-dual line, as

depicted in Figure 8.

However, there is a two-parameter family of asymptotic geodesics, parametrized

by both the direction as well as the “impact parameter,” or the initial displacement in

the perpendicular direction. While for most geodesics the impact parameter will not

affect the value of ~ζKK,I′ in the asymptotic regime, for geodesics parallel to the self-dual

line we see that the value of ~ζKK,I′ depends very strongly on the impact parameter (in

this case, φB), even asymptotically, as depicted in the left part of Figure 8. We can see

that there is an order-of-limits issue regarding the asymptotic value of ~ζKK,I′ : the limits

of taking our geodesic parallel to the self-dual line and moving infinitely far along our

geodesic do not commute.

With the dependence of ~ζKK,I′ on our asymptotic trajectory in hand, let us now

derive the αmax-plot which provides the value of the exponential rate for the lightest

10The fate of the states when one crosses the self dual line is not entirely clear from our analysis.

It may be that the two towers of states are one and the same, or that one tower becomes unstable at

the self-dual line and decays into the other.
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Figure 7: Convex hulls in the two asymptotic limits for B in the I′SO(32) regions. The

convex hull for the limit B →∞ is shown in blue; this corresponds to the limit of the

I′SO(32) string with no warping. The convex hull for the analogous zero-warping limit

of the dual I′SO(32) string is shown in yellow. The convex hull for the limit B → 0

limit is shown in green; this corresponds to decompactification to the 10-dimensional

running solution. The sliding segment is depicted by a black dashed line. Note that

the heterotic towers remain fixed in any limit.

tower for every asymptotic geodesic of the moduli space. For the purposes of computing

the αmax as a function of direction in the Type I′ phases of moduli space, we can imagine

that the Kaluza-Klein scalar charge-to-mass vector jumps discontinuously from ~ζKK,I′ =

(− 1√
2
,− 3√

14
) to ~ζKK,I′(dual) = (− 3√

8
, 1√

56
) as one crosses from one Type I′ phase into the

other. Note that for geodesics parallel to the self-duality line, i.e., with ρ1 = 1√
7
φ1 < 0,

we have αmax = 5√
28

independently of the values of φ0 and ρ0. This independence is

a bit surprising given the nontrivial sliding of the Type I′ Kaluza-Klein modes’ scalar

charge-to-mass vector that occurs as φ0 and ρ0 are shifted, but this shifting turns out

to have no effect on αmax for the simple reason that the self-duality line is orthogonal

to the line segment on which the sliding occurs, as can be seen from Figure 7.

The result of all this is the max-α hull shown in Figure 9(a). Clearly, the sharpened

Distance Conjecture is satisfied, as αmax ≥ 1√
d−2

in every direction in the dilaton-radion
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Figure 8: Sketch of the behavior of the convex hull (which is defined in the tangent

space, TpMSO(32)) for points along trajectories moving to different limits of the SO(32)

slice of the moduli space, MSO(32), parameterized by the canonically normalized het-

erotic (φ, ρ). Note that in the Type I and Heterotic regions the convex hull is the same

as in the unwarped limit of the Type I′ region (i.e. B, φB →∞), which is also the same

shape as in the Type IIB string compactification on a circle, Figure 2. For fixed φB, the

tangent vector is parallel to the self-dual line, but the shape of the convex-hull depends

on the distance to it, given by φB. As we move closer, the figure is deformed by the

sliding of the Type I′ KK scalar charge-to-mass vector sliding, while still containing the
1√
d−2

radius ball.

plane. The limits in which this bound is saturated correspond to the three emergent

string limits, one of which is a heterotic string limit, the other two of which are Type I

string limits. Our initial puzzle is resolved: the Type I′ KK modes exist as long as we

stay in one Type I′ region, but do not obstruct the other Type I emergent string limit

since their scalar charge-to-mass vector varies as a function of moduli space.

An interesting consequence of our results is that the maximum value of the ex-

ponential rate for the Type I′ KK tower occurs precisely along the self-dual and it is

smaller than the naive unwarped result, αmax = 5√
28
<
√

8
7
. Hence, one has to be

careful when assuming (1.3) for a KK tower. This raises an obvious question: how
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(a) SO(32) (b) E8 × E8

Figure 9: Max-α hull for SO(32) and E8 × E8 heterotic string theories on a circle.

Everywhere except the Type I′SO(32) region, the arc of the hull is determined by the

~ζ-vector of the tower contained in said arc. In the Type I′SO(32) regions, however, the

leading tower is more subtle: in the Type I′SO(32) region above the self-dual line, the

leading tower is the Type I′-KK tower whose ~ζ-vector is located below the self dual-line.

In the dual I′SO(32) region below the self dual line, the leading tower is the Type I′-KK

tower located above the line.

small the can the exponential rate of a KK tower become due if decompactifying to

a running solution? Could it get even smaller than the one corresponding to the fun-

damental string oscillator modes? If so, this would violate the sharpened Distance

Conjecture but not the Emergent String Conjecture, which in particular shows that

the latter conjecture does not necessarily imply the former. Clearly, in the case under

consideration, this does not happen, and the sharpened Distance Conjecture is still

satisfied in a non-trivial way, but this possibility opens interesting avenues to explore

in the future.

3.3 The E8 × E8 Slice of Moduli Space

A similar analysis to that presented above can be carried out for E8×E8 heterotic string

theory on a circle. Recall that the different duality frames arising at different regions of

the moduli space were shown in Figure 4. Once again, this moduli space features a pair

of Type I′ phases, which are related to each other by the self-T-duality of the E8 ×E8
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heterotic string. To get the E8 gauge group in this theory, we need to put 7 D8-branes

on an orientifold plane, and one D8-brane away from it, precisely at a distance that will

maintain the infinite string coupling at the O8− plane, as explained in [42]. If we do this

at both ends, we get the vacuum of type I′ string theory that is dual to the heterotic

E8×E8 string with no Wilson line turned on. We will see that the Kaluza-Klein modes

for the two Type I′ phases will again slide along a line segment between (− 3√
8
, 1√

56
) and

(− 1√
2
,− 3√

14
) as a function of position in moduli space. However, they will slide in the

opposite direction from the case of the SO(32) slice previously considered!

The dimensional reduction of the Type I′ theory is analogous to the case of SO(32),

with the exception that the warping and dilaton running along the compact direction

are now given in terms of the zE8×E8(x
9) functions by

zE8×E8(x
9) ∼


Ĉx9 if 0 ≤ x9 ≤ B

ĈB if B ≤ x9 ≤ 2π −B
Ĉ(2π − x9) if 2π −B ≤ x9 ≤ 2π

, (3.17)

where, in the Type I′ frame, B denotes the location, at x9 = B , 2π − B, of the two

D8-branes which are not located in the O8-planes. Note that here B ∈ [0, π], so that

the two corresponding limits are: B → 0, which corresponds with a low warping limit

and a E8 × E8 → SO(16) × SO(16) enhancement, and B → π where the two bulk

branes coincide in the middle of the interval, leading to the enhancement E8 × E8 →
E8 × E8 × SU(2) along the self-dual line [42].

In the same way as in the SO(32) slice, the Type I′ KK tower mass is given by

(3.8), with Ω̂ and eΦ̂I′ given in terms of zE8×E8(x
9) this time. Furthermore, as computed

in Appendix A, the oscillator modes of the Type I′E8×E8
string read

mE8×E8

osc,I′ ∼
(∫ 2π−B

0

dx9Ω̂2

)−1/4(∫ 2π

0

dx9Ω̂8e−2ΦI′

)−1/7
(

16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9i

)1/4

MPl;9

(3.18)

In order to obtain BPS masses in terms of the (B,C) variables, we can identify the

heterotic winding modes (which are wrapping M2-branes from the M-theory perspec-

tive) with the Type I′ string wrapping the interval, with endpoints at xI = 0, 2π − B
(i.e. the Type I′ string is stretched between one O8-plane and the D8-brane located

further away in the interval11, as in Figure 10). This way, mw,h = Rh

2πα′h
= mw,I′ . Using

this, we obtain (see Appendix A.2) the following expression of the heterotic radius and

11This identification of the heterotic winding states in the Type I′ description can be derived by

matching charges of the states under the E8×E8×U(1)×U(1) gauge symmetry preserved at a generic

point of this slice of moduli space.
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Figure 10: Sketch of the (O8+7 D8)-D8-D8-(O8+7 D8) brane-orientifold configuration

needed to obtain the E8 × E8 gauge group in Type I′. The two stacks of seven D8-

branes are located at the orientifolds at x9 = 0, 2π, with the other two branes at

x9 = B 2π − B, such that the string coupling eΦI′ diverges at each O8− plane. The

string identified with the heterotic winding states in the Type I′ description is also

depicted, stretching from one orientifold to the D8-brane located further from it along

the interval.

dilaton,

Rh ∼
(∫ 2π−B

0

dx9Ω̂2

)(∫ 2π

0

dx9Ω̂8e−2ΦI′

)−6/7
(

16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9i

)
M−1

Pl;9 (3.19)

gh ∼
(∫ 2π−B

0

dx9Ω̂2

)1/2(∫ 2π

0

dx9Ω̂8e−2ΦI′

)( 16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9i

)−3/2

, (3.20)

The final result for the BPS states, mw,h and mKK,h ∼ R−1
h , is given in (A.34b) and

(A.34d). Finally, using the field space metric of the E8 × E8 slice of the moduli space

(see Appendix C), we can compute the scalar charge to mass ratio vectors of the above
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states in the flat (φB, φC) ∈ R>0×R frame12, as done in Appendix C.2. All the towers

have the same expression as the SO(32) slice, i.e. (3.13), except for the Type I′ KK

tower, which reads

~ζKK,I′ =

(
1

2
− 2

1 + 3e2φB
,

5

2
√

7

)

=


(

1
2
− 2

3
e−2φB +O

(
e−4φB

)
, 5

2
√

7

)
for φB →∞,(

3
4
φB +O (φ2

B) , 5
2
√

7

)
for φB ∼ 0,

(3.22)

In this case, it interpolates between
(

0, 5
2
√

7

)
(highly warped along self-dual line) and(

1
2
, 5

2
√

7

)
(unwarped), again solely as a function of the perpendicular distance to the

self-dual line. The change of coordinates between (φB, φC) and (ρ, φ) has positive-

definite Jacobian, and the SO(2) transformation is again given by ϑ = arccos
(
− 1

2
√

2

)
.

The same way as in the SO(32) case, in the (φ, ρ) flat frame, we obtain

~ζKK,I′ =

(
− 5

4
√

2
− 3

4
√

2

e2φB − 1

3e2φB + 1
,− 5

4
√

14
+

3

4

√
7

2

e2φB − 1

3e2φB + 1

)

=


(
− 3

2
√

2
+ 1

3
√

2
e−2φB , 1

2
√

14
− 1

3

√
7
2
e−2φB

)
+O

(
e−4φB

)
for φB →∞,(

− 5
4
√

2
− 3

8
√

2
φB,− 5

4
√

14
+ 3

8

√
7
2
φB

)
+O (φ2

B) for φB ∼ 0.
(3.23)

The result for the SWGC convex hull is shown in Figure 11. The Type I′ KK modes

again slide following the dashed black line. A key difference between E8×E8 heterotic

string theory and its SO(32) counterpart, however, is that the position of Type I′ KK

scalar charge-to-mass vector approaches the value (− 1√
2
,− 3√

14
) in the bottom Type

I′ phase in Figure 11, whereas it approaches the value (− 3√
8
, 1√

56
) in the top Type I′

phase (the SO(32) case has top↔ bottom). Hence, as we move along the blue arrow in

Figure 11, the convex hull is given by the blue triangle, while the yellow triangle arises

when moving along the yellow arrow in the bottom Type I′ phase. As a result, these

Kaluza-Klein modes obstruct the Type I′ emergent string limits,13 so there is only one

12The same way as in the SO(32) case, we have ds2ME8×E8
= dφ2B + dφ2C , given by (C.17a)

φC =
10

3
√

7
logC +

5

6
√

7
log
[
B(4π −B)3

]
φB = −1

2
log

3B

4π −B
,

again with the sliding only happening in the φB direction and φC axis being the self-dual line.
13This nicely reproduces the string theory expectations. From the string theory perspective, weak

coupling implies moving the isolated D8’s closer to each other, so there is a lower bound for the string
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emergent string limit in this moduli space, namely, the emergent heterotic string limit.

On the contrary, the unwarped decompactification limit is not obstructed if we move

along the direction of ~ζKK,I′ =
(

1
2
, 5

2
√

7

)
.

The result of this analysis for the Distance Conjecture is the max-α hull shown

in Figure 9(b). Even if the towers are located at the same places than for SO(32),

the nature of the leading tower dominating along some of the asymptotic limits is

different. Since the emergent string limit is obstructed, the yellow region now corre-

sponds to decompactifying two dimensions (to M-theory). In the Type I′ blue region,

we still decompactify to a 10-dimensional running solution (thereby the sliding of the

KK modes), but only a finite region of the interval exhibits a non-vanishing Romans

mass. The sharpened Distance Conjecture is satisfied, as the exponential rate of the

leading tower satisfies αmax ≥ 1√
d−2

in every direction, and saturation occurs only in

the emergent string limit.

3.4 The SO(16)× SO(16) Slice of Moduli Space

For the sake of completeness, we consider one final slice of the moduli space of heterotic

string theory compactified on S1 to 9d: the slice with enhanced SO(16)×SO(16) gauge

symmetry. From the Type I′ point of view, this corresponds [42] to having 8 D8-branes

on each O8− plane located at the endpoints of the interval S1/Z2. By (3.6), we have

z(x9) ∝ BC, so there is no warping and the dilaton is constant along the interval.

In this case gI′ ∼ B−5/6C−5/6 and Ω ∼ B−5/6C1/6, which implies that every point of

moduli space has the same moduli space metric, and the scalar charge-to-mass vectors

of the various towers do not slide.

Starting from this Type I′SO(16)×SO(16) frame, we can cover the entire two-dimensional

slice of moduli space by a sequence of dualities [43, 45–48]. First, this Type I′ string

theory is T-dual to Type I string theory with Wilson lines that break the gauge sym-

metry to SO(16)×SO(16). As in §3.1, this is S-dual to SO(32) heterotic string theory

on S1, again with Wilson lines preserving the SO(16) × SO(16) subgroup. This is

in turn T-dual to E8 × E8 heterotic string theory on S1 with Wilson lines preserving

SO(16) × SO(16) (recall that that is the maximal common subgroup of SO(32) and

E8×E8). Finally, as in §3.3, the E8×E8 heterotic string can be related via the Hořava-

Witten construction to M-theory on S1/Z2 × S1, again with the Wilson lines on S1

breaking E8 to SO(16). From the initial 9-dimensional Type I′ on S1/Z2 point of view,

the 10d bulk theory is Type IIA, which in the strong coupling limit can be lifted to

coupling that gets saturated when the two D8’s coincide at the middle of the interval. Hence, we

cannot take the weak coupling limit while keeping the radius of the interval fixed, so the Type I′

emergent string limit is obstructed.
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Figure 11: Convex hulls in the two asymptotic limits for B in the I′E8×E8
regions. The

convex hull for the limit B → 0 is shown in blue; this corresponds to the limit of the

I′E8×E8
string with no warping and large string coupling between the O8’s. The convex

hull for the analogous zero-warping, large coupling limit of the dual I′E8×E8
string is

shown in yellow. The convex hull for the limit B → π limit is shown in green; this

corresponds to decompactification to the 10-dimensional running solution. The sliding

segment is depicted by a black dashed line. As in the SO(32) case, the heterotic towers

remain fixed in any limit. Note that the Type I′ emergent string limits are always

obstructed.

M-theory by growing an additional S1, thus completing the duality chain. The different

regions, parametrized in terms of the canonically normalized SO(32) heterotic dilaton

and radion, are depicted in Figure 12.

Figure 12 also depicts the scalar charge-to-mass vectors of the relevant towers of

the theory. Beginning in SO(32) heterotic string frame, we first have the KK modes

(located on the ρ axis) and the heterotic string oscillation modes (located on in the self-

T-dual line), as well as the winding modes of the SO(32) theory. Crossing to the Type

I frame, we have the Type I KK and winding modes at each side of the T-duality line,

along which the Type I string tower is located. The mass expressions in terms of {φ, ρ}
and coordinates coordinates of the ~ζI vectors in this SO(32) heterotic frame are the
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Figure 12: The convex hull of the scalar charge-to-mass vectors for the SO(16) ×
SO(16) slice of 9d heterotic moduli space, given in terms of the canonically normalized

dilaton and radion of the SO(32) heterotic string. It is evident that the convex hull

contains the ball of radius 1√
d−2

= 1√
7
. Note that this figure is essentially identical to

Figure 2, but in this case the towers of Type I oscillation modes and winding modes

are not BPS.

same as in (2.9)–(2.12), so the resulting convex hull, depicted in Figure 12, is the same

as the Type IIB case shown in Figure 2. Notably, the convex hull remains unchanged

as we move in the moduli space, which is possible because the heterotic theory is not

self-T-dual in this slice of moduli space, so the convex hull is not symmetric under the

T-dual heterotic line.

Similarly, the discussion about the leading tower decay rate αmax(τ̂) along different

directions τ̂ is the same as the Type IIB case, which was discussed above in §2.1. Note,

however, that in this case the towers of Type I string oscillation modes and winding

modes are not BPS.

4 Other Nine-Dimensional Moduli Spaces with 16 Supercharges

So far, our main focus has been testing the sharpened Distance Conjecture in nine-

dimensional heterotic string theory. In this section, we will see that our results imme-

diately generalize and allow us to describe multiple additional slices of the landscape
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of nine-dimensional quantum gravities with 16 supercharges. These additional slices

can be viewed as “frozen” phases of the two slices we have considered with SO(32) and

E8 × E8 gauge symmetry. We again refer the reader to [42] for a detailed account of

these theories.

The first additional slice we can easily describe is the two-dimensional locus in the

moduli space of the CHL string with enhanced E8 gauge symmetry [42, 49, 50]. This

theory has r = 9 vector multiplets, and is obtained by compactifying the E8 × E8

heterotic string on a circle with a discrete Wilson line turned on for the gauged Z2

outer automorphism exchanging the two copies of E8. The moduli space of this theory

is identical to that of the E8 × E8 slice we have considered previously (see Figure 4),

with a self-T-duality line and duality frames given by E8×E8 heterotic string theory on

a circle, M-theory on a Möbius band, and an unusual variant of Type I′ string theory.

To describe this variant, recall that the E8 ×E8 slice was given by a configuration

of Type I′ string theory with 7 D8-branes on each O8− plane and two additional D8-

branes placed precisely at a distance to maintain infinite string coupling on each O8−.

To obtain the E8 locus of the CHL string, one must replace one of the O8− planes

and the 7 D8-branes on top of it with an O8(−1) plane that is frozen to sit at infinite

coupling. While this replacement changes the local dynamics on the orientifold plane,

it does not change the bulk geometry whatsoever, and thus the scalar charge to mass

ratio vector of the Type I′ KK modes is again given by (3.22). As a result, the SWGC

convex hulls for the E8 slice of the CHL string moduli space will be identical to those

for the corresponding point in the E8 × E8 slice depicted in Figure 11, and the max-α

hull will be the same as that depicted in Figure 9(b).

The next slice we can easily describe is the two-dimensional moduli space of the

asymmetric orbifold of Type IIA string theory on a circle (AOA) by the action of

(−1)FL combined with a half-shift along the circle [42, 51, 52], a theory with r = 1

vector multiplets. The moduli space of this theory is again identical to that of the

E8×E8 slice, and has a self-T-duality line as well as duality frames given by the AOA

theory, M-theory on a Klein bottle, and a configuration of Type I′ string theory. This

configuration is obtained from the E8×E8 configuration by replacing both O8− planes

and the 7 D8-branes on each with O8(−1) planes frozen to infinite coupling, leaving

behind two D8-branes in the middle of the Type I′ interval. Again, the bulk geometry

is identical to that of the E8 × E8 configuration, and so the Type I′ KK scalar charge

to mass ratios, SWGC convex hulls, and max-α plots will be identical to those for the

E8 × E8 slice considered previously.

The final slice we can easily describe is the two-dimensional moduli space of a

similar asymmetric orbifold of Type IIB string theory on a circle (AOB) by (−1)FL

combined with a half-shift [42, 51, 52], another theory with r = 1 vector multiplets.
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While the moduli space of the AOA theory is identical to that of the E8×E8 slice, the

moduli space of the AOB theory is instead identical to that of the SO(32) slice, with

a self-T-duality line and duality frames given by the AOB theory, the Dabholkar-Park

background [53], and a configuration of Type I′ string theory. This configuration is

obtained by the SO(32) configuration by replacing the O8− plane with 16 D8-branes

on top of it with an O8+ plane. Just as in the previous two cases, the bulk geometry

remains identical (this time to that of the SO(32) configuration), and so the Type I′

KK scalar charge to mass ratios, SWGC convex hulls, and max-α plots will be identical

to those for the SO(32) slice (given in (3.14), Figure 7, and Figure 9(a) respectively).

There are two additional slices of the landscape of nine-dimensional quantum grav-

ity with 16 supercharges, to which our results do not quite apply verbatim, but for

which we expect very similar (if not identical) results to hold. These are the additional

slice with SO(32) gauge symmetry mentioned in Footnote 7, as well as its frozen phase,

the new string theory with r = 1 vector multiplets described in reference [54] and ob-

tained by turning on a discrete θ-angle in the AOB theory. These theories are very

similar to the first SO(32) slice and the AOB theory respectively, but have additional

Z2 restrictions on their charge lattices. Our expectation is that these differences will

only change the prefactor of the masses of towers of states, and not the exponential

rates, so it is our expectation that the SWGC convex hulls and max-α plots will be

identical to those plotted in Figure 7 and Figure 9(a) respectively.

5 Discussion

In this paper, we have studied several noteworthy slices of the moduli space of quantum

gravity theories in nine dimensions with 16 supercharges. Our findings have led to a

striking confirmation of the sharpened Distance Conjecture and an important clarifi-

cation for the Emergent String Conjecture. As demanded by the sharpened Distance

Conjecture, every infinite-distance limit in moduli space considered above features at

least one tower of light particles which decays with geodesic distance φ as m ∼ e−αφ,

with α ≥ 1√
d−2

= 1√
7
. This bound is saturated only in emergent string limits, and is

satisfied strictly in all other limits.

As demanded by the Emergent String Conjecture, all of these infinite-distance

limits represent either emergent string limits or decompactification limits. However, in

the case of the Type I′ decompactification limits, we found that the decompactification

does not result in a 10-dimensional vacuum, but rather a running solution. The running

of the dilaton in a Type I′ decompactification limit implies that the masses of the

Type I′ Kaluza-Klein modes develop a non-trivial dependence on the moduli, which we

computed explicitly by a careful dimensional reduction including the effects of a warped

– 33 –



compactification. The possibility of a decompactification to a non-vacuum state is an

important caveat to be considered when attempting to derive consequences from the

Emergent String Conjecture (as in [55]), since it implies a possible suppression of the

exponential rate of a KK tower due to the warping and a non-trivial variation of its

value as we move in the moduli space. Given this, it is perhaps a bit surprising that the

sharpened Distance Conjecture continues to hold even in Type I′ decompactification

limits, and more generally it is not obvious that the sharpened Distance Conjecture will

remain valid once decompactifications to non-vacuum solutions are taken into account.

We also checked a version of the Scalar Weak Gravity Conjecture (SWGC) [32, 33]

in these nine-dimensional theories, which implies a lower bound for the ratio |~ζ| = |~∇m|
m

of the gradient of the mass to the mass of the tower of states, which is commonly known

as the scalar charge-to-mass ratio. Unlike the Distance conjecture, the SWGC is a local

condition of the moduli space, and we find that it is always satisfied in the asymptotic

regimes if we take the bound to be |~ζ| ≥ 1√
d−2

. This holds thanks to the particular

sliding behaviour of the non-BPS states. Notice that this version of the SWGC no

longer has the interpretation of a balance of gravitational and scalar forces (as in the

original SWGC proposal [32]) since the numerical factor in the bound is different, and is

instead fixed to coincide with the lower bound of the sharpened Distance conjecture.14

Assuming that the scalar charge-to-mass ratio of the towers does not change in a

given asymptotic regime, reference [33] showed that the Distance Conjecture is satisfied

with minumum rate αmin if and only if the convex hull of the towers of states includes

the ball of radius αmin. In this paper, we find that this connection between the Distance

Conjecture and this version of the SWGC still holds in the interior of any fixed asymp-

totic regime (i.e. for each of the dual regimes in Figure 4), even taking into account

the sliding of the non-BPS states. This is possible thanks to the fact that the sliding

of the Type I′ KK states occurs instantaneously as a function of the asymptotic direc-

tion, and so there is effectively no sliding as long as one considers asymptotic geodesics

that have a different asymptotic tangent vector.15 This implies that, in practice, one

can draw the max-α plot by stitching together the max-α plots of the unwarped light

towers in each region. However, the relevant light towers jump discontinuously as a

function of direction when crossing the self-dual line, as represented in Figure 13. The

jumping occurs in opposite directions for the case of SO(32) or E8 × E8. As a result,

the exponential rate of the Kaluza-Klein modes matches that of an unwarped circle

compactification along the geodesics in the interiors of the Type I′ regions, even if it

14This is why such type of bound was originally refered to in [33] as the Convex Hull Distance

Conjecture and referred to in [31] as the Tower SWGC.
15If we consider geodesics that are parallel to the self-dual line, the sliding occurs as a function of

the distance to the self-dual line.
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never reaches the unwarped rate of
√

8
7

in the SO(32) case (recall Figure 9(a) for the

max-α plot providing the exponential rate of the leading tower along each direction).

It would be interesting to investigate whether this relationship between the Convex

Hull SWGC and the Distance Conjecture holds more generally in any fixed asymptotic

region (satisfying, therefore, the Convex Hull Distance Conjecture of [33]), or whether

there are examples where the SWGC convex hull changes continuously as a function of

asymptotic direction.

It is important to note that, while the max-α plot for each fixed asymptotic region

arises from a convex hull, the resulting figure obtained from joining piece-wise the

different convex hulls in each asymptotic regime is not a convex hull anymore, as

depicted in see Figure 13. In each asymptotic regime, we draw the convex hull of the

leading towers of states, which happen to be always a straight line between the two

competing towers characterizing each asymptotic regime. In the Type I′ regime, the

competing towers are always the Type I string oscillator modes and the Type I′ KK

modes, but the KK modes jump as we cross the self-dual line. Figure 13 also nicely

captures the difference between the SO(32) and E8 × E8 slices: even if the towers of

states seem to be located at the same places, the Type I′ KK tower which is valid in a

given Type I′ regime is located at opposite sides of the self-dual line, and the jumping

occurs in opposite directions. This implies that the pure decompactification limit (or

the emergent string limit) is obstructed for SO(32) (or E8×E8) respectively, since the

relevant tower of states is not present when moving in the appropriate direction. This

result nicely reproduces the string theory expectations.

An interesting exercise is to check how much we could have predicted about the

weakly coupled descriptions that emerge in the infinite distance limits knowing only the

towers of states (along the lines of [55]). First of all, we want to remark that knowing

the leading tower along a particular asymptotic direction is not enough to find out

the weakly coupled description that emerges asymptotically. For instance, consider an

asymptotic trajectory on the upper left region of the moduli space in Figure 13. The

leading tower is the heterotic KK modes for ρ > − 3√
7
φ both in the case of SO(32) and

E8 × E8. However, the emerging weakly coupled description is very different in the

two cases, as one obtains 10d Type I string theory in the former and 11d M-theory in

the latter. Hence, in general, it is necessary to have information about the multiple

competing light towers in a given asymptotic region, information that can be easily

read from Figure 13. For the SO(32) case, the upper left (orange) region is controlled

by a KK tower of one extra dimension and a tower of string oscillator modes, so the

emerging description is a string theory in 10 dimensions. Contrarily, for E8 × E8,

the upper left (yellow) region is controlled by two KK towers of one extra dimension,
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(a) SO(32) (b) E8 × E8

Figure 13: Sketch of the leading towers that fulfill the Convex Hull Distance Con-

jecture in the different asymptotic regions. Each facet is generated by two competing

towers, each of which becomes light in an asymptotic region. The emergent string limits

are depicted in purple. The self-dual line in the Type I′ region should be interpreted

as a sort of branch cut, in the sense that the scalar charge-to-mass ratios of the Type

I′-KK towers jump depending on which side of the self-dual line the infinite-distance

limit resides. This means that the competing towers in the Type I′ region are always

the Type I′ KK modes and the string oscillator modes, but the location of these towers

changes as we cross the self-dual line.

so the resolution is an 11 dimensional theory (i.e., M-theory). Hence, one has to be

careful when extracting conclusions from checking individual trajectories or neglecting

the sliding of the towers in the moduli space. Let us also mention that each dual frame

(or equivalently, each face of Figure 13) is characterized by a unique result of the species

scale hinting a particular weakly coupled description, as will be explored in more detail

in [56–58].

One shortcoming of this work is that we have ignored periodic scalar fields, i.e.,

axions. This omission can be justified on the grounds that axions do not play a role in

our discussion of the Distance Conjecture, since they may be taken to be constant along

asymptotic geodesics in these slices. However, axions do play an important role in the

closely related Convex Hull SWGC [31, 33], the refined Distance Conjecture [20, 21],

and other attempts to extend the Distance Conjecture into the interior of moduli space
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[22]. Furthermore, axions are more relevant for phenomenology than infinite-distance

limits in moduli space. To this end, it would be worthwhile to study axion couplings

to matter, both in the theories considered here and more generally.

It has been over 17 years since Ooguri and Vafa first appreciated the appearance

of universal behavior in infinite-distance limits of quantum gravity moduli spaces and

proposed the celebrated Distance Conjecture. Yet even the last several years have seen

remarkable progress in our understanding of these limits. The structures underlying

the Distance Conjecture have come into focus, and the Distance Conjecture itself has

attained a greater degree of precision and rigor. After the explosive activity of the past

years, it is fair to say that we are now entering into a precision era in the Swampland

program. In this paper, we have extended this program even further, and in the process

we have demonstrated that even old and well-studied theories may hold new, important

insights into old and well-studied Swampland conjectures. We hope that this work will

inspire further exploration of uncharged territory in the Landscape and the Swampland,

even more precisely.
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A Heterotic - Type I′ duality in nine dimensions

In this appendix, we rederive the background of [43]. Additionally, we compute the

masses of the 1/2 BPS heterotic winding and KK modes. We defer to Appendix B to

compute the masses of KK modes of Type I′ string theory. With these masses, we will

compute in Appendix C.2 the sliding of the ~ζ-vectors for Type I′ KK modes.
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A.1 Equations of motion for the Type I′ dilaton and warp factor

We begin by obtaining and solving the equations of motion for the massive Type I′

dilaton ΦI′ and warp factor for the 10-dimensional string-frame metric, gI′ = Ω2η. We

will consider them to be dependent only on the internal dimension x9 ∈ [0, 2π]. Along

this interval we consider two orientifolds located at its extremes, x9
O8 = 0, 2π, and 16

D8-branes localted at {x9
i }16
i=1 ⊂ [0, 2π], with coupling µ8 to the 9-form potential. The

bulk action (the brane terms will only account for the “jumps” of these functions and

can be studied separately) is given by [48]

S
(bulk)
I′ =

1

2κ2
10,I′

∫
d10x
√
−gI′

{
e−2ΦI′

[
RgI′

+ 4∂MΦI′∂
MΦI′

]
+ (α′I′)

4ν2
0

}
=

1

2κ2
10,I′

∫
d10xe−4ΦI′ (x

9)Ω(x9)6
{

(α′I′)
4ν2

0e
4ΦI′ (x

9)Ω(x9)4 + 4Ω(x9)2∂9e
ΦI′ (x

9)

−18e2ΦI′ (x
9)
[
3Ω′(x9)2 + Ω(x9)Ω′′(x9)

]}
(A.1)

where we have included an (α′I′)
2 term accompanying the Romans mass so that the

F10 ∧ ?gI′F10 = ?gI′ν
2
0 term has the correct units of L8. Now, the solutions to the

associated equations of motion are given by

eΦI′ (x
9) = z(x9)−5/6 Ω(x9) = Cz(x9)−1/6, (A.2)

with16

z(x9) =

√
180

41
(α′I′)

2C(Bµ8 ± ν0x
9), (A.3)

with ν0 constant between branes, such that there its value has a ∆(x9
i ) = niµ8 jump at

each stack of ni 8-branes located at x9
i , resulting in ν0(2π) = ν0(0)+16µ8. As boundary

conditions require ν0(2π) = −ν0(0) = 8µ8, we end up having

ν0(x9) = µ8

[∫ x9

0

16∑
i=1

δ(τ − x9
i )dτ − 8

]
. (A.4)

On the other hand, B and C are two functions with dimensions of 1 and L constant

between branes. Following the discussion from [43], by requiring Ω and ΦI′ to be

continous, we have that C must be constant and ∆B(x9
i ) = ∓nix9

i , so that

B(x9) = B(x9
0)∓

∫ x9

x90

16∑
i=1

τδ(τ − x9
i )dτ, (A.5)

16Note that the numerical coefficient
√

180
41 we obtain is slightly different than the 3√

2
=
√

180
40

appearing in [43]. While this difference will not have any further implication in our results, it is

nonetheless an interesting observation.
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where x9
0 is some arbitrary position of the interval, x9

0 ∈ [0, 2π] for which B(x9
0) is finite.

We will take C and B(x9
0) (in our computations simply B) as moduli. Furthermore,

positivity of the membrane tension will require taking the lower signs of the above

expressions, finally reaching the following expression:

z(x9) =

√
180

41
(α′I′)

2µ8C

{
B +

∫ x9

x90

16∑
i=1

τδ(τ − x9
i )dτ −

(∫ x9

0

16∑
i=1

δ(τ − x9
i )dτ − 8

)
x9

}
(A.6)

This greatly simplifies for the SO(32), in which all the branes are located at x9
i = 2π,

and we take B = B(0), so that

zSO(32)(x
9) =

√
180

41
(α′I′)

2µ8C(B + 8x9), (A.7)

with the B → 0 limit resulting in the string coupling diverging at x9 = 0, while

for B → ∞ both ΦI′ and Ω are approximately constant, corresponding with the low

warping limit.

For E8×E8 case, where we have 7 D8-branes at each O8-plane and two additional

at two points π ∓ x9
I′ , with B = B(π). If we further require the orientifold planes to

have infinite coupling, we will need to impose z(0) = z(2π) = 0, which using (A.6)

amounts to x9
I′ = π −B (so that it is only valid for B < π), and thus

zE8×E8(x
9) =


√

180
41

(α′I′)
2µ8Cx

9 if 0 ≤ x9 ≤ B√
180
41

(α′I′)
2µ8CB if B ≤ x9 ≤ 2π −B√

180
41

(α′I′)
2µ8C(2π − x9) if 2π −B ≤ x9 ≤ 2π

(A.8)

As we will need to use it in the next subsection, we can obtain the 9-dimensional

Einstein metric for our theory. For this we will write said 9-dimensional metric as

gµν = D−2ηµν , with D some mass scale independent of x9 we will soon determine, so

that gI′µν = (ΩD)2 gµν . Doing this, we obtain

SI′ ⊃
1

2κ2
10,I′

∫
d10x
√
−gI′e−2ΦI′RgI′

⊃ 1

2κ2
10,I′

∫
d9x
√
−gRgD

7

∫ 2π

0

dx9Ω8e−2ΦI′ ,

(A.9)

with additional terms contributing to the moduli space metric through the kinetic term
1
2
Gij∂µϕ

i∂µϕj. Now, defining

r =

∫ 2π

0

dx9Ω8e−2ΦI′ , (A.10)

– 39 –



to go to Einstein frame we must use for D the following value,

D =

(
r

r0

)−1/7

r
−1/8
0 , (A.11)

where r0 is some auxiliary scale, which will not have any implication in the final result

and we just include to have dimensionally sensible expressions, we introduce to have a

metric metric with the correct dimensions. This way, we get

SI′ ⊃
r

1/8
0

2κ2
10,I′︸ ︷︷ ︸
1

2κ2
9,I′

∫
d9
√
−gRg =⇒ M7

Pl;9 =
r

1/8
0

κ2
10,I′

(A.12)

so that

D−1 = r1/7r
−1/56
0 = r1/7κ

−2/7
10,I′ M

−1
Pl;9 =

27

2π(α′I′)
4/7

(∫ 2π

0

dx9Ω8e−2ΦI′

)1/7

M−1
Pl;9 (A.13)

and finally

gµν =

(
r

r0

)2/7

r
1/4
0 ηµν (A.14)

A.2 Heterotic-Type I′ duality relations

Once we have the equations of motion associated to the Type I′ dilaton and warping,

we can obtain the heterotic and Type I′ radii and couplings in terms of the B and C

moduli, from which we can obtain the KK and winding modes, which are 1/2 BPS,

and emergent string towers of the heterotic theory. Anchoring the scalar-charge-to-

mass ratios of these 1/2 BPS masses allow us to determine how the I′ KK modes

slide. The strategy we employ is to compute the masses in heterotic string theory,

and then express the masses in terms of Type I′ string theory’s B and C fields and 9d

Planck constant. Because this derivation involves translating between I′ string theory

and heterotic string theory, we keep all dimensionful terms (such as kappas and α′’s)

explicit.

We start with the following terms appearing in the heterotic 10D action [48]:

Sh ⊃
1

2κ2
10,h

∫
d10x
√
−ghe

−2Φh

{
Rgh −

α′h
4

TrV F
2
2

}
, (A.15)

with κ2
10,h = (2π)7

2
(α′h)4. On the other hand, we find that for the Type I′ theory in the

presence of D8-branes perpendicular to the x9 direction and located at {x9
i }16
i=1 has

SI′ ⊃
1

2κ10,I′

∫
d10x
√
−gI′e

−2ΦI′RgI′
− (α′I′)

−5/2

8(2π)6

16∑
i=1

∫
x9=x9i

d9x

√
−g(d)

I′ e
−ΦI′TrV F

2
2 ,

(A.16)
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where we have expanded the DBI action for Dp-branes, with B-field set to zero

SDBI,p = −(α′)−
p+1
2

(2π)p

∫
Σp+1

dp+1xe−Φ
√
− det(g − 2πα′F2) (A.17)

up to O(α′)2 order and used that det(1+M) = exp [Trf log(1 +M)], with Trf = 1
2
TrV .

Again, κ2
10,I′ = (2π)7

2
(α′I′)

4.

We will consider that our metrics are conformally flat, with gI′MN = Ω(x9)2ηMN in

the 10-dimensional string frame, and ghµν = gI′µν = D−2ηµν (so that the 9-dimensional

Einstein frame metric is the same in both theories), with the compact dimension being

along a circle of radius Rh. For the time being, we will not assume any specific form

for the Ω and eΦI′ , only that they depend on the internal coordinate x9. In order to

relate the parameters from the two theories, we can compare their actions. We start

doing so with the gravitational terms:

S
(grav)
h =

1

2κ2
10,h

∫
d10x
√
−ghe

−2ΦhRgh

=
1

2κ2
10,h

∫
d9x

∫ 2π

0

dx9

√
−g(d)

h

√
g

(9)
h︸ ︷︷ ︸

Rh

e−2φh(R
g
(d)
h

+R
g
(9)
h︸︷︷︸

0

)

=
2πRhe

−2Φh

2κ2
10,h

∫
d9x

√
−g(d)

h R
g
(d)
h

(A.18)

Note that from the above we recover the usual expression for κ9,h,

1

2κ2
9,h

=
2πRhe

−2Φh

2κ2
10,h

=⇒ κ2
9,h = κ2

10,h(2πRh)−1e2Φh (A.19)

Now, by using that κ2
9 = 2M7

Pl;9, with the Planck mass theory-independent, we have

that (using (A.13)),

(
κ10,h

κ10,I′

)2

=

(
α′h
α′I′

)4

= 2πRhe
−2Φh

(
1

2π

∫ 2π

0
dx9Ω

)7

∫ 2π

0
dx9Ω8e−2ΦI′

, (A.20)

which we will later use. On the other hand, from the Type I′ action,

S
(grav)
I′ =

1

2κ10,I′

∫
d10x
√
−gI′e

−2ΦI′RgI′

=
1

2κ2
10,I′

∫
d9x

∫ 2π

0

dx9

√
−g(d)

I′︸ ︷︷ ︸
Ω9D9

√
−g(d)

I′

√
−g(9)

I′︸ ︷︷ ︸
Ω

e−2ΦI′ (R
g
(d)

I′
+R

g
(9)

I′︸︷︷︸
0

)
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=
D7

2κ2
10,I′

∫
d9x

√
−g(d)

h R
g
(d)
h

∫ 2π

0

dx9Ω8e−2ΦI′ , (A.21)

where we have used that in the 10-dimensional String frame, gI′µν = Ω2D2ghµν , as as

such, R
g
(d)

I′
= Ω−2D−2R

g
(d)
h

(with Ω is independent of the macroscopic coordinates).

Now, by comparing the two actions, one gets

2πRhe
−2Φh =

(
α′h
α′I′

)4

D7

∫ 2π

0

dx9Ω8e−2ΦI′ (A.22)

On the other hand, we can relate the gauge terms of both actions, as working in an

analogous way as above

S
(gauge)
h =

α′h
8κ2

10,h

∫
d10x
√
−ghe

−2ΦhTrVG
2
2 =

α′h
8κ2

10,h

2πRhe
−2Φh

∫
d9x

√
−g(d)

h TrV F
2
2

(A.23)

S
(gauge)
I′ =

(αI′)
−5/2

8(2π)6

16∑
i=1

∫
x9=x9i

d9x

√
−g(d)

I′ e
−ΦI′TrV F

2
2

=
(αI′)

−5/2

8(2π)6

16∑
i=1

Ω5e−ΦI′
∣∣
x9=x9i

∫
d9x

√
−g(d)

h TrV F
2
2 , (A.24)

where in the last step one must take into account the use of the inverse metric to raise

indices in F2. This way, one obtains the following relation

2πRhe
−2Φh = π(α′h)3(α′I′)

−5/2D5

16∑
i=1

Ω5e−ΦI′
∣∣
x9=x9i

(A.25)

This way, one can use eqs. (A.22) and (A.25) to obtain the following value for D:

D =
√
π(α′h)−1/2(α′I′)

3/4

√√√√∑16
i=1 Ω5e−ΦI′ |x9=x9i∫ 2π

0
dx9Ω8e−2ΦI′

(A.26)

One can see that, in order for eqs. (A.22) and (A.25) to make sense, we have that

[D] = L−1 and [Ω] = L. The above relations are valid for both the SO(32) and E8×E8

heterotic string theories. In order to find a third relation that allows us to obtain the

expression of D, Rh and gh, we need to identify different string states between the

heterotic and Type I′ theories.

First of all, for the SO(32) theories, we have that we can identify the masses of the

heterotic KK and Type I′ winding states, which are dual and BPS. Following [43], we
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have that mKK,h = R−1
h = Dmw,I′ , so that

1

Rh

=
D

2παI′
2

∫ 2π

0

dx9Ω2 (A.27)

in 10-dimensional Planck units, where we have used that Ts = 1
2πα′

I′
, the area element

is dA = Ω(x9)2dx9dx0, and that we wrap the string from one orientifold to the other

and back.

Now, expressions (A.22), (A.25) and (A.27) mix both heterotic and Type I′ α′

factors. Substituting α′h = g−1
h α′I′ , we obtain that for the SO(32) theories,

D = 21/4(α′I′)
−1/2

(∫ 2π

0

dx9Ω̂2

)−1/4(∫ 2π

0

dx9Ω̂8e−2ΦI′

)1/4
(

16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9i

)−1/2

(A.28a)

Rh =
π

21/4
(α′I′)

1/2

(∫ 2π

0

dx9Ω̂2

)−3/4(∫ 2π

0

dx9Ω̂8e−2ΦI′

)−1/4
(

16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9i

)1/2

(A.28b)

gh =

√
2

π

(∫ 2π

0

dx9Ω̂2

)3/2(∫ 2π

0

dx9Ω̂8e−2ΦI′

)−2
(

16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9i

)−1/2

, (A.28c)

where we have introduced the dimensionless function Ω̂ = (α′I′)
−1/2Ω. The above

expressions have the expected dimensions and units. While we could try to use duality

relations to obtain the expression of the Type I′ radius and coupling, this will not be

necessary. Using (A.13) and (A.28a), we find

MPl;9 =
225/4

π
(α′I′)

− 1
2

(∫ 2π

0

dx9Ω̂2

)− 1
4
(∫ 2π

0

dx9Ω̂8e−2ΦI′

) 11
28
( 16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9i

)− 1
2

,

(A.29)

On the other hand, in the E8×E8 case, we have that the heterotic winding (where the

winded heterotic strings at small gh and large Rh are wrapped M2-branes from M-theory

with large R9 and small R10) and Type I′ winding modes with the strings wrapped

between one O8-plane and the D8-brane located further away inside the interval at

xI = 0, 2π − B (where the winded strings are wrapping M2-branes from M-theory

perspective). This way

mw,h =
Rh

2πα′h
=

D

2πα′I′
2

∫ 2π−B

0

dx9Ω2 = mw,I′ (A.30)
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From the above equation and (A.22) and (A.25) we obtain, using again that α′h =

g−1
h α′I′ ,

D =
√

2(αI′)
−1/2

(∫ 2π−B

0

dx9Ω̂2

)1/4
(

16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9i

)−1/4

(A.31a)

Rh =
√

2(α′I′)
1/2

(∫ 2π−B

0

dx9Ω̂2

)3/4(∫ 2π

0

dx9Ω̂8e−2ΦI′

)−1
(

16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9i

)5/4

(A.31b)

gh =
2

π

(∫ 2π−B

0

dx9Ω̂2

)1/2(∫ 2π

0

dx9Ω̂8e−2ΦI′

)( 16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9i

)−3/2

, (A.31c)

as well as

MPl;9 =
213/2

π
(α′I′)

−1/2

(∫ 2π−B

0

dx9Ω̂2

)1/4(∫ 2π

0

dx9Ω̂8e−2ΦI′

)1/7( 16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9i

)−1/4

(A.32)

A.3 Masses of BPS towers

Using the expressions obtained in the above subsection one can finally compute the

expression for the mass of the different towers:

m
SO(32)
osc,I′ ∼ (α′I′)

−1/2

∼
(∫ 2π

0

dx9Ω̂2

)1/4(∫ 2π

0

dx9Ω̂8e−2ΦI′

)−11/28
(

16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9i

)1/2

MPl;9

(A.33a)

m
SO(32)
KK,h ∼ D

παI′

∫ 2π

0

dx9Ω2

∼
(∫ 2π

0

dx9Ω̂2

)(∫ 2π

0

dx9Ω̂8e−2Φ̂I′

)−1/7

MPl;9 (A.33b)

m
SO(32)
osc,h ∼ (α′h)−1/2 = g

1/2
h (α′I′)

−1/2

∼
(∫ 2π

0

dx9Ω̂8e−2ΦI′

)−5/14
(

16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9i

)−1/2

MPl;9 (A.33c)

m
SO(32)
w,h ∼ Rh

2πα′h
=
ghRh

2πα′I′
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∼
(∫ 2π

0

dx9Ω̂2

)−1(∫ 2π

0

dx9Ω̂8e−2ΦI′

)−6/7
(

16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9i

)−1

MPl;9,

(A.33d)

Similarly, the E8 × E8 towers are given by

mE8×E8

osc,I′ ∼ (α′I′)
−1/2

∼
(∫ 2π−B

0

dx9Ω̂2

)−1/4(∫ 2π

0

dx9Ω̂8e−2ΦI′

)−1/7
(

16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9i

)1/4

MPl;9

(A.34a)

mE8×E8
KK,h ∼ 1

Rh

∼
(∫ 2π−B

0

dx9Ω̂2

)−1(∫ 2π

0

dx9Ω̂8e−2ΦI′

)6/7
(

16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9i

)−1

MPl;9

(A.34b)

mE8×E8
osc,h ∼ (α′h)

−1/2 = g
1/2
h (α′I′)

−1/2

∼
(∫ 2π

0

dx9Ω̂8e−2ΦI′

)5/14
(

16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9i

)−1/2

MPl;9 (A.34c)

mE8×E8
w,h ∼ D

πα′I′

∫ 2π−B

0

dx9Ω2 ∼
(∫ 2π−B

0

dx9Ω̂2

)(∫ 2π

0

dx9Ω̂8e−2ΦI′

)−1/7

MPl;9

(A.34d)

We must take into account that the z(x9) has different expressions for the SO(32) and

E8 × E8, respectively given by (A.7) and (A.8).

B Kaluza-Klein modes for Type I′ in nine dimensions

In this section, we compute the moduli-dependence of the scaling of the masses of

the highly-excited KK modes for Type I′ string theory in 9d, and we demonstrate a

universal formula governing the scaling. We consider both the SO(32) case and the

E8 ×E8 cases. We first compute the masses of these modes from the dilaton, then the

RR 1-form, and finally show that our formulas apply to all KK modes that come from

massless 9d fields.

In this section, we express everything in terms of the I′ 9d Planck mass, which we

set to 1, since this allows us see clearly the scaling of the masses in terms of the B and

C fields. Only the scaling is important in our analysis, because that determines the
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~ζ-vectors that are computed in subsection C.2. We are free to do this here because all

of our analysis is in terms of I′ string theory, unlike the situation in Appendix A where

we do not set the type I′ 9d Planck to 1 as in that case we compare I′ string theory

with heterotic string theory.

B.1 Background fields

As derived in Appendix A.1, the equations of motion for the 10-dimensional string

frame metric and dilaton are given by

gI′MN = Ω(x9)2ηMN , eΦ(x9) = z(x9)−5/6, Ω(x9) = Cz(x9)−1/6, (B.1a)

where indices M,N run from 0 to 9, with

zSO(32)(x
9) = z0C(B + 8x9), (B.1b)

zE8×E8(x
9) =


z0Cx

9 0 ≤ x9 ≤ B

z0CB B ≤ x9 ≤ 2π −B
z0C(2π − x9) 2π −B ≤ x9 ≤ 2π,

(B.1c)

where B and C fields are dimensionless17 with z0 a numerical constant which will not

be important for the subsequent derivations. This solution is sufficient for computing

the I′ KK modes.

To get the (d = 9)-dimensional theory, we integrate over the x9 direction in the

10d action (A.1) using the backgrounds in (B.1). However, the resulting action is not

in Einstein frame. To get into Einstein frame, we must Weyl-rescale to the metric gµν
(where µ and ν run from 0 to 8), defined as

gµν =

(∫
dx9e−2ΦΩD−2

) 2
d−2

ηµν =

(∫
dx9e−2ΦΩD−2

) 2
d−2

Ω−2gI′MN . (B.2)

As we will argue below, the highly excited KK mode masses from all 10d fields will

universally scale with the moduli via

mI′

KK ∼
(∫ 2π

0

dx9Ω8e−2ΦI′

)−1/7

(B.3)

17In Appendix A.1 we obtained that C had dimensions of lenght, but we can rescale it C →
C(α′I′)

−1/2 so that it becomes adimensional, resulting in z0 being a numerical factor too.
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B.2 I′ KK masses

KK modes from the dilaton

We now compute the ~ζ-vectors for high-excitation KK modes from the dilaton in I′

string theory.

The strategy we employ is as follows. First, we expand the dilaton Φ as a mode

expansion, Φ(xM) = Φ̂(x9) +
∑

n φn(xµ)fn(x9), where Φ̂(x9) is a background field and

the functions fn(x9) are a basis of functions on x9. For a wise choice of fn(x9), we have

that in Einstein frame in 9d I′ string theory the modes have an action that takes the

form

1

2

∫
d9x
√
−g

(
Rg −

∑
n

[
(∂φn)2 +m2

nφ
2
n

])
+ . . . . (B.4)

Since this is in Einstein frame, the KK-mode masses are just mn (times the 9d I′ Planck

mass, which in the above formula is set to 1). With this mass, and also a computation

of the metric on moduli space, we can find the scalar charge-to-mass ratios of the

dilaton’s KK modes.

To find out the KK mode masses from the dilaton using the above prescription, let

us decompose the dilaton into a background and some fluctations using the following

expansion ansatz.

Φ(xM) = Φ̂(x9) +
∑
n

φn(xµ)fn(x9), (B.5)

where Φ̂(x9) is the background value of the dilaton from (B.1), φn are the KK modes of

the dilaton and are x9 independent, and fn is xµ-independent and a basis for functions

of x9. When we plug the ansatz (B.5) into the action (A.1), we have that the dilaton’s

KK modes φn appear in the action in the following way,

Sφn ∼
∫

d10x
√
−gI′e

−2Φ̂
∑
m,n

∇M(φmfm)∇M(φnfn). (B.6)

To find out what the masses of the dilaton’s highly-excited KK modes are in 9d,

we would the basis fn to be such that, in 9d Einstein frame, the mode expansion takes

the form

Sφn ∼
∫

d9x
√
−g
∑
n

(
(∂φn)2 +m2

n,KKφ
2
n

)
. (B.7)

That is, we would like to have the kinetic and mass parts of the modes φn to be

diagonal. The diagonality in (B.7) does not automatically follow from (B.6). To obtain
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it, we need the basis fn(x9) to be carefully chosen so that both the kinetic and mass

parts of (B.7) are diagonal. Fortunately, the following approach for finding a basis fn
accomplishes this job.

Let us write the metric gI′MN in the following way,

ds2
D = eaσhµν(x

α)dxµdxν + e2σh99(dx9)2, (B.8)

where hµν is x9-independent, a is some yet-to-be-determined number, and σ and h99

satisfying

eασ = e2σh99 = Ω2. (B.9)

Inserting the metric (B.8) into the KK-mode action (B.6), and using the fact that φn
are x9-independent and fn is xµ-independent, we have that the dilaton’s KK modes are

governed by the action

Sφn ∼
∫

dDx
√
−hdh99e

1
2

(da+2)σ
∑
m,n

(
e−aσfmfnh

µν∂µφm∂µφn + e−2σφmφnh
99∂9fm∂9fn

)
,

(B.10)

Let us have a in the ansatz (B.8) satisfy

0 =
1

2
(da+ 2)− a =⇒ a = − 2

d− 2
, (B.11)

as this choice allows us to perform the following integration by parts,

Sφn ∼
∫

dDx
√
−hdh99

∑
m,n

(
fmfnh

µν∂µφm∂νφn + e−2 d−1
d−2

σφmφnh
99∂9fm∂9fn

)
=

∫
dDx

√
−hdh99

∑
m,n

(
fmfnh

µν∂µφm∂νφn − φmφnfmh99∇9(e−2 d−1
d−2

σ∇9fn)
)
.

(B.12)

Now one can check that the operator

h99∇(h)
9

(
e−

d−1
d−2

σ∇(h)
9 •
)

(B.13)

is indeed self-adjoint with respect to both the integration measures dDx
√
−hdh99 and

dx9
√
h99, so that its eigenvectors {fn}n are orthogonal. As a result, we define the basis

fn in (B.5) to satisfy the eigenvector equation

h99∇(h)
9

(
e−

d−1
d−2

σ∇(h)
9 fn

)
= −λ2

nfn. (B.14)
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This implies that the KK-mode action (B.12) can be rewritten as

Sφn ∼
∫

d9x
√
−hd

∑
m,n

(
hµν∂µφm∂νφn + λ2

nφmφn
) ∫

dx9
√
h99fmfn

=

∫
d9x
√
−hd

∑
n

(
hµν∂µφn∂νφn + λ2

nφ
2
n

) ∫
dx9
√
h99f

2
n. (B.15)

In going from the first to second line, we used the fact that
∫

dx9
√
−h99fmfn ∝ δmn,

implied by the orthogonality of the {fn}n basis with respect to the dx9
√
−h99 measure.

To proceed, we need to find out what λn and fn are. Under the WKB approximation

(where λn is assumed to be very large), and using (B.9), we have that the eigenvalue

equation (B.14) for fn yields

−λ2
nfn ≈ ∂2

9fn +O(λn). (B.16)

That is, under the WKB λn � 1 approximation, fn takes the form18

fn(x9) = cn cos(λnx
9 + kn). (B.17)

The constants cn and kn in the above equation are fixed by the boundary conditions,

and are not important for our analysis, as we are not interested in the precise nature

of these boundary conditions, just that fn has moduli-independent periodicity. The

periodicity on fn results in λn being an integer,

λn = n. (B.18)

For very large n, we thus have∫
dx9
√
h99f

2
n ≈

1

2
c2
n

∫
dx9
√
h99, (B.19)

and thus for high excitation modes, (B.15) becomes

Sφn ∼
∫

ddx
√
−hd

∑
n

(
hµν∂µφn∂νφn + n2φ2

n

) ∫
dx9
√
h99. (B.20)

The metric in (B.20) is not in Einstein frame, so we cannot interpret the coefficient

in front of φ2
n as being the mass. When we express the metric hµν (B.8) in terms of the

Einstein frame metric gµν (B.2), the action for the KK modes becomes

Sφn =

∫
ddx
√
−g
∑
n

(
(∂φn)2 +

(∫
dx9e−2Φ̂ΩD−2

)− 2
d−2

n2φ2
n

)
. (B.21)

18Had we included the O(λn) term in the eigenfunction equation, an overall power of the warping

factor would appear before the cos function, not affecting the λn expression.
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Since (B.21) is in Einstein frame, we can read off the dilaton’s high-excitation KK-mode

mass,

m
(Φ)
KK =

(∫
dx9e−2Φ̂ΩD−2

)− 1
d−2

=

(∫
dx9e−2Φ̂Ω8

)− 1
7

, (B.22)

in 9d I′ Planck units.

KK modes from the RR 1-form

We now calculate the mass of the KK mode from the RR 1-form, and this approach

is similar to the calculation for the KK modes from the dilaton. The RR 1-form is

governed by the following action,

SF 2
2

= −1

2

∫
dDx
√
−gI′F

2
2 . (B.23)

We decompose the 1-form into the following basis,

AM(xµ, x9) =
∑
n

A
(n)
M (xµ)gn(x9). (B.24)

where A
(n)
M are x9 independent and gn(x9) are xµ-independent. With this decomposi-

tion, we have

FMNF
MN = FµνF

µν + 2Fµ9F
µ9F99F

99 (B.25a)

FµνF
µν =

∑
mn

F (n)
µν F

(m)µνgngm (B.25b)

Fµ9F
µ9 =

∑
mn

(
∇µA

(n)
9 − A(n)

µ ∂9 log gn

) (
∇µA9(m) − A(m)µ∂9 log gn

)
gngm (B.25c)

F99F
99 = 0. (B.25d)

For highly excited modes,

Fµ9F
µ9 ≈

∑
mn

A(n)
µ A(m)µg99∂9gn∂9gm. (B.26)

Thus, under the WKB approximation,

SF 2 = −1

2

∫
dDx
√
−gI′

∑
mn

(
F (n)
µν F

(m)µνgngm + A(n)
µ A(m)µg99∂9gn∂9gm

)
(B.27)

To proceed, consider the following metric ansatz,

ds2
D = eaςHµν(x

µ)dxµdxν + e2ςH99(dx9)2, (B.28)
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where Hµν(x
µ) is x9-independent, and we can have this ansatz by having backgrounds

ς and H99 satisfy

eaς = e2ςH99 = Ω2. (B.29)

Using this metric, we have

SF 2
2

= −1

2

∫
dDx

√
−HdH99e

1
2

(da+2)ς∑
mn

Hµν
(
e−2aςHρσF (n)

µρ F
(m)
νσ gngm + e−(a+2)ςA(n)

µ A(m)
ν H99∂9gn∂9gm

)
.

(B.30)

If we have the ansatz (B.28) satisfy,

0 =
1

2
(da+ 2)− 2a =⇒ a = − 2

d− 4
. (B.31)

then we can integrate by parts to get

SF 2 = −1

2

∫
dDx

√
−hdh99×

×
∑
mn

Hµν
(
HρσF (n)

µρ F
(m)
νσ gngm − A(n)

µ A(m)
ν gnH

99∇(H)
9

(
e−2 d−3

d−4
ς∇(H)

9 gm

))
h
.

(B.32)

Note thatH99∇(H)
9

[
e−2 d−3

d−4
ς∇(H)

9 •
]

is self-adjoint with respect with the measures dDx
√
−HdH99

and dx9
√
H99, so eigenvectors of this operator are orthogonal with respect to these mea-

sures. Thus, we choose our basis gm to satisfy

H99∇(H)
9

[
e−2 d−3

d−4
ς∇(H)

9 gm

]
= −λ2

mgm. (B.33)

For highly excited modes,

−λ2
ngn ≈ ∂2

9gn +O(λn) (B.34)

Imposing moduli-independent periodicity, this is satisfied by λn = n and gn(x9) =√
2 sin(nx9), and so for highly excited modes,

SF 2 = −1

2

∫
ddx
√
−Hd

(∫
dx9
√
H99

)∑
n

(
F (n)
µν F

(m)µν + n2A(n)
µ A(n)µ

)
h
. (B.35)
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Let’s now compare with Einstein frame. Switching from Hµν (B.28) to gµν (B.2),

we get (after locally canonically normalizing the massive vector)

SF 2 = −1

2

∫
ddx
√
−g
∑
n

(
F (n)
µν F

(m)µν − n2

(∫
dx9e−2Φ̂ΩD−2

)− 2
d−2

A(n)
µ A(n)µ

)
.

(B.36)

Since the above action (B.36) is in Einstein frame, we can read off the mass as

m
(A1)
KK ∼

(∫
dx9e−2Φ̂ΩD−2

)− 1
d−2

=

(∫
dx9e−2Φ̂Ω8

)− 1
7

, (B.37)

again in the appropriate 9d Planck units. This is the same as the mass of the KK mode

from the dilaton.

Generalization to KK modes from any massless I′ field

In fact, all high-excitation KK modes from massless fields I′ string theory have masses

that scale with the moduli in exactly the same way. In general, suppose we have,

suppressing indices, some massless field Ψ (e.g. the dilaton, a p-form, or the metric)

with some number of Lorentz indices, and in 10d the action for this field is schematically

(suppressing indices)

S[Ψ] ∼ 1

2

∫
d10x
√
−gI′(R + a(Φ̂)(∂Ψ)2), (B.38)

where a(Φ̂) is some function of the dilaton.

For high excitation modes, Ψ behaves as

Ψ ∼
∑
n

ψn(xµ) sin(nx9), (B.39)

and upon integrating over x9, we have schematically

S ∼ 1

2

∫
d9x
√
−η

((∫
dx9e−2Φ̂ΩD−2

)
R + b(φ)

∑
n

[
(∂ψn)2 + n2ψ2

n

])
, (B.40)

where b(φ) some unspecified function of the moduli and η is the Minkowski metric.

Now, note that this is not in Einstein frame. Moving to it, we obtain

S ∼ 1

2

∫
d9x
√
−g

(
R + c(φ)

∑
n

[
(∂ψn)2 +

(∫
dx9e−2Φ̂ΩD−2

)− 2
d−2

n2ψ2
n

])
, (B.41)
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for some unimportant function c(φ). This way, switching to Einstein frame causes the

kinetic term and the mass terms to always differ by a frame-switching factor, namely(∫
dx9e−2ΦΩD−2

)− 2
d−2 , due to both terms depending on different powers of the metric.

Thus, the highly excited I′ KK mode from any massless field in 10d has a mass

that satisfies a universal dependence on the moduli, given in the 9-dimensional Planck

units by

mn ∼
(∫

dx9e−2Φ̂ΩD−2

)− 1
d−2

=

(∫
dx9e−2Φ̂Ω8

)− 1
7

. (B.42)

C Moduli space metric, flat coordinates and sliding

In order to compute the scalar charge-to-mass vectors associated to the different towers,

we will need the moduli space metric Gij. Because of the warping of the internal

dimension, the moduli space metric will not correspond to the usual hyperbolic metric

Gij =
G
(0)
ij

ϕiϕj
unless in the low warping limits. The easiest way to obtain it is by considering

the expression of scalar charge-to-mass vectors of the masses,

ζ iI = −δijeaj∂a logmI , (C.1)

and noting that is nothing but a linear transformation in TpM to the flat frame de-

scribed by normal coordinates (so that the moduli space metric is given by Gab = δab)

∂a logm→ ζ i by the matrix δijeaj . Knowing how the elements of a basis of TpM trans-

form will give us the expression of δijeaj . Now, in §3.2 it was argued that BPS states

(such as the heterotic KK and winding modes) have fixed ~ζI . Denoting êia = δijeaj ,

(ζBPS)iJ = ζ iJ and (MBPS)aI = ∂a logmI , then ê = ζBPSM
−1
BPS, and from here G = (êᵀê)−1.

The BPS towers mass are given in Section A.3, and we can ask that in some normal

coordinates of TpM (all of them will be related by a SO(dimM) = SO(2) transforma-

tion)

~ζKK,h =

(
1,− 1√

7

)
, ~ζw,h =

(
−1,− 1√

7

)
,

which corresponds with the expected result in the low-warping limit.

We first start with the SO(32) moduli space metric. While the full bulk moduli

space metric is slightly complicated,19

19The complete expression of the BB component being

G
SO(32)
BB = 4

63

(
−800πB

2
3−50B

5
3 +3584π2B−

1
3

)
(B+16π)−

1
3 +

(
1792π2B−

2
3 +25B

4
3

)
+(25B2+800πB+8192π2)(B+16π)−

2
3(

(B+16π)
5
3−B

5
3 +16πB1/3(B+16π)1/3

)2

(C.2)
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we recover the following asymptotic expression:

G
SO(32)
BB =

{
1

21/372π4/3B2/3 +O(1) for B � 1
22

63B2 +O(B−3) for B � 1
(C.3a)

G
SO(32)
CC =

100

63C2
(C.3b)

G
SO(32)
BC = G

SO(32)
CB =

100

63C

(B + 16π)2/3 −B2/3

(B + 16π)5/3 −B5/3 + 16πB1/3(B + 16π)1/3

=

{
25

252πC
+O(C−1B1/3) for B � 1

25
63CB

+O(C−1B−2) for B � 1
(C.3c)

We can use the above expression to obtain the geodesics of the moduli space. The

B � 1 case is pretty straightforward, with geodesic equations resulting in the usual

(B,C)(λ) = (B0λ
b, C0λ

c), λ� 1, b > 0, (C.4)

which we could implicitly rewrite as B ∼ Cα for some α > 0. Choosing b = 0 results

in a geodesic sending C → 0, ∞ for fixed B. On the other hand, it is not difficult to

show that

(B,C)(λ) = (B0, C0λ), (C.5)

also solve the geodesic equations in any point of the moduli space. This results in

a (B,C) → (B0, 0), (B0,∞) limit, corresponding to trajectories with null tangent B

component.

On the other hand, for the E8 × E8 component, the moduli space metric is given

by

GE8×E8
BB =

4 (25B2 − 50πB + 88π2)

63B2(B − 4π)2
=

{
22

63B2 +O(B−1) for B � 1
4

9π2 +O(π −B) for B ∼ π
(C.6a)

GE8×E8
CC =

100

63C2
(C.6b)

GE8×E8
BC = GE8×E8

CB =
100(B − π)

63B(B − 4π)C
=

{
25

63BC
+O(C−1) for B � 1

100(π−B)
189π2C

+O(C−1(π −B)−2) for B ∼ π

(C.6c)

As for the geodesics, they are analogous to the SO(32) case, with (B,C)(λ) = (B0, C0λ)

being geodesic trajectories in every point of the moduli space, and (B,C)(λ) = (B0λ
b, C0λ

c)

for the B, λ� 1 and b > 0, corresponding with the low warping limit.

Finally, in the two cases studied above it is not difficult to show, computing the

only independent component of the Riemann tensor in a 2-dimensional manifold, that

both moduli spaces are flat.
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Another possible way of obtaining the moduli space metric is by dimensionally

reducing the Einstein-dilaton terms in 10-dimensional Einstein frame of the action

(with metric g̃MN = Ω2e−Φ̂I′/2ηMN), and inspecting the kinetic terms of the massless

moduli, Gab∂µϕ
i∂µϕj in the lower dimensional Einstein frame.

This way, one obtains

SI′ ⊃
1

2κ2
10,I′

∫
d10x

√
−g̃
{
Rg̃ −

1

2

(
∂Φ̂I′

)2
}

=
1

2κ2
9,I′

∫
d9x
√
−g
{
Rg − Gab∂µϕ

a∂µϕb
}
,

(C.7)

where

Gab∂µϕ
a∂µϕb =

1

r

∫ 2π

0

dx9Ω8e−2Φ̂I′

7

8

[
∂ log

(
Ω8e−2Φ̂I′r

1/7
0

r8/7

)]2

+
1

2
(∂Φ̂I′)

2

+ δ
(2)
kin,

(C.8)

where δ
(2)
kin is an extra, second order term, coming from the Ricci scalar reduction,

given by

1

2κ2
9,I′

∫
d9x
√
−gδ(2)

kin =
1

2κ2
9,I′

∫
d9x
√
−g

{
2

r

∫ 2π

0

dx9Ω8e−2Φ̂I′∆g log

(
Ω8e−2Φ̂I′r

1/7
0

r8/7

)}
(C.9)

In the low warping limit, the x9 integral in the above expression factorizes and the above

term vanishes, as then δ
(2)
kin corresponds to a total derivative. It can be then checked

that from (C.8) the low warping limits of (C.3) and (C.6) are recovered. However,

this is not the case for points of the moduli space for which there is warping, as the

above term does not vanish and the moduli space metric does not correspond with the

expression obtained from (C.8). We then need to integrate by parts and substract the

B → ∞ or B → 0 expressions, depending on whether we are considering the SO(32)

or E8 ×E8 (which correspond to a total derivative, so that we recover the appropriate

B →∞ or B → 0 behavior), so that we can rewrite

δ
(2)
kin = δ̂ − 1√

−g
lim

B→∞,0

[√
−gδ̂

]
, (C.10)

with

δ̂ = −2

r

∫ 2π

0

dx9Ω8e−2Φ̂I′


[
∂ log

(
Ω8e−2Φ̂I′r

1/7
0

r8/7

)]2

+
1

7
∂µ log

(
r

r0

)
∂µ log

(
Ω8e−2Φ̂I′r

1/7
0

r8/7

)
(C.11)
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It can be checked that the only term in the metrics receiving contributions from δ
(2)
kin

is GBB. This way, in the SO(32) case, from this two terms we obtain that for B � 1,

G
SO(32)
BB ∼ 1

21/336π4/3B2/3 − 1
21/372π4/3B2/3 = 1

21/372π4/3B2/3 , as found in (C.3), while the

contributions from δ
(2)
kin are subleading with respect to 22

63B2 in the B � 1 limit, with

δ
(2)
kin vanishing. As for the E8 × E8 case one obtains that for any value of B ∈ (0, π),

now GE8×E8
BB = 16(B−22π)(B−π)

63B2(B−4π)2
− 4(B−π)

3B(B−4π)2
=

4(25B2−50πB+88π2)
63B2(B−4π)2

, as in (C.6).

In any case, as it have been shown above, the moduli space metric is more straight-

forwardly computed by fixing the BPS towers.

C.1 Flat coordinates

Once the explicit expression of GSO(32) and GE8×E8 is known in terms of {B,C}, we can

obtain a set of flat coordinates {φB, φC} for which GφiΦj = δij.

We will start with the SO(32). For this we take (C.3) and, after completing squares,

impose

ds2
MSO(32)

=
100

63

[
dC

C
+

(B + 16π)1/3 −B1/3

(B + 16π)4/3 −B4/3
dB

]2

+

[
32π

3B1/3(B + 16π)1/3[(B + 16π)4/3 −B4/3]
dB

]2

= dφ2
C + dφ2

B, (C.12)

which result in the following system:

dφC =
10

3
√

7

[
dC

C
+

(B + 16π)1/3 −B1/3

(B + 16π)4/3 −B4/3
dB

]
(C.13a)

dφB =
32π

3B1/3(B + 16π)1/3[(B + 16π)4/3 −B4/3]
dB . (C.13b)

Note that each of the above equations are unique up to a ± sign, which we have

the freedom to choose (the relation between different flat coordinates is only a O(2)

transformation that includes reflections along some axis). The above equations can be

integrated (up to integration constants we choose to be zero) to

φC =
10

3
√

7
logC +

5

2
√

7
log
[
(B + 16π)4/3 −B4/3

]
(C.14a)

φB =
1

2
log

(B + 16π)2/3 +B2/3

(B + 16π)2/3 −B2/3
, (C.14b)

with φc ∈ R and φB ∈ (0,+∞), corresponding with the B → 0 and B →∞ limits.
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On the other hand, for E8 × E8 we take (C.6) and impose

ds2
ME8×E8

=
100

63

[
dC

C
+

π −B
B(4π −B)

dB

]2

+

[
2π

B(4π −B)
dB

]2

= dφ2
C + dφ2

B, (C.15)

resulting in the following differential equations:

dφC =
10

3
√

7

[
dC

C
+

π −B
B(4π −B)

dB

]
(C.16a)

dφB = − 2π

B(4π −B)
dB , (C.16b)

where here we have chosen the − sign for dφB equation, for reasons that will become

clear soon. Upon integration (and setting constants to zero) they yield

φC =
10

3
√

7
logC +

5

6
√

7
log
[
B(4π −B)3

]
(C.17a)

φB = −1

2
log

3B

4π −B
(C.17b)

here φC ∈ R and φB ∈ (0,+∞), corresponding with the B → π and B → 0 limits. In

Figure 14, the coordinate curves for B and C are depicted in teh (φB, φC) frame for

SO(32) and E8 × E8.

C.2 KK mode sliding

Once we have the expression for flat coordinates {φB, φC} in terms of B and C we can

invert the relation and rewrite the heterotic KK and winding and Type I′ KK masses

in terms of these expressions and see whether they remain constant as we move along

moduli space. First of all, for SO(32), we find (after some algebraic effort) from (A.33)

and (B.22)

m
SO(32)
w,h ∼ e

1√
7

ΦC+φB (C.18a)

m
SO(32)
KK,h ∼ e

1√
7

ΦC−φB (C.18b)

m
SO(32)
KK,I′ ∼

(e2φB + 1)3/2 + (e2φB − 1)3/2

3e4φB + 1
e

3
2
φB− 5

2
√
7
φC (C.18c)

resulting in the following scalar charge-to-mass vectors in the {φB, φC} basis:

~ζw,h =

(
−1,− 1√

7

)
, ~ζKK,h =

(
−1,

1√
7

)
,

~ζKK,I′ =

(
−3

2

[
2√

1− e−4φB
+ 1

]−1

,
5

2
√

7

)
. (C.19)
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(a) SO(32)
(b) E8 × E8

Figure 14: Plot of the coordinate curves for constant B (in blue) and C (in green)

in the (φB, φC) flat chart for both the SO(32) and E8 × E8 configurations. Note that

φC ∈ R, so that it would continue for φc < 0, even though only the positive values are

plotted.

We see that all of the above components are constant but ζφBKK,I′ , which is a monotonic

function of φB, with a sliding occurring from ζφBKK,I′ = −1
2

for φB = ∞ to ζφBKK,I′ = 0 at

φB = 0.

On the other hand, for E8 × E8 we take (A.34) and (B.22) and invert (C.17a) to

find

mw,h ∼ e
1√
7
φC+φB (C.20a)

mKK,h ∼ e
1√
7
φC−φB (C.20b)

mKK,I′ ∼ e
− 5

2
√
7
φC+ 3

2
φB
(
1 + 3e2φB

)−1
(C.20c)

Note that now it is evident the implications of choosing the − sign in (C.16b), as

this way the mw,h and mKK,h coincide for both SO(32) and E8 × E8. Now the scalar

charge-to-mass vectors have the following expressions:

~ζw,h =

(
−1,− 1√

7

)
, ~ζKK,h =

(
−1,+

1√
7

)
,

~ζKK,I′ =

(
1

2
− 2

1 + 3e2φB
,

5

2
√

7

)
. (C.21)
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(a) SO(32) (b) E8 × E8

Figure 15: The sliding of the I′ KK modes in the SO(32) and E8×E8 cases, in terms

of the normalized φB and φC moduli. The sliding of I′ string theory’s high excitation

KK mode occurs across the dashed region. The region in gray is the ball of radius 1√
7
.

Note that in this basis, the φC-axis is the self-dual line. Recall that from SO(32) the

limits φB → 0,+∞ correspond with B → 0,+∞, while for E8 × E8, φB → 0,+∞ are

given by B → π, 0.

Here again all the components but ζφBKK,I′ are constant, with it being monotonic as a

function of φB and sliding between ζφBKK,I′ = 1
2

for φB = ∞ and ζφBKK,I′ = 0 for φB = 0.

This is depicted, for both SO(32) and E8 × E8, in Figure (15).
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