
Physics Reports 1083 (2024) 1–169

G
a

b

c

d

4
e

f

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

The gravitational eikonal: From particle, string and brane
collisions to black-hole encounters
Paolo Di Vecchia a,b, Carlo Heissenberg c,b, Rodolfo Russo d,∗,
abriele Veneziano e,f

The Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen, Denmark
NORDITA, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, SE-11419, Stockholm, Sweden
Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden
Centre for Theoretical Physics, Department of Physics and Astronomy, Queen Mary University of London, Mile End Road, E1
NS London, United Kingdom
Theory Department, CERN, CH-1211 Geneva 23, Switzerland
Collège de France, 11 place M. Berthelot, 75005 Paris, France

a r t i c l e i n f o

Article history:
Received 22 June 2023
Received in revised form 16 April 2024
Accepted 10 June 2024
Available online xxxx
Editor: Stephan Stieberger

Keywords:
Eikonal exponentiation
Scattering amplitudes
Black holes
Gravitational waves

a b s t r a c t

Motivated by conceptual problems in quantum theories of gravity, the gravitational
eikonal approach, inspired by its electromagnetic predecessor, has been successfully
applied to the transplanckian energy collisions of elementary particles and strings
since the late eighties, and to string-brane collisions in the past decade. After the
direct detection of gravitational waves from black-hole mergers, most of the attention
has shifted towards adapting these methods to the physics of black-hole encounters.
For such systems, the eikonal exponentiation provides an amplitude-based approach
to calculate classical gravitational observables, thus complementing more traditional
analytic methods such as the Post-Newtonian expansion, the worldline formalism, or
the Effective-One-Body approach. In this review we summarize the main ideas and
techniques behind the gravitational eikonal formalism. We discuss how it can be
applied in various different physical setups involving particles, strings and branes and
then we mainly concentrate on the most recent developments, focusing on massive
scalars minimally coupled to gravity, for which we aim at being as self-contained and
comprehensive as possible.
© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

1.1. Aims and outline

Gravitational scattering, as seen from a Quantum-Field-Theory (QFT) perspective, was not a popular subject among
article theorists until the mid eighties. When in 1965 Steven Weinberg studied infrared gravitons in his now classic
aper [1], he felt obliged to provide some ‘‘reasons for now attacking this question’’. One, he said, is ‘‘because I can’’,
he second was that ‘‘something might go wrong’’ . . . but, he immediately added, ‘‘does not’’. For 20 more years or so
article theory was so much focused on the newly-formulated Standard Model of non-gravitational interactions—and of
he elementary particles affected by them—that little attention was paid to the gravitational force in spite of the daring
974 Scherk–Schwarz proposal [2,3] that the old (and unsuccessful) hadronic string theory should be recycled as a viable
ay to reconcile General Relativity (GR) with the quantum theory.
The situation changed dramatically in 1984 following the so-called first string revolution triggered by the breakthrough

ork by Green and Schwarz [4] making it at least plausible that some fully consistent (i.e. anomaly free) superstring
heories could actually be candidate theories for all known forces and elementary particles. Although that idea still
elongs to the dream category, the Green–Schwarz development gave a strong motivation for studying its implications
s a full-fledged theory of quantum gravity. Starting in 1987 several groups [5–17] started to analyze, in the spirit of the
‘thought (gedanken) experiments’’ of the old quantummechanics days, quantum gravitational scattering at transplanckian
nergies1

√
s≫ MP ≡

√
h̄
G
, i.e.

Gs
h̄
≫ 1 . (1.1)

mong the initial aims of those investigations we would like to mention:

• Understanding how unitarity bounds on partial waves, which are violated at tree level, get restored by loop
corrections. This question can be asked both in QFT and in a string-theory context.
• Connecting the high-energy, fixed-angle behavior of string scattering amplitudes to modifications of gravity at short

distance.
• Studying regimes in which the process is expected, classically, to lead to black-hole formation and, quantum

mechanically, to subsequent black-hole evaporation. The construction of a unitary S-matrix in such a context
would guarantee that information is preserved thus solving Hawking’s famous paradox [18,19]. Alternatively, find a
breakdown of unitarity.

1 For simplicity in this introduction we work in four spacetime dimension. We remind the reader that the very concept of a transplanckian
energy is quantum-mechanical: classical GR has no intrinsic mass or length scale (G−1 is a mass per unit length in units where c = 1 which we
se throughout unless explicitly stated).
3
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or scattering of elementary particles or strings which are much lighter than the Planck mass, the transplanckian regime
1.1) constitutes an ultra-relativistic limit, and is essential for dealing with the above questions. First, because gravity
ecomes the dominant force only at sufficiently high energies and this allows one to obtain (almost) theory-independent
esults. Second, because high energies are necessary (although, as we shall see, not always sufficient) in order to probe
hort distances. And, finally, because one would like to deal with black holes whose radius is (much) larger than the
lanck length ℓP =

√
Gh̄ in order to apply to them the semiclassical approximations used in [18].

A high-energy limit naturally leads to a semiclassical approximation to gravitational scattering, simplifying consid-
rably all the calculations. In non-relativistic quantum mechanics the semiclassical limit goes under the name of WKB
pproximation (see e.g. [20,21]). In a more general relativistic framework, it is associated with the so-called eikonal
pproximation, the basic tool to be described in this review article. The early applications of the eikonal approximation
ave met with considerable success in some regimes, including those in which point-particles and extended objects
strings, branes) behave differently [8,10,13,15–17,22–24]. Parts of this review will be dedicated to these aspects of
ravitational scattering. By comparison, less progress was made on the regime where gravitational collapse is classically
xpected to occur. In particular whether and how unitarity is preserved is still an unanswered question. We shall therefore
ake a less detailed account of those aspects of the problem.
In the last few years, in the wake of the first direct observation of gravitational waves by ground-based interferom-

ters [25,26], the same semiclassical approximation turned out to be a useful tool for studying collisions of very heavy
bjects, provided they remain at sufficiently large distances with respect to their size. Typical candidates are, of course,
strophysical black holes which, besides being extremely compact, are characterized by the same quantum numbers as
hose of an elementary particle, i.e. mass and spin (plus possibly some conserved charges) as long as the process is only
ensitive to the geometry outside their horizon.
Since semiclassical black holes, and a fortiori astrophysical ones, are much heavier than MP , one does not have to

consider, for them, a highly relativistic regime in order to justify the approximation (1.1) and, in particular, the eikonal
approach. And for current physical applications it is often rather the opposite, i.e. a nonrelativistic approximation is viable.
For black holes such as those featuring in the events observed by LIGO/Virgo [25], with masses of about mi ∼ 30M⊙ (with
⊙ ≃ 2× 1030 kg the solar mass), the ratio between the Schwarzschild radii 2Gm

c2
and the reduced Compton wavelength

h̄
mc obeys

2Gm2

h̄c
≃ 1079

≫ 1 , (1.2)

herefore, for such systems, the classical limit is obviously an excellent approximation. What is less obvious is the use of
point-particle approximation. This is expected to be good for black hole collisions at distances much larger than their
chwarzschild radii while for neutron stars the detailed interior of the star matters and has to be incorporated through
ome non-minimal coupling to gravity of the effective point particle.
It thus comes as no surprise that the traditional techniques for studying the collision and merger of compact

strophysical objects have been based on classical GR. Among the most important ones are those using numerical relativity
as pioneered in [27] and reviewed e.g. in [28]), the self-force approach [29], the Post-Newtonian expansion (see e.g. the
ice review in [30]), and the Effective-One-Body (EOB) framework [31,32], although the latter does make use of quantum
echanical concepts for the determination of effective potential’s parameters.
More recently, however, the idea that scattering amplitudes—the bread and butter of quantum field theory

alculations—could be recycled for use in the physics of compact astrophysical systems has made its way in the scientific
ommunity [33–42]. Furthermore, as stressed by Damour in [35], even the ultra-relativistic high-energy regime we have
lready mentioned could provide very valuable information on the classical GR problem. As is also immediately clear from
1.2), in an amplitude-based approach, one is not dealing here with straight perturbation theory, which can be thought
s an expansion for ‘‘small-G’’. One should therefore identify the appropriate way of resumming certain infinite sets of
iagrams. The essential, simplifying feature, which is shared by WKB and eikonal methods, is that in the semiclassical
imit the amplitude is controlled by a large phase, typically representing a large, classical action in units of h̄, in which
he coupling constant sits in the exponent. To obtain this form, it is crucial that particular contributions of entire classes
f loop diagrams ‘‘exponentiate’’, i.e. appear to the appropriate power and with the right combinatoric factor to all loop
rders. Sometimes this can be explicitly checked, at least at the level under scrutiny, sometimes it can be justified by
ther methods (like in the world-line approaches), and sometimes will just be assumed. The validity of the eikonal
pproximation thus needs to be checked on a case-by-case basis, but, as we shall discuss, it has been successfully applied
o semiclassical scattering for both massive and massless scattering [15,43–47], in various spacetime dimensions [48,49].
mplitude techniques, including also the eikonal, have been applied the case in which the colliding objects can be subject
o tidal deformations [50–57] or carry spin [58–84]. Tidal effects [85–95] may in particular provide clues on the equation
f states of neutron stars [96], on the nature of black holes [97] and on possible exotic astrophysical objects [98–100].
A very important feature of the semiclassical/eikonal approximation is thus that it allows one to take easily the classical

imit itself, usually through a saddle-point approximation. On the one hand agreement with classical expectations provides
check of the quantum result. On the other hand, and perhaps more interestingly, the eikonal approximation offers a
ew tool for computing classical observables. The perturbative nature of such calculations is recovered by looking for

n expansion of the exponent, after the resummation. In this way, the eikonal exponentiation provides a simple way

4
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o recover the classical limit by matching to the Post-Minkowskian (PM) regime, in which the colliding objects remain
ufficiently far apart and interact weakly, or, equivalently, undergo sufficiently small deflections,

G
√
s

b
≪ 1 . (1.3)

or reference, to obtain a rough estimate of this parameter, we may consider again the situation of a merger event in the
arly inspiral phase, as measurable by LIGO/Virgo’s detectors, where the typical relative separation r0 between the two
bjects is such that

Gmi

r0
≃

1
6
. (1.4)

his small but non-negligible ratio motivates us to investigate higher orders in the PM expansion, which translate in
igher-order approximations of the eikonal phase [47,48,101–112]. In this way, the eikonal exponentiation provides an
lternative approach for computing classical gravitational observables from scattering amplitudes, complementing various
ypes of EFT setups [37,49,113–115], the KMOC framework [116–122] as well as PM worldline EFT methods [55,56,123–
40] (see [141] for a comparison between these two approaches).
As already mentioned the gravitational eikonal approximation can be justified in a large variety of situations and this

eview will try to cover as many of them as possible indicating, in each case, both the achievements and the challenges
ying ahead. One such challenge is represented by inelastic processes, such as gravitational radiation or internal excitations
as it happens in string theory), in which eikonal phase becomes an operator [110,112,119,142–148]. We organized the
aterial according to the order in G at which the eikonal phase (or operator) is computed. We believe that by starting

rom tree-level and then working our way up to two loops, we could organize the material in a pedagogical style and
ake the presentation as accessible as possible. At each loop level we will consider the case of pure Einstein gravity and
f some supersymmetric extensions of it. At tree level and one loop, we will discuss the case of string theory as well. In
he same spirit, we also describe first the two-to-two amplitude and only then turn to radiative processes and to radiation
eaction.

A very interesting development of the eikonal methods that we shall not cover in this report concerns their application
o scattering processes taking place in asymptotically AdS spacetimes, and their connection to holographic CFTs. This
nalysis has been initiated in [149–153] focusing on the high-energy scattering of light states as was done in the eighties
n flat space. Through the AdS/CFT duality, the eikonal approach highlighted the existence of bounds on particular
ouplings in holographic CFTs, see for instance [154–157]. The eikonal regime has been also used in the analysis of the
FT correlators with heavy operators [158–163] and applied to the study of tidal excitations in AdS [164], and of higher
oint correlators [165]. Another recent development which we will not discuss is the use of the eikonal approach in the
ontext of the so-called celestial CFT [166].
With this general plan in mind, let us discuss how the report is organized. In the remainder of the present section,

e shall spell out our kinematics conventions, review the definition of partial waves and discuss qualitative features of
ifferent regimes of gravitational scattering. In Section 2, we provide a self-contained, elementary treatment of the leading
ikonal resummation for a gravitational 2→ 2 process involving massless scalar objects. We show how to calculate the
eading eikonal phase 2δ0, prove that it exponentiates and how it directly gives the deflection angle. This very simple
xample is mainly meant to whet the reader’s appetite and lends itself to two quite different derivations that lead to
he same result. One is based on the amplitude for a single graviton exchange and the other one is based on solving the
eodesic equation in the Aichelburg–Sexl metric. We also illustrate how partial-wave unitarity, which is violated at finite
oop order, is recovered via the resummation.

In Section 3, we calculate the leading-order eikonal phase 2δ0 in several different field theories, ranging from minimally
oupled massive scalars to graviton scattering off a massive scalar, dilaton gravity, N = 8 supergravity, higher-
erivative corrections of GR and scattering of spinning objects. We then turn to tree-level string amplitudes, for which we
ainly focus on string-brane scattering (the analog of a probe-limit calculation) and also introduce the eikonal operator,
hich accounts for transitions between different excited modes of the string. Section 4 is instead devoted to one-loop
alculations, which allow us on the one hand to check the first constraint arising from the exponentiation of the tree-level
esult and on the other hand to calculate the first sub-leading correction to the eikonal phase 2δ1. Like for the previous
ne, we discuss both fields and strings. In Section 5, we encounter for the first time 2 → 3 amplitudes, which enter
he discussion of the unitarity cuts of the 2 → 2 amplitudes. We review in detail this point, focusing on the interplay
etween momentum-space convolutions and their impact-parameter Fourier transforms. This also serves as an occasion
o anticipate the calculation of the imaginary part of the two-loop results, which is instead presented in Section 6 for
= 8 supergravity and for GR. There, we also comment more in detail on the definition of the impact parameter and on

he connection between eikonal phase, radial action and phase shifts.
The remainder of the report is devoted to the inclusion of radiation in the final state. This is done first following

oft theorems as in Section 7, restricting one’s attention to low-frequency radiation, and then, to leading order in the
M expansion, but capturing the full spectrum, by exponentiating the tree-level 2 → 3 amplitude as in Section 8. We
ummarize our conclusions and prospects for the future in Section 9.
Several appendices are included in order to make the material sufficiently self-contained. Appendix A collects

onventions about Feynman rules and useful results concerning Fourier transforms from momentum to impact-parameter
5
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pace. In Appendix B we present the calculation of the deflection angle in the probe limit for several theories. A brief
ppendix C collects useful identities involving the completely antisymmetric tensor. Appendix D contains material that
erves as background for the string-theory content of Sections 3, 4. In Appendix E we summarize a list of kinematic
elations that apply to the 2 → 3 process involving graviton emissions and include expressions for the waveforms that
omplement those presented in Section 8. Finally, in Appendix F we illustrate how the on-shell metric fluctuation is linked
o the asymptotic waveform.

.2. Kinematics and conventions

Before proceeding further, let us spell out here for later convenience the main conventions that will be employed in
he rest of the review.

The basic object of study of this work is the collision of two energetic objects with masses m1 and m2. These define
he initial states of a scattering process. For convenience, all external momentum vectors will be regarded as outgoing, so
hat −p1 and −p2 represent the physical momenta for such incoming particles. We work with the mostly-plus signature
or the metric,

ηµν = diag(−1, 1, . . . , 1) , µ, ν = 0, 1, . . . ,D− 1 , (1.5)

o that

p21 = −m
2
1 , p22 = −m

2
2 . (1.6)

hen the two incoming states have nonzero masses, we define their velocities according to2

pµ1 = −m1 v
µ

1 , pµ2 = −m2 v
µ

2 , v21 = −1 , v22 = −1 . (1.7)

hen their relative speed is sized by the invariant

σ = −
p1 · p2
m1m2

= −v1 · v2 =
1

√
1− v2

, (1.8)

here v is the velocity of either particle as seen from the rest frame of the other one. Of course, σ → 1+ in the near-static
limit, while σ →∞ in the ultra-relativistic limit. It is also convenient to introduce the ‘‘dual’’ velocities

v̌
µ

1 =
σv

µ

2 − v
µ

1

σ 2 − 1
, v̌

µ

2 =
σv

µ

1 − v
µ

2

σ 2 − 1
, v1 · v̌1 = v2 · v̌2 = −1 , v1 · v̌2 = v2 · v̌1 = 0 . (1.9)

In particular, these vectors allow one to conveniently decompose any given vector ξµ in terms of its longitudinal and
transverse components according to

ξµ = ξ∥1v̌
µ

1 + ξ∥2v̌
µ

2 + ξ
µ

⊥
, (1.10)

with

ξ∥1 = −ξ · v1 , ξ∥2 = −ξ · v2 , ξ⊥ · v1 = 0 , ξ⊥ · v2 = 0 . (1.11)

In a center-of-mass frame, the initial momenta take the form

− p1 = (E1, p⃗ ) , −p2 = (E2,−p⃗ ) , (1.12)

where p⃗ is a (D − 1)-dimensional spatial vector. Let us collect here a few useful relations that link the relativistic factor
σ and the masses m1,2 to the total energy E = E1 + E2, the single-particle energies E1,2 and the absolute value p = |p⃗ | of
the spatial momentum in such a frame,

Ep = m1m2

√
σ 2 − 1 , (1.13)

E = E1 + E2 =
√
m2

1 + 2m1m2σ +m2
2 , (1.14)

E1 =
m1

E
(m1 + σm2) , (1.15)

E2 =
m2

E
(m2 + σm1) . (1.16)

We define the scattering amplitude for the process α → β in the standard way by decomposing the S operator
according to S = 1+ iT and by letting

⟨β|T |α⟩ = (2π )Dδ(D)(Pα + Pβ )Aα→β , (1.17)

2 While pµ1,2 are past-directed to comply with the all-outgoing convention for external momenta, vµ1,2 are future-directed, hence the minus signs
n (1.7) and also in (1.28) below.
6
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here the momentum conserving delta function takes into account that all momenta are formally outgoing. We normalize
ingle-particle momentum eigenstates with mass m according to the Lorentz-invariant convention

2πθ (p0)δ(p2 +m2)⟨p| − p′⟩ = (2π )Dδ(D)(p+ p′) , (1.18)

hich is equivalent to the more common normalization3

⟨p| − p′⟩ = 2
√
|p⃗ |2 +m2(2π )D−1δ(D−1)(p⃗+ p⃗ ′) . (1.19)

A case that we will often consider in the following is that of an elastic 2 → 2 scattering depicted in Fig. 1. We shall
enote the corresponding amplitude simply by A and label the incoming particles by 1, 2 and the outgoing ones by 3, 4,

in such a way that

p21 = p24 = −m
2
1 , p22 = p23 = −m

2
2 . (1.20)

s already mentioned, all external momenta are regarded as outgoing so that they satisfy the conservation condition

p1 + p2 + p3 + p4 = 0 (1.21)

nd thus define the standard Mandelstam variables via

s = −(p1 + p2)2, t = −(p1 + p4)2, u = −(p1 + p3)2. (1.22)

s usual, s is linked to the total energy in the center-of-mass frame E by E =
√
s. We also define the momentum transfer,

q = p1 + p4 = −p2 − p3 , (1.23)

hich is related to the Mandelstam invariant t by t = −q2. Of course, u can be written in terms of s and t using momentum
onservation and the mass-shell conditions,

s+ t + u = 2(m2
1 +m2

2) . (1.24)

ore explicitly, following the notation in (1.17),

⟨p4, p3|T | − p2,−p1⟩ = (2π )Dδ(D)(p1 + p2 + p3 + p4)A(s, t) . (1.25)

et us note, for later convenience, that one can also factor the overall momentum-conserving delta function by recasting
he S-matrix element as follows,

2πθ (p04)δ(p
2
4 +m2

1)2πθ (p
0
3)δ(p

2
3 +m2

2)⟨p4, p3|S| − p2,−p1⟩ = (2π )Dδ(D)(p1 + p2 + p3 + p4)S (1.26)

here, using δ(D)(p1 + p4)δ(D)(p2 + p3) = δ(D)(p1 + p2 + p3 + p4)δ(D)(q) for the disconnected piece, with q as in (1.23),4

S = S(p1, p2; q) = (2π )Dδ(D)(q)+ 2πδ(2p1 · q− q2)2πδ(2p2 · q+ q2)iA(s,−q2) . (1.27)

t can be convenient to introduce ‘‘average’’ momenta p̄µi and velocities uµi according to [167]

−pµ1 = p̄µ1 −
1
2
qµ , pµ4 = p̄µ1 +

1
2
qµ ,

−pµ2 = p̄µ2 +
1
2
qµ , pµ3 = p̄µ2 −

1
2
qµ ,

(1.28)

nd, for i = 1, 2,

p̄µi = m̄iu
µ

i , u2
i = −1 . (1.29)

n this way the mass-shell conditions turn into the following relations: by p21 − p24 = 0 and p22 − p23 = 0,

p̄i · q = 0 , ui · q = 0 , (1.30)

for i = 1, 2, while by p21 + p24 = −2m
2
1 and p22 + p23 = −2m

2
2,

m̄2
1 = m2

1 +
1
4
q2 , m̄2

2 = m2
2 +

1
4
q2 . (1.31)

he Fourier transform of the S-matrix element S defined in (1.27) is then∫
dDq

(2π )D
S eib·q = 1+ i

∫
dDq

(2π )D
eib·q2πδ(2p̄1 · q)2πδ(2p̄2 · q)A(s,−q2) = 1+ i FT[A](s, b) . (1.32)

3 One can multiply both sides of (1.18) by 2πθ (−p′0)δ(p′2 +m2) to make it manifestly symmetric.
4 For simplicity, we leave the θ functions implicit since they are irrelevant for sufficiently small q, given the fact that p04 = −p

0
1 + q0 and −p01 is

positive.
7
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Fig. 1. To the left, a diagrammatic picture of the elastic 2→ 2 amplitude A. To the right, a cartoon of two-body scattering in the center-of-mass
rame.

Going to a center-of-mass frame, one has

−p1 = (E1, p⃗ ) , −p2 = (E2,−p⃗ ) , p3 = (E2,−p⃗ ′) , p4 = (E1, p⃗ ′) , (1.33)

where now p⃗ and p⃗ ′ are (D−1)-dimensional space vectors with |p⃗ | = |p⃗ ′| ≡ p. In this frame, E1, E2, p obey (1.13), (1.14),
(1.15), (1.16), and

qµ = (0, q⃗ ) = (0, p⃗ ′ − p⃗ ) , q2 = |q⃗ |2 = 2p2(1− p̂ · p̂ ′) , (1.34)

where p̂ = p⃗/p and similarly for p̂ ′. In fact, these properties correspond to further factorized forms of the S-matrix element
(1.27),

S = 2πδ(q0)

[
(2π )D−1δ(D−1)(q⃗ )+ i2πδ(p− |p⃗+ q⃗ |)

A(s,−|q⃗ |2)
4Ep

]
(1.35)

= 2πδ(q0)(2π )D−1
δ(p− p′)
pD−2

[
δ(D−2)(p̂, p̂′ )+ i

( p
2π

)D−2 A(s,−2p2(1− p̂ · p̂′))
4Ep

]
(1.36)

where in the second line p⃗ ′ = p⃗ + q⃗ and δ(D−2)(p̂, p̂′) is the invariant delta function on the (D − 2)-sphere (for
instance δ(2)(p̂, p̂′ ) = δ(θ − θ ′)δ(φ − φ′)/ sin θ in D = 4 with standard spherical coordinates, which obviously implies∫ 2π
0 dφ

∫ π
0 dθ sin θ δ(2)(p̂, p̂′ ) = 1).

Aligning the ‘‘average momenta’’ so that p̄µ1 = (Ē1, 0, . . . , 0, p̄) and p̄µ2 = (Ē2, 0, . . . , 0,−p̄), one obtains

−p1 =
(
Ē1,−

1
2
q, p̄

)
, p4 =

(
Ē1,

1
2
q, p̄

)
,

−p2 =
(
Ē2,

1
2
q,−p̄

)
, p3 =

(
Ē2,−

1
2
q,−p̄

)
,

(1.37)

nd in this way

q = (0, q, 0) , (1.38)

hile the energies Ē1,2 can be obtained from the mass-shell conditions:

Ē2
1,2 = p̄2 +

q2

4
+m2

1,2 . (1.39)

s is clear from (1.37), this parametrization corresponds to the so-called Breit (or brick-wall) frame, where each particle
ounces back in the transverse directions and moves unperturbed along the longitudinal directions.
Another amplitude that we will employ in the following, especially when dealing with emitted radiation, is the
→ 3 amplitude A(5) describing the collision of two energetic particles with incoming momenta −p1, −p2 and outgoing
omenta k1, k2 with the additional emission of a single graviton with momentum k, as depicted in Fig. 2 so that

p21 = p24 = −m
2
1 , p22 = p23 = −m

2
2 , k2 = 0 (1.40)

nd

p1 + p2 + k1 + k2 + k = 0 . (1.41)

n this case, we find it convenient to define two ‘‘momentum transfers’’

q1 = p1 + k1 , q2 = p2 + k2 , q1 + q2 + k = 0 . (1.42)

mploying the velocities (1.7), the amplitude will depend on the invariants

σ = −v ·v ≥ 1 , ω = −v ·k ≥ 0 , ω = −v ·k ≥ 0 (1.43)
1 2 1 1 2 2

8
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Fig. 2. To the left, a diagrammatic picture of the inelastic 2→ 3 amplitude A(5) . To the right, a cartoon of two-body scattering with emission of
ravitational radiation.

here ωj is the graviton’s frequency as seen in the rest frame of particle j (for j = 1, 2). Using (1.10), we can decompose
µ as

kµ = ω1v̌
µ

1 + ω2v̌
µ

2 + kµ
⊥
, (1.44)

nd k2 = 0 implies
P

σ 2 − 1
= k2
⊥
≥ 0 , P = −ω2

1 + 2ω1ω2σ − ω
2
2 . (1.45)

As we shall discuss, the classical limit is obtained by considering q1, q2, k simultaneously small compared with the
ncoming particles’ momenta. Therefore the exact mass-shell conditions for the massive states

2p1 · q1 = q21 , 2p2 · q2 = q22 , (1.46)

read to leading order5

p1 · q1 ≈ 0 , p2 · q2 ≈ 0 . (1.47)

In this way, we find

qµ1 ≈ −ω2v̌
µ

2 + qµ1⊥ , qµ2 ≈ −ω1v̌
µ

1 + qµ2⊥ , (1.48)

as follows from the last two equations in (1.9), and

q21 ≈
ω2

2

σ 2 − 1
+ q21⊥ , q22 ≈

ω2
1

σ 2 − 1
+ q22⊥ . (1.49)

his follows immediately from v̌21 = v̌
2
2 =

1
σ2−1

and from the last equation in (1.11) for ξ = qi.
In a 2→ 2+ N process with emission of N gravitons, the conservation condition would read

p1 + p2 + k1 + k2 + P = 0 , (1.50)

ith P the sum of all graviton momenta. Squaring this relation one finds

σ ′ ≡ −
k1 · k2
m1m2

= σ −
2P · (p1 + p2)+ P2

2m1m2
, (1.51)

here P · (p1 + p2)/
√
s = Erad is the energy lost to graviton emissions in the (incoming) center-of-mass frame, while

P2 > 0 represents the gravitons’ invariant mass squared. Clearly, by energy conservation Erad ≤
√
s, and thus

2P · (p1 + p2)+ P2
= 2
√
s Erad − (Erad)2 + P⃗2

rad ≥ (Erad)2 + P⃗2
rad ≥ 0 . (1.52)

herefore (1.51) shows that the massive particles’ relative velocity always decreases as a result of the emissions, σ ′ ≤ σ .
e shall return to this point in Section 8 and in the outlook.

.3. Partial waves, unitarity, phase shifts and the eikonal phase

For later convenience, let us recall how the 2 → 2 scattering amplitude can be decomposed into partial waves by
xpressing it in terms of angular momentum eigenstates, and how unitarity holds for each partial wave. For simplicity
e will discuss the procedure in D = 4 although generalization to arbitrary D is straightforward (see for instance [7,168]).
e shall also focus on scalar massive particles, see e.g. [169,170] for generalizations to the spinning case.

5 We could introduce ‘‘average’’ momenta that are exactly orthogonal to q1 , q2 respectively, analogous to p̄µ1,2 introduced in (1.29), but we will
ot need the relations (1.47) beyond leading order.
9
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Let us start from the S-matrix element obtained in (1.36) by factoring out the motion of the center of mass, which we
ay regard as the definition of the ‘‘reduced’’ S and T operators in this frame,

⟨p̂ ′|S|p̂⟩ = δ(2)(p̂, p̂′)+ i⟨p̂ ′|T |p̂⟩ , ⟨p̂ ′|T |p̂⟩ =
( p
2π

)2 A(s,−q2)
4Ep

, (1.53)

here

⟨p̂ ′|p̂⟩ = δ(2)(p̂, p̂′) , q = 2p sin
θ

2
, p̂ · p̂′ ≡ cos θ . (1.54)

t is convenient to go to a basis with well-defined properties under rotations by means of the spherical harmonics Yjm(p̂ ),

|j,m⟩ =
∫

dΩ(p̂) Yjm(p̂)|p̂⟩ , ⟨j′,m′|j,m⟩ = δjj′δmm′ . (1.55)

or concreteness, aligning p̂ ′ along the z axis, the three components of p̂ can be expressed in terms of θ and φ as
ˆ = (cosφ sin θ, sinφ sin θ, cos θ ) and dΩ(p̂) = sin θ dθ dφ with 0 ≤ φ < 2π and 0 ≤ θ ≤ π . The states |j,m⟩ in
1.55) are eigenstates of the total angular momentum J2 and of its component along a given axis, say Jz ,

J2|j,m⟩ = h̄2j(j+ 1)|j,m⟩ , Jz |j,m⟩ = h̄m|j,m⟩ . (1.56)

ince we are dealing with collisions of scalar particles, the invariance of S and T under rotations implies via the
Wigner–Eckart theorem that their matrix elements take the following diagonal form,

⟨j′,m′|S|j,m⟩ = sj(s)δjj′δmm′ , ⟨j′,m′|T |j,m⟩ = 2fj(s)δjj′δmm′ , (1.57)

here fj(s) are suitable, m-independent functions, which we may identify as partial waves, and of course

sj(s) = 1+ 2ifj(s) . (1.58)

t is also common to express fj(s) in terms of the so-called phase shifts δj(s), according to

1+ 2ifj(s) = e2iδj(s) , fj(s) =
e2iδj(s) − 1

2i
= eiδj(s) sin δj(s) . (1.59)

herefore, using (1.55) and the definition (1.57) of fj(s) we obtain

⟨p̂ ′|T |p̂⟩ =
∞∑
j=0

2j+ 1
2π

Pj(p̂ · p̂ ′) fj(s) , (1.60)

after recalling the addition theorem that links the spherical harmonics to the Legendre polynomials Pj, (see for instance
DLMF (14.30.09))

j∑
m=−j

Y ∗jm(p̂)Yjm(p̂′) =
2j+ 1
4π

Pj(p̂ · p̂ ′) . (1.61)

omparing with (1.53), we see that the original amplitude can be decomposed as follows,

A(s,−q2) =
8πE
p

∞∑
j=0

(2j+ 1)fj(s)Pj(cos θ ) , (1.62)

fj(s) =
p

16πE

∫
+1

−1
d(cos θ ) Pj(cos θ )A(s,−q2)

⏐⏐
q=2p sin θ

2
, (1.63)

here the latter relation can be obtained from the former using the orthogonality properties of the Legendre polynomials,∫
+1

−1
dx Pj(x)Pk(x) =

2
2j+ 1

δjk , Pj(1) = 1 . (1.64)

The virtue of the partial waves fj(s) is that the full non-linear unitarity condition S†S = 1, which takes the following
form for the T -matrix,

− i(T − T †) = T †T , (1.65)

ecomes diagonal in j and its elastic contribution is particularly simple. Indeed, by taking the expectation value of (1.65)
n ⟨j,m| · · · |j,m⟩ and inserting a complete set of states on the right-hand side, by (1.57) one finds that the sum over
ntermediate two-body states simplifies to a single term, and the result is

Im f (s, j) = |f (s)|2 + inelastic , (1.66)
j j
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here each (j-dependent) inelastic contribution is non negative. This implies the bound

Im fj(s, j) ≥ |fj(s)|2 (1.67)

or the (weaker) inequality

|fj(s)| ≤ 1 . (1.68)

Indeed, (1.66) can be obtained starting directly from S†S = 1 and recalling the definition of the phase shifts (1.59),

|sj(s)|2 + inelastic = 1 , e−2 Im2δj(s) + inelastic = 1 (1.69)

and thus one obtains the following bounds equivalent to (1.67),

|sj(s)| ≤ 1 , Im 2δj(s) ≥ 0 (1.70)

with the equality signs holding true for perfectly elastic scattering. Note that, unlike the Froissart bound, which depends
on the absence of massless particles, the bound on partial waves should also hold in the presence of long range forces, in
particular for gravity.

The eikonal phase, which constitutes the focus of this report, is closely related to the phase shifts discussed above.
The main difference is that the eikonal is introduced by performing the Fourier transform of the S-matrix elements rather
than their partial wave decomposition

S̃(s, b) = 1+ iÃ(s, b) = 1+
∫

dD−2q
(2π )D−2

eib·q
iA(s,−q2)

4Ep
, (1.71)

where we are assuming the kinematics of the Breit frame (1.37). The technical advantage is that one does not have to
deal with Legendre (or Gegenbauer for D > 4) polynomials, while the drawback is that the exact diagonal form in (1.57)
is lost as we shall see in Eq. (5.26) below. However in the classical limit there is an approximate diagonalization and so,
in analogy with (1.59), it is convenient to introduce the eikonal phase 2δ(s, b)

S̃(s, b) = 1+ iÃ(s, b) = (1+ · · · ) e2iδ(s,b) , (1.72)

where the eikonal 2δ scales as 1/h̄ while the dots in the prefactor stand for quantum corrections. The impact parameter b,
unlike j, is a continuous variable directly related to a classical quantity. The precise relation between 2δj(s) and 2δ(s, b) will
e discussed in Section 2.2 and more generally in Section 6.1, where we will also elaborate on the relation between (1.71)
nd the covariant definition of the Fourier Transform introduced in (A.31).

.4. Regimes of 2→ 2 scattering

As intuitively clear, the classical impulse Q , i.e. the total momentum transfer during a classical 2→ 2 collision, emerges
rom the quantum description via the exchange of a very large number of gravitons, each carrying a momentum of order q.
he resummation mechanism described in the next sections will make this intuitive picture precise, effectively capturing
n infinite number of graviton exchanges and thus predicting the classical limit of the amplitude from its conventional
xpansion in perturbation theory. Expressing the amplitude as a function of the collision’s impact parameter, this
esummation leads to the exponential of the original perturbative amplitude. Of course, due to the multiple interactions,
he transferred momentum Q exchanged in the classical process is much larger than the perturbative momentum transfer
,

Q ≫ q . (1.73)

n particular, the ratio Q/q goes to infinity in the classical limit, i.e. in the formal h̄→ 0 limit.
As far as the classical process is concerned, we are particularly interested in the regime where Q is small in comparison

ith the center-of-mass energy

s≫ Q 2 , (1.74)

hile the masses are kept arbitrary so as to explore various limits. A first regime is when the total center of mass energy
s of the order of the masses

s, m2
1, m

2
2 ≫ Q 2 black-hole scattering, (1.75)

which we dub as ‘‘black hole scattering’’. Indeed, this can be seen as a relativistic, open-trajectory analogue of a black-hole
binary system tracing out a non-relativistic, closed trajectory motion during the inspiral phase. From the conceptual point
of view, it is interesting to take the extreme case where the kinetic energy is much larger than the (large) rest mass energy
of the external states

s≫ m2
≫ Q 2 high-energy scattering. (1.76)
i

11
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his ultrarelativistic limit is in principle different from the case where the masses are set to zero and one describes the
cattering of two shock waves

s≫ Q 2 , m2
i = 0 shock-wave scattering, (1.77)

s will become clear especially in Section 7.3. It will be interesting to compare the two cases above. In particular we will
ee that for some quantities, such as the deflection angle up to 3PM, the transition from m2

i ≫ Q 2 to m2
i → 0 is smooth,

while others quantities have rather different behaviors in these two regimes. Finally another interesting case is that of an
elastic process where the mass of one state is much larger than the mass and kinetic energy of the other one

s,m2
1 ≫ s−m2

1 −m2
2, m

2
2 ≫ Q 2 probe limit. (1.78)

In this limit the light external state can be seen as a probe particle traveling in the gravitational background produced by
the heavy object. Thus, in this case, the results can be checked by studying the geodetic motion of a test mass in a fixed
classical metric.

2. Leading exponentiation: an appetizer

In this section we describe, in the technically simpler massless case, how to extract the leading eikonal phase
e2iδ0 both from perturbative quantum field theory, following [36,101,102,171], and from purely classical considerations,
following [6,172]. We also show how 2δ0 is directly linked to the deflection angle for the classical trajectory via a
stationary-phase approximation, and illustrate some related properties of the amplitude that become manifest in its
partial-wave decomposition.

2.1. Minimally coupled massless scalars: from amplitudes to geometry

In order to illustrate the leading-order exponentiation in the simplest possible gravitational setup, let us start from
the case of two massless scalar fields minimally coupled to gravity,

S =
∫

R
2κ2

D

√
−g dDx−

1
2

∑
a=1,2

∫
∂µφa gµν ∂νφa

√
−g dDx , (2.1)

ith κD =
√
8πGD. Considering fluctuations about a flat Minkowski background gµν = ηµν + 2κD hµν and adopting De

onder gauge leads to the Feynman rules described in Appendix A.2. In particular, the propagators for the graviton and
or the scalar with ‘‘flavor’’ index a = 1, 2 are given by (G and Ga are the same function, but it is somewhat helpful to
keep track of their subscript)6

Gµν,ρσ (k) = Pµν,ρσG(k) , G(k) =
−i

k2 − i0
, Ga(ka) =

−i
k2a − i0

, (2.2)

here

Pµν,ρσ =
1
2

(
ηµρηνσ + ηµσηνρ −

2
D− 2

ηµνηρσ

)
. (2.3)

oreover, the leading scalar-graviton-scalar vertex reads

τµνa (p, p′) = −iκD
[
pµp′ν + pνp′µ − ηµν(pp′)

]
, (2.4)

here the scalar lines are regarded as both outgoing. One may consider replacing Pµν,ρσ with the projector over physical
raviton states (see (5.45) below), but this replacement is immaterial for our present purposes because τµνa is transverse,
.e. τµνa pµ = 0 = τµνa p′µ (and thus also τµνa kµ = 0 with kµ = −pµ − p′µ) when pµ and p′µ are on-shell.

Let A(s, t) be the amplitude for the elastic scattering of 1 and 2. We shall consider its behavior in the Regge limit,

s = −(p1 + p2)2 ≫ −t = −q2 . (2.5)

n this regime, the incoming particles are highly energetic and barely graze off each other, so that p1, p2 are formally very
arge compared to q, i.e. the deflection is very small. Moreover, we shall focus on the contribution to the amplitude at L
oops, AL(s, t), that arises from the exchange of n = L + 1 virtual gravitons between the two energetic lines as depicted
in Fig. 3. As we shall discuss shortly, these ‘‘ladder’’ diagrams indeed provide the dominant contribution to the L-loop
mplitude in the Regge limit. We further denote by ℓ1, ℓ2, . . . , ℓn the momenta of such exchanges, flowing from 2 to 1
see Fig. 3). Clearly this contribution takes the form

iAn−1(s, t) =
∫ ⎡⎣ n∏

j=1

G(ℓj)
dDℓj
(2π )D

⎤⎦ (2π )Dδ(D) (q− ℓ) J (n), (2.6)

6 More precisely, since the propagator is diagonal in ‘‘flavor’’ space, G (k) = G (k) δ .
ab a ab
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Fig. 3. An example of (crossed) ladder topology. The thick line at the top (blue) refers to particle 1 and the thick line at the bottom (green) refers
to particle 2. The exchanged graviton lines are attached and labeled by ℓ1, . . . , ℓ7 in a random way. They flow from bottom to top, as indicated for
the ℓ4 line.

where ℓ =
∑

j ℓj and J (n) is given by a sum over all ladder topologies of suitable products of massless scalar propagators
together with the appropriate contractions between the projectors Pµν,ρσ and the vertices τµνa . Before spelling out J (n)
explicitly, let us examine one such contraction and retain only the leading order in the Regge or near-forward limit,
ℓj ∼ q≪

√
s. We find

τ
µν

1 (p1 − ℓi,−p1 + ℓj) ≃ 2iκDp
µ

1 p
ν
1 (2.7)

nd therefore

τ
µν

1 (p1 − ℓi,−p1 + ℓj)Pµν,ρσ τ
ρσ

2 (p2 + ℓk,−p2 − ℓl) ≃ −κ2
Ds

2 . (2.8)

or instance, in the case of a single exchange (tree level),

A0(s, t) = ≃
κ2
Ds

2

q2
(2.9)

here the subscript 0 stands for tree level. Consequently, to leading order, all dependence on vertices and index
ontractions factorizes according to

J (n) ≃
(
−κ2

Ds
2)n I (n), (2.10)

nd we can rewrite (2.6) as

iAn−1(s, t) ≃
(
−κ2

Ds
2)n ∫ ⎡⎣ n∏

j=1

G(ℓj)
dDℓj
(2π )D

⎤⎦ (2π )Dδ(D) (q− ℓ) I (n) (2.11)

with I (n) a purely scalar object given by a sum over all ladder topologies of suitable products of G1 and G2 propagators,
as we now describe.

Summing all possible ways of attaching the exchanged lines and averaging over their labeling, we can write I (1) = 1
and

I (n) =
1
n!

∑
σ∈Sn

G1(p1 − ℓσ1 ) · · ·G1(p1 − ℓσ1 − · · · − ℓσn−1 )

×

∑
σ ′∈Sn

G2(p2 + ℓσ ′1 ) · · ·G2(p2 + ℓσ ′1 + · · · + ℓσ ′n−1 )
(2.12)

for n ≥ 2, where Sn is the permutation group for n objects and 1
n! compensates for multiple counting. Note that, thanks

o the explicit averages in Eq. (2.12), we solved for ℓσn = q− ℓσ1 − · · ·− ℓσn−1 (and similarly for ℓσ ′n ) without spoiling the
ermutation symmetry of I (n). Two-particle and three-particle exchanges are illustrated in Fig. 4. Denoting by a subscript
the components orthogonal to p1 and p2, to leading order in the Regge limit (2.5) we can decompose the D-momentum

onserving delta function as follows (the factor of 2s arises from the Jacobian of the appropriate change of variables, see
q. (A.42))

δ(D)(q− ℓ) ≃ 2s δ(2p1ℓ) δ(2p2ℓ) δ(D−2)(q⊥ − ℓ⊥) . (2.13)

imilarly, to leading order, we can make the approximation

G1(p1 − ℓk) =
−i

2 ≃
−i

, (2.14)

−2p1ℓk + ℓk − i0 −2p1ℓk − i0

13
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Fig. 4. Ladder diagrams with two and three exchanged massless lines. The labels ℓ1 , ℓ2 (and ℓ3) should be assigned in all possible ways.

and similarly for G2(p2 + ℓk). In this way, we obtain

I (n) ≃
(−i)2(n−1)

n!

∑
σ∈Sn

1
−2p1ℓσ1 − i0

· · ·
1

−2p1(ℓσ1 + · · · + ℓσn−1 )− i0

×

∑
σ ′∈Sn

1
2p2ℓσ ′1 − i0

· · ·
1

2p2(ℓσ ′1 + · · · + ℓσ ′n−1 )− i0
.

(2.15)

etting

f (a1, . . . , an) ≡
∑
σ∈Sn

1
aσ1
· · ·

1
aσ1 + · · · + aσn−1

, (2.16)

e can then use the delta function cast in the form (2.13) and the identity (see Appendix A.1 and Eq. (A.14) in particular)

δ(ω1 + · · · + ωn) f (ω1 − i0, . . . , ωn − i0) = (2iπ )n−1δ(ω1) · · · δ(ωn) (2.17)

o conclude that

i
An−1(s, t)

2s
≃

(−κ2
Ds

2)n

n!

∫ ⎡⎣ n∏
j=1

G(ℓj)δ(2p1ℓj)δ(2p2ℓj)
dDℓj

(2π )D−2

⎤⎦
× (2π )D−2δ(D−2) (q⊥ − ℓ⊥) .

(2.18)

his leads naturally to define the following Fourier transform with respect to the (D − 2)-dimensional transverse
omentum7 q⊥,

Ã(s, b) =
∫

eibq2πδ(2p1q)2πδ(2p2q)A(s,−q2)
dDq

(2π )D
=

∫
eibq⊥

A(s,−q2
⊥
)

2s
dD−2q⊥
(2π )D−2

, (2.19)

which yields

iÃn−1(s, b) ≃
(−κ2

Ds
2)n

n!

[∫
G(ℓ)eibℓ2πδ(2p1ℓ)2πδ(2p2ℓ)

dDℓ
(2π )D

]n
. (2.20)

The Fourier transform to the impact parameter b simply had the effect of diagonalizing the convolution between single-
particle exchanges occurring in momentum space. The near-forward regime (2.5) translates in impact-parameter space
into the large-distance limit

h̄
b
≪
√
s , (2.21)

here h̄ has been reinstated for clarity. In conclusion, to leading order in this limit, adding up all contributions coming
rom n-graviton exchanges leads to

1+ i
∞∑
n=1

Ãn−1(s, b) ≃ e2iδ0 , (2.22)

7 See Appendix A.3, in particular Eq. (A.44), for more details concerning these Fourier transforms, including the relation between the two
expressions appearing in (2.19).
14
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2iδ0(s, b) = iÃ0(s, b) =
iκ2

Ds
2h̄

∫
eibℓ⊥

ℓ2
⊥

dD−2ℓ⊥
(2π )D−2

=
iGDs
h̄

Γ
(D−4

2

)
(πb2)

D−4
2
. (2.23)

t this point, let us go back and explain what selects the n-graviton exchanges among all possible contributions to the
lastic amplitude to all loop orders. To clarify this point, notice that when an extra graviton is attached to the energetic
calars the corresponding diagram is enhanced by a factor of κD

√
s, since the 3-point vertex itself brings a factor of s,

ee (2.7) and (2.8), and the extra energetic propagator (2.14) scales as 1
√
s . If a graviton is added to the diagram in any

ther way, one obtains a contribution at the same order in the gravitational coupling, but without extra factors of
√
s.

otice that this is true also if higher-point vertices are used as for instance a contact interaction involving two gravitons
nd two scalars: since we are working with a two-derivative action (A.15), this vertex can scale at most as κ2

Ds, while
wo 3-point vertices connected by a propagator (2.14) would yield (κDs)2 1

√
s . By dimensional analysis every time we lose

factor of
√
s, there must be an extra factor of q ∼ h̄

b proving that non-ladder diagrams are subleading in the limit (2.21).
In summary the classical, or eikonal, limit requires GDs b4−D ≫ h̄ so the full amplitude oscillates infinitely rapidly as

ntuitively should be the case. By further taking the near-forward q≪
√
s or large-distance b

√
s≫ h̄ limit, we can make

he problem tractable, so the regime of interest for our analysis is specified by the following hierarchy of length scales
h̄
√
s
≪ GD

√
s b4−D ≪ b , (2.24)

here h̄
√
s plays the role of a quantum wavelength and GD

√
s b4−D is the effective size of the curvature that characterizes

the colliding objects. In the leading-order large b approximation the full classical amplitude can be approximated by (2.22)
and (2.23) which as we saw follows from the resummation of ladder diagrams. The physically relevant D = 4 of (2.24)
is thus somewhat special, because the eikonal phase develops a b-independent infrared (IR) divergence: the combination
GD
√
s coincides with (one half) the Schwarzschild radius of a black-hole of mass

√
s and, from the finite part of the eikonal,

ne can read the effective size G
√
s log(bµ) to be used in D = 4 version of (2.24). It is natural to identify the IR cutoff µ

with the inverse of the distance r between the binary and a far-away observer.
In the regime (2.24), it is indeed natural to take the impact parameter b and the energy

√
s (or a length scale R, defined

in analogy with the Schwarzschild radius by RD−3
= GD
√
s) as the classical quantities characterizing the collision. In terms

of these variables the leading eikonal is given by:

2iδ0 =
iGDs
h̄

Γ
(D−4

2

)
(πb2)

D−4
2
= i

b
√
s

h̄
GD
√
s

bD−3
Γ
(D−4

2

)
π

D−4
2

. (2.25)

o reiterate, in the classical limit we must require that R is much bigger than the Compton wavelength of a massless
article (R ≫ h̄

√
s ). On the other hand, in order to apply perturbation theory, we need that the interaction be weak and

this corresponds to large values of b (b≫ R). In conclusion, Eq. (2.25) is valid for large values of b and this is obtained by
considering the amplitude in the Regge limit (|t| ≪ s). The factor of 1/h̄ in (2.25) signals that this quantity should indeed
appear in an exponential e2iδ0 so it can describe the value of the classical action, while all non-exponentiated terms are
of order h̄n with n ≥ 0 and describe quantum corrections.

Let us now show how we can calculate from this semiclassical action two important classical observables: the impulse
Q and the deflection angle Θ depicted in Fig. 5. In the leading approximation, the exponentiation takes the form (2.22),
or briefly

S̃(s, b) = 1+ iÃ(s, b) ≃ e2iδ0(s,b) . (2.26)

After exponentiation in impact-parameter space, we can Fourier transform back to momentum space8

S(s,−Q 2) = 2s
∫

dD−2b e−
i
h̄ bQ+2iδ0(s,b) . (2.27)

ere Q describes the full exchanged momentum, or impulse, in the classical process, obtained after the eikonal
esummation. Therefore it is important to distinguish it from q, the momentum exchanged in the perturbative amplitude
n (2.9) via a single graviton. In the classical limit we can approximate (2.27) in terms of the stationary-phase contribution
etting, at the saddle point,

Qµ
= h̄

∂2δ0
∂bµ
= −2GDs

Γ (D2 − 1)

π
D
2−2bD−3

bµ

b
, (2.28)

where b denotes the magnitude of bµ. Note that, unlike 2δ0, the resulting leading-order impulse (2.28) is not singular as
D→ 4 thanks to the action of the derivative that eliminates the b-independent Coulombic pole at D = 4. In terms of the

8 S(s,−Q 2) should be distinguished from S(p , p ; q) introduced in (1.27), which also includes the mass-shell delta functions.
1 2
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Fig. 5. Classical 2→ 2 scattering in the center-of-mass frame (1.33). The difference between b and bJ is O(G2) and thus negligible in this section.

quantities introduced after Eq. (2.24), this becomes

Q
√
s
=

2Γ (D2 − 1)

π
D
2−2

GD
√
s

bD−3
≪ 1 , (2.29)

here the last inequality holds in the limit of large distances where the impact parameter is much larger than R. On the
ther hand, from the Fourier transform (2.19), we have the usual relation b ∼ h̄/q between the impact parameter and the
omentum of a single graviton exchanged. Then the ratio between the classical impulse (2.28) and this single-graviton
omentum transfer can be written as

Q
q
≃

2GDs
h̄

Γ (D2 − 1)

π
D
2−2bD−4

≃
Θb
h̄
≫ 1 (2.30)

nd can be interpreted as the typical number of exchanged gravitons in the classical process. This makes it manifest that
n the classical limit the number of gravitons exchanged is very large, as signaled by the factor of h̄−1, while classical
bservables, such as the impulse (2.29) or the deflection angle (see (2.32) below), remain small in the regime under
onsideration.
We can now use (2.28) and (2.29) to compute the classical deflection angle Θ defined as the angle between the

pace-like components of the momenta −p1 and p4 in the center-of-mass frame (1.33), as shown in Fig. 5. In this frame
2
= (p1 + p4)2 = 2p2(1− cosΘ) where p̂ · p̂ ′ = cosΘ , and thus

Q = 2p sin
Θ

2
⇒ sin

Θ

2
=

1
2p

(
−h̄
∂2δ0
∂b

)
, (2.31)

here the second expression is obtained by using (2.28). The minus sign comes from the fact that |∂b2δ0| = −∂b2δ0.
Incidentally, this shows that the gravitational force is attractive because in this way the deflection of either particle points
towards the other one (see Fig. 5). Since, in the massless case,9 p =

√
s

2 , and the condition (2.29), which characterizes the
ikonal regime, ensures that Q/p is also small, we can expand sin Θ

2 ≃
Θ
2 , obtaining the leading-order deflection angle

Θ ≃
4Γ (D2 − 1)

π
D
2−2

GD
√
s

bD−3
≪ 1 . (2.32)

Similarly, one can go to the time domain by taking a Fourier transform over E =
√
s. Again a stationary phase

pproximation yields a relation between the eikonal and the Shapiro time delay ∆T which measures how much objects
re slowed down by the gravitational force [173–175]

∆T = h̄
∂2δ0
∂E

, (2.33)

s seen from the center-of-mass frame. Contrary to what happens for the deflection angle (2.28), in this case the Coulomb
ivergence in δ0 (2.23) does not cancel, so a better IR-safe observable is for instance the variation of ∆T when b changes.
As we shall further discuss in Section 2.3, both deflection angle and time delay were found to agree with classical

R expectations in the approximation in which each particle produces a non-trivial curved metric that affects the
eodetic motion of the other particle [6,176]. In conclusion, we have seen how the classical deflection and the time
elay, which we may attribute to an effective metric, emerges from standard (quantum) scattering amplitude calculations

9 The massive case will be discussed in Section 3.1.1 below.
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n flat background spacetime. Notably, this avoids possible challenges, particularly in string theory, with quantization
n curved space–time. See however [150–153] for discussions of the eikonal exponentiation in AdS spacetime, as well
s [121,122,177] for recent discussions in curved spacetimes.
In the ensuing sections we will see that the eikonal exponentiation generalizes well beyond the simple case sketched

ere. While the basic idea is the same, it becomes more intricate when extended to the R/b corrections (subleading
ikonal) and to theories beyond GR including more fields or higher derivative couplings or to string theory. This
echanism is expected to hold in all consistent gravitational theories, as we will discuss in some detail in this review.
owever, first, we will comment on the connection between eikonal phase and partial waves, as well as on the
nterpretation of the eikonal phase as a classical action for shockwave scattering.

.2. Eikonal phase and phase shift

In this subsection we discuss the relation between the partial-wave decomposition introduced in Section 1.3 and
he eikonal phase. As we shall see, this will highlight how the eikonal exponentiation is also instrumental in solving
n apparent tension between the explicit result for the tree-level amplitude (2.23) and the unitarity bound (1.70).
The partial wave expansion of the resummed amplitude (2.27) is most easily performed for D = 4, but in this case

he leading eikonal phase (2.25) is divergent. On the other hand, after exponentiation, this divergence is an overall
-independent phase which can be ignored (this is the usual Coulomb divergence due to the long-range nature of the
ree-level potential in three space dimensions). The finite b-dependent contribution is

2δ0(s, b)→−
Gs
h̄

log(µb)2 , (2.34)

with µ an inverse length scale introduced for dimensional reasons, so that the integral in (2.27) can be performed exactly
by using the general Fourier transform (A.49) ,

S(s,−Q 2) ≃ i
8πGs2

Q 2

(
4µ2h̄2

Q 2

)−iαG
Γ (1− iαG)
Γ (1+ iαG)

. (2.35)

ere

αG ≡
Gs
h̄

(2.36)

s dimensionless and provides an analog of the fine structure constant of QED. We see that the expression (2.35) for the
esummed amplitude is equal to the one for single-graviton exchanges (2.9) with the substitution q→ Q times two extra
hase factors (the ratio of the two Γ -functions is also a pure phase).
In order to apply the partial wave projection (1.63), we note that in the massless case 2p =

√
s and recall the Rodrigues

formula,

Pj(x) =
1
2jj!

dj

dxj
(x2 − 1)j . (2.37)

We then need to compute the following integral,

(−1)j

2jj!

∫
+1

−1
dx

dj

∂xj
(1− x2)j(1− x)−1+iαG . (2.38)

Integrating by parts, one can easily bring all the derivatives with respect to x on the term with αG, then the integral can
be performed by changing variable from x to z = 1+x

2 and recognizing that one obtains a quantity proportional to the
Euler Beta-function. By including all the factors of the amplitude (2.35) one obtains10

sj(s) = e2iδj(s) =
(

s
4µ2h̄2

)iαG Γ (1+ j− iαG)
Γ (1+ j+ iαG)

. (2.39)

e now consider the classical limit,

j ∼ αG ≫ 1 , J = h̄j , (2.40)

here the quantum number j takes large values, in order to lead to a sizeable classical angular momenta J . Taking the
imit (2.40) in (2.39), and using the Stirling approximation, we find

2δj = −
[
αG log(j2 + α2

G)+ 2j arctan
αG

j

]
, (2.41)

10 At fixed j that ratio has singularities along the imaginary s-axis, known as ’t Hooft’s poles. However, their presence depends on the large-Q
ehavior of the resummed scattering amplitude which is beyond control of the leading eikonal approximation [16].
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here we used arctan αG
j =

1
2i log

j+iαG
j−iαG

. Moreover, to leading order in the PM limit j≫ αG ≫ 1, this simplifies to

2δj(s) ≃ −
Gs
h̄

log(j2) , (2.42)

nd thus, comparing with (2.34),

2δ0(s, b) ≃ 2δj(s) , h̄j = J ≃ pb , (2.43)

p to subleading, b-independent corrections. At higher PM orders, as we shall see, it is instead important to maintain the
istinction between 2δj(s) and 2δ(s, b). For this reason, we introduce a special symbol for 2δj(s) in the classical limit,

2δj(s) = χ (s, J) , (2.44)

hich is a function of the continuous variable J = h̄j. We shall come back to this point in Section 6.1.
This identification between b and j-expansions to leading order, which is also natural by geometric considerations (see

ig. 5), seems to raise a problem with the partial wave unitarity bound (1.70). Indeed, focusing on the tree-level amplitude,
Ã0(s, b)| ≃ |fj(s)| ≫ 1 in the classical, high-energy regime, which seems to contradict (1.70). However the resummed
mplitude makes perfect sense since the large quantity Ã0(s, b) = 2δ0(s, b) ≃ 2δj(s) appears only as a phase e2iδ0 . Thus,
(s, b) and sj(s) simply saturate the bound (1.70), by neglecting inelastic contributions,

|sj(s)|2 = 1 , (2.45)

s one can also see directly from (2.39). When taking inelastic processes into account, as we shall see in the following,
δ develops a positive imaginary part, so that

|sj(s)|2 = e−2 Im2δj(s) < 1 (2.46)

nd the bound is still respected, but no longer saturated. In this way, the eikonal exponentiation is instrumental in
esolving the apparent tension between the high-energy behavior of perturbative amplitudes in gravity and the bounds
oming from the unitarity constraint. In fact, this was one of the main historical motivation for its study.
Let us now go back to the connection between partial waves and deflection angle. Starting from (1.62), we see that

he Q -space representation of the amplitude is given by a sum of the type

S(s,Q ) ∝
∑

j

Pj(cosΘ)e2iδj , Q = 2p sin
Θ

2
. (2.47)

sing the large-j limit of Pj(cosΘ), (see for instance DLMF (14.15.11) with µ = 0 and ν = j and (6.4))

Pj(cosΘ) ∼
j→∞

√
2Θ

π sinΘ
cos

((
j+

1
2

)
Θ −

π

4

)
, (2.48)

the classical deflection angle can then be obtained by applying the saddle point condition to sum in (2.47), obtaining11

Θ = −
∂2δj(s)
∂ j
= −h̄

∂χ (s, J)
∂ J

, (2.49)

here we used the definition of χ (s, J) (2.44) in the last step. Naturally, substituting the approximate expression (2.42)
for j≫ αG ≫ 1 we simply recover the result of (2.32) for the leading-order deflection angle in D = 4,

Θ ≃
2Gs
J
≃

4G
√
s

b
, pb ≃ J = h̄j . (2.50)

Of course, in a physical quantity as the deflection angle, the dependence on µ drops out.
However, we can obtain a relation which formally does not rely on the PM expansion by substituting (2.39) for

j ∼ αG ≫ 1, according to which

Θ = i (ψ(j+ 1− iαG)− ψ(j+ 1+ iαG)) (2.51)

where ψ is the logarithmic derivative of the Γ -function. Using the following equation for ψ:

ψ(1+ z) = −γ +
∞∑
n=1

(
1
n
−

1
n+ z

)
(2.52)

e can write Θ as follows:

Θ =

∞∑
m=j+1

2αG

m2 + α2
G
∼ 2

∫ αG
j

0

dx
1+ x2

= 2 arctan
αG

j
(2.53)

11 Here we use that, out of the two saddle-points Θ = ±∂j(2δj), since Θ ∈ [0, π], only Θ = −∂j(2δj) can be realized in theories like gravity where
he interaction is attractive, −∂ (2δ ) > 0.
j j
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here in the middle step we have approximated the sum with an integral by using x = αG/m for large values of j.
quivalently, we could have substituted in (2.51) directly the expression (2.41), obtaining the same conclusion. Then we
et

tan
Θ

2
=
αG

j
. (2.54)

aking into account that, in the classical limit, jh̄ = pbJ = J we can compare this equation with (2.31). They have precisely
he same form in D = 4 except for the substitution of sin with tan and of b with bJ . Taking into account the difference
between b and bJ in Fig. 5 they are in agreement up to order G2. Let us also mention that, as discussed in Appendix B.3,
the probe-limit scattering of massive objects in N = 8 obeys a relation formally very close to (2.54).

2.3. Minimally coupled massless scalars: from geometry to amplitudes

Interestingly enough, the result (2.25) was also obtained, and at exactly the same time, by ’t Hooft [6] from a calculation
that follows exactly the opposite logic with respect to the one of the two previous subsections. The starting point of ’t
Hooft’s approach is the classical shock-wave metric produced by a massless particle of given energy E(1) moving, say, in
the positive-z direction at u ≡ t − z = 0. That metric was obtained long ago by Aichelburg and Sexl (AS) in the classic
paper [178]. It can be easily generalized to arbitrary D (see e.g. [176]) and, in suitable coordinates, it reads

ds2 = −du dv + f (x⊥)δ(u)du2
+

D−2∑
i=1

dxi dxi , v ≡ t + z , (2.55)

here x⊥ = (x1, . . . , xD−2) and, in order to satisfy Einstein’s equations with a source,

Tµν = E(1)δ(u)δ(D−2)(xi)δuµδ
u
ν , (2.56)

(x⊥) should satisfy the equation

2⊥f (x⊥) = −16πGDE(1)δ(D−2)(x⊥) , 2⊥ ≡
D−2∑
i=1

∂2i . (2.57)

Hence, f is proportional to the well-known Green function in D− 2 dimensions. More specifically, one finds12

f (x⊥) = −16πGDE(1) r4−D

(4− D)ΩD−2
, r2 ≡

D−2∑
i=1

(xi)2 , ΩD−2 =
2π

D−2
2

Γ (D−22 )
(2.58)

note that, in any D, f has the correct dimensions of a length).
Consider now the null geodesics describing the worldline of massless (test) particles moving in the opposite direction,

nitially at v = 0 and at transverse coordinates xi = bi. They describe straight lines at t < 0, but suffer both a v-delay
nd a deflection for t ≥ 0.
These geodesics were considered in [6,179] for the AS metric and generalized in [176] for arbitrary D as well as for

xtended sources. It turns out that, in these convenient albeit rather singular coordinates, the v-coordinate of the test
article suddenly changes from zero to f (b). This v-delay is instantaneous and simply given by (using r → b):

v ∼ θ (u)f (b)⇒ ∆v = f (b) = 4GDE(1)b4−D
Γ (D−42 )

π
D−4
2

(2.59)

here θ (u) is the Heaviside step function. We refer to [176,180] for more details about the solution of the geodesic
quation.
’t Hooft next considered a Lorentz frame in which particle 1 is very energetic and produces the shock wave while

article 2 is very soft and behaves as a test particle suffering the v-shift (2.59). Quantum mechanically, particle 2 has a
ave function Ψ (2)

∼ exp(i E
(2)v
h̄ ) for t < 0 but, as it goes through t = 0, its phase picks up a shift given by

E(2)∆v

h̄
=

E(2)f (b)
h̄
=

GDs
h̄ bD−4

Γ (D−42 )

π
D−4
2

(2.60)

here we have used that 4E(1)E(2)
= s. The above equation is precisely the phase shift in (2.25).

As pointed out in [172] this raised a doubt: working in the boosted reference frame mentioned above, the shock wave
roduced by the soft particle (2) is extremely weak, but it cannot be neglected because, when it is used to calculate its
ontribution to the phase of the wave function of the energetic particle (1), it is multiplied by a large factor E(1) producing

12 In [176] the AS metric was (almost trivially) extended to a ‘‘beam’’ of null energy which is still concentrated at u = 0 but has an arbitrary
ransverse profile. Such effective shock waves naturally appear when the source is extended, like in the case of strings. See Section 3.2.6.
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n the end exactly the same contribution (2.60). So it seems that the total classical phase shift is twice the eikonal result
2.25). This puzzle was solved in [172] by realizing that, in this geometric description, the classical action receives an
xtra contribution from the boundary term needed to define properly the Einstein–Hilbert variational principle. In the
ase at hand, this extra contribution cancels precisely half of the result obtained by simply summing the contributions of
he two particles, thus restoring the agreement with the amplitude-based result.

As we will see in Appendix B, the same idea can be applied, even more straightforwardly, to the scattering of massive
articles at the leading order in the probe limit (1.78), where particle 1 can be described by a stationary geometry and the
lassical action is derived from the geodesic followed by the particle 2. A similar approach also works, with the appropriate
odifications, in the case of string–string collisions as discussed in detail in Section 3.2.6.
As discussed in Section 4.1.5, the probe limit actually determines not only the 1PM, i.e. O(G) eikonal phase, but also

he 2PM one, corresponding to a one-loop calculation on the amplitude side. Instead, new classical data that is not fixed
y the probe limit appears at 3PM, two-loop order, both in the massless and in the massive setups. Let us finally remark
hat this elegant method based on approximating the problem as the one of a particle scattering in the metric produced
y the other particle represents the starting point of the so-called self-force expansion [29,181–183].

.4. Collapse criteria in GR

Following up on the discussion of the previous subsection we would like to consider now the opposite situation in
hich not only the probe approximation breaks down, but even a perturbative expansion in R

b is bound to fail (diverge?).
his is when classical GR arguments lead to the conclusion that a finite fraction of the initial energy should collapse to
orm a black hole.

Of course, the quantitative study of such a regime is out of reach both by analytic and by numerical relativity
ethods. Amusingly, however, some non trivial results can be obtained in the strictly massless case as first pointed out
y Penrose [184] for the axisymmetric situation (b = 0). The basic simplifying feature of massless collisions is that, by

causality, nothing happens before the two front waves (at u = 0 and v = 0) meet at t = 0. In other words, a simple
linear superposition of two AS shock waves of the form (2.55) exactly satisfies Einstein’s equations for t < 0.

The idea of Penrose, later extended to b ̸= 0 by Eardley and Giddings [185], is to check whether or not a marginally
trapped closed surface (MTCS)13 can be constructed using the exact, known geometry at t → 0−. If the answer were
positive, then we would conclude from general theorems that such a surface evolves later into the horizon of a black hole
whose mass is bounded from below by the area of the initial surface. Unfortunately, the opposite statement cannot be
claimed to be true: even if one can prove that at t = 0 there is no MTCS, one cannot exclude that one such surface is
formed at some later time t > 0. A fortiori, only a lower limit on the mass of the future black hole (and therefore an
upper limit on the total energy reaching future null infinity) can be given.

In his work [184], Penrose found that, at b = 0, a MTCS can be easily constructed and, from the value of its area, he
concluded that at least a fraction 1

√
2
of the total incoming energy goes into forming a black hole. Eardley and Giddings,

nstead, managed to construct a MTCS (in D = 4) for b < γEGG
√
s with γEG ≃ 1.61, meaning that the critical ratio for

ollapse ( G
√
s

b )cr ≤ 1/γEG ≃ 0.62.
An interesting generalization [186] (particularly in view of a collision of extended objects like strings) is the one in

which one considers the collision on two null beams of massless particles (moving again in opposite directions along the
z-axis). As physically expected, one finds that the transverse size of the beam ‘‘adds up’’ to the impact parameter (defined
as the transverse distance of the two beam’s center of mass). One starts from a simple generalization of (2.57):

2⊥f (i)(x⊥) = −16πGρ(i)(x⊥) , i = 1, 2 , (2.61)

where ρ(i)(x⊥) is the energy density per unit transverse area of each beam. Since the solution (2.58) of (2.57) is nothing
but the Green function of the problem, the general solution of (2.61) is also known.

At this point one can check whether a MTCS is formed already at t = 0. Different physical situations were discussed
in [186]. Let us just mention two relatively simple cases:

• Axisymmetric collision on two non-homogeneous axisymmetric beams. This generalizes Penrose’s construction
to extended objects. In this case ρ(i)(x⊥) depends just on the radial distance r from the symmetry axis. Consider the
energy in each beam below some given r:

E(i)(r) = ΩD−2

∫ r

0
ρ(i)(r ′)r ′D−3dr ′ ; Ωd =

2πd/2

Γ (d/2)
. (2.62)

One finds that a MTCS can be constructed whenever one can find an rc such that:

ΩD−2rD−3c ≤ 8πGD

√
E(1)(rc)E(2)(rc) (2.63)

where rc plays the role of an effective impact parameter. In the special case of two identical homogeneous disks of
radius L (2.63) simply gives ΩD−2LD−3 ≤ 4πGD

√
s (L ≤ 2G

√
s in D = 4).

13 A (marginally) closed trapped surface is, loosely speaking, a closed surface whose future directed light cone is (marginally) inside the surface
itself. More precisely, it may be defined as a (D− 2)-dimensional closed surface whose outer normals have zero ‘‘convergence’’ (or ‘‘expansion’’).
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• Collision of two homogeneous beams at b ̸= 0. Considering for simplicity the case of D = 4 one finds that a MTCS
can be constructed at t = 0 provided:

G
√
s > 2L and b ≤ G

√
s− 2L . (2.64)

Comparing this to the point particle criterion of Ref. [185], we see that the role of b is now played by beff. =
b + 2L suggesting that no black hole is formed if the total energy is such that G

√
s < 2L, i.e. that the associated

Schwarzschild radius is smaller than the sizes of the two beams.

Many other interesting issues belong to this problematic. One is the nature of the ‘‘phase transition’’ between the
collapse and ‘‘dispersive’’ regime, see e.g. [187]. Is it first order, i.e. with the mass of the black hole having a lower bound
as soon as R

b > ( Rb )cr, or second order, in which case we may talk about the critical exponent α appearing inmBH ∼ (bc−b)α
for b→ b−c ? This question is related to one raised recently by Don Page [188] of whether at b = bc the fraction of initial
energy being radiated in a massive point-particle collision approaches 1 in the limit of infinite Lorentz boost. These topics
being somewhat outside the scope of this report, we refer the interested reader to the literature.

3. Leading eikonal for generic gravitational 2-body scattering

In the introductory Section 2 we discussed how, in the massless case, the leading eikonal is obtained from the Fourier
transform to impact parameter space of the tree diagram with one graviton exchange in the Regge limit where s≫ |t|. In
this section we want to extend this result to the massive case in several gravitational theories. We start from Einstein’s GR
coupled to massive matter fields, then consider extended theories of gravity with extra massless fields (such as the dilaton)
or with higher derivative couplings and finally discuss the case of string theory. We focus on the tree-level approximation
and on the limit where the momentum exchanged is much smaller than both the center of mass energy and the masses,
since these contributions determine the leading eikonal. For minimally coupled massive scalars in GR the exponentiation
of the leading eikonal works exactly as in the massless case discussed in Section 2.1 (see [36,101]). Here we assume
that the leading eikonal exponentiates for all gravitational theories considered in this section and then discuss how to
generalize the analysis of Section 2.2 and extract the classical physics observables of interest. We will postpone to the
next sections the study of the one and two loop amplitudes relevant to eikonal exponentiation: they will serve as a check
of the assumption taken here and provide new information about the subleading terms in the eikonal expansion.

3.1. Field theory at tree-level

3.1.1. Minimally coupled massive scalars
We consider here pure D-dimensional GR minimally coupled to two scalar fields with masses m1 and m2. This is a

simple generalization of the equal-mass setup analyzed in [101]. The action reads

S =
∫

dDx
√
|g|

{
R

2κ2
D
−

1
2

2∑
i=1

[
∂µφi∂νφigµν +m2

i φ
2
i

]}
. (3.1)

As discussed in the introduction, the eikonal exponentiation also lends itself to describe the classical interactions between
two Schwarzschild black holes at large distances, so we take the parameters m1 and m2 to be classically large, e.g. of the
rder of ten solar masses. Because of the no-hair theorem, it is natural to use Eq. (3.1) as a starting point, since the mass is
he only feature that is relevant classically. In order to describe other compact objects, such as neutron stars, one needs to
dd non-minimal couplings parametrizing tidal deformations or other classical quantities besides the mass, for instance
o describe spin.

To leading order in the conventional Born approximation, the interaction between the scalars φ1 and φ2 is captured by
the diagram with a single graviton exchanged between the two massive lines. By using the Feynman propagator (A.23)
and the vertex (A.28), which generalizes the one in (2.4),

τµνa (p, p′) = −iκD
[
pµp′ν + pνp′µ − ηµν(p · p′ −m2

a)
]
, (3.2)

it is straightforward to calculate the contribution of this diagram, which in D dimension reads

A0(s, t) = =
2κ2

D

−t

[
1
2
(s−m2

1 −m2
2)

2
−

2m2
1m

2
2

D− 2
+

t
2

(
s−m2

1 −m2
2

)]
. (3.3)

e then focus on the non-analytic terms in the t = −(p1 + p4)2 ∼ 0 limit which, as in the massless case, will capture
he long range interaction in impact parameter space. In this approximation the amplitude (3.3) is dominated by the pole
ocated at t = −q2 = 0,

A0(s,−q2) = 2κ2
D
γ (s,mi)

+ O((q2)0) , (3.4)

q2
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γ (s,mi) ≡
1
2
(s−m2

1 −m2
2)

2
−

2m2
1m

2
2

D− 2
= 2m2

1m
2
2

(
σ 2
−

1
D− 2

)
, (3.5)

here in the final step we give the result in terms of the variable σ defined in (1.8). The leading term in (3.4) can be
erived by replacing (3.2) with the effective vertex

τ
µν

eff (p, p
′) = 2iκDp̄µp̄ν , pµ = −p̄µ +

1
2
qµ , p′µ = p̄µ +

1
2
qµ , (3.6)

here one introduces an ‘‘average momentum’’ p̄µ as in (1.28), so that p̄ · q = 0, and (3.6) differs from (3.2) by terms
uppressed in the small q limit (thanks to (1.28) and (p ·p′−m2

a) =
q2
2 ). The result for the massless amplitude is recovered

by considering the ultrarelativistic limit,

σ →∞ , m1m2σ ∼
s
2
, (3.7)

nd it is easy to check that, in this limit, (3.4) reproduces (2.9).
Actually the Born approximation is not justified in the setup under analysis and, in the massive case, even the low

elocity limit is outside the tree-level regime of validity. This can be seen by adapting the derivation in Section 2.1
o this new kinematic setup. As before, we take the Fourier transform of (3.4) by keeping the external states on-shell
o rewrite the result in impact parameter space: as shown in Appendix A.3, we can decompose q in the component
⊥, which is perpendicular to the p1,2 and the longitudinal components and the latter can be neglected since they are
roportional to q2, see (A.37), and kill the pole in (3.4) yielding to irrelevant analytic terms. Thus we effectively deal with
he (D− 2)-dimensional Fourier transform appearing in the leading term of (A.40)

Ã0(s, b) =
∫

dD−2q⊥
(2π )D−2

A0(s,−q2⊥)
4Ep

eibq⊥ , (3.8)

here E and p are respectively the total energy and the absolute value of the spatial momentum in the center-of-mass
rame (see Eq. (1.33)). Because of the scaling (1.2), Ã0 is large even at low velocities. Then, as discussed in detail in
ection 4, the 1-loop correction, arising from diagrams where two gravitons are exchanged between the scalar particles,
ncludes a term involving the convolution of Eq. (3.3) with itself. This yields in impact parameter space a contribution
roportional to Ã2

0 which signals a clear breakdown of standard perturbation theory since Ã0 is large. However we expect
hat the eikonal exponentiation resums this class of contributions as in (2.22), so we can identify the leading tree-level
ontribution (3.4) in impact parameter space with the 1PM eikonal.

Ã0 = 2δ0 . (3.9)

hen by using Eq. (A.45) to calculate (3.8), we find

2δ0 =
2m1m2GD

(
σ 2
−

1
D−2

)
Γ
(D−4

2

)
√
σ 2 − 1(πb2)

D−4
2

. (3.10)

In the ultrarelativistic limit (3.7), Eq. (3.10) reduces to (2.23) and we recover the massless case once again. Notice
hat in this limit Eq. (2.25) is the leading eikonal for any gravitational field theory in the two derivative approximation.
his universality is a consequence of the Regge limit thanks to the following two properties. First, in the high energy
egime amplitudes are dominated by the exchange of the states with the highest spin: indicating with j the spin of such
articles, their leading contribution to A0 scales as sj. Then, when we are interested in long range effects, we can focus
ust on exchanges of massless particles. In gravitational theories the highest spin massless particle is the graviton which
ives rise to a universal14 contribution to A0 scaling as s2. Thus, in the ultrarelativistic regime, the presence of other lower
pin fields is irrelevant for the derivation of the leading eikonal.
Going back to general kinematics, we can proceed as in the massless case and use Eq. (2.31) to compute the contribution

f the leading eikonal to the deflection angle

2p sin
Θ0

2
=

4GDm1m2
(
σ 2
−

1
D−2

)
Γ
(D−2

2

)
√
σ 2 − 1π

D−4
2 bD−3

. (3.11)

s discussed in detail in the later sections, the subleading eikonal terms will provide further contributions to the physical
eflection angle Θ and so, in a PM approach, this result can be trusted up to O(GD)

Θ =
4GDE

(
σ 2
−

1
D−2

)
Γ
(D−2

2

)
(σ 2 − 1)π

D−4
2 bD−3

+ O(G2
D) , (3.12)

14 As we will see in Section 3.1.5 the universality of the graviton coupling can be spoiled in presence of higher derivative corrections.
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here we expanded the sin function to leading order and rewrote the momentum p in terms of the center-of-mass energy
thanks to (1.13). However, also the expression in (3.11) is useful as it contains all the non-linear contribution to the
ngle arising from the leading eikonal. For instance it allows to recover the full leading answer in the standard D = 4

Post-Newtonian (PN) limit 1
jPN
∼ v∞ ≪ 1 where15

σ =

√
1+ v2

∞
,

1
jPN
=

Gm1m2

J
. (3.13)

ne can easily recast the angle (3.11) in terms of the angular momentum by using the relation16 bJ = b cos(Θ/2) = b,
which is obvious from Fig. 5, where by definition the angular momentum equals J = pbJ . Then we have

tan
Θ0

2
=

Gm1m2
(
2σ 2
− 1

)
J
√
σ 2 − 1

,
Θ0PN

2
= arctan

(
1

jPN v∞

)
. (3.14)

here in the equation on the right we took the leading PN term finding the classic Newtonian result, see [189] and
eferences therein. In this regime, even if the scattering angle is finite, the momentum transfer in (3.11) is small because
→ 0.
Instead, in the leading PM approximation, we can use bJ = b+ O(G2

D) obtaining

Θ =
4GDE

(
σ 2
−

1
D−2

)
Γ
(D−2

2

)
(σ 2 − 1)π

D−4
2

pD−3

JD−3
+ O(G2

D) . (3.15)

et us also collect here for later convenience the D = 4 expressions for the 1PM impulse and the deflection angle,

Q =
4Gm1m2

(
σ 2
−

1
2

)
b
√
σ 2 − 1

+ O(G2) , Θ =
4GE

(
σ 2
−

1
2

)
b(σ 2 − 1)

+ O(G2) . (3.16)

Another interesting limit is to take one mass much larger than the energy of the other, for instance m2 ≫ E1. In this
egime, we can see particle 1 as a probe propagating in the gravitational background of the heavy particle 2. So it should
e possible to obtain (3.15) by a classical calculation studying the geodetic motion in the appropriate curved geometry.
his probe limit provides a straightforward but important check on the diagrammatic calculations, in particular when
esting the subleading terms in the eikonal expansion. In this limit the total energy coincides with the rest mass of the
eavy particle (Mh) while σ and p can be written in terms of the energy and the mass of the light probe particle

m2 ≡ Mh , σ →
E1
m1

, E →
√
M2

h + 2MhE1 , p→
√
E2
1 −m2

1 . (3.17)

By using (3.17) in (3.4) we have

A0 ∼ 4κ2
DM

2
h
(D− 2)E2

1 −m2
1

(D− 2)(−t)
. (3.18)

n this limit the factor of 4Ep in (3.8) reduces to 4Mh

√
E2
1 −m2

1, so in impact parameter space we have

2δ0 = Ã0(s, b) =
2GDMh

(D− 2)
(D− 2)E2

1 −m2
1√

E2
1 −m2

1

Γ
(D−4

2

)
(πb2)

D−4
2
. (3.19)

hen, by using again (2.31), we can derive the contribution from δ0 to the deflection angle

Θ =

√
πΓ

(D−2
2

)
2Γ

(D−1
2

) (D− 2)E2
1 −m2

1

E2
1 −m2

1

(
R
b

)D−3

+ O(G2
D) , (3.20)

here we used (B.2) to introduce the D-dimensional Schwarzschild radius. It is then easy to check that, at linear order
n G, Eq. (3.20) agrees with the result of the classical geodesic calculation (B.14) (since at leading order J = pbJ ≃ pb =

E2
1 −m2

1 b).

3.1.2. Graviton scattering off a massive scalar
Another instructive tree-level result describes the amplitude between two scalar and two gravitons. A direct derivation

from (3.1) requires to evaluate four Feynman diagrams and involves the cumbersome three-graviton vertex. It is possible

15 We follow the conventions of [189].
16 In Section 6.1 we will present a derivation of this relation based on the standard partial wave decomposition as done in Section 2.2 for the
leading eikonal.
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o obtain a more compact expression by taking the field theory limit of a string amplitude [48]

iAαβ;ρσ
= −i

2κ2
D(k4q2)(k1q2)

(q2q3)

[
kρ4k

α
1

k4q2
+

kα4k
ρ

1

k1q2
+ ηρα

][
kσ4 k

β

1

k4q2
+

kβ4 k
σ
1

k1q2
+ ησβ

]
, (3.21)

where ki label the momenta of the massive scalars and qi those of the gravitons, see Fig. 6. The factorized form of the
result is a by-product of using the KLT approach [190] at the string theory level. If we focus on the D = 4 case, then it is
possible to rewrite the result in terms of the compact spinor helicity formalism. As usual one can express the massless
momenta in terms of a pair of commuting SU(2) spinors17

pαα̇ = pµσ
µ

αα̇ = λαλ̃α̇ , (3.22)

where λ̃ is the complex conjugate of λ if one sticks to the standard Lorentzian signature. The two physical helicities of
the gravitons can be written in terms of

ε+αα̇ =
√
2
µαλ̃α̇

⟨µλ⟩
ε−αα̇ =

√
2
λαµ̃α̇

[λ̃µ̃]
(3.23)

y using ϵ++ = (ε+)2 and ϵ−− = (ε−)2, where we defined

⟨λµ⟩ = λαµα = −λβµ
β
= −⟨µλ⟩ ,

[λµ] = λα̇µ
α̇
= −µβ̇λβ̇ = −[µλ] .

(3.24)

n (3.23) µ and µ̃ are arbitrary spinors and the freedom in their choice reflects just the possibility of performing gauge
ransformation. Then one can contract the free indices in (3.21) with two graviton polarizations

iA0 = −i
2κ2

D(k4q2)(k1q2)
(q2q3)

[
ε2ε3 +

(ε3k1)(ε2k4)
q2k4

+
(ε2k1)(ε3k4)

q2k1

]
×

[
ε̃2ε̃3 +

(ε̃3k1)(ε̃2k4)
q2k4

+
(ε̃2k1)(ε̃3k4)

q2k1

]
,

(3.25)

here the polarizations have been factorized according to ϵµν = εµε̃ν and we rewrote the prefactor in (3.21) in terms
f (3.5). In D = 4, we can use (3.23) and we have ε± = ε̃±. One can choose explicit expressions for the auxiliary spinors
, µ̃ to simplify the various scalar product: in particular it is convenient to take µ2 = λ3, µ3 = λ2 and similarly µ̃2 = λ̃3,
˜ 3 = λ̃2, where qiαα̇ = λiαλ̃i α̇ . By using18

sij = −2zizj = ⟨ij⟩[ji] , (3.26)

or null vectors zi, zj, and introducing the notation

⟨iw j] = λαi wµσ
µ

αα̇λ̃
α̇
j , (3.27)

or any (not necessarily null) four-vector wµ, we obtain the following results

ε+2 k1 = −ε
+

2 k4 =
1
√
2

⟨3k42]
⟨32⟩

, −ε+3 k1 = ε
+

3 k4 =
1
√
2

⟨2k43]
⟨32⟩

,

ε−2 k1 = −ε
−

2 k4 = −
1
√
2

⟨2k43]
[32]

, ε−3 k1 = −ε
−

3 k4 =
1
√
2

⟨3k42]
[32]

,

ε±i qj = 0 , ε+2 ε
+

3 =
[23]
⟨23⟩

, ε+2 ε
−

3 = 0 , ⟨3k42]⟨2k43] = −(2k2k3)k24 + (2k2k4)(2k3k4) .

(3.28)

hen we can rewrite the tree-level amplitude separating the result for the various helicities of the gravitons we find19

iA++;++ = iκ2
D
[23]2

⟨23⟩2
m4

1t
(s−m2

1)(u−m2
1)
, (3.29)

iA++;−− = iκ2
D

⟨3|k4|2]4

t(s−m2
1)(u−m2

1)
, (3.30)

n agreement with Eq. (2.19) and (2.20) of [191]. Notice that the helicity violating amplitude A++;++ does not have a 1
t

ole since the ratio [23]
⟨23⟩ is finite as t → 0. We are interested in terms dominated by the t-pole, which are automatically

17 As usual σµαα̇ = (1, σ i)αα̇ and σ̄µ α̇α = (1,−σ i)α̇α where σ i are the Pauli matrices. The SU(2) indices are raised and lower as follows: λα = ϵαβλβ ,
α
= ϵαβλβ and similarly λ̃α̇ = ϵα̇β̇ λ̃β̇ , λ̃α̇ = ϵα̇β̇ λ̃β̇ with ϵ12 = −ϵ12 = 1.

18 We have some unconventional signs since we are using the mostly plus metric and so Tr(σµσ̄ν ) = −2ηµν .
19 We take s = −(k + q )2 , t = −(k + k )2 , u = −(k + q )2 .
1 2 1 4 1 3
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Fig. 6. The kinematics of a two scalar, two graviton amplitude.

leading in the limit (1.74) and so only the helicity preserving structure A++;−− survives. We can extract the pole by
taking the approximation ⟨3|k4|2]4 ≃ ⟨3|k4|3]4 = (s − m2

1)
4, since q2 ≃ −q3 in the limit of small momentum transfer.

hus the leading contribution to the amplitude with two massive scalars and two gravitons is again captured by (3.4)
ith of course m2 = 0

iA++;−−0 ≃
2iκ2

D

−t
γ (s,m1,m2 = 0) . (3.31)

Moving then to the impact parameter space, we obtain the following eikonal phase describing the scattering of a graviton
off a massive scalar

2δ0 =
GDγ (s,m1,m2 = 0)
√
σ 2 − 1

Γ
(D−4

2

)
(πb2)

D−4
2
. (3.32)

.1.3. The effect of the dilaton on the eikonal scattering
In the two previous subsections we considered theories in which the only massless particle is the graviton. In this

ubsection and in the next one, we study how the tree-level result (3.4) changes in theories with a richer spectrum of
assless states. We start by considering the case where the massless spectrum, besides the graviton, includes also a
assless scalar focusing in particular on the case of the string theory dilaton. In a QFT setup the dilaton is automatically

ncluded when considering a gravitational theory which is obtained via the double copy approach [192]. This technique
as used in [123,193–200] to derive classical quantities in various setups. Even if we will not make extensive use of this
pproach, we sketch briefly the idea in an explicit example, since this has been a popular approach to derive (super)gravity
mplitudes with the presence of extra massless fields like the dilaton.
One starts from a gauge theory with no dynamical gravity — in our example a minimally coupled massive scalar field

n the adjoint representation of the gauge group. We will not need to specify the gauge group as only general properties,
uch as the Jacobi identities, are used. The three-point amplitude involving two scalars and a gluon is given by:

iA(3)
0µ = igf a1a3b(k1 − k3)µ = 2igf a1a3b(k1 −

q
2
)µ , (3.33)

here k1, k3 are the momenta of the scalars and q is the one of the gluon. We can use this ingredient to compute the
our-point scalar amplitude with a gluon exchange

iA0 = ig2
[
f a1a3bf a4a2b

(k1 − k3)(k4 − k2)
(k1 + k3)2

+ f a1a2bf a3a4b
(k1 − k2)(k3 − k4)

(k1 + k2)2

+ f a1a4bf a2a3b
(k1 − k4)(k2 − k3)

(k1 + k4)2

]
(3.34)

= ig2
[
f a1a3bf a4a2b

s− u
(−t)

+ f a1a2bf a3a4b
u− t
(−s)

+ f a1a4bf a2a3b
t − s
(−u)

]
.

he basic idea of the double copy is that there exists a color-kinematics duality based on the observation that, in each
erm of the expression above, the color factors and the momentum dependent numerators satisfy appropriate Jacobi
dentities.20 Indeed, the color factors obey the standard Jacobi identity:

f a1a3bf a4a2b + f a1a2bf a3a4b + f a1a4bf a2a3b = 0 (3.35)

and corresponding kinematic numerators

f a1a3bf a4a2b ←→ (k1 − k3)(k4 − k2) = s− u

f a1a2bf a3a4b ←→ (k1 − k2)(k3 − k4) = u− t (3.36)

f a1a4bf a2a3b ←→ (k1 − k4)(k2 − k3) = t − s

20 For general amplitudes it is not straightforward to write the result that makes this feature manifest.
25



P. Di Vecchia, C. Heissenberg, R. Russo et al. Physics Reports 1083 (2024) 1–169

s
a
f

w
a
u

s

t

T

i

f

W

T
t

3

e
c
s

w
a
K
s
s

atisfy a ‘‘kinematic’’ Jacobi identity, i.e. their sum vanishes. By following the double copy approach, one starts from (3.34)
nd obtains a gravitational amplitude by substituting the color factors with the corresponding momentum-dependent
actors (3.36). This yields

iA0 = i
(κD

2

)2 [ (u− s)2

(−t)
+

(u− t)2

(−s)
+

(s− t)2

(−u)

]
, (3.37)

here we mapped g → κD/2. This result is appropriate to describe the interaction among identical external states
nd, for the case of two different scalars considered in (3.3), we can focus just on the first term in (3.37). By using
= −s − t + 2m2

1 + 2m2
2, it is easy to see that even the 1/t part does not match the pure gravity result. The reason

for this is that the gravitational theory obtained by this construction contains extra massless fields, in addition to the
graviton21: a massless antisymmetric tensor and, crucially for us, a dilaton whose coupling to scalars is proportional to
quare of the mass.
In summary, the long-range interaction between two massive scalars in a theory containing both gravitons and dilatons

akes the same form as (3.4), but with a different kinematic factor

γ (dil)(s,mi) ≡
1
2
(s−m2

1 −m2
2)

2 . (3.38)

hus the tree amplitude to be used to construct the leading eikonal is

A0(s,−q2) =
32πm2

1m
2
2GDσ

2

q2
+ O((q2)0) (3.39)

nstead of the one in (3.4). Then, by following the usual steps, we obtain the leading eikonal

2δ0 =
2m1m2GDσ

2Γ
(D−4

2

)
√
σ 2 − 1(πb2)

D−4
2

. (3.40)

It is easy to isolate the contribution due to the dilaton exchanges and

A0(s,−q2) =
32πm2

1m
2
2GD

(D− 2)q2
(3.41)

rom which we can also read off the dilaton-scalar–scalar coupling,

A(3)
0 = −

2κDm2
1,2

√
D− 2

. (3.42)

e can check the interpretation above simply by adding to the initial Lagrangian (3.1) a dilaton ϕ

S =
∫

dDx
√
|G|

{
R

2κ2
D
−

1
2

[
∂µϕ∂νϕGµν +

2∑
i=1

(
∂µφi∂νφiGµν +m2

i e
2κDϕ√
D−2 φ2

i

)]}
. (3.43)

hen it is straightforward that the exchange diagram involving the dilaton yields an extra contribution canceling the final
erm in (3.5) and thus reproducing (3.38).

.1.4. Maximally supersymmetric gravity
We can further enrich the theory including extra fields. An interesting case is that of supergravities whose perturbative

xpansion has been studied in great details at high loop order [201–205]. Focusing on the maximal supersymmetric
ase, the four point amplitude among massless states is determined by a single scalar function even in a string theory
etup [206]. In the field theory limit we have

A0 = 8πG
K
stu

, (3.44)

here the kinematic prefactor K can be written as a pair of 4-index tensors K appearing also in the corresponding string
mplitude, see for instance Eq. (7.4.57) of [206] and Section 7.4.2 of the same reference for the explicit expressions of
(see also [109]). It is convenient to organize the graviton multiplet in terms of on-shell realization of supersymmetry,

ee [207] for a realization relevant to D = 4 and [208] for higher dimensional cases. The basic idea is that K encodes a
uper-momentum conserving delta function δ(16)(Q ) involving the sum of the supercharges of the external states.
In D = 4, all 28

= 256 states of the N = 8 supermultiplet can be packaged into the on-shell superfield

Φ(η) = h++ + ηAψA + · · · + η
AηBηCηDϕABCD + · · · + η

1η2η3η4η5η6η7η8h−− , (3.45)

21 Notice that the double copy amplitude contains also a contribution linear in t which is absent in (3.3). This signals that the action contains an
extra contact term interaction between the four scalars.
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here ηA denotes auxiliary Grassmann variables that saturate the R-symmetry indices A, B, C, . . . (taking values from 1
o 8) of the various fields. For instance, h±± denote the positive/negative-helicity gravitons h++, while ϕABCD collect the
70 scalars present in the theory. In this formalism, one can write a 2 → 2 ‘‘super-amplitude’’, which concisely encodes
all 2→ 2 scattering amplitudes among any four given states of the supermultiplet, and takes the following very compact
form [167,209]

A0 =
κ2

stu
[34]4

⟨12⟩4
δ(16)(Q ) , (3.46)

here the ‘‘super-momentum’’ conserving delta function is given by

δ(16)(Q ) =
1
24

8∏
A=1

4∑
i,j=1

⟨ij⟩ ηAi η
A
j . (3.47)

he super-amplitude (3.46) should be thought of as a function of four copies of the on-shell superfield (3.45), Φ(ηj), with
= 1, 2, 3, 4 labeling the states as in Fig. 7, and of course

s = −(p1 + p2)2 , t = −(p1 + p4)2 , u = −(p1 + p3)2 . (3.48)

e consider three possible situations. The first one is given by the choice

φ1 = φ2 = ϕ1234 ≡ τ , φ3 = φ4 = ϕ5678 ≡ τ̄ . (3.49)

he idea is to focus on a complex scalar τ (corresponding for instance to the axio-dilaton of type IIB via dimensional
eduction) and its complex conjugate. In order to extract the contribution due to the corresponding states from the
uper-amplitude (3.46), one should take the appropriate derivatives with respect to the auxiliary Grassmann variables
s dictated by the way their fields feature in the superfield (3.45). For our case, since

τ = ∂Φ(η)
⏐⏐⏐
η=0

, τ̄ = ∂̄Φ(η)
⏐⏐⏐
η=0

(3.50)

ith

∂ ≡

4∏
A=1

∂

∂ηA
, ∂̄ ≡

8∏
A=5

∂

∂ηA
, (3.51)

e need to calculate

Aττ→τ̄ τ̄
0 = ∂1∂2∂̄3∂̄4A0

⏐⏐⏐
η=0

. (3.52)

he differential operators, which could be also interpreted as Grassmann integrals, only act on δ(16)(Q ) and it is easy to
ee that the result is simply

∂1∂2∂̄3∂̄4δ
(16)(Q )

⏐⏐⏐
η=0
= ⟨12⟩4⟨34⟩4 . (3.53)

n this way, we obtain

Aττ→τ̄ τ̄
0 =

κ2s4

stu
, (3.54)

hich is of course symmetric in the exchange 1↔ 2. Similarly, for the choice

φ1 = φ4 = ϕ1234 ≡ τ , φ2 = φ3 = ϕ5678 ≡ τ̄ , (3.55)

e have

Aτ τ̄→τ τ̄
0 =

κ2t4

stu
, (3.56)

nd for the choice

φ1 = φ3 = ϕ1234 ≡ τ , φ2 = φ4 = ϕ5678 ≡ τ̄ , (3.57)

e have

Aτ τ̄→τ̄ τ
0 =

κ2u4

stu
. (3.58)

qs. (3.56), (3.58) can be deduced directly from (3.54) by crossing symmetry in the t and u-channel respectively, although
t is instructive to derive them from the super-amplitude (3.46) by applying the appropriate differential operator,

Aτ τ̄→τ τ̄
0 = ∂1∂̄2∂̄3∂4A0

⏐⏐⏐ , Aτ τ̄→τ̄ τ
0 = ∂1∂̄2∂3∂̄4A0

⏐⏐⏐ . (3.59)

η=0 η=0
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Fig. 7. Scattering of four states in N = 8 supergravity.

Yet another choice is to consider linear combinations of the above states, for instance an axion and a dilaton, as both
in- and out-states,

φ1 = φ4 =
τ + τ̄
√
2
, φ2 = φ3 =

τ − τ̄

i
√
2
. (3.60)

he corresponding amplitude is given by

A0 = −
1
4
(∂1 + ∂̄1)(∂2 − ∂̄2)(∂3 − ∂̄3)(∂4 + ∂̄4)A0

⏐⏐⏐
η=0

(3.61)

r, expanding the derivatives and recognizing the amplitudes calculated above,

A0 =
1
2

(
Aττ→τ̄ τ̄

0 − Aτ τ̄→τ τ̄
0 + Aτ τ̄→τ̄ τ

0

)
(3.62)

and finally

A0 = κ
2 s

4
− t4 + u4

2stu
. (3.63)

n this way, by construction, the result is s ↔ u symmetric. This will be useful in Section 6 since the s ↔ u symmetry
simplifies the analysis of the analytic properties of this amplitudes at higher loops. At tree level, of course (3.63) coincides
with (3.54) up to irrelevant analytic terms as t → 0 that correspond to short-range contributions in b-space.

One can introduce masses for the scalars by means of a Kaluza–Klein compactification. To this end, we can re-interpret
(3.63) as (say) 10-dimensional, and perform a toroidal compactification of 6 spatial dimensions, letting

pM1 = (pµ1 , 0, . . . , 0, 0,m1) , pM4 = (pµ4 , 0, . . . , 0, 0,−m1) ,

pM2 = (pµ2 , 0, . . . , 0,m2, 0) , pM3 = (pµ3 , 0, . . . , 0,−m2, 0) ,
(3.64)

n such a way that

0 = pM1 p1M = pµ1 p1µ +m2
1 , 0 = pM2 p2M = pµ2 p2µ +m2

2 (3.65)

nd similarly for p3, p4. Likewise, from the 4D perspective,

− 2p1 · p2 = s−m2
1 −m2

2 , −(p1 + p4)2 = t , −2p1 · p3 = u−m2
1 −m2

2 , (3.66)

and therefore

A0 = κ
2 (s−m2

1 −m2
2)

4
− t4 + (u−m2

1 −m2
2)

4

2(s−m2
1 −m2

2)t(u−m2
1 −m2

2)
. (3.67)

alculating the leading eikonal by going to impact-parameter space is now straightforward, and neglecting contributions
hat lack the 1/t pole, one finds again the result

2δ0 =
2m1m2GDσ

2Γ
(D−4

2

)
√
σ 2 − 1(πb2)

D−4
2

, (3.68)

hich we had obtained in (3.40) when discussing the N = 0 theory emerging from the double copy. Therefore, as far
s the long-range effects captured by the leading eikonal exponentiation are concerned, switching on supergravity is
quivalent to taking into account the additional dilaton exchanges between the two massive particles.22

22 In the approach above, we assumed that the compactification scale is much smaller than the classical length scales relevant to the binary, such
as the impact parameter and the effective size GE of the colliding objects. Thus, long-range effects are captured just by the exchange of states with
zero Kaluza–Klein numbers yielding for instance Eq. (3.68). See [210] for a treatment in which the dynamics of the Kaluza–Klein modes is included
in an eikonal context.
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Following the familiar steps, we can take −p ∂
∂b of (3.68) to obtain the leading deflection angle

Θ =
4GE(πb2)ϵσ 2Γ (1− ϵ)

(σ 2 − 1)b
+ O(G2) −−→

D→4

4GEσ 2

(σ 2 − 1)b
+ O(G2) . (3.69)

et us conclude by looking again at the probe limit m1 ≪ m2, in which E ≃ m1 = M and σ ≃ Ep/mp, so that from (3.69)
we find

Θ =
4GM(πb2)ϵσ 2Γ (1− ϵ)

(σ 2 − 1)b
+ O(G2) −−→

D→4

4GMσ 2

(σ 2 − 1)b
+ O(G2) (3.70)

n agreement with (B.41) in D = 4 to leading order in G. In fact, show that the 1PM term determines completely the
probe limit of the maximally supersymmetric case in four dimension [211], and the result can be obtained by proceeding
as we did in Section 2.2. Starting from the phase shift determined by (3.68),

2δj = χ (J) = −
2m1m2Gσ 2

√
σ 2 − 1

log J , (3.71)

ne obtains an equation analogous to (2.54),

tan
Θ

2
=

2m1m2Gσ 2

√
σ 2 − 1

1
J
≃

2MGσ 2

b(σ 2 − 1)
, (3.72)

where we have used that J = pb and, in the probe limit, p ≃ mp
√
σ 2 − 1, thus recovering (B.41).

.1.5. Effective field theories beyond GR
All cases discussed so far focus on gravitational theories whose action contains just two-derivative terms. At large

istance this is certainly a reliable approximation, but it is interesting to see how higher derivative corrections can modify
igh energy scattering. By following [154] we start discussing the case where the standard gravitational action is modified
y quadratic and cubic terms schematically as follows

Sgr =
1

2κ2
D

∫
dDx
√
|G|
[
R+ l22R

2
+ l44R

3] , (3.73)

here li are the length scales determining when the new higher derivative terms start becoming relevant, which we take
o be parametrically larger than ℓP . From an effective field theory point of view, it may appear strange to assume that
he li are decoupled from ℓP , but this is quite natural in setups where the modification in (3.73) arise from a classical
icroscopic dynamics, as in string theory, or from integrating out non-gravitational degrees of freedom as in [169,175].

n explicit string constructions the scales li can be written in terms of the string length ℓs, but in this section we will
ork within an effective field theory approach and keep them arbitrary just assuming li ≫ ℓP . It is interesting to focus
n the corrections in (3.73) because they are the only ones that can modify the on-shell 3-graviton amplitude. Strictly
peaking this amplitude vanishes because the on-shell conditions force the momenta of the external states to be collinear.
owever one can either complexify the momenta or work in a signature with two times to define a non-trivial on-shell
-graviton amplitude. So from (3.73) we have

A3 = A(0)
3 + A(2)

3 + A(4)
3 , (3.74)

here A(0)
3 is the contribution from the Einstein–Hilbert part of the action one and the other two terms are higher

erivative corrections with two and four additional derivatives respectively. The Einstein–Hilbert contribution reads

iA(0)
3 = −2iκD [(ε1ε2)(ε3q1)+ cycl.] [(ε̃1ε̃2)(ε̃3q1)+ cycl.] , (3.75)

here εiµε̃i ν = hiµν is a symmetric tensor representing the polarization of one of the external gravitons and in each
arenthesis one needs to sum over the cyclical permutations. The correction proportional to l22 reads

iA(2)
3 = 2iκDl22

{
[(ε1ε2)(ε3q1)+ cycl.][(ε̃1q2)(ε̃2q3)(ε̃3q1)] + ε↔ ε̃

}
, (3.76)

hile the one proportional to l44 is

iA(4)
3 = 2iκDl44 [(ε1q2)(ε2q3)(ε3q1)] [(ε̃1q2)(ε̃2q3)(ε̃3q1)] . (3.77)

ince these on-shell couplings are written in the factorized form following from the KLT or the double copy relations,
ne can immediately see that they are obtained by taking the products of the space–time part of the standard 3-gluon
oupling and its higher derivative modification related to a Tr(F 3) in the Lagrangian. In the supersymmetric theories the
odification in (3.77) is not allowed and in the maximally supersymmetric case also (3.76) is set to zero and so, in this
ase, the 3-point vertex cannot be deformed. In the case of pure gravity in D = 4, the modification (3.76) does not
ontribute to the eikonal since it can be derived by the Gauss–Bonnet term which is a total derivative in four dimension.
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n the following we will keep D generic and we will not decouple the dilaton and the antisymmetric tensor arising from
he double copy construction.

We can now discuss how the higher derivative corrections modify the tree-level amplitude (3.21) describing scattering
f a graviton off a massive scalar. We focus in particular on the high-energy limit and look for terms that scale at least as
he factor of γ (s,m1,m2 = 0) present in the Einstein–Hilbert case (3.31). In order to do this we can simply combine, by
sing a de Donder propagator (A.23), an on-shell 3-graviton vertex obtained from (3.74) and the vertex with the external
calars (A.25). As a warming up exercise one can derive (3.31) from (3.75): by combining the scalar vertex with the de
onder propagator, one obtains

A(1)
µν = −

κD

q2

(
k1µk4ν + k1νk4µ − ηµν

2m2
1

D− 2

)
, (3.78)

hich can be saturated with the variation of (3.75) with respect to ϵ1µν (identifying that graviton as the particle exchanged
n the t-channel). Only the term proportional to q2ϵ1q2 can produce a leading contribution in the energy since, when
aturated with (3.78), it yields the scalar product 2(k1q2)(k4q2) ≃ −γ (s,m2

1,m2 = 0) where in the last step we neglected
term proportional to t . This reproduces exactly the result (3.31). One can follow the same approach by using (3.76)
hich provides the corrections proportional to l22 to the scattering discussed above. Again in this effective vertex there

s a term proportional to q2ϵ1q2 which for the same reasons above provides a contribution that scales with the energy
exactly in the same way as the term coming from the standard Einstein–Hilbert 3-graviton vertex. The main qualitative
difference that we find in this case is that the polarization of the external graviton appear dotted with the exchange
momentum q

iA0 ∼
2iκ2

D

−t
γ (s,m1,m2 = 0) (2l22) [qϵ1ϵ2q]. (3.79)

y following similar steps, one can obtain the correction related to l4

iA0 ∼ −
2iκ2

D

−t
γ (s,m1,m2 = 0) (2l44) [(qϵ1q)(qϵ2q)] . (3.80)

een as contributions to a tree-level amplitude the results in (3.79) and (3.80) do not have anything unusual, but since
hey behave as (3.31) in the limit (1.74) we expect them to exponentiate and contribute to leading classical eikonal. As
before we rewrite the result in impact parameter space:

2δ0 =
GDγ (s,m1,m2 = 0)
√
σ 2 − 1

Γ
(D−4

2

)
(πb2)

D−4
2

[
ϵ1 ijϵ2 ij + (D− 4)

2l22
b2
ϵ1 ijΠjhϵ2 hi−

(D− 2)(D− 4)
l44
b4
ϵ1 ihϵ2 jkΠijhk

]
,

(3.81)

here we labeled the physical polarizations with the indices i, j, . . . of the transverse space and

Πij = δij − (D− 2)
bibj
b2

,

Πijhk = δhkδij + δhjδik + δjkδih −
D
b2

(
bhbkδij + bhbjδik

+ bibhδjk + bjbkδih + bibkδjh + bibjδhk − (D+ 2)
bibjbhbk

b2

)
.

(3.82)

f course the first term in (3.81) is just the Einstein–Hilbert contribution of Eq. (3.32) which is identical for all the
olarizations of the graviton. Notice, on the contrary, that the corrections related to l2 and l4 are not universal and depend
n whether the polarizations involved have a trivial projection (or not) along the direction b of the impact parameter. The
ain novelty of the eikonal (3.81) with respect to the cases discussed so far is that it acts non-trivially in the space of the
olarizations of the incident massless particles. Thus, instead of being a phase it becomes an operator mixing different
elicities of the graviton, the dilaton and the antisymmetric tensor. As discussed in Section 4.2.4 this is the origin of
ausality violating contributions in the eikonal scattering for these modified theories when the impact parameter becomes
f the order of l2,4 [154].

.1.6. Including classical spin
In this subsection we generalize the calculation of the leading eikonal phase to the case in which the massive particles

lso have a ‘‘classical spin’’, i.e. an intrinsic angular momentum as opposed to the one associated to their orbital motion.
t the level of solutions of Einstein’s equations, introducing spin corresponds to going from the Schwarzschild solution,
haracterized by its mass, to the Kerr solution describing a black hole with both a mass m and spin Ja, provided the
nequality Ja ≤ Gm2 is satisfied (with the equality sign corresponding to the ‘‘extremal’’ case). Both the Schwarzschild and
err solutions involve the full non-linear structure of GR.
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One can, however, construct a linearized version of the Kerr black hole by keeping in the GR Lagrangian only the
inetic term of the gravitational field and a term that describes its interaction with the energy–momentum tensor of the
pinning matter. Then, from it, one can extract the three-point amplitude involving two massive particles with spin and
graviton [59,60,63] (the round parenthesis indicates symmetrization without additional factors, A(αBβ) = AαBβ +AβBα):

τµν(p, p′, k; a) = κDp̄(µexp(iϵν)ραβaαkβ )p̄ρ , (3.83)

here all three momenta entering the vertex are regarded as outgoing, and can take complex values in order to obey
oth momentum conservation and the mass shell relations,

pµ + p′µ + kµ = 0 ,
1
2

(
p′µ − pµ

)
= p̄µ , p2 = −m2

= p′2 , k2 = 0 = p̄ · k . (3.84)

he effective vertex (3.83) involves the spin vector aµ of the massive object. This is related to the spin tensor Sµν through
he following relations,23

aρ = −
1

2m2 ϵ
ραβγ p̄αSβγ , Sµν = ϵµνρσ p̄ρaσ (3.85)

and satisfies in particular

a · p̄ = 0 , Ja = ma , (3.86)

where Ja is the magnitude of the spin angular momentum, as can be seen by going to the rest frame. Of course, in the
ai → 0 limit, Eq. (3.83) reduces to the non-spinning effective vertex (3.6).

Using the above properties as well as the identities involving ϵµνρσ collected for convenience in Appendix C, one can
show that

ϵνµαβ a
αkβϵµργ δ a

γ kδ p̄ρ = −(a · k)2δνρ p̄ρ . (3.87)

As a result, the matrix exponential in (3.83) can be rewritten in the more explicit form

eiϵ
ν
ραβ

aαkβ p̄ρ =
[
cosh(a · k)δνρ + i

sinh(a · k)
a · k

ϵνραβ a
αkβ

]
p̄ρ , (3.88)

and the vertex reads

τµν(p, p′, k; a) = iκ
[
cosh(a · k)2p̄µp̄ν + i

sinh(a · k)
a · k

(
p̄µϵνραβ a

αkβ p̄ρ + p̄νϵµραβ a
αkβ p̄ρ

)]
. (3.89)

e note that the trace of this vertex only comes from the cosh part,

ηµντ
µν(p, p′, k; a) = 2iκ p̄2 cosh(a · k) . (3.90)

We can now sew together two copies of the on-shell vertex (3.89), describing each the motion of a distinct particle
labeled by 1 and 2, with the de Donder propagator (A.23), obtaining the following 2→ 2 amplitude for the scattering of
two massive spinning objects,

iA0 = τ
µν(p1, p4,−q; a1)Gµν,ρσ (q)τ ρσ (p2, p3, q; a2) . (3.91)

ere of course q2 is not zero, unlike for kµ in (3.83). Therefore, the expression (3.91) is only accurate up to contact terms,
.e. contributions whose residue at q2 → 0 vanishes, which only contribute to short-range effects. Vice-versa, the relations

p̄1,2 · q = 0 , p̄1 · a1 = 0 , p̄2 · a2 = 0 (3.92)

still hold and we may now consider real kinematics. Writing explicitly (3.91) we get

A0 =
2κ2

q2

[
cosh(a1q)p̄

µ

1 p̄
ν
1 −

i
2
(ϵµγαβ p̄ν1 + ϵ

ν
γ αβ p̄

µ

1 )p̄
γ

1 a
α
1q
β sinh(a1q)

qa1

]
(3.93)

× (2ηµρηνσ − ηµνηρσ )
[
cosh(a2q)p̄

ρ

2 p̄
σ
2 +

i
2
(ϵρλδηp̄σ2 + ϵ

σ
λδηp̄

ρ

2 )p̄
λ
2a
δ
2q
η sinh(a2q)

qa2

]
.

he term with cosh(qa1) cosh(qa2) can be easily computed and one gets

2κ2

q2
m2

1m
2
2(2σ

2
− 1) cosh(qa1) cosh(qa2) , (3.94)

23 To leading order in kµ , we may disregard the difference between p̄µ , p′µ and −p′µ .
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or the computation of the term with sinh(qa1) sinh(qa2) we can take advantage of the fact that only the first term of the
e Donder propagator contributes (the second term vanishes according to the observation before (3.90)) and one gets:

2κ2

q2
sinh(a1q)

qa1

sinh(a2q)
qa2

×

(
−(ϵγ σαβ p̄

γ

1 p̄
σ
2 a

α
1q
β )(ϵρλδη p̄

ρ

1 p̄
λ
2a
δ
2q
η)+ (p1p2)ϵ

ρ

γαβ p̄
γ

1 a
α
1q
βϵρλδηp̄λ2a

δ
2q
η

)
(3.95)

The second term in the big round parenthesis can be computed using the relation

ϵ
ρ

γαβ p̄
γ

1 a
α
1q
βϵρλδηp̄λ2a

δ
2q
η
= (p̄1 · p̄2)(a1 · q)(a2 · q)+ (a1 · p̄2 a2 · p̄1 − p̄1 · p̄2 a1 · a2) q2 (3.96)

that can be obtained from the formulas in Appendix C, while for the first term we need the following relation

− (ϵµναβ p̄
µ

1 p̄
ν
2a
α
1q
β )(ϵµναβ p̄

µ

1 p̄
ν
2a
α
2q
β ) =

[
(p̄1 · p̄2)2 − p̄21p̄

2
2

] (
a1 · qa2 · q− a1 · a2q2

)
+ p̄1 · p̄2a1 · p̄2a2 · p̄1q2 (3.97)

Actually any term proportional to q2 in (3.96) and (3.97) can be neglected because it will give an analytic piece. This
means that the term with sinh(qa1) sinh(qa2) is equal to

2κ2
D

q2
m2

1m
2
2(2σ

2
− 1) sinh(qa1) sinh(qa2) . (3.98)

inally, the two mixed terms can be computed similarly, and one gets the following final result

A0 =
2κ2m2

1m
2
2σ

q2

[
σ (1+ v2) cosh(a · q)

− 2iϵµναβv
µ

1 v
ν
2

(
aα2q

β sinh(a2 · q)
a2 · q

cosh(a1 · q)+ aα1q
β sinh(a1 · q)

a1 · q
cosh(a2 · q)

) ]
,

(3.99)

here the term in the first line comes from the sum of the terms in (3.94) and (3.98) and the identity σ 2(1+v2) = 2σ 2
−1.

n the previous equation we used

p̄µ1 ≃ m1v
µ

1 , p̄µ2 ≃ m2v
µ

2 , σ = −v1 · v2 (3.100)

nd introduced

aµ = aµ1 + aµ2 , σ =
1

√
1− v2

. (3.101)

In the center of mass,

p̄µ1 ≃ (E1, p⃗ ) , p̄µ2 ≃ (E2,−p⃗ ) , qµ = (0, q⃗ ) , (3.102)

etting

p⃗ = (0, 0, p) , q⃗ = (q, 0) = (qx, qy, 0) , (3.103)

e have

ϵµναβ p̄
µ

1 p̄
ν
2a
α
1q
β
= −m1m2σv(p̂× a⃗1) · q⃗ , (3.104)

o that (3.99) can be rewritten as follows

A0 =
2κ2m2

1m
2
2σ

2

q2

[
(1+ v2) cosh(a · q)

+ 2iv
(
(p̂× a⃗2) · q⃗

sinh(a2 · q)
a2 · q

cosh(a1 · q)+ (p̂× a⃗1) · q⃗
sinh(a1 · q)

a1 · q
cosh(a2 · q)

) ]
.

(3.105)

omparing (3.97) and (3.104), we see that

(a1 · q)2 = a21q
2
− ((p̂× a⃗1) · q⃗ )2 . (3.106)

e note that taking a square root of (3.106) and setting q2 = 0, one can effectively replace

a1 · q→±i(p̂× a⃗1) · q⃗ (3.107)

in (3.99) at the price of short-range corrections (similarly for a2). One can check this in the m2 = 0 case [75] by writing
q2 = (p2+p3)2 in terms of the spinor formalism as in (3.26). Then one can extract the leading term for small q by sending
either ⟨23⟩ or [23] to zero. This choice is related to the potential sign ambiguity introduced by the square root (3.107),
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ee [75] for a discussion of this point. However this sign is immaterial in (3.105) and the terms in the second line of that
quation recombine via sinhα coshβ + sinhβ coshα = sinh(α + β), leading to

A0 =
2κ2m2

1m
2
2σ

2

q2

[
(1+ v2) cosh(i(p̂× a⃗) · q⃗ )+ 2v sinh(i(p̂× a⃗) · q⃗ )

]
, (3.108)

hich can be also recast in the compact form

A0 =
κ2m2

1m
2
2σ

2

q2
∑
η=±1

(1+ ηv)2eiηc⃗·q⃗ , c⃗ = p̂× a⃗ . (3.109)

Starting from (3.109), and going to impact-parameter space in the usual way,

2δ0 = Ã0 =
κ2m1m2σ

4v

∑
η=±1

(1+ ηv)2
∫

d2−2ϵq
(2π )2−2ϵ

ei(b⃗+ηc⃗ )·q⃗

q2
, (3.110)

nd, using (A.45), we obtain the leading eikonal phase including classical spin,

2δ0 =
κ2m1m2σ

4v
1

4π1−ϵ

∑
η=±1

(1+ ηv)2
Γ (−ϵ)(⏐⏐b⃗+ ηc⃗ ⏐⏐2)−ϵ . (3.111)

We remark that c⃗ is orthogonal to p⃗ by its definition (3.109). The impulse is therefore given by

− Q⃗ = −
∂2δ0
∂ b⃗
=
κ2m1m2σ

2v
1
4π

∑
η=±1

(1+ ηv)2
b⃗+ ηc⃗⏐⏐b⃗+ ηc⃗ ⏐⏐2 . (3.112)

e see that the entire spin dependence is encoded in the shift b⃗ → b⃗ ± c⃗ , which is reminiscent of the Newman–Janis
hift [212], relating Kerr to Schwarzschild black holes.
These results are valid for generic spin orientations (see Fig. 8). Let us now consider the case in which both spins are

arallel to the angular momentum in the center of mass frame as in Fig. 8(a). That is, we align the impact parameter by
etting

bµ = (0,−b, 0, 0) , (3.113)

o that L⃗ = b⃗× p⃗ = (0, pb, 0), then

a⃗1,2 = (0, a1,2, 0) , a1,2 > 0 , c⃗ = (−a, 0, 0) , (3.114)

s summarized in Fig. 8(a). In this case, (3.111) reduces to

2δ0 =
κ2m1m2σ

2v

[
−

1+ v2

4π1−ϵ

(
1
ϵ
+ log(b2 − a2)+ γ

)
−

2v
4π

log
b+ a
b− a

]
+ O(ϵ) , (3.115)

nd the impulse is given by

− Qµ
= Q

bµ

b
, Q =

κ2m1m2σ

v

1
4πb

(1+ v2)− 2va
b

1− a2
b2

, (3.116)

hich agrees with Eq. (82) of Ref. [59]. The previous result corresponds to the case where the two spins are parallel to
he orbital angular momentum (see (3.114) and the equation for L⃗ after (3.113)). If we had instead taken them to be
nti-parallel, we would have obtained a plus sign in the last term in the numerator of (3.116). This implies that the sign
n the last term in the numerator of (3.116) is such that for parallel (antiparallel) orbital angular momentum and spin the
eflection angle decreases (increases) in agreement with expectations [213].
We remark that, in view of the bound on the spin, a ≤ Gm, and of the PM limit Gm≪ b, the parameter a/b is always

very small. For this reason, the final results (3.112), (3.116) should be thought of only as a convenient way to package
their power series around a/b = 0.

3.2. String theory

Because of the presence of a massless spin-two state in its spectrum, string theory naturally contains gravity and, at
sufficiently low energies (large distances), it reduces to an effective gravitational field theory. It is therefore natural to
study the gravitational 2-body scattering in a string theory framework.24 The focus of this section is to derive the leading
eikonal in a truly stringy regime, i.e. when an effective field theory description is not reliable and the results obtained in

24 Although the large distance physics discussed in this report appears to be insensitive to the ultraviolet completion of the theory, it is also
desirable to work in a framework in which such a completion is explicitly implemented.
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Fig. 8. Scattering of spinning objects in the center-of-mass frame.

the previous subsections cannot be used. Particular emphasis is given to the new phenomena arising in a string context
which are related to the existence of Regge trajectories and to the extended nature of the fundamental objects. This
analysis was first performed in [8,10] focusing on the string theory version of the high-energy massless scattering25
iscussed in Section 2. Here we start from the slightly simpler fixed-target setup where a light string scatters off a stack
f Dp-branes [22]. Then we will summarize the results obtained in the string–string collision case in Section 3.2.6.
Conceptually, we follow exactly the same approach discussed in the field theory context: we use scattering amplitudes

o derive the dynamical information relevant for the leading eikonal and then, as a second step, show how to interpret
he result as the motion of a probe in a curved background (in the spirit of Section 2.3). In the main text we focus mostly
n type II superstring theories, which are free of tachyonic instabilities, and we refer to the original references for the
erivations of several string results that are the starting point of our analysis. In Appendix D we provide some of these
erivations in the context of bosonic string theory where it is possible to focus on the key features by using a simpler
ormalism. It turns out that the tachyonic instabilities do not play an important role in the definition of the string eikonal,
ince as we shall see they do not contribute to long-range effects, which instead arise from the expansion of the leading
egge trajectory around t = 0. Thus bosonic string theory provides the perfect arena both for developing the technical
nalysis and for discussing some interesting features of non-supersymmetric setups (see for instance Section 3.2.5). In
rder to make the comparison between supersymmetric and bosonic string theories easier we indicate the number of
pacetime dimensions with d: of course we have d = 10 for type II theories or d = 26 for the bosonic theory, but several
esults at high energies take the same functional form if the spacetime dimension is formally indicated with d (while D
ill denote the number of noncompact dimensions).

.2.1. String-brane scattering at tree level
We consider the scattering of a massless closed string off a stack of N coincident Dp-branes in type II theories where

ome space-like directions can be compactified on circles. While we will stick to this simple setup, it should be possible
o extend this analysis to more complicated configurations with orbifold compactifications and more general boundary
onditions [214]. The leading contribution is captured by a worldsheet with the topology of the disk and two punctures
n its interior (see Figs. 9 and 10). The boundary of the disk lies on one of the Dp-branes and the punctures describe
he ingoing/outgoing closed string that, for sake of simplicity, we take to be a massless NS–NS state. We focus on the
ase p ≤ 6 so that the gravitational backreaction of the Dp-branes decays far away (see Section 4.2.3 for a discussion
f this viewpoint). The leading tree-level contribution to this 1 → 1 scattering takes the usual form of a ratio of
-functions [215–217]

A0(pi, ϵi) = −
κdNTp

2
K(pi, ϵi)

Γ
(
−α′E2

s

)
Γ

(
−
α′

4 t
)

Γ
(
1− α′E2

s −
α′

4 t
) ≡ K(pi, ϵi)

(α′E2
s )2

A0 , (3.117)

where our string conventions on the gravitational coupling κd and the D-brane tensions Tp are summarized in
Appendix D.1.3. The closed string momentum is not conserved in the transverse directions µ = p + 1, . . . , d − 1 and
p1 + p2 = q is the momentum transferred to the Dp-branes with t = −q2. Momentum is conserved along the Dp-branes,
n the directions µ = 0, 1, . . . , p, so we introduce E2

s = −(pi)
2
∥
and we will be interested in the high-energy eikonal regime

orresponding to the limit E2
s ≫ |t|. The result (3.117) is closely related to the tree-level amplitude for four open strings,

s is the case for general mixed open/closed string amplitudes, see [218] for a detailed discussion at tree-level. Then the
inematic factor K is the same one discussed for supergravity in Section 3.1.4 and the closed string polarizations (ϵi)µν
hould be thought as pairs of open string polarizations (εi)µ, as done for scalar-graviton scattering in Section 3.1.2. The

25 As we will see, this high-energy limit is dominated by the leading Regge trajectory of the graviton, while subleading Regge trajectories, such
as the one of the dilaton, become irrelevant.
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Fig. 9. Scattering of a massless string off a Dp-brane. The blue circles represent punctures associated to the incoming and outgoing closed string
nd the green disk rests on the Dp-brane. The thin red line represents a heavy open string produced in the s-channel (Fig. 10(b) below), while the
hick black line represents a closed string exchanged in the t-channel (Fig. 10(a) below).

Fig. 10. Two degeneration limits of Fig. 9. The blue dots represent punctures associated to the incoming and outgoing string states, while the
oundary of the green disk lies on the Dp-branes. The picture on the left depicts the corner of the worldsheet moduli space relevant in the large
istance regime where the closed strings in gray are those of the leading Regge trajectory, see Section 3.2.3. The picture on the right depicts the
egion capturing the closed/open string transition, see Section 3.2.2.

wo Γ -functions in the numerator of (3.117) encode different sets of poles: the Gamma that depends on t contains the
poles that lie on the closed string Regge trajectory αclosed(t) = 2+ α′t

2 , while the other contain the s-channel poles on the
pen string Regge trajectory αopen(E2

s ) = 1+α′E2
s . We prefer to indicate the total energy in the center of mass for the string

brane scattering as Es rather than
√
s as perhaps would be more natural by using the relations with the 4-point open string

amplitude mentioned above. The reason is that one can see this process as the probe limit of a 2→ 2 scattering where
the D-brane stack is the heavy state and we reserve s for the total center-of-mass energy of this scattering, including the
rest energy of the D-branes.

At leading order in the limit E2
s ≫ |t| we have

K(p1, ϵ1; p2, ϵ2) = (α′E2
s )

2ϵ1µν ϵ
µν

2 + · · · , (3.118)

where ϵ1,2µν are the polarizations of bosons in the NS–NS, and then, by using

Γ (a+ b)
Γ (a+ c)

∼ ab−c , as a≫ b, c , (3.119)

e get

A0 ≃
κdNTp

2
Γ

(
−
α′

4
t
)
e−iπ

α′t
4 (α′E2

s )
1+ α

′t
4 . (3.120)

he overall normalization is directly related to the classical length scale Rp of the geometry describing the gravitational
ackreaction of the Dp-branes, see Eq. (D.7). Notice that we wrote explicitly the phase factor of (−α′E2

s )
α′t
4 arising from

the Stirling approximation (3.119): a simple way to make the appropriate choice of branch cut in the factor of e−iπ
α′t
4 is

o make sure that the imaginary part of the amplitude is positive (recalling that t < 0). As usual, this follows from the
relation between this imaginary part and the production rate of new degrees of freedom, in this case open strings attached
to the Dp-branes. We will discuss this interpretation of the phase in Section 3.2.2 showing that there is a quantitative
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ink between the imaginary part of (3.120) and the amplitudes describing the transition from the external closed string
nd a particular class of open string states.
When the momentum transferred is small in comparison to the string scale α′|t| ≪ 1, the string amplitude is

ominated by the exchange of massless states and, since we already took the high energy limit, we are just isolating
he graviton propagating between the Dp-branes and the external closed strings

A0 ≃
4κdNTp

2

(
−

E2
s

t

)
. (3.121)

It is possible to make contact with the probe limit discussed at the end of Section 3.1.1 by identifying the Dp-branes with
the heavy particle. We can wrap the extended space-like direction of the Dp-branes on a p-dimensional torus of volume
Vc and then they would describe a target of mass Mh in the noncompact D = (d− p) dimensions (see also the comments
around (D.4))

Mh = NτpVc =
NTpVc

κd
,

1
κ2
D
=

Vc

κ2
d
. (3.122)

The string calculation already includes the factor 1/(2Mh) which is part of the Fourier transform (3.8) used when both
particles in the scattering are dynamical, as in the probe limit we have 4Ep → (2Mh) (2Es) , where we used (3.17) with
E1 → Es and m1 → 0 since we are considering a massless probe. So we have to compare (3.121) with (3.18) divided by
2Mh and for m = 0. By using (3.122), we find full agreement. This approximation is reliable when the impact parameter b
f the process is much larger that the string length ℓs =

√
α′h̄, as it follows from the usual relation |q| ∼ h̄/b connecting

he impact parameter b and the momentum |q| ∼
√
−t of a single graviton exchanged between the string probe and the

Dp-branes.
For general values of α′|t| there are two novelties of the string result with respect to the field theory one: the first is

the appearance of a phase and the second is the fact that the simple t-dependence related to the field theory propagator
for the graviton is substituted by a Γ -function. Both are string effects: the first related to the existence of an open string
sector supported by the Dp-branes and the second related to the existence of higher-spin massive closed string states. Of
course these features are a consequence of the extended nature of the elementary objects used in this case and appear
generically in all string theories.26 Then it is natural to expect that the string eikonal is qualitatively different from the field
theory one when the impact parameter is of the order of the string scale, however it turns out that there are deviations
at distances that are parametrically larger. In order to provide a first example of such phenomenon let us introduce

2δ0 = Ã0(Es, b) =
∫

dd−p−2q
(2π )d−p−2

A0(Es, q2)
2Es

eibq , (3.123)

here, as mentioned above, we need to include just the factor of 1/(2Es) because the factor of (2Ms) is already included
n the amplitude. Following the treatment in [10], we make the massless pole of the string amplitude explicit

A0 =
κdNTp

2
4E2

s

−t
Γ

(
1−

α′t
4

)
e

t
4 Y , (3.124)

where we introduced

Y = l2s (Es)− iπα′ , with ls(Es) =
√
α′ ln(α′E2

s ) . (3.125)

he appearance of the effective string length ls(Es), with the extra factor of ln(
√
α′Es), will play an important role and

signals that elementary energetic strings are larger than expected from naive dimensional analysis. When (3.124) is used
in (3.123), we can rewrite the dependence on q of all factors that are analytic as q → 0 in terms of derivatives with
respect to the impact parameter. For instance we have

t = −q2 =
∂2

∂bi∂bi
≡ ∇

2 . (3.126)

Then we find the following integral representation of the leading string eikonal

2δ0 = Γ
(
1+

α′

4
∇

2
)∫

dd−p−2q
(2π )d−p−2

κdNTpEs
q2

exp
(
−

Y
4
q2 + iqb

)
= κdNTpEs Γ

(
1+

α′

4
∇

2
)∫

∞

0
dT
∫

dd−p−2q
(2π )d−p−2

e−q
2
(
T+ Y

4

)
+iqb

= κdNTpEs Γ
(
1+

α′

4
∇

2
)(

b2

4

)− d−p−4
2

∫ b2
Y

0

dT̂

(4π )
d−p−2

2

T̂
d−6−p

2 e−T̂ , (3.127)

26 Details change depending on the particular setups: for instance in the case of the string graviton–graviton scattering of Section 3.2.6 the degrees
of freedom responsible for the imaginary part of the tree-level amplitude are closed strings in the s-channel.
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here in the last step we introduced T̂ = b2/[4(T+ Y
4 )]. For real values of Y , the integral yields the incomplete Γ -function

(z, a) with

γ (z, a) =
∫ a

0
dt tz−1e−t =

∞∑
k=0

az+ke−a

z(z + 1) . . . (z + k)
, (3.128)

o by analytical continuation we can write

2δ0 =
κdNTpEs

4π
Γ

(
1+

α′∇2

4

)[
(πb2)−

d−4−p
2 γ

(
d− 4− p

2
,
b2

Y

)]
, (3.129)

lso when Y is given by (3.125). As usual, we expect that this result exponentiates after including the leading contributions
f worldsheet diagrams with h+1 boundaries on the Dp-branes. This is based on the same counting used in the QFT case:
y using (D.7) we see that the first factor in (3.129) is proportional to the classical scale Rd−p−3

p , so by dimensional analysis
δ0 scales as (Rp/b)d−p−3Esb/h̄ and is a large quantity in the classical limit. In Section 4.2 we will provide an explicit check
of this exponentiation at the string level, focusing just on a particular regime since an exhaustive analysis is not yet
available in the literature. Here we assume the eikonal exponentiation and discuss the behavior of (3.129) at large and
small distances with respect to the effective string scale introduced in (3.125). In the large distance regime b≫ ls(Es) we
an use

γ

(
z,

b2

Y

)
∼ Γ (z)− e−

b2
Y

(
b2

Y

)z−1

. (3.130)

To leading order, the above expression does not depend on the impact parameter and yields a real contribution to δ0 in
Eq. (3.129). In the large distance limit we can neglect the overall Γ -function in (3.129) as it yields corrections suppressed
by α′/b2,

2δ0 ∼
√
πEs
2

Γ
( d−p−4

2

)
Γ
( d−p−3

2

) Rd−p−3
p

bd−p−4
+

iπEs
2Γ

( d−p−3
2

)√ πα′

ln(α′E2
s )

(
Rp

ls(Es)

)d−p−3

e
−

b2

l2s (Es) , (3.131)

here we wrote the leading real and imaginary terms and used (D.7). This is obtained by expanding the γ -function around
he first term of the following equation

b2

Y
≃

b2

l2s (Es)
+ i

π

ln(α′E2
s )

b2

l2s (Es)
, (3.132)

since the second one is suppressed by 1/ ln(α′E2
s ) at high energy. Then the expansion of the γ -function is obtained from

the integral expression in (3.128)

γ

(
d− 4− p

2
,
b2

Y

)
≃ γ

(
d− 4− p

2
,

b2

l2s (Es)

)
+ iπ

e
−

b2

l2s (Es)
(

b
ls(Es)

)d−4−p
ln(α′E2

s )
. (3.133)

he real part of (3.131) can also be written as 2GDMhEsΓ
(D−4

2

)
(
√
πb)−(D−4) with the identifications κ2

D = 8πGD, D = d−p
and (3.122). This reproduces the QFT result in Eq. (3.19) for m1 = 0, as expected since in this regime the field theory setup
of Section 3.1.1 is a good effective description. The exponentially suppressed contributions are relevant for the imaginary
part and can be derived directly from the amplitudes (3.120) as done in (3.146). Taking − 1

Es
∂
∂b of the real part of (3.130),

one finds the deflection angle (B.28) obtained in Appendix B.2 by solving the geodesic equation.
In the opposite regime, where the impact parameter is small with respect to the effective string length b < ls(Es), we

an keep just the first term in the expansion (3.128) obtaining

2δ0 ∼
κdNTpEs

4π
(πY )−

d−4−p
2

d−4−p
2

(
1+ O

(
b2

Y
,

1
ln(α′E2

s )

))
. (3.134)

It is interesting to consider the high-energy stringy regime where b2 ≪ |Y |, which is possible because of the ln(α′E2
s )

enhancement in (3.125). Then, the Γ -function in (3.134) can be approximated to 1 (since the shift proportional to α′∇2

yields corrections suppressed by α′/Y ) and the leading contribution to 2δ0 takes a simple b-independent form. Notice,
however, that this result is not real: by using (3.125) and expanding the factor Y in the regime

√
α′ ∼ b < ls(Es), one

an see that the leading imaginary contribution takes the same form as in (3.131) without the exponential factor which
s negligible in this regime

Im(2δ0) ≃
π

2Γ
( d−p−3

2

) ( Rp

ls(Es)

)d−p−3 √
πα′Es√

ln(α′E2
s )
. (3.135)

Because of the presence of this imaginary part the elastic partial wave unitarity discussed in Section 1.3 is violated. This
is not surprising since, when the probe gets close to the Dp-branes, it can excite the open strings degrees of freedom, i.e.
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he closed string can ‘‘touch’’ the target and make a transition to an open string whose endpoints are anchored to one of
he Dp-branes. The less obvious aspect of this phenomenon is that it starts when b ∼ ls(Es) rather than simply when the
mpact parameter is of the order of the string length. In order to restore unitarity, one would need to include explicitly
he open string degrees of freedom and promote 2δ0 to an operator that can describe a closed/open string transition as
iscussed in Section 3.2.2.

.2.2. The closed/open string transition
Let us discuss in some more detail the imaginary part of (3.120)

Im(A0) ≃
κdNTp

2
(α′E2

p )
1+ α

′t
4 sin

(
−π

α′t
4

)
Γ

(
−
α′t
4

)
= π

κdNTp
2

(α′E2
p )

1+ α
′t
4

Γ
(
1+ α′t

4

) , (3.136)

where in the final step we used

Γ (z)Γ (1− z) =
π

sin(πz)
. (3.137)

A similar formula holds also for the imaginary part of the bosonic string amplitude (D.33)

Im(A0) ≃ π
κdNTp

2

(α′E2
p )

1+ α
′t
4

Γ
(
ξ + α′t

4

) , (3.138)

with ξ = 2, instead of ξ = 1 as in (3.136).
This imaginary part is clearly a string effect since it vanishes in the α′ → 0 limit and we will now show that it is due to

he propagation of new degrees of freedom in the s-channel which in our setup are open strings representing excitations
f the target Dp-branes. Let us illustrate this by starting from the full amplitude (3.117) (or (D.26) in the bosonic case).
or simplicity in the superstring case (3.117) we choose the external states to be a Kalb–Ramond field with polarizations
long the spacelike directions of the D-brane worldvolume: then the factor K(pi, ϵi) takes the form given in the square

parenthesis of (3.140b) [219]. However, as expected, only the leading term in Es will be relevant for the final result, so
ne can also focus directly in A0 in (3.117). By using the relation

Γ (x)
Γ (x+ a)

=

∞∑
n=0

(−1)n

n!Γ (a− n)
1

x+ n
, (3.139)

it is possible to rewrite the string amplitudes mentioned above as a series of the s-channel poles

AT
0 =

κdNTp
2

∞∑
n=0

1
n!

Γ

(
2+ α′t

4 + n
)

Γ
(
2+ α′t

4

) 1
−α′E2

s + n− 1
, (3.140a)

AB
0 =

κdNTp
2

[
(α′E2

s )
2
+ (α′E2

s )
(
α′t
4

)] ∞∑
n=0

1
n!

Γ

(
α′t
4 + n

)
Γ
(
1+ α′t

4

) 1
−α′E2

s + n
, (3.140b)

where we used again (3.137). The amplitude in the first line refers to bosonic string theory where the probe particle
is a tachyon, while the second line refers to the superstring case with the Kalb–Ramond state mentioned above. The
square parenthesis in superstring case follows from the prefactor in (3.117) as one can see with a calculation similar to
the one discussed for supergravity in Section 3.1.4. The poles in α′E2

s correspond to open strings of mass M2
n = n/α′ (or

M2
n = (n − 1)/α′ in the bosonic case) propagating on the disk and the residue is a polynomial in t of degree n which is

the maximum spin for the states of mass Mn. While the result in (3.140) seems to be real, there is actually an imaginary
part which is hidden in the iϵ prescription which is not written explicitly and should be reinstated. This can be done as
follows

1

−E2
s +

n−(ξ−1)
α′

→
1

−E2
s +M2

n − iϵ
= PV

[
1

−E2
s +M2

n

]
+ iπδ(−E2

s +M2
n ) , (3.141)

here the first term in the last step indicates the Cauchy Principal Value and the second one is the imaginary contribution
ue to iϵ Feynman’s prescription. Notice that this fixes the sign of the imaginary part of (3.141) providing a first principle
ustification for the prescription discussed after (3.120). Then we can write the imaginary part of the amplitude in a unified
ay for the bosonic and the superstring case

2 Im(A0) ≃ πκdNTp
∞∑
n=0

1
Γ (n+ ξ − 1)

Γ

(
ξ + α′t

4 + n
)

Γ
(
ξ + α′t

4

) δ(−α′E2
s + n− (ξ − 1)) , (3.142)

where we used the delta function to simplify the square parenthesis in the second equation of (3.140b). Because of
perturbative unitarity, each term in the sum represents the modulus square of a 2-point amplitude describing a closed
38
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tring transforming into a linear combination of open strings at level n. Since we are interested in the limit α′E2
s ≫ 1, we

an approximate the sum as an integral over the continuous variable x = n
α′E2s

∞∑
n=0

δ(−α′E2
s + n− (ξ − 1))→

∫
∞

0
dx δ(−1+ x) (3.143)

and rewrite the ratio of the n-dependent Γ -functions by using the limit (3.119) obtaining

Im(A0) ≃ π
κdNTp

2

(
α′E2

s

)1+ α′t4
Γ
(
ξ + α′t

4

) , (3.144)

in agreement with (3.138).
Exactly as in the field theory case, one can extract the long-range description of this string scattering amplitude by

taking its Fourier transform to impact parameter space (3.123). Starting from the imaginary part, we can extract the
leading large distance behavior by approximating Γ

(
ξ + α′t

4

)
≃ 1 and then, since t = −q2, the Fourier transform

ranslates into a Gaussian integral

Im(2δ0) =
∫

dd−2−pq
(2π )d−2−p

ImA0(Es, q2)
2Es

eibq ≃ π
κdNTp

4
α′Es e

−
b2

α′ ln(α′E2s )

(πα′ ln(α′E2
s ))

d−2−p
2

. (3.145)

Then the standard eikonal e2iδ0 is not a phase as it includes a real factor e−Im2δ0 with

Im(2δ0) ≃
π

2Γ
( d−p−3

2

) √πα′Es√
ln(α′E2

s )

(
Rp

ls(Es)

)d−3−p

e
−

b2

l2s (Es) , (3.146)

here we used (D.7). This result is consistent with the one obtained in (3.135) from (3.134).
It is interesting to notice that the ξ dependence drops out in (3.146), so the stringy imaginary part of the tree-level

eikonal takes the same form both in the superstring and in the bosonic case. Clearly supersymmetry does not play a
crucial role in the closed/open string transition at high energies. Thus for the rest of this subsection we can focus on the
slightly easier setup of bosonic string theory without losing any physically interesting qualitative feature. Our aim is to
provide a characterization of the open strings produced when the probe is captured by the Dp-branes. Since the incident
closed string probe has zero space-like momentum along the Dp-brane worldvolume, the open strings responsible for the
imaginary part (3.146) will be ‘‘static’’ and have just a non-zero energy component α′E2

s = no− 1, where no indicates the
level of the open string produced. So one should be able to retrieve (3.146) from the ‘‘square’’ of the operator V̂ describing
the tree level transition between a generic closed string Vc and a generic open string Vo.

To be more specific, by following [220], we introduce the open-closed string vertex V̂ that, when saturated with a
particular open string state ⟨Vo| on the left and a particular closed string state |Vc V̄c⟩ on the right, provides their coupling

⟨V0|V̂ |(Vc V̄c)(p)⟩ =

√
κdNTp
2α′
⟨Vc(p)V̄c(p)Vo⟩, (3.147)

here p is the momentum of the closed state which is described as a ket-vector |Vc V̄c⟩ on the left hand side to stress that
it contains a holomorphic and an antiholomorphic part. In formulae we expect

Im(A0) = πα′⟨(Vc V̄c)(p2)|V̂ † V̂ |(Vc V̄c)(p1)⟩ . (3.148)

The explicit form of V̂ was first discussed in [221,222] (in the case of all Neumann boundary conditions) and can also
be derived from the overlap of generic Del Giudice, Di Vecchia, Fubini (DDF) states [223] by following [224]. This is the
same formalism that we will use in Section 3.2.4 to describe the closed string transitions that are relevant for the tidal
xcitations. We refer to the literature for the derivation (see [220] and references therein) and here it suffices to say
hat the operator describing the closed/open transition takes the form V̂ ∼ exp[âkNklâl], where the operators â indicate
the light-cone creation (for the open string) or annihilation (for the closed string) oscillators of level k, l and Nkl are
explicit coefficients known as Neumann coefficients. The index for the level includes also zero where it represents the
energy/momentum of the states. The key idea is to start from the exact expression of the Neumann coefficients and take
the Regge limit to obtain simplified expressions in the gauge where the space-like part of the light-cone vector is along the
direction of momentum of the closed string (this choice will also be used later in the closed string context, see (3.161)).
For instance we can write the transition between an incident closed string tachyon with vanishing transverse momentum
and a generic open string state as follows

V̂p =0|0⟩ =

√
κdNTp

δ

(
α′E2
+ 1−

∑
âi âi

)
e

1
2
∑

k,l N
33
kl â

i
−k â

i
−l |0⟩ , (3.149)
⊥ 2α′ s −n n
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here here the â’s represent the open string oscillators satisfying [âi
−n, â

j
k] = nδk+n,0δij. The delta function enforces the

energy conservation and, as mentioned, means that the level of the open string produced is large no ∼ α
′E2

s . In the high
energy regime we have no ≫ 1 and, as shown in [220], the Neumann coefficient

N33
kl = −

α2

α1(k+ l)

(
−k α1

α3

k

)(
−l α1

α3

l

)
, (3.150)

where α1 (α2) are the dimensionless left (right) moving light-cone momenta for the incident closed string, while α3 is
the momentum of the open string produced. It is convenient to align the light-cone along the direction of motion of the
closed string which we take to be a tachyon. Then we have

α1 =
√
α′ (Es + p) =

√
no − 1+

√
no + 3 ∼ 2

√
no

(
1+

1
2no

)
,

α2 =
√
α′ (Es − p) =

√
no − 1−

√
no + 3 ∼ −

2
√
no

(
1−

1
2no

)
, (3.151)

α3 = −2
√
α′Es = −2

√
no − 1 ∼ −2

√
no

(
1−

1
2no

)
,

here we used α′E2
s = no−1 and α′p2 = no+3 for the tachyon and took the large energy limit. Then one can check that

he Neumann coefficients (3.150) are suppressed as 1/no in this limit if k, l are kept fixed. Instead if both k, l scale with
o the Neumann coefficients stay finite

N33
kl ∼ nx+y−2 xxyy

Γ (1+ x)Γ (1+ y)
1

x+ y
, k = nox , l = noy . (3.152)

his means that we can describe the final open string state in terms of few oscillators in the light-cone gauge (3.151).
t is difficult to prove analytically (3.148) even in the case q = 0, but, in this case, it is interesting to notice that it is
asy to obtain a convincing numerical check in the light-cone gauge mentioned above: one can expand the exponential
n (3.149) and focus on the contribution that is linear in N33 for each vertex. Then in (3.148) we obtain a contribution
ith two sums over the open string levels which at high energy can be approximated with two integrals. By recalling
hat in the bosonic case the indices i, j run from 1 to 24, we obtain the following numerical estimate for (3.148)

12πα′
κdNTp
2α′

no

∫ 1

0
dx
∫ 1

0
dy

x2x+1y2y+1δ(x+ y− 1)
Γ 2(1+ x)Γ 2(1+ y)

∼ 0.929
κdNTp

2
α′E2

s , (3.153)

which is already very close to the full result (3.144). By going to next order and including in (3.149) the quadratic terms
in the Neumann coefficients coming from the expansion of the exponential, one can check numerically that this new
contribution is subleading and changes the numerical coefficient (3.153) from 0.929 to 0.998 [220]. It is clear that in this
gauge the expansion is converging very quickly so one can describe the open string produced in the transition at t = 0
as a linear combination of states with a pair of âik oscillators plus small corrections with the insertion of few other pairs
(with the levels summing up to no globally).

We refer again to [220] for the generalization of (3.149) to the case of a non-vanishing transferred momentum q. By
indicating the resulting closed/open vertex as V̂q⊥ , one can introduce its impact parameter version via the usual Fourier
transform obtaining

V̂b|0⟩ =
∫

dd−p−2q⊥
(2π )d−p−2

eibq⃗⊥ V̂q⊥ |0⟩ , (3.154)

here V̂q⊥ is similar to (3.149), but contains also linear terms in the exponential with the open string oscillators [220].
n the high energy limit, the final result takes the form of a squeezed coherent state

V̂b|0⟩ =
1(

πα′ logα′E2
s

) d−p−2
2

V̂ e
−

1
α′ logα′E2s

(
bi+i

√
α′

2
∑

k
1
k â

i
−k

)2

|0⟩ , (3.155)

with the expected exponential factor e
−

b2

l2s (Es) [220] which explicitly shows that the closed/open string transition is
suppressed unless the impact parameter is smaller than the effective string length ls(Es). It would of course be interesting
o generalize this analysis to the case where two open strings are produced by looking at the cuts of the annulus
ontribution to the closed string scattering. In this case there is a richer phase space for the final states and we expect
hat the total energy is shared preferably equally among the open strings. However, as far as we know, this analysis has
ot been carried out explicitly even in the bosonic case.

.2.3. The Reggeon vertex formalism
As usual in tree-level string theories, Eq. (3.117) displays an infinite set of equally spaced poles. As discussed in the

revious sections, in the high energy regime E ≫ |t| the poles in the s-channel merge to form a cut, while the poles in
s
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-channel appear explicitly in the result (3.120) and in the eikonal (3.134). In this regime the dominant states exchanged
etween the Dp-branes and the scattered string have maximal spin at each mass level, i.e. they should lie along the leading
egge trajectory of the closed string spectrum. In Appendix D.2.1 we show this quite explicitly by following the approach
f [225,226] and even if our summary there focuses on the bosonic theory, the generalization to the superstring case is
traightforward. Here we follow the approach taken in [149] that was applied to the string-brane scattering in [227,228].
The basic idea is that, at high energy, the dominant region in the integral over the worldsheet moduli (see for

nstance (D.28)) corresponds to diagrams where two closed string vertex operators are very close: the size of the relevant
egion scales as (α′E2

s )
−1, as pointed out also in the discussion after (D.31) for the bosonic string. Thus instead of calculating

he full string amplitude and then take the high energy limit, it is possible to first take a generalized OPE to define a new
ngredient, the ‘‘Reggeon vertex’’, that then can be attached to the Dp-branes (or another Reggeon vertex in the case of
the string–string scattering) to obtain directly the high energy limit of the amplitude. In this discussion we can keep the
vertex operators Vi general as the only feature we need is the exponential factor eip1,2X that is always present for states
ith nonzero momentum. A disk amplitude with two closed strings takes a form similar to (D.28)

A0 = CS2
α′κd

8π
N
∫

d2z1d2z2
dVSL(2,R)

⟨0|V (−1)
1 (z1, z̄1)V

(0)
2 (z2, z̄2)|B⟩ , (3.156)

ut with generic vertex operators27 Vi. In (3.156), CS2 is fixed as in (D.13) and the vertex operators have a normalization
factor κd

2π as in (D.27). By introducing z = z1+z2
2 and w = z1 − z2 we can write the contribution from the exponential to

the OPE as follows

V (−1)
1 (z1, z̄1)V

(0)
2 (z2, z̄2) ∼ |w|α

′p1p2eiqX(z,z̄)+i
p1−p2

2 (w∂zX+w̄∂z̄X)
O(z, z̄)
|w|2n1 |w|2n2

+ · · · , (3.157)

whereO(z, z̄) comes from the contribution of the non-exponential part of the vertices Vi and α′p2i = −4ni. We are focusing
only on the most singular term as w→ 0 as the subleading contributions are suppressed at high energies. As mentioned,
the motivation for taking the OPE approximation above is that the high energy result is dominated by the region of
|w|2 ≤ 1/(α′E2

s )≪ 1. However this means that we need to treat exactly the terms where w is enhanced by factor of Es, as
in the combination proportional to (p1−p2) in the exponential of (3.157). By using the on-shell conditions we can rewrite
the first contribution in this exponential as α′p1p2 = − α′t

2 + 2n1 + 2n2. In order to obtain a non-trivial result in the high
nergy limit, the OPE between the polynomial part of the vertices should compensate the factor |w|2n1+2n2 coming from
ontraction of the exponential part leaving a pole and this is why we are focusing on the leading term in (3.157). One
an check that such contribution can exist by considering states in the leading Regge trajectory Vj ∼ P{Mi}

j P̄{Ni}
j eipjX that

ontain a polynomial of degree n1 in the picture−1 (or n2+1 in the picture 0) in ∂X and similarly for the antiholomorphic
ector

P{Mi}
1 = ψ (M0

√
2
α′

i∂XM1 . . .

√
2
α′

i∂XMn1 ) e−ϕ ,

P{Mi}
2 =

(√
2
α′

i∂X (M0

√
2
α′

i∂XM1 + (p2ψ)ψ (M0 i∂XM1 − n2ψ
(M0∂ψM1

)
√

2
α′

i∂XM1 . . .

√
2
α′

i∂XMn2 ) .

(3.158)

he leading contribution is when all factors of ∂X and ∂̄X in both vertices are contracted either among themselves or
ith the exponential part of the other vertex, yielding a factor of |w|−2n1−2n2 , and finally there is an extra factor of |w|−2

rom the contraction of the terms with p2ψ (and p2ψ̄) in the second term of P{Mi}
2 (and P̄{Mi}

2 ). When the leading term in
he sum (3.157) is trivial, then the transition between the states described by V1 and V2 is suppressed at high energies.
Thus we can isolate the dependence on w obtaining∫

d2z1d2z2
dVSL(2,R)

V1(z1, z̄1)V2(z2, z̄2) ∼ O(z, z̄) eiqX
∫

d2w
2π
|w|

−α′t
2 −2ei

p1−p2
2 (w∂zX+w̄∂z̄X) , (3.159)

where we can set z = 1 and the factor of 2π in the measure comes from the residual conformal invariance. We can then
perform the integral over w and w̄ by using28∫

d2u (|u|2)−A−
α′t
4 eB(u+ū) = 2π

Γ

(
1− A− α′t

4

)
Γ
(
A+ α′t

4

) (−B2)A−1+
α′t
4 , (3.160)

which can be checked by introducing a Schwinger parameter τ to rewrite the first factor as an exponential and then by
carrying out the Gaussian integration and the integration over τ .

27 Focusing on NS–NS states we need to take one vertex, say V1 in the superghost picture (−1,−1) and the other in the picture (0, 0).
28 The factor 2 in front comes from the normalization of d2w discussed after (D.14).
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In order to extract the energy dependence it is convenient to introduce a set of two light-cone vectors e± such that

(e−)µ =
1
√
2

lim
Es→∞

pµ2
Es
= −

1
√
2

lim
Es→∞

pµ1
Es
, (e+e−) = 1 . (3.161)

Then in the case at hand, O contains just the superghost contributions and a factor of (p2ψ)(p2ψ̄) from the vertex in the
zero picture, and we can use (3.160) to capture the high energy behavior∫

d2z1d2z2
dVSL(2,R)

V (−1)
1 (z1, z̄1)V

(0)
2 (z2, z̄2) ≃ e−iπ

α′t
4 (α′E2

s )
1+ α

′t
4

Γ

(
−
α′t
4

)
Γ
(
1+ α′t

4

) O′ eiqX (3.162)

ψ+e−ϕψ̄+e−ϕ̄
(
i

√
2
α′
∂X+

) α′t
4
(
i

√
2
α′
∂̄X+

) α′t
4

,

here O′ is the result of the contractions between the string coordinates in V1 and V2 as discussed after (3.158). When
inserted in (3.156), the operatorial part of (3.162) is trivial as the holomorphic and antihomorphic parts are contracted
among them, while O′ is a c-number that by construction follows from the correlator ⟨V (−1)

1 eiqXV (0)
2 ⟩ Thus we can factorize

the amplitude (3.156)

A0 ≃ ⟨V
(−1)
1 V (0)

2 V (−1)
R ⟩ΠR ⟨V

(−1)
R |B⟩ , (3.163)

where we introduced a Reggeon vertex V (−1)
R describing the collective contributions of the states exchanged in the

closed-string channel, the Reggeon propagator ΠR and the couplings to the Dp-branes described by the boundary state
|B⟩ [229,230]. The Reggeon vertex is basically given by (3.162)

V (−1)
R = κd

⎡⎢⎣ψ+e−ϕ (√ 2
α′

i∂X+
) α′t

4

⎤⎥⎦
⎡⎢⎣ψ̄+e−ϕ̄ (√ 2

α′
i∂̄X+

) α′t
4

⎤⎥⎦ eiqX . (3.164)

The factors of
√
α′Es in (3.162) are automatically produced when inserting the Reggeon vertex in the 3-point correlator

in (3.163) by performing the contraction between ∂X+ and the exponential factors eip1,2X , see (D.38). The split between the
propagator and the boundary state contribution is defined as follows for later convenience, see the discussion after (3.178),

ΠR =
1
2π

e−iπ
α′t
4

Γ

(
−
α′t
4

)
Γ
(
1+ α′t

4

) , ⟨V (−1)
R |B⟩ = 2π

NTp
2
Γ

(
1+

α′t
4

)
. (3.165)

We can use the OPE with the supercurrent to obtain the Reggeon vertex in the (0, 0) picture from the expression in the
(−1,−1) picture given in (3.164) obtaining

V (0)
R = κd

[
−

2
α′
∂X+∂X+ − iqψψ+∂X+ −

α′t
4
ψ+∂ψ+

](√
2
α′

i∂X+
) α′t

4 −1

(3.166)

[
−

2
α′
∂̄X+∂̄X+ − iqψψ̄+∂̄X+ −

α′t
4
ψ̄+∂̄ψ̄+

](√
2
α′

i∂̄X+
) α′t

4 −1

eiqX .

n conclusion we have constructed a Reggeon vertex operator VR both in the picture 0 and in the picture −1 that, when
nserted in (3.163), gives the correct high energy behavior of the amplitude for any choice of the two vertex operators V1
nd V2.

.2.4. The string eikonal operator: the closed string sector
The main advantage of the approach discussed in the previous section is that the external states in the string-brane

cattering are arbitrary. So it is possible to go beyond the scattering of massless states discussed in Section 3.2.1 and
onsider inelastic transitions of course focusing always on the leading contribution at high energy that has the same scaling
s the elastic amplitudes (3.120). As we will see, such transitions are unavoidable in string theory and promote the eikonal
hase discussed in Section 3.2.1 to an eikonal operator that acts on the Hilbert space of the closed string excitations [8,10].
his is an effect of the tidal forces acting on the scattered string that get enhanced at high energies [231]. As we will see
xplicitly in Section 4.2.2, in the case at hand these tidal forces are related to the gravitational field produced by the
p-branes.
There are several ways to derive the eikonal operator related to tidal excitations. In the original approach [8,10], one

btains the result by factorizing elastic loop amplitudes, where arbitrary tidally excited states appear in the intermediate
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hannel. Here we follow the opposite approach and study directly inelastic tree-level amplitudes. Various techniques can
e used to connect the eikonal operator and the string amplitudes [227,228,232]: here we will use the results obtained in
he previous section and use the Reggeon vertex as the object that encodes all the contributions relevant at high energies.
n practice we will derive an explicit expression for the correlator ⟨V2VRV1⟩ appearing in (3.163) (even though it will be
simpler to use the (0, 0) picture version in (3.166) so that both external states V1,2 can be written in the (−1,−1) picture).
Alternative approaches include the direct evaluation of the inelastic correlators by using vertex operators or the use of
the Green–Schwarz 3-string vertex [233,234], as discussed in detail in [232].

The basic idea is to use the DDF formalism [223] (see also [235–237] for an explicit discussion of the NS sector of
superstring theory) to deal with the vertex operators V1,2. For more recent work on the DDF states see [238–242]. So we
briefly review the key ideas of such construction. The starting point is an auxiliary tachyonic state with momentum pT

|pT ; 0⟩ ,
α′

2
p2T = 1 . (3.167)

Then we need to introduce a null vector k whose scalar product with pT is one, and (d− 2) space-like vectors ϵj that are
perpendicular to k. In summary we have

α′

2
pTk = 1 , ϵjk = 0 , ϵiϵj = δij . (3.168)

ocusing on the NS sector for simplicity, the physical states are constructed by acting on the ground state (3.167) with
he following DDF oscillators

A−n,j = −i
∮
0
dw (ϵj)µ

(√
2
α′
∂Xµ + in(kψ)ψµ

)
e−inkXL(w) , (3.169)

B−r,j = i
∮
0
dw (ϵj)µ

(√
2
α′
∂Xµ (kψ)− ψµ(k∂X)+

1
2
ψµ(kψ)

(k∂ψ)
(k∂X)

)
e−irkXL(w)

(ik∂X)
1
2
,

here n (r) is a positive integer (half-integer). Of course a similar definition holds for the anti-holomorphic part with the
xchange XL → XR, ψ → ψ̄ , see Appendix D.1.2 for our string conventions. As usual, it is necessary to impose the GSO
rojection: in order to describe the matter part of the states in the (−1,−1) picture, we have to select only the states
ontaining an odd number of B−r,j, so the first non trivial physical state is obtained by applying the operator B

−
1
2 ,j

.
We are now ready to write explicitly the Reggeon vertex (3.166) in the DDF basis for the incoming and outgoing states

⟨V (−1)
2 V (0)

R V (−1)
1 ⟩ , (3.170)

where |V (−1)
i ⟩ are the operators corresponding to the DDF states introduced above. The general overlap between three

DDF states was discussed in [224] in the bosonic case and in [237] for the NS string and evaluating the contour integrals in
the definition of the DDF oscillators (3.169) yields the Neumann coefficients defining the generic couplings among three
string states.29 Evaluating (3.170) turns out to be much simpler and the key point is that we can choose k to simplify
the high-energy limit of (3.170), which can be done by choosing k to be along e+ introduced in (3.161). Then things
become particularly simple in the fermionic sector: the Reggeon vertex does not contain any ψ− (or ψ̄−) insertions, so
no contractions are possible for the terms proportional to kψ (or kψ̄) which then can be set to zero. Then for our propose
we can approximate the DDF oscillators as follows

A−n,j →−i
∮
z
dw (ϵj)µ

√
2
α′
∂Xµe−inkXL(w) , (3.171)

B−r,j →−i
∮
z
dw (ϵj)µψµ(k∂X)

1
2 e−irkXL(w)

where the contour integrals are around the tachyon exponential factor eipT X(z). We can also approximate the Reggeon
ertex in (3.166) keeping only:

V (0)
R ≃ κd

(√
2
α′

i∂X+
) α′t

4 +1
(√

2
α′

i∂̄X+
) α′t

4 +1

eiqX . (3.172)

The Reggeon vertex does not depend on the transverse fermionic coordinates ϵjψ , so the oscillators B and B̄ must pair up
between the incoming and the outgoing state and the contour integrals in their definition reduces to the ones appearing in
the 2-point function. In summary the Reggeon vertex in the fermionic sector acts simply as the identity operator. For the
bosonic transverse oscillators (3.171) there are two options: they can be paired between the two external states as in the

29 The same result is obtained in the light-cone approach, see [243] for the bosonic case and [233,234] for the superstring.
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ermionic case, which of course requires that they appear in identical pairs, or they can be contracted with the exponential
actor of the Reggeon vertex (3.172). The latter option is the technical origin for the inelastic transitions we are interested
n. Each one of such contractions yields a factor of ±

√
α′

2 ϵjq times an integral over the insertion w which turns out to be
qual to one. The same result holds also for the anti-holomorphic modes. Finally the level matching condition implies that
he difference of the total holomorphic and anti-holomorphic mode number vanishes for each external state. So we can
quate this difference for the first and the second state and then take away the contribution of all modes that are paired
ince they contribute equally to both sides. Thus we see that the bosonic modes that are contracted with the exponential
actor in the Reggeon vertex satisfy the following constraint∑

n1 −
∑

n̄1 =
∑

n2 −
∑

n̄2 . (3.173)

We can then summarize the action of the Reggeon vertex in (3.170) as an exponential constructed with the DDF bosonic
oscillators and the transferred momentum q

V (0)
R → κd

(
α′E2

s

)1+ α′t4 ∫ 2π

0

dσ
2π
: eiqX̂ : , (3.174a)

X̂ j
= i

√
α′

2

∑
n̸=0

(
An,j

n
einσ +

Ān,j

n
e−inσ

)
, (3.174b)

here the integral over σ enforces the constraint (3.173) and the energy dependent factors follows from the contraction
f the fields ∂X+ in (3.172) with the exponential part of the external states. The exponential is normal ordered so the
ositive modes are contracted with the incoming state |V1⟩ and the negative modes with the outgoing one ⟨V2|.
An advantage of the approach based on the Reggeon vertex discussed here is that it is fully covariant and so it can be

used to provide a full characterization (in terms of the little group SO(d − 1)) of the (massive) excited states produced
by tidal excitations. It is then possible to carry out explicit checks between the results obtained by using (3.174) and
those obtained by the direct evaluation of the corresponding covariant amplitudes, see [232] for a detailed discussion of
the transition between the ground state to the first and the second massive level. All results are consistent with the key
properties of (3.174): the excitations added or damped by the tidal forces involve only the bosonic oscillators and are
always in the spatial direction perpendicular to the (fast) motion of the scattering string

We can use (3.174) to write the high-energy result for the string-brane scattering as an operator instead of a matrix
element between two specified states as in (3.163)

Â0 ≃
NTpκd

2
e−i

α′t
4 Γ

(
−
α′t
4

)
(α′E2

s )
1+ α

′t
4

∫ 2π

0

dσ
2π
: eiqX̂ : , (3.175)

where we used (3.165). Notice that the non-operatorial overall factor matches that of Eq. (3.120). As usual we can derive
the eikonal in the impact parameter space by using (3.123). As we discussed in Section 3.2.1, when the impact parameter
becomes of the order of ls(E) =

√
α′ ln(α′E2

s ), the dynamics is dominated by the open strings attached to the Dp-branes
and the picture of a closed string to closed string scattering is not reliable. So, let us focus on the case b ≫ ls(Es) where
α′t is very small and the elastic factor in (3.175) reduces to the field theory result (3.121). Then it is straightforward to
perform formally the Fourier transform (3.123) at the operatorial level, since the last factor in (3.175) provides just a shift
b→ b+ X̂ in the result

2δ̂0 =
∫

dd−p−2q
(2π )d−p−2

Â0(Es, q2)
2Es

eibq

≃

∫
dd−p−2q

(2π )d−p−2
NTpκdEs

∫ 2π

0

dσ
2π
: eiq(b+X̂) :

q2
=

∫ 2π

0

dσ
2π
: 2δ0(b+ X̂) : ,

(3.176)

here we followed the steps in (3.127) for b2 ≫ l2s (Es) and wrote explicitly the normal ordering prescription. Thus, at
he level of the leading eikonal, the generalization to the full string level takes the appealing form of an average of the
ffective QFT result, but with the appropriate ‘‘local’’ impact parameter for each point along the string: the part of the
losed string that are closer to the Dp-branes feel a stronger gravitational force than those that are further apart. As we
ill see in Sections 4.2.2 and 4.2.3 this is at the basis of the tidal effects that are enhanced in the high energy limit.

.2.5. Graviton scattering in bosonic string theory
In this subsection we show that, in sharp contrast with what happens in field theory discussed in Section 3.1.5, the

erms appearing in the graviton scattering in the bosonic string that come from a quadratic (Riemann)2 and a cubic term
(Riemann)3 do not contribute to leading order at small impact parameter. Therefore in the bosonic string there is no risk
of negative Shapiro time delay. The disk amplitude with two closed string tachyons is discussed in Appendix D.2. In the
Regge limit it reduces to Eq. (D.33) from which one can derive the eikonal (D.35) for the tachyon scattering off a stack of
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coincident Dp-branes. In the same regime the disk amplitude of a massless state is given instead by:

AGG
0 ∼

κdTpN
2

e−iπ
α′t
4 (α′E2

s )
1+ α

′t
4 Γ

(
−1−

α′t
4

)
(3.177)

×

(
(ϵ1ϵ2)−

α′

2
(ϵ1q)(ϵ2q)

)(
(ϵ̄1ϵ̄2)−

α′

2
(ϵ̄1q)(ϵ̄2q)

)
,

here, as usual, we split the closed string polarization into its holomorphic and anti-holomorphic part Gµν = ϵµϵ̄ν .
otice that the quantity in the first line in (3.177) is just the elastic scattering of a tachyon on the Dp-branes (D.33).
his result can be compared with that obtained for the supersymmetric case in Section 3.2.1, which we report below by
ombining (3.118) and (3.120)

A0 ∼ (ϵ1ϵ2)(ϵ̄1ϵ̄2)
κdTpN

2
Γ

(
−
α′t
4

)
e−iπ

α′t
4 (α′E2

s )
1+ α

′t
4 . (3.178)

A first qualitative difference between (3.177) and (3.178) is that the leading Regge trajectory in the latter includes the
tachyonic (ground) state of the bosonic theory. The second difference is that even in the high energy Regge limit the
bosonic amplitude has a non-trivial dependence on the polarization tensors, see the second line in (3.177). As emphasized
in [154], this is a direct consequence of the modification of the three-graviton vertex in the bosonic theory which yields
a quadratic (Riemann)2 and a cubic term (Riemann)3 in the effective action, while in the maximally supersymmetric case
these corrections are forbidden by supersymmetry. Because of this, the Lorentz structure in (3.177) is the same as the
one appearing in Section 3.1.5 except that in the tree-level graviton-brane scattering there is a single parameter (

√
α′) in

the three-point vertex, while in the effective QFT description (3.74) there are in general two independent parameters (l2
in (3.76) and l4 in (3.77)).

We can follow the same approach discussed in Section 3.2.1 for the superstring and Appendix D.2 for the bosonic case
and derive the eikonal for the graviton scattering: it is sufficient to rewrite the momentum transfer q appearing in the
second line of (3.177) in terms of a derivative with respect to the impact parameter and use the result (D.35) for the first
line of (3.177). Thus we obtain

2δ0 =
(
(ϵ1ϵ2)+

α′

2
(ϵ1∂b)(ϵ2∂b)

)(
(ϵ̄1ϵ̄2)+

α′

2
(ϵ̄1∂b)(ϵ̄2∂b)

)

×
κdNTpEs

4π

Γ

(
1+ α′∇2

b
4

)
1− α′∇2

b
4

[
(πb2)−

d−4−p
2 γ

(
d− 4− p

2
,
b2

Y

)]
.

(3.179)

or the current analysis we ignore the absorptive effects, related to the imaginary part of Y , and concentrate our attention
n the leading real part by replacing Y with l2s (Es), see Eq (3.125). By focusing on the regime

√
α′ ≪ b ≪ ls(Es) we can

se (3.128), keeping only the term with k = 0, and approximate the square parenthesis in (3.179) as follows[
(πb2)−

d−4−p
2 γ

(
d− 4− p

2
,
b2

Y

)]
=

(π l2s (Es))
−

d−4−p
2

d−4−p
2

+ O
(

b2

l2s (Es)

)
. (3.180)

his means that the differential operators in the Γ -functions and in the polarization dependent prefactor act on a function
f b2

l2s (Es)
that starts with a constant, thus they do not contribute to leading order at small impact parameter. Notice that

lso the tachyonic pole of the bosonic string becomes harmless.30
The pattern discussed above is in sharp contrast with the QFT case discussed in Section 3.1.5, since in that case the

eikonal (3.81) for the scattering of massless states contained terms that grow in the regime where the impact parameter
is smaller than the length scales weighting the higher derivative corrections b ≪ l2,4 (as we mentioned ℓs in the string
analysis plays the role of both l2 and l4 of the effective description). As we will see in Section 4.2.4 this plays a crucial
difference in the behavior of the deflection angle and the Shapiro time delay obtained in two cases.

3.2.6. String–string scattering at tree level
Although for pedagogical reasons we have started our discussion of gravitational scattering in string theory from the

case of string-brane collisions, historically the first case considered was the one of (massless) string–string collisions
at transplanckian energy in (Type II) critical (i.e. d = 10) superstring theory (see Fig. 11). Such a theory is ghost and
tachyon free and looks like a fully consistent quantum theory of gravity at least in perturbation theory. In that same
approximation it differs from GR, even at large distance, because of the presence of other gravitationally coupled massless
modes, besides the graviton. However, by going to high-energy, graviton exchange (or better the Regge trajectory on which
it lies) dominates because of its higher spin and therefore by studying string–string collisions at transplanckian energy
one can draw interesting lessons for generic theories of quantum gravity involving extended objects. For the original
motivations for studying such gedanken experiments we refer to the introductory Section 1.1.

30 This is essentially due to the fact that tachyon exchange is suppressed by two powers of the energy with respect to graviton exchange and
therefore it is negligible in the high-energy limit.
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Fig. 11. Scattering of two massless closed strings represented by blue and green circles. The thick black line corresponds to closed strings exchanged
n the t-channel. The thin red line to very massive closed strings in the s-channel.

The original idea, in the late eighties, was to consider the collision of massless strings (e.g. gravitons or dilatons) and
o study the process in a parameter space containing three relevant length scales: the fundamental length ℓs of string
heory, see Appendix D, the impact parameter b of the process, and the characteristic scale of the geometry associated
ith the total center-of-mass energy R ∼ (GE)

1
D−3 . Note that this latter scale depends on Newton’s constant G, which,

in string theory can be traded for the string coupling gs. By considering the regime of weakly-coupled string theory,
gs ≪ 1, one can arguably dispose of a fourth length scale, the Planck length ℓP , since it will be much smaller than ℓs, see
gain Appendix D. Since the physics of the process can only depend on dimensionless ratios, the final parameter space
s effectively two-dimensional.31 The other free parameter is the number D of non-compact spatial dimensions, having
ssumed the remaining (d− D) to be very small and static.
The parameter space is naturally divided in three regions, each one characterized by which length scale dominates

ver the other two (see Fig. 12). In region I, one has b ≫ ls(s), R corresponding to a weak-gravity, point-like regime. In
egion II, the string scale ls(s) dominates over b and R. We may call it the string-gravity regime because it is here that
tring-size effects are strongly enhanced and deviations from GR are most evident. Finally, when R > ℓs, b we enter in
he strong-gravity regime where, classical gravitational collapse is expected to occur. A sketch of a possible critical line
eparating the collapse from the ‘‘dispersion’’ regime is shown in Fig. 12. It uses the physical expectation – following from
he collapse criteria discussed in Section 2.4 – according to which the size of the colliding objects plays the role of an
dditional contribution to the effective impact parameter. This is why the critical line is expected to bend downwards and
it the real axis when R ∼ ℓs (or

√
s ∼ g−2s Ms). Obviously, if one were able to solve completely the problem in the collapse

egion by constructing a unitary S-matrix, one would solve the (in)famous information paradox raised by Hawking in the
eventies [19].
We should finally mention that dividing the parameter space in just three regions is a gross approximation. There are

nteresting sub-regions, as we will discuss in Section 4.2.5.
This being said, let us start by considering, as the simplest example, the tree-level four-dilaton amplitude. It is fully

ymmetric in all three Mandelstam variables and given by

A0(s, t) = 8πG
(
tu
s
+

su
t
+

st
u

)
Γ (1− α′s

4 )Γ (1− α′u
4 )Γ (1− α′t

4 )

Γ (1+ α′s
4 )Γ (1+ α′u

4 )Γ (1+ α′t
4 )

(3.181)

with s + t + u = 0. In the Regge limit, s → ∞ at fixed t , using (3.119) on the four Γ -functions that depend on s, it
becomes:

A0(s, t) ∼
32πG
α′

Γ (− α′

4 t)

Γ (1+ α′

4 t)

(
α′

4
s
)2+ α

′

2 t

e−iπ
α′

4 t . (3.182)

t is possible to obtain directly the high-energy formula above by using the approach of Section 3.2.3 where the amplitude
s constructed by gluing together two 3-point correlators involving a Reggeon vertex

CS2⟨V1V4VR⟩

(
α′

8π
ΠR

)
CS2⟨VRV2V3⟩ =

4
α′

Γ

(
−
α′t
4

)
Γ
(
1+ α′t

4

)e−iπ α′t4 [κd (α′E2
s

)1+ α′t4 ]2 . (3.183)

31 One can also neglect the mass of the colliding strings, first by taking the initial states to be massless, and then by using the dynamical fact
that only the excitation of relatively light massive strings is induced by tidal forces (see Section 4.2.2).
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Fig. 12. A broad-brush phase diagram from collapse criteria, where the effective string scale ls(s) appearing on the vertical axis is defined in (3.187).
e also show, qualitatively, the impact parameters bt and br below which string-size (tidal) and radiative corrections, respectively, start to be

elevant in the weak gravity regime. We also illustrate in the two panels how the relative importance of the two kinds of corrections strongly
epends on D. See Section 4.2.5 for further details.

he square parenthesis follows from the two correlators involving the Reggeon vertex, where each field along the plus
ight-cone direction takes the leading value

√
α′Es, where Es is the energy of each initial state so s = (2Es)2 (recalling that

e are working in the center-of-mass frame). The overall prefactor combines the various normalizations and Reggeon
ropagator (3.165) and, by using (D.13) and (D.3), one can check that (3.183) agrees with (3.182). In the field theory limit
his result reduces to

A0(s, t) = 8πG
s2

(−t)
. (3.184)

n the same limit, the leading eikonal phase is given by

2δ0(s, b) =
∫

dD−2q
(2π )D−2

eiqb
A0(s, t)

2s
= πG

sΓ (D−42 )

π
D−2
2 bD−4

. (3.185)

This can be compared with (2.23) showing that, indeed, GR and string theory share the same ultra-relativistic large impact
parameter limit.

However, even at arbitrarily high energy, this agreement fails to persist at somewhat lower values of b. Naively, one
would expect this to happen when b becomes O(ℓs), possibly modulo a logarithmic enhancement as in (3.125). This turns
out not to be the case. As we will discuss in Section 4.2.5, at a bt parametrically larger than ℓs (see Eq. (4.120)), the
phenomenon of tidal excitation kicks in32 as a result of the gravi-Reggeon exchange already discussed in Sections 3.2.3,
3.2.4 in the case of string-brane collisions, with the only difference that now the Reggeon vertex affects both strings.

One can follow the same steps discussed in (3.127) and rewrite (3.182) in impact parameter space as follows

2δ0(s, b) = Gs
Γ (1− α′

4 ∇
2)

Γ (1+ α′

4 ∇
2)

[
(b2π )−

D−4
2 γ

(
D− 4

2
;
b2

Yc

)]
, (3.186)

here

Yc = l2s (s)− iπα′ , l2s (s) = 2α′ log
α′s
4
. (3.187)

32 This phenomenon was first discussed in [10] where it was called diffractive excitation in analogy with a well-known phenomenon in hadronic
physics. The true physical interpretation in terms of tidal forces was first given by Giddings [244].
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or b≫ ls(s) we can ignore the ratio of two Γ -functions and use (3.130) obtaining

2δ0(s, b) ∼
GsΓ (D−42 )
(
√
πb)D−4

− Gs (πb2)−
D−4
2 e−

b2
Yc

(
b2

Yc

) D−6
2

+ · · · (3.188)

From (3.188) we have

Re 2δ0(s, b) ∼
GsΓ (D−42 )
(
√
πb)D−4

− Gs (πb2)−
D−4
2 e
−

b2

l2s (s)

(
b2

l2s (s)

) D−6
2

(3.189)

for the real part and

Im2δ0(s, b) ∼
πα′

l2s (s)
Gs(π l2s (s))

−
D−4
2 e
−

b2

l2s (s)

(
1−

D− 6
2

l2s (s)
b2

)
(3.190)

or the imaginary part. As in the string-brane case, the exponentially suppressed term provides the leading imaginary
art.
The real part of (3.186) has an amusing shock-wave interpretation in terms of the generalized Aichelburg–Sexl metrics

iscussed in Section 2.4. Neglecting again the correction coming from the ratio of the two Gamma-functions, it can be
hown [245] to correspond to a shock-wave metric where the function f (x⊥) is obtained from Eq. (2.57) by substituting,
s in Eq. (2.61), E(1) times the transverse δ-function with a Gaussian profile:

ρ(x⊥) = E(1) e
−

x2
⊥

l2s (s) (
√
π ls(s))2−D , (3.191)

i.e. with an approximately uniform-density beam of size ∼ ls(s) that reduces to the delta function of (2.57) for ls(s)→ 0.
n other words, while the delta-function profile provides only the first term of (3.188) as shown in (2.60), the Gaussian
rofile provides instead the entire real part of (3.186). The proof of the above statement is straightforward. Following ’t
ooft’s derivation of the leading eikonal phase sketched in Section 2.3, we know that what determines the phase is, up
o an energy factor, the time delay ∆v suffered by one particle as it moves in the shock-wave produced by the other
article. According to Eq. (2.59), this time delay is determined by the quantity f (x⊥) appearing in the (generalized) AS
etric (2.55). Therefore, we can either extract f (x⊥) directly from (3.186) and determine the transverse profile of the
eam by using (2.57) with the profile (3.191) or, given the profile (3.191), by using (2.57) to fix first f (b) and then, from
t, the real part of (3.186).

Without repeating here the discussion given above in the case of string-brane collisions we now simply give the analog
f (3.176) for string–string scattering:

δ̂0 =
1

4π2

∫ 2π

0

∫ 2π

0
dσ1dσ2 : δ0(E, b+ X̂1(σ1)− X̂2(σ2)) : , (3.192)

here X̂1,2 are Hermitian (and commuting) closed-string position operators for each incoming string, and δ0 is the leading
ikonal (3.185).
For b≫ ls(s), δ0(E, b) is real and thus δ̂0 is Hermitian up to exponentially small corrections. The physical interpretation

f (3.192) is that the graviton is exchanged between one point on one string and one point on the other string. The
transverse) coordinates of each string are however operators and (3.192) picks up an expectation value of the transverse
istance between those two points. The physical consequences of the shift in b, tidal excitations due to the extended
ature of quantum strings, will be discussed in Section 4.2.2. Here we just mention that, unlike the singular point-like
ase, the string-corrected eikonal has a finite b→ 0 limit and a smooth expansion in b around it. This is the string–string
ounterpart to what we have already discussed in the string-brane collision, see (3.134). One finds [10]:

Re 2δ0 ∼
2Gs
h̄

1

(π l2s (s))
D−4
2

(
1

D− 4
−

b2

(D− 2)l2s (s)
+ · · ·

)
. (3.193)

Another, even more distinctive feature of string theory as opposed to traditional QFT, is that, already at tree level,
raviton exchange does not correspond to a real scattering amplitude. This can be seen immediately in (3.182) through
ts last factor, typical of Regge-pole behavior. This imaginary part comes from the presence of s-channel poles in the tree-
evel Shapiro–Virasoro amplitude corresponding to the heavy (i.e. of mass

√
s) closed-string intermediate states produced

n that channel. It is the very essence of Dolen–Horn–Schmid duality [246,247], as it is incorporated in string theory, that
his imaginary part matches, on average, the imaginary part corresponding to the Regge-pole behavior given in (3.182).

Note, however, that the imaginary part of the amplitude, unlike the real part, is order α′ and lacks the graviton pole
t t = 0. This lack of a singularity corresponds, in b-space to an exponential cut-off at large impact parameter. More

quantitatively one finds [10]:

Im 2δ (s, b) ∼ Gsπ2α′ (π l2(s))−
D−2
2 e
−

b2

l2s (s) . (3.194)
0 s
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his result fully justifies having neglected Im 2δ0 in the previous, weak-gravity (large b) regime. At higher string-loop
evel we expect multiple string formation in the s-channel. In Section 4.2.5 we will discuss how one can have a qualitative
dea of the dominant process as a function of the total initial energy up to the already mentioned expected threshold of
ravitational collapse,

√
s ∼ Msg−2s .

From (3.189) and (3.193) we can compute the deflection angle for small and large impact parameter. We get

Θ =
4G
√
s

bD−3
Γ (D−22 )

π
D−4
2
→

4G
√
s

b
, b≫ ls(s) , (3.195a)

Θ =
8G
√
s b

(D− 2)π
D−4
2 lD−2s (s)

→
4G
√
sb

l2s (s)
, b≪ ls(s) , (3.195b)

here the arrow indicates the limit D → 4. The first, for large impact parameter, coincides with the one of a massless
oint-particle moving in the Aichelburg–Sexl metric (see (2.50) that can be derived from (2.60)). The second instead is
ntrinsically stringy because of the presence of α′. Since the deflection angle increases with b for small b and decreases
ith b for large b, it is to be expected that it will have a maximum at some intermediate b. We will discuss this and what
appens in the intermediate region in Section 4.2.5.

.2.7. Brane–brane scattering at leading order
It is possible, and of course interesting, to study the scattering between non-perturbative objects in string theory.
hen dealing with D-branes, one can use an exact CFT description in terms of the open strings attached to them as we
ave already done in the string-brane analysis. The calculation by Polchinski [248] for two static parallel D-branes was
mmediately generalized to the case of moving D-branes [249], see [250] for a derivation in the closed string channel by
sing the boundary state formalism briefly summarized in Appendix D.1.4. The case of D0-brane scattering is of particular
nterest because in this setup one can see the emergence of the 11-dimensional Planck length ℓ11 which is the fundamental
cale of M-theory [251]. Here we will not provide a detailed analysis of the eikonal scattering for the brane–brane case,
ut will just highlight some similarities and differences with the more detailed analysis of the previous sections.
Technically the leading order eikonal for the D-brane scattering is captured by a world-sheet whose topology is an

nnulus. The boundary conditions are given by reflection matrices that generalize the one discussed in (D.23), as they now
ave to encode the information about the velocities of the D-branes. At large distances, this diagram is best described as
long thin cylinder and is dominated by the exchange of massless closed strings. Focusing on the case of the scattering
etween two D0-brane bound states, the fields mediating such interaction are the dilaton, the Ramond–Ramond vector
nd of course the graviton. Since type IIA string theory can be viewed as M-theory compactified on a circle and D0-branes
re just 11-dimensional supergravity fields with non trivial Kaluza–Klein numbers, it is not surprising that the scattering
etween D0-branes falls in the setup described in Section 3.1.4. A difference with respect to the configuration summarized
n (3.64) (beside the fact that the starting point is now a 11-dimensional theory) is that the KK-modes lie in the same
irection. As discussed in [167,211] this amounts to generalizing the factor of σ 2 in the numerator of (3.68) to (σ−cosφ)2

with φ = 0 for KK-modes in parallel directions (rather φ = π/2 which is appropriate for the choice made in (3.64)). Thus
for D0-brane scattering we have the following large distance eikonal phase

2δ0 =
2m1m2Gd(σ − 1)2Γ

( d−4
2

)
√
σ 2 − 1(πb2)

d−4
2

. (3.196)

In this case we need to set d = 10 for type IIA theory and the mass of each D0-brane bound state is simply mi = niτ0,
here ni is the number of D0-branes constituents (identified with the KK-mode in the M-theory picture) and τ0 is the
ass of a single D0-brane see (D.5). In the discussion below we focus for simplicity on the case ni ∼ O(1).
By lowering the impact parameter, we expect to see the inelastic channels typical of string theory. For instance at high

nergy (s≫m2
i ), there should be a scale bt below which the internal degrees of freedom of each D0-brane bound state are

xcited and the elastic amplitudes is suppressed. This is the analogue of what was discussed in Section 3.2.4 for the case of
lementary strings, but now the excitations are open strings starting and ending on the same D0-brane bound state. From
he argument given in Eq. (4.122) we expect that, in the case of D-brane scattering, the scale for these tidal excitations
s b8t ∼ gsG10α

′s. The extra factor of the string coupling gs in comparison to the string case is due to the tension of the
-branes which is larger by 1/gs with respect to that of fundamental strings (equivalently the production of a D-brane
xcitation requires a closed-open string vertex and so it is suppressed by gs). It would be interesting to check this with
n explicit calculation and provide a precise description for these inelastic transitions in terms of an eikonal operator. To
ur knowledge, this has not been done yet in the literature.
Instead, the string gravity regime depicted in Fig. 12 was already discussed in the original paper [249] by looking at the

maginary part of the annulus partition function in the full string result. In this case the degrees of freedom responsible
or this suppression of the elastic D-brane scattering are the open strings stretched between the two colliding D-brane
ound states. Naively one would expect that this channel opens when the impact parameter is of the order of the string
cale, but exactly as it happens in the string-brane (Section 3.2.1) and the string–string (Section 3.2.6) cases, there is an
nhancement factor scaling logarithmically with the center of mass energy and so again the relevant scale is ls(s) defined
n (3.187). Thus in the ultrarelativistic regime string effects dominate short-distance brane–brane scattering.
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Finally, at low velocities the interaction between D0-branes is weaker as already suggested by (3.196) which vanishes
s (σ − 1)2 ∼ p4

∞
. In this regime the scattering between two D0-branes remains essentially elastic, although quantum

echanical, up to 11-dimensional Planck length [251]. It remains to be seen whether the process becomes (semi)classical
own to b = ℓ11 if one considers the collision of two bound states with ni ≫ 1 D0-branes.

. Exponentiation and the subleading 2–body eikonal

In the previous two sections we have extracted the leading eikonal δ0 in various gravitational theories from the tree-
evel amplitude. Its exponentiation, as we have seen, is equivalent to the statement that, in the (n− 1)-loop amplitude in
mpact-parameter space Ãn−1, the leading classical term equals− i

n! (2iδ0)
n. From the leading asymptotics of the resummed

mplitude 1+ iÃ ≃ e2iδ0 , one can then compute classical observables, like the deflection angle and the Shapiro time delay,
or collisions with large impact parameter, b≫ R with R the typical size of the colliding objects.

However, the result obtained in this way is only accurate to leading order in the small parameter R
b . How can we

compute the corrections to this leading behavior? Since this regime is the one characterized by weak gravitational
interactions between the colliding objects, an equivalent question is: How do we retrieve the classical PM expansion of the
deflection angle? The answer is that we have to calculate higher-order corrections in the eikonal phase δ = δ0+ δ1+ · · ·
and, as we shall see, this can be done by looking at subleading terms in the classical expansion of loop diagrams. In this
section, we perform this analysis for the one-loop amplitude Ã1.

Indeed, by the exponentiation of 2iδ0, the leading term in the classical limit of iÃ1 must be given by 1
2! (2iδ0)

2 and is thus
proportional to 1

h̄2
, but the one-loop amplitude contains also an additional sub-leading term that is again proportional

to 1
h̄ as it happened for the tree diagram itself. The former term is sometimes referred to as ‘‘super-classical’’ or as an

‘‘iteration’’, because it is the most singular in the classical limit and it does not provide any new information compared
to the tree-level amplitude. The latter identifies instead a new classical term and one can extract from it the sub-leading
eikonal 2iδ1. It is natural to conjecture that also this sub-leading eikonal 2iδ1 exponentiates and this can be argued on
general grounds [36,102,252], although we will not discuss this proof in detail here. As we will see, its contribution is
indeed subdominant for large impact parameter with respect to the leading one, i.e. it is suppressed by one more power
of R

b .
Of course, the one-loop amplitude also contains quantum terms that scale like h̄n with n ≥ 0. We will see that, although

hese extra terms do not contribute to the eikonal phase at one loop, they play an important role in the extraction of the
ub-sub-leading parts of the eikonal at two loops.
More concretely, since at each order of the perturbative expansion we find additional classical terms that ought

o exponentiate contributing to higher sub-leading parts of the eikonal and quantum terms that do not need to
xponentiate,33 we are then led to the conclusion that, in the classical limit, the full amplitude in impact parameter
pace is encoded in the following expression:

1+ iÃ(s, b) = [1+ 2i∆(s, b)] e2iδ (4.1)

here, schematically, in D = 4

2δ = 2δ0 + 2δ1 + 2δ2 + · · · =
GE2

h̄

(
log b+

GE
b
+

(
GE
b

)2

+ · · ·

)
(4.2)

s the classical eikonal and

2∆ = 2∆1 + 2∆2 + · · · =

(
GE
b

)2 [
1+

h̄
Eb
+ · · ·

]
+

(
GE
b

)3 [
1+

h̄
Eb
+ · · ·

]
(4.3)

s the quantum remainder. In the bottom-up approach we are going to adopt, we shall first calculate the perturbative
mplitude order by order in the loop expansion A = A0+A1+A2+ · · · , concentrating on the limit of small momentum
ransfer, take the Fourier transform from momentum space to impact-parameter space, and then determine δn and ∆n by
olving

iÃ0 = 2iδ0 , (4.4)

iÃ1 =
1
2!

(2iδ0)2 + 2iδ1 + 2i∆1 , (4.5)

iÃ2 =
1
3!

(2iδ0)3 + 2iδ0 2iδ1 + [2iδ2 + 2iδ0 2i∆1]+ 2i∆2 . (4.6)

33 One could exponentiate also the quantum part 1 + 2i∆ = e2iδ
quant

which amounts to a redefinition of the coefficients of the expansion (4.3).
e prefer not to do so in order to define an object, 2δ, which directly yields the classical observables such as the deflection angle.
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hese relations are predicted by the formal re-expansion of (4.1) for small G and define 2δn, 2∆n at an operative level,
while also dictating the structure of super-classical terms, which only arise, at each level, from iterations of lower-order
terms. In particular, the O(b−1) terms of Ã1 determine 2δ1 and its O(b−2) terms determine 2∆1. Moreover, while 2∆1 is
irrelevant for determining 2δ1 at one-loop level, it is needed at two-loop level, together with 2δ0, in order to solve (4.6)
for the unknown 2δ2, once the O(b−2) terms of Ã2 are computed.

Let us also mention that, while the leading eikonal is always real, sub-leading eikonals have, in general, also an
imaginary part that is connected to the existence of inelastic channels. In this case, the classical deflection angle can
be computed from the real part of the sub-leading eikonals, since the real part is the one contributing to classical phase
oscillations, while the imaginary part only gives rise to an overall exponential suppression. This issue is going to be
particularly acute in the two-loop eikonal that we will discuss in the next section, where the imaginary part actually
contains long-range infrared divergences associated to soft graviton emissions.

In this section we restrict ourselves to the one-loop level, however, and analyze in detail the classical limit of the
one-loop scattering amplitude iÃ1 in massive N = 8 supergravity and in GR. This gives us the opportunity to check that
the leading super-classical term is indeed obtained from the quadratic term of the expansion of the leading eikonal e2iδ0 ,
i.e. that iÃ1 ∼

1
2! (2iδ0)

2 as in (4.5). We will then extract, from the next to the leading term, the sub-leading eikonal 2δ1
nd also, from the next to the next to the leading term, the quantum 2∆1 that is important in reproducing the two-loop
mplitude according to Eq. (4.1).

.1. 1-loop (2PM) in QFT

This section is divided in two sub-sections. In the first one we study the case of massive N = 8 supergravity and in the
econd one the case of GR. In the massive case under consideration it is convenient to use the relative Lorentz factor σ ,
lready introduced in (1.8), and also to define a related variable z which has the advantage of rationalizing some square
oots, via

σ = −
p1p2
m1m2

=
s−m2

1 −m2
2

2m1m2
=

1
2

(
z +

1
z

)
, z = σ −

√
σ 2 − 1 , (4.7)

here s is the Mandelstam variable. In particular 1 ≤ σ <∞ and 0 < z ≤ 1, with σ = 1 or z = 1 corresponding to the
ase of two particles mutually at rest, and σ →∞ or z → 0+ to the case of an ultrarelativistic collision.

.1.1. Massive N = 8 supergravity
Let us start from the maximally supersymmetric case, introducing the masses via Kaluza–Klein compactification as

iscussed in Section 3.1.4. For the s-u symmetric collision discussed there, corresponding to the elastic scattering of an
xion and a dilaton, the one-loop amplitude in N = 8 supergravity with massive external states is given by [167,211]

A1 = (8πG)2
c(ϵ)
2

[(
s−m2

1 −m2
2

)4
+
(
u−m2

1 −m2
2

)4
− t4

] (
III + III

)
(4.8)

here

c(ϵ) =
e−γEϵ

(4π )2−ϵ
, (4.9)

hile III stands for the box integral,

III =
∫
ℓ

1
(−2p1ℓ+ ℓ2 − i0)(2p2ℓ+ ℓ2 − i0)(ℓ2 − i0)((ℓ− q)2 − i0)

, (4.10)

ith the shorthand notation∫
ℓ

= eγEϵ
∫

d4−2ϵℓ
iπ2−ϵ , (4.11)

and III stands for the crossed box integral, obtained from III replacing p1 with p4. A schematic representation of these
topologies is given in Fig. 13. Let us also recall that q = p1 + p4.

We then face the task of evaluating the integrals III, III. A key simplification in this respect is that we do not need their
xact expression, but, since the typical perturbative momentum exchange is q ∼ h̄

b and we focus on the regime of large
impact parameters, we can restrict our attention to the limit

s, m2
1, m

2
2 ≫ |t| = q2 (4.12)

characterizing the classical PM regime. More precisely, since we are interested in the long-range terms in b-space after
Fourier transform, we can concentrate on non-analytic terms in the small-q2 expansion. A systematic strategy that is well
suited to this type of calculations is the method of regions [253,254]. In this approach, the guiding principle is that the
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Fig. 13. The box and crossed-box topologies.

asymptotic expansion of the desired integrals as q → 0 is captured by Taylor-expanding the integrand with respect to
all possible scalings of the loop momentum ℓ that give rise to non-scaleless integrals in dimensional regularization. In
our case, the nontrivial scaling choices are ℓ ∼ O(q0), which defines the hard region, and ℓ ∼ O(q), which defines to the
oft region. The hard region is effectively a power series in q2 and thus only gives rise to strictly localized contributions
n b-space. Conversely, the soft region is the one responsible for the non-analytic terms we are after, so we can safely
iscard the former and concentrate on the latter.
Although we refrain here from exhibiting the full soft-region calculation of III, which was performed in detail for

instance in [48,49,167], let us show how the leading soft term in III + III can be retrieved, following [109]. Starting from
(4.10), the leading soft term in III reads

III ≃
∫
ℓ

1
(−2p1ℓ− i0)(2p2ℓ− i0)(ℓ2 − i0)((ℓ− q)2 − i0)

, (4.13)

here we used the scaling condition ℓ ∼ q, while p1, p2 are q-independent to leading order. Sending ℓ→ q− ℓ, recalling
= p1 + p4 = −p2 − p3 and using 2p1q = q2, 2p2q = −q2, Eq. (4.13) can be rewritten to leading order in the form

III ≃
1
2

∫
ℓ

1
(ℓ2 − i0)((ℓ− q)2 − i0)

×

[
1

(−2p1ℓ− i0)(2p2ℓ− i0)
+

1
(2p1ℓ− i0)(−2p2ℓ− i0)

]
.

(4.14)

dding the crossing symmetry partner III and applying very similar manipulations, one then finds

III + III ≃
1
2

∫
ℓ

1
(ℓ2 − i0)((ℓ− q)2 − i0)

×

[
1

2p1ℓ− i0
+

1
−2p1ℓ− i0

][
1

2p2ℓ− i0
+

1
−2p2ℓ− i0

]
.

(4.15)

his localizes the integration on a (D− 2)-dimensional subspace

III + III ≃ −2π
2
∫
ℓ

δ(2p1ℓ)δ(2p2ℓ)
(ℓ2 − i0)((ℓ− q)2 − i0)

. (4.16)

hoosing p1 = (−E1, 0, . . . , 0,−p), p2 = (−E2, 0, . . . , 0, p), q = (0, q⊥, 0) one can use the delta functions to perform the
ntegrals with respect to ℓ0 and ℓ∥ in ℓ = (ℓ0, ℓ⊥, ℓ∥), obtaining

III + III ≃ eγEϵ
iπ ϵ

2pE

∫
d2−2ϵℓ⊥

ℓ2
⊥
(ℓ⊥ − q⊥)2

, (4.17)

with E = E1 + E2. The last integral is straightforward to perform using Schwinger or Feynman parameters, and one gets

III + III ≃ eγEϵ
iπ
2pE

Γ (1+ ϵ)
(q2)1+ϵ

Γ (−ϵ)2

Γ (−2ϵ)
. (4.18)

hen substituted into (4.8), recalling that pE = m1m2
√
σ 2 − 1 as in (1.13), we thus obtain the leading contribution

iA1(s, q2)
4pE

≃
(8πG)2

(4π )2

(
4π
q2

)ϵ (−2πm2
1m

2
2)

q2
σ 4

σ 2 − 1
Γ (1+ ϵ)Γ 2(−ϵ)

Γ (−2ϵ)
. (4.19)

ub-leading and sub-sub-leading terms in q are obtained by retaining higher-order contributions in the soft-region
xpansion. This can be done via direct integration in the soft region as exemplified here [48,49,108,109] or, more
ystematically, using Integration-By-Parts identities, reduction to master integrals and soft differential equations adapted
o the soft region [47,167].
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The resulting expression, complete to sub-sub-leading order, reads

iA1(s, q2)
4pE

= 4G2
(
4π
q2

)ϵ {
−2πm2

1m
2
2

q2
σ 4

σ 2 − 1
Γ (1+ ϵ)Γ 2(−ϵ)

Γ (−2ϵ)
(4.20)

+
2i
√
πm1m2(m1 +m2)√

q2
σ 4

(σ 2 − 1)
3
2

Γ (ϵ + 1
2 )Γ

2( 12 − ϵ)
Γ (−2ϵ)

−
iσ 3

(σ 2 − 1)2
Γ 2(−ϵ)Γ (1+ ϵ)

Γ (−2ϵ)

×

[
m1m2

[
(1+ 2ϵ)

(
σ 2 log z+σ

√
σ 2 − 1

)
+2iπ (σ 2

− 1)
]
+

iπϵ
2

s σ
] }

.

et us now introduce a notation to distinguish leading, sub-leading and sub-sub-leading terms in the q-expansion of
1(s, q2) according to

A1 = A[2]1 + A[1]1 + A[0]1 + · · · , (4.21)

n such a way that A[k]1 ∼ O(q−k−2ϵ). The A[2]1 term, corresponding to the first line of Eq. (4.20), is the super-classical
erm. Its Fourier transform in impact parameter space (see Eq. (A.45)) indeed reproduces the quadratic iteration term of
he expansion of the leading-order eikonal,

iÃ[2]1 (s, b) =
1
2

(
2im1m2G(πb2)ϵσ 2Γ (−ϵ)

√
σ 2 − 1

)2

=
1
2
(2iδ0)2 , (4.22)

in agreement with the leading-order term in (4.5). The Fourier transform of A[1]1 , which appears in the second line of
Eq. (4.20) and is sub-leading for small q, gives instead the sub-leading eikonal according to

2iδ1 = iÃ[1]1 (4.23)

so that34

2δ1 =
4(πb2)2ϵG2m1m2(m1 +m2)

√
πb2

σ 4

(σ 2 − 1)
3
2

Γ ( 12 − 2ϵ)Γ 2( 12 − ϵ)
Γ (−2ϵ)

. (4.24)

ote that this next-to-leading eikonal, arising from box integrals, represents the first correction to (3.68) and is
roportional to the sum of the masses. Taking the by now familiar derivative with respect to b, this translates into the
ollowing expression for the deflection angle,

Θ =
4GE(πb2)ϵσ 2Γ (1− ϵ)

(σ 2 − 1)b
+

4G2E(πb2)2ϵσ 4(m1 +m2)
(σ 2 − 1)2

√
π b2

Γ ( 12 − 2ϵ)Γ 2( 12 − ϵ)
Γ (−2ϵ)

+ O(G3) . (4.25)

onsistently with the above considerations, the O(G2) correction vanishes identically for the collision of two (massless)
hockwaves. Moreover, even for massive objects, it happens to be zero in D = 4 [211], while it does provide a nontrivial
( R

2

b2
) correction to the deflection angle in higher-dimensional spacetimes.

Finally, going to impact parameter with sub-sub-leading term A[0]1 one gets the first contribution to the quantum
remainder,

2i∆1 = iÃ[0]1 , (4.26)

inding a real part given by

Re 2∆1 =
8G2m1m2(πb2)2ϵ

πb2
σ 4
(
σ log z +

√
σ 2 − 1

)
(σ 2 − 1)2

(1+ 2ϵ)Γ 2(1− ϵ) , (4.27)

nd an imaginary part given by

Im2∆1 =
8G2σ 3(πb2)2ϵΓ 2(1− ϵ)

b2(σ 2 − 1)2

[ ϵ
2
sσ + 2m1m2(σ 2

− 1)
]
. (4.28)

In this section we focused on the elastic amplitude (4.8). Looking more in general at the 2→ 2 scattering of massless
tates inN = 8 supergravity, we remark that there can be inelastic contributions at the level of A[1]1 . However this does not
mply that the 2PM eikonal becomes an operator, because there is an O(G) contribution to ∆ that encodes the transition
etween different massless states (so this ∆0 is nontrivial, in this more general setup, and becomes an operator). By using
he natural generalization of (4.1), one can verify that the amplitudes in the massless sector are consistent with the 2PM
ikonal (4.24), see [43] for an explicit check of this point in the probe limit where massless states scatter off a stack of
p-branes.

34 Let us point out a typo in the expression for 2δ in Ref. [47], which should be multiplied by 1/2.
1
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.1.2. Real-analytic, crossing-symmetric reformulation
In the previous subsection we have collected the contribution of the different one-loop diagrams noticing that they

ombine into much simpler expressions than those of individual diagrams. They are in the form of an expansion in
owers of q2 i.e. of the quantum level at which they contribute. Furthermore, as computer outputs, they simply collect
ndependently real and imaginary terms and express the result in terms of a choice of the two independent Mandelstam
ariables, q2 = −t and s (or of quantities like σ and z, themselves functions of s and the masses).
On the other hand, we expect the full amplitude to satisfy two exact properties:

• Real analyticity i.e. A(s∗, q2) = (A(s, q2))∗;
• Crossing symmetry i.e. A(s, q2) = A(u ≡ −s+ q2 + 2m2

1 + 2m2
2, q

2).

Those two properties, which should hold order by order in q2, are not at all apparent in the formulae of the previous
subsection, but they must be hidden somewhere, of course up to the order in q2 at which we stop our expansion. Here we
ill explicitly show how to rewrite the tree and one-loop amplitudes, given in the previous section in a real-analytic and
rossing-symmetric form. Besides its usefulness for the interpretation of the result this also serves as a rather stringent test
f the calculations themselves. A similar analysis will be carried out at the two-loop level in Section 6 where analyticity
nd crossing will turn out to be very useful for actually fixing the entire two-loop amplitude from its imaginary part. Let
s mention in passing that analyticity and crossing also played a key role in recent developments [255,256].
To this purpose it is useful to introduce variables which are related to those introduced earlier in Section 1.2 by s↔ u

xchange:

σ̄ =
u−m2

1 −m2
2

2m1m2
= −

(
σ −

q2

2m1m2

)
,

z̄ = σ̄ −
√
σ̄ 2 − 1 = −

1
z

(
1−

q2/(2m1m2)
√
σ 2 − 1

)
+ O(q4) ,

2σ̄ =
(
z̄ +

1
z̄

)
, 2

√
σ̄ 2 − 1 =

(
1
z̄
− z̄

)
.

(4.29)

We also have to bear in mind that the factor 1
4pE appearing in some formulae cannot be ignored when discussing analyticity

nd crossing symmetry of the amplitude.
The tree-level amplitude (3.67) is already manifestly crossing symmetric and real analytic,

A0 = −
πG
q2

16m4
1m

4
2(σ

4
+ σ̄ 4)− q4

m2
1m

2
2σ σ̄

. (4.30)

p to terms that lack the pole at q2 = 0, we may equivalently write

A0(s, q2) =
16πGm2

1m
2
2

q2
(
σ 2
+ σ̄ 2) . (4.31)

t one-loop, Eq. (4.20) suggests trying the following analytic, crossing-symmetric ansatz for the super classical term:

Ascl.
1 (s, q2) =

16G2m3
1m

3
2

q2

(
4π
q2

)ϵ
Γ 2(−ϵ)Γ (1+ ϵ)

Γ (−2ϵ)

[
(σ 4
+ σ̄ 4)

(
log(−z)
√
σ 2 − 1

+
log(−z̄)
√
σ̄ 2 − 1

)]
. (4.32)

It is easy to check that, when expanded in q2 using (4.29) and the branch choice log(−z) = log z + iπ , (4.32) reproduces
both the super-classical (first line in (4.20)) and the O(ϵ0m1m2) terms in the square bracket of (4.20).

The remaining terms are as follows:

• A classical contribution proportional to (q2)−1/2 (second line in (4.20)). It is real and can be trivially symmetrized in
s− u since the error in doing so is of order (q2)1/2;
• A quantum contribution of O(ϵ) that can be written in the crossing-symmetric form:

Aqu.
1 (s, q2) = 16G2m2

1m
2
2

(
4π
q2

)ϵ
Γ 2(−ϵ)Γ (1+ ϵ)

Γ (−2ϵ)
Âqu.

1 (s, q2) , (4.33)

Âqu.
1 (s, q2) = −ϵ

[(
σ 5 log(−z)
(σ 2 − 1)3/2

+
σ̄ 5 log(−z̄)
(σ̄ 2 − 1)3/2

)
+

(
σ 4

σ 2 − 1
+

σ̄ 4

σ̄ 2 − 1

)]
−ϵ

(m2
1 +m2

2)
2m1m2

(
σ 4 log(−z)
(σ 2 − 1)3/2

+
σ̄ 4 log(−z̄)
(σ̄ 2 − 1)3/2

)
.

(4.34)

ote that in (4.34) we can again neglect the difference between σ̄ and −σ as well as the difference between z̄ and −1/z.
s a result, the last line of (4.34) gives a purely imaginary contribution in the physical region.
In the above equations crossing symmetry is manifest. Concerning real analyticity, it can be checked by using, in

articular, the analytic properties of the combination log(−z)(σ 2
− 1)−1/2. We will come back to the checks of real

nalyticity after we include the two-loop results in Section 6.
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Fig. 14. The two-graviton cut needed to obtain the one-loop integrand for the amplitude in the classical limit. Each blob represents a tree-level
amplitude with two scalars and two gravitons.

4.1.3. General relativity
Let us now turn to the collision of two massive scalars minimally coupled to GR. The logic we will apply is the same

s for the N = 8 example discussed above. That is, we want to calculate the one-loop amplitude for the collision of two
assive scalars minimally coupled to gravity, focusing on the non-analytic terms in the limit of small momentum transfer

2.
Of course, in the absence of supersymmetry, the amplitude integrand is not as simple as (4.8), and deriving it from

eynman diagram techniques would pose a nontrivial challenge. Following [48,108], a powerful integrand construction
echnique that we can apply to overcome this problem is the method of generalized unitarity. The one loop integrand we
re after is a rational function, and its residues at the poles corresponding to the on-shell limits for certain internal lines
re nothing but (sums of products of) tree-level amplitudes obtained by ‘‘cutting’’ such lines. A further simplification arises
rom the observation that, in order to capture all non-analytic terms associated to the long-range eikonal dynamics, we do
ot need to determine the full integrand, but rather only the contributions coming from the two-graviton cut depicted in
ig. 14. Indeed, we can neglect any topology involving contact interactions between the two massive lines, which would
orrespond to strictly localized effects.
We shall disregard topologies associated to vertex corrections and self-energy diagrams, which give rise to integrals

hat always vanish in the soft region. This may seem in principle not justified, because, although arising from the hard
egion only, these dressings of the one-graviton exchange naively appear in the amplitude with a kinematic prefactor 1/q2
non-analytic). The key observation is that they also give rise to divergent terms that ought to be treated by appropriate
oupling and wave-function renormalization. However one can check that the IR-divergences due to the two-graviton
ut in Fig. 14 in fact exhaust the full IR-divergence of the one-loop amplitude predicted by the general exponential
attern [1,107]. Therefore, all infrared divergences arising from vertex corrections and self-energy diagrams must cancel
gainst one another, and we need not worry about them. The cancellation of the corresponding finite terms then ought
o follow from the Ward identity linking the renormalization constants for charge and wavefunction, as discussed in
ef. [257] for the case of electrodynamics, although we will not analyze it in detail here.
Let us then turn to the evaluation of the two-graviton cut. The amplitude for each blob in Fig. 14 is the one already

iscussed in Section 3.1.2,

Aρσ,αβ (k1, k2, q1, q2) =
k1 k2

ρσ q1 αβq2

(4.35)

an be taken as follows, using momentum conservation to eliminate k2, [48]

Aρσ,αβ = 2κ2 q1 · (k1 + q2) q1 · k1
q1 · q2

×

[
(k1 + q2)ρkα1
q1 · (k1 + q2)

−
(k1 + q1)αk

ρ

1

k1 · q1
+ ηρα

][
(k1 + q2)σ k

β

1

q1 · (k1 + q2)
−

(k1 + q1)βkσ1
k1 · q1

+ ησβ

]
.

(4.36)

his expression is of course highly non-unique, because one can always perform gauge transformations, i.e. shifts
roportional to qρξσ + qσ ξρ or to qαζ β + qβζ α obtaining an equivalent amplitude. The advantage of the specific form
1 1 2 2
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Fig. 15. Triangle and bubble topologies.

(4.36) is that it is exactly transverse with respect to each graviton momentum [48,258],

qρ1Aρσ,αβ = qσ1Aρσ,αβ = 0 , qα2Aρσ,αβ = qβ2Aρσ,αβ = 0 , (4.37)

as can be checked using the mass-shell conditions. This simplifies the sum over intermediate graviton polarizations
involved in the cut in Fig. 14, and one can cast the amplitude of interest in the form

iA1(s, q) =
1
2

∫
dDq1
(2π )D

dDq2
(2π )D

(2π )Dδ(D)(q− q1 − q2)

× Aρσ,αβ (p1, p4,−q1,−q2)Gρσ,ρ
′σ ′ (q1)Gαβ,α

′β ′ (q2)Aρ′σ ′,α′β ′ (p2, p3, q1, q2) ,
(4.38)

where Gµν,ρσ denotes the De Donder propagator (A.23),

Gµν,ρσ (ℓ) =
−i

2(ℓ2 − i0)

(
ηµρηνσ + ηµσηνρ −

2
D− 2

ηµνηρσ
)
. (4.39)

he overall factor of 1
2 in (4.38) is due to the reflection symmetry of Fig. 14 about the vertical axis, or equivalently to the

two possible choices of labeling for the loop momentum, either q1 = ℓ, q2 = ℓ− q or q2 = ℓ, q1 = q− ℓ.
The resulting integrand involves not only box and crossed box topologies (Fig. 13), as its N = 8 counterpart, but

lso triangle and bubble topologies (Fig. 15). Moreover, while the numerators of box and crossed box are constant in the
oop momentum, the remaining topologies involve nontrivial numerators. As we already mentioned above, the task of
erforming such integrals is considerably simplified by employing integration-by-parts identities after expansion in the
oft region. Using these techniques, one can reduce the calculation to a simple set of three master integrals [167], the
eading-order box and triangle, plus a trivial scalar bubble integral.

For illustrative purposes, let us consider a scalar triangle integral (let us recall the shorthand notation
∫
ℓ
introduced

n (4.11))

I∆ =
∫
ℓ

1
(−2p1ℓ+ ℓ2 − i0)(ℓ2 − i0)((ℓ− q)2 − i0)

. (4.40)

gain focusing on the soft region, where ℓ ∼ O(q), and on the leading-order contributions, we can massage this integral
s we did for the leading box, obtaining

I∆ ≃
1
2

∫
ℓ

[
1

2p1ℓ− i0
+

1
−2p1ℓ− i0

]
1

(ℓ2 − i0)((ℓ− q)2 − i0)
(4.41)

o that

I∆ ≃ iπ
∫
ℓ

δ(2p1ℓ)
(ℓ2 − i0)((ℓ− q)2 − i0)

. (4.42)

To evaluate this integral it is convenient to pick a reference frame where

p1 =
(
−

√
m2

1 +
1
4 |q⃗ |

2
, 1

2 q⃗
)
, p4 =

(√
m2

1 +
1
4 |q⃗ |

2
, 1

2 q⃗
)

(4.43)

o that q = (0, q⃗ ) and, to leading order for small q,

I∆ ≃ eγEϵ
π−1+ϵ

2m1

∫
d3−2ϵ ℓ⃗

|ℓ⃗ |
2
|ℓ⃗− q⃗ |

2 = eγEϵ
√
π

2m1

Γ
( 1
2 + ϵ

)
(q2)

1
2+ϵ

Γ
( 1
2 − ϵ

)2
Γ (1− 2ϵ)

. (4.44)

ombining this result with the box and bubble integrals, one can obtain an expression for the amplitude complete up
o sub-sub-leading order in the small-q expansion, which we now illustrate. For simplicity, let us again break down the
esult as follows

A = A[2] + A[1] + A[0] , (4.45)
1 1 1 1
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here each term scales according to A(n)
1 ∼ q−n−2ϵ . The leading term, which is entirely determined by the box and

crossed-box contributions, and is given by

iA[2]1

4pE
= −

(8πG)2

(4π )2

(
4π
q2

)ϵ 2πm2
1m

2
2(σ

2
−

1
D−2 )

2

q2(σ 2 − 1)
Γ (1+ ϵ)Γ 2(−ϵ)

Γ (−2ϵ)
. (4.46)

he subleading one reads instead

iA[1]1

4pE
=

i(8πG)2

(4π )2

(
4π
q2

)ϵ Γ (ϵ + 1
2 )Γ ( 12 − ϵ)

2

Γ (1− 2ϵ)

[
−

4ϵ
√
πm1m2(m1 +m2)(σ 2

−
1

D−2 )
2

q(σ 2 − 1)
3
2

+
2
√
πm1m2(m1 +m2)

q(σ 2 − 1)
1
2

(
σ 2
−

4+ (1− 2ϵ)(σ 2
− 1)

16(1− ϵ)2

) ]
,

(4.47)

here the first line of this expression comes from the subleading expansion of box and crossed box, while the second
ine comes from the leading-order triangle contributions. Note that the first line vanishes in D = 4, as ϵ → 0. The
subsubleading term instead combines all three types of topologies, and we find it convenient separate box/crossed box,
triangle and bubble contributions according to

A[0]1 = A[0]12 + A[0]1△ + A[0]1# . (4.48)

We find, from the box and crossed box topologies [43],

iA[0]12

4pE
=

(8πG)2

(4π )2

(
4π
q2

)ϵ(
σ 2
−

1
D−2

) Γ (1− ϵ)2Γ (1+ ϵ)
Γ (1− 2ϵ)

[
−πs

(
σ 2
−

1
D−2

)(
σ 2 − 1

)2
+

2im1m2

ϵ
√
σ 2 − 1

(
4σ arccosh σ
√
σ 2 − 1

+
(1+ 2ϵ)

(
σ 2
−

1
D−2

)
σ 2 − 1

(
1−

σ arccosh σ
√
σ 2 − 1

)) ]
,

(4.49)

rom the triangle topologies,

iA[0]1△

4pE
=

(8πG)2

(4π )2

(
4π
q2

)ϵ im1m2

2
√
σ 2 − 1

Γ (1− ϵ)2Γ (2+ ϵ)
ϵ(1− ϵ)2Γ (1− 2ϵ)

×

[
1− 2σ 2(1− ϵ)

11− 18ϵ + 8ϵ2

(1+ ϵ)(1− 2ϵ)

]
,

(4.50)

nd, from the bubble,

iA[0]1#

4pE
=

(8πG)2

(4π )2

(
4π
q2

)ϵ im1m2
√
σ 2 − 1

Γ (1− ϵ)2Γ (1+ ϵ)
4ϵ(5− 2ϵ)(3− 2ϵ)Γ (1− 2ϵ)

×

[
σ 2
(
16ϵ3 − 210ϵ2 + 633ϵ − 522

)
2ϵ − 1

−
17ϵ3 − 68ϵ2 + 65ϵ − 2

2(ϵ − 1)2

]
.

(4.51)

We can now go to impact parameter space using Eq. (A.45). Let us start from the superclassical term A[2]1 in (4.46),
hich gives

iÃ[2]1 (s, b) =
1
2

(
2im1m2G(πb2)ϵ(σ 2

−
1

D−2 )Γ (−ϵ)
√
σ 2 − 1

)2

=
1
2
(2iδ0)2 . (4.52)

Thus, as in the previous case, we again obtain a cross check of the exponentiation of δ0, according to which the leading
superclassical term in the one-loop amplitude must be given by 1

2! (2iδ0)
2 as dictated by (4.5).

The Fourier transform of the subleading, classical term A[1]1 , appearing in (4.47), gives the next to the leading classical
ikonal

2iδ1 = iÃ[1]1 (s, b) . (4.53)

o that

2iδ1 =
iG2m1m2(m1 +m2)

(πb2)
1
2−2ϵ

[
Γ 2( 12 − ϵ)Γ ( 12 − 2ϵ)

(
σ 2
−

1
D−2

)2
Γ (−2ϵ)(σ 2 − 1)

3
2

(4.54)

+
4Γ ( 12 − ϵ)

2Γ ( 12 − 2ϵ)

Γ (1− 2ϵ)
√
σ 2 − 1

(
σ 2
−

4+ (1− 2ϵ)(σ 2
− 1)

16(1− ϵ)2

) ]
. (4.55)
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ike the leading eikonal, 2δ1 is also a purely real quantity. Taking a derivative with respect to b according to

2p sin
Θ

2
= −

∂2δ
∂b
H⇒ Θ2PM

= −
1
p
∂2δ1
∂b

, (4.56)

e can then obtain the 2PM correction to the deflection angle, in generic spacetime dimensions. Combining with the 1PM
esult (3.12), we thus obtain the following expression for the deflection angle,

Θ =
4GE

(
σ 2
−

1
D−2

)
Γ (1− ϵ)

(σ 2 − 1)π−ϵb1−2ϵ

+
(1− 2ϵ)G2E(m1 +m2)

π
1
2−2ϵb2−2ϵ

[
Γ 2( 12 − ϵ)Γ ( 12 − 2ϵ)

(
σ 2
−

1
D−2

)2
Γ (−2ϵ)(σ 2 − 1)2

+
4Γ ( 12 − ϵ)

2Γ ( 12 − 2ϵ)
Γ (1− 2ϵ)(σ 2 − 1)

(
σ 2
−

4+ (1− 2ϵ)(σ 2
− 1)

16(1− ϵ)2

) ]
+O(G3) .

(4.57)

ote that the 2PM correction is present only if both masses are non vanishing. In contrast with the N = 8 case, although
he box and cross-box contributions (4.54) do not contribute for D = 4, the triangle contribution (4.55) survives, and we
get:

2δ1 =
3πG2m1m2(m1 +m2)(5σ 2

− 1)

4b
√
σ 2 − 1

(4.58)

nd for the deflection angle [259]

Θ =
4GE(σ 2

−
1
2 )

b(σ 2 − 1)
+

3πG2E(m1 +m2)(5σ 2
− 1)

4(σ 2 − 1)b2
+ O(G3) . (4.59)

Finally the Fourier transform of the sub-sub-leading term A[0]1 given by (4.48) identifies the leading quantum remainder

2i∆1 = iÃ[0]1 . (4.60)

his is a quantum term and indeed will not contribute to the classical eikonal. However, it will be needed at two-loop
evel in order to solve (4.6) for the unknown 2δ2. Actually, since we will be able to obtain the two-loop amplitude only
o the first few orders in the ϵ expansion around ϵ = 0, i.e. D = 4, let us evaluate this quantum remainder for small ϵ,
lthough performing the Fourier transform of the full expression (4.48) is straightforward using (A.45). We thus obtain

2i∆1 = −ϵ
G2s

(
2σ 2
− 1

)2
b2
(
σ 2 − 1

)2
+

iG2m1m2
(
πb2eγE

)2ϵ
b2π (σ 2 − 1)3/2

(
2σ
(
2σ 2
− 1

) (
6σ 2
− 7

)
arccosh σ

√
σ 2 − 1

−
1− 49σ 2

+ 18σ 4

15

)

+ iϵ
G2m1m2

πb2
√
σ 2 − 1

(
−

8σ (2σ 2
+ 1) arccosh σ

(σ 2 − 1)3/2
+

9234σ 2
− 1783

450

)
+ O(ϵ2) .

(4.61)

his expression for 2i∆1 is accurate through O(ϵ) for both real and imaginary part. In particular its O(1) real part vanishes,
hile its imaginary part is nontrivial to O(1) and O(ϵ). The terms involving arccosh σ of course only come from the
ox/crossed box contributions (4.49) already obtained in [48]. Moreover, the O(1) imaginary part and the O(ϵ) real part
gree with [109]. As we will discuss in the next chapter, this quantum piece will play a role in our discussion of the two-
oop eikonal. On the one hand, it is needed to perform the subtractions dictated by (4.6). Moreover, it will be instrumental
n determining the amplitude itself from its analyticity and crossing-symmetry properties.

.1.4. Real-analytic, crossing-symmetric reformulation
Following the procedure we used for the N = 8 case in Section 4.1.2, let us recast the 3PM GR result in an explicitly

eal-analytic and crossing-symmetric form. Using the same notations as in (4.29) the tree level amplitude (3.4) can be
ritten, up to higher orders in q2, as

A0(s, q2) =
16πG
q2

m2
1m

2
2

[(
σ 2
−

1
D−2

)
+
(
σ̄ 2
−

1
D−2

)]
. (4.62)

t one-loop, in analogy with Eq. (4.20), we can deal separately and rather trivially with the purely real classical terms
4.47) behaving like 1√ . For the remaining terms, inspired again by the N = 8 case of Section 4.1.2, we try the
q2
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nsatz:

Ascl.
1 (s, q2) =

(8πG)2

(4π )2

(
4π
q2

)ϵ
Γ 2(−ϵ)Γ (1+ ϵ)

Γ (−2ϵ)
4m3

1m
3
2

q2
(4.63)[(

σ 2
−

1
2(1− ϵ)

)2

+

(
σ̄ 2
−

1
2(1− ϵ)

)2
][

log(−z)
√
σ 2 − 1

+
log(−z̄)
√
σ̄ 2 − 1

]
.

his reproduces, in b-space, the iteration of the tree contribution (4.46) and, furthermore, takes care of some quantum
erms. Up to purely real pieces, the full structure of (4.48) is reproduced by the following additional real-analytic
rossing-symmetric terms:

Aadd.
1 (s, q2) =

(8πG)2

(4π )2

(
4π
q2

)ϵ
Γ 2(−ϵ)Γ (1+ ϵ)

Γ (−2ϵ)
4m2

1m
2
2Â

add.
1 , (4.64)

Âadd.
1 =

[(
σ 2
−

1
2(1− ϵ)

)
+

(
σ̄ 2
−

1
2(1− ϵ)

)][
σ log(−z)
√
σ 2 − 1

+
σ̄ log(−z̄)
√
σ̄ 2 − 1

]
−
ϵ

2

[(
σ 2
−

1
2(1− ϵ)

)2

+

(
σ̄ 2
−

1
2(1− ϵ)

)2
][

σ log(−z)
(σ 2 − 1)3/2

+
σ̄ log(−z̄)
(σ̄ 2 − 1)3/2

]

− ϵ
m2

1 +m2
2

4m1m2

[(
σ 2
−

1
2(1− ϵ)

)2

+

(
σ̄ 2
−

1
2(1− ϵ)

)2
][

log(−z)
(σ 2 − 1)3/2

+
log(−z̄)

(σ̄ 2 − 1)3/2

]
.

We have checked that the sum of (4.63) and (4.64) reproduces the superclassical term (4.46), as well as the box and
crossed box contributions (4.49), modulo a single real term given by:

Âres.
1 = −2ϵ

(
σ 2
−

1
D−2

)2
σ 2 − 1

. (4.65)

e also note that the triangle (4.50) and bubble (4.51) contributions are real (indeed they do not exhibit any on shell
ntermediate states). Together with (4.65) they can be made crossing symmetric trivially. This exhausts the analytic study
f the one-loop terms in GR.

.1.5. The probe limit
It is instructive to study the regime where one mass is much larger than all other energy scales as was done at leading

M order at the end of Section 3.1.1 for GR and of Section 3.1.4 for N = 8 supergravity. Of course in this limit one should
eproduce the results obtained from the classical motion of a probe in a fixed background describing the heavy object,
ee Appendix B.1. This is easily checked by taking the limit m2 ≫ E1 summarized in (3.17). Focusing first on the case of
R, it is sufficient to take (4.57) in the probe limit, m1 = mp ≪ M = m2, to obtain

Θ =

√
π Γ

(D−2
2

)
2Γ

(D−1
2

) (D− 2)E2
−m2

p

E2 −m2
p

(
Rs

b

)D−3

+

√
π Γ

(
D− 5

2

)
8Γ (D− 2)

(
Rs

b

)2(D−3) (2D− 5)(2D− 3)E4
p − 6(2D− 5)E2

pm
2
p + 3m4

p

(E2
p −m2

p)2

+ O(G3)

(4.66)

where we used (B.2) for Rs. The leading term matches (B.14) while the subleading correction matches (B.15). It is
straightforward to repeat the check in the case of N = 8 supergravity by starting from (4.25), for which we get

Θ =

√
π Γ

(D−2
2

)
Γ
(D−3

2

) E2

E2 −m2
p

(
Rs

b

)D−3

+

√
π Γ

(
D− 5

2

)
Γ (D− 4)

(
E2

E2 −m2
p

)2(Rs

b

)2(D−3)

+ O(G3) . (4.67)

s already noticed, for D = 4 the 2PM correction in (4.67) vanishes and the 1PM result agrees with the probe limit (B.41).
At 2PM order, it is actually possible to make the link in the opposite direction and reconstruct the deflection angle for

eneric masses from the result in the probe limit. The idea is to consider the following ansatz for the classical impulse Q
n an elastic scattering in the PM expansion [260],

Q =
2Gm1m2

J/p

∞∑
k1,k2=0

Qk1k2 (σ )
(
2Gm1

bJ

)k1 (2Gm2

bJ

)k2
(4.68)

here we restrict to D = 4. The key assumption here, sometimes referred to as ‘‘good mass polynomiality’’, is that the
ependence on the masses m always enters via the combination 2Gm /J and it is thus tied to the PM expansion itself.
i i
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ach coefficient Qk1k2 (σ ) is only a function of σ , which contributes to the result at PM order k1 + k2 + 1. Moreover, since
he impulse Q must be symmetric under particle-interchange symmetry, in the elastic case, we must have

Qk1k2 (σ ) = Qk2k1 (σ ) . (4.69)

n the probe limit m1 ≪ m2, in Eq. (4.68) only the terms with k1 = 0 survive to leading order, and thus one can deduce
he functions Q0k(σ ) = Qk0(σ ) from the deflection angle calculated in Appendix B.1 by studying the motion of particle 1,
ith mass m1 = mp, in the background sourced by particle 2, with mass m2 = M . In the case of GR, by (B.17), (B.18) we
ave at the first two orders

Q00(σ ) =
2σ 2
− 1

√
σ 2 − 1

, Q01 (σ ) =
3π
16

5σ 2
− 1

√
σ 2 − 1

, (4.70)

here we used E/mp ≃ σ in the probe limit. Of course, substituting back Q00 and Q01 into (4.68) one recovers precisely
he 2PM accurate deflection angle (4.59). On the contrary, at 3PM a new function Q11(σ ) appears that cannot be fixed by
ooking at the probe limit, and needs to be determined by studying the problem where both particles are fully dynamical.
his will be the subject of Section 6 for both N = 8 supergravity and GR. Moreover, as we shall see in Section 8,
n general the impulse Q1 of particle 1 and that Q2 of particle 2 can differ in the presence of radiative effects, thus
ntroducing additional structures. For recent developments concerning the assumption of good mass polynomiality to
(G4) see [138,140,261].

.1.6. Tidal effects in field theory
Following Refs. [50,51,54,262], one can conveniently include finite-size effects associated to tidal deformations in the

cattering amplitude approach by introducing higher derivative operators that are quadratic in the scalar field and involve
owers of the Weyl tensor. Focusing for simplicity on the leading, quadratic order, these can be decomposed into the so-
alled E (‘‘electric’’) or mass-type and B (‘‘magnetic’’) or current-type tidal operators. The resulting ‘‘tidal vertex’’ involves
wo massive lines and two graviton lines, and thus produces corrections to the sewing procedure of Fig. 14 (while it does
ot affect the single-graviton, tree-level exchange). Without going into details, let us quote here for completeness the
xpression for the resulting one-loop correction to the impulse, which are of course equivalent to the tidal modifications
f 2δ1 up to a derivative with respect to b. For the case in which particle 1 is subject to tidal deformations (the analogous
ase in which object 2 can be deformed is obtained trivially by interchanging particle labels),

QE21
=

Rf b
G

3cE21
m2

1

35σ 4
− 30σ 2

+ 11
√
σ 2 − 1

, QB21
=

Rf b
G

15cB21
m2

1

√
σ 2 − 1

(
7σ 2
+ 1

)
, (4.71)

ith (i = 1, 2)

Rf = 15πG3m2
1m

2
2/
(
64b7

)
, cE2i =

1
6
k(2)i R5

i /G , cB2i =
1
32

j(2)i R5
i /G (4.72)

nd ki, ji are the colliding objects’ Love numbers, while Ri is the radius of object i. For typical compact objects, Ri = Gmi/Ki
here Ki is the body’s ‘‘compactness’’ of order 0.1, 0.2 for neutron stars [30]. Thus, we see that the leading tidal corrections
4.71) are weighted by the dimensionless power-counting parameter (Gm/b)5/K 5 (for m ≃ m1,2 and K ≃ K1,2) relative
o the leading-order impulse (3.16). This shows how PM effects measured by Gm/b can compete with finite-size effects
easured by the compactness parameter K .

.2. Eikonal exponentiation in string theory at one loop

The first goal of this section is to analyze an explicit example of a one-loop amplitude in string theory. We will see that
lso in this case the leading term in the classical limit does not contain new information as it provides just a contribution
owards the exponentiation of the tree-level result. The main difference with the QFT cases analyzed so far is that already
he leading eikonal δ̂0 (3.176) is an operator: as discussed in Section 3.2.4, this operator acts on the space of the possible
tring states. The non-trivial check presented here is that the leading term of the one-loop result is the square of δ̂0,
xtending Eq. (4.6) to the more general setup where the colliding objects have a non-trivial structure. After gaining
onfidence that the full eikonal operator exponentiates, we revisit the physics related to tidal excitation. We show that,
t the leading order, this classical effect is captured by a probe analysis focusing on the string dynamics in a non-trivial
ackground. This generalizes to the string case the idea that the leading deflection angle for a point-like particle can be
erived by solving the geodesic equation, see (3.20) and (B.14). We conclude this part on string theory by discussing more
n detail how the exponentiated form of the leading eikonal captures the tidal effects on the string probe and how this
an exponentially suppress the elastic scattering even at very large distances if the probe energy is large enough.

.2.1. 1-loop in string theory
We work in the setup discussed in Section 3.2.1 and consider the first correction to the 1→ 1 scattering of a NS–NS

assless state in presence of a stack of N coincident Dp-branes in type II theories. From the world-sheet point of view,
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Fig. 16. Scattering of a massless string off a Dp-brane at one loop.

Fig. 17. Alternative representation of the one-loop scattering of a closed string off a Dp-brane. The green circles are the boundaries of the worldsheet
and rest on the Dp-brane, while the blue dots represent punctures associated to the asymptotic closed-string states.

this amplitude is captured by a diagram with the topology of an annulus with two boundaries (which are supported
by the Dp-branes) and two punctures in the interior of the annulus representing the external closed string states, as
depicted in Fig. 16. We will parameterize this surface as done in [22]: the ‘‘thickness’’ of the annulus is related to e−πλ,
with 0 ≤ λ <∞, while for the location of the punctures we use

zi = e2π (−λρi+iωi) , 0 < ρi <
1
2
, 0 ≤ ωi < 1 . (4.73)

see Fig. 17). In type II theories, the behavior of this amplitude is constrained by supersymmetry and the kinematic
ependence is the same as in the tree-level case [206], so we can extract a scalar function A1

A1(pi, ϵi) = K(pi, ϵi)A1 (4.74)

hat captures all the dynamical information. The derivation of A1 is conceptually similar to the one summarized in
ppendix D.3 for bosonic string theory, but technically requires to deal with some of the complications of superstring
heory such as the sum over the spin structures. Here we start from the final result below and refer to the literature [263,
64] for a derivation and further references. In the superstring case we have

A1 =

(
κdNTp

2

)2
α′

16π
(2π2α′)−

d−p−1
2

∫
∞

0
dλ
∫

d2z1 d2z2 λ−
d−p−1

2 e−α
′E2s Vs−

α′t
4 Vt , (4.75)

ith

Vs = −2πλρ2
+ log

[
θ1(iλ(ζ + ρ)|iλ)θ1(iλ(ζ − ρ)|iλ)
θ1(iλζ + ω|iλ)θ1(iλζ − ω|iλ)

]
, (4.76a)

Vt = 8πλρ1ρ2 + log
[
θ1(iλρ + ω|iλ)θ1(iλρ − ω|iλ)

]
, (4.76b)
θ1(iλζ + ω|iλ)θ1(iλζ − ω|iλ)
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here for the Jacobi theta-functions θi we follow the conventions of [265] where

θ1(ν|τ ) = −2e
π iτ
4 sin(πν)

∞∏
n=1

[
(1− e2π inτ )(1− e2π iνe2π inτ )(1− e−2π iνe2π inτ )

]
(4.77)

nd we used the change of variables

ω = ω1 − ω2 , ρ = ρ1 − ρ2 , ζ = ρ1 + ρ2 . (4.78)

Since we are interested in the long-range interaction between the stack of Dp-branes and the external probe, we wrote
the amplitude in the so-called closed string channel where the large-λ limit is simple and describes a superposition of
closed string states exchanged between the Dp-branes and the scattered closed string. In this limit the world-sheet has the
shape of a sphere connected to the Dp-branes by two thin tubes and with two punctures representing the external states.
The factor of λ−

d−p−1
2 in (4.75) follows from the Gaussian integration of the center-of-mass momentum of the virtual

losed string propagating between the two boundaries, which can be non-trivial only along the d−p−1 directions where
he Dp-branes impose Dirichlet boundary conditions. After implementing the change of variables in (4.73) and (4.78),
q. (4.75) reads

A1 =

(
κdNTp

2

)2
α′

16π
(2π2α′)−

d−p−1
2 2(2π )4

∫
∞

0
dλ
∫ 1

0
dζ
∫
R(ζ )

dρ
∫ 1

0
dω λ−

d−p−5
2 e−α

′E2s Vs−
α′t
4 Vt , (4.79)

here the region of integration for ρ depends on ζ : max{−ζ ,−(1 − ζ )} < ρ < min{ζ , 1 − ζ }. The precise definition of
(ζ ) will not play any role in our analysis, since we focus on the leading contribution dominated by the ρ ∼ 0 region, see
owever [228] for a more general setup where this point becomes relevant. As expected the integrand in (4.75) does not
epend on ω1 +ω2 and so, in (4.79), we have trivially performed the integration over this variable. Our goal is to extract
he leading contribution in the classical limit of the integral (4.75) and show that it provides the first term needed to
xponentiate the 1PM stringy eikonal operator (3.176). In this context the classical parameters are Rp in (D.6), describing
he gravitational backreaction of the Dp-branes, and Es, describing the probe state. So, as in the tree-level analysis, we are
nterested in the large Es limit which from (4.79) is suppressed unless one takes also ρ small. Thus, for our purposes, we
an use in (4.79) the approximate expressions

Vs ≃ −2πλρ2
− 4 sin2 πω

(
e−2πλζ + e−2πλ(1−ζ )

)
, (4.80)

Vt ≃ −2πλζ (1− ζ )+ ln
(
4 sin2 πω

)
.

n the expression for Vt we kept only the terms that do not have any exponential factor involving λ, while for Vs we kept
lso the first exponential terms that become relevant in the region λ ∼ ln(α′E2

s ) and considered only the ρ-dependent
erms that are enhanced by a factor of λ. In order to extract the classical terms contributing to the 2PM eikonal operator
ˆ1, one would need a better approximation for Vs and Vt as partially discussed in [22]. The complete expression for δ̂1 at
tring level is not known, so we will not pursue further this analysis here.
By following closely the derivation discussed in Appendix D.3 for the bosonic string, we can rewrite (4.79) in terms of

⊥ = (d−p−2) integral involving the full tree-level amplitude (3.120) and a kernel written in the square bracket below

A1 ≃
i

4Es

∫
dd⊥k
(2π )d⊥

A0(Es, k)A0(Es, q− k)

[
2α
′k(q−k)

π
B
(
1
2
+
α′

2
k(q− k),

1
2

)]
. (4.81)

he structure is familiar from the QFT case: the convolution over k becomes just a standard product in impact parameter
pace, the factor of 2Es is the one needed to pass from the amplitude to the eikonal (see Eq. (3.123)) and the extra factor
f i

2 comes from the expansion at the second order of the exponential with the leading eikonal (see the first term on the
r.h.s. of (4.5)). The kernel in the square parenthesis is a string effect as one can see by checking that in the α′ → 0 limit
t becomes the identity plus subleading corrections[

2α
′k(q−k)

π
B
(
1
2
+
α′

2
k(q− k),

1
2

)]
≃ 1+

π2

6

(
α′

2
k · (q− k)

)2

+ · · · . (4.82)

n order to completely factorize the result in (4.81), it is sufficient to rewrite the kernel as an expectation value of operators
ritten in terms of the string coordinates X̂ introduced in Eq. (3.174)

1
π
B
(
1
2
+
α′

2
k1k2,

1
2

)
= 2−α

′k1k2⟨0|
2∏

i=1

∫ 2π

0

dσi
2π
: eik1X̂(σ1) : : eik2X̂(σ2) : |0⟩ , (4.83)

here the fields X̂ were introduced in (3.174) and contain the physical excitations of the string involving the DDF
scillators, see Section 3.2.4 for a general discussion. Then the interpretation of the kernel appearing in this string theory
ase is clear: it is related to the possibility of having excited string states in the intermediate steps. Even when focusing
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n a particular elastic amplitude, where the initial and the final states are dilatons, the gravitational field of the Dp-
rane can stretch the string probe and excite it to a different state while it propagates. As already discussed, this is an
ntirely classical effect capturing the tidal forces on an extended probe [244]. As a further check of this interpretation,
his phenomenon can be quantitatively described by quantizing the string worldsheet action in the background produced
y the Dp-branes, as we will discuss in Section 4.2.3. However, as usual with the eikonal exponentiation, classical effects
rovide constraints on loop amplitudes and in particular in this case the leading contribution (as α′E2

s becomes large) of
the h-loop diagram (i.e. a worldsheet with h + 1 boundaries and no handles35) should match the following convolution
involving the tree-level result and the kernel discussed above

AL
h

2Es
=

ih

(h+ 1)!
⟨0|

h+1∏
i=1

∫
dd⊥ki

(2π )d⊥

∫ 2π

0

dσi
2π

A0(Es, ki)
2Es

: eikiX̂(σi) : |0⟩ δd⊥
(

h+1∑
i=1

ki − q

)
. (4.84)

This indeed reduces to (4.81) for h = 1 (one loop) thanks to (4.83). Thanks to this factorized form of the leading
contributions, it is straightforward to resum them in terms of the leading eikonal operator that was derived by studying
the inelastic transition at tree level in Section 3.2.4. As usual, after going to impact parameter space by taking the Fourier
transform (3.123) the convolution becomes a product and we obtain

∞∑
h=0

iÃL
h

2Es
= ⟨0|

[
e2iδ̂0 − 1

]
|0⟩ ⇒ S = e2iδ̂0 , (4.85)

here the operator δ̂0 was introduced in Eq. (3.176) where the impact parameter b is shifted by the corresponding string
oordinate X̂ . Then, at leading PM order, the evolution of an initial (light) string probe interacting with the Dp-branes is
aptured by the S-matrix S above. Notice that while δ̂0 is normal ordered, this is not the case for the evolution operator
, and this plays an important role in the analysis of tidal forces as discussed in the next section.

.2.2. Tidal forces in string theory
In this subsection we mainly discuss the suppression of the elastic channel as a consequence of the tidal excitations

f the colliding string. This is a direct consequence of the eikonal operator derived in the previous section: as we will
ee, when this operator is used to estimate an elastic amplitude a dumping factor arises from the normal ordering of the
scillators. A brief summary on the nature of the inelastic channels is postponed to Section 4.2.5 where the same problem
s considered for the case of string–string collisions. Thus, while leading eikonal for a point-like scalar object is a pure
hase and describes an elastic scattering, in the string case a new dynamical scale bt appears: when the impact parameter
s below this scale the elastic scattering is exponentially suppressed as the internal degrees of freedom of the string are
xcited during the scattering. In formulae we have

|⟨0|S|0⟩| ∼ exp

[
−

(
bt
b

)d−p−2
]
, bd−p−2t =

√
πEs
4T

(d− p− 3)
Γ
( d−p−2

2

)
Γ
( d−p−3

2

)Rd−p−3
p , (4.86)

where we approximated S by the leading eikonal operator as in (4.85) and wrote bt in terms of the string tension T = 1
2πα′

o stress that it is a classical quantity. See also the discussion around Eq. (4.120) below.
Notice that at high energies bt is parametrically larger than the string scale so tidal forces can become relevant also at

arge distances. In this regime we can expand the leading eikonal operator (3.176) by taking |X̂ | ≪ b: at the zeroth order,
ne of course recovers the point-like eikonal (3.185), the linear term is absent since the integral over σ of X̂ in (3.174)
anishes, and the leading effects are encoded by the quadratic term. We have

1
2
∂2δ0(b)
∂bi∂bj

=
1
2

{
µ2

ŷ

[
δij −

bibj
b2

]
+ µ2

0
bibj
b2

}
, (4.87)

here

µ2
ŷ = −

√
πEs
2

Γ
( d−p−2

2

)
Γ
( d−p−3

2

) Rd−p−3
p

bd−p−2
,

µ2
0 =

√
πEs
2

(d− p− 3)
Γ
( d−p−2

2

)
Γ
( d−p−3

2

) Rd−p−3
p

bd−p−2
= −(d− p− 3)µ2

ŷ .

(4.88)

ote that µ2
ŷ < 0 while µ2

0 > 0, but this will not play an important role in the following. Then at the second order in the
X̂ | ≪ b expansion we have

e2iδ̂0 ≃ e2iδ0 exp
{
i
∫ 2π

0

dσ
2π

X̂ iX̂ j
[
µ2

ŷ

(
δij −

bibj
b2

)
+ µ2

0
bibj
b2

]}
. (4.89)

35 As in Section 3.2, in the string-brane case we are taking the probe approximation where the string coupling is small, but with gsN fixed, so
we ignore the contributions of worldsheets with handles.
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y using the mode expansion (3.174) we have∫ 2π

0

dσ
2π

X̂ iX̂ j
= α′

∞∑
n=1

1
n

[
2T ij

0,n − T ij
+,n − T ij

−,n − δ
ij
]
, (4.90)

here, by following [10], we introduced the combinations

T ij
±,n =

1
2n

A(i∓nĀ
j)
∓n , 2T ij

0,n = δ
ij
+

1
2n

(
A(i−nA

j)
n + Ā(i−nĀ

j)
n

)
. (4.91)

In order to evaluate the first string corrections to the leading eikonal, it is convenient to choose a basis parametrized by ŷi,
where i = 1, . . . , (d− p− 3) indicate the coordinates orthogonal to the scattering plane and i = 0 indicates the direction
along the impact parameter. This diagonalizes the structure in (4.89) and we can consider (d− p− 2) decoupled families
of generators T ŷi

n that satisfy the commutation relations of the sl(2, R) algebra

[T ŷi
−,n, T

ŷj
+,m] = δ

ij δnm 2T ŷi
0,n , [T

ŷi
0,n, T

ŷj
±,m] = ±δ

ij δnm T ŷi
±,n . (4.92)

It is now possible to use the properties of the sl(2, R) algebra to derive the exponential suppression of the elastic scattering
of an unexcited string mentioned in (4.86). Starting from

e2iδ̂0 ≃ e2iδ0 exp

{
∞∑
n=1

iα′

n

[
µ2

0

(
2T ŷ0

0,n − T ŷ0
+,n − T ŷ0

−,n − 1
)
+ µ2

ŷ

d−p−3∑
i=1

(
2T ŷi

0,n − T ŷi
+,n − T ŷi

−,n − 1
)]}

(4.93)

we can use the identity

e
x
(
2T

ŷi
0,n−T

ŷi
+,n−T

ŷi
−,n

)
= e−

x
1−x T

ŷi
+,n e−2 ln(1−x)T

ŷi
0,n e−

x
1−x T

ŷi
−,n (4.94)

o calculate the elastic amplitude ⟨0|S|0⟩. The terms proportional to T ŷi
±,n vanish when acting on the unexcited initial/final

state and the same happens for the oscillator contribution to T ŷi
0,n, see (4.91). Then (4.93) reads

⟨0|e2iδ̂0 |0⟩ ≃ e2iδ0
∞∏
n=1

⎧⎪⎨⎪⎩ e−
iα′µ20

n

1− iα′µ2
0

n

⎛⎜⎝ e−
iα′µ2ŷ

n

1−
iα′µ2

ŷ
n

⎞⎟⎠
d−p−3⎫⎪⎬⎪⎭ . (4.95)

y using Weierstrass’s formula for the Γ -function and then taking the absolute value square which is directly related to
he probability of the transition, we obtain

|⟨0|e2iδ̂0 |0⟩|
2
≃

⏐⏐⏐e2iδ0Γ (1− iα′µ2
0

)
Γ d−p−3

(
1− iα′µ2

ŷ

)⏐⏐⏐2
≃ e−2Im2δ0

(
πα′µ2

0

sinh
(
πα′µ2

0

))
⎛⎝ πα′µ2

ŷ

sinh
(
πα′µ2

ŷ

)
⎞⎠d−p−3

(4.96)

where we used Γ (1 + ix)Γ (1 − ix) = πx
sinhπx . As discussed in Section 3.2.1, the imaginary part of the leading eikonal is

negligible when b ≫ ls(Es), so in this regime we can focus on the last two factors. In the leading eikonal approximation
≫ Rp, we have

|⟨0|e2iδ̂0 |0⟩|
2
≃ (d− p− 3) (2πα′|µ2

ŷ |)
d−p−2

e−2πα
′
|µ2

0| (4.97)

here we used the last identity in the second equation (4.88). Then, by using (4.88), we obtain (4.86) in the regime where
2
0 (and |µ2

ŷ |) is large, i.e. bt ≫ b.
In summary, when the impact parameter is below the scale (4.86), internal bosonic excitations of the string along

he directions ŷ and b̂ are excited according to parameters summarized in (4.88), while no excitations are created at this
rder along the remaining direction. As we will see in the next section, the same result can be recovered by studying the
ropagation of a string in a curved background.

.2.3. A geometric description of the eikonal scattering
In the QFT setup the probe limit of the eikonal has a simple geometric interpretation as it is entirely captured by the

lassical motion in the background sourced by the heavy object, see Section 4.1.5 and Appendix B. It is natural to expect
hat a similar pattern holds also for the string eikonal operator and the aim of this section is to show that this is indeed
he case. Again we focus on the case of the string-brane scattering that has been the main example analyzed, but the
ame idea applies more generally (see Section 4.2.5 below). It is natural to see stack of Dp-branes as the heavy object
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nd the scattering string state as the probe. Thus the first ingredient we need is the supergravity solution describing the
ravitational backreaction induced by the Dp-branes. In the string frame it reads [266]

ds2 = [H(r)]−
1
2 ηαβdxαdxβ + [H(r)]

1
2 δijdxidxj ,

e2φ(x) = g2
s [H(r)]

3−p
2 , C01···p(x) =

1
H(r)
− 1 ,

(4.98)

where the indices α, β = 0, . . . , p are along the Dp-brane worldvolume while the indices i, j = p+ 1, . . . , d− 1 span the
transverse directions. The fields in the second line are the dilaton (φ) and the Ramond–Ramond (RR) p+1-form potential
that couples minimally to the Dp-branes and the harmonic function H(r) is

H(r) = 1+
(
Rp

r

)d−p−3

, r2 = x2i , (4.99)

where the scale Rp is given by (D.6) in terms of the string coupling gs and the number of Dp-branes N . The classical
motion of a point-like object in the geometry above is discussed in Appendix B.2, but we now need to generalize this
analysis to the full string case starting from a string action that includes the couplings to the non-trivial background
fields. The presence of RR fields makes the exact description more complicated as one would need to resort to the Green–
Schwarz [206,233,234,267] or the pure-spinor (see e.g. [268,269] and references therein) formalisms. However the analysis
of the Reggeon vertex in Section 3.2.3 suggests that the fermionic degrees of freedom on the worldsheet do not play any
role at the level of the leading eikonal as the string excitations induced by the tidal forces are fully captured by the bosonic
field Xµ. Thus we can focus just on the universal part of the (gauge fixed) string action

S = −
1

4πα′

∫
dτdσ [∂τXµ∂τXν − ∂σXµ∂σXν] gµν , (4.100)

here the metric is the one given in the first line of (4.98). Even this simplified starting point contains much more
nformation than needed for our purposes since we are interested in the classical dynamics of an energetic string probe.
n this case we can follow the approach of [270] and approximate the background metric by taking just its behavior
round the null geodesic describing at leading order the trajectory of the string center of mass. We sketch the main steps
f this approach below.
First it is convenient to choose coordinates adapted to the motion of the center of mass which takes place in a plane

f the transverse space. In polar coordinates (B.25) this plane is parametrized by r and φ and it is convenient to choose

du =

√
H
F

dr , dv = −dt + bJ dφ + Fdr , dz = dφ +
dφ̄
du

du , (4.101)

where we introduced the shorthand notation F =
√
H(r)− bJ

r2
and φ̄ ≡ φ(u) is the value of the angle along the geodesic

arametrized by u. So, from (4.101) and (B.27) we have

dφ̄(u)
du
=

dφ̄
dr̄

dr̄
du
= −

bJ
r̄2
√
H(r̄)

, (4.102)

where, following the convention above, r̄ is the value of r along the geodesic describing the motion of the string center of
mass. This is at constant values of v, z and the (d− p− 3) coordinates orthogonal to the scattering plane that we indicate
ith yi. In these coordinates the metric in (4.98) takes the following form

ds2 = 2du dv −
dv2
√
H
+

2b dv dz
√
H
+

(rF )2
√
H

dz2 +
dx2a
√
H
+ r2
√
H sin2(φ − φ̄)dΩ2

d−p−3 . (4.103)

A similar change of coordinates can be implemented on the RR gauge field and then it is possible to take the Penrose limit
on the full solution by introducing a small parameter ϵ and rescaling the coordinates (xa, yi, z) → ϵ(xa, yi, z) together
with v→ ϵ2v. It was shown in [270] that in the limit ϵ → 0, the leading term is O(ϵ2) and yields a solution of the same
supergravity field equations relevant for the original configuration (4.98). In this limit the geometry (4.103) reduces to

ds2 ≃ 2dudv +
(r̄F (r̄))2
√
H(r̄)

dz2 +
dx2a
√
H(r̄)
+ r̄2

√
H(r̄) sin2(φ̄)dyi2 . (4.104)

e can take this result in the canonical form by introducing the coordinates ŷ0, ŷi and x̂a

z =
H

1
4

r̄F
ŷ0 , yi =

ŷi

H
1
4 r̄ sin φ̄

, xa = H
1
4 x̂a

v =v̂ +
1
2

[
ŷ20 ∂u ln

(
r̄F

H
1
4

)
+ ŷ2i ∂u ln

(
r̄ sin φ̄H

1
4

)
+ x̂2a ∂u ln

(
H−

1
4

)] (4.105)

obtaining

ds2 ≃ 2dudv̂ + dŷ2 + dx̂2 + dŷ2 +
(
G x̂2 + G ŷ2 + G ŷ2

)
du2 , (4.106)
0 a i x̂ a ŷ i 0 0
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Gx̂ = ∂
2
u lnH−

1
4 +

(
∂u lnH

1
4

)2
, G0 = ∂

2
u ln

(
r̄F

H
1
4

)
+

(
∂u ln

r̄F

H
1
4

)2

, (4.107)

Gŷ = ∂
2
u ln

(
r̄ sin φ̄H

1
4

)
+

(
∂u ln r̄ sin φ̄H

1
4

)2
. (4.108)

In order to capture the dynamics of energetic semiclassical string probes it is then sufficient to use the action

S = Sη −
1

4πα′

∫
dτ
∫ 2π

0
dσ ηαβ∂αU∂βU

(
Gx̂X̂2

a + GŷŶ 2
i + G0Ŷ 2

0

)
, (4.109)

where Sη is the string action in flat space (i.e Eq. (4.100) with gµν = ηµν). As standard, we are using uppercase symbols
to indicate the string embedding fields corresponding to the various coordinates. The string analysis is greatly simplified
by choosing a light cone gauge where the string oscillations along U(σ , τ ) are gauged away so that we have

U(σ , τ ) = α′Esτ , (4.110)

so we can keep using a lowercase symbol to indicate this coordinate. Then, at high energies, the interaction between the
string probe and the background becomes localized at τ ∼ 0 since τ = u/(α′Es), so by changing variables from τ to u, we
can write

S ≃ Sη −
Es
2

∫
∞

−∞

du
∫ 2π

0
dσ

(
Gx̂X̂2

a (σ , 0)+ GŷŶ 2
i (σ , 0)+ G0Ŷ 2

0 (σ , 0)
)
. (4.111)

s usual for semiclassical strings captured by a Penrose limit, the worldsheet action is described by free massive fields
here the effective mass square parameters are

Es
2

∫
∞

−∞

du Gx̂ = Es

∫
∞

0
du
[
∂2u lnH−

1
4 +

(
∂u lnH

1
4

)2]
≃ 0 , (4.112a)

Es
2

∫
∞

−∞

du Gŷ = Es

∫
∞

0
du
[
∂2u ln

(
r̄ sin φ̄H

1
4

)
+

(
∂u ln

(
r̄ sin φ̄H

1
4

))2]
≃ µ2

ŷ , (4.112b)

Es
2

∫
∞

−∞

du G0 = Es

∫
∞

0
du

[
∂2u ln

(
r̄F

H
1
4

)
+

(
∂u ln

r̄F

H
1
4

)2
]
≃ µ2

0 , (4.112c)

where the final results are valid at 1PM (i.e. at order (Rp/b)d−p−3) and the parameters µ2
0, µ

2
ŷ have been introduced

in (4.88). In the equations above, we restricted the integration over u from infinity to the inversion point r∗ (which
corresponds to u = 0) and included the overall factor of two to account for the contribution of the second part of the
trajectory from r∗ back to infinity. The two integrals in (4.112a) vanish at 1PM order. The second one can be neglected
since it scales as (Rp/b)2(d−p−3), while the first one can be written as a total derivative of a function that vanishes at the
extremes, as done below∫

∞

0
du ∂2u lnH−

1
4 =

∫
∞

r∗
dr ∂r

(
F
√
H
∂r lnH−

1
4

)
= 0 . (4.113)

Here we used (4.101) to rewrite ∂u as (∂ur)∂r and the special values F (r∗) = 0, while H(r∗) is finite, F (∞) = 1 and ∂rH → 0
as r → ∞. Evaluating the remaining two integrals requires a slightly more detailed discussion which is summarized at
the end of Appendix B.2 and the result is summarized in (4.112b) and (4.112c). Thus, as promised, we rederived from
a geometric analysis the parameters (4.88) determining the strength of the tidal excitations. It would be interesting to
extend the comparison between the eikonal operator and geometric description of this section at subleading PM order to
see whether the geometric interpretation of the string excitations holds beyond the leading eikonal.

4.2.4. String eikonal and classical causality
In the previous sections we discussed how the leading string eikonal exponentiates as an operator and what novelties

this implies with respect to the field theory case. This exponentiation holds in the case of bosonic string theory,
see Appendix D for more details, which provides an interesting setup to study the higher derivative corrections to the
on-shell 3-graviton vertex discussed in 3.1.5 from an EFT point of view. The main point we wish to convey is the following:
the string-brane scattering in bosonic string theory provides classical observables that are affected by α′-corrections that
take the form of (3.76) and (3.77) with ℓ2 ∼ ℓ4 ∼ ℓs. A naive field-theory limit yields causality violations, in the form of
negative time delays, when the impact parameter is of the order of ℓ2,4,s [154]. As discussed below, in the eikonal context,
this can be seen by looking at the energy derivative of the leading eikonal. Equivalently, one can look at deflection angle
and notice that the higher derivative corrections seem to make gravity repulsive when b ∼ ℓ2,4,s. We will show how this
pathological behavior is avoided in string theory.
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A first observation is that, in bosonic string theory, the 3-graviton amplitude takes the form of (3.74) with ℓ24 = −2ℓ
2
2 =

α′

2 . Then we saw that, at the level of the leading eikonal, string effects are captured by the shift b → b + X̂ (3.176). By
applying this recipe to the long-range eikonal (3.131)

2δ0 ∼
√
πEs
2

Γ
( d−p−4

2

)
Γ
( d−p−3

2

) Rd−p−3
p

bd−p−4
(4.114)

one obtains an eikonal operator that is directly related to the EFT eikonal (3.81): the latter can be obtained from the
former simply by taking the expectation value in the massless sector

⟨ε1, ε̃1|2δ̂0(b+ X̂)|ε2, ε̃2⟩ , (4.115)

where |εaε̃a⟩ = εa iε̃a jAi
−1Ā

j
−1|0⟩.

However, this result does not describe the elastic amplitude in the classical regime since one needs instead to take the
expectation value of the exponentiated eikonal e2iδ̂0 as discussed in Section 4.2.2. The novelty here is that e2iδ̂0 is not a
diagonal phase even in the massless sector. Thus in order to calculate the deflection angle of a massless state, one should
first diagonalize δ̂0 in the massless sector and then apply the usual relation (2.31) for the deflection angle or (2.33) for
the time delay.

Let us then start by analyzing the EFT eikonal (3.81). The key observation of [154] is that regardless of the signs of the
higher derivative corrections (ℓ22, ℓ

4
4 ≷ 0) there always exists an eigenstate of the EFT eikonal with a negative eigenvalue.

In order to show this let us focus on the eigenvectors that lie in the space of the two states with polarizations

εiε̃j → ϵaij =
1

√
D− 3

(
δij − b̂ib̂j

)
, εiε̃j → ϵbij = b̂ib̂j (4.116)

(let us recall that b̂i = bi/b). This space is orthogonal to the other physical states and so it can be studied separately.
From (3.81), one obtains(

2δ̂aa0 2δ̂ab0
2δ̂ba0 2δ̂bb0

)
= 2δ0

(
1+ 2c2 + (D− 1)c4 −(D− 1)

√
D− 3 c4

−(D− 1)
√
D− 3 c4 1− 2(D− 3)c2 + (D− 1)(D− 3)c4

)
,

c2 = (D− 2)
2ℓ22
b2

, c4 = D(D− 2)
ℓ44

b4
.

(4.117)

et us also emphasize that the matrix appearing in (4.117) is symmetric and real. One can check that the determinant
f (4.117) always becomes negative when |c2|, |c4| ≳ 1, which means that the two eigenvalues

1− (D− 4)c2 +
1
2
(D− 2)(D− 1)c4 ±

D− 2
2

√
4c22 − 4

(D− 4)(D− 1)
D− 2

c2c4 + (D− 1)2c24 (4.118)

ave generically opposite sign and one of them must be negative. States corresponding to eigenvectors with a negative
igenvalue have a non-standard behavior: both the deflection angle and the Shapiro time delay due to the gravitational
cattering would be negative as they are related to derivatives of the eikonal. This would happen when b ≳ ℓ2, ℓ4 which
ay seem to be within the range of validity of an EFT approach if ℓ2,4 ≫ ℓP . However, the string theory analysis shows

that, even when the higher derivative corrections in (3.73) have a classical origin, this pathological behavior is avoided.
In order to see this, we must recall that the string eikonal (D.35) has a more complicated structure than the EFT

eikonal used for the argument above. In particular when b < ls(Es) ≡
√
α′ ln(α′E2

s ) the string eikonal becomes a constant
plus corrections proportional to b2, see for instance (3.134). Then the corresponding eikonal operator, which is as before
obtained with the shift b→ b+ X̂ , differs from EFT eikonal at scales much larger than b ∼ ℓs: instead of growing at small
distances, it becomes almost constant. The key ingredient for this is the Regge behavior which modifies the functional
form in the impact parameter as showed in (3.127). It is important that the effective string scale ls(Es) (3.125), where the
softer behavior kicks in, is enhanced by a factor of ln(α′E2

s ) with respect to the scale of the higher derivative terms in the
effective action. This is the effect of the exchange of the whole leading Regge trajectory and the same mechanism would
not work in a theory with a finite number of extra higher spin states beyond the graviton [154,271].

4.2.5. String-string scattering beyond tree level
In Section 3.2.6 we have discussed the main features of high-energy string–string scattering at tree level and anticipated

some results that follow from the exponentiation in b-space of the tree-level result discussed in this section. Such an
exponentiation indeed goes through in the case of string–string collisions as well: the only difference with respect to
the case of string-brane collisions discussed in detail in Sections 4.2.1 and 4.2.2 is that now both incoming strings get
excited through the exchange of the (gravi)reggeon: this is a consequence of factorization of Regge-pole residues, related,
in turn, to t-channel unitarity. Without repeating here the discussion about tidal excitations given above in the case of
string-brane collisions we simply give its analog for string–string scattering:

S = exp(2iδ̂) (4.119)
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ith δ̂ now given in Eqs. (3.192), (3.185) (instead of (3.176)). For b ≫ ls(s), δ̂ is Hermitian and thus S is unitary.
his result was first obtained in [10] by proving the exponentiation of the tree-level string scattering amplitude. An
legant rederivation [272–275] follows from considering the quantization of one string in the Aichelburg–Sexl metric (see
ection 2.3) produced by the other string. The corresponding classical action takes the form of (4.100) with gµν now given
y (3.192). It is greatly simplified by choosing the gauge u =

√
α′τ which allows, thanks to the δ(u) in (2.55), to carry out

he integration over τ . This leaves just the σ integral of the profile function f (x⊥(σ )) of the transverse string coordinates
s in (3.192). Actually, the explicit form of the eikonal operator, including α′ corrections, allows one to reconstruct [273]
he generalization of the AS metric produced by the profile (3.191).

At a qualitative level we can estimate the importance of the string corrections by noting that the normal ordering in
ˆ produces, at the level of S, corrections to the eikonal phase of order ∂22δ0

(∂b)2
ℓ2s which are, naively, of relative order ℓ2s

b2
ith respect to 2δ0 itself. The crucial point, however, is that some of these corrections are imaginary and thus cannot be
eglected as soon as ∂22δ0

(∂b)2
ℓ2s becomes O(1). A simple calculation, using 2δ0 in (2.25), shows that this happens at a critical

value of b –that we denote by bt– given by:

bD−2t ∼
Gs
h̄
ℓ2s ≫ ℓD−2s for

Gs
h̄
≫ ℓD−4s (4.120)

ith RD−3
∼ G
√
s. The above result can also be guessed from the two following qualitative physical arguments. One of

them goes as follows. The Newton potential acting on two points of a string at a transverse distance 2∆b from each other
is given by

U(b±∆b) =
(

R
b±∆b

)D−3

H⇒ U(b+∆b)− U(b−∆b) = 2
RD−3

bD−2
∆b . (4.121)

aking the distance 2∆b of the two points on the string to be of order ℓs, and assuming that the two points move at the
peed of light, we can compute the difference between the two forces acting on them. The tidal forces start to be relevant
hen such a difference is equal to the string tension times their distance ℓs:

2
RD−3

bD−2t

√
sℓs ∼ Tℓs H⇒ bD−2t ∼ 2

√
sRD−3

T
∼ 4πα′Gs ∼

4πGs
h̄

ℓ2s (4.122)

here we have used that RD−3
∼ G
√
s and T = 1

2πα′ .
Alternatively, (4.120) can be obtained by considering how the different bits of one string (say the one of energy E1)

uffer, as a result of the metric produced by the other string (of energy E2), slightly different deflection angles. The spread
Θ1 of these deflection angles is roughly:

∆Θ1 ∼
GE2
bD−3

ℓs

b
= GE2ℓsb2−D . (4.123)

Such a spread corresponds to an invariant excitation mass ∆M1 ∼ E1∆Θ1 ∼ GE1E2ℓsb2−D. Requiring ∆M1 ∼ Ms (the mass
of the first excited level) leads to the same estimate (4.120) for bt after using s ∼ E1E2 as in (2.60).

Quantitatively, the phenomenon is described by the same gravi-reggeon vertex operator defined in (3.166), acting now
on both external strings. After exponentiation of the tree-level amplitude in b-space, the resulting S-matrix is explicitly
unitary within a Hilbert space containing just two-(massive or massless) strings. We just stress here that, although single
gravi-reggeon exchange can only excite a small number of string oscillators, the full S-matrix (4.119) will populate a large
number of excited states. Some details of this S-matrix have already been discussed in Section 4.2.2. We just mention that
the elastic amplitude gets suppressed as a result of the opening of the inelastic channels. One finds:

|Ael| ∼ e−
Gs
h̄

ℓ2s
bD−2 ∼ e−(

bt
b )D−2

≪ 1 , (b≪ bt ) . (4.124)

The exponential suppression of the elastic amplitude for b < bt implies, by unitarity, that inelastic final states,
onsisting of two tidally excited strings, are copiously produced. The differential cross section dσ/(dM1 dM2) for producing
wo massive strings of massM1 andM2 (summed over the degeneracy of each mass level) was studied in [10]. Interestingly
nough, the cross section starts growing like the (exponential) degeneracy of each mass level as if all states of a given mass
ere democratically produced. However, such a growth stops when Mi ∼ Ms(bt/b)D−2. The distribution has a maximum
round that value of M1,2 and then falls off as a Gaussian.
A much more detailed analysis of the tidal excitation spectrum was made in [232] for the case of string-brane scat-

ering. This shows how the apparently incoherent sum of different contributions actually comes from a unitary evolution
f the system. Indeed, each gravi-Reggeon exchange induces elementary transitions obeying very simple selection rules
hile the final spectrum takes its apparently statistical form as a consequence of the eikonal exponentiation.
In the above discussion we have not considered graviton (and other massless particle) emission, a topic discussed in

he following sections in the point particle limit. As one lowers b, radiation phenomena become important and things get
ncreasingly complicated. The parameter controlling the importance of radiative corrections, relative to the leading order
eflection, is formally (R2/b2)D−3 but, once again, they become relevant as soon as their contribution to the imaginary
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p
g

j

art of the eikonal phase becomes O(1). A naive estimate of the critical impact parameter br at which this happens is
iven by

Gs
h̄
b4−Dr

(
R
br

)2(D−3)

∼ 1 , i.e. br ≫ R for
Gs
h̄
b4−Dr ≫ 1 . (4.125)

This is a fair estimate of br for quantities that do not suffer from infrared divergences which is generically the case
for D > 4. For D = 4, instead, many quantities are infrared sensitive: for instance, the elastic amplitude goes to zero
together with the IR regulator. The estimate (4.125), however, should still apply to infrared safe quantities, such as the
total radiated energy. Comparing now bt of (4.120) with br of (4.125) we see that which kind of corrections comes first
as one lowers b, depends on D and on the ratio R/ℓs: as shown in Fig. 12, radiative corrections take the upper (lower)
hand at small (large) D. In any case the above discussion would imply that, in going towards b ∼ R, we cannot keep just
the string-size corrections and neglect the classical radiative corrections. Unfortunately, to this date, no calculation taking
both corrections simultaneously into account is available.

Fortunately, a big simplification occurs if we lower b as much as we want while keeping R < ℓs (thus entering region
II in Fig. 12). In this case, string-size effects should replace the expansion parameter R2/b2 by R2/(b2 + ℓ2s ) < R2/ℓ2s < 1
ustifying a perturbative (yet stringy) approach.36 This amounts to saying that string-size corrections shield the bad
short-distance regime of local quantum gravity.

Let us list now the most significative results in this string-gravity regime:

• The classical deflection angle reaches a maximal value ΘM given by

ΘM ∼ (R/ls(s))D−3 ∼
G
√
s

lD−3s (s)
, (4.126)

which is reached for b ∼ ls(s), i.e. when the two strings graze each other. This result simply comes from the smooth
behavior of the stringy eikonal at small b, Eq. (3.193). Indeed, taking the derivative of Re 2δ with respect to b, one
obtains (see (3.195)):

Θ =
8G
√
s b

(D− 2)π
D−4
2 lD−2s (s)

+ · · · , b≪ ls(s) , (4.127)

which grows monotonically with b. It reaches the above-mentioned maximal value at b ∼ ls(s) before starting to
decrease according to the second equation in (3.195).
• For Θ > ΘM there is no real saddle point in b and, as a result, the elastic amplitude is exponentially suppressed. In

order to find the actual damping of the elastic amplitude one has to find the dominant complex saddle point. This
was done in Ref. [13] of which we give below a more streamlined version. Let us rewrite (3.186) in the form:

2δ0(s, b) =
Gs(b2)

4−D
2

π
D−4
2

[
Γ

(
D− 4

2

)
−

∫
∞

b2
Yc

dt e−t t
D−4
2 −1

]
; Yc = l2s (s)− iπα′ . (4.128)

The first term is the field theory leading eikonal for the scattering of massless particles. It is easy to show that, after
adding to it the tidal corrections, such term cannot provide a relevant complex saddle point. This can come, instead,
from the second term, denoted by 2δ(s)0 , which contains string-size (i.e. finite-beam, see (3.191)) effects. Indeed, at
large complex values of b (i.e. at |b|2 > l2s (s)), 2δ

(s)
0 can be exponentially enhanced. Its large |b| behavior is easily

obtained by integration by parts and reads

2δ(s)0 (s, b) = −
Gs(b2)

4−D
2

π
D−4
2

e−
b2
Yc

(
b2

Yc

)−3+ D
2

= −
Gs

π
D−4
2 b2Y

D
2−3
c

e−
b2
Yc (4.129)

We can now go back to the amplitude in momentum/angle space by a standard Fourier transform. Keeping Θ ≪ 1
and fixed we get:

A(s,Θ) =
∫

dD−2b e−ib
√
sΘ
2 e−iGsπ

−
D−4
2 b−2Y

3− D
2

c e
−

b2
Yc
. (4.130)

Looking for a (complex) saddle point gives the equation:

√
s

2
Θ =

2Gs

π
D−4
2

Y
1
2
c e−

b2s
Yc

Y
D−3
2

c bs
=

√
s

2
ΘMe−

b2s
Yc

⎛⎝ 4Y
1
2
c

bsπ
D−4
2

⎞⎠ , ΘM ≡
G
√
s

lD−3s (s)
. (4.131)

36 This is still a physically motivated guess leading, as we shall see, to very sensible consequences. It would be interesting to have further explicit
checks of its validity.
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It is now clear that for Θ ≫ ΘM the saddle point has to be predominantly imaginary and with a negative imaginary
part in order to produce damping. Writing bs = −iβs the previous equation becomes:

−i
Θ

ΘM
=

4

π
D−4
2

Y
1
2
c

βs
e
β2s
Yc H⇒ log

(
−i

Θ

ΘM

)
=
β2
s

Yc
+ log

⎛⎝ 4Y
1
2
c

βsπ
D−4
2

⎞⎠ . (4.132)

The last term is subleading for large values of βs√
Yc

and thus we get:

βs = Y
1
2
c

√
log

Θ

ΘM
−

iπ
2
H⇒ bs = −iY

1
2
c

√
log

Θ

ΘM
−

iπ
2
. (4.133)

Inserting this saddle point in (4.130) we find that the first exponential dominates over the second one by a
log Θ

ΘM
≫ 1 and arrive at the final expression [13]:

|A(s,Θ)| ≡ |AACV | ∼ e−
√
s

2 ΘY
1
2
c

√
log Θ

ΘM
−

iπ
2 ∼ e

−

√
s

2h̄ Θ ls(s)
√
log Θ

ΘM . (4.134)

Taking into account that ΘM
Θ
∼ g2

s ≪ 1, we can also approximate (4.134) by

|AACV | ∼ e−
√
s

2h̄ Θ
√
2α′

√
log( α

′s
4 ) log g−2s . (4.135)

The parametric form of the suppression is consistent with the behavior found, using a completely different method,
by Gross–Mende–Ooguri (GMO) [9,11,14] in the overlapping kinematical regime in which Θ is small and kept fixed
at small gs. We recall that the Gross–Mende approach [9,11] is based on the behavior at high-energy, fixed-angle, of
the elastic (closed) string–string scattering amplitude at each loop level, generalizing the original tree-level (open
string) result in [276]. This regime exhibits an exponential damping of the amplitude:

A(s, t)tree ∼ g2
s e
−
α′

2 sf (Θ) , f (Θ) = − sin2 Θ

2
log sin2 Θ

2
− cos2

Θ

2
log cos2

Θ

2
≥ 0 . (4.136)

This tree-level behavior is in tension, at least at small Θ , with expectations based on classical gravitational deflection
which would suggest an unsuppressed amplitude at high energy. Thus, at fixed angle, one is actually in the opposite
situation with respect to the fixed-t large-s behavior where, as already mentioned, the tree-level result is too large
to be compatible with unitarity bounds. We have seen how the eikonal resummation of loops in that kinematical
regime is capable of restoring unitarity bounds. Similarly, loops also come to the rescue at fixed angle. As shown
in [9,11], loop amplitudes, in spite of being of higher order in the string coupling, are enhanced, relative to the tree:

A(s, t)h−loops ∼ g2(1+h)
s e−

α′sf (Θ)
2(1+h) , (4.137)

where the milder exponential overcompensates the extra powers of gs at sufficiently large s. That means, of course,
that the perturbative series diverges at high energy and that a non perturbative resummation is needed.
In [14] it was shown that, in a finite high energy window, such a divergent series can be Borel resummed. It is
precisely in such an energy window that we can compare the result of [14] to the one based on the leading eikonal
in the stringy regime at small deflection angle. One finds quite an amazing agreement between the two results:

|AACV | ∼ e−
√
α′s
2 Θ

√
log( α

′s
4 ) log(g−2s )

, |AGMO| ∼ e−
√
α′s
2 Θ

√
log( 4

Θ2 ) log(g−2s )
, (4.138)

where the second equation follows from Eq. (3.31) of [14] (which uses units in which α′ = 1
2 ) for small Θ:

|AGMO| ∼ e−
√

2α′sf (Θ) log(g−2s ) . (4.139)

The difference (a log( α
′s
4 ) replacing a log( 4

Θ2 )) is already apparent in the transition between the fixed-t (( α
′s
4 )

α′t
2 with

t = −s sin2 θ
2 ) and small fixed-Θ regime (e−

α′s
8 Θ2 log 4

Θ2 ) at tree level. Let us stress that the above damping in |AACV |

is only reliable in the stringy regime and has to be modified at higher energies when gravitational radiation further
damps the elastic channel. Such effects are also (presumably) neglected in the GMO approach. Furthermore, the Borel
resummation leading to |AGMO| could only be justified in a finite energy range. In Eq. (3.31) of Ref. [14] is claimed

to be valid in the window log g−2s < s/M2
s < g

−
4
3

s .
• The impact parameters that can be actually probed at high energy at fixed Θ never go below the string-length scale.

Indeed, for Θ < ΘM one finds two real saddle points in b, one above and one below ℓs, but the former is found to be
the dominant one [13]. On the other hand, as we have just seen, for Θ > ΘM the imaginary saddle point (4.133) too
has an absolute value larger than ℓs. All this suggests an effective generalized uncertainty principle (GUP) holding
true in string theory and reading [13,277–279]:

∆X ≥
h̄
+ α′∆P ≥ 2

√
α′h̄ = 2ℓs . (4.140)
∆P
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• Let us now turn to the consequences of exponentiating the full tree-level string–string scattering amplitude including
its imaginary part given in (3.194) at b ≤ ls(s).37 This problem was already addressed in [10], was further analyzed
in [280] (see also [281]), and was also used more recently in [282].
The basic point is how to interpret the imaginary part of the exponentiated scattering amplitude at a fixed loop order
in terms of its s-channel cuts through the exchanged Reggeized gravitons. Fortunately, old work by Abramovsky,
Gribov and Kancheli (AGK) [283] (see also [284]) provides very simple ‘‘cutting rules’’ for the relative weights when
cutting m out of the total number n of exchanged gravitons at (n−1) loop order.38 These rules (when directly applied
in impact parameter space) tell us that the full imaginary part of the n-graviton exchange graph is the result of a
contribution

σ n
m = (−1)n−m

(4Imδ)n

m!(n−m)!
, n = 1, 2, . . . , m = 1, 2, . . . , n− 1, n (4.141)

due to cutting m out of n gravi-Reggeons, and a contribution

σ n
0 = (−1)n

(4Imδ)n

n!
− 2ReS(n) , n = 1, 2, . . . , (4.142)

when no gravi-Reggeon is cut, where S(n) is the full n-gravi-Reggeon exchange contribution to the S-matrix. As the
symbol σm indicates, these are also to be interpreted as cross sections into inelastic channels with m cut gravi-
Reggeons (i.e. m closed strings). It is trivial to check that, for any given n, the sum of all contributions from m = 0
to m = n gives back twice the full imaginary part of T (n)

≡ i(1− S(n)), as it should.
In analogy with what was done for the description of tidal excitations, we shall again promote the eikonal phase to
an eikonal operator [280] acting on both the tidally-excited pairs of strings and, at a more ‘‘coarse-grained’’ level, on
a Hilbert space labeled by the number of cut gravi-Reggeons. A new unitary S-matrix reproducing the AGK cutting
rules takes the form:

S = exp(iÎ) , (4.143)

where the Hermitian operator Î is given by:

Î = (δ̂ + δ̂†)+
√
−2i(δ̂ − δ̂†)(C + C†) = Î† , (4.144)

and the operators δ̂, δ̂†, C and C† satisfy the commutation relations

[C, C†
] = 1 , [δ̂, δ̂†] = [C, δ̂] = [C, δ̂†] = 0 . (4.145)

Using well-known harmonic-oscillator formulae, Eqs. (4.143), (4.144) lead to the more convenient form:

S = e2iδ̂ei
√
−2i(δ̂−δ̂†) C†

ei
√
−2i(δ̂−δ̂†) C . (4.146)

Eqs. (4.144), (4.146) imply that, as long as δ is real (i.e. for b ≫ ls(s)), δ̂ is essentially Hermitian, the oscillators
C , C† are turned off, and one recovers the unitary S-matrix (4.119) with δ̂ given by the usual recipe (3.192). On
the other hand, as one goes to values of b of order ls(s) or lower, δ in (3.131) picks up an imaginary part and
consequently (4.119) is no longer unitary, signaling the opening up of new channels. These correspond to unitarity
cuts going through the gravi-reggeons themselves. In order to recover unitarity we should further extend the Hilbert
space by including, in the final state, whatever goes on shell after cutting the gravi-reggeons. A detailed account of
this ‘‘whatever’’ being unavailable, we limit ourselves to counting the number of such gravi-reggeons through the
number-counting operator NC ≡ C†C .
Indeed, from (4.146) one can calculate the average number of heavy strings produced. For Im 2δ of Eq. (3.194) of
O(1) or smaller, i.e. for

√
s < Msg−1s , a single closed string carrying the whole center of mass energy is formed.

Instead, in the energy interval Msg−1s <
√
s < Msg−2s the average number of produced strings grows like Im 2δ,

i.e. like s. Consequently, by energy conservation, the average energy of each produced string decreases like 1/
√
s.

More precisely:

⟨E⟩ ∼
M2

s g
−2
s
√
s

. (4.147)

As one approaches the supposed threshold of black hole production s ∼ Msg−2s the most probable final state will
consist of g−2s strings of energy Ms =

h̄
ℓs

which appears to be consistent with a smooth transition to a Hawking-like
behavior in which the Hawking temperature matches the Hagedorn temperature of string theory and the string
entropy matches the Bekenstein–Hawking entropy of a black hole of radius ℓs. Unfortunately, the approximations
made cease to be valid when the energy going across each cut Reggeon goes below the string scale.

37 Interestingly, as b→ ls(s), the imaginary part due to tidal excitations ‘‘saturates’’ and becomes of the same order as the one due to formation
of s-channel resonances.
38 Given that the topology of the diagram is that of a sphere with (n− 1)-handles, any value of 0 ≤ m ≤ n is allowed.
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• Comparatively less work has been devoted to the study of heavy string scattering. An exception can be found in [285]
where one considers the high-energy collision of a light/massless string on a heavy one (with the energy of the light
string smaller than the mass of the heavy one). The idea is to take the heavy string mass to lie as close as possible to
the so-called correspondence point, M = Msg−2s , where fundamental strings and black holes share many properties,
including their entropy ∼ g−2s ≫ 1 (see [286,287] and references therein).
One then checks whether the probe string can be sensitive to properties of the heavy one other than its mass or spin.
One finds that, at least below the corresponding point (where the heavy string’s Schwarzschild radius is smaller than
ℓs), the light strings is also sensitive to the quadrupole moment of the heavy string, which therefore acts as some
kind of ‘‘quantum hair’’. If that feature would persist all the way till the correspondence point, and possibly beyond,
this would imply that some quantum hair can be detected for stringy black holes. Unfortunately, this conclusion
cannot be reached on firm grounds since the approximations used become unjustified precisely as one approaches
the correspondence point.

5. Unitarity and radiation-reaction

Radiation reaction effects are contributions are due to the effective force acting on the system as a result of the emission
of gravitational waves (and of additional massless modes, in the supersymmetric case). Intuitively, as the two colliding
objects deflect due to the mutual ‘‘potential’’ attraction, they emit energy and angular momentum due to Bremsstrahlung.
This in turn further bends their trajectories, giving rise to dissipative terms in the eikonal. This reflects in additional
contributions to the deflection angle, which appear to lowest order at two loops (3PM). This chapter and the next
are devoted to the calculation of these interesting new effects. While in the next chapter we will derive them from a
complete two-loop calculation of the elastic scattering amplitude, in this chapter we follow very closely the approach of
Refs. [47,106] and obtain them by combining the contribution to the unitarity relation of the three-particle cut, involving
two massive particles and a graviton, with the properties of real analyticity and crossing symmetry of the elastic scattering
amplitude. We apply this method to both GR and massive N = 8 supergravity. In particular, to obtain the radiation-
eaction we do not need the complete three-particle cut, but only the part that is divergent as 1

ϵ
that is obtained from

the five-point amplitude involving four massive particles and a graviton keeping only the leading term in the Weinberg
limit of small graviton momenta kµ → 0, which behaves as 1

ω
with ω = k0.

The chapter is organized as follows. In the first section, starting from the unitarity relation, we discuss the two-particle
and three-particle cuts in momentum and impact-parameter space. In the second section we explicitly compute Im 2δ2
or both GR and massive N = 8 supergravity. Finally, in the third section, we discuss the constraints of real analyticity
hat relate this imaginary part to the radiation-reaction effects.

.1. Unitarity in momentum space and in impact-parameter space

The unitarity of S = 1+ iT , i.e. S†S = 1 translates to

− iT + iT †
= T †T , (5.1)

whose matrix elements between states |a⟩, |b⟩ yield

− i(2π )Dδ(Pa − Pb)
(
Ma→b −Mb→a

)
= ⟨b|T †T |a⟩ . (5.2)

nserting a complete set of free states on the right-hand side and restricting to Pa = Pb, then gives

− i
(
Ma→b −Mb→a

)
=

∑
I

(2π )Dδ(Pa + PI )Ma→IMb→I , (5.3)

here the sum includes Lorentz-invariant phase-space integrals over all the intermediate states j ∈ I and, in general,
ums over their spins/helicities. Since we will focus on the case in which a → b is an elastic 2 → 2 process for (real)
assive scalars, for which the amplitude is a function A(s, t) of the two Mandelstam invariants (1.22), we have

2 ImMa→b =
∑
I

(2π )Dδ(Pa + PI )Ma→IMb→I . (5.4)

et us write,

ImA(s, t) = Im2pc A(s, t)+ Im3pc A(s, t)+ · · · (5.5)

nd discuss each cut separately (see below). Taking the Fourier transform of (5.5) according to (1.32), and noting that
T[ImA](s, b) = Im FT[A](s, b) because A(s,−q2) is a symmetric function of q, we get

Im FT[A](s, b) = Im FT[A](s, b)+ Im FT[A](s, b)+ · · · . (5.6)
2pc 3pc
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.1.1. Elastic unitarity
The elastic contributions come from the two-particle cut

2 Im2pc A =
∫

d(LIPS)2 AL.A∗R. (5.7)

where L. and R. stand for ‘‘left’’ and ‘‘right’’) or in the pictorial form

2 Im2pc

p4

p3

p1

p2

q =

∫
d(LIPS)2

p1

p2

q1

p4

p3

q− q1 (5.8)

ith d(LIPS)2 the Lorentz-invariant phase space measure for the intermediate two-particle states. For simplicity, we do
ot consider inelastic 2→ 2 processes for the time being.
Let us now check that the impact-parameter Fourier transform diagonalizes this two-particle phase space convolution.
e can start from (5.8) and go to impact-parameter space via the Fourier transform for the 2→ 2 process (1.32). When

pplying this Fourier transform to both sides of (5.8), we obtain

2 Im2pc FT[A] =
∫

dDq1
(2π )D

2πδ(−2p1 · q1 + q21)2πδ(2p2 · q1 + q21)

p1

p2

q1

×

∫
dDq

(2π )D
2πδ(−2p1 · q+ q2)2πδ(2p2 · q+ q2)eib·q

⎡⎢⎢⎢⎢⎢⎢⎣

p4

p3

q− q1

⎤⎥⎥⎥⎥⎥⎥⎦

∗ (5.9)

hen we change integration variables according to q = q1 + q′1 and use

δ(−2p1 · q1 + q21)δ(−2p1 · q+ q2) = δ(−2p1 · q1 + q21)δ(−2(p1 − q1) · q′1 + q′21 ) (5.10)

nd similarly

δ(2p2 · q1 + q21)δ(2p2 · q+ q2) = δ(2p2 · q1 + q21)δ(2(p2 + q1) · q′1 + q′21 ) (5.11)

hich hold thanks to the properties of the delta function. Then we get,

2 Im2pc FT[A] =
∫

dDq1
(2π )D

2πδ(−2p1 · q1 + q21)2πδ(2p2 · q1 + q21)e
ib·q1

q1 − p1

−q1 − p2

p1

p2

q1

×

∫
dDq′1
(2π )D

2πδ(−2(p1 − q1) · q′1 + q′21 )2πδ(2(p2 + q1) · q′1 + q′21 )e
ib·q′1

⎡⎢⎢⎢⎢⎢⎢⎣

p4

p3

q′1

⎤⎥⎥⎥⎥⎥⎥⎦

∗
(5.12)

As shown in Appendix A.3, the Fourier transform FT[A] differs from the linearized one Ã employed in the definition
of the eikonal exponentiation (4.1) by G-independent corrections suppressed by 1/b2 (more precisely, by powers of the
73



P. Di Vecchia, C. Heissenberg, R. Russo et al. Physics Reports 1083 (2024) 1–169

d

U

W
i

a

T
i

w
a
t

T
b
c

w

t
a

f
o

w

imensionless quantity 1/(pb)2), and thus we arrive at

2 Im2pc Ã = |Ã(s, b)|2
(
1+ O

(
1
b2

))
. (5.13)

sing the eikonal exponentiation (4.1) on the right-hand side we find

2 Im2pc Ã =
⏐⏐[1+ 2i∆(s, b)]e2iδ(s,b) − 1

⏐⏐2 (1+ O
(

1
b2

))
. (5.14)

e can expand this in G to obtain various constraints. To leading order in G, of course we get that the tree-level amplitude
s real

2 Im2pc Ã0 = 0 (5.15)

nd hence the leading eikonal is real,

Im 2δ0 = 0 . (5.16)

To first subleading order in G, i.e. O(G2), we get

2 Im2pc Ã1 = (2δ0)2
(
1+ O

(
1
b2

))
. (5.17)

his is the first interesting constraint, since it reveals that the imaginary part of the one-loop amplitude up toO(1/(b2)1−2ϵ)
s exhausted by the eikonal exponentiation. In this way, this constraint ensures that 2δ1 is real

Im 2δ1 = 0 , (5.18)

hile in general 2∆1, being of the same order as the corrections in the right-hand side of (5.17) can itself develop
n imaginary part. Additionally, Im 2∆1 receives contributions from inelastic 2 → 2 processes, e.g. from intermediate
wo-gravitino states in supergravity.

To O(G3), we find instead

Im2pc Ã2 = (2δ0 2δ1 + 2δ0 Re 2∆1)

(
1+ O

(
1
b2

))
. (5.19)

herefore, the imaginary part of the two-loop amplitude due to the two-particle cut up to O(1/(b2)3/2−2ϵ) is exhausted
y the exponentiation. On the other hand, the imaginary part of 2δ2 is not captured by the two-particle cut. By power
ounting in G, it must be due to the three-particle cut,

Im 2δ2 = Im3pc Ã2 , (5.20)

hich we shall illustrate in the next subsection.
Before proceeding, for illustrative purposes, let us explicitly calculate the b-space contribution of the two-particle cuts

o order G2. We start from Eq. (5.12) and consider the situation in which the amplitudes appearing on its right-hand side
re the tree-level ones, i.e. such that

A0(s,−q2) =
a0
q2
, Ã0(s, b) = 2δ0(s, b) =

1
4Ep

a0
4π

Γ (−ϵ)
(πb2)−ϵ

. (5.21)

We retain here a generic q-independent prefactor a0, for the sake of generality; for instance

a0 = 32πGm2
1m

2
2

(
σ 2
−

1
2−2ϵ

)
(5.22)

or collisions of minimally coupled massive scalars in GR. We start by evaluating the Fourier transform in the second line
f (5.12). We can write rewrite it as follows∫

dDq′1
(2π )D

2πδ(2p′1 · q
′

1 − q′21 )2πδ(2p
′

2 · q
′

1 + q′21 )e
ib·q′1A0(s,−q′21 )

=

∫
dDq′1
(2π )D

2πδ(2p′1 · q
′

1)2πδ(2p
′

2 · q
′

1)e
ib·q′1

a0
q′21

(5.23)

here we have introduced the notation p′1 = p1−q1, p′2 = p2+q1 and we have used the fact that any correction involving
positive integer powers of q′21 , such as those due to the application of Eq. (A.40), can be neglected because they give rise
to contact terms in b. At this point we may use (A.44) and (A.45) in the familiar way, up to an important point: the result
only depends on the projection of bµ orthogonal to p′1 and p′2 (and not to p1, p2), so that∫

dDq′1
D 2πδ(2p

′

1 · q
′

1)2πδ(2p
′

2 · q
′

1)e
ib·q′1

a0
′2 =

1 a0 Γ (−ϵ)
′2 −ϵ

, (5.24)

(2π ) q1 4Ep 4π (πb (q1))
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here b′(q1)2 is the square of such projection,

b′2(q1) = b2 −
1
p2

(b · q1)2 . (5.25)

t this point we can substitute back into (5.12), taking again into account that any positive integer power of q21 can be
afely dropped, so that

2 Im FT[A1] =

∫
dDq1
(2π )D

2πδ(2p1 · q1)2πδ(2p2 · q1)eib·q1
[
a0
q21

][
1

4Ep
a0
4π

Γ (−ϵ)
(πb′2(q1))−ϵ

]
. (5.26)

n this step, we need to expand (5.25) appearing in the second factor to subleading order for large b. This term also
epends on q1, which manifests the lack of complete factorization, if such subleading terms are taken into account. In the

end, using (A.45) and its derivatives with respect to bµ, one arrives at

2 Im FT[A1] = [2δ0(s, b)]2 −
2(1− 2ϵ)
p2(b2)1−2ϵ

[
1

4Ep
a0
4π

Γ (1− ϵ)
π−ϵ

]2
+ O(b−4+4ϵ) . (5.27)

To summarize, the FT of the two-body convolution of the tree-level amplitude is the product of the FT only to leading
order in 1/b2, while this factorization receives corrections to first subleading order. On the one hand, here we calculated
it using the properties of the Fourier transform under considerations to achieve the ‘‘almost factorized’’ form (5.26). On
the other hand, in Eq. (6.111) below we provide an expression for the two-particle convolution accurate to leading and
subleading order in q2. One can verify that, using (A.40), taking FT of (6.111) one indeed recovers (5.27).

5.1.2. Inelastic unitarity
The first inelastic contributions come from the three-particle cut of the 2→ 2 amplitude A. This is obtained by ‘‘gluing

ogether’’ two copies of a 2→ 3 amplitude

A(5)(p1, p2, q1, q2, k) =

k1

k

k2

p1

p2

q1

q2
(5.28)

here blue and green lines represent classical states with masses m1 and m2, while massless lines are drawn in black.
he drawing inside the dashed bubbles does not represent a specific topology, but just provides a visual help to recall the
efinition of the qi variables, such that

q1 + q2 + k = 0 . (5.29)

e will discuss momentarily on the precise form of the product of five point amplitudes appearing in this gluing, which
f course involve index contractions with appropriate projector insertions. For the moment, let us write it schematically
s

2 Im3pc A =
∫

d(LIPS)A(5)
L. A

(5)∗
R. (5.30)

where L. and R. stand for ‘‘left’’ and ‘‘right’’) or in the pictorial form

2 Im3pc

p4

p3

p1

p2

q =

∫
d(LIPS)

k1

k

k2

p1

p2

q1

q2

p4

p3

q4

q3
(5.31)

here

d(LIPS) =
dDk

(2π )D
2πθ (k0)δ(k2)

dDk1
(2π )D

2πθ (k01)δ(k
2
1 +m2

1)2πθ (k
0
2)δ(k

2
2 +m2

2) (5.32)

s the Lorentz-invariant phase-space measure for the intermediate states. Using momentum conservation we can retain

nly, say, k and k1 as independent integration variables in the measure.
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We enforce the classical limit as follows. As by now familiar, we assume that the momentum transfer q = p1 + p4 for
he full 2→ 2 process be small compared to the momenta of particle 1 and 2, depicted by thick colored lines in (5.31),
o that to leading order

p1 ∼ −m1u1 + O(q) ∼ −k1 , p2 ∼ −m2u2 + O(q) ∼ −k2 . (5.33)

y momentum conservation, this is tantamount to assuming the scaling

q1 ∼ q2 ∼ k ∼ O(q) . (5.34)

e thus take the momenta q1,2 and k to be simultaneously small, of the order of the elastic momentum transfer q.
quivalently, reinstating momentarily h̄, this can be regarded as a formal h̄→ 0 limit in which the wavenumbers q1,2/h̄

and k/h̄ are held fixed. Eq. (5.34) expresses the soft-region scaling that we discussed when evaluating loop integrals and
is justified by the fact that it captures all non-analytic contributions in q2. It also allows us to simplify the integration in
a similar way as before. Using q1 = p1 + k1 and k as independent integration variables simplifies the LIPS measure as
follows to leading order in the scaling (5.34),

d(LIPS) ≃
dDk

(2π )D
2πθ (k0)δ(k2)

dDq1
(2π )D

2πδ(2p1 · q1)2πδ(2p2 · (q1 + k)) , (5.35)

nd leads us to adopt the following routing

2 Im3pc

p4

p3

p1

p2

q =

∫
d(LIPS) k

p1

p2

q1

−q1 − k

p4

p3

q− q1

k− q+ q1
(5.36)

or the integrated momenta. Since the massless momentum k will mostly remain as a spectator in the following
anipulations let us also introduce a shorthand notation for its on-shell phase space integration,∫

k
≡

∫
dDk

(2π )D
2πθ (k0)δ(k2) . (5.37)

Our basic ingredient (5.30) will be the 2 → 3 tree-level amplitude in Eq. (3.1) of [104], which had been obtained
rom the low energy limit of a string amplitude in a toroidal compactification. In this way it naturally includes the
ontributions of the dilaton, of vectors and scalars arising in the Kaluza–Klein compactification, and of the graviton. To
nclude all such contributions simultaneously, we find it convenient to formally promote all spacetime indices µ, ν, . . . to
0-dimensional ones M,N, . . . according to conventions specified below. The tree-level contribution to A(5) in the classical
imit reproduces the result of [123,127,288] and can be then written in the following convenient form,39

A(5)MN
0 = (8πG)

3
2

{
β

[
−

pM1 pN1 (k · q1)
(p1 · k)2q22

−
pM2 pN2 (k · q2)
(p2 · k)2q21

+
pM1 (q1 − q2)N + pN1 (q1 − q2)M

2(p1 · k)q22
−

pM2 (q1 − q2)N + pN2 (q1 − q2)M

2(p2 · k)q21

+
(q1 − q2)M (q1 − q2)N

2q21q
2
2

]
+ 8

(
(p1 · k)pM2 − (p2 · k)pM1

) (
(p1 · k)pN2 − (p2 · k)pN1

)
q21q

2
2

+ (2p1 · p2)

(
4pM1 pN1

k·p2
k·p1
− 2(pM1 pN2 + pN1 p

M
2 )

q22
+

4pM2 pN2
k·p1
k·p2
− 2(pM1 pN2 + pN1 p

M
2 )

q21

+
(q1 − q2)M

(
−2(p1 · k)pN2 + 2(p2 · k)pN1

)
+ (q1 − q2)N

(
−2(p1 · k)pM2 + 2(p2 · k)pM1

)
q21q

2
2

) }
(5.38)

he quantity β is defined in (5.41) below depending on the theory under consideration. The main feature of (5.38) is
hat it satisfies kMA(5)MN

0 = kNA
(5)MN
0 = 0 for arbitrary values of the free index, which makes the calculations in general

imensions easier [48,258]. Notice that the terms proportional to β and the remaining terms are independently gauge
nvariant. It is also symmetric in its two spacetime indices, A(5)MN

0 = A(5)NM
0 .

39 The full theory also allows for other 2 → 3 processes involving fermionic external states. However, these would yield contributions that are
subleading in the limit of small momentum transfer.
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When focusing on N = 8 supergravity, we choose the following 10D kinematics [106]40

pM1 = (pµ1 ; 0, . . . , 0, 0,m1) , pM2 = (pµ2 ; 0, . . . , 0,m2, 0) , (5.39)

here pµ1,2 are (4− 2ϵ)-dimensional momenta and the dots stand for 2+ 2ϵ zero entries. In contrast, in the case of GR,

pM1 = (pµ1 ; 0, . . . , 0, 0, 0) , pM2 = (pµ2 ; 0, . . . , 0, 0, 0) . (5.40)

he momenta kM and qM1,2 are always non-trivial only in the 4 − 2ϵ non-compact directions so that they effectively
coincide with kµ and qµ1,2, e.g. q

M
1 = (qµ1 ; 0, . . . , 0, 0, 0). Another difference between N = 8 and GR is related to the

contribution of the dilaton as an internal state exchanged between the massive objects. This exchange can only occur in
N = 8 supergravity, while for GR the contribution of the dilaton has to be subtracted. This can be taken into account by
specifying the parameter β as follows in the two theories,

βN=8
= 4m2

1m
2
2σ

2 , βGR
= 4m2

1m
2
2

(
σ 2
−

1
D−2

)
. (5.41)

Let us now describe more precisely how the N = 8 supergravity and GR amplitudes enter the integrand (5.30). In both
ases, the kinematics is dictated by the momentum flow depicted in Eq. (5.31), so that

A(5)
L. = A(5)(p1, p2, k1, k2, k) , A(5)∗

R. = A(5)∗(p4, p3,−k1,−k2,−k) . (5.42)

ndex contractions are instead theory dependent. In the maximally supersymmetric case, we simply work in M,N, . . .
ndices and saturate the Lorentz indices with the Minkowski metric, contracting the two amplitudes according to

A(5)
L. A

(5)∗
R. = A(5)MN

L. ηMR ηNS A
(5)∗RS
R. , (5.43)

ecause in this case the amplitude A(5)MN is transverse and traceless. As already stressed, the advantage of this trick is
hat it effectively encompasses graviton, dilaton and Kaluza–Klein vectors/scalars at the same time. For GR we work with
, ν, . . . indices and on the top of this we need to subtract the contribution of the dilaton, and thus we employ the
ontraction

A(5)
L. A

(5)∗
R. = A(5)µν

L.

[
ηµρηνσ −

1
D−2ηµνηρσ

]
A(5)∗ρσ

R. . (5.44)

he structure within square brackets arises from the transverse-traceless projector over physical degrees of freedom
µν,ρσ (k). Explicitly, for any reference null vector rµ, letting λµ = −rµ/(r · k) and Πµν

= ηµν + λµkν + λνkµ, one
an construct this projector according to

Πµν,ρσ (k) =
1
2

(
ΠµρΠνσ

+ΠµσΠνρ
−

2
D−2Π

µνΠρσ
)
. (5.45)

he transversality condition kµA(5)µν
= 0 then turns (5.45) into the combination within square brackets in (5.44), which

is the one appearing also in the de Donder propagator, simplified by using A(5)µν
= A(5)νµ. We will use (5.43) and (5.44)

as a convenient shorthand notation to suppress explicit index contractions between 2→ 3 amplitude also in Section 8.
We can now start from (5.36) go to impact-parameter space via the usual Fourier transform for the 2 → 2 process

(see Appendix A.3)

Ã =
∫

dDq
(2π )D

2πδ(2p1 · q)2πδ(2p2 · q) eib·q

p4

p3

p1

p2

q . (5.46)

n the remainder of this section, we need not worry about the difference between FT[A] (A.31) and Ã (A.44), since we
will be working to leading order in q ∼ 1/b. When applying this Fourier transform to both sides of (5.36), we change
integration variable by letting q = q1 + q4. After doing this, an important step is to use

δ(p1 · q1)δ(2p1 · q) = δ(p1 · q1)δ(2p1 · (q1 + q4)) = δ(p1 · q1)δ(2p1 · q4) (5.47)

nd similarly

δ(p2 · (q1 + k))δ(2p2 · q) = δ(p2 · (q1 + k))δ(2p2 · (q4 − k)) , (5.48)

40 For sake of simplicity here we focus directly on the case φ = π in the notations of that reference.
2
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hich hold thanks to the properties of the delta function. Then we get,

2 Im3pc Ã =
∫
k

∫
dDq1
(2π )D

2πδ(2p1 · q1)2πδ(2p2 · (q1 + k))eib·q1 k

p1

p2

q1

−q1 − k

×

∫
dDq4
(2π )D

2πδ(2p1 · q4)2πδ(2p2 · (q4 − k))eib·q4

⎡⎢⎢⎢⎢⎢⎢⎣

p4

p3

q4

k− q4
−k

⎤⎥⎥⎥⎥⎥⎥⎦

∗ (5.49)

e may reinterpret the 3→ 2 amplitude in the second line as a 2→ 3 one by flipping all external momenta and relabel
4 = −q′1 in the integration. Since moreover to leading order p4 ≃ −p1, p3 ≃ −p2 we can write

2 Im3pc Ã =
∫
k

⎡⎢⎢⎢⎢⎢⎢⎣
∫

dDq1
(2π )D

2πδ(2p1 · q1)2πδ(2p2 · (q1 + k))eib·q1 k

p1

p2

q1

−k− q1

⎤⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎣
∫

dDq′1
(2π )D

2πδ(2p1 · q′1)2πδ(2p2 · (q
′

1 + k))eib·q
′
1

k

p1

p2

q′1

−k− q′1

⎤⎥⎥⎥⎥⎥⎥⎦

∗ (5.50)

In this equation, the two quantities appearing within square brackets are equal to each other and can be identified as
the Fourier transform of the five-point amplitude, Ã(5). Of course, (5.50) only fixes the definition of Ã(5) up to an overall
phase, which would of course cancel in the product Ã(5)Ã(5)∗. In order to treat the two momenta q1 and q2 on the same
ooting, it is natural to define

Ã(5)
=

∫
dDq1
(2π )D

2πδ(2p1 · q1)2πδ(2p2 · q2)eib1·q1+ib2·q2

k1

k

k2

p1

p2

q1

q2
(5.51)

ith bα = bα1 − bα2 and of course q1 + q2 + k = 0 as indicated in the figure. We shall come back to this Fourier transform
in Section 8. As we shall see, this is indeed the appropriate Fourier transform to leading order in the PM expansion. We
have thus related the imaginary part of the b-space 2 → 2 amplitude to the integral over the massless particle’s phase
space of the product of two b-space 2→ 3 amplitudes,

2 Im 2δ2 = 2 Im3pc Ã =
∫
k
Ã(5) Ã(5)∗ . (5.52)

Let us recall that index contractions are left implicit and can be restored by using (5.43) for N = 8 supergravity and (5.44)
for GR.

To conclude, we have discussed how the imaginary part of the amplitude in b-space arising from the three-particle
cut can be calculated in two different ways. The first is to calculate the three-particle cut (5.30) in momentum space and
then take its Fourier transform at the very end. The second is to first take Fourier transforms of the five-point amplitudes
via (5.51), contract them as in (5.43), (5.44) and integrate over the graviton phase space, according to (5.52). The former
method is more powerful as far as loop integration techniques are concerned. The reason is that, in momentum space, one
can interpret the phase-space delta functions as ‘‘cut propagators’’ and apply the full machinery of master integrals and
differential equations for two-loop topologies. The latter makes the interpretation of this imaginary part more transparent,
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ince (5.51) is actually the waveform, as we will discuss in Section 8, and as we shall see it is particularly useful when
tudying the low-frequency limit.

.2. Calculation of Im 2δ2

By the relation (5.52), it is easy to see that the divergent part of

Im 2δ2 = Im3pc Ã2 (5.53)

an be obtained by only considering the leading term in the soft limit kµ → 0 of the five-point amplitude in (5.38) that
iverges as 1

ω
, with ω = k0, and that arises from the first two lines of (5.38). Since in this limit q1 ≃ −q2, the Fourier

ransform (5.51) can be easily performed and one obtains the results summarized in Section 4 of [106]. In this way, one
btains

(Im2δ2)N=8 (b) = −
G3(βN=8)2

πb2ϵ(σ 2 − 1)2

[
σ 2
+
σ (σ 2

− 2)

(σ 2 − 1)
1
2
arccosh σ

]
+ O(ϵ0) (5.54)

or massive N = 8 supergravity, where βN=8 is given in (5.41), and [289]

(Im 2δ2)gr (b) ≃ −
1
2ϵ

G3(βGR)2

πb2(σ 2 − 1)2

[
8− 5σ 2

3
−
σ (3− 2σ 2)

(σ 2 − 1)
1
2

arccosh σ

]
+ O(ϵ0) (5.55)

or the graviton contribution in GR, where βGR is given in (5.41). We refer to Section 5.1 of [106] for more details on these
teps, while in this report we shall obtain Eqs. (5.55) and (5.54) as special cases of a more general setup from Eqs. (7.92)
nd (7.106) below.
The complete expression for (Im 2δ2), including not only the divergent contribution but also the finite one, can be

btained from reverse unitarity. In GR one gets Eq. (6.28) of [47]

Im 2δ2 =
2m2

1m
2
2(2σ

2
− 1)2G3

πb2
(
σ 2 − 1

)2 (πb2eγE )3ϵ

×

[ (
−

1
ϵ
+ log(4(σ 2

− 1))
)(

σ
(
2σ 2
− 3

)
arccosh σ

√
σ 2 − 1

+
8− 5σ 2

3

)

− (arccosh σ )2
(
σ
(
2σ 2
− 3

)
√
σ 2 − 1

+
2(σ 2
− 1)(4σ 4

− 12σ 2
− 3)(

1− 2σ 2
)2

)

+ (arccosh σ )
σ
(
88σ 6

− 240σ 4
+ 240σ 2

− 97
)

3
(
1− 2σ 2

)2√
σ 2 − 1

+ Li2(1− z2)
σ
(
3− 2σ 2

)
√
σ 2 − 1

+
−140σ 6

+ 220σ 4
− 127σ 2

+ 56

9
(
1− 2σ 2

)2 ]
.

(5.56)

hile in massive N = 8 supergravity one gets Eq. (4.21) of [47]

Im 2δN=82 =−
16m2

1m
2
2G

3

πb2
σ 4(πb2eγE )3ϵ

(σ 2 − 1)2

{
1
ϵ

(
σ 2
+
σ (σ 2

− 2)

(σ 2 − 1)
1
2
arccosh σ

)

− log(4(σ 2
− 1))

[
σ 2
+
σ (σ 2

− 2)

(σ 2 − 1)
1
2
arccosh σ

]

+ (σ 2
− 1)

[
1+

σ (σ 2
− 2)

(σ 2 − 1)
3
2

]
(arccosh σ )2

+
σ (σ 2

− 2)

(σ 2 − 1)
1
2
Li2(1− z2)+ 2σ 2

}
,

(5.57)

otice that the previous equations have both terms that, at high energy, behave as (log σ )2. However these terms cancel
ach others and one is left with an high energy behavior as log σ in agreement with the analysis of [104] based on
nalyticity and crossing symmetry.
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.3. Radiation reaction from Im 2δ2 by real analyticity

In this section we follow the approach of Ref. [106] and using unitarity and real analyticity, we obtain a relation that
onnects two terms of Im 2δ2 to the radiation reaction contribution, Re 2δ(RR)2 , of the two-loop eikonal. Such a relation is

−
i
πϵ

Re 2δRR2 ↦→
[
1+

i
π

(
−

1
ϵ
+ log(σ 2

− 1)
)]

Re 2δRR2 . (5.58)

The part in the round bracket comes from the integral over the frequency of the graviton given by41

(b2)−1+3ϵ
∫ ωb

0

dω
ω

(ωb)−2ϵ (5.59)

where the factor (b2)−1+3ϵ is precisely the one expected (also on dimensional ground) to appear in 2δ2 and ωb is an
appropriate upper limit on the classical dimensionless quantity ωb. On the other hand, the integral over ω produces a 1

ϵ

ivergence in the particular combination:∫ ωb

0

dω
ω

(ωb)−2ϵ = −
1
2ϵ

(ωb )−2ϵ = −
1
2ϵ
+ logωb+ O(ϵ) (5.60)

o obtain an estimate of the cutoff ωb, one can use (1.47) for single-graviton exchanges, according to which

|p01 q
0
1| ≈ |p⃗1 · q⃗1| ≤ |p⃗1| |q⃗1| , |p02 q

0
2| ≈ |p⃗2 · q⃗2| ≤ |p⃗2| |q⃗2| (5.61)

and therefore

ω = k0 = −q01 − q02 ≤ |q
0
1| + |q

0
2| ≲
|p⃗1|
|p01|
|q⃗1| +

|p⃗2|
|p02|
|q⃗2| . (5.62)

n the classical limit, |q⃗i| ∼ 1/b and thus ωb is bounded by

ωb =
|p⃗1|
|p01|
+
|p⃗2|
|p02|

. (5.63)

sing the explicit expressions (1.13), (1.15), (1.16) in the CM frame, one finds

ωb =
√
σ 2 − 1 (1+ O(σ − 1)) (5.64)

n this way we have obtained the term in the round bracket in (5.58). In order to obtain the last term outside of the round
racket one must observe that, because of real analyticity, the amplitude between the two branch points σ = ±1 must
e real and therefore in this region the term in the round bracket should be log(1− σ 2). When we go from this region to
he physical region σ ≥ 1 then we get

log(1− σ 2
− i0) = log(σ 2

− 1)− iπ (5.65)

obtaining Eq. (5.58) that allows us to determine the radiation reaction from the infrared divergent term of Im 2δ2. For GR
we obtain:

Re 2δRR,GR(b) =
8G3m2

1m
2
2(σ

2
−

1
2 )

2

h̄b2(σ 2 − 1)2

[
8− 5σ 2

3
−
σ (3− 2σ 2)

(σ 2 − 1)
1
2

arccosh σ

]
, (5.66)

hile in the case of massive N = 8 supergravity one gets:

Re 2δRR,N=82 (b) =
16G3m2

1m
2
2σ

4

h̄b2(σ 2 − 1)2

[
σ 2
+
σ (σ 2

− 2)

(σ 2 − 1)
1
2
arccosh σ

]
. (5.67)

In conclusion, we have derived the radiation reaction from Eq. (5.52) and from the properties of unitarity and real
analyticity, without needing to construct the full two-loop amplitude. The arguments that brought us to the structure
in the round bracket of (5.58) are confirmed by the first two terms of the explicit results for Im 2δ2 given in (5.56) and
(5.57).

41 We need to keep D = 4 − 2ϵ only for the integral over |k⃗| while the integration over the angular variables can be done for ϵ = 0, so that
ffectively dD−1k⃗ = |k⃗|

2−2ϵ
d|k⃗| sin θ dθ dϕ.
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. The 2–body eikonal at 3PM

The exponentiation pattern of Eq. (4.4), which we explicitly illustrated in Section 4 up sub-leading order, suffices to
liminate all super-classical redundancies arising from tree-level and one-loop order. Thus, it allows one to extract from
he amplitude genuine classical information up to two loops, i.e. O(G3) or 3PM order. The purpose of this chapter is to
perform this step explicitly. We will start by sketching the calculation of the two-loop amplitude in the classical limit, to
then check that super-classical terms cancel out consistently with Eq. (4.4) and finally obtain the 3PM correction to the
eikonal, 2δ2.

A novelty compared to lower loop-orders is the emergence of an imaginary part in the amplitude that is due, via the
unitarity relation, to the presence of nontrivial three-particle cuts, as we discussed in Section 5. At one loop, the imaginary
part of the amplitude is due to two-particle cuts only and is effectively subtracted in the exponentiation (4.4) at classical
level, so that 2δ1 is real and only the quantum remainder 2∆1 can develop an imaginary part. By contrast, at two loops, the
three-particle inelastic channels leave behind a nonzero (in fact, infrared divergent!) imaginary part of 2δ2, as in (5.20).
In ensuing chapters we will discuss a more systematic way to deal with such additional channels, restoring the expected
Hermiticity of the eikonal 2δ, which requires to promote it to an operator.

The focus of this chapter is instead on illustrating an interesting physical phenomenon that is captured by 2δ2:
adiation-reaction effects, which first occur at 3PM order and can be singled out by their time-reversal odd expansion
n the small-velocity limit. On the other hand, such radiation-reaction contributions are crucial in order to ensure consis-
ency, finiteness and universality of the results at high energies (or high velocities). In particular they are instrumental in
nsuring agreement between the high-energy behavior of massive scattering and the universal result for the deflection
ngle of massless objects.
As for the one-loop level, we shall first focus on the technically simpler N = 8 case, considering the s-u symmetric

cattering of massive states obtained via Kaluza–Klein compactification, and then move to collisions of massive scalars
inimally coupled to GR. We also provide more details on the relation between the eikonal phase, the phase shifts and

he radial action, which as we shall see is also instrumental in performing the analytic continuation from the case of
nbound orbits to bound systems.

.1. Partial wave decomposition: from b to bJ

In Section 2.2 we discussed how classical observables emerge in the leading eikonal approximation for the massless
cattering. Starting from the resummed amplitude in the impact parameter representation, in the classical regime we
an perform the Fourier transform back to momentum space (2.27) by using a saddle-point approximation (2.28). The
esummed amplitude can then be decomposed in partial waves, as in (1.63), and in the classical limit (2.40), as expected,
he orbital angular momentum of the system becomes large J/h̄ = j ≫ 1. The partial wave analysis of that section is
limited to the case of the leading eikonal in D = 4, while the derivation based on the impact parameter representation
seems more general and was already used in (4.59) to derive the 2PM deflection angle in GR. The purpose of this section is
to show that the same results can be obtained also by performing the partial wave decomposition in the classical regime
starting from the eikonal amplitude at an arbitrary PM order [290] (see also [169]).

We start by generalizing (2.27) to the massive scattering in D = 4 by first defining

S̃(s, b) = 1+ iÃ(s, b) = ei Re 2δ(s,b) . (6.1)

Here we remove the 1/ϵ pole in 2δ0, associated to the Coulombic falloff of the field, and introduce an appropriate cutoff
scale in the leftover logarithm, as we did in (2.34), and we temporarily drop the imaginary part of 2δ(s, b) that enters at
3PM, which will not enter the ensuing stationary-phase arguments. In Q -space, Eq. (6.1) translates to

S(s,Q ) = 4Ep
∫

d2b e−iQ ·bei Re 2δ(s,b) = 8πEp
∫

db b J0

(
Qb
h̄

)
ei Re 2δ(s,b) , (6.2)

here we used the fact that 2δ depends only on b2 and the identity

J0(x) =
∫
+π

−π

dφ
2π

eix sinφ . (6.3)

(together with the fact that the integrand is a periodic function of φ with period 2π ). For large arguments x = Qb/h̄≫ 1,
one also has

J0(x) ∼
1
√
2π

(
ei(x−

π
4 )
+ e−i(x−

π
4 )
)
. (6.4)

sing this relation and picking the first term, which corresponds to Qµ being anti-aligned to bµ, as in our conventions
or gravitational scattering, we obtain

S(s,Q ) ∼ ( . . .)
∫

db b e
i
h̄ Qb+i Re 2δ(s,b) . (6.5)
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ere and in the next few equations we need only worry about rapidly oscillating phase factors, and accordingly
mit irrelevant slowly-varying prefactors. We then go to angular momentum-space by projecting on the jth Legendre
olynomial as dictated by (1.63),

Sj(s) ∼ (· · · )
∫

db b
∫
+1

−1
d(cosΘ) Pj(cosΘ)e

i
h̄ 2pb sin Θ

2 +i Re 2δ(s,b) , (6.6)

where we employed the relation between Q and Θ , which is again the same as the one encountered in (2.31),

Q = 2p sin
Θ

2
. (6.7)

sing finally the large-j limit of the Legendre polynomial (2.48) we arrive at

Sj(s) ∼
∫ π

0
dΘ

∫
db (· · · ) e−ijΘ+

i
h̄ 2pb sin Θ

2 +i Re 2δ(s,b) . (6.8)

ollecting the terms appearing in the exponent, we recover the phase shift in the classical limit from (2.44) and

χ (s, J) =
1
h̄

(
−JΘ + 2pb sin

Θ

2

)
+ Re 2δ(s, b) , (6.9)

hich must be extremized by a double saddle point in Θ and b at fixed

bJ =
J
p
. (6.10)

aking derivatives of (6.9), the two saddle point conditions give

bJ = b cos
Θ

2
, 2p sin

Θ

2
= −h̄

∂ Re 2δ(s, b)
∂b

. (6.11)

qs. (6.7), (6.10) and (6.11) identify the sought after relations among the properties of the trajectory depicted in Fig. 18,
inking them to the eikonal phase. In the classical limit, Sj(s) is itself a rapidly oscillating phase factor, Sj(s) ∝ e2iδj(s) with
δj(s) = χ (s, J) given by (6.9). Using the saddle point conditions, one can also recast it as follows in terms of b and bJ ,

χ (s, J) =
2J
h̄

(
− arccos

bJ
b
+

√
b2

b2J
− 1

)
+ Re 2δ(s, b) . (6.12)

he derivative of χ (s, J) in (6.9) with respect to j = J/h̄ then takes the following form

− h̄
∂χ (s, J)
∂ J

= Θ + p
[
bJ − b cos

Θ

2

]
∂Θ

∂ J
−

[
2p sin

Θ

2
+ h̄

∂ Re 2δ(s, b)
∂b

]
∂b
∂ J
, (6.13)

so that, owing to the saddle point conditions (6.11), it gives back the saddle-point value of Θ ,

Θ = −h̄
∂χ (s, J)
∂ J

. (6.14)

For this reason χ (s, J) is closely connected to the radial action I(s, J), which obeys [291,292]

Θ + π = −
∂ I(s, J)
∂ J

(6.15)

o that

I(s, J) = −π J + h̄χ (s, J) . (6.16)

he expression (6.9) then provides the connection with the eikonal phase.
Eqs. (6.9) and (6.12) provide this connection only implicitly, since one ought to solve the saddle point conditions

n order to express the right-hand side as a function J . In particular, in (6.12), b should be eliminated using the first
ondition (6.11), which in turn involves the deflection angle calculated using the second condition in (6.11). In order to
llustrate how this works in practice let us consider the case of the perturbative PM expansion42:

Re(2δ) = −d0 ln(b)+
∞∑
n=1

dn
nbn

, (6.17)

42 Although the relation (6.12) is non-perturbative in G it may actually break down at sufficiently small impact parameter if the relation between
b and b cannot be straightforwardly inverted.
J
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Fig. 18. Classical 2 → 2 scattering in the center-of-mass frame (1.33). Q⃗ denotes the impulse and Θ the deflection angle. The impact parameter
b⃗J is perpendicular to the spatial momentum of either particle in the far past, and thus defines the angular momentum according to J = p bJ , with
= |p⃗ | = |p⃗ ′|. Its magnitude differs by that of the eikonal impact parameter b⃗ by terms of order Θ2 as in (6.11).

here dn captures the (n + 1)PM correction. It is straightforward to derive explicitly the first few terms of the classical
eflection angle expressed as a function of J perturbatively to any given order. For instance up to order O(G5) we have

χ (s, J) =− d0 log J +
d1p
J
+

d2p2 −
d30
12

2J2

+
d3p3 − 3

8d
2
0d1p

3J3
+

d4p4 −
d0p2

2

(
d2d0 − d21

)
+

1
80d

5
0

4J4
+ O(G6)

(6.18)

o that via (6.14),

Θ =
d0
J
+

d1p
J2
+

d2p2 −
d30
12

J3

+
d3p3 − 3

8d
2
0d1p

J4
+

d4p4 −
d0p2

2

(
d2d0 − d21

)
+

1
80d

5
0

J5
+ O(G6) .

(6.19)

ikewise, via (6.16), Eq. (6.18) also gives the corresponding expansion of the radial action I(s, J).
The derivation presented above linking χ (s, J) to the eikonal phase via saddle point conditions generalizes straight-

forwardly to generic D, as one can check thanks to known properties of Gegenbauer polynomials: [DLMF §18.15(i) using
(18.7.1)] and [DLMF §10.17(i)].

6.2. Massive N = 8 supergravity

We go back to the elastic 2 → 2 scattering in N = 8 supergravity where the external states are massive thanks to
non-trivial Kaluza–Klein momenta in the compact directions [167,211]. We focus on the s-u symmetric process already
defined in Section 3.1.4, where the states labeled by p1 and p4 are dilatons with KK momentum in one compact direction
and those labeled by p2 and p3 are axions with KK momentum in another orthogonal compact direction [47,106,167]

As before, the starting ingredient for our analysis is the momentum-space amplitude in the small-q expansion, where,
as already emphasized, we can restrict to the terms that are non-analytic in q2. We will also neglect terms of order
(q2)

1
2−2ϵ or smaller, which are irrelevant for determining 2δ2 and would only enter the calculation of the quantum

remainder 2∆2. In view of this, the relevant part of the s− u symmetric two-loop scattering amplitude [117] is given by
the following sum of scalar Feynman integrals IT where T indicates the integral’s topology:

A2(s, q2) = (8πG)3
1

2(4π )4−2ϵ
[
(s−m2

1 −m2
2)

4
+ (u−m2

1 −m2
2)

4] (6.20)

×

[
(s−m2

1 −m2
2)

2 (IIII + 2IIX)+ (u−m2
1 −m2

2)
2 (IIII + 2IIX

)
+ t2(IH + IH)

]
.

et us write down the integrals explicitly and sketch their evaluation as q → 0. We follow the kinematic conventions
of Section 1.2, in particular the variables introduced in (1.40), (1.29). In terms of these variables, the planar double box
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ntegral reads

IIII =
∫

dDℓ1
iπD/2

dDℓ2
iπD/2

1[
2m̄1ℓ1 · u1 + (ℓ21 − ℓ1 · q)

] [
−2m̄2ℓ1 · u2 + (ℓ21 − ℓ1 · q)

]
1[

−2m̄1ℓ2 · u1 + (ℓ22 − ℓ2 · q)
] [

2m̄2ℓ2 · u2 + (ℓ22 − ℓ2 · q)
]
ℓ21ℓ

2
2 (ℓ1 + ℓ2 − q)2

,

(6.21)

he non-planar double box integral reads

IIX =
∫

dDℓ1
iπD/2

dDℓ2
iπD/2

1[
−2m̄1ℓ1 · u1 + (ℓ21 + ℓ1 · q)

] [
2m̄2ℓ1 · u2 + (ℓ21 + ℓ1 · q)

]
1[

2m̄1ℓ2 · u1 + (ℓ22 + ℓ2 · q)
] [

2m̄2(ℓ1 + ℓ2) · u2 + ((ℓ1 + ℓ2)2 + (ℓ1 + ℓ2) · q)
]

1
ℓ21ℓ

2
2 (ℓ1 + ℓ2 + q)2

,

(6.22)

nd the H diagram reads

IH =
∫

dDℓ1
iπD/2

dDℓ2
iπD/2

1
[−m̄2ℓ1 · u2 + (ℓ21 − ℓ1 · q)][−2m̄1ℓ2 · u1 + (ℓ22 − ℓ2 · q)]

1
ℓ21ℓ

2
2(ℓ1 + ℓ2 − q)2(ℓ1 − q)2(ℓ2 − q)2

.

(6.23)

The Feynman −i0 prescription is left implicit throughout. The remaining ‘‘barred’’ topologies are obtained from the
previous three by crossing symmetry, i.e. replacing u1 by −u1 (or equivalently u2 by −u2).

The expansion of these integrals for small q can be simplified by resorting to the method of regions. The relevant,
non-analytic contributions emerge from the expansion in the soft region, where ℓ1 ∼ ℓ2 ∼ O(q), while m̄1u1, m̄2u2 are
ormally held fixed.43 Conveniently, all dependence on the masses factorizes in this step: for instance, to leading order,

IH ≃
1

m̄1m̄2

∫
dDℓ1
iπD/2

dDℓ2
iπD/2

1
(−ℓ1 · u2)(−2ℓ2 · u1)ℓ21ℓ

2
2(ℓ1 + ℓ2 − q)2(ℓ1 − q)2(ℓ2 − q)2

. (6.24)

he overall dependence on q2 can be also easily factorized by rescaling the loop momenta. The resulting integrals are
hus functions of the single invariant y = −u1 · u2. Still, such integrals are not elementary for generic ϵ, in contrast with
he situation at one loop. Convenient strategies to evaluate them are centered on the method of ordinary differential
quations in canonical form in the variable x = y −

√
y2 − 1. These equations afford simple iterative solutions order by

rder in ϵ in terms of polylogarithms in the variable x. The boundary conditions for these equations can be determined
y performing yet another expansion by regions in the limit y → 1+, which luckily does yield elementary integrals for
eneric ϵ [47].
Performing the calculation according to this strategy, we get the following result:

A2(s, q2) =
(8πG)3

(4π )4

(
4πe−γE

q2

)2ϵ {
−

2π2m4
1m

4
2

ϵ2q2

[(
1+ z2

1− z2

)2 (1+ z2

z

)4
]

+
4πm3

1m
3
2

ϵ2

(1+ z2)5

(1− z2)4z3
[
π (1− z2)2 + i

(
−1− 4z2 log z + z4

)]
−

iπm2
1m

2
2

3ϵ

[(
1+ z2

1− z2

)4 1
z3

] [
6iπ (m2

1 +m2
2)z(1+ z2)2

+ 6m1m2

[
4(1+ z2)2(1− z2)+ 2(iπ + 2 log z)(1+ z2)2

+

(
π2

6
− Li2(z2)

)
(z2 + 1)(z4 − 6z2 + 1)− 2(1+ z2)2(1− z2) log(1− z2)

+ 2(iπ log z + log2 z)
(
z2 + 4z4 − z6

) ]]}
, (6.25)

here as in (4.7)

z = σ −
√
σ 2 − 1 , σ =

1
2

(
z +

1
z

)
. (6.26)

43 The asymptotic expansion of the H topology also has non-analytic contributions that emerge from the mixed soft-hard region, where ℓ1 ∼ O(q),
ℓ ∼ O(m). However, these only contribute to order O(q3−2ϵ ) to the amplitude.
2
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he above result can be organized in the following convenient form (we recall that c(ϵ) was defined in (4.9)):

A2 = (8πG)3
c(ϵ)2

(q2)2ϵ

[
A(2,2)

2

ϵ2q2
+

A(0,1)
2

q
+

A(2,0)
2

ϵ2
+

A(1,0)
2

ϵ
+ · · ·

]
(6.27)

p to terms that are further suppressed in q2, i.e. O((q2)
1
2−2ϵ) or smaller, or that are subleading in ϵ. Note in particular that

the coefficient of
(
(q2)1+2ϵϵ

)−1 vanishes identically. A term of O(ϵ0(q2)−1−2ϵ) is also needed in order to fully reproduce
the O(δ30) exponentiation and will not be discussed further. Similarly, O((q2)−

1
2−2ϵ) terms start contributing to order O(ϵ0)

ia A(0,1)
2 . Using the method described in [47], one can check that A(0,1)

2 is consistent with the iteration term 2δ0 2iδ1, to
leading order in ϵ. The fact that the O((q2)−

1
2−2ϵ) contributions indeed reproduce such iteration term for generic ϵ has

been checked in Ref. [108].
Explicitly, in terms of the variable z and σ , the above coefficients read

A(2,2)
2 = −

2π2m4
1m

4
2

(
z2 + 1

)
6

z4
(
z2 − 1

)
2

= −
32π2m4

1m
4
2σ

6

(σ 2 − 1)
, (6.28)

A(2,0)
2 =

4π2m3
1m

3
2

(
z2 + 1

)
5

z3
(
z2 − 1

)
2

+ i
4πm3

1m
3
2

(
z2 + 1

)
5
(
z4 − 4z2 log (z)− 1

)
z3
(
z2 − 1

)
4

=
32π2m3

1m
3
2σ

5

(σ 2 − 1)
− i 32πm3

1m
3
2

(
σ 6

(σ 2 − 1)3/2
+

σ 5

(σ 2 − 1)2
log(z)

)
, (6.29)

nd

ReA(1,0)
2 =

2π2m2
1m

2
2

(
z2 + 1

)
6
((
m2

1 +m2
2

)
z + 2m1m2

)
z3
(
z2 − 1

)
4

−
4π2m3

1m
3
2

(
z2 + 1

)
4
(
z4 − 4z2 − 1

)
log (z)

z
(
z2 − 1

)
4

,

= 8π2m2
1m

2
2

[
(m2

1 +m2
2)

σ 6

(σ 2 − 1)2
+ 2m1m2

(
σ 7

(σ 2 − 1)2
+

σ 6

(σ 2 − 1)3/2

)]
+ 16π2m3

1m
3
2σ

4
(

1
(σ 2 − 1)1/2

−
σ (σ 2

− 2)
(σ 2 − 1)2

)
log(z) ,

(6.30)

ogether with

ImA(1,0)
2 =

2πm3
1m

3
2

(
z4 − 6z2 + 1

) (
z2 + 1

)
5 Li2

(
z2
)

z3
(
z2 − 1

)
4

−
πm3

1m
3
2

(
−24(z4 − 1)+ π2(z4 − 6z2 + 1)

) (
z2 + 1

)
5

3z3
(
z2 − 1

)
4

+
4πm3

1m
3
2

(
z4 − 4z2 − 1

) (
z2 + 1

)
4 log2 (z)

z
(
z2 − 1

)
4

−
4πm3

1m
3
2

(
z2 + 1

)
6 log

(
1− z2

)
z3
(
z2 − 1

)
3

−
8πm3

1m
3
2

(
z2 + 1

)
6 log (z)

z3
(
z2 − 1

)
4

,

=
16πm3

1m
3
2σ

5(σ 2
− 2)Li2

(
z2
)

(σ 2 − 1)2
− 64πm3

1m
3
2

σ 6

(σ 2 − 1)3/2
−

8
3
π3m3

1m
3
2
σ 5(σ 2

− 2)(
σ 2 − 1

)
2

− 16πm3
1m

3
2σ

4
(

1
(σ 2 − 1)1/2

−
σ (σ 2

− 2)
(σ 2 − 1)2

)
log2 (z)+

32πm3
1m

3
2σ

6 log
(
1− z2

)(
σ 2 − 1

)
3/2

− 32πm3
1m

3
2σ

6

(
σ(

σ 2 − 1
)2 + 1

(σ 2 − 1)3/2

)
log (z) .

(6.31)

.2.1. Eikonal and deflection angle to 3PM order
We have already computed 2δ0 in Section 3.1.4 and 2∆1 in Section 4.1.1. This information can now be used to verify

hat the eikonal exponentiation takes place as expected up to two loops and to extract 2δ2 from the previous amplitude
hrough the following relations:

Re(2δ2) = Re Ã2 +
1
(2δ0)3 + 2δ0 Im 2∆1 ,
6
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Im(2δ2) = Im Ã2 − 2δ0 Re 2∆1 . (6.32)

e obtain the following result, where we highlight in blue the terms associated to radiation-reaction,

Re(2δ2) =
4m2

1m
2
2G

3(1+ z2)4

b2z2(1− z2)5

[
(1+ z2)2(1− z2)+ 2z2(1+ 4z2 − z4) log z

]
=

16G3m2
1m

2
2

b2

{
σ 6

(σ 2 − 1)2
− arccosh σ

[
σ 4

σ 2 − 1
−
σ 5(σ 2

− 2)

(σ 2 − 1)
5
2

]} (6.33)

nd

Im2δ2 =
4m2

1m
2
2G

3

πb2
(1+ z2)4(πb2eγE )3ϵ

(1− z2)5z2

{
1
ϵ
(1+ z2)

[(
1− 6z2 + z4

)
log z − 1+ z4

]
−

[
2z2

(
1+ 4z2 − z4

)
log2 z + (1+ z2)2(1− z2)

[
2− 2 log(1− z2)+ 2 log z

]
+

(
π2

6
− Li2(z2)

)
(z2 + 1)(z4 − 6z2 + 1)

]} (6.34)

r equivalently

Im 2δ2 = −
16m2

1m
2
2G

3

πb2
σ 4(πb2eγE )3ϵ

(σ 2 − 1)2

{
1
ϵ

(
σ 2
+
σ (σ 2

− 2)

(σ 2 − 1)
1
2
arccosh σ

)

− log(4(σ 2
− 1))

[
σ 2
+
σ (σ 2

− 2)

(σ 2 − 1)
1
2
arccosh σ

]

+ (σ 2
− 1)

[
1+

σ (σ 2
− 2)

(σ 2 − 1)
3
2

]
(arccosh σ )2

+
σ (σ 2

− 2)

(σ 2 − 1)
1
2
Li2(1− z2)+ 2σ 2

}
,

(6.35)

here we made the branch-cut singularity for z > 1 more explicit via

Li2(z2) = − Li2(1− z2)+
π2

6
− log(z2) log(1− z2) . (6.36)

nd used

− log z = arccosh σ = log
(
σ +

√
σ 2 − 1

)
= 2 arcsinh

√
σ − 1

2
, (6.37)

log(1− z2) =
1
2
log(4(σ 2

− 1))− arccosh σ . (6.38)

An important observation is that, in the ultrarelativistic limit σ ≫ 1 the terms proportional to (σ log σ )2 present in
the second and third last lines of Eq. (6.35) cancel out against each other, yielding

Im 2δ2 ∼
log(s)

s
(8Gs)3Γ (1− ϵ)3

32(πb2)1−3ϵ

[
−

1
4ϵ
+

1
2
+ O(ϵ)

]
. (6.39)

This is crucial in order to ensure agreement between the present calculation and the universal massless result [15]
according to the general pattern discussed in [104].

For later convenience, let us also remark that the function defined by

f (ζ ) =
arccosh ζ√
ζ 2 − 1

(6.40)

for ζ > 1 can be actually analytically continued to all complex ζ except for a branch cut at ζ < −1. In particular, f (ζ ) is
nalytic for −1 < ζ < 1 where it takes the form

f (ζ ) =
arccos ζ√
1− ζ 2

. (6.41)

More explicitly, the Taylor series for f (1+ z) around z = 0,

f (1+ z) =
∞∑ n! (−z)n

(2n+ 1)!!
, (6.42)
n=0
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s absolutely convergent for |z| < 2, and convergent for z = 2, where it yields f (3) = 1
√
2
log(1 +

√
2), while it diverges

for |z| > 2 and for z = −2. These properties lie at the heart of the analytic continuation from unbound to bound
trajectories [291–293]. Indeed, ζ = σ > 1 for scattering kinematics, such that the center-of-mass energy reads E =√
m2

1 + 2m1m2σ +m2
2 > m1 +m2, while −1 < ζ < 1 for bound states, such that E =

√
m2

1 + 2m1m2ζ +m2
2 < m1 +m2.

The fact that f (ζ ) has a branch point at ζ = −1 will also provide useful information for the analysis of soft spectra carried
out in Section 7.

Let us finally turn to the deflection angleΘ , which follows straightforwardly from 2δ. Keeping in mind the link between
b and bJ derived in Section 6.1, we obtain

Θ = Θ1PM +Θ2PM +Θ3PM (6.43)

with, to leading non-vanishing order in ϵ at each PM order,

Θ1PM =
4Gm1m2σ

2

J(σ 2 − 1)1/2
, (6.44)

Θ2PM = −
8πm2

1m
2
2(m1 +m2)G2ϵσ 4

J2
√
m2

1 +m2
2 + 2m1m2σ (σ 2 − 1)

, (6.45)

Θ3PM = −
16m3

1m
3
2σ

6G3

3J3(σ 2 − 1)3/2

+
32m4

1m
4
2G

3

J3(m2
1 +m2

2 + 2m1m2σ )

{
σ 6

σ 2 − 1
−

[
σ 4
−
σ 5(σ 2

− 2)

(σ 2 − 1)
3
2

]
arccosh σ

}
.

(6.46)

The 1PM contribution corresponds to a tree diagram where both the graviton and the dilaton are exchanged, the 2PM
contribution is absent for ϵ = 0 in agreement with the results of Ref. [211] at one loop. The first term in Θ3PM comes
from the expansion of tan(Θ2 ) at small Θ while the remaining terms are genuine new contributions from Re δ2.

In the ultra-relativistic limit σ ≫ 1 the leading term O(σ 4 log σ ) in the second line of (6.46) cancels and only the first
ine survives reproducing the universal and finite ultra-relativistic result of [15],

Re 2δ2 ∼
4G3s2

b2
. (6.47)

hanks to analyticity and crossing arguments, as discussed in [104], this cancellation can be seen as a consequence of the
ne occurring in the imaginary part as highlighted below Eq. (6.38).
It is also instructive to look at the opposite limit σ → 1 which is relevant to the PN regime. In this respect, one should

note that, as can be better appreciated looking at the second form of Eq. (6.33), the first and last term (highlighted in blue
color) contain only even powers of p ∼

√
σ 2 − 1, while the second term has only odd powers. This means that the first and

ast term represent half-integer-PN corrections to the deflection angle, which are a consequence of dissipative processes,
.e. the signature of radiation reaction. Instead, the second term in (6.33) corresponds to the more conventional integer-
N expansion due to the conservative dynamics. More precisely, in the deflection angle (6.46), such dissipative effects
ppear starting at 1.5PN. This seems in tension with the 2.5PN scaling of radiation reaction effects that is expected from
R calculations. As we shall see, this apparent mismatch is due to the presence of additional massless states propagating
n the supersymmetric theory, while the same calculation in GR will lead to 2.5PN radiation-reaction effects, as it should.

.2.2. Real-analytic, crossing-symmetric reformulation at two loops
We will now extend to two loops the procedure followed in Section 4.1.2 to recast the explicit results of the previous

ubsection in real-analytic and crossing-symmetric form. We first combine the different contributions in the known form
f Eq. (6.25), which suggests the ansatz:

A2(s, q2) =
(8πG)3

(4π )4

(
4πe−γE

q2

)2ϵ

(σ 4
+ σ̄ 4)Â2(s, q2) ,

Â2(s, q2) =
Â[2]2 (s, q2)

ϵ2
+

Â[1]2 (s, q2)
ϵ

, (6.48)

here σ̄ has been introduced in (4.29). In order to reproduce Eqs. (6.28) and (6.29) we find:

Â[2]2 (s, q2) =
[
−

8π2m4
1m

4
2

q2

(
σ 2

σ 2 − 1
+

σ̄ 2

σ̄ 2 − 1

)
− 8m3

1m
3
2

(
σ

(σ 2 − 1)2
log2(−z)+

σ̄

(σ̄ 2 − 1)2
log2(−z̄)

+ 2
[

σ 2

2 3/2 log(−z)+
σ̄ 2

2 3/2 log(−z̄)
] )]

(6.49)

(σ − 1) (σ̄ − 1)
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nd for Eqs. (6.30) and (6.31):

Â[1]2 (s, q2)
m3

1m
3
2
= 4π2 (m

2
1 +m2

2)
m1m2

σ 2

(σ 2 − 1)2
(6.50a)

−32
σ 2

(σ 2 − 1)3/2
(log(−z)− log(z)) (6.50b)

+4
σ (σ 2

− 2)
(σ 2 − 1)2

(log(−z)− log(z))
(
Li2(z2)− Li2

(
1
z2

))
(6.50c)

−
8
3

1
(σ 2 − 1)1/2

[(
log3(−z)− log3(z)

)
+ π2 (log(−z)− log(z))

]
(6.50d)

−8
σ 3

(σ 2 − 1)2
(log(−z)− log(z)) (log(−z)+ log(z)) (6.50e)

+8
σ 2

(σ 2 − 1)3/2
(log(−z)− log(z))

[
log(1− z2)+ log

(
1−

1
z2

)]
(6.50f)

The two previous equations have been derived using log(−z) = iπ+ log z and the following identities and branch choices:

− Li2

(
1
z2

)
= Li2(z2)+

π2

6
+

1
2
log2(−z2) = Li2(z2)−

π2

3
+ 2 log2 z + 2iπ log z;

log
(
1−

1
z2

)
= log(1− z2)− 2 log z − iπ. (6.51)

ombining these with (6.36) we can also write the combination appearing in (6.50c) in a form:

Li2(z2)− Li2

(
1
z2

)
= −2

(
Li2(1− z2)+ log z2 log(1− z2)− log2 z − iπ log z

)
, (6.52)

that is useful to discuss the non relativistic (σ , z → 1) limit.
We can check that the expressions (6.49) and (6.50) satisfy crossing symmetry and real-analyticity. The first property

follows simply from the fact that, at this order in q2, we can use the identification z̄ = − 1
z .

Checking real analyticity is a bit more subtle. For (6.49) one needs to take into account the subleading (in q2) term
rigination from the first line. This (purely real) term exactly cancels a similar term coming from the second line. Then
ne is left with a purely imaginary term from the second line:

−
16m3

1m
3
2πσ

(σ 2 − 1)2
i log z , (6.53)

hat can be written in real-analytic crossing-symmetric form as

− 8m3
1m

3
2

σ

(σ 2 − 1)2
1
2
(log(−z)+ log(−z̄))(log(z2)− log(z̄2)) . (6.54)

At this point checking that the amplitude is real in the unphysical region σ 2 < 1 is straightforward once one realizes
hat, in that region, |z|2 = 1, in other words z is a pure phase and thus log z is purely imaginary. This implies that the
erm in Eq. (6.53) is real and the same is true for the last term in (6.49) because of an extra factor i coming from

√
σ 2 − 1.

Coming now to (6.50), real analyticity is easily checked along the same lines for (6.50a), (6.50b), (6.50d) and (6.50e).
oncerning instead (6.50c) and (6.50f) one has to remember that, in the unphysical region, z−1 = z̄. Since both Li2(z2)
nd log(1 − z2) are real-analytic functions, the combinations involving them, appearing in (6.50c) and (6.50f) give a
urely imaginary and purely real factor, respectively. Because of the different powers of (σ 2

− 1) appearing in the two
ontributions this is exactly as needed for real analyticity. In conclusion, we have shown that Eq. (6.49) and Eqs. (6.50)
re real analytic functions. Note that this would not have been the case for the eikonal itself.

.3. General relativity

In this section we illustrate the calculation of the 3PM eikonal from the 2 → 2 amplitude for the collision of two
assive scalars in GR. This calculation was carried out for the first time in full detail in [109]. The underlying principles
f this calculation are the same as those presented in the maximally supersymmetric case. One aims to reconstruct the
mplitude A2 to its first few orders in the small-q expansion, perform the Fourier transform to b-space, obtaining Ã2,
nd retrieve the classical information from Re 2δ2 by matching with the exponentiation. More explicitly, armed with the
-expansion of A2 or equivalently with the 1/b-expansion of Ã2 and with the lower-loop order data 2δ0, 2δ1, 2∆1, one
hecks that in the equation

iÃ2 =
(2iδ0)3

+ 2iδ0 2iδ1 + 2iδ2 + i2δ0 2i∆1 (6.55)

3!
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he first two terms on the right hand side cancel out against analogous superclassical terms of the right-hand side, and
btains 2δ2 by subtracting i2δ0 2i∆1 from the rest. The main novelty is the fact that the gravity integrand takes a much
ore involved form compared to the neat expression (6.20), where only scalar integrals appeared. Still, one can reconstruct

his integrand in a convenient way using generalized unitarity techniques [38,39,109,111,118] and then perform the
ntegration using the same families of master integrals that were needed in the N = 8 case [109].

Instead of following this route, here we shall adopt a different strategy, which combines unitarity, analyticity and
rossing symmetry with the eikonal exponentiation itself. The idea is to start from (6.55), which we may rewrite as

iÃ2 =
(2iδ0)3

3!
+ 2iδ0 2iδ1 + i[Re 2δ2 + i Im 2δ2 + i2δ0 2∆1] (6.56)

nd regard Ã2 and Re 2δ2 as the unknown quantity. Indeed the tree-level and one-loop information determines 2δ0, 2δ1,
∆1, and Im2δ2 can be obtained by performing a relatively simpler integral over three-particle phase space, as we have
iscussed in Section 5. This data determines all imaginary parts arising from the three-particle and two-particle cuts of the
mplitude (plus a portion of the real part arising from 2δ0 Im 2∆1). We can then make a real-analytic and cross-symmetric
nsatz for A2, up to the (q2)−2ϵ order relevant for the classical limit, complete of its real and imaginary parts. As we shall
ee, the available data will be enough to fix this ansatz up to a single unknown function fa(σ ), which however appears
ith an extra power of s in front and is thus dominant in the limit of small mass ratio. Therefore, using the results of
ppendix B.1, this last term can be fixed too by matching with the probe-limit calculation. This will lead us to the complete
esult of A2 appropriate to then retrieve Re 2δ2 and the classical deflection angle.

Let us start by adopting a notation for the small-q and small-ϵ expansion of the amplitude:

A2 = A[2]2 + A[1]2 + A[0]2 + O(q1−4ϵ)

=

(
4πe−γE

q2

)2ϵ
[
A(2,2)

2

ϵ2q2
+

A(1,1)
2

ϵ q
+

A(2,0)
2

ϵ2
+

A(1,0)
2

ϵ
+ O(q)

]
,

(6.57)

here A[k]2 ∼ q−k−4ϵ and in the second line we introduced a notation similar to the one employed for the N = 8 in (6.27)
or convenience. As is by now familiar, A[2]2 and A[1]2 are simply determined by the iteration of classical terms, i.e. the first
wo terms on the right-hand side of (6.56). Therefore they must be given by the inverse Fourier transform of − 1

3! (2δ0)
3

see (3.10)),

A(2,2)
2 = −

64πG3m4
1m

4
2

(
σ 2
−

1
2(1−ϵ)

)3
Γ (1− ϵ)3Γ (1+ 2ϵ)(

σ 2 − 1
)
Γ (1− 3ϵ)

e2ϵγE , (6.58)

and by the inverse Fourier transform of 2δ0 2iδ1 (see (4.58)),

A(1,1)
2 =

6iπ2G3 (m1 +m2)m3
1m

3
2

(
2σ 2
− 1

) (
1− 5σ 2

)
√
σ 2 − 1

+ O (ϵ) , (6.59)

here we expanded for simplicity to leading order in ϵ, although both 2δ0 and 2δ1 are of course known in any dimension.
The new classical information is contained in A[0]2 , which, comparing with (6.56), must take the following form in

-space

Ã[0]2 = Re 2δ2 + 2δ0 2i∆1 + i Im 2δ2 . (6.60)

e may rewrite this in q-space as

A[0]2 = Anew
2 + A2pc + A3pc . (6.61)

ur next task, following the above strategy, is to reconstruct the second and third term from two-particle and three-
article cuts.

.3.1. Two-particle and three-particle cuts
For the two-particle cut we can use

iA2pc = 4m1m2

√
σ 2 − 1

∫
d2−2ϵb e−ib·q2iδ0 2i∆1 . (6.62)

he leading eikonal is (3.10)

2iδ0 =
2im1m2G

(
σ 2
−

1
2−2ϵ

)
Γ (−ϵ)

√
σ 2 − 1

(
πb2

)−ϵ (6.63)

and the quantum remainder at one-loop order, 2∆1, is given by (4.61). At this stage, we can use the inverse Fourier
transform (A.49)

4m1m2

√
σ 2 − 1

∫
d2−2ϵb

e−ibq
=

4m1m2
√
σ 2 − 1 π1−ϵΓ (2ϵ)

(6.64)

(b2)1−3ϵ (q2)2ϵ 2−4ϵΓ (1− 3ϵ)
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o obtain iA2pc after multiplying 2iδ0 and 2i∆1. Since 2δ0 is O(ϵ−1) and in addition (6.64) involves a singular factor Γ (ϵ),
he first two nontrivial orders are captured by retaining up to O(ϵ−1), for which we find

A2pc =
2G3πsm2

1m
2
2

(
2σ 2
− 1

)3
ϵ(q2)2ϵ

(
σ 2 − 1

)2
−

i2G3m3
1m

3
2

(
2σ 2
− 1

)
ϵ2
(

q2eγE
4π

)2ϵ (
σ 2 − 1

) 3
2

(
2σ (2σ 2

− 1)(6σ 2
− 7) arccosh σ

√
σ 2 − 1

−
1− 49σ 2

+ 18σ 4

15

)

+
iG3m3

1m
3
2

ϵ(q2)2ϵ(σ 2 − 1)
3
2

( 4σ
(
2σ 2
− 1

) (
8σ 4
+ 2σ 2

− 11
)
arccosh σ

√
σ 2 − 1

−
18468σ 6

− 30728σ 4
+ 13113σ 2

− 1753
225

)
.

(6.65)

Then, we need to add the imaginary part coming from the three-particle cut. As we know from Section 5, this is related
o Im 2δ2 by Fourier transform. In b-space, we have (5.56),

Im 2δ2 =
2m2

1m
2
2(2σ

2
− 1)2G3

πb2
(
σ 2 − 1

)2 (πb2eγE )3ϵ

×

[ (
−

1
ϵ
+ log(4(σ 2

− 1))
)(

σ
(
2σ 2
− 3

)
arccosh σ

√
σ 2 − 1

+
8− 5σ 2

3

)

− (arccosh σ )2
(
σ
(
2σ 2
− 3

)
√
σ 2 − 1

+
2(σ 2
− 1)(4σ 4

− 12σ 2
− 3)(

1− 2σ 2
)2

)

+ (arccosh σ )
σ
(
88σ 6

− 240σ 4
+ 240σ 2

− 97
)

3
(
1− 2σ 2

)2√
σ 2 − 1

+ Li2(1− z2)
σ
(
3− 2σ 2

)
√
σ 2 − 1

+
−140σ 6

+ 220σ 4
− 127σ 2

+ 56

9
(
1− 2σ 2

)2 ]
.

(6.66)

ince Ã3pc = i Im 2δ2, we can again go to q-space using (6.64), finding

A3pc =
4im3

1m
3
2(2σ

2
− 1)2G3

ϵ
(
σ 2 − 1

) 3
2

(
4πe−γE

q2

)2ϵ

×

[ (
−

1
ϵ
+ log(4(σ 2

− 1))
)(

σ
(
2σ 2
− 3

)
arccosh σ

√
σ 2 − 1

+
8− 5σ 2

3

)

− (arccosh σ )2
(
σ
(
2σ 2
− 3

)
√
σ 2 − 1

+
2(σ 2
− 1)(4σ 4

− 12σ 2
− 3)(

1− 2σ 2
)2

)

+ (arccosh σ )
σ
(
88σ 6

− 240σ 4
+ 240σ 2

− 97
)

3
(
1− 2σ 2

)2√
σ 2 − 1

+ Li2(1− z2)
σ
(
3− 2σ 2

)
√
σ 2 − 1

+
−140σ 6

+ 220σ 4
− 127σ 2

+ 56

9
(
1− 2σ 2

)2 ]
.

(6.67)

Comparing the decomposition (6.57), (6.61) with the above explicit formulas for A2pc and A3pc , we discover that A(2,0)
2

ust be purely imaginary in order for Anew
2 not to have O(ϵ−2) real contributions that would result in a divergent eikonal

hase, and is given by

iA(2,0)
2 =

2G3m3
1m

3
2

(
2σ 2
− 1

)
(
σ 2 − 1

) 3
2

(
2σ (2σ 2

− 1)(6σ 2
− 7) arccosh σ

√
σ 2 − 1

−
1− 49σ 2

+ 18σ 4

15

)

+
4G3m3

1m
3
2(2σ

2
− 1)2(

2
) 3

2

(
σ
(
2σ 2
− 3

)
arccosh σ

√
σ 2 − 1

+
8− 5σ 2

3

)
.

(6.68)
σ − 1
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f course the imaginary part of A(1,0)
2 is also determined by the cuts, i.e. by the O(ϵ−1(q2)−2ϵ) terms of (6.65), (6.67),

ImA(1,0)
2 =
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2σ 2
− 1

) (
8σ 4
+ 2σ 2

− 11
)
arccosh σ

√
σ 2 − 1

−
18468σ 6

− 30728σ 4
+ 13113σ 2

− 1753
225

)
+

4m3
1m

3
2(2σ

2
− 1)2G3(

σ 2 − 1
) 3

2

×

[
log(4(σ 2

− 1))

(
σ
(
2σ 2
− 3

)
arccosh σ

√
σ 2 − 1

+
8− 5σ 2

3

)

− (arccosh σ )2
(
σ
(
2σ 2
− 3

)
√
σ 2 − 1

+
2(σ 2
− 1)(4σ 4

− 12σ 2
− 3)(

1− 2σ 2
)2

)

+ (arccosh σ )
σ
(
88σ 6

− 240σ 4
+ 240σ 2

− 97
)

3
(
1− 2σ 2

)2√
σ 2 − 1

+ Li2(1− z2)
σ
(
3− 2σ 2

)
√
σ 2 − 1

+
−140σ 6

+ 220σ 4
− 127σ 2

+ 56

9
(
1− 2σ 2

)2 ]
.

(6.69)

or convenience, we may trade the unknown function Anew
2 in (6.61) for an equivalent one A(1,new)

2 , obtained by removing
the contribution of the 2-particle cut (6.65) to the real part of A(1,0)

2 :

ReA(1,0)
2 =

2G3πsm2
1m

2
2

(
2σ 2
− 1

)3(
σ 2 − 1

)2 + A(1,new)
2 . (6.70)

.3.2. Real-analytic, crossing-symmetric ansatz in GR
In this subsection we will follow a shortcut, based on analyticity and crossing symmetry, in order to reconstruct the

ull two-loop scattering amplitude (at the relevant classical level) from its imaginary part, the idea being that the latter is
asier to compute from lower-loop-order on shell amplitudes. As it turns out, the only missing information is contained
n purely real terms that can be easily computed from the probe limit.

In order to pursue this program we start with an ansatz using the analytic structures we have already seen in the
= 8 case discussed in Section 6.2.2. Let us first notice that (6.59) can be written in the analytic crossing symmetric

orm:

A(1,1)
2 =

6πG3 (m1 +m2)m3
1m

3
2

(
2σ 2
− 1

) (
1− 5σ 2

)
√
σ 2 − 1

(log(−z)+ log(−z̄))+ O (ϵ) . (6.71)

For the other terms we try, in analogy with (4.63), the following ansatz:

A2(s, q2) =
(8πG)3

(4π )4

(
4πe−γE

q2

)2ϵ

Â2(s, q2) ,

Â2(s, q2) =
Â[2]2 (s, q2, ϵ)

ϵ2
+

Â[1]2 (s, q2)
ϵ

.

(6.72)

n order to reproduce Eqs. (6.58) and (6.68) we try the same analytic structures appearing in (6.49). This uniquely
etermines:

Â[2]2 (s, q2)
m3

1m
3
2
= −

8π2m1m2

q2

(
σ 2
−

1
2(1−ϵ)

σ 2 − 1
+
σ̄ 2
−

1
2(1−ϵ)

σ̄ 2 − 1

)[(
σ 2
−

1
2−2ϵ

)2
+
(
σ̄ 2
−

1
2−2ϵ

)2]
cexp(ϵ)

+ 4
[(
σ 2
−

1
2

)2
+
(
σ̄ 2
−

1
2

)2] ( (σ (4σ 2
− 5)

(σ 2 − 1)2
log2(−z)+

σ̄ (4σ̄ 2
− 5)

(σ̄ 2 − 1)2
log2(−z̄)

)
+

[
118σ 4

− 259σ 2
+ 81

60(σ 2 − 1 )(σ 2 − 1)3/2
log(−z)+

118σ̄ 4
− 259σ̄ 2

+ 81
60(σ̄ 2 − 1 )(σ̄ 2 − 1)3/2

log(−z̄)

] )
,

(6.73)
2 2
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ith

cexp(ϵ) =
Γ (1− ϵ)3Γ (1+ 2ϵ)

Γ (1− 3ϵ)
e2ϵγE . (6.74)

Note that we have kept a more complete ϵ dependence in the first line of (6.73). In this way, when we expand that line
to lowest order in q2 (by setting σ̄ = −σ ), it reproduces, at all ϵ, the superclassical (iteration) term − i

6 (2iδ0)
3. At first

rder in σ̄ + σ we get corrections which, at lowest order in ϵ, combine with the terms in the second and third line of
6.73) while at O(ϵ) they contribute to Â[1]2 .

Concentrating on the former, note that the last line of (6.73) gives a purely imaginary contribution (up to negligible
orrections of higher order in q2). The second line, instead, is proportional to log2(−z)−log2(−z̄) and therefore carries both
real and an imaginary part. Amusingly, the former is exactly canceled by the subleading (and obviously real) contribution
rom the first line and the final result reproduces exactly the purely imaginary result (6.68).

Turning now to Â[1]2 , we have to combine the above-mentioned leftover piece from the first line of (6.73) with Eqs. (6.30)
nd (6.31) with an appropriate ansatz for the real-analytic, crossing symmetric Â[1]2 itself. Based on the analogy with the
= 8 case we try

Â[1]2 (s, q2)
m3

1m
3
2
= π2 (m

2
1 +m2

2)
m1m2

[
fa + (2σ 2

− 1)3
]

(σ 2 − 1)2
(6.75a)

+
fb

(σ 2 − 1)3/2
(log(−z)− log(z)) (6.75b)

+
fc

(σ 2 − 1)2
(log(−z)− log(z))

(
Li2(z2)− Li2

(
1
z2

))
(6.75c)

+
fd

(σ 2 − 1)1/2
[(
log3(−z)− log3(z)

)
+ π2 (log(−z)− log(z))

]
(6.75d)

+
fe

(σ 2 − 1)2
(
log2(−z)− log2(z)

)
(6.75e)

+
ff

(σ 2 − 1)3/2
(log(−z)− log(z))

[
log(1− z2)+ log

(
1−

1
z2

)]
(6.75f)

where the unknown functions fa, . . . , ff are polynomials in σ . The first line of the ansatz (6.75a) is motivated by the
analogue equation for the N = 8 case, see (6.50a), but here we allow for an extra contribution, fa, besides the one from
the 2-particle cut in the first line in (6.65).

Matching onto the known terms in (6.69) fixes uniquely all the coefficients fi except for fa, which is purely real. We
thus obtain the following result consisting of six distinct real-analytic crossing-symmetric structures paralleling exactly
the ones we found in N = 8:

Â[1]2 (s, q2)
m3

1m
3
2
= π2 (m

2
1 +m2

2)
m1m2

[
fa + (2σ 2

− 1)3
]

(σ 2 − 1)2
(6.76a)

−
32468σ 6

− 52728σ 4
+ 25813σ 2

− 7353
450(σ 2 − 1)3/2

(log(−z)− log(z)) (6.76b)

+
σ (2σ 2

− 1)2(2σ 2
− 3)

(σ 2 − 1)2
(log(−z)− log(z))

(
Li2(z2)− Li2

(
1
z2

))
(6.76c)

−
4
3
4σ 4
− 12σ 2

− 3
(σ 2 − 1)1/2

[(
log3(−z)− log3(z)

)
+ π2 (log(−z)− log(z))

]
(6.76d)

−
4
3
σ (34σ 6

− 63σ 4
+ 42σ 2

− 16)
(σ 2 − 1)2

(
log2(−z)− log2(z)

)
(6.76e)

+
2 (2σ 2

− 1)2(8− 5σ 2)
2 3/2 (log(−z)− log(z))

[
log(1− z2)+ log

(
1−

1
2

)]
. (6.76f)
3 (σ − 1) z
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.3.3. The 3PM eikonal 2δ2
Substituting (6.76), (6.73) into (6.72), and expanding for small q2 as instructed by (6.57), we finally obtain

ReA(1,0)
2 =

2G3πsm2
1m

2
2

(
2σ 2
− 1

)3(
σ 2 − 1

)2
+ 2πG3m2

1m
2
2

[
sfa(σ )

(σ 2 − 1)2
−

4
3
m1m2σ

(
14σ 2

+ 25
)

+
4m1m2

(
3+ 12σ 2

− 4σ 4
)
arccosh(σ )

√
σ 2 − 1

+
2m1m2

(
2σ 2
− 1

)2
√
σ 2 − 1

(
8− 5σ 2

3
(
σ 2 − 1

) + σ (2σ 2
− 3

)
arccosh(σ )(

σ 2 − 1
)3/2

) ]
,

(6.77)

here the last three lines provide the sought after contribution A(1,new)
2 in (6.70).

Following the same steps as for N = 8, we can start from the complete expression (6.57), go to b-space, subtract all
teration terms as dictated by (6.55), in particular those due to 2δ0 2∆1, and drop the imaginary part Im 2δ2. However,
since (6.77) is already the real part of the O(q−4ϵ) term, this procedure is equivalent to starting from (6.77) and dropping
the first term on the right-hand side. This term is just the real part of (6.65), i.e. the one arising from 2δ0 2∆1. The final
step is to restore the appropriate overall factors appearing in (6.57) and go to b-space.

In other words Eq. (6.77), without the term in the first line, is the subtracted two-loop amplitude that, when translated
in impact parameter space, directly gives the 3PM eikonal. In Section 6.3.4 we will instead show which subtractions are
appropriate for obtaining the radial action and we will see that they are different from the ones for obtaining the eikonal
(though of course closely related).

The result is the 3PM eikonal phase

Re 2δ(gr)2 =
4G3m2

1m
2
2

b2

{(
2σ 2
− 1

)2 (8− 5σ 2
)

6
(
σ 2 − 1

)2 −
σ
(
14σ 2

+ 25
)

3
√
σ 2 − 1

+
sfa(σ )

4m1m2
(
σ 2 − 1

) 5
2
+ arccosh σ

⎡⎣σ (2σ 2
− 1

)2 (2σ 2
− 3

)
2
(
σ 2 − 1

) 5
2

+
−4σ 4

+ 12σ 2
+ 3

σ 2 − 1

⎤⎦⎫⎬⎭ ,
(6.78)

ith fa(σ ) as in (6.86) below. Eq. (6.78), together with the imaginary part (6.66), completes our discussion of the eikonal
xponentiation up to 3PM. While in the approach presented here they all appear on the same footing, the various terms
n (6.78) have different physical interpretations that we can now illustrate.

As already alluded to, the term in green in the second line will fixed by probe limit calculation momentarily. The terms
n black contain instead genuine 3PM dynamical information, associated to the so-called ‘‘potential’’ interaction between
he two objects. They are due to the fact that each body perceives gravitational attraction towards the other one, but
his occurs in a fully relativistic manner as dictated by GR. Historically, they were the first 3PM effects to be calculated
nalytically [38,39], a result that was achieved by using amplitude techniques.
The terms highlighted in blue instead have a different meaning. They are due to the fact that a system of two objects

ndergoing nontrivial deflections is not a conservative one. The two objects can in general lose energy and angular
omentum that can be stored in the gravitational field. The effect of this phenomenon is that the two bodies feel an
dditional, non-conservative force called radiation-reaction force [294,295]. To 3PM order, this reaction force is captured
y the terms in blue and is actually due to a 2PM order loss of angular momentum that the two-body system transmits
o the gravitational field [289,296].

The interplay between potential and radiation-reaction terms is crucial in order to ensure that the high-energy limit
f (6.78) matches onto the corresponding result for the massless 3PM eikonal [15]. Taking σ →∞ with

s = E2
= m2

1 + 2m1m2σ +m2
2 ∼ 2m1m2σ , (6.79)

ne finds again (6.47) in precise agreement with Ref. [15]. In particular, in this limit, a cancellation occurring in the
quare brackets of (6.78) between potential and radiation-reaction terms is crucial in order to ensure that terms of order
G3s2

b2
log s

m1m2
drop out. The universality of the result (6.47) for Re 2δ2 (and of the associated log(s) in the Im 2δ2 (6.39)) is

ue to the fact that, in the ultrarelativistic limit, graviton exchanges dominate the interactions because they couple with
he highest power of the energy, both in N = 8 and in GR.

We can now go from the eikonal to the deflection angle using the familiar saddle-point equation

2p sin
Θ
= −

∂ Re 2δ
. (6.80)
2 ∂b
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o this order, it is important to include in the left hand side the full deflection angle up to 3PM order, complete of its
PM and 2PM terms, since the next-to-leading order term in the Taylor expansion gives rise to a contribution of order
Θ1PM)3. Let us collect here the result for the deflection angle complete up to 3PM:

Θ =
4GE

(
σ 2
−

1
2

)
b
(
σ 2 − 1

) + 3πG2E (m1 +m2)
(
5σ 2
− 1

)
4
(
σ 2 − 1

)
b2

+
8G3Em1m2

b3

⎧⎨⎩
(
2σ 2
− 1

)2 (8− 5σ 2
)

6
(
σ 2 − 1

) 5
2

−
σ
(
14σ 2

+ 25
)

3(σ 2 − 1)
+

sfa(σ )

4m1m2
(
σ 2 − 1

)3
+ arccosh σ

[
σ
(
2σ 2
− 1

)2 (2σ 2
− 3

)
2
(
σ 2 − 1

)3 +
−4σ 4

+ 12σ 2
+ 3

(σ 2 − 1)
3
2

]}
+

G3s
3
2
(
2σ 2
− 1

)3
3b3

(
σ 2 − 1

)3 ,

(6.81)

ith fa(σ ) as in (6.86) below. To confirm the physical interpretation of the various contributions, it is instructive to take
he small-velocity limit, i.e.

σ =
1

√
1− v2

, v→ 0 . (6.82)

hen, the green term in (6.81), which is associated to the probe limit, scales like G3v−4. In the PN counting where G ∼ v2,
his corresponds to a 1PN effect. The potential interaction terms, appearing in black in the last two lines of (6.81), are
roportional to G3v−2, so they are 2PN effects. Instead, the radiation-reaction terms in blue scale as G3v−1 indicating
2.5PN effect. This half-odd PN order and the odd power of the velocity is indeed the hallmark of a dissipative effect.
omparing with the situation in N = 8, we note that in that case radiation-reaction effects started showing up already to
.5PN order. This is due to the presence of additional states in the spectrum of classical fields, in particular the ones
ssociated to Kaluza–Klein vectors that couple to the dipole of the system, unlike the graviton, which couples to its
uadrupole.
In order to express the final result in terms of the system’s angular momentum, it is important to recall that b is not

xactly orthogonal to the incoming particle velocities. It is instead related to the orthogonal impact parameter bJ such
hat J = p bJ by the additional saddle-point equation bJ = b cos(Θ/2) as in (6.11). This difference of order G2 is important
n the factor of 1/b appearing in 1PM term of (6.81), and leads to an additional contribution to the 3PM result when
xpressed in these variables. The deflection angle complete up to 3PM order can be then cast in the form

Θ =
4Gm1m2

(
σ 2
−

1
2

)
J
√
σ 2 − 1

+
3πG2m2

1m
2
2 (m1 +m2)

(
5σ 2
− 1

)
4EJ2

+
8G3m4

1m
4
2

sJ3

{(
2σ 2
− 1

)2 (8− 5σ 2
)

6
(
σ 2 − 1

) −
σ
(
14σ 2

+ 25
)

3(σ 2 − 1)−
1
2
+

sfa(σ )
4m1m2(σ 2 − 1)3/2

+
arccosh σ
√
σ 2 − 1

[
σ
(
2σ 2
− 1

)2 (2σ 2
− 3

)
2
(
σ 2 − 1

) − 4σ 4
+ 12σ 2

+ 3

]}
−

2G3m3
1m

3
2

(
2σ 2
− 1

)3
3J3

(
σ 2 − 1

)3/2 .

(6.83)

inally, in the probe limit m1 ≪ m2, we find the following 3PM contribution44

Θ3PM,probe =
2G3m3

1m
3
2fa(σ )

J3(σ 2 − 1)3/2
−

2G3m3
1m

3
2

(
2σ 2
− 1

)3
3J3

(
σ 2 − 1

)3/2 (6.84)

nd we can compare this with (B.19) which requires (taking into account the prefactor in (B.13) with Rs = 2Gm2 as in
B.2))

Θ3PM,probe =

⎛⎝2Gm2

√
E2
p −m2

p

J

⎞⎠3

−120E4
pm

2
p + 60E2

pm
4
p + 64E6

p − 5m6
p

12
(
E2
p −m2

p

)
3

(6.85)

ith Ep = m1σ and mp = m1. As promised, equating (6.84) with (6.85) fixes the unknown polynomial to be

fa(σ ) = 2(12σ 4
− 10σ 2

+ 1)(σ 2
− 1) . (6.86)

6.3.4. Extracting the radial action from the amplitude
In this subsection we shall go back to the connection (6.9) between the eikonal phase, which is the main focus of

the present report, and the phase shift, which is more directly related to the radial action as highlighted by (6.16). As

44 The other terms in (6.83) are negligible because they are down by a factor m1m2 ∼
m1 .
s m2
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eviewed in Section 1.3, the main property of the states with well-defined angular momentum is that they diagonalize
he 2→ 2 elastic S-matrix, and the corresponding diagonal elements define the phase shift (see in particular (1.57) and
1.59)). Correspondingly, such a basis also diagonalizes the sum over intermediate two-particle states (1.66). On the other
and, the b-space Fourier transform at the basis of the eikonal formalism does not achieve this diagonalization exactly, as
isplayed in particular by Eq. (5.13), but only up to terms that are further suppressed by powers of 1/b2 or, equivalently,

of q2.
In order to recover the phase shift from the amplitude one should subtract all super-classical terms by matching to

(1.59) and not the b-space expression (4.1). Following the notation introduced in (2.44) for the phase shift in the classical
limit, let us similarly define the symbol F(s, J)

2fj(s) = F(s, J) (6.87)

for the partial-wave amplitude in the same limit, when J = h̄j becomes classically sizeable. In this way, suppressing again
h̄ from now on, (1.59) becomes

1+ iF(s, J) = eiχ (s,J)(1+ iρ(s, J)) , (6.88)

where ρ(s, J) denotes the quantum remainder in the J-basis. The loop expansion for F(s, J),

F(s, J) = F0(s, J)+ F1(s, J)+ F2(s, J)+ · · · , FL(s, J) ∼ O(GL+1) , (6.89)

translates into a PM expansion for χ (s, J),

χ (s, J) = χ0(s, J)+ χ1(s, J)+ χ2(s, J)+ · · · , χL(s, J) ∼ O(GL+1) (6.90)

and similarly for the quantum remainder ρ(s, J). This in turn dictates the following relations,

iF0 = iχ0 , (6.91)

iF1 =
(iχ0)2

2!
+ iχ0 + iρ1 , (6.92)

iF2 =
(iχ0)3

3!
+ (iχ1)(iχ0)+ [iχ2 + (iχ0)(iρ1)] . (6.93)

espite the resemblance with (4.4), (4.5), (4.6), at loop level these equations dictate slightly different subtractions, which
o remove the superclassical terms, but in general can leave behind different classical corrections, as we now turn to
llustrate.

As we checked in (2.43) in the massless setup, the leading-order expressions for the eikonal phase and the phase shift
atch,

χ0(s, J) = 2δ0(b)
⏐⏐
b→bJ

. (6.94)

his is not surprising because corrections in the relation (6.11) between b and bJ = J/p are suppressed by powers of G2

in the PM expansion. Similarly we can conclude that

χ1(s, J) = 2δ1(b)
⏐⏐
b→bJ

. (6.95)

We had already seen this in (6.18), whose first two terms on the right-hand side are equivalent to (6.94), (6.95), as follows
from the definition (6.17) of d1, d2. In fact, (6.94) and (6.95) can be easily checked by noting that the characterizing
property (6.14) is trivially equivalent to (6.11) to this order:

2 sin
Θ1PM

+Θ2PM

2
= Θ1PM

+Θ2PM
+ O(G3) (6.96)

and correspondingly

−
1
p
∂(2δ1(s, b)+ 2δ(s, b))

∂b
= −

∂(2δ1(s, bJ )+ 2δ(s, bJ ))
∂ J

+ O(G3) . (6.97)

To subleading order in the amplitude, however, we encounter the first novelty. Indeed, repeating the steps in
ection 5 that lead to (5.13), but exploiting the exact diagonalization granted by the J-projection, we obtain the following
onsequence of the unitarity relation:

2 Im2pc F(s, J) = |F(s, J)|2 (6.98)

ithout corrections (in contrast with (5.13)). In turn, this ensures that not only that

Imχ0(s, J) = Imχ1(s, J) = 0 (6.99)

consistently with (6.94), (6.95) and with the fact that 2δ0, 2δ1 are real), but also that the quantum remainder is real to
this order

Im ρ (s, J) = 0 . (6.100)
1
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his reflects at two loop level (6.93) into the following link:

Reχ2 = ReF2 +
1
3!

(χ0)3 , (6.101)

here, being purely real, ρ1 has dropped out. In other words, there is no need to know the one-loop remainder in order
o calculate Reχ2: one only needs to take into account the cubic contribution involving the leading-order phase shift, χ0,
n the above equation.

Rather than working in J-space, it is more convenient to calculate the subtraction appearing in (6.101) in momentum
pace, where it translates to the (exact) triple convolution of the tree-level amplitude. Letting the subscript M stand for
‘momentum space’’, we have

(χ0)3M =
∫ ∫

p1

p2

q1 d(LIPS)2 q2 d(LIPS)2

p4

p3

q− q1 − q2 (6.102)

This expression is easy to calculate to any desired accuracy in q2, using the reverse unitarity strategy, since clearly it
corresponds to a double cut of the double-box integral IIII appearing in the amplitude itself (6.20). Its leading-order
contribution must cancel the super-classical terms in the real part of the partial wave, while its subleading contribution
will contribute to classical order. More concretely, since all internal massive lines must be cut, one can obtain the result
by looking at the q-expansion in Eq. (3.22) of [47] and the sought-for subleading contribution is given by (3.24 g) of that
reference.

Let us consider, for the sake of generality, a tree-level amplitude of the form

A0(s,−q2) =
a0
q2
, (6.103)

so that

Ã0 = 2δ0 =
1

4Ep
a0
4π

Γ (−ϵ)
(πb2)−ϵ

, Θ1PM
= −

1
p
∂2δ0
∂b
=

1
4Ep2

a0
2π1−ϵ

Γ (1− ϵ)
b1−2ϵ

. (6.104)

In particular, for the case of minimally interacting massive scalars,

a0 = 32πGm2
1m

2
2

(
σ 2
−

1
2−2ϵ

)
. (6.105)

Then using reverse unitarity as explained above (see Eq. (3.11) of [110]), one obtains

(χ0)3M =
[
1−

ϵq2

3p2
+ O(q4)

]
1

16E2p2
a30Γ (−ϵ)3

(4π )2−2ϵΓ (−3ϵ)
Γ (1+ 2ϵ)
(q2)1+2ϵ

. (6.106)

aking into account the small-q expansion of the two-loop amplitude

A2 = A[2]2 + A[1]2 + A[0]2 + O(q1−4ϵ) (6.107)

here A[k]2 ∼ q−k−4ϵ as in (6.57), and going to b-space, we find

Re Ã2(s, b)+
1
3!

FT[(χ0)3M ] = Ã[2]2 (s, b)+ Re Ã[0]2 (s, b)

+
(2δ0)3

3!
−

(Θ1PM)3

3!
bp+ O(b−3−3ϵ).

(6.108)

n this way, the superclassical O(b3ϵ) terms cancel out between the first term of each line. Note that the subleading
orrections in the Fourier transform (A.40) do not play any role, precisely thanks to this cancellation.
The remaining classical terms that are left behind determine the 3PM phase shift according to

Reχ2(s, J) =
[
Re Ã[0]2 (s, b)−

bp
6
(Θ1PM)3

]
b→bJ

. (6.109)

ere, in the last step, we have used the fact that the Fourier transform to b-space and the J-projection agree to leading
order, and that after the subtraction the quantity we are after does not receive any subleading contribution (neither in 1/J
nor in G).

This subtraction is not identical to the analogous one dictated by the eikonal exponentiation (4.5), (4.6). Indeed, as
discussed in Section 5, provided that there are no available inelastic 2-particle channels, the imaginary part of 2∆ is also
1
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ictated by the tree-level amplitude (6.103) via

2 ImA1(s,−q2) =
∫

p1

p2

q1 d(LIPS)2

p4

p3

q− q1 (6.110)

i.e using again reverse unitarity (see Eq. (A.19) of Ref. [110]),

2 Im 2A1(s,−q2) =
[
1−

ϵq2

4p2
+ O(q4)

]
1

4Ep
a20Γ (−ϵ)2

(4π )1−ϵΓ (−2ϵ)
Γ (1+ ϵ)
(q2)1+ϵ

. (6.111)

s ensured by (5.13), going to b-space the leading term simply reproduces the contribution (2δ0)2 dictated by the eikonal
exponentiation, while the subleading term determines

2 Im 2∆1(s, b) =
2ϵ

(4Ep2)2
a20Γ (1− ϵ)2

16π2−2ϵ(b2)1−2ϵ
. (6.112)

Therefore, using

Re 2δ2(s, b) = Re Ã[0]2 (s, b)+ 2δ0(s, b) Im 2∆1(s, b) , (6.113)

e obtain

Re 2δ2(s, b) = Re Ã[0]2 (s, b)−
bp
8
(Θ1PM)3 . (6.114)

We are now in a position to make a precise comparison between the 3PM eikonal phase and phase shift. Subtracting
(6.109) and (6.114),

Re 2δ2(s, b)
⏐⏐
b→J/p − Reχ2(s, J) =

J
24

(Θ1PM)3 . (6.115)

We remark that Re 2δ2(s, b), which appears in (6.115), is theO(G3) of Re 2δ2(s, b) regarded as a function of b. This should not
e confused with the O(G3) of Re 2δ2(s, bJ/ cos Θ2 ), regarded as a function of bJ . As discussed for instance above (6.83), the
ubstitution b = bJ/ cos Θ2 (6.11) would induce additional O(G3) terms, hence the need to pay attention to this distinction.
hese terms, however, do not cancel out against the right-side of (6.115) so that the phase shift is not simply obtained
rom the eikonal phase by taking b = bJ/ cos Θ2 into account,

Re 2δ
(
s, bJ/ cos Θ2

)
̸= Reχ (s, J) . (6.116)

The difference (6.115) is precisely the one needed to reproduce the last term in the first line of (6.18), which we had
erived formally from the saddle-point conditions. In turn, this is crucial to ensure that, while the eikonal phase is linked
o the angle by (6.11), the phase shift obeys (6.14). Indeed, in the notations of (6.17), (6.18), (6.19),

Θ1PM
=

d0
J

p , Re 2δ2 =
d2 p2

2J2
, Reχ2 =

d2 p2 −
d30
12

2J2
. (6.117)

ence the difference between eikonal phase and phase shift exactly matches the one derived in (6.115).
To complete the spectrum of possible definitions for the subtractions, let us consider employing the Fourier transform

ith the complete mass-shell delta functions. We begin by recalling that the standard form of the exponentiation is
ictated by (4.1), were the Ã(s, b) is the Fourier transform with linearized delta functions as in (1.71) and (A.44). In contrast,
uppose we were to define

1+ i FT[A](s, bJ ) = [1+ 2i∆̌(s, bJ )]e2iδ̌(s,bJ ) , (6.118)

ith FT[A] as in (1.32) and (A.31). Then, while of course

2δ̌0(s, bJ ) = 2δ0(s, b)
⏐⏐
b→bJ

, 2δ̌1(s, bJ ) = 2δ2(s, b)
⏐⏐
b→bJ

, (6.119)

ne finds a nontrivial difference for 2∆̌1 and 2δ̌2 to the effect that

Re 2δ̌2(s, bJ ) =
[
Re 2δ2(s, b)+

bp
8
(Θ1PM)3

]
b→bJ

=

[
Re Ã[0]2 (s, b)

]
b→bJ

(6.120)

where we used (6.114) in the last step, and therefore

Re 2δ̌(s, b ) = Re 2δ̌(s, b cos Θ ) = Re 2δ(s, b) (6.121)
J 2
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p to 3PM order.
Let us conclude this section by presenting the radial action up to 3PM in GR for the scattering of minimally coupled

assive scalars in terms of the coefficients defined in (6.17),

I(s, J) = −π J − d0 log J +
d1p
J
+

d2p2 −
d30
12

2J2
, (6.122)

where

d0 =
2Gm1m2(2σ 2

− 1)
√
σ 2 − 1

, d1 =
3πG2m2

1m
2
2(m1 +m2)(5σ 2

− 1)
4Ep

, (6.123)

and

d2 = 8G3m2
1m

2
2

{(
2σ 2
− 1

)2 (8− 5σ 2
)

6
(
σ 2 − 1

)2 −
σ
(
14σ 2

+ 25
)

3
√
σ 2 − 1

+
2s(12σ 4

− 10σ 2
+ 1)

m1m2
(
σ 2 − 1

) 3
2
+ arccosh σ

⎡⎣σ (2σ 2
− 1

)2 (2σ 2
− 3

)
2
(
σ 2 − 1

) 5
2

+
−4σ 4

+ 12σ 2
+ 3

σ 2 − 1

⎤⎦⎫⎬⎭ .
(6.124)

.3.5. Radial action, effective potential, PN limit and bound orbits
In this subsection, we determine the deflection angle and the radial action in terms of a potential present in the

amiltonian describing the relative motion of two black holes. This serves as a tool to re-sum the PM contributions in
controlled way and access the PN limit that also applies to the case of bound orbits. We conclude by presenting the
PN-accurate expressions for the periastron advance, revolution period for generic bound orbits and for the binding energy
f circular orbits. The idea of matching to an effective potential has its roots in the EOB approach, and here we will follow
he particularly simple incarnation given in [297].

We start from the Hamiltonian describing the relative motion in a plane of two black holes:

H = p2r +
J2

r2
+ V (r) , V (r) = −

∞∑
n=1

Gn

rn
fn , (6.125)

here V (r) is the potential given as an expansion in the Newton constant. From the three Hamilton equations
∂H
∂θ
= −ṗθ = 0 , ṙ =

∂H
∂pr
= 2pr , θ̇ =

∂H
∂pθ
=

2pθ
r2

(6.126)

e get that the angular momentum pθ = J is a constant of motion and the relation

∂θ

∂r
=

J
r2pr

, with pr =

√
p2 −

J2

r2
− V (r) . (6.127)

hus the deflection angle is

Θ = −π + 2J
∫
∞

r∗

dr

r2
√
p2 − J2

r2
− V (r)

= −π − 2
∫
∞

r∗
dr
∂

∂ J

√
p2 −

J2

r2
− V (r) , (6.128)

here p2 is the constant value of the Hamiltonian and, in our case, p is equal to the momentum in the center of mass
rame. The factor −π is there to ensure that Θ = 0 if the potential vanishes and the factor 2 takes care of the motion
rom infinity to the point of minimal distance r∗ and from r∗ back to infinity where r∗ is the largest positive root of the
ondition of turning point, pr (r∗) = 0. As shown in [298] one can avoid to determine it by computing the deflection
ngle by using instead the following equivalent expression (in Appendix B.1 we review a similar approach to calculate
he deflection angle in the probe limit)

Θ =

∞∑
k=1

Θk(bJ ) ; Θk(bJ ) =
2b
k!

∫
∞

0
du

(
∂

∂b2J

)k
(
V (
√
u2 + b2J )

)k
(u2
+ b2J )

k−1

p2k
, (6.129)

where as usual J = pbJ . From the deflection angle we can reconstruct the radial action I by using (6.15)

I = −
∫

(Θ + π ) dJ (6.130)

and ‘‘the +π ’’ is so that I → −π J when Θ → 0; moreover the J-independent part of I is fixed so as to agree with the
1PM expression for 2δ0 via (6.16) and (6.94). Then, the relation between the radial action and the potential is given by

I = −π J + 2
∫
∞
√
p2 −

J2
2 − V (r) . (6.131)
r∗ r
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t can also be written in a more convenient way as

I = −π J −
∞∑
k=1

1
k!

∫
∞

0
du

(
∂

∂b2J

)k−1
(
V (
√
u2 + b2J )

)k
(u2
+ b2J )

k−1

p2k−1
(6.132)

The integral over u can be easily computed by changing variable to u = bJ sinhw and using∫
∞

0

dw
coshd−2w

=

√
πΓ ( d−22 )

2Γ ( d−12 )
. (6.133)

In this way we get

I(J, σ ) = −π J +
f1GDb2ϵJ Γ (−ϵ)

2p
+

f2G2π

2J
+

G3

J2

(
pf3 +

f1f2
2p
−

f 31
24p3

)
+ O(G4) , (6.134)

here for the k = 1 contribution we reinstated the dimensional regularization parameter by using − GDf1
rD−3

in place of − Gf1
r

n the potential. Then, by using (6.15), we can derive the deflection angle (in D = 4)

Θ =
f1G
pJ
+

f2G2π

2J2
+

2G3

J3

(
pf3 +

f1f2
2p
−

f 31
24p3

)
+ O(G4) . (6.135)

rom the knowledge of the PM expanded deflection angle one can of course determine the coefficients fn. Comparing the
quation above with (6.83), we obtain up to 3PM

f1 =
2m2

1m
2
2(2σ

2
− 1)

E
, f2 =

3m2
1m

2
2(m1 +m2)(5σ 2

− 1)
2E

(6.136)

nd

f3 = m2
1m

2
2

{
2E(12σ 4

− 10σ 2
+ 1)

(σ 2 − 1)
−

3(2σ 2
− 1)(5σ 2

− 1)(m1 +m2)
2(σ 2 − 1)

+
2m1m2

E

[
−

2σ (14σ 2
+ 25)

3
− 2

4σ 4
− 12σ 2

− 3
√
σ 2 − 1

cosh−1(σ )

+
(2σ 2
− 1)2

√
σ 2 − 1

(
8− 5σ 2

3(σ 2 − 1)
+

(2σ 2
− 3)σ

(σ 2 − 1)
3
2

cosh−1(σ )

) ]}
. (6.137)

t is possible also to derive the parameters fn directly by matching the gravity scattering amplitudes against those of an
ffective theory encoding the potential (6.125) [37]. In this way one can derive at each PM order an object, AnPM (σ , q),
hat satisfies the following impetus formula [260,291,292,298]:

Gn

rn
fn =

1
2E

∫
d3q

(2π )3
eiqrAnPM (σ , q) . (6.138)

At the tree level A1PM is the one in (3.4). At one loop A2PM is given in (4.47) for ϵ = 0. Finally at two loops,

A3PM (σ , q2) = 4G3m2
1m

2
2π log q2E

×

[
3(2σ 2

− 1)(5σ 2
− 1)(m1 +m2)

2(σ 2 − 1)
−

2E(12σ 4
− 10σ 2

+ 1)
(σ 2 − 1)

+
2m1m2

E

(
2(−3− 12σ 2

+ 4σ 4) cosh−1(σ )
√
σ 2 − 1

+
2σ (14σ 2

+ 25)
3

−
(2σ 2
− 1)2

√
σ 2 − 1

(
8− 5σ 2

3(σ 2 − 1)
+

(2σ 2
− 3)σ

(σ 2 − 1)
3
2

cosh−1(σ )

) )]
(6.139)

which coincides with the part proportional to log q2 of Eq. (8) of [38], with the addition of the two terms coming from
radiation reaction. Once the parameters fn, and so the potential V (r) (6.125), are determined, one can use this information
in (6.128) to find an ‘‘improved’’ deflection angle that resums a class of higher order corrections. A detailed analysis
discussing also this approach is found in [297,299–302] showing excellent agreement with data from numerical relativity.
The idea of resumming is at the basis of the EOB approach [31,32] that can be used to find accurate waveforms for bound
systems by using an analytic approach.
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A particularly simple case is the one in which the potential contains only f1 and f2, which effectively reduces the
alculations to the textbook Coulomb/Newton case. In this case the deflection angle can be computed exactly as a function
f G, J and σ . To show this it is convenient to introduce the two dimensionless quantities:

f̂1 =
f1

p2M
; f̂2 =

f2
p2M2 ; M = m1 +m2 . (6.140)

Then Eq. (6.128) becomes

Θ(J, E)+ π =
2J
p

∫
∞

r∗

dr

r2
√
1+ f̂1GM

r −
Ĵ2

p2r2

(6.141)

where

Ĵ2 = J2 − f̂2(GMp)2 (6.142)

and r∗ is the positive root of the equation:

1+
f̂1GM
r
−

Ĵ2

p2r2
= 0 (6.143)

that has the two roots:

r± =
1
2

⎛⎝±
√
(f1GM)2 +

4Ĵ2

p2
− f1GM

⎞⎠ (6.144)

and r∗ = r+. Rewriting the quantity in the square root in (6.141) in terms of the two roots and changing the integration
variable as

r+
r
= 1− az2 ; a =

r− − r+
r−

(6.145)

e get

Θ(J, E)+ π
2

=
2J

p
√
r+(−r−)

∫ 1√
a

0

dz
√
1− z2

=
2J

p
√
r+(−r−)

arcsin
(

1
√
a

)
. (6.146)

By using (6.144) we get

2 sin2
[
Θ(J, E)+ π

4

√
1−

f̂2(GMp)2

J2

]
= 1+

1√
1+ 4Ĵ2

(pf̂1GM)2

(6.147)

which, by using trigonometric identities and recalling that 0 ≤ Θ ≤ π , can be shown to agree with Eq. (7.6) of [291]
written below

Θ(J, E)+ π
2

=
1√

1− f̂2y2

f̂ 21

⎛⎜⎜⎝π2 + tan−1
y
2√

1− f̂2y2

f̂ 21

⎞⎟⎟⎠ , (6.148)

here we introduced y = GMf̂1p
J .

An interesting feature of (6.148) is that its PN expansion captures the 1PN result to all order in the Newton constant
. We can see this by first using the results (6.136) for GR to rewrite (6.148) in terms of the parameters jPN and v∞
ntroduced in (3.13) and then by taking the limit 1

jPN
∼ v∞ ≪ 1 up to the first subleading order with α−1 = jPNv∞ fixed.

Using, in this limit, the approximation y
2 ≃ α(1+

2
α2j2PN

) and f̂2y2

f̂ 21
≃

6
j2PN

we obtain

Θ

2
= arctanα +

1
j2PN

(
3
(
arctanα +

π

2

)
+

3α2
+ 2

α(α2 + 1)

)
+ O

(
j−4PN

)
. (6.149)

here we have used tan−1 α(1+x) = tan−1 α+ αx
1+α2
+· · · with x = 3α2+2

α2j2PN
. The first term above is the 0PN scattering angle

obtained in (3.14), while the second term is the 1PN correction at all orders in the PM expansion, see for instance [189].
One can also obtain the result (6.149) from the probe limit calculation, as reviewed in Appendix B.1. Integrating (6.149)
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s in (6.130), we have

I ≃
Gm1m2

α v∞

[
2α − 2 arctanα − α

(
log
(
α2
+ 1

)
+ 2 log

(
Gm1m2

α

)
− 4 log v∞

)
+α v2

∞

(
−2 log

(
α2
+ 1

)
+ 3πα + 6α arctanα − 4 log

(
Gm1m2

α

)
+ 8 log v∞

)
− π

]
.

(6.150)

As discussed in [291–293], it is possible to extract information about bound binary systems starting from the resummed
N results for the scattering process. The basic idea is to analytically continue the unbound observables to the region where
he angular momentum is kept fixed but the center-of-mass energy is below m1+m2, due to the presence of a nontrivial
inding energy. In practice, we need to extend the Lorentz factor from the region σ > 1 to σ̃ < 1, which can be done in

two ways because of the branch cut p ∼
√
σ 2 − 1. The recipe for defining the radial action Ĩ for the bound case is to take

he linear combination of these two possibilities

Ĩ = I(
√
σ 2 − 1→ i

√
1− σ̃ 2, J)+ I(

√
σ 2 − 1→−i

√
1− σ̃ 2, J) . (6.151)

In the PN limit this analytic continuation is equivalent to sending v∞ → ±iv∞. Applying this recipe to (6.150), at 1PN
order we find

Ĩ = −2π J + 2πGm1m2
2σ̃ 2
− 1

√
1− σ̃ 2

+ 6π
G2m2

1m
2
2

J
+ O

(
2PN

)
. (6.152)

This can be directly obtained from (6.149) by noting that all its terms are odd under v∞ ↔ −v∞ (or equivalently α→−α)
except for 3π/(2j2PN) and therefore cancel out in (6.151). The J-independent term on the right hand side of (6.152), which
we can take from the PM expansion (6.134), originates from the analytic continuation of b2ϵJ Γ (−ϵ) in the second term of
(6.134): since J is kept fixed in (6.151), we have to send bJ →∓ibJ as

√
σ 2 − 1→±i

√
1− σ̃ 2. The term O(G2) in (6.152)

ollows from the only contribution in (6.149) that is even under v∞ ↔ −v∞. We can rewrite (6.152) in the variables used
y [30], introducing also the symmetric mass-ratio ν = m1m2/(m1 +m2)2,

σ̃ = 1− εB

(
1
2
−
ν

8
εB

)
, J =

Gm1m2
√
εB

√
jB, (6.153)

thus trading J , σ̃ for jB, εB, and obtain, in the small εB limit (at fixed jB),

Ĩ = −πGm1m2

[
2
√
jB − 1
√
εB
−
√
εB

(
6

1
√
jB
+
ν − 15

4

)]
+ O

(
2PN

)
. (6.154)

t was pointed out in [291] that the radial action for the bound case vanishes in the case of circular trajectories which is
he most relevant one for describing the typical black hole binaries [30]. By using (6.154) we obtain the following relation

Ĩ = 0 , ⇒ jB,circ = 1+ εB
ν + 9
4
+ O

(
2PN

)
, (6.155)

n agreement with [30] and with the closely related derivation given in [303].
Of course, it is also possible to introduce the bound radial action in the PM expansion. Substituting Eq. (6.134) into

q. (6.151) we obtain at the 2PM approximation

Ĩ = −2π J + 2πGm1m2
2σ̃ 2
− 1

√
1− σ̃ 2

+ π
G2m2

1m
2
2

J
(m1 +m2)

3(5σ̃ 2
− 1)

2E
+ O

(
3PM

)
. (6.156)

y using the result above in the boundary-to-bound dictionary [291,292], one can derive the periastron advance K = ∆Θ
2π

nd the period Tb of the bound motion

∆Θ = −∂J Ĩ , Tb = ∂E Ĩ =
∂σ̃ Ĩ

∂σ̃

√
m2

1 + 2m1m2σ̃ +m2
2

. (6.157)

It is straightforward to check that, using (6.156) in (6.157) and rewriting the result in terms of the variables (6.153), one
obtains Eq. (347b) of [30] (at order 1/j , but at all orders in ε ) for the periastron advance K and Eq. (347a) of the same
B B
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r
eference (at order 1/
√
jB, but at all orders in εB) for the angular frequency n = 2π/Tb45:

n =
ε
3/2
B c3

G(m1 +m2)

{
1+

εB

8
(−15+ ν)+

ε2B

128

[
555+ 30ν + 11ν2 +

192

j1/2B

(−5+ 2ν)

]

+
ε3B

3072

[
−29385− 4995ν − 315ν2 + 135ν3 +

5760

j1/2B

(
17− 9ν + 2ν2

)
+

16

j3/2B

(
−10080+

(
13952− 123π2) ν − 1440ν2

)]
+ O

(
1
c8

)}
,

K = 1+
3εB
jB
+
ε2B

4

[
3
jB
(−5+ 2ν)+

15
j2B

(7− 2ν)
]

+
ε3B

128

[
24
jB

(
5− 5ν + 4ν2

)
+

1
j2B

(
−10080+

(
13952− 123π2) ν − 1440ν2

)
+

5
j3B

(
7392+

(
−8000+ 123π2) ν + 336ν2

)]
+ O

(
1
c8

)
.

(6.158)

7. The eikonal operator in the soft limit

The 3PM eikonal for the elastic 2 → 2 scattering presents a few interrelated puzzling features. The most evident
one is perhaps the appearance of an infrared-divergent (positive) imaginary part e2iδ = e− Im 2δei Re 2δ indicating that the
probability for this process to take place is in fact infinitely suppressed in the limit D→ 4. The appearance of an imaginary
part also makes the eikonal manifestly non-unitary and this suggests a way out. It indicates that we neglected channels
that are actually important also in the classical limit. Indeed, by considering a strictly 2 → 2 process, we neglected the
fact that the two-body system emits radiation. The aim of this section is to take the first step in order to ameliorate
this treatment by including the presence of soft radiation in the final state. To this end, we will promote the eikonal
phase to a Hermitian operator [112] depending on the graviton creation/annihilation operators and on the Weinberg soft
factor [1,304], taking inspiration from earlier approaches based on the Bloch–Nordsieck method and more recently on
dressed states [143,305,306].

As we will see, this will highlight how soft gravitons are responsible for the infrared divergent imaginary part of 2δ.
Moreover, another shortcoming of the elastic eikonal framework is that, by its very nature, it does not provide formulas to
calculate observables associated to the gravitational field. Introducing soft radiation as well, via the soft eikonal operator,
we will also gain access to the properties of gravitational waves at low frequencies: the Zero-Frequency Limit (ZFL) of
the energy emission spectrum and the memory effect. In fact, thanks to the exact, nonperturbative nature of the soft
theorem, the resulting formulas will even allow us to take a peek beyond the conventional PM approximation considered
so far. As we shall discuss, this will be crucial in resolving yet another apparent puzzle concerning the high-energy limit.
In the naïve large-σ limit the 3PM expression for the ZFL of the spectrum seems ill-behaved. However, this is not the
signal of an actual pathological behavior, bur rather of the breakdown of the PM approximation. The exact expression
derived thanks to the soft theorem instead provides the correct answer, even in the true ultrarelativistic limit, allowing
us to make contact with the massless setup.

A subtle point is related to the effects of static gravitational fields, whose Fourier transform is localized exactly at
zero frequency. Clearly these fields do not carry energy–momentum, so their inclusion is not relevant for evaluating the
corresponding spectra. Instead, they can in general carry angular momentum and are therefore important for the angular
momentum balance of the particles+field system. As shown in [289], and as we will obtain below, their contribution to
the angular momentum of the full gravitational field is in fact the leading one in the PM expansion and starts at O(G2).
In order to accommodate for such effects, we will consider a different dressing of the elastic process, which essentially
encodes static gravitational modes via the −i0 prescription.

Being based on the leading graviton theorem, the formulas presented in this section hold for generic deflections and
are independent of the PM expansion. Moreover they apply not only to the two-body scattering of spinless, point-like
objects, but also to collisions involving spinning or tidally-deformable bodies as well as to multi-body scatterings. This is
due to the universality of the soft factor, whose expression only depends on the momenta of the hard particles. Of course,
spin and tidal effects for instance do enter the explicit expression of the results, but only insofar as they influence the
relation between final and initial momenta, i.e. the impulses.

In the present section, since we are restricting to leading order in the soft approximation, it is sufficient to work
by using the momenta of energetic external particles in the elastic process as given, as in [1,304] and more recently
in [143,307–310]. Taking into account radiation back-reaction on the trajectories of the massive objects will be instead
crucial when considering the full gravitational-wave spectrum in the ensuing section.

45 Let us recall that ε ∼ 1 and j ∼ c0 as in (344) of [30].
B c2 B
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.1. Soft eikonal operator without static modes

We can include soft radiation by following the method of Bloch–Nordsieck [311,312] and Weinberg [1,304] (see
lso [305,306,313]). Let us consider the S-matrix element S(M)

s.r.,N for the emission of N soft gravitons on top of a background
hard process involving particles with momenta pn, where n runs over the hard states. The subscript ‘‘s.r.’’ emphasizes that
we are restricting our attention to soft radiation. The total S-matrix element factorizes as the matrix element S(M) (the
superscript (M) stands for ‘‘momentum space’’) for the hard process times N universal factors fj(k) expressed in terms of
he polarization j of the graviton and of its momentum k, [1,304,311,312]

S(M)
s.r.,N =

N∏
r=1

wjr (kr ) S
(M) , wj(k) = ε

∗µν

j (k)wµν(k) , wµν(k) =
∑
n

κ pµn pνn
pn · k

, (7.1)

here κ =
√
8πG. Of course an analogous formula holds for soft absorption processes, with wj(k) replaced by −w∗j (k). We

eep graviton momenta always future-directed. For simplicity, we omit the pn from the arguments ofwj(k). As emphasized
y Weinberg (see e.g. [314]), the formula (7.1) applies to the case in which the ‘‘bare’’ amplitude S(M) is connected, hence
n our case to the iT part of S = 1 + iT . Extending (7.1) to the disconnected part of the S-matrix will be crucial for the
nclusion of static effects and for the calculation of the angular momentum loss given in the next section.

We introduce creation/annihilation operators for the gravitons, obeying canonical commutation relations

2πθ (k0)δ(k2)[ai (k), a
†
j (k
′)] = (2π )Dδ(D)(k− k′) δij , (7.2)

ith i, j labeling physical polarizations, and we define∫
∗

k
=

∫
dDk

(2π )D
2πθ (k0)δ(k2)θ (ω∗ − k0) . (7.3)

ollowing Weinberg [1], we have introduced a frequency scale ω∗ below which the approximation (7.1) is valid, and in
ractice this can be taken ω∗ ∼ v/b for eikonal scattering. On the other hand we do not need an infrared frequency
utoff thanks to dimensional regularization. We can then capture the factorization (7.1) for soft emissions by defining an
xponential operator depending on the oscillators, (the sum over repeated polarization indices is left implicit)

e2iδ̂s.r. = e
∫
∗

k

[
wj (k) a

†
j (k)−w

∗
j (k) aj (k)

]
, (7.4)

nd dressing the matrix element for the underlying process according to (here |0⟩ denotes the oscillators’ vacuum)

S(M)
s.r. = e2iδ̂s.r.

S(M)

⟨0|e2iδ̂s.r. |0⟩
. (7.5)

hen, the matrix elements (7.1) are recovered using the commutation relations (7.2) in

S(M)
s.r.,N = ⟨0|aj1 (k1) · · · ajN (kN )S

(M)
s.r. |0⟩ , (7.6)

nd similarly, for absorption processes ⟨0|S(M)
s.r. a

†
j1
· · · a†

jN
|0⟩.

Let us now focus on the case in which the background process is the elastic 2→ 2 scattering which has been the main
bject of study in the previous sections of this Report. We consider the Fourier transform to b-space of the two factors
n (7.5) separately. By construction the second factor, which describes the elastic process, gives the eikonal. However,
hanks to the division by ⟨0|e2iδ̂s.r. |0⟩ in (7.5), one needs only the real part of 2δ, as the infrared divergent contribution
o the imaginary part is automatically encoded in the new operator part, as we shall see momentarily.46 The first factor
n (7.5) is instead regular as Q → 0, so we can write it as a differential operator acting on a delta-function δD−2(b) trading
ach Q with a derivative

Qµ
→−i

∂

∂bµ
(7.7)

n the Fourier transform. Of course the product of these two factors in (7.5) becomes a convolution in b space. However,
ince one factor is just a delta function, the integral of the convolution can be performed straightforwardly, and one
btains

Ss.r. = e
∫
∗

k

[
wj (k) a

†
j (k)−w

∗
j (k) aj (k)

]
[1+ 2i∆(b)] ei Re 2δ(b) , (7.8)

here the external momenta pn in the first line contain derivatives acting on the b-dependent functions in the second
ine.

46 In this section, we focus on the infrared divergent contribution to this imaginary part. The finite contributions also involve non-soft modes and
can be reproduced via a similar mechanism which will be discussed in Section 8.
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Let us make a few general comments before using (7.8) in some concrete calculations. First, the classical S-matrix
btained by neglecting the quantum remainder ∆ is explicitly unitary since only the real part of 2δ enters this equation
nd the inelastic prefactor is the exponential of an anti-Hermitian operator. Second, we obtain the dominant contribution
n the classical limit when the derivatives hidden in the external momenta pn due to (7.7) act on the rapidly oscillating
ikonal phase, so that effectively

Qµ
→

∂ Re 2δ(b)
∂bµ

. (7.9)

ince the soft factor wj(k) becomes proportional to Q in the small-Q limit (see for instance Eq. (2.11) of [106]), we see
xplicitly how the disconnected term of the elastic S-matrix element drops out under the action of the derivative (7.9) in
7.8). Lastly, let us discuss how the factors involving graviton oscillators in (7.8) can be regarded as soft dressing of initial
nd final states. To this end, it is sufficient to define

w
out/in
j (k) = ε∗jµν(k)

∑
n∈out/in

ηn
κ pµn pνn
pn · k

(7.10)

ith ηn = +1 (ηn = −1) if n is a final (initial) state of the background process, and to introduce the dressed states

|out/in⟩ = e
∫
∗

k

(
w

out/in
j (k)a†j (k)−w

out/in∗
j (k)aj(k)

)
|Ψout/in⟩ , (7.11)

where |Ψout/in⟩ only involve massive (hard) states. In this way, if |Ψout⟩ = ei Re 2δ(b)|Ψin⟩, then we can rewrite this relation
in terms of dressed states as follows,

|out⟩ = e
∫
∗

k

(
wout
j (k)a†j (k)−w

out∗
j (k)aj(k)

)
e
∫
∗

k

(
−win

j (k)a†j (k)+w
in∗
j (k)aj(k)

)
ei Re 2δ(b)|in⟩

= e
∫
∗

k

(
(wout

j (k)−win
j (k))a†j (k)−(w

out
j (k)−win

j (k))∗aj(k)
)
ei Re 2δ(b)|in⟩ , (7.12)

since one can check that the two dressings for initial and final states commute as operators, owing to the reality of
the combinations wout/in

j (k) themselves, and one obtains a total dressed state with wj(k) = wout
j (k) − win

j (k). Therefore,
|out⟩ = Ss.r.|in⟩ with Ss.r. precisely taking the overall dressing factor into account.

We can now apply the eikonal operator to discuss the contribution of low-energy gravitons to observables, includ-
ing the waveforms, memory, and the particle-energy emission spectrum. The general procedure, given any quantum
observable O, is to take its expectation value according to

⟨O⟩ = ⟨Ψin|S†
s.r.O Ss.r.|Ψin⟩ . (7.13)

Physically, this means to evaluate the mean value of O in the final state of the scattering event, obtained by the action
of Ss.r.. Thus we follow the same strategy as in the KMOC approach [116], but here we take the classical limit as a first
step approximating the full S-matrix with the eikonal (operator). Let us start from the classical field, which is obtained
by inserting in the expectation value (7.13) the free gravitational field [119]

Hµν(x) =
∫
k

[
εjµν(k)aj(k) eik·x + ε∗jµν(k)a

†
j (k) e

−ik·x
]
. (7.14)

This yields

hµν(x) = ⟨Hµν(x)⟩ =
∫
∗

k

[
w
µν

TT (k) e
ikx
+ w

∗µν

TT (k) e−ikx
]
, (7.15)

where

w
µν

TT (k) = Π
µν
ρσ (k)w

ρσ (k) , wµν(k) =
∑
n

κ pµn pνn
pn · k

, (7.16)

ndΠµν
ρσ (k) is the standard transverse-traceless projector over physical degrees of freedom (5.45). Of course the prediction

7.15) is only accurate for a detector placed at a large distance r from the sources. Taking this limit (see Appendix F) at a
ixed retarded time u, so that r ≫ |u|, b, and moving along the null vector nµ, which characterizes the angular direction,
7.15) yields47

hµν(x) ∼
1

4πr

∫
+∞

−∞

dω
2iπ

w
µν

TT (ω n) e−iωu , (7.17)

where we used that wµν(k) = −w∗µν(−k). Adjusting the normalization by comparing

gµν = ηµν + 2Wµν = ηµν + 2κhµν , (7.18)

47 We can send ω∗ →∞ as long as we focus on the value of the resulting integral for large |u| ≳ b.
104



P. Di Vecchia, C. Heissenberg, R. Russo et al. Physics Reports 1083 (2024) 1–169

w

P
c
w
C

a

i
n

n

w
(

N
c
s
e
I

s

w

T
p

T

e define the waveform according to

Wµν = κ hµν . (7.19)

erforming the Fourier transform in (7.17) requires in principle to specify how the 1/ω singularity at ω = 0 is
ircumvented (see (7.65) below) [144,307–310]. However, as stressed in [315,316], the key point is that the behavior of the
aveform at large |u| is completely determined by this pole at ω = 0, and possible ambiguities are in fact u-independent.
onsidering the invariant combination

∆Wµν(n) = Wµν(u > 0, n)−Wµν(u < 0, n) , (7.20)

nd recalling that Πµν
ρσ (ωn) = Π

µν
ρσ (n), we thus obtain the memory effect [317]

∆Wµν(n) =
2G
r
Πµν
ρσ (n)

∑
a

pρapσa
(−pa · n)

, (7.21)

.e. the leading result of [307–310] or the term indicated as Aµν in [310]. However, this approach does not capture
on-linear memory effects [289,318–320].
Let us instead consider the projection of Ss.r.|Ψin⟩ back onto the initial state |Ψin⟩ with no gravitons. Then one needs to

ormal order the inelastic exponential through the usual Baker–Campbell–Hausdorff formula eA+B = eAeBe−
1
2 [A,B], so the

amplitude for the elastic process is given by

⟨Ψin|Ss.r.|Ψin⟩ = exp
[
−

1
2

∫
∗

k
w∗µν(k)Π

µν,ρσ (k)wρσ (k)
]
ei Re 2δ(b) , (7.22)

where focused on the classical contribution (ignoring ∆). The transversality condition kµwµν = 0, which holds for gravity
by momentum conservation, grants

w∗µν(k)Π
µν,ρσ (k)wρσ (k) = w∗µν(k)

(
ηµρηνσ − 1

D−2 η
µνηρσ

)
wρσ (k) ≡ w∗(k)w(k) , (7.23)

here we introduced a useful condensed notation according to which explicit index contractions are suppressed, as in
5.44). We will use this repeatedly in the following. Recasting (7.22) as

⟨Ψin|Ss.r.|Ψin⟩ = ei
[
Re 2δ(b)+ i

2
∫
∗

k w
∗(k)w(k)

]
(7.24)

we see that the damping factor that emerged from the reordering of the exponential factors can be interpreted as an
imaginary contribution to the classical eikonal: the infrared-divergent one as ϵ = (4− D)/2→ 0,

Im 2δ(b) =
1
2

∫
∗

k
w∗(k)w(k)+ O(ϵ0) =

1
2

∫
k
θ (ω∗ − k0)w∗(k)w(k)+ O(ϵ0) . (7.25)

ote that this integral is scale-invariant in the limit ϵ → 0, which means that its 1/ϵ term is in fact independent of the
utoff ω∗. We thus see the origin of the infrared-divergent imaginary part we had already encountered in the previous
ection. It emerges because the elastic amplitude neglects the contributions of soft-graviton emissions [1]. The integral
ntering (7.25) can be evaluated as follows to leading order in ϵ, retaining also the logarithmic dependence on the cutoff.
ntroducing velocities analogous to (1.7) for each state according to

pµn = ηnmnv
µ
n (7.26)

o that v2n = −1 and vµn is future-directed, we can use the following identity,∫
∗

k

mnmm

(pn · k)(pm · k)
=

∫
∗

k

ηnηm

(vn · k)(vm · k)
=

[
(ω∗)−2ϵ

−2ϵ

]
Fnm

(2π )2
+ O(ϵ0) (7.27)

here

Fnm =
ηnηm arccosh σnm√

σ 2
nm − 1

, σnm = −vn · vm = −ηnηm
pn · pm
mnmm

. (7.28)

o show (7.27), it is convenient to perform a decomposition of the integrated momentum kµ analogous to (1.10) for each
air n, m, letting

kµ = ωn v̌
µ
n + ωm v̌

µ
m + kµ

⊥
, v̌µn,m =

σnmv
µ
m,n − v

µ
n,m

σ 2
nm − 1

. (7.29)

aking the Jacobian determinant 1/
√
σ 2
nm − 1 into account (see also Appendix A.3) and focusing on the rest frame of

particle n where k0 = ωn, we obtain,∫
∗ 1

=
1√
2

∫ ω∗ dωn
∫

dωm
∫

d2−2ϵk⊥
3−2ϵ δ

(
k2
⊥
−
−ω2

n + 2ωnωmσnm − ω
2
m

2

)
, (7.30)
k (vn · k)(vm · k) σnm − 1 0 ωn ωm (2π ) σnm − 1
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here we have used k · vn,m = −ωn,m. Changing integration variables by letting ωn = ω, ωm = ωx and kµ
⊥
= ωxµ

⊥
,

erforming the integral over xµ
⊥

and focusing on the leading term as ϵ → 0, we find∫
∗

k

1
(vn · k)(vm · k)

=
1

(2π )2
√
σ 2
nm − 1

∫ ω∗

0

dω
ω1+2ϵ

∫
dx
2x
θ
(
−x2 + 2σnmx− 1

)
+ O(ϵ0) . (7.31)

oting that the Heaviside θ function restricts the integration over x to lie between the two (positive) roots σnm±
√
σ 2
nm − 1

inally leads to∫
∗

k

1
(vn · k)(vm · k)

=

[
(ω∗)−2ϵ

−2ϵ

]
arccosh σnm

(2π )2
√
σ 2
nm − 1

+ O(ϵ0) (7.32)

where we used that arccosh σnm = ± log(σnm±
√
σ 2
nm − 1). This shows (7.27), and using this equation in (7.25), one finds

Im 2δ(b) =
[
(ω∗)−2ϵ

−2ϵ

]
G
π

∑
n,m

mnmm
(
σ 2
nm −

1
2

)
Fnm + O(ϵ0) . (7.33)

A similar calculation concerns the insertion of the energy–momentum operator

Pα =
∫
∗

k
kα a†

j (k)aj(k) , Pα = ⟨Pα⟩ (7.34)

s in Eq. (7.13), which leads to

Pα =
∫
∗

k
kαw∗(k)w(k) , (7.35)

hanks to (7.23). Since we employ the leading soft approximation, we can only resolve the ZFL of the energy emission
pectrum,

lim
ω→0

dE
dω
≡
∂P0

∂ω∗
, (7.36)

r, using (7.35),

lim
ω→0

dE
dω
=

∫
k
δ(ω∗ − k0)k0w∗(k)w(k) = ω∗

∫
k
δ(ω∗ − k0)w∗(k)w(k) (7.37)

(with
∫
k as in (5.37)). Comparing with (7.25), we then see that

lim
ω→0

dE
dω
= lim

ϵ→0
2ω∗

∂

∂ω∗
Im 2δ(b)+ O(ϵ0) . (7.38)

sing (7.38) and the explicit result (7.33), we see that this derivative cancels the divergence and extracts the coefficient
f logω∗ in the ϵ → 0 expansion, leading to

lim
ω→0

dE
dω
= lim

ϵ→0
[−4ϵ Im 2δ(b)] (7.39)

r, more explicitly,

lim
ω→0

dE
dω
=

2G
π

∑
n,m

mnmm
(
σ 2
nm −

1
2

)
Fnm . (7.40)

s already mentioned, the scope of validity of the formulas (7.33), (7.40) is rather wide, since they retain an exact
ependence on the background hard kinematics, they generalize straightforwardly to scatterings involving an arbitrary
umber of initial and final states, and are also valid if the colliding objects have spin or an internal structure, e.g. if they
re subject to tidal deformations. This highlights a general mechanism: the infrared divergences of the elastic amplitude
etermine the ZFL of the energy emission spectrum via massless quanta [1,106].
Focusing on the 2 → 2 case, in order to obtain a more explicit formula it is sufficient to use σnn = 1 and Fnn = 1,

while for n ̸= m we have σnm = σmn and

σ12 = σ34 = σ , σ13 = σ24 = σQ , σ14 = 1+
Q 2

2m2
1
, σ23 = 1+

Q 2

2m2
2
, (7.41)

where we introduced the shorthand notation

σQ = σ −
Q 2

= −
u−m2

1 −m2
2 . (7.42)
2m1m2 2m1m2
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hen, Eq. (7.40) becomes

lim
ω→0

dE
dω
=

4G
π

{
2m1m2

(
σ 2
−

1
2

) arccosh σ
√
σ 2 − 1

− 2m1m2
(
σ 2
Q −

1
2

) arccosh σQ√
σ 2
Q − 1

+

∑
i=1,2

[
m2

i

2
−m2

j

((
1+ Q 2

2m2
i

)2

−
1
2

)arccosh(1+ Q 2

2m2
i

)
√(

1+ Q 2

2m2
i

)2

− 1

]}
, (7.43)

here, as discussed, the transferred momentum Q should be interpreted by using (7.9), which corresponds to the
ubstitution Qµ

→ −b̂µ2p sin Θ
2 . As already emphasized, while later on we will focus on certain interesting kinematic

limits, the dependence of this formula on the dynamics of the background elastic process, and in particular on Q/mi, is
xact.

.2. Eikonal operator including static modes

Let us now turn to the contribution of low-frequency gravitons to the waveform in position space, in particular its
alue at early retarded times, and to the angular momentum [289,321]. As we shall discuss, both quantities are sensitive
o static-field effects, and therefore to how one approach the ∼1/ω singularity at ω = 0 in the radiation spectrum.

As we emphasized, the soft eikonal operator (7.8) is based on the standard Weinberg soft theorem, which includes
oft gravitons with low but nonzero frequency. As such, it does not include effects that arise due to exactly static fields,
hose Fourier transform is localized at zero frequency. To include them it is sufficient to replace the standard soft factor
j(k) in (7.8) by48

fj(k) = εjµν(k)∗Fµν(k) , Fµν(k) =
∑
n

√
8πG pµn pνn

pn · k− i0
. (7.44)

nd to consider the following operator (neglecting the quantum remainder for brevity)

Ss.r. = e
∫
∗

k

[
fj (k) a†j (k)−f

∗
j (k) aj (k)

]
e2iδ̃(b) , (7.45)

here the definition of 2δ̃ will be specified momentarily. By including the−i0 prescription in (7.44) even for real emissions
f gravitons, we are now dressing the full S-matrix, including the identity term, and thus include possible ‘‘emissions’’
ocalized at ω = 0 from disconnected pieces of the hard matrix element. This construction is not a standard application of
einberg’s theorem, which only holds for connected amplitudes [314,322], and in this way it also captures static effects.

n fact, the same static term in the asymptotic field also follows from the worldline approach in which one solves for the
article trajectories and the field using retarded propagators [129,134].
To see how this modification reflects the definition of dressed states, compared to the one discussed in the previous

ubsection, let us now consider

f out/inj (k) = ε∗jµν(k)
∑

n∈out/in

ηn

√
8πGpµn pνn

pn · k− i0
(7.46)

nd

|OUT/IN⟩ = e
∫
∗

k

(
f out/inj (k)a†j (k)−f

out/in∗
j (k)aj(k)

)
|Ψout/in⟩ (7.47)

(the notation |OUT/IN⟩ is meant to distinguish these states from |out/in⟩ in (7.10)). In this way, if we start again from
|Ψout⟩ = ei Re 2δ(b)|Ψin⟩ and we rewrite it in terms of dressed states, we get

|OUT⟩ = e
∫
∗

k

(
f outj (k)a†j (k)−f

out∗
j (k)aj(k)

)
e−

∫
∗

k

(
f inj (k)a†j (k)−f

in∗
j (k)aj(k)

)
ei Re 2δ(b)|IN⟩ . (7.48)

In this new setup, the two dressings for initial and final states no longer commute, and using the Baker–Campbell–
Hausdorff formula eAeB = eA+Be+

1
2 [A,B] one obtains

|OUT⟩ = e
∫
∗

k

(
fj(k)a

†
j (k)−f

∗
j (k)aj(k)

)
e

1
2
∫
∗

k

(
f out∗j (k)f inj (k)−f outj (k)f in∗j (k)

)
+i Re 2δ(b)

|IN⟩ , (7.49)

here

fj(k) = f outj (k)− f inj (k) (7.50)

48 Let us note that the symmetric Lorentz tensor Fµν in (7.44) should not be confused with the symmetric coefficients Fmn introduced in (7.28)
arlier on.
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nd therefore, comparing with (7.45), we see that |OUT⟩ = Ss.r |IN⟩ provided the phase takes the value

2iδ̃(b) = i Re 2δ(b)− 2iδdr.(b) , 2iδdr.(b) = −
1
2

∫
∗

k

(
f out∗j (k)f inj (k)− f outj (k)f in∗j (k)

)
. (7.51)

he last equation, whose right-hand side is manifestly imaginary, identifies a contribution to the phase due to the dressing
hence the superscript ‘‘dr.’’). The integral that we need to calculate in order to determine the resulting phase correction
eads

2iδdr.(b) =
1
2

∑
n∈out
m∈in

∫
∗

k

[
8πGm2

nm
2
m(σ

2
nm −

1
2 )

(pn · k+ i0)(pm · k− i0)
−

8πGm2
nm

2
m(σ

2
nm −

1
2 )

(pn · k− i0)(pm · k+ i0)

]
. (7.52)

ending kµ →−kµ in the second term, we see that this expression recombines as follows,

2iδdr.(b) =
1
2

∑
n∈out
m∈in

8πGmnmm(σ 2
nm −

1
2 )Inm (7.53)

here, introducing the velocities vµn according to (7.26)

Inm =
∫

d4−2ϵk
(2π )4−2ϵ

2πsgn(k0)δ(k2)θ (ω∗ − |k0|)
(ηnvn · k+ i0)(ηmvm · k− i0)

. (7.54)

Here sgn(k0) = θ (k0) − θ (−k0) takes the value +1 (resp. −1) if k0 > 0 (k0 < 0). The integrals Inm can be evaluated
in a manner similar to (7.27), as we turn to illustrate. Sending ϵ = 4−D

2 → 0, which as we shall see leads to a finite
eading-order contribution, and focusing on the rest frame of particle n where k0 = ωn = −vn · k, we can decompose the
ntegrated momentum according to (7.29) to arrive at

Inm=
1√

σ 2
nm − 1

∫
+ω∗

−ω∗

sgn(ωn) dωn

(−ηnωn + i0)

∫
dωmdk2⊥

(−ηmωm − i0)2(2π )2
δ

(
k2
⊥
−
−ω2

n + 2ωnωmσnm − ω
2
m

σ 2
nm − 1

)
(7.55)

fter taking the Jacobian determinant 1/
√
σ 2
nm − 1 into account. Changing integration variables by letting ωn = ω,

ωm = ωx and k2
⊥
= ω2x2

⊥
, so that

sgn(ωn) dωn dωm dk2
⊥
= ω3 dω dx dx2

⊥
, (7.56)

and performing the integral over x2
⊥

by means of the delta function,

Inm =
1

(2π )2
√
σ 2
nm − 1

∫
+ω∗

−ω∗

dω
(−ηnω + i0)

∫
ω dx

2(−ηmωx− i0)
θ
(
−x2 + 2σnmx− 1

)
. (7.57)

he Heaviside θ function restricts the integration over x to lie between the two positive roots σnm ±
√
σ 2
nm − 1, so that

he integrals over ω and x factorize, leading to

Inm =
arccosh σnm

(2π )2
√
σ 2
nm − 1

∫ ω∗

−ω∗

ω dω
(−ηnω + i0)(−ηmω − i0)

. (7.58)

The new ingredient that we need to evaluate is thus the integral over ‘‘positive and negative frequencies’’∫
+ω∗

−ω∗

ω dω
(−ηnω + i0)(−ηmω − i0)

= −
iπ
2
(ηn − ηm) . (7.59)

o see this, let us make the i0 prescription more manifest by introducing a small λ > 0. Clearly the integral vanishes if
n = ηm because

∫ ω∗
−ω∗

ωdω/(ω2
+ λ2) is zero by parity. If ηn = −ηm, the integral reduces instead to

−

∫
+ω∗

−ω∗

ω dω
(ω − iληn)2

= −

[
log(ω − iληn)−

iληn
ω − iληn

]+ω∗
−ω∗

= −iπηn +
2iηnλω∗

(ω∗)+ λ2
−−−→
λ→0+

−iπηn ,

(7.60)

hich shows (7.59), and this leads to the final expression for Inm,

Inm = −
iπ
2
(ηn − ηm)

arccosh σnm
(2π )2

√
σ 2
nm − 1

. (7.61)

ote that the result no longer depends on the cutoff ω∗, so we may now send it to zero. What we obtain is thus a
contribution localized at the zero-frequency end of the spectrum, i.e. an effect intrinsically due to field configurations
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hat are static in time domain. Substituting (7.61) into (7.53), we obtain

2iδdr.(b) = −iG
∑
n∈out
m∈in

mnmm(σ 2
nm −

1
2 )

arccosh σnm√
σ 2
nm − 1

(7.62)

o that, using (7.41) and expanding for small deflections Q = Q1PM + O(G2),

2iδdr.(b) =
iGQ 2

1PM

2

[
8− 5σ 2

3(σ 2 − 1)
+
σ (2σ 2

− 3) arccosh σ

(σ 2 − 1)
3
2

]
+ O(G4) = i Re 2δRR2 (b)+ O(G4) , (7.63)

here we have recognized the 3PM radiation-reaction phase Re 2δRR2 (b). We also neglected a b-independent O(G)
ontribution, which would be tantamount to a finite shift of the (IR-divergent) Shapiro time delay. In this way, recalling
hat 2iδdr.(b) defines the subtraction defining 2iδ̃(b) in (7.51), we see that the inclusion of static modes in the dressing
eads to an eikonal operator in which the overall phase 2iδ̃(b) is the conservative eikonal phase up to 3PM, i.e. it does not
nclude radiation-reaction effects. We shall see in later sections that the information about these effects is not lost, but is
ctually encoded in the ‘‘soft factor’’ fj(k) rather than in the explicit phase.
Let us now turn to the prediction of this eikonal operator for two observables: the memory waveform and the angular

omentum of the field. Proceeding like for (7.17), but taking the expectation on the Ss.r.|Ψin⟩ state including static effects,
e find the following asymptotic limit for the gravitational field considering a large distance r at fixed retarded time u
nd angles given by nµ (see also Appendix F)

hµν ∼
1

4πr

∫
+∞

−∞

dω
2iπ

f µνTT (ω n) e−iωu , f µνTT (k) = Πµν
ρσ (k)

∑
n

κ pρnpσn
pn · k− i0

, (7.64)

nd performing the integral over ω by means of the Fourier representation of the Heaviside θ function,∫
+∞

−∞

dω
i2π

e−iωu

−ηnω − i0
=

∫
+∞

−∞

dω
i2π

eiωηnu

ω − i0
= θ (ηnu) , (7.65)

his leads to

Wµν
= κhµν ∼

2G
r
Πµν
ρσ (n)

∑
a

pρapσa θ (ηau)
(−ηapa · n)

. (7.66)

ote that for u > 0 (u < 0) only the out (in) contributions ηn > 0 (ηn < 0) survive, so that the difference ∆Wµν yields
he memory effect (7.21). Expanding (7.66) to leading order in the PM regime, where the out states are equal to the in
tates up to O(G) deflections, one instead finds

Wµν
∼

2G
r
Πµν
ρσ (n)

∑
a∈in

pρapσa
pa · n

+ O(G2) , (7.67)

.e. the waveform has a u-independent O(G) contribution. This is the leading-order static field, whose inclusion was
ossible precisely thanks to the −i0 prescription in (7.44). Before moving on to computing different contributions to
he angular momentum of the process let us make a few remarks on the traditional GR perspective on this issue.

The issue of angular momentum and of its loss in GR is a subtle one and has a long history (see e.g. [323]). The
pproach based on the use of Bondi–Sachs coordinates [324,325], which is very convenient for describing the energy loss
y the system via gravitational-wave emission, cannot be trivially extended to angular momentum. The problem is that
he definition of Bondi’s angular momentum, JB, suffers from a gauge ambiguity related to the possibility of performing
upertranslations, a subgroup of the BMS transformations [326,327] that preserves the Bondi–Sachs coordinate conditions.
As an example, the O(G) static term in (7.67) can always be removed completely by performing a BMS supertranslation,

2κδThAB = 2κT (n) ∂uhAB − r(2DADB − γABDCDC ) T (n) , (7.68)

here A, B, C, . . . label angular directions and γAB = (∂An) · (∂Bn) is the metric on the sphere with covariant derivative DA,
y choosing [321]

T (n) = 2G
∑
a∈in

(pa · n) log(pa · n/ma) . (7.69)

his raises the issue of whether such a static contribution has a physical meaning. In [321] it was argued that the true
adiated angular momentum is the one computed by using a particular BMS gauge, called the canonical gauge in the
R literature, which amounts to setting the initial shear of the Bondi–Sachs metric to zero. In the post-Minkowskian
xpansion this contribution starts at O(G3) and is insensitive to exactly zero frequency gravitons. It was also proposed
hat the additional static contribution to angular-momentum loss corresponds to choosing a different Bondi gauge, dubbed
‘intrinsic’’.
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The issue has been further addressed in [328,329] and, more recently, in [330,331]. The outcome of these investigations
s that both the radiative and the static contributions to the angular momentum loss by the two-body system can be
efined in a BMS-invariant way. The former contribution is indeed the one computed in the canonical gauge, while the
atter can also be given in gauge invariant form. In the approach of [321,329] it corresponds to a different gauge fixing of
B, while in [328,330,331] the mechanical angular momentum loss is identified with the difference between the final and
nitial Bondi angular momentum computed in two different Bondi gauges. In formulae:

∆Jmech = J (+)B (u→+∞)− J (−)B (u→−∞) , (7.70)

here the upper label (−) refer to the usual canonical gauge choice at u→−∞, while the label (+) is defined by setting
he final shear to zero (because of the memory effect this actually means that at u → +∞ we are no longer in the
anonical gauge). By adding and subtracting a term J (−)B (u→+∞) one ends up with:

∆Jmech =

(
J (−)B (u→+∞)− J (−)B (u→−∞)

)
+

(
J (+)B (u→+∞)− J (−)B (u→+∞)

)
≡ ∆J radmech +∆Jstatmech .

(7.71)

Eq. (7.71) makes it clear that the first term is insensitive to a u-independent (i.e. strictly zero-frequency) contribution
o J (−)B while the second term, being evaluated after radiation has stopped, is the difference of two constants and is
roportional to the final shear once the initial shear is set to zero [331]. Such a difference is nothing but the well known
emory and corresponds to the zero-frequency limit of the News tensor’s Fourier transform. In [331] the two prescriptions
ave been shown to agree at O(G2).
If the decomposition (7.71) can be confirmed at all orders in G, it would establish a clear and strict connection between

he above BMS-based approach and the amplitude-based one discussed in this section where we distinguished strictly
ero-frequency gravitons from those with any non-vanishing frequency. In [331] it has been explicitly checked that the
efinition (7.71) of the static contribution to the angular momentum loss is in full agreement with the one computed at
(G3) in [144,332] and discussed hereafter. Perhaps another interesting remark before turning to the calculation is that
he same technique to compute the static angular momentum loss applies also in the case of a massless scalar field (see
7.110) below), for which no BMS ambiguities arise.

To discuss the angular momentum of the gravitational field, we take the expectation in the Ss.r.|Ψin⟩ state of the
orresponding operator in De Donder gauge, which reads as follows

Jαβ = −i
∫
k
a†
µν(k)

(
Dµν,ρσ k

[α

↔

∂

∂kβ]
+ 2ηµρδν

[αδ
σ
β]

)
aρσ (k) , (7.72)

here

Dµν,ρσ =
1
2
(ηµρηνσ + ηµσηνρ − ηµνηρσ ) (7.73)

is the tensor structure appearing in the gauge-fixed De Donder action (see Appendix A.2). At this stage we face the problem
of simplifying the intermediate state sum using the physical projector (5.45). In particular, we would like to see how the
dependence on the reference vector λα appearing in that projector eventually cancels out. Relying on the transversality
property kµFµν = 0, we obtain the following result, expressed as a sum of orbital and spin contributions,

Jαβ = Lαβ + Sαβ . (7.74)

Here the orbital angular momentum reads (with the soft Fµν as in (7.44))

iLαβ =
∫
∗

k

⎛⎝F∗µνk[α

↔

∂ Fµν

∂kβ]
−

F ′∗

D− 2
k
[α

↔

∂ F ′

∂kβ]
+ 2k

[αF
∗

β]µλ · F
µ
− 2λ · F∗µk[αF

µ

β]

⎞⎠ , (7.75)

with λ · Fα = λβFαβ , F ′ = ηρσ Fρσ and

f

↔

∂

∂kβ
g ≡

1
2

(
f
∂g
∂kβ
−
∂ f
∂kβ

g
)
, (7.76)

hile the spin angular momentum is given by

iSαβ =
∫
∗

k

(
2F∗µ[αF

µ

β] + 2k
[βF
∗

α]µλ · F
µ
+ 2λ · F∗µk[αF

µ

β]

)
. (7.77)

herefore, the dependence on the reference vector λα drops out in the sum and we obtain the simple expression [144,332]

Jαβ = −i
∫
∗

k
F∗µν

⎡⎣(ηµρηνσ − 1
D−2 η

µνηρσ
)
k
[α

↔

∂

∂kβ]
+ 2ηµρδν

[αδ
σ
β]

⎤⎦ Fρσ . (7.78)
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he two terms within square brackets are reminiscent of the orbital and spin part of the gravitational angular momentum,
n particular the factor of 2 is associated to dealing with a spin-2 field. However, the two terms are not separately gauge
nvariant, as one can easily check, pointing to the fact that only their sum can be given a well defined physical meaning.
ndeed, in order to obtain (7.78) where the intermediate transverse-traceless projections have dropped out, one needs
o rely on nontrivial cancellations between the orbital and the spin term (we refer to [144] for further details on this
erivation). The integrals appearing in (7.78) can be reduced to (7.54) by first combining pieces with ‘‘positive and negative
requencies’’ like we did for (7.51). In this way we can write (7.78)

J αβ
=

iκ2

2

∑
n,m

(
σ 2
nm −

1
2

)
m2

nm
2
mK
[αpβ]m − iκ2

∑
n,m

(pnpm)p[αn pβ]m (pm · K ) (7.79)

n terms of the integral

Kµ =
∫

d4k
(2π )4

sgn(k0)2πδ(k2)kµθ (ω∗ − |k0|)
(pnk+ i0)(pmk− i0)2

= Apµn + Bpµm . (7.80)

he integral (pmK ) can be expressed in terms of Inm in (7.61)

(pmK ) =
Inm

mnmm
=

iπ
2
ηn − ηm

mnmm

ηnηm arccosh σnm
(2π )2

√
σ 2
nm − 1

, (7.81)

while (pnK ) can be easily computed

(pnK ) =
∫

d4k
(2π )4

sgn(k0)2πδ(k2)θ (ω∗ − |k0|)
(pmk− i0)2

= −
iπηm

(2π )2m2
m

(7.82)

rom the product of the two integrals∫ ω∗

−ω∗

ωdω
(−ηmω − i0)2

= −iπηm ,
1

(2π )2

∫ π

0

sin θdθ
(Em − |p⃗n| cos θ )2

=
1

(2π )2m2
m
. (7.83)

As a result the coefficient A in (7.80) is given by

A =
m2

m(pnK )+ (pnpm)pmK
(pnpm)2 −m2

nm2
m
= −

iπ
2
ηm + ηn + (ηn − ηm) (σnm∆nm − 1)

(2π )2m2
nm2

m(σ 2
nm − 1)

(7.84)

ith ∆nm as in (7.86) below, B is not needed because it will not contribute when inserted in the first term of (7.79), by
antisymmetry. For the same reason, also the term with ηn + ηm in (7.84) does not contribute, and we find the following
xpression for the angular momentum carried by the static gravitational field in D = 4, after sending ω∗ → 0,

J αβ
= −

∑
n∈in

∑
m∈out

cnm p[αn pβ]m , (7.85)

with

cnm = 2G
[(
σ 2
nm −

1
2

)
σnm∆nm − 1
σ 2
nm − 1

− 2σnm∆nm

]
, ∆nm =

arccosh σnm√
σ 2
nm − 1

. (7.86)

The expression (7.85) is Lorentz covariant, translation invariant and valid for arbitrary kinematics pn of the background
hard process, i.e. it holds regardless whether or not the outgoing momenta can be regarded as small deflections of the
incoming ones. In fact, just like Weinberg’s theorem, the formula holds independently of the number and of the specific
details of the hard particles taking part in the background hard process, which may also carry spin or be subject to tidal
deformations: one need only assign their momenta. However, of course, it only captures the contribution to the angular
momentum due to static/zero-frequency fields.

For a 2→ 2 process, pµ4 = Qµ
− pµ1 , p

µ

3 = −Q
µ
− pµ2 up to O(G3) corrections, and thus

J αβ
= p[α1 Q β] (c13 − c14)− p[α2 Q β] (c24 − c23)+ O(G4) . (7.87)

here we have used that σ13 = σ24. In the PM expansion, using c14 − c13 = G
2 I(σ ) + O(G3), c23 − c24 = G

2 I(σ ) + O(G3)
ith

1
2
I(σ ) =

8− 5σ 2

3
(
σ 2 − 1

) + σ (2σ 2
− 3

)
arccosh σ(

σ 2 − 1
)3/2 , (7.88)

e find

J αβ
= −

G
(p1 − p2)

[αQ β]I(σ )+ O(G4) . (7.89)

2
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n particular, substituting (3.16) for the 1PM impulse and using

Qµ
= −

bµ

b
Q1PM + O(G3) , (7.90)

e get

J αβ
=

G2m1m2(2σ 2
− 1)

b2
√
σ 2 − 1

1
2

I(σ )(p1 − p2)
[αbβ] + O(G3) , (7.91)

hich, in the center-of-mass frame where −p1 = (E1, p) and −p2 = (E2,−p), matches the O(G2) results in Eq. (4.6)
f [289] and in Eq. (12) of [332]. However, as already emphasized, thanks to the universality of the soft theorem (7.89)
s also valid when the particles carry classical spin [81], provided one substitutes the appropriate 1PM deflection. Taking
nto account the 2PM correction to the deflection (4.58) on top of that, Eq. (7.89) also correctly accounts for the O(G3)
tatic angular momentum, as well tidal effects [57]. However, to that order, additional genuinely radiative terms also
ppear and we shall see in the next sections how they can be calculated in the eikonal framework.

.3. The ultrarelativistic and massless limits

It is very instructive to inspect the behavior of the spectrum (7.43) in several physically relevant limits. The standard PM
egime requires that Q 2

∼ (pΘ)2 ≪ 2m2
i . In this limit, one can extract the leading (3PM) contribution by Taylor-expanding

he first line of (7.43) in Q 2, while the second only give subleading contributions,

lim
ω→0

dE
dω
≃

2G
π

Q 2
[

8− 5σ 2

3(σ 2 − 1)
+

(2σ 2
− 3)σ arccosh σ
(σ 2 − 1)3/2

]
. (7.92)

hen rewritten in terms of the divergent part of Im 2δ, using the simple link (7.39), the result (7.92) then reproduces the
ivergent part of Im 2δ2 in (5.55) (and agrees with Eq. (5.14) of [106]), once we use Q ≃ Q1PM (see (3.16) for the explicit
xpression). Moreover, to the leading 3PM order, Eq. (7.92) has been explicitly shown to hold also if the colliding objects
arry spin, for generic spin alignments [81]. If we then consider in the formal ultra-relativistic limit σ → ∞, Eq. (7.43)
ives:

lim
ω→0

dE
dω
≃

4G
π

Q 2
(
log

s
m1m2

−
5
6

)
. (7.93)

owever, the exact expression (7.43) shows that the PM approximation breaks down, even when Θ is small, when one
f the two particles becomes ultra-relativistic, p ≫ mi. Indeed, while in this regime the first line in (7.43) can always
e expanded to first order in Q 2/s, the second one presents instead a branch point at Q 2

= −4m2
i , corresponding to the

-channel thresholds (outside the physical region). This implies that the PM expansion starts to diverge whenever for at
east one index i, (see Eq. (6.42) and comments below it)

Q
2mi

> 1 . (7.94)

Since Q ≃ pΘ which is of order
√
m1m2σ/2Θ , we thus recover the bound first pointed out by D’Eath [333] for the

validity of the PM approximation,

max
{√

m1

m2
,

√
m2

m1

} √
σ Θ

2
√
2

≲ 1 . (7.95)

n view of this bound one could say that the PM approximation holds for weakly gravitating systems with ‘‘generic’’ but
ot entirely arbitrary speeds.
For the ZFL of the emitted energy spectrum, however, the ultrarelativistic regime, or equivalently the massless limit,

an be obtained from (7.43) by considering 2p →
√
s and m1,m2 ≪ Q =

√
s sin Θ

2 . The mass singularities appearing
eparately in each line of the formula neatly cancel against each other and then (7.43) reduces to (see e.g. [143] where
he result is extended to an arbitrary number of external massless legs)

lim
ω→0

dE
dω
≃

4G
π

[
s log

s
s− Q 2 + Q 2 log

s− Q 2

Q 2

]
(7.96)

r in terms of the deflection angle

lim
ω→0

dE
dω
≃ −

4G
π

s
[
cos2

Θ

2
log cos2

Θ

2
+ sin2 Θ

2
log sin2 Θ

2

]
, (7.97)

hich agrees with the leading soft limit of Eq. (5.12) of [310]. If we then consider the small Θ limit of (7.97), after taking
he ultrarelativistic limit, at leading order for Θ ≪ 1 we have

lim
dE
≃

GsΘ2 [
1+ log

4
2

]
, (7.98)
ω→0 dω π Θ
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hich reproduces the result obtained in [334] (see also [333]) within a classical GR approach and in [142] from a
cattering amplitudes perspective. As anticipated, the true ultrarelativistic behavior of the spectrum exhibits a non-
nalytic dependence on Θ and thus on the Newton constant G, compatibly with the breakdown of the PM approximation.

These features are in fact shared by the leading-order angular momentum loss. For the component orthogonal to the
scattering plane, one finds in the ultrarelativistic limit

J xy
∼ 2Gs sinΘ log

cos Θ2
sin Θ

2

, (7.99)

hich when further expanded for small Θ yields

J xy
∼ GsΘ log

4
Θ2 , (7.100)

gain exhibiting the characteristic non-analyticity in the Newton constant.

.4. The N = 8 eikonal operator in the soft limit

To include the presence of other massless fields (scalars and vectors), which are needed to discuss the case of N = 8
upergravity where the massive particles are described by KK modes, we can use the fact that S-matrix elements for soft
missions factorize in a way analogous to (7.1), with soft factors that instead of wj(k) are given by

wvec
j (k) =

∑
n

ηnen
ε∗µ,j(k)p

µ
n

pn · k
, wsc

j (k) =
∑
n

gn
pn · k

(7.101)

for vectors and scalars respectively. As above, ηn takes the value +1 for outgoing and −1 for incoming states, while en
and gn denote suitable couplings. These new soft particles are easily accommodated in the eikonal operator by including
in the exponent of (7.8) the relevant operators ad for the dilaton (with coupling gn = −κ m2

n/
√
D− 2) and avi,j for two

ectors (en =
√
2 κ mi) and asi for two scalars (gn = κ m2

i ). The corresponding ‘‘memory waveforms’’ are also obtained in
a very similar way.

In analogy with (7.40), we find the following simple and general expressions for the energy emission spectra,

lim
ω→0

dEvec

dω
=

1
4π2

∑
n,m

enem(−σnm)Fnm , (7.102)

lim
ω→0

dEsc

dω
=

1
4π2

∑
n,m

gngm
mnmm

Fnm . (7.103)

ombining scalars, vectors and the graviton, we obtain a remarkably simple result for the N = 8 spectrum,

lim
ω→0

dEN=8

dω
=

2G
π

∑
n,m

mnmm(σ ′nm)
2Fnm , (7.104)

here σ ′nm = σnm − 1 if n and m have momenta compactified along the same KK direction (so that mn = mm) and
′
nm = σnm otherwise. Specializing (7.104) to the 2→ 2 kinematics as in (7.41), we have

lim
ω→0

dEN=8

dω
=

4G
π

[
2m1m2σ

2 arccosh σ
√
σ 2 − 1

− 2m1m2σ
2
Q
arccosh σQ√
σ 2
Q − 1

(7.105)

−
(Q 2)2

4m2
1

arccosh
(
1+ Q 2

2m2
1

)
√(

1+ Q 2

2m2
1

)2
− 1

−
(Q 2)2

4m2
2

arccosh
(
1+ Q 2

2m2
2

)
√(

1+ Q 2

2m2
2

)2
− 1

]
.

he standard relativistic PM regime, where Q 2
≪ 2m2

i in the equation above, has an analytic PM expansion whose leading
erm reads

lim
ω→0

dEN=8

dω
≃

4GQ 2

π

[
σ 2

σ 2 − 1
+

(σ 2
− 2)σ arccosh σ
(σ 2 − 1)3/2

]
. (7.106)

pproximating Q ≃ pΘ with Θ the leading deflection angle given in (6.44), and exploiting the link (7.39), this reproduces
he divergent part of Im 2δ2 in (5.54).

On the contrary, in the regime (7.94), the small-Θ expansion is non-analytic and interestingly, in extreme ultrarela-
ivistic kinematics where the masses can be neglected, one obtains again (7.96). Indeed, the contributions related to the
ilaton, and the Kaluza–Klein scalars and vectors become negligible in this regime, as suggested by the fact that (7.102),
7.103) scale with lower powers of σ compared to (7.40), and the graviton provides the dominant behavior. At ultra-high
nm
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nergies, in this way, only the contribution due to the emission of gravitons survives. This is a universal expression for
wo-derivatives theories in accordance with the expectation that gravity dominates the high-energy limit not just for the
lastic scattering, as argued in [104], but also in the (soft) radiation sector.
The inclusion of static modes for vector and scalar fields proceeds along similar lines as for the graviton case discussed

bove by means of the −i0 prescription, i.e. by introducing the modified soft factors

f vecj (k) =
∑
n

ηnen
ε∗µ,j(k) p

µ
n

pn · k− i0
, f sc(k) =

∑
n

gn
pn · k− i0

(7.107)

sing which one then finds the following vector and scalar waveforms,

⟨Aµ(x)⟩ ∼
1

4πr
Πµ
ν (x̂)

∑
n

en pνn θ (ηnu)

En − k⃗n · x̂
, ⟨Φ(x)⟩ ∼

1
4πr

∑
n

gn θ (ηnu)

En − k⃗n · x̂
(7.108)

where Πµν is the transverse projector. For the angular momenta one finds

J sc
αβ = −

i
2

∫
k⃗

(
f ∗k[α

∂ f
∂kβ]
− k[α

∂ f ∗

∂kβ]
f
)

(7.109)

and

(J sc)µν =
1

16π

∑
n,m

gngm
m2

nm2
m

σnm∆nm − 1
σ 2
nm − 1

(ηn − ηm)p[µn pν]m , (7.110)

for the scalar case, as well as

J vec
αβ = −i

∫
k⃗
F∗µ
(
ηµνk

[α

↔

∂

∂kβ]
+ δ

µ

[αδ
ν

β]

)
Fν (7.111)

which evaluates to

(J vec)αβ =
1

16π

∑
n,m

enem
mnmm

[
−σnm

σnm∆nm − 1
σ 2
nm − 1

+∆nm

]
(ηn − ηm) p[αn pβ]m (7.112)

or the vector. Combining this with the graviton result discussed above, one arrives at the following simple formula for
he static angular momentum loss in N = 8,

J αβ

N=8 =
G
2

∑
n,m

[
σ ′ 2nm

σnm∆nm − 1
σ 2
nm − 1

− 2σ ′nm∆nm

]
(ηn − ηm)p[αn pβ]m , (7.113)

here σ ′nm = σnm − 1 if n and m corresponds to states compactified along the same direction, so that mn = mm, while it
quals σ ′nm = σnm otherwise.

. The eikonal operator beyond the soft limit

In this section, we discuss a framework that allows us to combine the dynamical information about graviton exchanges
hat is contained in the elastic eikonal, which, as we have seen, determines the deflection of the colliding black holes, with
he information about graviton emissions that is contained in the inelastic amplitudes. Building on the idea of introducing
reation/annihilation operators for gravitons already introduced in the previous section, we construct here an eikonal
perator that dictates the final state of the collision out of two ingredients: the eikonal phase and coherent graviton
missions with generic, i.e. not necessarily soft, frequencies. As we shall see, this provides a comprehensive strategy to
alculate observable quantities associated to the scattering up to O(G3): the waveforms themselves, the emitted linear
nd angular momentum, and the changes in the linear and angular momentum of the colliding objects. In particular, this
ill allow us to explicitly check the corresponding balance laws.

.1. The elastic eikonal revisited

So far the external states involved in the scattering have been described simply in terms of momentum eigenstates.
ollowing [116], we now introduce wavepackets Φi to describe classical particles, so the initial state for the 2 → 2
cattering reads

|ψ⟩ =

∫
−p1

∫
−p2

Φ(−p1)Φ(−p2)eip1b1+ip2b2 |−p1,−p2⟩ . (8.1)

he wavepackets are peaked around the classical value (that with an abuse of notation we will still indicate with −pi)
nd we use the following notation for the on-shell integrals∫

=

∫
dDpi

D 2πθ (p0i )δ(p
2
i +m2

i ) . (8.2)

pi (2π )
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y following [120], we can formally write the final state Sc |ψ⟩ = (1 + iT )|ψ⟩ in the elastic case (the subscript c stands
or ‘‘conservative’’) as

Sc |ψ⟩ =
∫
−p1

∫
−p2

∫
p3

∫
p4

Φ(−p1)Φ(−p2)eip1b1+ip2b2 |p3, p4⟩⟨p3, p4|S|−p1,−p2⟩ . (8.3)

Of course we are interested only in the classical contribution to the S-matrix element which, as discussed in the previous
sections, is more easily captured in an impact parameter representation, see (4.1). Thus we write the momentum-space
S-matrix element

⟨p3, p4|iT | − p1,−p2⟩ = (2π )D
∫

dDQ δ(D)(p1 + p4 − Q )δ(D)(p2 + p3 + Q ) iA(−(p1 + p2)2,Q 2) (8.4)

s the inverse Fourier transform of the eikonal result

2πδ(2p̄2Q ) 2πδ(2p̄1Q ) iA(−(p1 + p2)2,Q 2) =
∫
dDx

[
(1+ 2i∆(b))

(
e2iδ(b) − 1

)]
e−ixQ . (8.5)

n this subsection, for ease of notation, we simply drop the imaginary part of 2δ. Let us discuss the quantities b and p̄i in
his relation. The momenta are simply defined as in (1.28), with qµ replaced by Qµ,

p1 = −p̄1 +
Q
2
, p2 = −p̄2 −

Q
2
, p4 = p̄1 +

Q
2
, p3 = p̄2 −

Q
2
, (8.6)

o the delta functions on the l.h.s. of (8.5) follow from the fact that the pi are on-shell. Then in order to produce these
delta functions from the r.h.s., the eikonal in the square parenthesis should not depend on the components of x along p̄i,
thus we introduced b to indicate the components of x orthogonal to p̄i recovering the property bp̄1,2 = 0 of the eikonal
impact parameter. By using (8.4) and (8.5) in (8.3) we get

Sc |ψ⟩ =
∫
p3

∫
p4

|p3, p4⟩e−ib1p4e−ib2p3
∫

dDQ
(2π )D

∫
dDx

×eiQ (b1−b2)e2iδ(b)e−ixQ (1+ 2i∆(b))Φ(p4 − Q )Φ(Q + p3) . (8.7)

.1.1. Saddle points
The key idea of the eikonal approach is to approximate the integrals with the stationary phase contribution and this

an be done in (8.7) both for x and Q [120]. From the condition on x we obtain

Qµ =
∂2δ(b)
∂xµ

=
∂2δ(b)
∂b

bµ
b

(8.8)

here we used ∂b
∂xµ =

bµ
b . We thus recovered the second relation in Eq. (6.11). In this approach, the relation between b

and the initial angular momentum follows from the other stationary phase condition

(b1 − b2)µ − xµ = −
∂2δ(b)
∂b

bν
b
∂bν

∂Qµ
, (8.9)

here the r.h.s. follows from the implicit dependence of b on Q . In order to make this explicit, we need to decompose x
long b and the space spanned by p̄i

xµ = bµ + (p̄1 + p̄2)µA1 + (p̄1 − p̄2)µA2 = bµ + (p4 + p3)µA1 + (p4 − p3 − Q )µA2 , (8.10)

hich implies
∂bν

∂Qµ
= −(p̄1 + p̄2)ν

∂A1

∂Qµ
− (p̄1 − p̄2)ν

∂A2

∂Qµ
+ δνµA2 , (8.11)

ince the derivatives involved in the stationary point conditions are calculated by keeping x, p3,4 fixed. By using (8.6),
(8.10) and (8.11) in (8.9), and noting that only the last term in (8.11) gives a nonvanishing contribution to it, we get

bµJ ≡ (b1 − b2)µ = bµ − (p1 + p2)µA1 − (p1 − p2)µA2 . (8.12)

The classical values of A1,2 can be determined by imposing that bp̄1,2 = 0 and bJp1,2 = 0 and by using (8.6) in (8.12). We
obtain

A1 =
(m2

1 −m2
2)|Q |b

4m2
1m

2
2(σ 2 − 1)

, A2 = −
s|Q |b

4m2
1m

2
2(σ 2 − 1)

. (8.13)

y contracting (8.12) with bJ , we obtain b2J = bJb. Contracting it instead with b, and recalling that Q · b = −|Q |b, since
the force is attractive for gravitational theories, we get

b2J = b2
(
1−

sQ 2

2 2 2

)
= b2 cos2

Θ
, (8.14)
4m1m2(σ − 1) 2
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here in the final step we used the relation (2.31) between the value of Q at the stationary point and the elastic scattering
ngle together with (1.13). We thus recover the first relation in Eq. (6.11) as well.

.1.2. Impulse and angular momentum
We now use the elastic eikonal operator (8.7) to calculate the impulse by taking expectations of the momentum

perator for particle 1,

Pα1 =
∫
p
pαa†

1(p)a1(p) . (8.15)

pplying this operator to the initial state (8.1), we obtain

Pα1 |ψ⟩ =
∫
−p1

∫
−p2

Φ1(−p1)Φ2(−p2)|−p1,−p2⟩ eib1·p1+ib2·p2 (−p
µ

1 ) (8.16)

fter using that |−p1⟩ = a†
1(−p1)|0⟩ and therefore the expectation value,

⟨ψ |Pα1 |ψ⟩ =
∫
−p1

|Φ1(−p1)|2 (−p
µ

1 ) . (8.17)

here we have used ⟨p|p′⟩2πθ (p0)δ(p2 +m2
1) = (2π )Dδ(D)(p− p′) that follows from the canonical commutation relations.

or the final state, using (8.7), we get

Pµ1 Sc |ψ⟩ =
∫
p3

∫
p4

e−ib1·p4 Φ1(p4 − Q )e−ib2·p3 Φ2(p3 + Q ) pµ4 |p3, p4⟩

×

∫
dDQ
(2π )D

∫
dDx ei(b−x)·Q+2iδ(s,b)

(8.18)

nd for the expectation value calculated at the saddle point,

⟨ψ |S†
c P

µ

1 Sc |ψ⟩ =
∫
p3

∫
p4

pµ4 |Φ1(p4 − Q )|2 |Φ2(p3 + Q )|2 . (8.19)

ormally performing the shifts pµ4 = Qµ
− pµ1 , p

µ

3 = −Q
µ
− pµ2 , we recover

⟨ψ |S†
c P

µ

1 Sc |ψ⟩ − ⟨ψ |P
α
1 |ψ⟩ =

∫
−p1

∫
−p2

Qµ
|Φ1(−p1)|2 |Φ2(−p2)|2 → Qµ. (8.20)

f course for particle 2 we find

⟨ψ |S†
c P

µ

2 Sc |ψ⟩ − ⟨ψ |P
α
2 |ψ⟩ = −Q

µ. (8.21)

he Jacobian for the change of variables considered in the last step, as well as the integral over the fluctuations around
he saddle points, would require further study. We shall return to this point in the outlook Section 9.

We will provide the analogous derivation for the angular momentum in the more complete eikonal framework
iscussed in the ensuing sections which will also include dissipative effects (see Eq. (8.152) for the complete final result).
owever, let us isolate here the conservative portion of the answer corresponding in particular to (8.156) for particle 1,

∆L(1c)αβ = b1[αQβ] + p4[α
∂2δ(b)

∂pβ]4
, ∆L(2c)αβ = −b2[αQβ] + p3[α

∂2δ(b)

∂pβ]3
. (8.22)

ocusing first on particle 1, we recall that 2δ depends on pµ4 both via σ = −p3 · p4/(m1m2) and via the projection that
elates bµJ to bµ as in (8.10). As a result, we find

∆L(1c)αβ = b1[αQβ] +
[
p1[α| p2|β] + (p1 + p2)[α Qβ]

] ∂2δ(s, b)
∂p1 · p2

+ (A1 + A2)p1[α Qβ] (8.23)

and similarly, for particle 2,

∆L(2c)αβ = −b2[αQβ] −
[
p1[α| p2|β] + (p1 + p2)[α Qβ]

] ∂2δ(s, b)
∂p1 · p2

+ (A1 − A2)p2[α Qβ] . (8.24)

s a result

∆L(1c)αβ +∆L(2c)αβ =
(
bJ + A1(p1 + p2)+ A2(p1 − p2)

)
Qβ] . (8.25)
[α
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sing (8.12), we see that the combination between round brackets is precisely bα . Since b[αQ β]
= 0 by (8.8), we get

∆L(1c)αβ +∆L(2c)αβ = 0 . (8.26)

Therefore, as expected, no mechanical angular momentum is lost by the two-body system in the conservative approxi-
mation.

To study (8.23) on its own, let us choose a frame where the center-of-mass sits in the origin of the transverse plane

E1bα1 + E2bα2 = 0 , (8.27)

i.e.

bα1 =
E2
E

bαJ , bα2 = −
E1
E

bαJ . (8.28)

et us also decompose the transferred momentum using pµ1 , p
µ

2 and bµJ as basis vectors,

Qµ
=

2E2
E

sin2 Θ

2
pµ1 −

2E1
E

sin2 Θ

2
pµ2 −

p
b

sinΘbµJ . (8.29)

sing (8.29) we get

b[α1 Q β]
+ (A1 + A2)p

[α
1 Q β]

= −2 sin2 Θ

2
E1E2
E2 b[α(p1 + p2)β] + 2 sin2 Θ

2
tan

Θ

2
E1E2
E2

b
p
p[α1 pβ]2 . (8.30)

If we now go to the frame where the center-of-mass is also initially at rest,

− pα1 = (E1, pI ) , −pα2 = (E2,−pI ) , (8.31)

we see that, if we restrict to spatial components, all terms in (8.23) vanish after using (8.30),

∆LIJ(1c) = 0 . (8.32)

This tells us that indeed angular momentum is conserved separately for each particle, in this special frame. The mixed
components ∆L0I do not vanish, in general. However, they are actually not well defined, since they depend on the Shapiro
time delay ∂2δ0/∂E ∝ 1

4−D + log(b/b0), which is infinite in D = 4 due to the long-range nature of the gravitational force.
This requires a subtraction which leaves behind an arbitrary cutoff scale b0 in the remaining logarithm.

.2. Coherent state approximation beyond the soft limit

As discussed in the previous section, in order to include radiation in the eikonal framework we need to introduce
reation/annihilation operators describing the physical gravitons (or in general massless particles) that can be pro-
uced/absorbed in the scattering process. So far we focused on the soft limit which in our context means that the typical
nergy of the radiation quanta is much smaller than that of the potential gravitons exchanged between the two energetic
articles: ω ≪ h̄v/b. In the previous section we used the approach by Bloch–Nordsieck/Weinberg [1,311,312] to describe
oft radiation as an exponential dressing of the ‘‘hard’’ elastic scattering as done in several papers [15,142,143,307–
10,335]. However, in the spirit of the eikonal exponentiation, we expect that classical radiation exponentiates at all
requencies at least in a PM expansion. The natural guess is that, to describe frequencies ω ≳ v/b, the functions wj
in (7.8) should be derived from the classical limit of the whole 5-point function A(5). We will use Wj to indicate these
more general functions appearing in the operatorial part of the eikonal beyond the soft approximation.

We start by taking the most straightforward generalization of the approach followed in the elastic case and introduce
the impact parameter representation of A(5) by taking its Fourier transform

Ã(5)µν(x1, x2, k) =
∫

dDq1
(2π )D−2

δ(2p1q1 − q21) δ(2p2q2 − q22)e
ix1·q1+ix2·q2A(5)µν(q1, q2, k) , (8.33)

here q1 + q2 + k = 0 and the delta functions enforce the on-shell condition for the energetic particles. As usual, in the
lassical limit we need to expand the full amplitude for small values of qi and k with respect to hard momenta pi since the
oft momenta are proportional to h̄ in the classical regime. We expect also in the inelastic case the same pattern discussed
n Section 4 for the elastic scattering: the leading tree-level contribution as h̄→ 0 should exponentiate and account for
he leading term in the classical limit at each loop level. Of course perturbative amplitudes at a fixed order in G will also
ave terms that scale as the leading tree-level contribution: by comparing their form with the formal expansion in G of
he eikonal operator δ̂ one should be able to fix in principle the form of δ̂ order by order in the PM approximation. As
consistency check, contributions of order O(Gn) that are more divergent than the classical terms should be completely
etermined by lower order data. In our analysis we will focus on the leading PM contribution to the operator part of the
ikonal and discuss how the approaches of Sections 7.1 and 7.2 can be generalized beyond the soft approximation. In
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oth cases, we take the following generalization of the elastic eikonal (8.7)

S|ψ⟩ =
∫
p3

∫
p4

e−ib1p4e−ib2p3
∫

dDQ1

(2π )D

∫
dDQ2

(2π )D
Φ(p4 − Q1)Φ(p3 − Q2)

×

∫
dDx1

∫
dDx2 ei(b1−x1)Q1+i(b2−x2)Q2e2iδ̂(x1,x2)|p3, p4, 0⟩ , (8.34)

here the operator e2iδ̂ is determined by the 4-point and 5-point function as sketched above.
Let us stress that the final state (8.34) contains a large number of gravitons as it has the same coherent state structure

f the soft eikonal operator (7.8). While this may not be surprising, since we are describing the classical radiation produced
uring the scattering, it is not obvious that the operator e2iδ̂ can be determined just by the classical limit of the 4 and the
-point amplitudes order by order in G. It is argued in [120] that this is a consistency requirement because it ensures that
he variance in the distribution of the emitted gravitons becomes negligible in the classical limit. A first check is of course
o verify that the tree-level 6-point function involving two gravitons in the final state does not yield classical contributions
hat should be included in the eikonal. This is discussed in [120] for the technically simpler case of QED and in [336] for
ravity: in both cases the assumption above holds. This supports the intuitive picture that the soft quanta are emitted one
t the time when the energetic particles bend in the scattering. However, as mentioned in the outlook, this point deserves
urther investigation studying also the inelastic amplitudes at loop level. We expect that the eikonal operator involves
lso corrections that are non-linear in the creation/annihilation operators for the soft quanta. For instance, terms of this
ype are probably needed to capture contributions related to the Compton-like 4-point amplitude with two gravitons and
wo energetic particles.

.2.1. Eikonal operator without static modes
In order to define explicitly the eikonal operator (8.34), we then need to combine the classical information extracted

rom the 4 and the 5-point functions. A first approach is to define [120]

e2iδ̂(x1,x2) =
∫

dDQ
(2π )D

∫
dDx e−iQ (x−x1+x2)e2iδs(b)ei

∫
k

[
Wj(x1,x2,k)a

†
j (k)+W

∗
j (x1,x2,k)aj(k)

]
, (8.35)

here δs(b) is related to the elastic eikonal discussed in Section 8.1, while Wj is derived from the classical limit of the
-point amplitude. Of course both objects will have a PM expansion and at 1PM and 2PM δs(b) is the same as the elastic
ikonal discussed in Sections 3 and 4. The leading mixed term in this expansion, 2δ0W0,j in the one-loop 2→ 3 amplitude
as been recently checked to be consistent with the exponentiation (8.35) [146–148]. We know that at 3PM δ2 develops
n imaginary part, see Section 5, but here we do not need to include it as it will be automatically generated by the
perator part we are adding: it is the same mechanism that in Section 7 yielded the divergent imaginary part of δ2 from

the normal ordering of the soft eikonal operator, see (7.25). Thus we identified δs(b) with the real part of the elastic eikonal
and, following [145], we take its dependence on the external momenta as follows,

2δs(b) =
1
2
[Re 2δ(σ12, be)+ Re 2δ(σ34, be)] , (8.36)

here we symmetrize between incoming σ12 = −
p1·p2
m1m2

and outgoing σ34 = −
p3·p4
m1m2

momenta. This last step starts being
elevant only at 4PM, so beyond the scope of this review, but we will briefly comment in Section 9 on why the approach
aken in (8.36) is useful.

In the radiative sector we have a similar PM expansion where Wj = W0j+W1j+· · · starts at order G3/2. Since we will
work at the first PM order for the operator part, we focus on W0j. This is obtained simply by using the classical tree-level
5-point function (5.38) in (8.33) and then contracting it with physical polarization tensors such as the ε×,+ introduced
in (8.84). For our analysis we need just the leading term and so we can use the linearized version of the delta functions,
δ(2p1q1) δ(2p2q2), since 2piqi ≫ q2i

Wµν

0 (x1, x2, k) =
∫

dDq1
(2π )D

eix1·q1+x2·q22πδ(2p1 · q1)2πδ(2p2 · q2)A
(5)µν
0 (q1, q2, k) , (8.37)

here, as before, q1 + q2 + k = 0 and A(5)µν
0 (q1, q2, k) is given in (5.38). In the same spirit of Eq. (8.36), we take Wµν to

epend on p̃1 and p̃2,

p̃1 =
1
2
(p4 − p1) = p4 −

Q1

2
, p̃2 =

1
2
(p3 − p2) = p3 −

Q2

2
, (8.38)

ather than on p1 and p2. In order to clarify the meaning of the integrations in (8.34), it is convenient to change variables
s follows x1 = x++

x−
2 , x2 = x+−

x−
2 , Q1 = Qe−

P
2 and Q2 = −Qe−

P
2 . By rewriting (8.37) in terms of x± we see that W0

depends on x+ only through an overall factor of e−ix+k. When using this fact in (8.34), one can see that the integration
over x simply implies that P is equal to the sum of the momenta of the emitted gravitons, as it can be seen by expanding
+
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he last exponential with the creation modes. Therefore, at a generic order (a†)M , we have P =
∑M

m=1 km. The factorized
dependence on x+ implies also the following transformation property under translations

xµ1,2 → xµ1,2 + aµ, Wµν

0 → e−ia·kWµν

0 . (8.39)

The same property will hold also at the subleading PM orders as long as we start from a definition with the functional
form of (8.37).

It is instructive to use the stationary phase approach to calculate the norm of the final state ⟨ψ |S†S|ψ⟩. Classical
unitarity implies that it should be equal to the norm of the initial state ⟨ψ |ψ⟩ and here we would like to see that at least
all large phases cancel at the stationary point. By using (8.34) and (8.35) we have

⟨ψ |S†S|ψ⟩ =
∫
p3,p4

∫
dDQ ′i
(2π )D

dDx′i

∫
dDQ ′

(2π )D
dDx′ e−i

∑
r (br−x

′
r )·Q
′
r+iQ

′(x′−x′1+x
′
2)−i2δs(b

′)

×

∫
dDQi

(2π )D
dDxi

∫
dDQ
(2π )D

dDx ei
∑

r (br−xr )·Qr−iQ (x−x1+x2)+i2δs(b) (8.40)

× e−
1
2
∫
k Wj

∗(x1,x2,k)Wj(x1,x2,k)−
1
2
∫
k Wj

∗(x′1,x
′
2,k)Wj(x′1,x

′
2,k)+

∫
k Wj

∗(x′1,x
′
2,k)Wj(x1,x2,k)

×Φ∗1 (p4 − Q ′1)Φ
∗

2 (p3 − Q ′2)Φ1(p4 − Q1)Φ2(p3 − Q2) .

he stationary conditions for Qi and Q ′i yield

xiµ = biµ +
∂2δs(b)
∂Qµ

i
+

∫
k

[
i
2
∂(Wj

∗(x1, x2, k)Wj(x1, x2, k))
∂Qµ

i
− iWj

∗(x′1, x
′

2, k)
∂Wj(x1, x2, k)

∂Qµ

i

]
(8.41)

x′iµ = biµ +
∂2δs(b′)
∂Q ′µi

−

∫
k

[
i
2
∂(Wj

∗(x′1, x
′

2, k)Wj(x′1, x
′

2, k))
∂Q ′µi

− i
∂Wj

∗(x′1, x
′

2, k)
∂Q ′µi

Wj(x1, x2, k)
]
.

imilarly from the variation of xi and x′i , we have

Qiµ = (−1)i+1Qµ +
∫
k

[
i
2
∂(Wj

∗(x1, x2, k)Wj(x1, x2, k))
∂xµi

− iWj
∗(x′1, x

′

2, k)
∂Wj(x1, x2, k)

∂xµi

]
(8.42)

Q ′iµ = (−1)i+1Q ′µ −
∫
k

[
i
2
∂(Wj

∗(x′1, x
′

2, k)Wj(x′1, x
′

2, k))
∂x′µi

− i
∂Wj

∗(x′1, x
′

2, k)
∂x′µi

Wj(x1, x2, k)
]

nd from the variations of x, x′, Q and Q ′

xµ = (x1 − x2)µ +
∂2δs(b)
∂Qµ

, Qµ =
∂2δs(b)
∂xµ

, (8.43)

x′µ = (x′1 − x′2)µ +
∂2δs(b′)
∂Q ′µ

, Q ′µ =
∂2δs(b′)
∂x′µ

. (8.44)

e can satisfy these equations by requiring

x′µ = xµ = (x1 − x2)µ +
∂2δs(b)
∂Qµ

, Q ′µ = Qµ =
∂2δs(b)
∂xµ

,

Q ′iµ = Qiµ = (−1)i+1Qµ − i
∫
k
W∗j (x1, x2, k)

↔

∂

∂xµi
Wj(x1, x2, k) ,

(x′i − bi)µ = (xi − bi)µ =
∂2δ(b)
∂Qµ

i
− i

∫
k
Wj
∗(x1, x2, k)

↔

∂

∂Qµ

i
Wj(x1, x2, k) ,

(8.45)

where f
↔

∂ g = (f ∂g − g∂ f )/2. When (8.45) are satisfied, all large phases cancel in the evaluation of ⟨ψ |S†S|ψ⟩, so they
define the classical values of various quantities. For instance, we can use (8.45) and the relations

p1 + p4 = Q1 , p2 + p3 = Q2 , (8.46)

which follow from the presence of the wavepackets Φi, to express Qi in terms of the initial data b1,2 and p1,2.
As mentioned after (8.38), some of the integrals could have been performed exactly, but we preferred to treat all the

variables on the same footing. By summing the results for the Qi’s and using the factorized dependence on x+ of W , we
recover

Qµ

1 + Qµ

2 = −

∫
k
Wj
∗(x1, x2, k)kµWj(x1, x2, k) = −Pµ (8.47)

ensuring momentum conservation.
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.2.2. Eikonal operator including static modes
As we saw in Section 7, for some applications it is convenient to include in the eikonal operator also the static

ontribution arising from the zero-frequency modes and this can be easily done also by following the formalism discussed
n the previous section. To this end we introduce an auxiliary frequency scale ω∗ such that the full result is well
approximated by the soft limit for frequencies below ω∗. Then we can write the eikonal operator simply by splitting the
operator part in two terms, one for ω > ω∗, where it coincides with the formulation in (8.35), and the other for ω < ω∗

or which we follow the approach of Section 7. This splitting is useful only in the intermediate steps so to implement the
ressing with the zero-frequency modes discussed in Section 7.2, but on the final results we will take the limit ω∗ → 0.
hus the differences between this approach and that of the previous section are limited to the static contributions related
o zero-frequency contributions and the −i0 prescription, see the comments after Eq. (7.45). In formulae we have

e2iδ̂(x1,x2) =
∫

dDQ
(2π )D

∫
dDx e−iQ (x−x1+x2)ei2δs(b)

× e
∫
k θ (ω

∗
−k0)

[
f outj a†j −f

out∗
j aj

]
e−

∫
k θ (ω

∗
−k0)

[
f inj a†j −f

in∗
j aj

]

× ei
∫
k θ (k

0
−ω∗)

[
Wj(x1,x2,k)a

†
j (k)+W

∗
j (x1,x2,k)aj(k)

]
.

(8.48)

We can follow the same steps of Section 7.2 and combine the oscillators in the second line of (8.48) into a single
exponential. This is equivalent to simply redefining the eikonal phase as in (7.51), that is

2iδ̃(b) = 2iδs(b)− 2iδdr.(b) (8.49)

with

2iδdr.(b) = −
1
2

∫ ω∗

k

(
f out∗j (k)f inj (k)− f in∗j (k)f outj (k)

)
=

i
4
GQ 2

1PMI(σ ) , (8.50)

here 2δdr.(b) was derived in Eqs. (7.51) and (7.63), and has been reported again here just for convenience after using
7.88). Thus we can rewrite (8.48) as

e2iδ̂(x1,x2) =
∫

dDQ
(2π )D

∫
dDx e−iQ (x−x1+x2)ei2δ̃(b)

× e
∫
k θ (ω

∗
−k0)

[
fjaj(k)†−f ∗j (k)aj(k)

]
ei
∫
k θ (k

0
−ω∗)

[
Wj(x1,x2,k)a

†
j (k)+W

∗
j (x1,x2,k)aj(k)

]
,

(8.51)

where fj(k) = f outj (k)−f inj (k). The operator (8.51) has to be used in (8.34) to obtain the full eikonal operator. The discussion
of classical unitarity for this eikonal operator follows the same steps discussed from Eq. (8.40). One can check that the
various integrals are dominated, in the classical limit, by the following values

xµ = (x1 − x2)µ +
∂2δ̃(b)
∂Qµ

, Qµ =
∂2δ̃(b)
∂xµ

, (8.52a)

Qiµ = (−1)i+1Qµ − i
∫
k
Wj
∗(x1, x2, k)

↔

∂

∂xµi
Wj(x1, x2, k) , (8.52b)

(xi − bi)µ =
∂2δ̃(b)
∂Qi

− i
∫
k
θ (ω∗ − k0) f ∗j (k)

↔

∂

∂Qµ

i
fj(k)

−i
∫
k
θ (k0 − ω∗) Wj

∗(x1, x2, k)

↔

∂

∂Qµ

i
Wj(x1, x2, k) ,

(8.52c)

here one should use (8.36) and (8.38).

.2.3. The N = 8 eikonal operator
It is straightforward to construct the eikonal operator (8.35) or (8.51) relevant to the classical limit ofN = 8 amplitudes

for 2→ 2 processes involving massive scalars plus additional emissions of gravitons, dilatons, and KK scalars and vectors.
For the elastic eikonal phase, one should use the N = 8 result which we derived in the previous sections up to O(G3).
For the inelastic portion of the operator, instead, one can introduce new ladder operators associated to the new emitted
massless states, as discussed in Section 7.4, paired with appropriate 2 → 3 amplitudes for the emission of such states.
However, it is more convenient to adopt the approach of Section 5 and simply promote the appropriate Lorentz indices
µ, ν, . . . to 10-dimensional ones M,N, . . ., employing of course the N = 8 coupling in Eq. (E.22). This effectively captures
all possible types of emissions and exchanges relevant to the classical limit.
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.3. Computing observables from the eikonal operator

In this section we illustrate how the eikonal operator allows us to calculate in a systematic way observable quantities
hat characterize gravitational collisions. The general strategy, as already discussed in the soft limit based on Eq. (7.13),
s to take expectation values of the appropriate operators in the final state obtained by acting with the eikonal operator
n the initial state. Since in this way the final state now includes radiation, this will allow us to obtain not only the
eflection angle, but also the leading-order (L.O.) gravitational waveform as well as the 3PM linear and angular momenta
f the gravitational field generated by the collision. Moreover, since the operator incorporates both field and the massive
egrees of freedom in a dynamical fashion, it will also provide expressions for the corresponding changes of mechanical
inear and angular momenta of each particle taking part in the collision that explicitly obey the corresponding balance
aws.

.3.1. Waveforms
As we discussed in order to obtain (7.17) in the zero-frequency limit, starting from the canonically normalized field

perator Hµν(x) and taking its expectation value in the final state dictated by the eikonal operator, we obtain the metric
luctuation Wµν(x),

gµν(x) = ηµν + 2Wµν(x) . (8.53)

Proceeding in the same way, but using this time the eikonal operator (8.35), we find the following waveform in D = 4
that goes beyond the soft approximation

Wµν(x) =
∫
+∞

−∞

dω
2π

e−iωuŴµν
(
ω(1, x̂)

)
, Ŵµν(k) =

2G
r

Wµν

√
8πG

, (8.54)

where ω is the frequency measured by an asymptotic detector, u is the corresponding retarded time and (1, x̂)µ a null
vector characterizing its direction with respect to the source. To obtain the L.O. waveform, we may employ Wµν

0 given in
(8.37), which is the impact-parameter version of the classical 2→ 3 amplitude, with the further approximation xα1,2 ≃ bα1,2
of the saddle-point conditions (8.45). Using the kinematics conventions given in Section 1.2 (see in particular Eq. (1.10),
and Eqs. (1.43) and following), we may cast it in the form

Wµν

0 (k) =
1

4m1m2

∫
d4q1
(2π )4

eib1·q1+ib2·q22πδ(v1 · q1)2πδ(v2 · q2)A
(5)µν
0 (q1, q2, k) (8.55)

here q1 + q2 + k = 0. In this way we will recover the frequency-domain expression Ŵµν(k) for the waveform [129].
erforming the frequency Fourier transform (8.54) leads to the expression Wµν for the metric fluctuation in (retarded)
ime domain [128,337,338], which however we will not discuss explicitly here.

The starting point for computing the L.O. waveform is thus the five-point amplitude A(5)µν
0 in the classical limit given

n Eq. (5.38). We find it convenient to rewrite the theory-dependent coefficient β by factoring out the mass dependence
ccording to

β = 2m2
1m

2
2c0 , (8.56)

o that, in D = 4,

βGR = 4m2
1m

2
2

(
σ 2
−

1
2

)
, βN=8 = 4m2

1m
2
2σ

2 . (8.57)

nd

cGR0 = 2σ 2
− 1 , cN=80 = 2σ 2 . (8.58)

e also recall that Eq. (5.38) is symmetric A(5)µν
0 = A(5)νµ

0 and encodes gauge invariance via the important property

kµA
(5)µν
0 = 0 . (8.59)

In order to perform the Fourier transform, it can be useful to isolate the terms in A(5)µν
0 that have either 1/q21 or 1/q22

rom those that have both factors, writing

A(5)µν
0 =

1
q21

A(5)µν
0,1 +

1
q22

A(5)µν
0,2 +

1
q21q

2
2
A(5)µν

0,irr (8.60)

here A(5)µν
0,1 , A(5)µν

0,2 , A(5)µν
0,irr only contain q1 and q2 in the numerators. For terms of the first kind, we may solve q2 = −q1−k

n the integrand of (8.55), obtaining

Wµν

0,1(k) =
e−ib2·k

∫
d4q1

4 eib·q12πδ(v1 · q1)2πδ(v2 · q1 − ω2)
1
2A

(5)µν
0,1

⏐⏐⏐ (8.61)

4m1m2 (2π ) q1 q2=−q1−k

121



P. Di Vecchia, C. Heissenberg, R. Russo et al. Physics Reports 1083 (2024) 1–169

w
1

w

s

I
a
a
a

F

w

I

L

f

ith bα = bα1 − bα2 . Performing the decomposition (1.10) of the integrated momentum qµ1 and taking the Jacobian factor
/
√
σ 2 − 1 into account (see also Appendix A.3), we see that the delta functions set q1∥1 = 0 and q1∥2 = −ω2 (as already

noted in (1.48)) so that

Wµν

0,1(k) =
e−ib2·k

4m1m2
√
σ 2 − 1

∫
d2q1⊥
(2π )2

eib·q1⊥
1

q21⊥ +
ω2
2

σ2−1

A(5)µν
0,1

⏐⏐⏐q2 = −q1 − k
q1 = −ω2v̌2 + q1⊥

(8.62)

and this integral can be evaluated in terms of a modified Bessel function of the second kind K0(z),∫
d2q1⊥
(2π )2

eib·q1⊥

q21⊥ +
ω2
2

σ2−1

=
1
2π

K0 (Ω2) , (8.63)

here we introduced the dimensionless combinations

Ω1 =
ω1b
√
σ 2 − 1

, Ω2 =
ω2b
√
σ 2 − 1

, (8.64)

o that

Wµν

0,1(k) =
e−ib2·k

8πm1m2
√
σ 2 − 1

A(5)µν
0,1

⏐⏐⏐ q2 = −q1 − k
q1 = −ω2v̌2 + q1⊥

q1⊥ = −i∂b

K0 (Ω2) . (8.65)

n the last step we have used the identity qµ1⊥e
ib·q1⊥ = −i∂µb e

ib·q1⊥ to rewrite all instances of qµ1⊥ appearing in A(5)µν
0,1

s derivatives with respect to the impact parameter bµ. The discussion of the second kind of terms in (8.60) is entirely
nalogous, with the only difference that for those it is more convenient to solve the momentum conservation condition
s qµ1 = −q

µ

2 − kµ, so that

Wµν

0,2(k) =
e−ib1·k

8πm1m2
√
σ 2 − 1

A(5)µν
0,2

⏐⏐⏐ q1 = −q2 − k
q2 = −ω1v̌1 + q2⊥

q2⊥ = −i∂b

K0 (Ω1) . (8.66)

inally, we turn to the calculation of the third kind of terms in (8.60), which, proceeding as above, can be cast in the form

Wµν

0,irr(k) =
e−ib2·k

4m1m2
√
σ 2 − 1

∫
d2q1⊥
(2π )2

eib·q1⊥
A(5)µν

0,irr

⏐⏐⏐q2 = −q1 − k
q1 = −ω2v̌2 + q1⊥(

(q1⊥ + k⊥)2 +
ω2
1

σ2−1

)(
q21⊥ +

ω2
2

σ2−1

) (8.67)

here P = −ω2
1 + 2ω1ω2σ − ω

2
2 as in (1.45). The basic integral to be performed in this case is∫

d2q1⊥
(2π )2

eib·q1⊥(
(q1⊥ + k⊥)2 +

ω2
1

σ2−1

)(
q21⊥ +

ω2
2

σ2−1

) ≡ 1
2π

H . (8.68)

ntroducing Schwinger parameters, one finds

H =
∫
R2
+

dx1dx2
2(x1 + x2)

e
−

1
x1+x2

(
b2
4 +ib·kx1+

x21ω
2
1+2σx1x2ω1ω2+x

2
2ω

2
2

σ2−1

)
. (8.69)

etting x1 = b2x/(4λ), x2 = b2y/(4λ) with Feynman parameters x, y obeying x + y = 1, and using the integral
representation

K1(z)
z
=

∫
∞

0
e−λ−

z2
4λ

dλ
4λ2

, (8.70)

or the modified Bessel function of the second kind K1(z), one can express H as the following parametric integral,

H =
b2

2

∫ 1

0
e−ixb·k

K1(Ω(x))
Ω(x)

dx (8.71)

where, again letting x+ y = 1,

Ω(x) =
√
Ω2x2 + 2Ω Ω σxy+Ω2y2 . (8.72)
1 1 2 2
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herefore,

Wµν

0,irr(k) =
e−ib2·k

16πm1m2
√
σ 2 − 1

A(5)µν
0,irr

⏐⏐⏐ q2 = −q1 − k
q1 = −ω2v̌2 + q1⊥

q1⊥ = −i∂b

[
b2
∫ 1

0
e−ixb·k

K1(Ω(x))
Ω(x)

dx
]
. (8.73)

To perform the remaining b-derivatives in (8.65), (8.66) and (8.73), it can be useful to recall that

K ′0(z) = −K1(z) , (zK1(z))′ = −zK0(z) . (8.74)

Proceeding in this way, and collecting the three pieces according to (8.60), we obtain the following result for the
covariant frequency-domain waveform (8.54), letting

Ŵµν

0 (k) = Ŵµν

0,12(k)+ Ŵµν

0,irr(k) . (8.75)

Then

Ŵµν

0,12(k) =
2G2m1m2

brω1ω2(σ 2 − 1)

∑
j=1,2

[
Aµνj e−ibj·k

bK0(Ωj)
√
σ 2 − 1

− 2ic0B
µν

j e−ibj·kK1(Ωj)
]

(8.76)

ith

Aµν1 = c0
(
σ 2
− 1

)
v1

(µkν)ω2 + v1
µv1

νω2
(
2σω2

(
c0 − 4(σ 2

− 1)
)
+ 2c0ω1

)
+ 2σv1(µv2ν)ω1ω2

(
2(σ 2
− 1)− c0

)
,

Bµν1 = (b·k)v1µv1νω2 + v1
(µbν)ω1ω2 (8.77)

nd Aµν2 , Bµν2 are obtained by interchanging particle labels (vµ1 ↔ v
µ

2 , b
µ

1 ↔ bµ2 and hence bµ ↔ −bµ). Here and in the
following ξ (µξ ′µ

′)
= ξµξ ′µ

′

+ ξµ
′

ξ ′µ without additional factors. Moreover,

Ŵµν

0,irr(k) =
2G2m1m2

r(σ 2 − 1)3/2

∫ 1

0
e−ib(x)·kdx

[
CµνK0(Ω(x))+ Dµν

K1(Ω(x))
Ω(x)

]
(8.78)

here

bµ(x) = xbµ1 + ybµ2 (8.79)

let us recall that y = 1− x) together with

Cµν = c0(σ 2
− 1)

[
2ηµν − i(x− y)b(µkν)

]
− 2c0

(
v1
µv1

ν
− σv1

(µv2
ν)
+ v2

µv2
ν
)

(8.80)

−ib(µvν)1
(
2σω1

(
2
(
σ 2
− 1

)
− c0y

)
− 2c0xω2

)
−iv2(µbν)

(
2σω2

(
2
(
σ 2
− 1

)
− c0x

)
− 2c0yω1

)
,

nd

Dµν = c0(σ 2
− 1)

(b2
2
(x− y)2kµkν −

2bµbν

b2
Ω(x)2

)
(8.81)

+ b2v1(µkν)(x− y)
(
c0xω1 + σω2

(
c0y− 2(σ 2

− 1)
))

+ b2v2(µkν)(y− x)
(
c0yω2 + σω1

(
c0x− 2(σ 2

− 1)
))

+
2b2v1µv1ν

σ 2 − 1

(
c0 (xω1 + σyω2)

2
+ 2

(
σ 2
− 1

)
ω2
(
ω2
(
σ 2(x− y)− 1

)
− 2σxω1

))
+

2b2v2µv2ν

σ 2 − 1

(
c0 (yω2 + σxω1)

2
+ 2

(
σ 2
− 1

)
ω1
(
ω1
(
σ 2(y− x)− 1

)
− 2σyω2

))
+

2b2v1(µv2ν)

σ 2 − 1

(
σxω2

1

(
2
(
σ 2
− 1

)
− c0x

)
+ ω1ω2

(
2
(
σ 2
− 1

)
− c0

(
σ 2
+ 1

)
xy
)
+ σyω2

2

(
2
(
σ 2
− 1

)
− c0y

) )
.

s a cross check, one can verify that kµW
µν

0 (k) = 0 by integrating by parts with respect to x, using b·keixb·k = −i∂xeixb·k. This
auses the terms arising from integration by parts to cancel against the remaining integrated terms, while the boundary
erms cancel against the non-integrated ones. The expressions we obtained in this way are valid for both GR and N = 8
rovided one takes into account the appropriate conventions discussed below Eq. (5.38).
In order to extract two gravitational physical degrees of freedom encoded in the waveform, we construct a pair of

rthogonal polarization tensors as follows. We keep c0 generic so as to capture both gravitational-wave emissions in GR
nd in N = 8 supergravity. We first introduce reference vectors ẽµθ and eµφ such that (more explicit expressions for such
eference vectors are given below in Eq. (8.91) and following)

ẽ · ẽ = 1 = e · e , ẽ · e = 0 , ẽ · k = e · k = 0 (8.82)
θ θ φ φ θ φ θ φ

123



P. Di Vecchia, C. Heissenberg, R. Russo et al. Physics Reports 1083 (2024) 1–169

a

L
p

w

a

w

a

nd

ẽθ · b = 0 , eφ · vi = 0 , −
v1 · ẽθ

σω1 − ω2
=

v2 · ẽθ
σω2 − ω1

=
1
√
P
. (8.83)

et us recall that P had been introduced in (1.45) and is nonnegative. We then construct the following transverse-traceless
olarization tensors

ε
µν
× =

1
2
(ẽµθ e

ν
φ + ẽνθe

µ

φ ) , ε
µν
+ =

1
2
(ẽµθ ẽ

µ

θ − eµφ e
ν
φ) (8.84)

and define

Ŵ×(k) = ε×µνŴ
µν

0 (k) , Ŵ+(k) = ε+µνŴ
µν

0 (k) . (8.85)

Isolating for convenience two contributions for each polarization according to

Ŵ×/+(k) = Ŵ12,×/+(k)+ Ŵirr,×/+(k) , (8.86)

e find the following expressions. For the × polarization,

Ŵ12,×(k) = −
4iG2m1m2c0
br(σ 2 − 1)

b·eφ
(
e−ib1·kK1 (Ω1) v1 ·ẽθ − e−ib2·kK1 (Ω2) v2 ·ẽθ

)
(8.87)

nd

Ŵirr,×(k) =
4iG2m1m2

r
√
σ 2 − 1

(
c0ω1ω2
√
P
− 2σ
√
P
)

b·eφ

∫ 1

0
e−ib(x)·kK0(Ω(x))dx (8.88)

ith bµ(x), Ω(x) as in (8.72). For the + polarization, we find

Ŵ12,+(k)

=
2G2m1m2

rω1ω2
(
σ 2 − 1

)[i b·k
b

c0
(
e−ib2·kK1 (Ω2) (v2 ·ẽθ )2ω1 − e−ib1·kK1 (Ω1) (v1 ·ẽθ )2ω2

)
(8.89)

+
e−ib1·kK0(Ω1) v1 ·ẽθω2 − e−ib2·kK0(Ω2)v2 ·ẽθω1

√
σ 2 − 1

√
P

((
σ 2
− 1

)
(4Pσ − c0ω1ω2)− c0Pσ

)]
and finally

Ŵirr,+(k) =
2G2m1m2

r
√
σ 2 − 1

∫ 1

0
dx e−ib(x)·k

[ (b·eφ)2

b2
c0K1(Ω(x))Ω(x)− c0K0(Ω(x))

+
b2K1(Ω(x))
Ω(x)P

(
c0ω2

1ω
2
2 + 2P2

− 4σω1ω2P
) ]

.

(8.90)

Introducing an additional vector b̌µ satisfying b̌2 = b2 and b · ǔ1,2 = b · b̌ = 0, the explicit decomposition of the
reference vectors ẽµθ , e

µ

φ in terms of the basis vectors vµ1 , v
µ

2 , b
µ, b̌µ reads

ẽµθ =
ω1v

µ

2 − ω2v
µ

1
√
P

, eµφ =
(b̌ · k)bµ − (b · k)b̌µ

b
√
(b · k)2 + (b̌ · k)2

. (8.91)

In the center-of-mass (CM) frame where

v
µ

1 =
1
m1

(E1, 0, 0, p) , v
µ

2 =
1
m2

(E2, 0, 0,−p) , bµ = (0, 0, b, 0) , b̌µ = (0, b, 0, 0) , (8.92)

we can introduce the explicit parametrization

kµ = ω(1, sin θ cosφ, sin θ sinφ, cos θ ) (8.93)

nd the polarization vectors

ẽµθ = −
1

sin θ
(cos θ, 0, 0, 1) , eµφ = (0,− sinφ, cosφ, 0), (8.94)

which satisfy (8.82), (8.83). In particular, P = ω2(σ 2
− 1) sin2 θ . We provide a more complete list of kinematic relations

in Appendix E, together with an expression for the × and + projections in terms of reference vectors eµθ , e
µ

φ such that eµθ
is not necessarily orthogonal to bµ.
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Let us now explore the soft limit kµ → 0 of the full waveform Ŵµν(k) (8.75). To leading order in this limit, we find

Ŵµν

L. (k) =
4G2im1m2c0

b2r
√
σ 2 − 1ω2

1ω
2
2

×
(
v2
µv2

νω2
1(b·k)− (b·k)v1µv1νω2

2 − v1
(µbν)ω2

2ω1 + v2
(µbν)ω2ω

2
1

) (8.95)

which is in agreement with the PM limit of Weinberg’s soft theorem (translated to b-space), using the leading-order
deflection Q1PM = 2Gm1m2c0/(b

√
σ 2 − 1). Indicating by log(ωb) a generic log-enhanced dependence on the graviton’s

overall scale,49 we find to subleading order in the soft limit

Ŵµν

S.L.(k) =
4G2m1m2

(
4(σ 2
− 1)− c0

)
σ log(ωb)

r
(
σ 2 − 1

)3/2
ω1ω2

(
v1
µv1

νω2
2 − v1

(µv2
ν)ω1ω2 + ω

2
1v
µ

2 v
ν
2

)
−

2G2m1m2c0 log(ωb)

r
√
σ 2 − 1ω1ω2

(
k(µξ ν) − ηµνξ · k

)
(8.96)

with ξµ = ω2v
µ

1 + ω1v
ν
2 . Setting c0 = cGR0 to discuss the case of particles interacting only gravitationally, we can

compare with the subleading log-theorem [309,310], which predicts the form of the trace-reversed metric perturbation
eµν = Ŵµν

−
1
2η

µνηαβŴαβ according to

eµνS.L.(k) =
4G2m1m2

(
2σ 2
− 3

)
σ log(ωb)

r
(
σ 2 − 1

)3/2
ω1ω2

(
v1
µv1

νω2
2 − v1

(µv2
ν)ω1ω2 + ω

2
1v
µ

2 v
ν
2

)
. (8.97)

We see that the first line of (8.96) agrees with (8.97), while the second line of (8.96) vanishes when contracted with
physical polarizations. Instead, we do not find agreement with the ‘‘sub-subleading’’ O(ω logω) soft contribution to
waveforms emitted during collisions of massless objects [142], which lie above the bound (7.94). For instance, for the
× polarization, we find

Ŵ×L. + Ŵ×,O(ω logω)

Ŵ×L.
∼ 1+

1
4
(ωb)2 log(ωb)(sin θ )2 (8.98)

in any center-of-mass frame, where p⃗1 + p⃗2 = 0 (the above relation is instead independent of the translation frame), as
σ →∞, while the result of [142] gives rise to a similar relation but with the factor of 1

4 replaced by 1
2 .

Finally, let us calculate the dilatonic waveform. For this case, we set c0 = cN=80 in order to include not only dilaton
emissions but also dilaton exchanges, and take the trace according to

Ŵ =
1
√
2
ηµνŴµν . (8.99)

ontracting indices generates some terms proportional to b·k from Ŵµν

irr that we can integrate by parts to obtain a more
ompact expression. The result is Ŵ = Ŵ12 + Ŵirr with

Ŵ12(k) =
4
√
2G2m1m2σ

2

r

{
i

b
(
σ 2 − 1

) [b·k
ω1

e−ib1·kK1(Ω1)−
b·k
ω2

e−ib2·kK1(Ω2)
]

+

(
σ 2
− 2

)
ω2 + σω1

σω1(σ 2 − 1)3/2
e−ib1·kK0(Ω1)+

(
σ 2
− 2

)
ω1 + σω2

σω2(σ 2 − 1)3/2
e−ib2·kK0(Ω2)

} (8.100)

and

Ŵirr(k) = −
4
√
2bG2m1m2

r
(ω2

1 + ω
2
2)
∫ 1

0
e−ib(x)·k

K1(Ω(x))
Ω(x)

. (8.101)

.3.2. Linear momentum
Once the waveforms are given one can easily write down the corresponding formulas for the spectrum of emitted

nergy and momentum for each polarization as a function of frequency or retarded time. In frequency domain, which is
ore relevant for interferometers, one has

dPµ×,+ = kµ
⏐⏐ωW×,+⏐⏐2 dω dΩ(n)

2ω(2π )3
, (8.102)

49 For instance log(Ω ) = log(ωb)+ · · · , log(Ω ) = log(ωb)+ · · · where the dots denote non-log-enhanced terms.
1 2
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here, as discussed in Appendix F, the measured frequency and the detector’s angular positions are characterized by
µ
= ω nµ, while dΩ(n) is the angular measure. In particular, using (8.93), the gravitational energy emitted in a given

irection θ, φ takes the form (see e.g. [337,338])

dP0
×,+ = ω

⏐⏐ωW×,+⏐⏐2 sin θ dω dθ dφ
2ω(2π )3

. (8.103)

These differential spectra, which characterize the angular and frequency distribution of the energy carried by grav-
tational waves, have been studied, for instance, in [337,338] for massive objects at finite σ , and in [142,333] for the
ltra-relativistic case. Leaving to future work a more detailed study of the spectrum in different kinematical regimes, let
s mention a few of its broad features in the frequency domain after integration over the angular variables.
As we have already mentioned, in the limit ω → 0 the spectra tend to the well-known ZFL [339]. The characteristic

requency range for which a soft expansion in powers of ωb is valid is of order 1/b and in D = 4 contains logarithmically
nhanced sub- and sub-sub-leading corrections. Such a mild ω dependence also holds above 1/b as long as ωb does not
xceed

√
σ . Above this frequency the spectrum drops, first like a small power of ω, and then exponentially when ωb > σ

3
2 .

his qualitative feature of the spectrum is responsible for the σ dependence of the total radiated energy to be discussed
elow. It would be interesting to compare this spectrum with the one of the ultra-relativistic limit i.e. above the bound
7.94), Θ

√
σ ≳ 1, but, so far, this has only been done in the small-ω limit as already discussed in Section 7.

Here we shall focus on the calculation of the total emitted energy and momentum, which is obtained by integrating
(8.102) over the graviton phase space, to leading order in the coupling,

Pµ =
∫
k
Ã(5)kµÃ(5)∗ . (8.104)

Following the steps discussed in Section 5, this can be conveniently rewritten in terms of the Fourier transform of a
three-particle cut, according to

Pµ = FT
∫

d(LIPS) kµ

k1

k

k2

p1

p2

q1

q2

p4

p3

q4

q3
, (8.105)

here FT stands for the Fourier transform (5.46). The integral on the right-hand side can be calculated using the reverse-
nitarity method, i.e. by reinterpreting the delta functions involved in the LIPS as cut propagators. The result in GR
s [47,117,118]

Pµrad =
G3m2

1m
2
2

b3
(
v̌
µ

1 + v̌
µ

2

)
E(σ ) , (8.106)

ith

E(σ )
π
= f1(σ )+ f2(σ ) log

σ + 1
2
+ f3(σ )

σ arccosh σ

2
√
σ 2 − 1

,

f1(σ ) =
210σ 6

− 552σ 5
+ 339σ 4

− 912σ 3
+ 3148σ 2

− 3336σ + 1151
48(σ 2 − 1)3/2

,

f2(σ ) = −
35σ 4

+ 60σ 3
− 150σ 2

+ 76σ − 5

8
√
σ 2 − 1

,

f3(σ ) =

(
2σ 2
− 3

) (
35σ 4

− 30σ 2
+ 11

)
8
(
σ 2 − 1

)3/2 .

(8.107)

Let us now check that this emission of energy and momentum is matched by corresponding radiative losses of energy–
momentum of the colliding objects, i.e. by the integrals in (8.52b), which we denote as follows to leading order in the PM
expansion using the further saddle point conditions (8.52a),

Q1µ =
1
∫ [
−i
∂Ã(5)

µ Ã(5)∗
+ iÃ(5) ∂Ã

(5)∗

µ

]
. (8.108)
2 k ∂b1 ∂b1
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roceeding in the by now familiar way (see Section 5), we can recast this as the following three-particle cut,

Q µ

1 =
1
2
FT
∫

d(LIPS) (qµ1 − qµ4 )

k1

k

k2

p1

p2

q1

q2

p4

p3

q4

q3
. (8.109)

We can then use the same techniques employed to calculate Pµrad, based on reverse-unitarity, obtaining the following
result

Q µ

1 = −
G3m2

1m
2
2

b3
v̌
µ

2 E(σ ) , (8.110)

ith E(σ ) as in (8.107), and similarly for particle 2

Q µ

2 = −
G3m2

1m
2
2

b3
v̌
µ

1 E(σ ) . (8.111)

e see that (8.106), (8.110), (8.111) obey the energy–momentum conservation condition

Pµ + Q µ

1 + Q µ

2 = 0 . (8.112)

his can be seen as a consequence at the level of integrals of the basic identity qµ1 + qµ2 + kµ = 0 among the integrated
omenta. Taking into account that the additional Qµ contribution enters the total impulse Qiµ (8.52b) with opposite sign

or the two particles, we thus recover the complete energy–momentum balance law,

Pµ + Qµ

1 + Qµ

2 = 0 . (8.113)

ere we used that the only contribution to the energy–momentum of the gravitational field is the radiative one given in
8.104), Pµ = Pµ.

Let us comment on the difference between (8.45) and (8.52) when it comes to the non-radiative part of the impulse.
n the former case, Qµ is determined by the derivative of the full eikonal phase Re 2δ up to 3PM, which therefore includes
both conservative and radiation-reaction effects, as we discussed in Section 6,

Qµ

1 = −
G
2
Q 2
1PMI(σ )

bµ

b2
= −Qµ

2 . (8.114)

n the latter case, Qµ is determined by the derivative of the ‘‘reduced’’ phase 2δ̃, which does not include such effects, due
o the subtraction of (8.50). However, this difference is accompanied by the appearance of a new static contribution in
he relation (8.52c) linking xµ to bµ, which we denote by

∆xµ ≡ (x1 − x2 − bJ )µ = −i
∫
k
θ (ω∗ − k0) F∗(k)

( ↔

∂

∂Qµ

1
−

↔

∂

∂Qµ

2

)
F (k)+ O(G3) . (8.115)

o the order under consideration, using the on-shell conditions and the same integrals involved in the evaluation of J αβ

n Section 7, one obtains

∆xµ ≃ Qµ G , G =
1
2
(c14 + c23 − c13 − c24) . (8.116)

here Qµ in this case is the conservative part of the impulse.
This quantity contributes with an extra term to the relation between b and bJ in (8.12) and this implies that, in

omputing Qµ in (8.52a), we can use the relation b = x+ GQ (b = x) getting

Qµ
=
∂2δ̃(x+ GQ (b = x))

∂xµ
=
∂2δ̃(x)
∂xµ

+ GQ
∂22δ̃(x)
∂x∂xµ

+ O(G4) . (8.117)

he second term gives the radiation reaction that can be written as

Qµ

1 =
GI(σ )
4b

bµ
∂Q 2

∂b
=

GI(σ )
4

∂Q 2

∂bµ
= −

G
2
Q 2
1PMI(σ )

bµ

b2
+ O(G4) , (8.118)

here, at leading order, we have put x = b, and G = G
2 I(σ ) by (8.114), as well as Q = Q1PM. In this way, the predictions

f the two formalisms for the full impulse agree.
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.3.3. Angular momentum
The angular momentum of the gravitational field sourced by the collision is given by the sum of two pieces,

Jαβ = Jαβ + J αβ . (8.119)

The second one, J αβ , is the contribution due to static modes, which starts at 2PM order and which we have already
calculated in (7.85). The first one, Jαβ , is instead new. It starts at 3PM order and arises due to genuine gravitational wave
emissions. Its expression is the same as (7.78), with the gravitational waveform Ã(5)µν replacing the ‘‘soft factor’’ Fµν . For
onvenience, let us break it down as follows

Jαβ = J (o)αβ + J (s)αβ , J (o)αβ = −i
∫
k
k[α
∂Ã(5)

∂kβ]
Ã(5)∗ , J (s)αβ = i

∫
k
2Ã(5)µ
[α Ã(5)∗

β]µ . (8.120)

As already mentioned, the two terms in the previous equations are formally reminiscent of the orbital and spin terms
of the gravitational angular momentum, but only their sum is physically meaningful and gauge invariant. One of the
main advantages of the expression (8.120) for the angular momentum is that it is manifestly covariant under Lorentz
transformation. To see how it transforms under translations,

bµ1,2 ↦→ bµ1,2 + aµ , (8.121)

let us first remark that, under (8.121), Ã(5)µν(k) transforms according to

Ã(5)µν(k) ↦→ e−ia·kÃ(5)µν(k) , (8.122)

as is clear from the explicit expression (5.51). Then, taking into account the differential operator in (8.120), we see that

Jαβ ↦→ Jαβ + a[αPβ] , (8.123)

after comparing with the radiated energy–momentum (8.104). In this way, we see that (8.120) is in fact Poincaré covariant.
Following the above strategy, we shall now recast these expression in a form which is amenable to the application of

reverse-unitarity. Let us start from J (s)αβ , for which this manipulation is straightforward:

J (s)αβ = 2i FT
∫

d(LIPS)

⎡⎢⎢⎢⎢⎢⎢⎣ k

p1

p2

q1

−q1 − k

⎤⎥⎥⎥⎥⎥⎥⎦

µ

[α

⎡⎢⎢⎢⎢⎢⎢⎣

p4

p3

q− q1

q1 + k− q
−k

⎤⎥⎥⎥⎥⎥⎥⎦
β]µ

(8.124)

as follows by applying the same steps discussed in Section 5, carrying along the appropriate index contractions. Let us
now turn to J (o)αβ , for which the presence of a derivative with respect to kµ makes the connection between the b-space
and the q-space representation less straightforward, unlike all quantities considered so far. We first rewrite the defining
expression (8.120) in a frame where bα2 = 0 and thus bα = bα1 , which can always be attained by performing an appropriate
translation according to Eqs. (8.121), (8.122), (8.123). In this way we find

iJ (o)αβ =
∫
k
k[α

∂

∂kβ]

⎡⎢⎢⎢⎢⎢⎢⎣
∫

dDq1
(2π )D

2πδ(2p1 · q1)2πδ(2p2 · (q1 + k))eib·q1 k

p1

p2

q1

−q1 − k

⎤⎥⎥⎥⎥⎥⎥⎦

×

∫
dDq4
(2π )D

2πδ(2p1 · q4)2πδ(2p2 · (q4 − k))eib·q4

p4

p3

q4

k− q4
−k

(8.125)
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here we have already appropriately ‘‘flipped’’ the 2→ 3 amplitude in the second line by rewriting it as a 3→ 2 one.
hifting q4 = q− q1, and using δ(2p1 · q1)δ(2p1 · q4) = δ(2p1 · q1)δ(2p1 · q), we have

iJ (o)αβ =
∫

dDq
(2π )D

2πδ(2p1 · q)eib·q
∫
k

∫
dDq1
(2π )D

2πδ(2p1 · q1)

× k[α
∂

∂kβ]

⎡⎢⎢⎢⎢⎢⎢⎣2πδ(2p2 · (q1 + k)) k

p1

p2

q1

−q1 − k

⎤⎥⎥⎥⎥⎥⎥⎦ 2πδ(2p2 · (q− q1 − k))

p4

p3

q− q1

q1 + k− q
−k

When we let the differential operator act on the square bracket, we need to distinguish two types of terms. For the terms
where the derivative acts on the amplitude, we can use again

δ(2p2 · (q1 + k))δ(2p2 · (q− q1 − k)) = δ(2p2 · (q1 + k))δ(2p2 · q) . (8.126)

nstead, for those where the derivative acts on the delta function we can use the following property,

∂δ(2p2 · (q1 + k))
∂kβ

δ(2p2 · (q− q1 − k)) =
∂δ(2p2 · (q1 + k))

∂kβ
δ(2p2 · q)

+ δ(2p2 · (q1 + k))
∂δ(2p2 · q)
∂qβ

,

(8.127)

hich follows from the distributional identity δ′(x)δ(y − x) = δ′(x)δ(y) + δ(x)δ′(y). In total we get three terms: the first
ne involves the standard Fourier transform in the usual transverse plane δ(2p1 · q)δ(2p2 · q) and the derivative acts on
he amplitude, the second one involves the standard Fourier transform and the derivative acts on the phase-space delta
unction δ(2p2 · (q1 + k)), while in the last one the derivative acts on one of the delta functions appearing in the Fourier
ransform, δ(2p2 · q). Grouping together the first two terms, we thus find

iJ (o)αβ = FT
∫

k[α
∂

∂kβ]

⎡⎢⎢⎢⎢⎢⎢⎣d(LIPS) k

p1

p2

q1

−q1 − k

⎤⎥⎥⎥⎥⎥⎥⎦

p4

p3

q− q1

q1 + k− q
−k

− FT(2)
[α

∫
d(LIPS)kβ] k

p1

p2

q1

−q1 − k

q− p1

q− q1

k− q+ q1

(8.128)

with FT(2)α given by

FT(2)α
[
fµ(q)

]
≡

∫
dDq

(2π )D
2πδ(2p1 · q) 2π

δ(2p2 · q)
∂qα

eib·q fµ(q) . (8.129)

This modified Fourier transform acts on a quantity that looks like the q-space expression of Pα . However, due to the
derivative acting on δ(2p2 · q), we can no longer calculate this quantity by assuming v2 · q = 0. To evaluate (8.129), let us
start by introducing velocities as in (1.7), pµ1 = −m1v

µ

1 and pµ2 = −m2v
µ

2 so that

FT(2)α
[
fµ(q)

]
=

uα2
4m1m2

∫
dDq

(2π )D
2πδ(v1 · q) 2πδ′(v2 · q) eib·q fµ(q) . (8.130)

Proceeding as in Appendix A.3, and in particular decomposing the integrated momentum qµ as in (1.10), we find

FT(2)α
[
fµ(q)

]
= −v2α

∫
dD−2q⊥

D−2

δ(q∥1)dq∥1 2πδ′(q∥2)dq∥2
√ eib·q⊥ fµ(q) . (8.131)
(2π ) 4m1m2 σ 2 − 1
129
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ntegrating by parts (i.e. using the definition of the δ′ distribution) we can recast this as the ordinary Fourier transform
f a derivative, obtaining

FT(2)α
[
fµ(q)

]
= v2α FT

[
∂

∂q∥2
fµ(q)

]
. (8.132)

he second line of (8.128) can be simplified using (8.132) so that

iJ (o)αβ = FT
∫
k
k[α

∂

∂kβ]

⎡⎢⎢⎢⎢⎢⎢⎣d(LIPS′) k

p1

p2

q1

−q1 − k

⎤⎥⎥⎥⎥⎥⎥⎦

p4

p3

q− q1

q1 + k− q
−k

− v2[α FT
∂

∂q∥2

∫
d(LIPS)kβ] k

p1

p2

q1

−q1 − k

q− p1

q− q1

k− q+ q1
.

(8.133)

The dependence on q∥2 in the integrand appearing in the second line comes from v2 · q and from the invariants that
involve q∥2 and a loop momentum, or in q2 itself: I(v2 · q, q · ℓ1, q · ℓ2, q2). Then, since

v2 · q = −q∥2 ,
ℓ1 · q = ℓ1 · q⊥ + ℓ1 · v̌2 q∥2 ,
ℓ2 · q = ℓ2 · q⊥ + ℓ2 · v̌2 q∥2 ,

q2 = q2
⊥
+ q2
∥2

(8.134)

we find
∂ I
∂q∥2
= −

∂ I
∂v2 · q

+ ℓ1 · v̌2
∂ I

∂(q · ℓ1)
+ ℓ2 · v̌2

∂ I
∂(q · ℓ2)

, (8.135)

ecause q2 is quadratic in q∥2 so its derivative vanishes at q∥2 = 0.
Let us comment as to why there are no ambiguities associated to derivatives of delta functions. As is clear from (5.51),

one is allowed to choose different expressions for the five-point amplitude provided that they only differ by terms that
vanish when

v1 · ℓ1 = 0 or v2 · ℓ1 + v2 · ℓ2 = 0 , (8.136)

thanks to the delta functions. Different choices for these modifications will change each line in (8.133) separately, but will
not change the total sum, provided of course that the same choice is made consistently in both lines. The easiest option
is to just treat q1 and k as completely independent integration variables, and let the derivative of the delta functions
automatically take care of their interdependence on-shell due to the longitudinal components.

Although we discussed the above steps for bα2 = 0, we present the final results in a frame where bα1+bα2 = 0, related to
the previous one by a translation by −bα/2 (see Eqs. (8.121), (8.123)), where particle-interchange symmetry is manifest.
Defining E± and F in terms of the functions E in (8.107) and C given by

C
π
= g1 + g2 log

σ + 1
2
+ g3

σ arccosh σ

2
√
σ 2 − 1

,

g1 =
105σ 7

− 411σ 6
+ 240σ 5

+ 537σ 4
− 683σ 3

+ 111σ 2
+ 386σ − 237

24(σ 2 − 1)2
,

g2 =
35σ 5

− 90σ 4
− 70σ 3

+ 16σ 2
+ 155σ − 62

4(σ 2 − 1)
,

g3 = −
(2σ 2
− 3)

(
35σ 5

− 60σ 4
− 70σ 3

+ 72σ 2
+ 19σ − 12

)
4
(
σ 2 − 1

)2
(8.137)

[117,118,332] by letting

C
√
σ 2 − 1 = −E + σE , F = E − 1 E = −E + 1E , (8.138)
+ − + 2 − 2
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e find

Jαβ ≃
G3m2

1m
2
2

b3
F(σ )

(
b[α v̌β]1 − b[α v̌β]2

)
, F(σ ) =

(σ − 1)E − 2
√
σ 2 − 1C

2(σ + 1)
. (8.139)

After a translation

aµ =
E2 − E1

2(E1 + E2)
bµ , (8.140)

which places the center of mass (or rather ‘‘center of energy’’) in the origin of the transverse plane, Eq. (8.139) becomes

Jαβ ≃
G3m1m2

b3

[
b[α(m1p2 −m2p1)β]

C(σ )
√
σ 2 − 1

+
m1m2

E2 E(σ )
σ − 1
σ 2 − 1

(
b[αpβ]1 (m1 +m2σ )− b[αpβ]2 (m2 +m1σ )

) ] (8.141)

that, in the center of mass system where −p1 = (E1, p) and −p2 = (E2,−p), reproduces Eq. (15) of Ref. [332] except for
he static (zero-frequency) modes. Adding (8.141) with such contribution as given by (7.89) expanded up to O(G3), one
eproduces the full result of Ref. [332],

Let us now provide the analogous formulas expressing the angular momentum that is lost by each particle, which we
erive in full detail. Acting with the angular momentum operator

L(1)αβ = −i
∫
k1

a†
1(k1)k1[α

∂a1(k1)

∂kβ]1
(8.142)

n the initial state (8.1) and using the commutation relations, one finds

Lαβ(1) |ψ⟩ =
∫
−p1

∫
−p2

(
−ip[α1 ∂

β]
p1Φ1(−p1)

)
Φ2(−p2) eib1·p1+ib2·p2 |−p1,−p2⟩

+

∫
−p1

∫
−p2

b[α1 (−pβ]1 )Φ1(−p1)Φ2(−p2) eib1·p1+ib2·p2 |−p1,−p2⟩ .
(8.143)

he corresponding expectation value is therefore

⟨ψ |Lαβ(1) |ψ⟩ =
∫
−p1

Φ∗1 (−p1)
(
−ip[α1 ∂

β]
p1Φ1(−p1)

)
+

∫
−p1

b[α1 (−pβ]1 )|Φ1(−p1)|2 . (8.144)

et us now act on the final state dictated by the eikonal operator. For notational simplicity, we discuss the action of the
ikonal operator (8.35) which does not include the static-mode contributions involving Fµν . They can be easily reinstated
y replacing Wj(x1, x2, k) with θ (k0−ω∗)W(x1, x2, k)+ θ (ω∗− k0)fj(x1, x2, k). Doing this and replacing Re 2δ with 2δ̃, one

obtains the result for (8.51). For simplicity, we also suppress the additional integrals over x and Q , which do not play a
role in the derivation. With this proviso, we start by calculating

L(1)αβS|ψ⟩ =
∫
p3

∫
p4

e−ib1·p4−ib2·p3 |p3, p4⟩

×

∫
dDQ1

(2π )D

∫
dDQ2

(2π )D

∫
dDx1

∫
dDx2 ei(b1−x1)·Q1+i(b2−x2)·Q2+2iδ(b)

×

(
b1[α|p4|β] + p4[α

∂2δ(b)

∂pβ]4
+

∫
k
p4[α

∂

∂pβ]4
W(x1, x2, k) a†(k)

)
× ei

∫
k W(x1,x2,k) a†(k)|0⟩Φ1(p4 − Q1)Φ2(p3 − Q2)

+

∫
p3

∫
p4

e−ib1·p4−ib2·p3 |p3, p4⟩

×

∫
dDQ1

(2π )D

∫
dDQ2

(2π )D

∫
dDx1

∫
dDx2 ei(b1−x1)·Q1+i(b2−x2)·Q2+2iδ(b)

×

(
−ip4[α

∂

∂pβ]4
Φ1(p4 − Q1)

)
ei
∫
k W(x1,x2,k) a†(k)|0⟩ Φ2(p3 − Q2)

(8.145)

n order to make the expression slightly more compact, we used (5.52) in the exponents to reabsorb the imaginary part
f 2δ arising from the reordering of the exponential factors. In the last line we can use

p4[α
∂
β]
Φ1(p4 − Q1) = (p4 − Q1)[α

∂
β]
Φ1(p4 − Q1)− Q1[α

∂
β]
Φ1(p4 − Q1) (8.146)
∂p4 ∂p4 ∂Q1
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nd integrate by parts the second term. Doing this and defining the operator

O(1)αβ = p4[α
∂

∂pβ]4
+ Q1[α

∂

∂Q β]

1

(8.147)

e can write

L(1)αβS|ψ⟩ =
∫
p3

∫
p4

e−ib1·p4−ib2·p3 |p3, p4⟩

×

∫
dDQ1

(2π )D

∫
dDQ2

(2π )D

∫
dDx1

∫
dDx2 ei(b1−x1)·Q1+i(b2−x2)·Q2+2iδ(b)

×

(
x1[α|Q1|β] + O(1)αβ2δ(b)+

∫
k
O(1)αβW(x1, x2, k) a†(k)

)
× ei

∫
k W(x1,x2,k) a†(k)|0⟩Φ1(p4 − Q1)Φ2(p3 − Q2)

+

∫
p3

∫
p4

e−ib1·p4−ib2·p3 |p3, p4⟩

×

∫
dDQ1

(2π )D

∫
dDQ2

(2π )D

∫
dDx1

∫
dDx2 ei(b1−x1)·Q1+i(b2−x2)·Q2+2iδ(b)

×

(
b1[α|(p4 − Q1)|β] − i(p4 − Q1)[α

∂

∂pβ]4
Φ1(p4 − Q1)

)
ei
∫
k W(x1,x2,k) a†(k)|0⟩ Φ2(p3 − Q2) .

(8.148)

For the expectation value, we find

⟨ψ |S†L(1)αβS|ψ⟩

=

∫
p3,p4

∫
dDQ ′1
(2π )D

∫
dDQ ′2
(2π )D

∫
dDx′1

∫
dDx′2 e

−i(b1−x′1)·Q
′
1−i(b2−x

′
2)·Q
′
2−i Re 2δ(b

′)

×

∫
dDQ1

(2π )D

∫
dDQ2

(2π )D

∫
dDx1

∫
dDx2 ei(b1−x1)·Q1+i(b2−x2)·Q2+i Re 2δ(b)

×

(
x1[α|Q1|β] + O(1)αβ2δ(b)− i

∫
k
W∗(x′1, x

′

2, k)O(1)αβW(x1, x2, k)
)
|0⟩

× e− Im 2δ(b′)−Im 2δ(b)+
∫
k W
∗(x′1,x

′
2,k)W(x1,x2,k)

×Φ∗1 (p4 − Q ′1)Φ
∗

2 (p3 − Q ′2)Φ1(p4 − Q1)Φ2(p3 − Q2)

+

∫
p3,p4

∫
dDQ ′1
(2π )D

∫
dDQ ′2
(2π )D

∫
dDx′1

∫
dDx′2 e

−i(b1−x′1)·Q
′
1−i(b2−x

′
2)·Q
′
2−i Re 2δ(b

′)

×

∫
dDQ1

(2π )D

∫
dDQ2

(2π )D

∫
dDx1

∫
dDx2 ei(b1−x1)·Q1+i(b2−x2)·Q2+i Re 2δ(b)

×

(
b1[β|(p4 − Q1)|α]Φ1(p4 − Q1)− i(p4 − Q1)[α

∂

∂pβ]4
Φ1(p4 − Q1)

)
× e− Im 2δ(b′)−Im 2δ(b)+

∫
k W(x′1,x

′
2,k)W(x1,x2,k)

×Φ∗1 (p4 − Q ′1)Φ
∗

2 (p3 − Q ′2)Φ2(p3 − Q2) .

(8.149)

At the saddle point,

⟨ψ |S†L(1)αβS|ψ⟩

=

∫
p3,p4

|Φ1(p4 − Q1)|2 |Φ2(p3 − Q2)|2

×

(
x1[α|Q1|β] + O(1)αβ Re 2δ(b)− i

∫
k
W∗(x1, x2, k)

↔

O(1)αβW(x1, x2, k)
)

+

∫
p3,p4

Φ1(p4 − Q1)∗ |Φ2(p3 − Q2)|2

×

(
b1[β|(p4 − Q1)|α]Φ1(p4 − Q1)− i(p4 − Q1)[α

∂
β]
Φ1(p4 − Q1)

)
(8.150)
∂p4
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nd shifting the integration like in Section 8.1.2, p4 = Q1 − p1, p3 = Q2 − p2 and recognizing the last line as the angular
momentum of the initial state (8.144), we finally obtain

⟨ψ |S†L(1)αβS|ψ⟩ − ⟨ψ |L(1)αβ |ψ⟩

=

∫
−p1,−p2

|Φ1(−p1)|2 |Φ2(−p2)|2

×

(
x1[α|Q1|β] + O(1)αβ Re 2δ(b)− i

∫
k
W∗(x1, x2, k)

↔

O(1)αβW(x1, x2, k)
) (8.151)

with O(1)αβ the operator (8.147).
Performing the appropriate replacements discussed below (8.144), if we are interested in the angular momentum up

to G3 including the static modes, we thus have

∆Lαβ(1) = x1[α|Q1|β] + p4[α]
∂2δ̃(b)

∂pβ]4
− i

∫
k
Ã(5)p4[α

∂

pβ]4
Ã(5)
− i

∫
k
F∗O(1)αβF + O(G4) , (8.152)

here we have neglected the second term in the operator (8.147) in O(1)αβ2δ̃ and similarly in Ã(5)∗O(1)αβÃ(5), because it
ould give O(G4) effects since Ã(5)∗Ã(5) is already O(G3). Instead, as we shall see, it is important to keep it in F∗O(1)αβF
ecause it grants the identity

O(1)αβFµν = p4[α
∂Gµν

∂pβ]4
+ p1[α

∂Gµν

∂pβ]1
, (8.153)

where Gµν(p4, p3, p1, p2) is the ‘‘soft factor’’ seen as a function of four independent hard momenta, i.e.

Fµν(p4, p3,Q1,Q2) = Gµν(p4, p3,Q1 − p4,Q2 − p3) . (8.154)

n the following, we will calculate (8.152), breaking it down into the following terms

∆Lαβ1 = ∆Lαβ(1c) +∆Lαβ1 +∆Lαβ1 (8.155)

nd similarly for particle 2. The conservative term reads as follows, using that the difference between xµ1 and bµ1 is aligned
ith Qµ as can be seen from the saddle point condition (8.52a) and from Eqs. (8.8), (8.9),

∆Lαβ(1c) = x1[α|Q|β] + p4[α]
∂ Re 2δ̃(b)

∂pβ]4
= b1[α|Q|β] + p4[α]

∂ Re 2δ̃(b)

∂pβ]4
. (8.156)

e already calculated (8.156) in Eq. (8.23) and following. The radiative terms is given by

∆Lαβi = Im Jαβi + b[αi Q β]

i (8.157)

here Q α
i is the radiative contribution to the impulse as in (8.108) and we defined the shorthand

J iαβ =
∫
k
pi[α

∂Ã(5)

∂pβ]i
Ã(5)∗ . (8.158)

Focusing for definiteness on particle 2 in a frame where bα2 = 0, and proceeding in a manner entirely analogous to what
we did for Jαβ , one arrives at the following expression in terms of three-particle cuts,

J2αβ = FT
∫
v2[α

∂

∂v
β]

2

⎡⎢⎢⎢⎢⎢⎢⎣d(LIPS) k

p1

p2

q1

⎤⎥⎥⎥⎥⎥⎥⎦
q− q1

+ v2[α FT
∂

∂q∥2

∫
d(LIPS)(q1 + k)β] k

p1

p2

q1 q− q1

(8.159)
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nd employing reverse-unitarity we obtain the result

∆Lαβ1 ≃
G3m2

1m
2
2

b3

[
+

E+b[αv
β]

1

σ − 1
−

1
2
E b[α v̌β]2

]
,

∆Lαβ2 ≃
G3m2

1m
2
2

b3

[
−

E+b[αv
β]

2

σ − 1
+

1
2
E b[α v̌β]1

]
.

(8.160)

f course the expression for particle 1 is obtained by interchanging particle labels everywhere. The radiative quantities
8.139) and (8.160) obey the balance law

Jαβ +∆Lαβ1 +∆Lαβ2 = 0 . (8.161)

Finally, the static-mode contributions to the changes in the angular momenta are given by the following formula valid
up to O(G3),

∆Lαβ1 =
∫
k
F∗

⎛⎝p4[α

↔

∂

∂pβ]4
+ Q1[α

↔

∂

∂Q β]

1

⎞⎠ F + b[α1 Qβ]

1 , (8.162)

where Qβ

1 is the static contribution to the impulse, (8.114). Under a translation (8.121), ∆Lαβi → ∆Lαβi + a[αQβ]

i . Making
se of the identity (8.153), we see that

− i
∫
k
F∗

⎛⎝p4[α

↔

∂

∂pβ]4
+ Q1[α

∂

∂Q β]

1

⎞⎠ F = −i
∫
k
G∗p1[α

↔

∂

∂pβ]1
G− i

∫
k
G∗p4[α

↔

∂

∂pβ]4
G = J(1)αβ + J(4)αβ , (8.163)

where we have defined

J(n)αβ = −i
∫
k
G∗pn[α

↔

∂

∂pβ]n
G . (8.164)

Of course, a similar manipulation works for particle 2. The integrals appearing in these combinations can be evaluated in
the same way as those we discussed in the previous section and give the following result for m = 1, 2, 3, 4,

2ηmJ
αβ

(m) =
∑

ηn=−ηm

cnm p[αn pβ]m −
∑
ηn=ηm
n̸=m

dnm p[αn pβ]m , (8.165)

For instance,

2Jαβ4 = c14p
[α
1 pβ]4 + c24p

[α
2 pβ]4 − d12p

[α
3 pβ]4 . (8.166)

with cnm as defined in (7.86) and

dnm = 2G
σ 2
nm −

1
2

σ 2
nm − 1

. (8.167)

In conclusion, we find the following result for (8.162) and for the analogous expression for particle 2

∆Lαβ1 = Jαβ1 + Jαβ4 + b[α1 Qβ]

1 , ∆Lαβ2 = Jαβ2 + Jαβ3 + b[α2 Qβ]

2 . (8.168)

Here, Qα
1 = −Q

α
2 is the 3PM radiation-reaction contribution to the impulse,

Qα
1 = −

GQ 2
1PMbα

2b2
I(σ ), Q1PM =

2Gm1m2(2σ 2
− 1)

b
√
σ 2 − 1

(8.169)

with I(σ ) as in (7.88). One can easily check that

Jαβ1 + Jαβ2 + Jαβ3 + Jαβ4 = −J
αβ . (8.170)

oreover, b[α1 Qβ]

1 +b[α2 Qβ]

2 = (b1−b2)[αQ
β]

1 = b[αJ Qβ]

1 = 0 (up to O(G4) corrections as follows from (8.12)) which vanishes
y antisymmetry. As a result, these static contributions obey the ‘‘separate’’ balance law

J αβ
+∆Lαβ1 +∆Lαβ2 = 0 (8.171)

o that, in conclusion,

Jαβ +∆Lαβ +∆Lαβ = 0 . (8.172)
1 2
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. Summary and outlook

Conventional perturbation theory provides, in the common practice, the main tool to approach scattering-amplitude
alculations. It is based on the assumption that, in the regime of interest, the relevant coupling constant can be regarded
s sufficiently small. A textbook example is Quantum Electrodynamics, in which elementary charges couple via the fine-
tructure constant, e2/h̄ ≈ 1/137. The situation is dramatically different when it comes to gravitational interactions of
lassically sizeable objects, such as black holes with masses (and, thus, energies) much larger than the Planck mass, whose
ffective coupling GE2/h̄ is extremely large. This seemingly renders our most effective techniques to calculate scattering
mplitudes useless to study the classical limit of gravity.
In this report, we illustrated how the eikonal exponentiation serves as a convenient, flexible and conceptually

ransparent tool to attack this problem in a variety of different theories and setups. This mechanism ‘‘builds’’ classical
ravitational interactions by resumming the exchanges of many gravitons, in accordance with the intuition that their
umber, like any quantum number, should become large in the classical limit. Their contributions to the 2→ 2 amplitude
exponentiate, so that in the classical limit 1+iÃ ≃ e2iδ0 with 2δ0(s, b) the leading eikonal phase, which is simply dictated
y the single-graviton exchange and indeed proportional to GE2/h̄. In this way, perturbation theory comes back into the
ame since, by matching to the eikonal exponentiation, the calculation of higher-loop amplitudes allows one to obtain
uccessively more refined approximations for this exponent, 2δ0+2δ1+· · · , weighted by the classical small PM parameter
E/b. In turn, the rapidly oscillating nature of the exponentiated amplitude fixes the values of the classical exchanged
omentum, the impulse, via a saddle point condition.
After reviewing the combinatoric proof of the leading eikonal exponentiation, and illustrating its connection with the

mpulse and classical deflection angle, as well as the close relation with the phase shifts perhaps more familiar from
lementary treatments of the angular momentum in quantum mechanics, we went on to discuss the single-exchange
(G) eikonal phase 2δ0 and its manifold applications: minimally coupled massive particles in GR, both spinless and

carrying a classical spin, massive particles in maximal supergravity, and string collisions. In many situations, proving the
exponentiation to all orders is impractical, and one can resort to a more pragmatic approach of checking the constraints
it imposes at each loop level. In this spirit, we presented the discussion of one-loop amplitudes in the classical limit both
in order to retrieve the next-to-leading O(G2) phase 2δ1 and as a means of checking the i(2δ0)2/2! term dictated by the
wo-graviton exchanges. A similar pattern holds for high-energy string scattering, and in the string setup new interesting
henomena arise. In particular, already the leading string eikonal is promoted to an operator: for instance, excitations in
he s-channel have to be included at short distances, while tidal deformations can become important also at large distance.
e showed that the leading energy contribution of the one-loop elastic amplitude in string theory is consistent with the

xponentiation of the leading eikonal operator, but currently a similar analysis for massive string states is lacking.
After a detour into the interconnections between unitarity and the b-space exponentiation, we reviewed the two-

oop, O(G3), calculation focusing on maximal supergravity and GR. The O(G3) eikonal 2δ2 is the lowest-order contribution
o the classical exponent at which imprints of the dissipative nature of the scattering problem manifest themselves. It
ossesses both so-called radiation-reaction terms in its real part, which reflect into time-reversal-odd contributions to
he deflection angle, and an infrared-divergent imaginary part. The latter is due to the fact that the 2 → 2 amplitude
y its very nature neglects the emitted radiation, and, via unitarity, this corresponds to nontrivial three-particle cuts
hat the standard exponentiation does not account for. We therefore took a first step to amend this shortcoming by
ombining the eikonal exponentiation with the Weinberg exponentiation of soft quanta, which ought to be included in
he description of any physical scattering event in order to obtain infrared-safe final quantities and to restore manifest
nitarity. The general nature of soft theorems also allowed us to take a peek beyond the conventional PM regime, by
elaxing the assumption that the impulse be parametrically small compared to the masses. The resulting exponential
tructure combining elastic collisions with inelastic emission processes takes the form of an operator, and in the last
ection we provided a self-contained discussion of this eikonal operator to O(G3) beyond the soft approximation, where
t neatly disentangles conservative and dissipative effects, and allows one to calculate a variety of different observables
uch as the emitted energy and angular momentum during the collision.
Together with the emergence of these new theoretical structures, which we illustrated in detail in this report, the

lassical limit also presents simplifying features, mainly when it comes to evaluating loop integrals. In this limit, as long
s the colliding objects stay far apart, one can focus on those contributions to loop integrals that are non-analytic in
-space and therefore relevant to the long-range behavior in b-space [340,341]. A key simplification in this respect is due
o the method of region [253,342], which permits to focus on such contributions directly, without the need to first evaluate
he full integrals and then take their asymptotic expansions. We have briefly presented a few simple applications of this
ethod, while dedicating more space to the physical lessons that can be extracted from the results of its application.
imilarly, we have extensively applied, but only sketched, the powerful method of reverse-unitarity [117,118,343–346],
hich allows one to calculate phase-space integrals from discontinuities of more conventional loop integrals. In summary,
e hope to have been able to convey the main physical ideas behind the eikonal exponentiation of gravity amplitude
p to O(G3), and to have stimulated the reader’s interest and curiosity towards this angle of approach to the problem of
ravitational scattering, which not only led to the discovery of new patterns and to an improved theoretical understanding
f gravity, but also to very concrete new predictions for gravitational observables.
At this stage, several open challenges lie ahead, both from a conceptual and from a technical standpoint. Remaining at
‘low’’ PM orders, all observables including the deflection angle and the emitted energy and angular momentum can be
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etermined up to 3PM from the knowledge of the 2→ 2 amplitude up to two loops and of the tree-level 2→ 3 amplitude
n the classical limit [47,117,118,145,332]. However, as we have reviewed in the respective chapters, these observables
ehave very differently when one considers collisions with increasing center-of-mass energies. The deflection angle up to
PM turns out to be perfectly smooth in the limit in which this energy E (equivalently, the Lorentz factor σ ) is taken to be
arge by keeping the leading deflection angle GE/b small and fixed, i.e. in the ultrarelativistic limit. This is actually crucial
n order to ensure agreement with an early calculation of this quantity for collisions of massless objects [15], and in order
o clarify its universality. In this limit, the massless particle with the highest spin, the graviton, dominates, since it couples
o the highest power of the energy, and the deflection angle becomes the same for any theory where this condition is
atisfied. In contrast, the 3PM emitted energy and angular momentum only make sense below the bound given by (7.94),
.e. provided

√
σ (GE/b) is at most of order one [333,337,338]. Trusting their 3PM expressions beyond this threshold leads

to nonsensical conclusions, as the systems seems to be able to radiate much more energy and angular momentum than
it possessed to begin with! A veritable ‘‘energy crisis’’.

Guided by the example of the Zero-Frequency Limit of the energy emission spectrum, which is governed by soft
theorems and can thus be calculated independently of the PM approximation [112,144], it is highly likely that this
singularity arises due to the fact that we are attempting to calculate the coefficient of a power series, the ‘‘expansion
in powers of G’’ (or PM expansion), of a quantity which is actually not analytic in G. This issue emerged very clearly in the
ZFL of the spectrum [112], where the full expression starts exhibiting a branch singularity precisely at the bound (7.94).
In that case, the correct high-energy limit for the fraction of energy radiated at frequencies between 0 and 1/b does not
behave, unphysically, like (GE/b)3 log σ , which is unbounded as σ →∞, but rather exhibits (bounded) non-analytic terms
of the type (GE/b)3 log(GE/b). It is tempting to speculate that a similar mechanism may apply to the full emitted energy
and angular momentum as well, in order to produce a possibly non-analytic but still physically sensible answer for their
ultrarelativistic limits. This task is made challenging by the fact that soft theorems no longer apply to such integrated
quantities, but it is also of great interest since it would provide a connection with the results obtained for the scattering
of massless objects in Refs. [142,143,335].

Scatterings of massless states have been the subject of intense studies up to two loops in string theory, already in
the early days of the gravity eikonal [15] and, hopefully, the progress within a QFT approach discussed in this report will
motivate new further studies in this string theory context. It would be interesting to derive the 2PM string eikonal operator
(2δ̂1 in our notation) and use the new results on higher-loop string amplitudes obtained over the past 20 years (see for
instance [347] and references therein) to investigate systematically the eikonal exponentiation in string theory beyond
the one-loop level, which is what has been included in this report. Moreover, little is known as far as the exponentiation
of string amplitudes involving massive states is concerned, see however [228]. Borrowing from the mileage and intuition
gained in the field theory context, where the corresponding studies have reached three loops [40,41], in particular the
focus on the non analytic terms that dominate the long range dynamics, will certainly provide a pivotal simplification,
compared to the study of the full amplitude. Moreover, it could prove useful to introduce masses via Kaluza–Klein
compactification rather than by considering excited string states.

Moving on to a broader perspective, outstanding efforts have been recently devoted to the endeavor of bringing
amplitude-based techniques for gravitational-wave physics closer to timely phenomenological applications, along two
main directions: analytically continuing the results obtained from scattering amplitudes to the bound-system kinematics,
and including all relevant effects beyond the point-particle approximation. Moving forward, it will of course be interesting
to undertake similar analysis by means of the eikonal exponentiation as well.

In the present report we have discussed a few basic steps towards making the information extracted from the
amplitude more directly available for applications to bound systems, of which binary mergers represent the key relevant
example for observational purposes, in the spirit of the so-called Boundary-to-Bound dictionary [291–293,348]. This
connection is essentially based on an analytic continuation, one could say, from ‘‘positive’’ to ‘‘negative’’ energy (after
subtracting the rest mass in the CM frame). In addition, since most binary systems revolve along on quasi-circular
trajectories, the resulting information also needs to be matched from a regime of large eccentricities, more directly
accessible from the PM expansion, to small or vanishing eccentricities. We have illustrated how this can be done in
practice, starting from 1PM and 2PM data in order to retrieve all PN data up to 2PN, while we leave the investigation of
how 3PM and 4PM eikonal data may eventually combine to yield the 3PN and 4PN information for future work.

String scattering represents a prototypical example where the colliding objects possess an internal structure, which
manifests itself as a dependence of the eikonal operator on the string’s excitation modes (see Section 3.2.4). For
phenomenological applications, one can similarly introduce such deformations, encoding in particular tidal Love numbers
and higher-multiple modes in the amplitude approach [50–54] in an EFT spirit [113] by means of suitable additional
parameters. This is particularly relevant for neutron stars, whose tidal deformability properties are expected to provide
insights into their Quantum Chromodynamical origin, internal structure and on the resulting equation of state. Including
classical spin effects is also important and this poses a challenge as far as the amplitude approach is concerned. Indeed,
while masses and tidal deformabilities can be simply encoded in a Lagrangian formulation via suitable continuous
parameters, the intrinsically quantized nature of spin s in the quantum world poses an obstacle to taking the classical
limit, in which h̄s should become classically sizeable and s attain very large values. In this report we have presented a
self-contained account of a simple strategy to include classical spin effects in the leading eikonal, i.e. to first order in GM/b
but formally to all orders in the spin parameter. At present, the inclusion of spin from one-loop order onward relies on a
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Fig. 19. Dominant diagrams contributing to the semiclassical eikonal phase. The shaded blob stands for a generic connected tree-level topology.

strategy to break down the calculation into an expansion in spin multipoles. The missing ingredient to upgrade this to an
all-order-in-spin calculation, the Compton-like amplitude with classical spin, remains partly elusive, despite encouraging
recent developments [58–84,349–352] including possible ties with states built out of the string spectrum [353]. The only
exception is the calculation of the radiation reaction at two-loop order [81] that, as in the spinless case discussed in [106],
is only based on the soft limit of the five-point amplitude. The result obtained with this approach agrees in the small spin
limit with the complete two-loop calculation for the spin one case fully described by an extended N = 2 world-line
supersymmetry [136].

Coming to the frontier in the G-expansion [38–41,47,104,118,131,135,138,289,332,354], a potentially loose end con-
cerns the integrals over fluctuations around the saddle points characterizing the classical limit. Following the literature,
we have presented the derivation of classical observables associated to the scattering by taking appropriate expectations
of the relevant operators on the final state dictated by the action of the eikonal operator (minus their expectation on the
initial state), and evaluated the integrals by means of the saddle point conditions. In principle, one should be able to check
that the Gaussian integrals for the fluctuations about such classical values eventually produce suppressed contributions,
either weighted by powers of h̄ or, perhaps more plausibly, of GE/b. In the latter case, it will be of course important
to take them into account in the appropriate way when moving to higher orders in this parameter. Put another way, it
should be possible to explicitly check the normalization condition for the final state, which, in a novel fashion, brings us
back to the original issue of unitarity restoration in the classical limit.

In this connection let us mention, for completeness, a partially successful attempt [355] at constructing a semiclassical
unitary S-matrix in the case of ultrarelativistic (massless) collisions. In Sections 3.2.6, 4.2.5 we have discussed what has
been achieved in the two regimes labeled as I and II in Fig. 12. Unfortunately, the most interesting regime, the one
leading classically to gravitational collapse, is also the most difficult one to analyze. So far, it has only been approached
in the point-particle limit and in D = 4 (although going to D > 4 one would avoid having to deal with some infrared
divergences). The problem at hand is that the PM expansion is an expansion in powers of R/b and, precisely because
of gravitational collapse, it is expected to break down at some critical value of O(1) for that ratio (see Fig. 12). The
only simplification that looks to be fully justified is that, order by order in the above expansion, the dominant diagrams
contributing to the semiclassical eikonal phase consist of connected tree-diagrams involving the gravitons emitted by the
two energetic particles as external lines (see Fig. 19). Adding disconnected diagrams with the same external legs should
exponentiate the eikonal phase in a standard way (much like the two-particle reducible contributions of Ref. [111]).
Summing tree-diagrams is supposed to be equivalent to solving a classical field theory. Using work by Lipatov [356]
one can make a reasonable guess about the form of such field theory in the high-energy limit. After simplifying further
Lipatov’s action a two-dimensional field theory was proposed and studied in [355] with reasonable success in view of the
rough approximations made. We refer to the literature concerning those developments and only mention here that critical
values for R/b in good agreement with the classical expectations discussed in Section 2.4 were indeed found [357–359].
On the other hand, in spite of considerable effort [360,361], control of unitarity could not be achieved in any simple way
above the critical value. At the same time, no strong claim of unitarity loss below bc can be made in view of the many
unjustified approximations made along the way.

Coming back to the PM expansion, there still are aspects of the full 4PM result [138] that need to be investigated
including a more detailed comparison with the PN approaches [261,362]. It will certainly be interesting to continue the
analysis of the classical dynamics at three loops beyond the case of scalar particles, along the lines of [354], and also
to calculate the angular momenta at 4PM. Recently the conservative classical dynamics at four loops was studied for
the relativistic scattering in electrodynamics [363], paving the way for the analysis of the GR case at 5PM. From the
4PM order, new exciting physical phenomena manifest themselves: tail and recoil effects. The tail effect is caused by an
interaction between the two-body system and the gravitational energy that is first emitted and then reabsorbed by the
system itself [30,364,365]. For this reason, it can be regarded as a ‘‘globally conservative’’ type of interaction which is
however nonlocal in time, and thus very different from the typical ‘‘potential’’ interactions, whereby each objects feels
the gravitational pull of the other one. Recoil is caused by the net emission of linear momentum and represents a novel
dissipative effect that combines with the more familiar back-reaction of radiation emissions on the relative motion to that
order. Notably, recoil implies that, even if the system is observed from the initial center-of-mass frame, the two bodies
will in general experience different deflection angles compared to their original direction of motion. It will be important
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o investigate how such phenomena fit together in an improved version of the eikonal operator, yet to be formulated,
n order to clarify the classical limit of the amplitude(s) up to 4PM order. A first step in this direction has been taken
n [145] where the linear reaction [296] at 4PM was derived from an expansion of the stationary phase conditions (8.52),
sing in particular the prescription (8.36), finding perfect agreement with the result of [332]. In addition the high-energy
ehavior of the 4PM deflection angle(s) currently available in the literature points to a breakdown of the smoothness
roperty enjoyed by it up to 3PM. Whether or not this is to be regarded as a manifestation of the bound (7.94) certainly
eserves further investigation.
This also relates to another open puzzle in massless N = 8 supergravity amplitudes, where it was observed that the

xponentiation of the elastic 2 → 2 amplitude fails precisely starting to order O(G4) due to a superclassical mismatch
roportional to Im 2δ2 [44,45]. Armed with the appropriate eikonal operator, whose phase is by construction manifestly
eal, it will hopefully be possible to move past this obstacle by appropriately including all relevant inelastic channels as
ell.
As we have discussed in the last two sections of this report, the first step in this direction, which up to 3PM completely

larifies the structure of the exponentiation and allows for a systematic calculation of the observables, is to combine
ikonalized (virtual) graviton exchanges with coherent (real) graviton emissions, effectively producing an operator that
inks elastic 2 → 2 with inelastic 2 → 3 amplitude. One cannot help but wonder whether the ingredients entering the
ext order will eventually turn out to be essentially the same, or if instead new ones are to be included. For instance
t is possible that new amplitudes will need to be exponentiated, in particular the Compton-like graviton scattering in
ig. 6, as suggested by the fact that they appear as possible sub-diagrams or cuts of higher loop 2 → 3 and 2 → 2

amplitudes [146–148,257] (while of course analogous 1 → 3 processes with two final gravitons in the final states
are kinematically forbidden). A closely related issue concerns the possible emergence of correlations among graviton
emissions, in particular due to the constraint of total energy conservation. Such effects, which ought to be encoded to
leading order in the 2→ 4 amplitude with two graviton emissions, have been shown to be absent at tree level, and the
picture of a coherent, uncorrelated emission has not received corrections so far [120,336]. Further research and careful
scrutiny will hopefully help to clarify these points. Here we would like to mention some of the most recent developments
which confirm the usefulness of the eikonal approach in the analysis of subleading PM corrections.

Extending the logic presented in this report, it is natural to generalize the eikonal operator in (8.35) or (8.48) including
in Wj also the subleading PM contributions that can be extracted from the classical limit of the 2 → 3 amplitude at
-loop. It would then be possible to derive the NLO PM scattering waveform by following the same steps of Section 8.3.1.
tarting from the result for the classical 1-loop 5-point amplitude [146–148,257], this problem is being under intense
nvestigation. First, the relation between the classical amplitude and the gravitational waveform becomes more subtle at
LO. As discussed in [255], the gravitational waveform is one of the asymptotic observables requiring a non-standard time-
rdering from the S-matrix point of view, which, in the KMOC approach, is implemented by taking into account carefully
ome cut contributions. At NLO, these contributions implement a change of frame for the waveform [366], thus making the
esult very natural from the point of view of the eikonal exponentiation mentioned after (8.35) and explaining the need
f such a rotation to match the PM waveform against known PN [367] or soft data [368]. Beside this, it was realized that
he choice of BMS frame affects the NLO waveform also beyond its delta-function contribution at zero-frequency [366]. A
etailed comparison between the NLO PM waveform and the PN results, including several non-linear effects, is discussed
n [369,370] finding perfect agreement. It is certainly interesting to extend this comparison to higher order to see whether
he intuition based on the eikonal exponentiation can again provide useful guidance.

Besides the applications mentioned above, the key idea underlying the gravitational eikonal (resummation of leading
ontributions leading to an exponentiation) is likely to provide new insights also in other contexts. For instance, the
dS/CFT duality is the perfect setup to study some of the fundamental questions that motivated the early analysis of the
ravitational eikonal as mentioned in the introduction. Advances in the analytic calculation of holographic correlators
hrough a bootstrap approach [371,372] can provide new tools to improve our understanding of the gravitational eikonal
n this context and possibly use it to study the nature of black-hole microstates. The eikonal approach can be useful also
o analyze the gravitational scattering in more general curved backgrounds, see for instance [373,374], which again can
ncode interesting information about the nature of black holes as for instance pointed out in [375].
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ppendix A. Field theory details and conventions

.1. Permutation identities

Let us first show by induction that

F (a1, . . . , an) ≡
∑
σ∈Sn

1
aσ1
· · ·

1
aσ1 + · · · + aσn

=
1

a1 · · · an
. (A.1)

or n = 2, we find

F (a1, a2) =
1

a1(a1 + a2)
+

1
a2(a2 + a1)

=
1

a1a2
. (A.2)

oreover, denoting by Sn(j) the permutations such that σn = j, we can write

F (a1, . . . , an) =
1

a1 + · · · + an

n∑
j=1

[ ∑
σ∈Sn(j)

1
aσ1
· · ·

1
aσ1 + · · · + aσn−1

]
. (A.3)

he quantity within brackets is equal to F (a1, . . . , âj, . . . , an), where âj means that aj is omitted. Using the induction
hypothesis we then find

n∑
j=1

F (a1, . . . , âj, . . . , an) =
n∑

j=1

1
a1 · · · âj · · · an

=
a1 + · · · + an

a1 · · · an
, (A.4)

so that (A.3) leads to (A.1). The quantity f in (2.16) is related to F by

f (a1, . . . , an) = (a1 + · · · + an)F (a1, . . . , an) , (A.5)

and therefore it is given by

f (a1, . . . , an) =
n∑

j=1

1
a1 · · · âj · · · an

. (A.6)

We shall now use (A.6) together with

2πδ(ω) =
∫

eiωtdt ,
1

ωk − i0
=

∫
e−i(ωk−i0)tkθ (tk) i dtk (A.7)

o simplify

T (ω1, . . . , ωn) ≡ 2πδ(ω1 + · · · + ωn)f (ω1 − i0, . . . , ωn − i0), . (A.8)

et us again start from the n = 2 case, for simplicity. We have

T (ω1, ω2) =
∫

dt1dt2iθ (t1)eiω1(t2−t1)eiω2t2 +

∫
dt1dt2iθ (t2)eiω2(t1−t2)eiω1t1 (A.9)

so that shifting t1 → t2 − t1 in the first term and t2 → t1 − t2 in the second leads to

T (ω1, ω2) =
∫

dt1dt2 i [θ (t2 − t1)+ θ (t1 − t2)] eiω1t1eiω2t2 (A.10)
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nd thus
1
2π

T (ω1, ω2) = 2iπ δ(ω1)δ(ω2) . (A.11)

similar manipulation goes through for generic n, where

T (ω1, . . . , ωn) =
∫

dt1 · · · dtn
n∑

j=1

eiωjtj
∏
k̸=j

iθ (tk)eiωk(tj−tk) . (A.12)

n each term of the sum over j, we can send tk → tj − tk for all k ̸= j, to obtain

T (ω1, . . . , ωn) = in−1
∫

dt1 · · · dtn ei(ω1t1+···+ωntn)
n∑

j=1

∏
k̸=j

θ (tj − tk) . (A.13)

oting that the factor involving the theta functions is 1 for any ordering of t1, . . . , tn finally yields
1
2π

T (ω1, . . . , ωn) = (2iπ )n−1δ(ω1) · · · δ(ωn) . (A.14)

A.2. Feynman rules

In this appendix we collect useful Feynman rules. We start from the classical action describing a massless scalar φ
minimally coupled to gravity,

S =
∫

R
2κ2

√
−g dDx−

1
2

∫
∂µφ gµν ∂νφ

√
−g dDx , (A.15)

ith κ =
√
8πG. Defining gµν = ηµν + 2κ hµν and retaining quadratic terms only, one finds

S(2) =
1
2

∫
hµν

[
2hµν − ∂µ∂αhαν − ∂ν∂αhαµ + ∂µ∂νhαα − ηµν

(
2hαα − ∂

α∂βhαβ
)]

dDx

+
1
2

∫
φ 2φ dDx , (A.16)

here indices are raised and lowered using the Minkowski metric. To quantize the theory we go to De Donder gauge,

∂αhµα =
1
2
∂µhαα . (A.17)

This requires adding to the action a gauge-fixing term plus suitable ghost contributions, which however do not play any
role in our classical analysis. The net effect is to replace S(2) with

S(2)DD =
1
2

∫
hµν

(
2hµν −

1
2
ηµν2hαα

)
dDx+

1
2

∫
φ 2φ dDx . (A.18)

Rewriting the graviton part in terms of

Dµν,ρσ =
1
2

(
ηµρηνσ + ηµσηνρ − ηµνηρσ

)
, (A.19)

e find

S(2)DD =
1
2

∫
hµνDµν,ρσ 2hρσdDx+

1
2

∫
φ 2φ dDx . (A.20)

he inverse of Dµν,ρσ is

Pµν,ρσ =
1
2

(
ηµρηνσ + ηµσηνρ −

2
D− 2

ηµνηρσ

)
, (A.21)

hich satisfies

Dµν,ρσ Pρσ,αβ =
1
2

(
δµα δ

ν
β + δ

ν
αδ
µ

β

)
, (A.22)

nd this fixes the propagators to be

Gµν,ρσ (k) =
−iPµν,ρσ
k2 − i0

, G(k) =
−i

k2 − i0
. (A.23)

he leading scalar-graviton interaction term

SI = −κ
∫

hµν
[
−∂µφ ∂νφ +

1
ηµν(∂φ)2

]
dDx , (A.24)
2
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hich translates to the vertex

τµν(p, p′) = −iκ
[
pµp′ν + pνp′µ − ηµν(p · p′)

]
, (A.25)

here the scalar lines are regarded as both outgoing.
In case the scalar has mass m,

S =
∫

R
2κ2

√
−g dDx−

1
2

∫ (
∂µφ gµν ∂νφ +m2φ2)√

−g dDx , (A.26)

an be discussed along similar lines. The massive scalar propagator is given by

Gm(k) =
−i

k2 +m2 (A.27)

while the leading scalar-graviton vertex in De Donder gauge reads

τµν(p, p′) = −iκ
[
pµp′ν + pνp′µ − ηµν(p · p′ −m2)

]
. (A.28)

Note that this vertex is transverse with respect to the graviton momentum,

τµν(p, p′)(pν + p′ν) = 0 , (A.29)

whenever the scalar lines are on-shell p2 = p′2 = −m2. Moreover, its trace reads

ηµντ
µν(p, p′) = −iκ

[
2− D

2
(p+ p′)2 + 2m2

]
, (A.30)

which is zero in the massless case, up to terms that vanish on the graviton’s mass shell.

A.3. Useful Fourier transforms to impact parameter space

In this appendix we collect a few useful properties of the Fourier transform into impact parameter space. Taking the
D-dimensional Fourier transform of the S-matrix element one obtains the invariant expression (1.32) and this leads us to
consider Fourier transforms of the following type,

FT[f ](b) =
∫

dDq
(2π )D

2πδ(2p1 · q− q2)2πδ(2p2 · q+ q2) eib·qf (q2) . (A.31)

ith f (q2) playing the role of the invariant amplitude A(s,−q2). In order to recast this in a more explicit way, let us start
rom the case in which p1 and p2 are massive momenta, rewriting pµ1 = −m1v

µ

1 and pµ2 = −m2v
µ

2 as in (1.7) so that

FT[f ](b) =
1

4m1m2

∫
dDq

(2π )D
2πδ

(
v1 · q+

q2

2m1

)
2πδ

(
v2 · q−

q2

2m2

)
eib·q f (q2) . (A.32)

t is convenient to change integration variables by decomposing the integrated momentum according to (1.10) so that

qµ = v̌µ1 q∥1 + v̌
µ

2 q∥2 + qµ
⊥

(A.33)

here by definition q⊥ · p1,2 ≡ 0. Therefore

(dq)2 = v̌21 (dq∥1)
2
+ 2v̌1 · v̌2 dq∥1dq∥2 + v̌22 (dq∥2)

2
+ (dq⊥)2 (A.34)

nd the determinant of this metric is given by

− det g = (v̌1 · v̌2)2 − v̌21 v̌
2
1 =

1
σ 2 − 1

. (A.35)

herefore,

dDq =
dq∥1 dq∥1
√
σ 2 − 1

dD−2q⊥ , (A.36)

nd we find

FT[f ](b) =
1

4m1m2

∫
dq∥1 dq∥1
√
σ 2 − 1

dD−2q⊥
(2π )D−2

δ

(
q∥1 −

q2

2m1

)
δ

(
q∥2 +

q2

2m2

)
eib·q f (q2) . (A.37)

e are only interested in evaluating this Fourier transform for very large b, orthogonal to p1 and p2 (up to O(G2)
orrections), and therefore we can expand the integrand for small q ∼ 1/b. Using the Taylor expansion of the delta
unctions and noting that (cf. (1.45))

q2 =
q2
∥1 − 2σq∥1q∥2 + q2

∥2
+ q2 , (A.38)
σ 2 − 1 ⊥
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e obtain

FT[f ](b) =
1

4m1m2
√
σ 2 − 1

∫
dD−2q⊥
(2π )D−2

eib·q⊥
(
f (q2
⊥
)+

s
4m2

1m
2
2(σ 2 − 1)

[
x2f (x)

]′
x=q2
⊥

+ · · ·

)
(A.39)

(the superscript ′ stands for a total derivative with respect to the argument x) or equivalently, using the identity (1.13),

FT[f ](b) =
1

4Ep

∫
dD−2q⊥
(2π )D−2

eib·q⊥
(
f (q2
⊥
)+

1
4p2

[
x2f (x)

]′
x=q2
⊥

+ · · ·

)
. (A.40)

n the massless case, p21 = p22 = 0, we can instead adopt the decomposition

qµ =
1
s

(
pµ1 x1 + pµ2 x2

)
+ qµ
⊥
, (A.41)

here again q⊥ · p1,2 = 0. Since x1,2 = −2p2,1 · q, we then find

(dq)2 = −
dx1dx2

s
+ (dq⊥)2 ,

√
− det g =

1
2s

(A.42)

nd in this way (A.31) evaluates to

FT[f ](b) =
1
2s

∫
dD−2q⊥
(2π )D−2

eib·q⊥
(
f (q2
⊥
)+

1
s

[
x2f (x)

]′
x=q2
⊥

+ · · ·

)
. (A.43)

ecalling that in the massless case E = 2p =
√
s, we see that the expression (A.40) is thus valid for both massive and

massless setups. It is easy to see that the first term on the right-hand side of (A.40) corresponds to simply dropping the
q2 in the arguments of the delta functions appearing in (A.31), for which we adopt the notation

f̃ (b) =
∫

dDq
(2π )D

2πδ(2p1 · q)2πδ(2p2 · q) eib·qf (q2) =
1

4Ep

∫
dD−2q⊥
(2π )D−2

eib·q⊥ f (q2
⊥
) . (A.44)

Since in most applications f (q2) has a power-law dependence on q2, the basic type of integrals that we need to calculate
s:

ID(ν) =
∫

dD−2q
(2π )D−2

eib·q
(
q2
)ν
=

22ν

π1−ϵ

Γ (1+ ν − ϵ)
Γ (−ν)(b2)ν+1−ϵ

, D = 4− 2ϵ . (A.45)

A quick way to see this is to introduce Schwinger parameters, so that

ID(ν) =
∫
∞

0
dt

t−1−ν

Γ (−ν)

∫
dD−2q

(2π )D−2
eib·q−tq

2
(A.46)

nd performing the Gaussian integral and letting t = 1/x leads to

ID(ν) =
1

(4π )
D−2
2 Γ (−ν)

∫
∞

0
dx x−1+ν+

D−2
2 e−

b2
4 x . (A.47)

ecognizing the Γ -function in the last equation then yields Eq. (A.45).
Expanding the identity (A.45) around ν = 0 on both sides, one can also deduce the Fourier transform of any power of

the logarithm
[
log(q2)

]n. For instance expanding to linear order, we obtain∫
dD−2q

(2π )D−2
eib·q log

(
q2
)
= −

Γ (1− ϵ)
π (b2)1−ϵ

. (A.48)

In the main text we also use the inverse Fourier transform (from b to q-space) which can be easily obtained from
A.45) by appropriately interchanging the roles of q and b,∫

dD−2b e−ib·q(b2)−ν =
π

D−2
2

22ν+2−D

Γ
(D
2 − 1− ν

)
Γ (ν)

(
q2
)1+ν− D

2 . (A.49)

ppendix B. The deflection angle in the probe limit

The deflection angle is a key classical observable in the 2 → 2 gravitational scattering which can be derived from
cattering amplitudes thanks to the eikonal exponentiation. In the limit where the mass of one particle is much larger
han any other energy scale in the problem, the result obtained from the eikonal approach should agree with a classical
alculation describing the propagation of the other particle in the curved geometry produced by the heavy one. In order
o carry out explicitly such a calculation, we need to know how the two particles couple to the massless fields in the
heory under consideration. These couplings determine the classical solution for the massless fields produced by the
eavy object, and this solution in turn determines the classical trajectory of the light probe in such background, neglecting
ts backreaction. In this appendix we will discuss some explicit examples of such probe-limit calculations for GR, brane
cattering and N = 8 supergravity.
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.1. Geodesic motion in Schwarzschild

The simplest case is of course that of a scalar particle with a large mass. While it is possible to describe its gravitational
ield by following a diagrammatic approach [376] (see also [48,377,378]), deriving the D-dimensional Schwarzschild metric
rder by order in the large distance expansions Rs/r ≪ 1, here we will use directly the exact (Schwarzschild–Tangherlini)
lack-hole solution in D spacetime dimensions,

ds2 = −

(
1−

(
Rs

r

)D−3
)
dt2 +

(
1−

(
Rs

r

)D−3
)−1

dr2 + r2dΩ2
D−2 . (B.1)

he precise relation between the Schwarzschild radius Rs and the mass of the heavy scalar M is

RD−3
s =

16πGM
(D− 2)ΩD−2

=
8Γ (D−12 )GM

π
D−3
2 (D− 2)

, (B.2)

where in the last step we used the area of the n-dimensional sphere of unit radius Ωn =
2π

n+1
2

Γ ( n+12 )
. One can write the action

for a minimally coupled probe of mass mp as

S =
1
2

∫
dτ
(
e(τ )−1

dxµ

dτ
dxν

dτ
gµν −m2

pe(τ )
)
, (B.3)

where τ parametrizes the trajectory and e(τ ) is an auxiliary variable defining the world-line metric. The action is
invariant under reparametrization τ → τ ′(τ ) if xµ is a scalar (x′µ(τ ′) = xµ(τ )) and e′(τ ′) dτ ′ = e(τ ) dτ . Then we
an choose a parametrization (a ‘‘‘gauge’’) in which e(τ ) is constant and the equation of motions for e(τ ) become a
onstraint. We shall also take into account that the motion takes place in the plane determined by the initial velocity
nd by the impact parameter, indicating with φ the angle in this plane. For later convenience, we write the constraint
oming from the variation of e(τ ) for a metric of the form (B.1) but with generic functions of the radial coordinate r:
s2 = gttdt2 + grrdr2 + r2gφφdφ2,

|gtt |
(

dt
dτ

)2

− grr

(
dr
dτ

)2

− r2gφφ

(
dφ
dτ

)2

= e2m2
p . (B.4)

ince we work with metrics that do not depend explicitly on the time and are spherically symmetric, we obtain the
ollowing conservation laws for the energy E and the angular momentum J of the probe

eEp = |gtt |
dt
dτ

, eJ = r2gφφ
dφ
dτ

. (B.5)

By using these results in (B.4) we obtain

dr
dτ
= ±

[
e2E2

p

|gtt |grr
−

e2

grr

(
J2

r2gφφ
+m2

p

)] 1
2

, (B.6)

nd

dφ
dr
= ±

1
r2

[
g2
φφ

|gtt |grr

E2
p

J2
−

gφφ
grr

(
1
r2
+ gφφ

m2
p

J2

)]− 1
2

. (B.7)

ere ± refer to the incoming/outgoing portion of the trajectory, since a scattering process r(±τ ) → ∞ and there is an
nversion point r∗ corresponding to the largest root of dr

dτ[
E2
p

|gtt |grr
−

1
grr

(
J2

r2gφφ
+m2

p

)]
r∗

= 0 . (B.8)

hus the scattering angle reads

Θ = 2
∫
∞

r∗
dr
(
dφ
dτ

) (
dr
dτ

)−1
− π (B.9)

= 2J
∫
∞

r∗

dr
r2

[
g2
φφE

2
p

|gtt |grr
−

gφφ
grr

(
J2

r2
+ gφφm2

p

)]− 1
2

− π .

For the Schwarzschild metric we have |gtt | = g−1rr = 1 −
( Rs

r

)D−3
and gφφ = 1, so (B.9) reduces to an incomplete elliptic

ntegral.
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For our purposes it is useful to write an explicit perturbative solution in the PM expansion. We first start from (B.8)
hich for Schwarzschild’s case reads

E2
p −

(
1−

(
Rs

r∗

)D−3
)(

J2

r2
∗

+m2
p

)
= 0 . (B.10)

For general D we can solve this constraint perturbatively: the leading contribution is obtained by ignoring the term
proportional to (Rs/r∗)D−3 and then it is straightforward to find the corrections in an expansion for large J

r∗ =
J√

E2
p −m2

p

[
1+

∞∑
n=1

E2
p cn

(E2
p −m2

p)

(√
E2
p −m2

p
Rs

J

)n(D−3)
]
,

c1 = −
1
2
, c2 =

(5− 2D)E2
p + 4m2

p

8(E2
p −m2

p)
,

c3 = −
(D− 3)(3D− 8)E4

p − 4(3D− 8)E2
pm

2
p + 8m4

p

16(E2
p −m2

p)2
, . . .

(B.11)

Then we can write (B.9) in the Schwarzschild case after introducing the variable u = r∗/r

Θ =
2J
r∗

∫ 1

0
du

[
E2
p −

(
1−

(
Rsu
r∗

)D−3
)(

J2u2

r2
∗

+m2
p

)]− 1
2

− π . (B.12)

We can then use (B.11) in the equation above to rewrite the integrand in term of J instead of r∗ and then expand it for
mall values

√
E2
p −m2

p Rs/J . The integral in u can be performed in terms of Euler’s Beta and we obtain

Θ =

∞∑
n=1

Θn

⎛⎝
√
E2
p −m2

p Rs

J

⎞⎠n(D−3)

(B.13)

hose explicit terms up to 3PM are

Θ1 =

√
πΓ

(D
2 − 1

) [
(D− 2)E2

p −m2
p

]
2Γ

(D−1
2

)
(E2

p −m2
p)

, (B.14)

Θ2 =

√
πΓ

(
D− 5

2

)
8Γ (D− 2)

(2D− 5)(2D− 3)E4
p − 6(2D− 5)E2

pm
2
p + 3m4

p

(E2
p −m2

p)2
, (B.15)

Θ3 =

√
πΓ

( 3D
2 − 4

)
48Γ

( 3D
2 −

7
2

) (E2
p −m2

p)
−3

×
[
(3D− 8)(3D− 6)(3D− 4)E6

p − 15(3D− 8)(3D− 6)E4
pm

2
p

+ 45(3D− 8)E2
pm

4
p − 15m6

p

]
.

(B.16)

For convenience, let us write out the D = 4 expressions as well:

Θ1 =
2E2

p −m2
p

E2
p −m2

p
, (B.17)

Θ2 =
3π
(
5E2

p −m2
p

)
16
(
E2
p −m2

p

) , (B.18)

Θ3 =
−120E4

pm
2
p + 60E2

pm
4
p + 64E6

p − 5m6
p

12
(
E2
p −m2

p

)
3

. (B.19)

It is also instructive to study the result for the deflection angle in the PN (as opposed to PM) expansion, restricting for
implicity to D = 4. For this purpose, it is convenient to introduce the variables v∞, jPN (as in (3.13)) and α according to,

Ep = mp

√
1+ v2

∞
, v∞ =

1
jPNα

, J = GMmpjPN . (B.20)

In these variables, Eq. (B.10) for the inversion point takes the following form

1+
1

2 −

(
1+

G2M2j2PN
2

)(
1−

2GM
)
= 0 . (B.21)
(jPNα) r
∗

r∗
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he PN limit can be then introduced by considering the scaling limit

jPN ∼ O(c) , G ∼ O(c−2) , α ∼ O(1) as c →∞ , (B.22)

which reflects the fact that the angular momentum becomes large and the velocity small, while keeping α = GMmp/(Jv∞)
of order one. It is straightforward to solve (B.21) perturbatively in the limit (B.22), obtaining

r∗ = GM
[
j2PNα(

√
1+ α2 − α)−

(
1+

α
√
1+ α2

)]
+ O(c−4) (B.23)

or the 0PN and 1PN contributions. Substituting into (B.12), expanding in the same limit and performing the resulting
lementary integrals, one then obtains the following PN-expanded deflection angle

Θ = 2 arctanα +
2
j2PN

[
3
(
arctanα +

π

2

)
+

3α2
+ 2

α(1+ α2)

]
+ O(c−4) . (B.24)

his calculation actually reproduces the deflection angle up to 1PN independently of the probe-limit approximation, i.e. the
irst two lines of Eq. (45) of [189].

.2. Geodesic motion in D-brane metric

For the analysis of the string-brane scattering it is useful to discuss the geodetic motion in the gravitational
ackreaction of a stack of Dp-branes. It is straightforward to adapt the analysis of the previous section to the case where
he metric is given by (4.98). By writing the transverse space in polar coordinate this metric takes the following form

ds2 = [H(r)]−
1
2 ηαβdxαdxβ + [H(r)]

1
2
(
dr2 + r2dφ2dΩ2

d−p−3

)
, (B.25)

where H(r) is the harmonic function given in (4.99). We can then read the components of the metric involved in the
geodesic equations (B.4) and (B.5)

|gtt |−1 = grr = gφφ =
√
H , (B.26)

ince we are focusing on the motion of light string state with a large kinetic energy, we can neglect the terms involving
he probe mass and from (B.7) we obtain

dφ
dr
=

±bJ

r2
√
1−

(
bj
r

)2
+

(
Rp
r

)d−p−3 = ± bJ
r2F

, ⇔
dφ
dρ
=

±b̂J√
1− b̂2J ρ2 + ρd−p−3

, (B.27)

where F = ±
√
H(r)− bJ

r2
, ρ = Rp/r and b̂J = bJ/Rp. One can follow the same steps as in the previous section to find the

scattering angle by integrating (B.9), where the turning point r∗ (or ρ∗) is defined as in (B.8). At the leading PM order we
get

Θ1 =
√
π
Γ
( d−p−2

2

)
Γ
( d−p−3

2

) (Rp

r

)d−p−3

. (B.28)

For completeness let us quote also some exact result when the integral in (B.9) can be expressed in terms of elementary
functions

p = d− 4 ⇒ Θ = 2 arctan

(
1

2b̂J

)
, p = d− 5 ⇒ Θ =

π b̂J√
b̂2J − 1

− π (B.29)

nd when (B.9) reduces to a complete elliptic integral such as the case of a stack of D3-branes in type II theories

p = d− 7⇒ Θ = 2
√
1+ k23 , K (k3)− π , k3 =

b̂J
2

(
b̂J −

√
b̂2J − 4

)
− 1 . (B.30)

ere K is the complete elliptic integral of the first kind

K (k3) =
∫ 1

0

dx√
(1− x2)(1− k23x2)

. (B.31)

Notice that when we have 3 transverse directions (i.e. p = d−4) the full deflection angle in the probe limit is determined
by the leading eikonal as a consequence of supersymmetry as pointed out in [211].

We conclude this appendix by providing some details on the integrals in (4.112) relevant for the semiclassical dynamics
of a string probe (rather than just a point-like object) in the D-brane metric. Starting from (4.112b), it is convenient to
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roceed as done for (4.112a): we can neglect the second term in the square parenthesis since it scales as (Rp/b)2(d−p−3)
and rewrite the first term as a total derivative with respect to the radial coordinate. Then we have

1
2

∫
∞

−∞

du Gŷ ≃

∫
∞

0
dr̄ ∂r̄

[
F
√
H
∂r̄ ln

(
r̄ sin φ̄H

1
4

)]
= −

bJ cos φ̄

r̄2
√
H sin φ̄

⏐⏐⏐⏐
r̄=r∗

≃ −
Θ1

b
. (B.32)

he only non-trivial contribution arises when the derivative inside the square parenthesis acts on ln sin φ̄, since this
roduces a factor of dφ̄

dr which, thanks to (B.27), cancel the overall factor of F and yields a finite contribution as r → r∗. In
the final step we used bJ ≃ b, φ̄(r∗) = Θ+π

2 and (B.28). Then one can check that the result in (B.32) agrees with the one
in (4.112b) with µ2

ŷ defined in (4.88). When evaluating (4.112c), it is more convenient to evaluate explicitly the derivatives
for both terms in the square parenthesis obtaining

1
2

∫
∞

−∞

du G0 =

∫
∞

0
du

⎡⎣∂2u
(
r̄FH−

1
4

)
r̄FH−

1
4

⎤⎦ = ∫ ∞
r∗

dr̄

r̄FH−
1
4
∂r̄

[
F

H
1
2
∂r̄

(
r̄FH−

1
4

)]
. (B.33)

hen it is straightforward to evaluate the expression above to 1PM order obtaining

1
2

∫
∞

−∞

du G0 ≃

∫
∞

b
dr̄

d− p− 3

4r̄
√
r̄2 − b2

[
(d− p− 4)− (d− p− 1)

b2

r̄2

](
Rp

r̄

)d−p−3

, (B.34)

where we used again r∗ ≃ b at 1PM. Thanks to the relation∫
∞

b
dr

r1−2x

r2 − b2
=

√
πb1−2xΓ

(
x− 1

2

)
2Γ (x)

, (B.35)

one can check that, after performing the integral, (B.34) reproduces (4.112c) with µ2
0 defined in (4.88).

B.3. Probe limit of the N = 8 case

In order to perform the classical calculation for the massive N = 8 case it is easier to start from the setup discussed
in Section 3.1.4 and dualize it to a frame where all the massive objects are Dp-branes. This can be done by the following
chain of dualities:

• lift the setup to M-theory and then go back to type IIA by compactifying along the 9th direction; in this way we the
first particle is transformed into a bound state of n1 D0-branes, while the second particle is unchanged;
• perform T-dualities along the directions 7, 8, 9 so that the external states become a bound state of n1 D3-branes

and a F1-string wrapped n2 times along the direction 8;
• since we are now in type IIB string theory we can perform a S-duality and obtain bound states of n1 D3-branes and

n2 D1-branes;
• for convenience we can T-dualize back to type IIA along the 8th direction to get n1 D2-branes and n2 D0-branes.

ll objects in each step are point-like in the noncompact directions and the string frame metric produced by the bound
tate of D2-branes is

ds2 =
(
1+

4GM
r

)− 1
2

(−dt2 + dx27 + dx28)+
(
1+

4GM
r

) 1
2

dx2
⊥
. (B.36)

he classical solution includes also a non-trivial RR 2-form, which does not play any role in this problem, and a dilaton50

eφ =
(
1+

4GM
r

) 1
4

, (B.38)

where M is the mass of the D2-brane bound state. The action for the D0-brane probes involves both the fields above and
read

S = −mp=0

∫
dτe−φ

√⏐⏐⏐⏐gµν dxµdτ
dxν

dτ

⏐⏐⏐⏐ , (B.39)

50 If the number of noncompact direction is D we have

Γ
( D−3

2

)
π

D−1
2

κDT2n1

2
=
Γ
( D−3

2

)
π

D−3
2

4GDM , (B.37)

and the harmonic function is 1+
Γ

(
D−3
2

)
4GDM

.

π

D−3
2 rD−3
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here of course we restrict the motion in the noncompact space. This action is equivalent to (B.3) with an effective metric
eff
µν = e−2φgµν . We can then calculate the deflection angle by using (B.9) with

geff
00 =

(
1+

4GM
r

)−1
, geff

rr = geff
φφ = 1 . (B.40)

Then in this case the deflection angle is given by a circular integral

Θ = 2J
∫
∞

r∗

dr
r2

[(
1+

4GM
r

)
E2
p −

(
J2

r2
+m2

p

)]− 1
2

− π

= 2 arctan
(
2GM
bJ

σ 2

σ 2 − 1

)
, (B.41)

where used Ep = mpσ and J = mpb
√
σ 2 − 1.

ppendix C. Some relations satisfied by the Levi-Civita tensor in D = 4

In this Appendix we provide some relations satisfied by the product of two the four-dimensional Levi-Civita tensors.
We list them here

ϵµνρσ ϵµνρσ = −4! (C.1)

ϵµνρσ ϵµνρδ = −6δσδ (C.2)

ϵµνρσ ϵµνγ δ = −2δ
ρσ

γ δ (C.3)

ϵµνρσ ϵµβγ δ = −δ
νρσ

βγ δ (C.4)

and

ϵµνρσ ϵαβγ δ = −δ
µ
α δ

νρσ

βγ δ + δ
µ

β δ
νρσ

αγ δ − δ
µ
γ δ

νρσ

αβδ + δ
µ

δ δ
νρσ

αβγ (C.5)

here

δ
ρσ

γ δ = δ
ρ
γ δ

σ
δ − δ

ρ

δ δ
σ
γ (C.6)

nd

δ
νρσ

βγ δ = δ
ν
β

(
δργ δ

σ
δ − δ

ρ

δ δ
σ
γ

)
− δνγ

(
δ
ρ

βδ
σ
δ − δ

ρ

δ δ
σ
β

)
+ δνδ

(
δ
ρ

βδ
σ
γ − δ

ρ
γ δ

σ
β

)
. (C.7)

We use the convention where ϵ0123 = 1.

Appendix D. String theory background

In this appendix we provide some details on how to derive the relevant amplitudes in the context of the bosonic theory
which is technically simpler than the superstring case while capturing all the main features.

D.1. String theory conventions

Here we collect our string conventions and a short discussion about the boundary state that is needed to describe the
stack of Dp-branes used in the main text.

D.1.1. Scales and coupling constants
Free string theory in flat spacetime is described by the Nambu-Goto action:

Sstring = −T
∫

dτ
∫ π

0
dσ
√
(ẋ · x′)2 − ẋ2x′2 ,

ẋ ≡ ∂τ x(σ , τ ) , x′ ≡ ∂σ x(σ , τ ) , ẋ · x′ ≡ ηµν ẋµx′ν , (D.1)

where the double integral is nothing but the area swept by the string and T is the classical string tension with dimensions
of an energy per unit length (in units in which c = 1). At the classical level (e.g. in the context of cosmic strings) T is
the only free parameter and the classical equations of motion are obviously independent of it.51 The inverse of T has

51 When moving in a non trivial geometry the size of the string relative to the characteristic scale of the geometry does instead matter at the
classical level.
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he same dimensions as an angular momentum per squared mass (recall that we have set c = 1) and has been denoted
raditionally by 2πα′ since it first made its appearance in hadronic physics as the slope of the linear Regge trajectories:
(t) = α(0)+ α′t .
In a quantum context what matters is the action in Planck units, a dimensionless quantity, and this necessarily

ntroduces a fundamental area ℓ2s as the natural replacement of Planck’s constant in string theory [277]. In this review
e adopt the following relation between these various quantities:

Sstring
h̄
=

T
h̄
(Area Swept) =

Area Swept
2πℓ2s

, ℓs =
√
α′h̄ =

√
h̄

2πT
, (D.2)

where we should note the analogy with the definition of the Planck length in four dimensions, ℓP =
√
Gh̄, with G replacing

he role of α′. The similarity goes even further: classical GR has no intrinsic length (or mass) scale while quantum gravity
oes. Physically, ℓs plays the role of a minimal length scale, a minimal size for fundamental quantum strings, and a short-
istance cutoff regularizing quantum corrections. Its inverse, Ms ≡

h̄
ℓs

is the energy/mass scale associated with string
excitations and with the cutoff in momentum space. In string theory it is thus natural to take ℓs as the basic unit of length
nd to express any other quantity, according to its dimensionality, in terms of ℓs, c , h̄, and of dimensionless numbers. The
atter, when not directly fixed, are associated with the value of dimensionless scalar fields, called moduli.

In the rest of this Appendix, and elsewhere in this review, we will follow the common practice of using interchangeably
′ and ℓ2s (i.e. set h̄ = 1) except when the distinction is physically relevant. As an example, α(t) is dimensionless (being
n exponent characterizing power-like Regge behavior) and therefore α′ cannot be just the inverse of T . What appears in
he above expression for α(t) is actually α′t

h̄ =
t

M2
s
, but we shall omit the h̄−1 factor throughout.

In perturbative string theory the strength of the gravitational interaction depends on α′ and on the moduli of the
heory as follows:

2κ2
d h̄ = 16πGdh̄ = 16πℓd−2d = 2−

d−10
2 (2π )d−3g2

s (α′h̄)
d−2
2 = 2−

d−10
2 (2π )d−3g2

s ℓ
d−2
s , (D.3)

where ℓd is the d-dimensional Planck length, gs, the string coupling, is related to the expectation value of the dilaton and
of course we have d = 10 for critical superstring theory and d = 26 for the bosonic theory. Note that at very weak string
coupling ℓd/ℓs ≪ 1. This physically means that string-size corrections intervene well before quantum gravity loops get
out of control. That does not mean, however, that straight perturbation theory is always reliable at g2

s ≪ 1: although
there is a formal loop expansion in powers of g2

s , these can be enhanced by large kinematical factors such as powers of
the energy or infrared singularities as discussed in the main body of this report.

When some of the directions are compactified on a manifold of volume Vc and only D directions are non-compact, it
is useful to introduce the Newton constant κ2

D = 8πGD for the D-dimensional theory appropriate for describing physics
at distances much larger than the size of the compact dimensions:

κ2
D =

κ2
d

Vc
= 8πℓD−2D . (D.4)

t follows that the ratio ℓD/ℓs is further reduced if Vc ≫ ℓd−Ds , the case of ‘‘large extra dimensions’’. In this report only the
case of string-size extra dimensions will be considered.

The spectrum of type II and bosonic string theories also contains Dp-branes, non-perturbative objects which can
support the end-points of open strings [248]. In its simplest configuration a Dp-brane enforces Neumann boundary
conditions on the string fields along p spatial directions and time, and Dirichlet boundary conditions along the remaining
d − (p + 1) directions. In other words, the end-points of an open string move on a (p + 1)-dimensional Minkowskian
submanifold. The tension (i.e. energy per unit p-dimensional surface) of these objects is

τp =
Tp
κd
, with Tp = 2−

d−10
4
√
π (2π

√
α′)

d−2p−4
2 , (D.5)

which of course fixes its coupling to gravity. In the superstring case the Dp-branes are minimally coupled to the (p+ 1)
Ramond–Ramond potential with a RR charge density µp given by µp =

√
2Tp (i.e. charge per unit p-volume).

In Section 3.2, we use a stack of N Dp-branes as a target in a (thought) scattering experiment with fundamental strings.
It is then convenient to introduce the scale Rp of the geometry sourced by the Dp-branes

Rd−p−3
p =

Γ
( d−p−3

2

)
π

d−p−1
2

gsN
4

(2π
√
α′)d−p−3

2
d−10

2
. (D.6)

In terms of the tension Tp we have

κdTpN
=
π

d−p−1
2 Rd−p−3

p( d−p−3 ) . (D.7)

2 Γ 2
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D

d

.1.2. String mode expansion
Our conventions on the string coordinates and their mode expansion in the closed string case are

XM (z, z̄) = XM
L (z)+ XM

R (z̄) ,

XM
L (z) = qL − i

α′

2
pML ln z + i

√
α′

2

∑
n̸=0

αM
n

n
z−n ,

XM
R (z̄) = qR − i

α′

2
pMR ln z̄ + i

√
α′

2

∑
n̸=0

ᾱM
n

n
z̄−n .

(D.8)

In the closed string sector the modes αn and ᾱn are independent and, after canonical quantization, satisfy the commutation
relations

[αM
n , α

N
m] = η

MNn δn+m , [ᾱM
n , ᾱ

N
m] = η

MNn δn+m , [αM
n , ᾱ

N
m] = 0 . (D.9)

It is convenient to take also the left/right center of mass and momentum operators to be independent

[qML , p
N
L ] =

i
2
ηMN , [qMR , p

N
R ] =

i
2
ηMN
; [qML , p

N
R ] = [q

M
R , p

N
L ] = 0 (D.10)

and impose, for the non-compact directions, an identification on their eigenvalues of the physical states pML = pMR = pM ,

where pM is the total momentum. It is also convenient to introduce
√
α′

2 p
M
L = α

M
0 and

√
α′

2 p
M
R = ᾱ

M
0 , so we have

∂XM
= −i

√
α′

2

∑
n

αM
n z−n−1 , ∂̄XM

= −i

√
α′

2

∑
n

ᾱM
n z̄−n−1 . (D.11)

Then we have the following Operator Product Expansions (OPE)

∂XM (z1)∂XN (z2) ∼ −
α′

2
ηMN

(z1 − z2)2
+ · · ·

eik1XL(z1)eik2XL(z2) ∼ (z1 − z2)
α′

2 k1k2ei(k1+k2)XL(z2) + · · ·

(D.12)

and similarly for the anti-holomorphic part.

D.1.3. Normalizations for string amplitudes
We associate a factor of κd

2π to each string vertex operator and indicate with CS2 the normalization of the closed
string tree-level amplitudes where the worldsheet has the topology of a sphere. Imposing perturbative unitarity on the
factorization of a 4-point function into two 3-point amplitudes one obtains

CS2

( κd
2π

)2 α′
8π
= 1 . (D.13)

The factor of α′/(8π ) is related to the closed string propagator

P(a) =
α′

2
(L0 + L̃0 − 2a)−1 =

α′

8π

∫
|z|≤1

d2z
|z|2

zL0−az̄ L̃0−a , (D.14)

where a = 1 in the bosonic theory and a = 1
2 in the NS–NS sector of type II theories. The overall normalization

of the left-hand side is chosen so to have residue one at various mass poles (for instance, close to the tachyon pole,
behaves as 1/(p2 + m2

T ), with m2
T = −4/α

′), while on the right-hand side we use the definition of the measure
2z = i dz ∧ dz̄ = 2 dRe(z)dIm(z) as in [265].

D.1.4. The boundary state
In this subsection we give a short introduction to the boundary state that describes the Dp-branes. For more details see

for instance [229]. Dp-branes are extended p dimensional objects characterized by the fact that open strings have their
endpoints attached to them. The open string with the endpoints at σ = 0, π attached to two parallel Dp-branes satisfies
the usual Neumann boundary conditions along the directions longitudinal to the world volume of the branes

∂σXα|σ=0,π = 0 α = 0, 1, . . . , p (D.15)

and Dirichlet boundary conditions along the directions transverse to the brane

X i
|σ=0 = yi ; X i

|σ=π = w
i i = p+ 1, . . . , d− 1 (D.16)

where yi and wi are the coordinates of the two Dp-branes and we take σ and τ in the two intervals 0 ≤ σ ≤ π and
0 ≤ τ ≤ T .
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The previous are the conditions in the so-called open string channel, but those characterizing the boundary state are
nstead those in the so-called closed string channel. This nomenclature follows from the fact that the annulus diagram
an be constructed in two ways: as one-loop of open strings or as a tree diagram with a closed string propagators
onnecting two boundary states. These two descriptions are connected by a conformal transformation in terms of the
ariable ζ ≡ σ + iτ :

ζ = σ + iτ →−iζ = τ − iσ . (D.17)

fter the inversion σ →−σ the previous conformal transformation simply amounts to exchange σ with τ and viceversa

(σ , τ )→ (τ , σ ) . (D.18)

inally in order to have the closed string variables σ and τ to vary in the intervals σ ∈ [0, π] and τ ∈ [0, T̂ ] corresponding
o a closed string propagating between the two D branes one must perform the following conformal rescaling

σ →
π

T
σ τ →

π

T
τ , (D.19)

with T̂ = π2/T .
The equations characterizing the boundary state are obtained by applying the conformal transformation previously

constructed to the boundary conditions for the open string given in (D.15) and (D.16). At τ = 0 we get the following
conditions:

∂τXα|τ=0|BX ⟩ = 0 α = 0, . . . , p , (D.20)

X i
|τ=0|BX ⟩ = yi i = p+ 1, . . . , d− 1 . (D.21)

Analogous conditions can be obtained for the Dp-branes at τ = T̂ .
The previous equations can be easily written in terms of the closed string oscillators by making use of the expansion

in Eq. (D.8), obtaining

(ααn + α̃
α
−n)|BX ⟩ = 0 , (αi

n − α̃
i
−n)|BX ⟩ = 0 ∀n ̸= 0 ,

p̂α|BX ⟩ = 0 (q̂i − yi)|BX ⟩ = 0 , (D.22)

where q̂ = qL + qR and p̂ = pL = pR. Introducing the reflection matrix

Rµν
p = (ηαβ ,−δij) , (D.23)

the equations for the non-zero modes can be rewritten as

(αµn +R µ
p ν α̃

ν
−n)|BX ⟩ = 0 ∀ n ̸= 0 . (D.24)

The state satisfying the previous equations can easily be determined to be

|BX ⟩ =
Tp
2
δd−p−1(q̂i − yi)

(
∞∏
n=1

e−
1
n α−nRpα̃−n

)
|0⟩α|0⟩α̃|p = 0⟩ , (D.25)

where the normalization Tp
2 is fixed by imposing that the computation of the annulus diagram in the open and in the

losed string channel gives the same result.

.2. String-brane scattering: the bosonic theory at tree-level

The simplest possible setup where we can study the string theory leading eikonal is the scattering of two closed
tring tachyons of momenta p1 and p2 off a stack of N Dp-branes in bosonic string theory. The tree-level string amplitude
apturing the scattering process mentioned above is

AT
0 =

κdNTp
2

Γ (−α′E2
s − 1)Γ

(
−
α′

4 t − 1
)

Γ
(
−α′E2

s −
α′

4 t − 2
) , (D.26)

where the kinematics is identical to the one discussed in the superstring case after (3.117). It is useful to provide some
detail on the derivation of Eq. (D.26) as this will help in clarifying the key physics novelty of the string eikonal with
respect to the field theory setup.

As standard we start from the vertex operators describing the emission of the external states. For the closed string
tachyon we have

VT (zi, z̄i) =
κd V̂T (zi, z̄i) =

κd eipiX(zi,z̄i) , (D.27)

2π 2π
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here XM (zi, z̄i) are the string embedding coordinates given in (D.8), the momenta are on-shell p2i =
4
α′

(see Appendix D.1
or our string theory conventions) and the exponentials are understood to be normal ordered. The tree-level amplitude
orresponds to world-sheet with the topology of the disk with the two closed string insertions at two points (z1, z2) in
ts interior

AT
0 = CS2

α′κd

8π
N
∫

d2z1d2z2
dVSL(2,R)

⟨0|VT (z1, z̄1)VT (z2, z̄2)|B⟩ . (D.28)

ere |B⟩ is the boundary state describing the stack of Dp-branes, see Eq. (D.25), |0⟩ is the SL(2, C) invariant vacuum and our
onventions on the string normalizations are summarized in Appendix D.1.3. The effect of |B⟩ on the world-sheet fields is
o identify the holomorphic and the anti-holomorphic parts through the reflection matrix Rp which is the identity along
he Dp-branes and minus the identity in the transverse directions. After the identification, the anti-holomorphic fields are
laced at 1/z̄2 and 1/z̄1, while the holomorphic ones are inside the disk of unit radius at z1 and z2 and |z| = 1 represents
he world-sheet boundary. Finally the measure can be easily obtained by fixing three punctures, say 1/z̄2, 1/z̄1 and z2 and
y integrating over the remaining one inserting the contribution of the c-ghost

d2z1d2z2
dVSL(2,R)

= dz1⟨c
(

1
z̄2

)
c
(

1
z̄1

)
c (z2)⟩ (D.29)

= dz1

(
1
z̄2
−

1
z̄1

)(
1
z̄1
− z2

)(
1
z̄2
− z2

)
=

(
1
z̄2
− z1

)2 ( 1
z̄1
− z2

)2

dx

here in the last step we introduced the SL(2, R) invariant cross-ratio

x =
(z1 − z2)

(
1
z̄2
−

1
z̄1

)
(

1
z̄1
− z2

)(
1
z̄2
− z1

) . (D.30)

The cross-ratio x is manifestly real and, since the zi’s are inside the disk of unit radius, it lies between zero and one. In
particular, the limit x→ 0 corresponds to |z1 − z2| → 0 describing a world-sheet where the two external states interact
first via a 3-point closed string vertex with one leg glued to the disk. Then by using the on-shell conditions, momentum
conservation (1+Rp)p1 + (1+Rp)p2 = 0 and the ordering 1

|z2|
> 1
|z1|

> |z1| > |z2| we have

AT
0 =

κdTp
2

N
∫ 1

0
dx
(

1
z̄1
− z2

)2 ( 1
z̄2
− z1

)2
⎡⎣( 1

z̄1
− z1

) α′

2 p1Rpp1 ( 1
z̄1
− z2

) α′

2 p1Rpp2

(
1
z̄2
−

1
z̄1

) α′

2 p1p2
(z1 − z2)

α′

2 p1p2

(
1
z̄2
− z1

) α′

2 p1Rpp2 ( 1
z̄2
− z2

) α′

2 p2Rpp2
⎤⎦ (D.31)

=
κdTp
2

N
∫ 1

0
dx (1− x)−α

′E2s −2x−
α′

4 t−2 ,

here we used (D.13) the normalization factor Tp
2 of the boundary state (see Eq. (D.25)) to simplify the overall

normalization and

p1p2 =
−t +m2

1 +m2
2

2
, prRppr = −2E2

s +m2
r , p1Rp2 = 2E2

s +
t −m2

1 −m2
2

2
, (D.32)

where m2
i = −

4
α′
. Thanks to the integral representation of the Euler Beta function one obtains (D.26).

Exactly as in the field theory setup the eikonal is captured by the limit E2
s ≫ |t| and by using (3.119)

AT
0 ≃

κdNTp
2

(−α′E2
s )

1+ α
′t
4 Γ

(
−1−

α′t
4

)
=
κdNTp

2
(α′E2

s )
1+ α

′t
4
e−iπ

α′t
4

−
α′t
4

Γ

(
1− α′t

4

)
1+ α′t

4

. (D.33)

Notice that this result can be directly derived directly from the last line (D.31). When α′E2
s ≫ 1 then the x-integral can

be performed by focusing on the region x → 0 with α′E2
s x finite: by expanding the integrand in this regime and finally

extending the region of integration to infinity, we have

AT
0 ≃

κdTp
2

N
∫
∞

0
dx eα

′E2s xx−
α′t
4 −2 =

κdTp
2

N(−α′E2
s )

1+ α
′t
4 Γ

(
−
α′t
4
− 1

)
, (D.34)

which agrees with (D.33). This shows explicitly that the result is entirely captured by the limit discussed before (D.31).
We can now follow the same approach used in Section 3.2.1 for the superstring and perform the Fourier Transform (3.123)
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f the bosonic result. Then we obtain

2δ0 =
κdNTpEs

4π

Γ

(
1+ α′∇2

b
4

)
1− α′∇2

b
4

[
(πb2)−

d−4−p
2 γ

(
d− 4− p

2
,
b2

Y

)]
, (D.35)

which is very similar to (3.129) except for the tachyonic pole and the fact that the critical dimension is d = 26. We recall
that γ (z, a) denotes the incomplete Γ -function.

D.2.1. The Reggeon vertex formalism for bosonic strings
In this section we follow [149,225,226] and show that the t-channel pole in (D.33) is related to a particular class of

closed string states in the leading Regge trajectory. Actually it is not difficult to present the argument for the scattering
of general closed string states instead of focusing on tachyons (D.27), so we consider directly the case where we have
generic physical vertex operators V1 and V2 in (D.28) at the place of two VT . Notice that our discussion does not require
the two vertex operators to be equal and this will be exploited later in Section 3.2.4.

As suggested by the discussion after Eq. (D.33), the eikonal result can be obtained by focusing on the degeneration
channel where the world-sheet looks like a vertex involving the three closed string states with one of them being off-
shell and propagating until it interacts with the stack of Dp-branes. By inserting a complete set of states between the
3-point interaction and the boundary state we have

A(12)
0 = CS2

α′κd

8π
N

⎡⎣∑
Qℓ

∫
d2z
2π

(zz̄)ℓ−2−
α′t
4 ⟨V1V2Qℓ⟩⟨Qℓ|B⟩

⎤⎦ , (D.36)

where Qℓ is a generic state of momentum q = (p1 + p2) at level ℓ and the sum, of course, covers all possible levels
= 0, 1, . . .; the integral over the phase of z is trivial, as the level matching condition has already been implemented, and
he factor involving zz̄ ≡ x follows from the closed string propagator (D.14). We now need to see how the contributions
of different states Qℓ in (D.36) scale with the energy of the incident string and, in the eikonal limit, we would like to
focus on the leading terms. In order to do so it is convenient to decompose the polarizations of the states Qℓ by using
the vectors (e±) defined in (3.161) and the directions orthogonal to them. Factors of Es can arise from the contractions
between ∂ rX+ = e+M ∂

rXM in Qℓ and the universal exponential factors eip1,2X in V1,2. Thus, in the high-energy regime, the
decomposition (D.36) is dominated by the states

Qℓ =
1
ℓ!

(
i

√
2
α′
∂X+

)ℓ (
i

√
2
α′
∂̄X+

)ℓ
eiqX . (D.37)

Below we summarize the contractions between the world-sheet coordinates in Qℓ and V1,2 that are relevant for
evaluating (D.36)

i

√
2
α′
∂ rX+(z)eip1X(w)

∼ (
√
α′Es) ∂ r−1

(
1

z − w

)
eip1X(w) (D.38)

i

√
2
α′
∂ rX+(z)eip2X(w)

∼ −(
√
α′Es) ∂ r−1

(
1

z − w

)
eip2X(w) .

nother source of factors of Es is the contraction of ∂ rX+(z) with the tensor part of the external vertex operator when
his describe a massive state. In this case we have

i

√
2
α′
∂ rX+(z) i∂ sXM (w) ∼ (

√
α′Es)

vMi

m
∂ r−1z ∂ s−1w

1
(z − w)2

, (D.39)

where vMi indicates the longitudinal polarization for a massive state of spatial momentum p⃗i. It is then clear that the
leading contributions to (D.36) come from the states Qℓ that have the highest number of factors of X+, so, at level ℓ,
t is convenient to have (∂X+)ℓ rather then structures with higher derivatives such as ∂ rX+. Thus in summary, in the
high-energy regime, the relevant states exchanged between the incident string and the stack of Dp-branes are52

QR
ℓ =

1
ℓ!

(
i

√
2
α′
∂X+

)ℓ (
i

√
2
α′
∂̄X+

)ℓ
eiqX(z,z̄) . (D.40)

Beside being off-shell these states do not satisfy exactly the BRST constraint also because e+q ∼ 1/E, but in the high-
energy regime this violation becomes irrelevant so it does not affect our calculation. Notice that at level ℓ such state

52 The overall factor of 1/ℓ! ensures that the two point function is normalized to one.
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ields a contribution proportional to (
√
α′Es)2ℓ, so only the graviton (ℓ = 1) yields a result compatible with a classical

ikonal contribution, while all contributions of higher spin states (ℓ ≥ 2) grow too quickly with the energy. It is only
fter resumming the contributions of the whole tower of states in the leading Regge trajectory that one finds the eikonal
esult (D.34).

The basic idea of the Reggeon vertex approach is to perform the sum over the states (D.40) formally at the operator
evel. We first notice that the scalar product ⟨QR

ℓ |B⟩ is independent of ℓ thanks to the normalization in (D.40) and one is left
ith only the normalization of the boundary state in (D.25). Thus, when focusing on the contributions of the states (D.40),
q. (D.36) reads

A ≃
NTpκd

2
⟨V̂1V̂2

∫
∞

0
dx

∞∑
ℓ=0

1
ℓ!

[
x

(
i

√
2
α′
∂X+i

√
2
α′
∂̄X+

)]ℓ
x−2−

α′t
4 eiqX ⟩

=
NTpκd

2
⟨V̂1V̂2

∫
∞

0
dx ex

2
α′

i∂X+ i∂̄X+x−2−
α′t
4 eiqX ⟩ (D.41)

=
NTpκd

2
⟨V̂1V̂2

[
i

√
2
α′
∂X+ i

√
2
α′
∂̄X+

]1+ α
′t
4

eiqX ⟩Γ
(
−1−

α′t
4

)
=

NTpκd
2

e−i
α′t
4 Γ

(
−1−

α′t
4

)
⟨V̂1V̂2VR⟩ = Π

Dp
R ⟨V̂1V̂2VR⟩ .

where the hat on the vertices means that they are stripped of their normalization as in (D.27). As already mentioned,
x = zz̄ and, at high energy, we can extend the integral over x from the interval (0, 1) to (0,∞). In the manipulations
above we treated the combination appearing the square parenthesis as a positive quantity as its leading contribution
when inserted in a correlator is αE2

s as follows from (D.38). Then the integral over x has to be evaluated via an analytic
continuation on E2

s and this is the origin of the phase in the final step. The symbols ΠDp
R and VR indicate the Reggeon

propagator glued to the boundary state and the Reggeon vertex

Π
Dp
R =

NTp
2

e−i
α′t
4 Γ

(
−1−

α′t
4

)
, (D.42)

VR = κd

[√
2
α′

i∂X+
√

2
α′

i∂̄X+
]1+ α

′t
4

eiqX . (D.43)

It is convenient to separate a Reggeon propagator and its coupling to the Dp-branes ΠDp
R = ΠR⟨VR|B⟩ as follows

ΠR =
1
2π

e−i
α′t
4

Γ

(
−1− α′t

4

)
Γ
(
2+ α′t

4

) , ⟨VR|B⟩ = 2π
NTp
2
Γ

(
2+

α′t
4

)
. (D.44)

The motivation for doing so is that the Reggeon vertex V̂R and propagator ΠR can be used to derive the high-energy limit
of pure closed string amplitudes, as done in Section 3.2.6. At this stage the split in (D.44) is somewhat arbitrary, but it can
be justified by sketching how to adapt the steps in (D.41) to the tree-level amplitudes with four external closed strings.
In this case, the integrand in (D.36) takes the schematic form (zz̄)ℓ−2−

α′t
4 ⟨V1V2Qℓ⟩⟨QℓV3V4⟩ and the holomorphic and the

anti-holomorphic sectors are independent. It is then convenient to factorize the calculation by summing independently
over the number of the holomorphic and the anti-holomorphic insertions since the level matching condition is imposed
at the end by the integral over the phase of z. By focusing on the operator part, we need to consider the integral∫

d2z
∞∑

ℓ,ℓ̄=0

⎡⎣ 1
√
ℓ!

(
z i

√
2
α′
∂X+

)ℓ
1
√

ℓ̄!

(
z̄ i

√
2
α′
∂̄X+

)ℓ̄⎤⎦ (zz̄)−2−
α′t
4

⎡⎣ 1
√
ℓ!

(
i

√
2
α′
∂X+

)ℓ
1
√

ℓ̄!

(
i

√
2
α′
∂̄X+

)ℓ̄⎤⎦ . (D.45)

A standard approach is to rewrite the factor of (zz̄)−2−
α′t
4 as an exponential by introducing a Schwinger parameter

(zz̄)−2−
α′t
4 =

∫
∞

0
dτ e−|z|

2τ τ 1+
α′t
4

Γ
(
2+ α′t

4

) . (D.46)

Then the 2D integral over z in (D.45) is Gaussian and the final integral over τ ′ = 1/τ yields a Γ -function. Then one can see
hat the tree-level amplitude with four closed strings is captured, at high energy, by the correlator ⟨V̂1V̂2V̂R⟩ΠR⟨V̂RV̂3V̂4⟩

nvolving the same Reggeon vertex (D.43) as before and the propagator Π in (D.44).
R
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It is straightforward to follow the steps discussed in Section 3.2.4 and obtain the bosonic eikonal operator from the
eggeon vertex (D.43). The final result has the same structure as in the superstring case (3.175), just with the overall
actor which follows from (D.44)

Â0 ≃
NTpκd

2
e−i

α′t
4 Γ

(
−1−

α′t
4

)
(α′E2

s )
1+ α

′t
4

∫ 2π

0

dσ
2π
: eiqX̂ : . (D.47)

D.3. String-brane scattering: the bosonic theory at one-loop

In the closed string channel the annulus amplitudes can be evaluated using two boundary states. For instance the
one-loop correction to the amplitude in (D.28) is

AT
1 = CS2

(
α′κd

8π
N
)2 ( κd

2π

)2 1
4π

∫
d2q
|q|2

d2z1d2z2⟨B|V̂T (z1)V̂T (z2)qL0−1q̄L̄0−1|B⟩ , (D.48)

where, as in (D.28), we inserted a factor of α
′κd
8π N for each closed string propagator P (D.14), a factor of κd

2π for each vertex
and a symmetry factor 1

4π related to the residual symmetries of the annulus.
The contribution of the zero modes qµ and pµ to (D.48) is

(2π )p+1δ(p+1)(p1 + p2)(2π2α′λ)−
d−p−1

2 e
α′

2πλ

[(
E2s +

4
α′

)(
log |z1 |
|z2 |

)2
−t log |z1| log |z2|

]
, (D.49)

here we introduced λ via log |q| = −πλ and used the on-shell conditions for the external tachyons m2
1 = m2

2 = −4/α
′.

he contribution of the non-zero modes has two effects. First it yields the usual annulus measure

dµ1 = 2πdλ
1
|q|2

∞∏
n=1

1(
1− |q|2n

)d−2 . (D.50)

Then it transforms the disk Green function log(zi− zj) into the annulus one, which can be expressed in terms of the prime
form log E(zi, zj), where

E(zi, zj) = (zi − zj)
∞∏
n=1

(
1− |q|2n zi

zj

)(
1− |q|2n zj

zi

)
(1− |q|2n)2

, (D.51)

or in terms of the Jacobi θ-function (4.77)

E(zi, zj) = 2π i eiπ (νi+νj)
θ1(νi − νj|iλ)
θ ′1(0|iλ)

. (D.52)

Then we can generalize the disk integrand derived in Appendix D.2 to the annulus topology. As done in Section 4.2 we
introduce the variables

zi = e2π iνi ≡ e2π i(iλρ1−ω1) , zj = e2π iνj ≡ e2π i(iλρ2−ω2) (D.53)

and obtain the following result for the one-loop amplitude

AT
1 =

(
κdTpN

2

)2
α′

16π
(2π2α′)−

d−p−1
2 (2π )4

∫
∞

0

dλ

λ
d−p−5

2

1
|q|2

∞∏
n=1

1(
1− |q|2n

)d−2 (D.54)

×4
∫ 1

2

0
dρ1

∫ 1
2

0
dρ2

∫ 1

0
dω1

∫ 1

0
dω2 e−(α

′E2s +2)Vs−
α′t
4 Vt (θ ′1(0|iλ))

4 e4πλρ
2

(2π )4θ21 (iλρ − ω|iλ)θ
2
1 (−iλρ − ω|iλ)

,

here the factor 4 in the second line comes from the normalization of d2z1 and d2z2 discussed after (D.14), we switched
o the variables introduced in (4.78) and the functions Vs, Vt are exactly those appearing in the superstring amplitude
defined in (4.76). As in the superstring case, the kinematic configuration we are interested in (large Es and small Rp/b)
implies that the integral is dominated by the region of small ρ and large λ. In this limit we have

AT
1 ∼

(
κdTpN

2

)2
α′

16π
(2π2α′)−

d−p−1
2 (2π )4

∫
∞

0

dλ

λ
d−p−5

2

e2πλ
∫ 1

0
dζ
∫ 1

0
dω

×2
∫
R(ζ )

dρ e2πα
′E2s λρ

2
e2πλζ (1−ζ )

α′t
4 (4 sin2 πω)−

α′t
4 (D.55)

× exp
[
4α′E2

s sin2(πω)
(
e−2πλζ + e−2πλ(1−ζ )

)] (
4 sin2(πω)

)−2
,

where the region of integration R(ζ ) is defined after (4.79). The final factor in the last line comes from the last fraction in
Eq. (D.54) and is not present in the superstring case as one can see by comparing (D.54) and (4.79). As we will soon see,
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his difference is related to the presence of a tachyonic state in the bosonic theory. The integral over ρ ∼ 0 is Gaussian
(after a Wick rotation Es → iEe). By writing the exponential in the last line as a double series of terms proportional to
e−2πnλζ and e−2πmλ(1−ζ ) we obtain an expression very similar to the integrand I1 in Appendix A of [22]. Then the integral
over ω can also be performed and one obtains

AT
1 ∼

(
κdTpN

2

)2
α′

8π
(2π2α′)−

d−p−1
2 (2π )4

∫ 1

0
dζ

i√
2α′E2

s

(α′E2
s )

24−
α′t
4

×

∞∑
n,m=0

1
n!m!

(
4α′E2

s

)(n−1)+(m−1) 1
π
B
(
1
2
, n+m− 2−

α′t
4
+

1
2

)
(D.56)

× Γ

(
−

d− p− 6
2

)
π

d−p−6
2

[
−2ζ (1− ζ )

α′t
4
+ 2(n− 1)ζ + 2(m− 1)(1− ζ )

] d−p−6
2

.

where the last line comes from the integral over λ. This expression is very similar to the superstring case, except that
n, m are shifted to n− 1, m− 1, due to the presence of the tachyon pole (e2πλ) in the first line of (D.55) and of the last
factor (sin−4(πω)) in the final line of the same equation. We can trade the integral over ζ for a momentum integral in
D = d− p− 2 dimensional space by using the identity∫ 1

0
dζ Γ

(
−

d− p− 6
2

)[
−2ζ (1− ζ )

α′t
4
+ 2(n− 1)ζ + 2(m− 1)(1− ζ )

] d−p−6
2

= (2πα′)
d−p−2

2

∫
dd−p−2k
(2π )d−p−2

[
2(n− 1)+

α′

2
k2
]−1 [

2(m− 1)+
α′

2
(k− q)2

]−1
, (D.57)

where we used bold symbols to indicate the transverse (d− 2) vectors following the convention introduced in (1.37). We
can rewrite the sums as integrals by using

∞∑
m=0

1
m!

f (m)sm

m+ t
= −

∫
C

dm
2π i

e−iπmΓ (−m)
f (m)sm

m+ t
, (D.58)

where the contour includes all the poles in the Γ (−m) and not the other ones. We can then deform the contour and focus
on the poles of the propagators in (D.57), which are the only ones that contribute to the leading term in the energy. We
find

AT
1 ∼

(
κdTpN

2

)2
α′

8π
(2π2α′)−

d−p−1
2 (2π )4

iπ
d−p−6

2√
2α′E2

s

1
4
(α′E2

s )
24−

α′t
4

× (2πα′)
d−p−2

2

∫
dd−p−2k
(2π )d−p−2

Γ

(
−1+

α′

4
k2
)
Γ

(
−1+

α′

4
(q− k)2

)
eiπ

α′

4 k2+iπ α
′

4 (q−k)2

×
(
4α′E2

s

)− α′4 k2− α
′

4 (q−k)2 1
π
B
(
1
2
,−
α′

4
k2
−
α′

4
(q− k)2 −

α′t
4
+

1
2

)
+ · · · , (D.59)

where the dots stand for the contributions of the other poles that involve also the Euler Beta-function in the second line
of (D.56). These contributions are needed to cancel spurious singularities in (D.59). For instance the last line has a pole
when α′(k2

−kq) ≃ 1 which does not correspond to the propagation of a physical state. However, this region is suppressed

by a factor of (α′E2
s )
−

1
2 with respect to the α′k2, α′q2

≪ 1 since we have
(
4α′E2

s

)− α′4 k2− α
′

4 (q−k)2
∼
(
4α′E2

s

)− α′4 q2− 1
2 , thus it

s not reliably captured by (D.56). In particular at this subleading order one should add the contribution neglected in (D.56).
electing a pole from the Euler Beta-function and the other from (D.57), one obtains a structure that exactly cancels the
purious pole in (D.56) mentioned above. We thus focus on the leading contribution written in (D.56) and recast the Euler
eta-function as the correlator introduced (4.83). By using Eq. (D.33) we can rewrite (D.59) in the following factorized
orm

AT
1 ∼

[
α′

8π
(2π2α′)−

d−p−1
2 (2π )4

iπ
d−p−6

2√
2α′E2

s

1
4
(2πα′)

d−p−2
2

]∫
dd−p−2k
(2π )d−p−2

(D.60)

× AT
0(Es, k)A

T
0(Es, q− k)⟨0|

2∏
i=1

∫ 2π

0

dσi
2π
: eikX̂(σ1) : : ei(q−k)X̂(σ2) : |0⟩ .

Since the square parenthesis on the first line is just i/(4Es), we indeed obtain (4.84) for h = 2 for the case of external
tachyon states in bosonic string theory.
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ppendix E. More on the 2 → 3 kinematics and on the ×, + waveforms

In this appendix we provide a list of relations that apply to the 2→ 3 kinematics discussed at the end of Section 1.2
nd which can be useful, in particular, to manipulate the waveforms presented in Section 8.3.1. We also present alternative
xpressions for the ×, + projections of the b-space amplitude Ã(5)µν

0 , i.e. the leading-order gravitational waveform, that
re equivalent to those presented in Section 8.3.1.
Let us begin by recalling that the incoming momentum vectors p1 and p2 define to the incoming particle’s velocities

µ

1 and vµ2 by (1.7), which satisfy v21 = −1, v
2
2 = −1, and are related to the Lorenz factor σ by σ = −v1 · v2 as in (1.8).

he projector onto the plane spanned by vµ1 and vµ2 can be read off from (1.10),

Pµν = −v̌
µ

1 v1ν − v̌
µ

2 v2ν =
1

σ 2 − 1

[
v
µ

1 v1ν − σ (v
µ

1 v2ν + v
µ

2 v1ν)+ v
µ

2 v2ν
]
, (E.1)

here v̌µ1 , v̌
µ

2 are the dual velocities defined by (1.9). This projector of course satisfies

Pµν v
ν
1 = v

µ

1 , Pµν v
ν
2 = v

µ

2 , Pµρ P
ρ
ν = Pµν . (E.2)

or any vector ξµ, we may then rewrite its decomposition (1.10) into longitudinal and transverse projections as follows,

ξµ = ξ
µ

∥
+ ξ

µ

⊥
, ξ

µ

∥
= Pµν ξ

ν , ξ∥ · ξ⊥ = 0 . (E.3)

In terms of the invariant products σ = −v1 · v2 ≥ 1, ω1 = −v1 · k ≥ 0 and ω2 = −v2 · k introduced in (1.43), one
can explicitly compute the longitudinal projections of various vectors. Since we always work in a regime in which the
momentum transfers q1, q2 are small, and thus (1.47) hold to leading order, we recover (1.48),

qµ1∥ ≈ −ω2v̌
µ

2 =
ω2(v

µ

2 − σv
µ

1 )
σ 2 − 1

, qµ2∥ ≈ −ω1v̌
µ

1 =
ω1(v

µ

1 − σv
µ

2 )
σ 2 − 1

(E.4)

nd define

∆
µ

∥
≡

1
2(σ 2 − 1)

[
−v

µ

1 (ω1 + σω2)+ v
µ

2 (ω2 + σω1)
]
≈

1
2
(q1 − q2)

µ

∥
(E.5)

or later convenience. From now on we shall not distinguish between ≈ and = signs, for simplicity, since we always work
o leading order in the approximation (1.47). Then from the following relations we find

b2q21∥ =
b2ω2

2

σ 2 − 1
≡ Ω2

2 , b2q22∥ =
b2ω2

1

σ 2 − 1
≡ Ω2

1 (E.6)

and

k · q1∥ =
ω2(−ω2 + σω1)

σ 2 − 1
, k · q2∥ =

ω1(−ω1 + σω2)
σ 2 − 1

. (E.7)

When saturating (E.5) with the polarization vector ẽµθ defined in (8.91), that is

ẽµθ =
ω1v

µ

2 − ω2v
µ

1
√
P

, (E.8)

with P = −ω2
1 + 2ω1ω2σ − ω

2
2 as in (1.45), we find

1
2
(q1 − q2)∥ · ẽθ =

ω1ω2
√
P
. (E.9)

Let us now give the explicit expressions of the previously introduced quantities in terms of σ , in the center-of-mass
frame, choosing the following explicit parametrization for the graviton momentum kµ defined in (8.93),

kµ = ωnµ , nµ = (1, sin θ cosφ, sin θ sinφ, cos θ ) . (E.10)

We get

ω1 =

ω

(
m1 +m2σ − cos θm2

√
σ 2 − 1

)
√ , ω2 =

ω

(
m2 +m1σ + cos θm1

√
σ 2 − 1

)
√ (E.11)
s s
156



P. Di Vecchia, C. Heissenberg, R. Russo et al. Physics Reports 1083 (2024) 1–169

a

t

E
h

a

nd53√
q21∥ =

ω
√
s
m2 +m1σ +m1

√
σ 2 − 1 cos θ

√
σ 2 − 1

=
ω2

√
σ 2 − 1

,√
q22∥ =

ω
√
s
m1 +m2σ −m2

√
σ 2 − 1 cos θ

√
σ 2 − 1

=
ω1

√
σ 2 − 1

(E.12)

ogether with

k · q1∥ = ω2

(
m2 +m1σ +m1 cos θ

√
σ 2 − 1

)(
m2
√
σ 2 − 1− (m1 +m2σ ) cos θ

)
s
√
σ 2 − 1

,

k · q2∥ = ω2 (m1 +m2σ −m2 cos θ
√
σ 2 − 1)(m1

√
σ 2 − 1+ (m2 +m1σ ) cos θ )

s
√
σ 2 − 1

.

(E.13)

Adopting the notation

kµ = kµ
⊥
, (E.14)

we also find

P = −ω2
1 + 2ω1ω2σ − ω

2
2 = (σ 2

− 1)k2 , k2
= ω2 sin2 θ (E.15)

In particular, the last two relations make it obvious that P ≥ 0, consistently with (1.45).
We conclude this appendix by presenting expressions for the ×, + projections of the impact-parameter space 2→ 3

amplitude in terms of polarization vectors eµθ , e
µ

φ such that

eθ · k = 0 , eφ · k = 0 , eφ · vi = 0 , (E.16)

but such that eµθ is not necessarily orthogonal to bµ (in contrast with the vector ẽµθ employed in Section 8.3.1, see
Eq. (8.83)). We thus start from the five-point amplitude given in Eq. (5.38) (using M = µ, N = ν and β = βGR as in
(5.41) as appropriate for GR), perform the Fourier transform (8.55), thus obtaining Wµν

0 = Ãµν

0 by following the steps
detailed in Section 8.3.1, and project it along the two polarizations according to

Ã(5)
× = Ã(5)µν

0 eφµeθν , Ã(5)
+ = Ã(5)µν

0
1
2

(
eθµeθν − eφµeφν

)
. (E.17)

xplicitly, in the center-of-mass defined by (8.92) and (8.93), where the longitudinal directions are 0 and 3, the velocities
ave vanishing components along the 1, 2 axis, while

v01 =
m1 +m2σ
√
s

, v31 =
m2
√
σ 2 − 1
√
s

,

v02 =
m2 +m1σ
√
s

, v32 = −
m1
√
σ 2 − 1
√
s

.

(E.18)

Then, we choose

eµθ = (0, cos θ cosφ, cos θ sinφ,− sin θ ) , eµφ = (0,− sinφ, cosφ, 0) , (E.19)

so that (E.16) hold and

e2θ = 1 , eθ · eφ = 0 , e2φ = 1 . (E.20)

For the × polarization, we get

Ã(5)
× =

(8πG)
3
2

4Ep(2π )
i(b̂eφ)

{
β

[ (
(p1eθ )Ω1

(p1k)b
e−ibk/2K1(Ω1)−

(p2eθ )Ω2

(p2k)b
eibk/2K1(Ω2)

)
+ i

∫ 1

0
dx e−i

kb
2 (2x−1)

(
(b̂eθ )Ω(x)K1(Ω(x))+ i(x−

1
2
)(keθ )bK0(Ω(x))

)
+ (eθ∆∥)b

∫ 1

0
dx e−i

kb
2 (2x−1)K0(Ω(x))

]
− 4p1p2((p1k)(p2eθ )− (p2k)(p1eθ ))

∫ 1

0
dx e−i

kb
2 (2x−1)bK0(Ω(x))

}
, (E.21)

53 In order to compare with the formalism used in Section 6 of Ref. [47] we need to use the following identities c21,2k
2
= q21,2∥, d1,2k

2
= (kq1.2∥)

nd b2k2f (x) = Ω2(1− x) where Ω(x) is given in (E.24).
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w

w

here for GR we have (see Eq. (5.41))

β = βGR
= 2m2

1m
2
2(2σ

2
− 1) , (E.22)

hile, for the polarization + we get

Ã(5)
+ =

(8πG)
3
2

4Ep(4π )

{
β

[
(p1eθ )2

(p1k)2
e−ikb/2

(
(kq2∥)K0(Ω1)− i(kb̂)

Ω1

b
K1(Ω1)

)
+

(p2eθ )2

(p2k)2
eikb/2

(
(kq1∥)K0(Ω2)+ i(kb̂)

Ω2

b
K1(Ω2)

)
+

p1eθ
p1k

e−ibk/2
(
(−(eθk)+ 2(eθ∆∥))K0(Ω1)+ 2i(eθ b̂)

Ω1

b
K1(Ω1)

)
−

p2eθ
p2k

eibk/2
(
((eθk)+ 2(eθ∆∥))K0(Ω2)+ 2i(eθ b̂)

Ω2

b
K1(Ω2)

)
+ 2(eθ∆∥)2

∫ 1

0
dx e−i

kb
2 (2x−1)

(
b2

2
K1(Ω(x))
Ω(x)

)
+ 2(eθ∆∥)

×

∫ 1

0
dxe−i

kb
2 (2x−1)

(
(eθk)(1− 2x)

(
b2

2
K1(Ω(x))
Ω(x)

)
+ i(eθ b̂)bK0(Ω(x))

)
+

1
2

∫ 1

0
dxe−i

kb
2 (2x−1)

[
2(eθ⊥eθ⊥)K0(Ω(x))− 2(eθ b̂)2Ω(x)K1(Ω(x))

+ (eθk)2(1− 2x)2
(
b2

2
K1(Ω(x))
Ω(x)

)
+ 2i(eθk)(eθ b̂)(1− 2x)bK0(Ω(x))

]
+

∫ 1

0
dx e−i

kb
2 (2x−1)

[
−(eφeφ)K0(Ω(x))+ (eφ b̂)2Ω(x)K1(Ω(x))

] ]
+ 8 ((p1k)(p2eθ )− (p2k)(p1eθ ))2

∫ 1

0
dx e−i

kb
2 (2x−1)

(
b2

2
K1(Ω(x))
Ω(x)

)
+ (8p1p2)

[(
(p1eθ )2

kp2
kp1
− (p1eθ )(p2eθ )

)
e−ibk/2K0(Ω1)

+

(
(p2eθ )2

kp1
kp2
− (p1eθ )(p2eθ )

)
eibk/2K0(Ω2)

+ ((p1k)(p2eθ )− (p2k)(p1eθ ))
∫ 1

0
dx e−i

kb
2 (2x−1)

(
−i(eθ b̂)bK0(Ω(x))

− (eθk)(
1
2
− x)

b2K1(Ω(x))
Ω(x)

−2(eθ∆∥)
(
b2

2
K1(Ω(x))
Ω(x)

))] }
, (E.23)

where

Ω(x) =
√
Ω2

1 x2 +Ω
2
2 (1− x)2 + 2Ω1Ω2σx(1− x) . (E.24)

Note that the vector ẽµθ employed in Section 8.3.1 and the vector eµθ employed here differ by a vector proportional to
kµ = ω nµ

ẽµθ = (− cot θ, 0, 0,−1/ sin θ ) = eµθ − cot θ nµ . (E.25)

Therefore, by gauge invariance, either choice must actually yield the same projected waveforms. We have verified
explicitly, as a check of the correctness of our the expressions, that the sum of Eqs. (8.87), (8.88) for the × polarization
agrees with Eq. (E.21) and the sum of Eqs. (8.89), (8.90) for the + polarization agrees with Eq. (E.23), as a consequence
of kµÃµν

0 = 0 (taking into account the overall factor in (8.54)).

Appendix F. From the field to the asymptotic waveform

From the eikonal operator (8.35), or from its soft versions (7.8) or (7.45), we obtain expressions for the expectation of
the canonically normalized field (7.14) in the final state of the form

hµν(x) =
∫ [

eik·xiT̃ µν(k)− e−ik·xiT̃ µν(k)∗
]

(F.1)

k
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ith T̃ µν(k) = Wµν

TT (k) or T̃ µν(k) = −iwµνTT (k) or T̃ µν(k) = −iFµνTT (k) respectively in those three cases. An important
roperty that can be seen to hold in all three applications considered in the text is

T̃ µν(−k) = T̃ ∗µν(k) . (F.2)

he prediction (F.1) in only reliable for the gravitational field sourced by the collision far away from the sources, and
ne thus faces the issue of taking the asymptotic limit of (F.1) in a null direction. This amounts to considering a detector
laced, spatially, very far away for retarded times comparable to the one at which the scattering event takes place. To
his end, we introduce the decomposition

xµ = u tµ + r nµ , (F.3)

here tµ is the detector’s four-velocity, t2 = −1, and nµ is a future-directed null vector, such n2
= 0 and −t · n = 1,

haracterizing its direction. In this way, u describes the retarded time of the asymptotic detector and r > 0 represents
ts distance from the source, so we want to take the limit

r →∞ , u, nµ fixed. (F.4)

It is convenient to change integration variable in (F.1) in a similar way, letting kµ = ρ tµ+ωmµ with ω > 0, and such
hat m2

= 0 and −t ·m = 1. Taking into account that the corresponding metric reads

(dk)2 = −dρ2
+ 2dρ dω + ω2(dm)2 , (F.5)

e find that Eq. (F.1) takes the following form

hµν(x) = i
∫
∞

0

dω
2ω

ωD−2
∫

dD−2m
(2π )D−1

T̃ µν(ωm) e−iωu+iωr n·m + (c.c.) , (F.6)

(where c.c. stands for ‘‘complex conjugate’’). The fact that r →∞ in the last term in the exponent can be compensated
y letting m = n + z, where the new integration variable z must obey t · z = 0 and z · n = −z2/2, and focusing on the
egion z ∼ O(1/

√
r). Then, to leading order we can approximate m ∼ n everywhere else, obtaining

hµν(x) ∼ i
∫
∞

0

dω
2ω

ωD−2T̃ µν(ωn) e−iωu
∫

dD−2z
(2π )D−1

e−
i
2ωrz

2
+ (c.c.) . (F.7)

Performing the Gaussian integral over z, we thus obtain the desired asymptotic limit,

hµν(x) ∼
i

2(2iπr)
D−2
2

∫
∞

0

dω
2π

ω
D−4
2 T̃ µν(ωn)e−iωu + (c.c.) . (F.8)

Although the previous expression holds in arbitrary dimensions, we can focus on D = 4,

hµν(x) ∼
1

4πr

∫
∞

0

dω
2π

T̃ µν(ω n)e−iωu + (c.c.) (F.9)

and finally, using (F.2), we note that the two terms combine to yield a single integral over ‘‘positive and negative
frequencies’’,

hµν(x) ∼
1

4πr

∫
∞

−∞

dω
2π

T̃ µν(ωn)e−iuω . (F.10)
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