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Motivated by conceptual problems in quantum theories of gravity, the gravitational
eikonal approach, inspired by its electromagnetic predecessor, has been successfully
applied to the transplanckian energy collisions of elementary particles and strings
since the late eighties, and to string-brane collisions in the past decade. After the
direct detection of gravitational waves from black-hole mergers, most of the attention
has shifted towards adapting these methods to the physics of black-hole encounters.
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For such systems, the eikonal exponentiation provides an amplitude-based approach
to calculate classical gravitational observables, thus complementing more traditional
analytic methods such as the Post-Newtonian expansion, the worldline formalism, or
the Effective-One-Body approach. In this review we summarize the main ideas and
techniques behind the gravitational eikonal formalism. We discuss how it can be
applied in various different physical setups involving particles, strings and branes and
then we mainly concentrate on the most recent developments, focusing on massive
scalars minimally coupled to gravity, for which we aim at being as self-contained and
comprehensive as possible.
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1. Introduction
1.1. Aims and outline

Gravitational scattering, as seen from a Quantum-Field-Theory (QFT) perspective, was not a popular subject among
particle theorists until the mid eighties. When in 1965 Steven Weinberg studied infrared gravitons in his now classic
paper [1], he felt obliged to provide some “reasons for now attacking this question”. One, he said, is “because I can”,
the second was that “something might go wrong” ...but, he immediately added, “does not”. For 20 more years or so
particle theory was so much focused on the newly-formulated Standard Model of non-gravitational interactions—and of
the elementary particles affected by them—that little attention was paid to the gravitational force in spite of the daring
1974 Scherk-Schwarz proposal [2,3] that the old (and unsuccessful) hadronic string theory should be recycled as a viable
way to reconcile General Relativity (GR) with the quantum theory.

The situation changed dramatically in 1984 following the so-called first string revolution triggered by the breakthrough
work by Green and Schwarz [4] making it at least plausible that some fully consistent (i.e. anomaly free) superstring
theories could actually be candidate theories for all known forces and elementary particles. Although that idea still
belongs to the dream category, the Green-Schwarz development gave a strong motivation for studying its implications
as a full-fledged theory of quantum gravity. Starting in 1987 several groups [5-17] started to analyze, in the spirit of the
“thought1 (gedanken) experiments” of the old quantum mechanics days, quantum gravitational scattering at transplanckian
energies

h . Gs
\/§>>Mpz\/g, e —>1. (1.1)

Among the initial aims of those investigations we would like to mention:

e Understanding how unitarity bounds on partial waves, which are violated at tree level, get restored by loop
corrections. This question can be asked both in QFT and in a string-theory context.

e Connecting the high-energy, fixed-angle behavior of string scattering amplitudes to modifications of gravity at short
distance.

e Studying regimes in which the process is expected, classically, to lead to black-hole formation and, quantum
mechanically, to subsequent black-hole evaporation. The construction of a unitary S-matrix in such a context
would guarantee that information is preserved thus solving Hawking’s famous paradox [18,19]. Alternatively, find a
breakdown of unitarity.

T For simplicity in this introduction we work in four spacetime dimension. We remind the reader that the very concept of a transplanckian
energy is quantum-mechanical: classical GR has no intrinsic mass or length scale (G~! is a mass per unit length in units where ¢ = 1 which we
use throughout unless explicitly stated).
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For scattering of elementary particles or strings which are much lighter than the Planck mass, the transplanckian regime
(1.1) constitutes an ultra-relativistic limit, and is essential for dealing with the above questions. First, because gravity
becomes the dominant force only at sufficiently high energies and this allows one to obtain (almost) theory-independent
results. Second, because high energies are necessary (although, as we shall see, not always sufficient) in order to probe
short distances. And, finally, because one would like to deal with black holes whose radius is (much) larger than the
Planck length ¢ = </Gh in order to apply to them the semiclassical approximations used in [18].

A high-energy limit naturally leads to a semiclassical approximation to gravitational scattering, simplifying consid-
erably all the calculations. In non-relativistic quantum mechanics the semiclassical limit goes under the name of WKB
approximation (see e.g. [20,21]). In a more general relativistic framework, it is associated with the so-called eikonal
approximation, the basic tool to be described in this review article. The early applications of the eikonal approximation
have met with considerable success in some regimes, including those in which point-particles and extended objects
(strings, branes) behave differently [8,10,13,15-17,22-24]. Parts of this review will be dedicated to these aspects of
gravitational scattering. By comparison, less progress was made on the regime where gravitational collapse is classically
expected to occur. In particular whether and how unitarity is preserved is still an unanswered question. We shall therefore
make a less detailed account of those aspects of the problem.

In the last few years, in the wake of the first direct observation of gravitational waves by ground-based interferom-
eters [25,26], the same semiclassical approximation turned out to be a useful tool for studying collisions of very heavy
objects, provided they remain at sufficiently large distances with respect to their size. Typical candidates are, of course,
astrophysical black holes which, besides being extremely compact, are characterized by the same quantum numbers as
those of an elementary particle, i.e. mass and spin (plus possibly some conserved charges) as long as the process is only
sensitive to the geometry outside their horizon.

Since semiclassical black holes, and a fortiori astrophysical ones, are much heavier than Mp, one does not have to
consider, for them, a highly relativistic regime in order to justify the approximation (1.1) and, in particular, the eikonal
approach. And for current physical applications it is often rather the opposite, i.e. a nonrelativistic approximation is viable.
For black holes such as those featuring in the events observed by LIGO/Virgo [25], with masses of about m; ~ 30M, (with

Mg =~ 2 x 10% kg the solar mass), the ratio between the Schwarzschild radii zcch and the reduced Compton wavelength

% obeys
2Gm?
hc

Therefore, for such systems, the classical limit is obviously an excellent approximation. What is less obvious is the use of
a point-particle approximation. This is expected to be good for black hole collisions at distances much larger than their
Schwarzschild radii while for neutron stars the detailed interior of the star matters and has to be incorporated through
some non-minimal coupling to gravity of the effective point particle.

It thus comes as no surprise that the traditional techniques for studying the collision and merger of compact
astrophysical objects have been based on classical GR. Among the most important ones are those using numerical relativity
(as pioneered in [27] and reviewed e.g. in [28]), the self-force approach [29], the Post-Newtonian expansion (see e.g. the
nice review in [30]), and the Effective-One-Body (EOB) framework [31,32], although the latter does make use of quantum
mechanical concepts for the determination of effective potential’s parameters.

More recently, however, the idea that scattering amplitudes—the bread and butter of quantum field theory
calculations—could be recycled for use in the physics of compact astrophysical systems has made its way in the scientific
community [33-42]. Furthermore, as stressed by Damour in [35], even the ultra-relativistic high-energy regime we have
already mentioned could provide very valuable information on the classical GR problem. As is also immediately clear from
(1.2), in an amplitude-based approach, one is not dealing here with straight perturbation theory, which can be thought
as an expansion for “small-G”. One should therefore identify the appropriate way of resumming certain infinite sets of
diagrams. The essential, simplifying feature, which is shared by WKB and eikonal methods, is that in the semiclassical
limit the amplitude is controlled by a large phase, typically representing a large, classical action in units of h, in which
the coupling constant sits in the exponent. To obtain this form, it is crucial that particular contributions of entire classes
of loop diagrams “exponentiate”, i.e. appear to the appropriate power and with the right combinatoric factor to all loop
orders. Sometimes this can be explicitly checked, at least at the level under scrutiny, sometimes it can be justified by
other methods (like in the world-line approaches), and sometimes will just be assumed. The validity of the eikonal
approximation thus needs to be checked on a case-by-case basis, but, as we shall discuss, it has been successfully applied
to semiclassical scattering for both massive and massless scattering [ 15,43-47], in various spacetime dimensions [48,49].
Amplitude techniques, including also the eikonal, have been applied the case in which the colliding objects can be subject
to tidal deformations [50-57] or carry spin [58-84]. Tidal effects [85-95] may in particular provide clues on the equation
of states of neutron stars [96], on the nature of black holes [97] and on possible exotic astrophysical objects [98-100].

A very important feature of the semiclassical/eikonal approximation is thus that it allows one to take easily the classical
limit itself, usually through a saddle-point approximation. On the one hand agreement with classical expectations provides
a check of the quantum result. On the other hand, and perhaps more interestingly, the eikonal approximation offers a
new tool for computing classical observables. The perturbative nature of such calculations is recovered by looking for
an expansion of the exponent, after the resummation. In this way, the eikonal exponentiation provides a simple way

~107 > 1, (1.2)

4
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to recover the classical limit by matching to the Post-Minkowskian (PM) regime, in which the colliding objects remain
sufficiently far apart and interact weakly, or, equivalently, undergo sufficiently small deflections,
Gy/s

<1 (1.3)

For reference, to obtain a rough estimate of this parameter, we may consider again the situation of a merger event in the
early inspiral phase, as measurable by LIGO/Virgo’s detectors, where the typical relative separation ry between the two
objects is such that
om 1 (1.4)
To 6
This small but non-negligible ratio motivates us to investigate higher orders in the PM expansion, which translate in
higher-order approximations of the eikonal phase [47,48,101-112]. In this way, the eikonal exponentiation provides an
alternative approach for computing classical gravitational observables from scattering amplitudes, complementing various
types of EFT setups [37,49,113-115], the KMOC framework [116-122] as well as PM worldline EFT methods [55,56,123-
140] (see [141] for a comparison between these two approaches).

As already mentioned the gravitational eikonal approximation can be justified in a large variety of situations and this
review will try to cover as many of them as possible indicating, in each case, both the achievements and the challenges
lying ahead. One such challenge is represented by inelastic processes, such as gravitational radiation or internal excitations
(as it happens in string theory), in which eikonal phase becomes an operator [110,112,119,142-148]. We organized the
material according to the order in G at which the eikonal phase (or operator) is computed. We believe that by starting
from tree-level and then working our way up to two loops, we could organize the material in a pedagogical style and
make the presentation as accessible as possible. At each loop level we will consider the case of pure Einstein gravity and
of some supersymmetric extensions of it. At tree level and one loop, we will discuss the case of string theory as well. In
the same spirit, we also describe first the two-to-two amplitude and only then turn to radiative processes and to radiation
reaction.

A very interesting development of the eikonal methods that we shall not cover in this report concerns their application
to scattering processes taking place in asymptotically AdS spacetimes, and their connection to holographic CFTs. This
analysis has been initiated in [149-153] focusing on the high-energy scattering of light states as was done in the eighties
in flat space. Through the AdS/CFT duality, the eikonal approach highlighted the existence of bounds on particular
couplings in holographic CFTs, see for instance [154-157]. The eikonal regime has been also used in the analysis of the
CFT correlators with heavy operators [158-163] and applied to the study of tidal excitations in AdS [164], and of higher
point correlators [165]. Another recent development which we will not discuss is the use of the eikonal approach in the
context of the so-called celestial CFT [166].

With this general plan in mind, let us discuss how the report is organized. In the remainder of the present section,
we shall spell out our kinematics conventions, review the definition of partial waves and discuss qualitative features of
different regimes of gravitational scattering. In Section 2, we provide a self-contained, elementary treatment of the leading
eikonal resummation for a gravitational 2 — 2 process involving massless scalar objects. We show how to calculate the
leading eikonal phase 28y, prove that it exponentiates and how it directly gives the deflection angle. This very simple
example is mainly meant to whet the reader’s appetite and lends itself to two quite different derivations that lead to
the same result. One is based on the amplitude for a single graviton exchange and the other one is based on solving the
geodesic equation in the Aichelburg-Sexl metric. We also illustrate how partial-wave unitarity, which is violated at finite
loop order, is recovered via the resummation.

In Section 3, we calculate the leading-order eikonal phase 2§, in several different field theories, ranging from minimally
coupled massive scalars to graviton scattering off a massive scalar, dilaton gravity, N/ = 8 supergravity, higher-
derivative corrections of GR and scattering of spinning objects. We then turn to tree-level string amplitudes, for which we
mainly focus on string-brane scattering (the analog of a probe-limit calculation) and also introduce the eikonal operator,
which accounts for transitions between different excited modes of the string. Section 4 is instead devoted to one-loop
calculations, which allow us on the one hand to check the first constraint arising from the exponentiation of the tree-level
result and on the other hand to calculate the first sub-leading correction to the eikonal phase 2§;. Like for the previous
one, we discuss both fields and strings. In Section 5, we encounter for the first time 2 — 3 amplitudes, which enter
the discussion of the unitarity cuts of the 2 — 2 amplitudes. We review in detail this point, focusing on the interplay
between momentum-space convolutions and their impact-parameter Fourier transforms. This also serves as an occasion
to anticipate the calculation of the imaginary part of the two-loop results, which is instead presented in Section 6 for
N = 8 supergravity and for GR. There, we also comment more in detail on the definition of the impact parameter and on
the connection between eikonal phase, radial action and phase shifts.

The remainder of the report is devoted to the inclusion of radiation in the final state. This is done first following
soft theorems as in Section 7, restricting one’s attention to low-frequency radiation, and then, to leading order in the
PM expansion, but capturing the full spectrum, by exponentiating the tree-level 2 — 3 amplitude as in Section 8. We
summarize our conclusions and prospects for the future in Section 9.

Several appendices are included in order to make the material sufficiently self-contained. Appendix A collects
conventions about Feynman rules and useful results concerning Fourier transforms from momentum to impact-parameter

5
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space. In Appendix B we present the calculation of the deflection angle in the probe limit for several theories. A brief
Appendix C collects useful identities involving the completely antisymmetric tensor. Appendix D contains material that
serves as background for the string-theory content of Sections 3, 4. In Appendix E we summarize a list of kinematic
relations that apply to the 2 — 3 process involving graviton emissions and include expressions for the waveforms that
complement those presented in Section 8. Finally, in Appendix F we illustrate how the on-shell metric fluctuation is linked
to the asymptotic waveform.

1.2. Kinematics and conventions

Before proceeding further, let us spell out here for later convenience the main conventions that will be employed in
the rest of the review.

The basic object of study of this work is the collision of two energetic objects with masses m; and m,. These define
the initial states of a scattering process. For convenience, all external momentum vectors will be regarded as outgoing, so
that —p; and —p, represent the physical momenta for such incoming particles. We work with the mostly-plus signature
for the metric,

N = diag(—=1,1,..., 1), n,v=01...,D-1, (1.5)
so that

When the two incoming states have nonzero masses, we define their velocities according to?

" " i " 2 2
py = —myvy, P, = —myv, , vy =—1, v; =—1. (1.7)

Then their relative speed is sized by the invariant

p1-D2 - 1
- =V V =,
mymy V1 =12
where v is the velocity of either particle as seen from the rest frame of the other one. Of course, 0 — 17 in the near-static
limit, while 0 — oo in the ultra-relativistic limit. It is also convenient to introduce the “dual” velocities

(1.8)

I I n I
T)Mzavz—vl _ oV~
1 o2—-1"~ 2 o2 —1
In particular, these vectors allow one to conveniently decompose any given vector £* in terms of its longitudinal and
transverse components according to

ML

. U]'Iv)]=1)2'1v}2=—1, U]'IV)2=U2'1V)1=0. (19)

M =gnol + &0 + &1, (1.10)
with

En=-&-v1, E&p=-§-v, & -v1=0, & - -vn=0. (1.11)
In a center-of-mass frame, the initial momenta take the form

—p1=(E1.p). —p2=(E2, —p), (1.12)

where p is a (D — 1)-dimensional spatial vector. Let us collect here a few useful relations that link the relativistic factor
o and the masses m; , to the total energy E = E; + E;, the single-particle energies E; ; and the absolute value p = |p | of
the spatial momentum in such a frame,

Ep =mimyvo?2—1, (1.13)

E:E1+E2:\/m%+2m1m20+m§, (114)
m

Ei = ?](ml +omy), (1.15)
m

E, = ?Z(m2 +om). (1.16)

We define the scattering amplitude for the process « — B in the standard way by decomposing the S operator
according to S = 1+ iT and by letting

(BIT|a) = (27 )P8PUP, + Pg)Aacs g, (1.17)

2 While p‘l‘_2 are past-directed to comply with the all-outgoing convention for external momenta, vflf , are future-directed, hence the minus signs
in (1.7) and also in (1.28) below.
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where the momentum conserving delta function takes into account that all momenta are formally outgoing. We normalize
single-particle momentum eigenstates with mass m according to the Lorentz-invariant convention
276(p")8(p” +m*)(p| — p') = 27)°8V(p + '), (1.18)

which is equivalent to the more common normalization?

(pl —p')y =2¢/1p > + m22x)"'sP(p+p). (1.19)

A case that we will often consider in the following is that of an elastic 2 — 2 scattering depicted in Fig. 1. We shall
denote the corresponding amplitude simply by A and label the incoming particles by 1, 2 and the outgoing ones by 3, 4,
in such a way that

pi=pi=-m, p3=p3=-m;. (1.20)
As already mentioned, all external momenta are regarded as outgoing so that they satisfy the conservation condition

pr+p2+ps+ps=0 (1.21)
and thus define the standard Mandelstam variables via

s=—(p1+p)?  t=—-(Pi+ps?,  u=—(p1+ps) (1.22)

As usual, s is linked to the total energy in the center-of-mass frame E by E = /s. We also define the momentum transfer,

q=p1+ps=—p2—P3, (1.23)
which is related to the Mandelstam invariant t by t = —g?. Of course, u can be written in terms of s and t using momentum
conservation and the mass-shell conditions,

s+t+u=2m:+m3). (1.24)

More explicitly, following the notation in (1.17),

(P4, p3IT| — P2, —p1) = (27)P8PU(p1 + P2 + 3 + Pa)Als, 1). (1.25)

Let us note, for later convenience, that one can also factor the overall momentum-conserving delta function by recasting
the S-matrix element as follows,

276(p3(p; + M2 0(p)3(P3 + m3)(pa, P3IS| — p2, —p1) = (27)°8PUp1 + Py + p3 + pa)S (1.26)
where, using 8(p; + pa)S®P(p, + p3) = 8P(p1 + p2 + p3 + pa)sP)(q) for the disconnected piece, with g as in (1.23),%
8 = 8(p1, p2; ) = (27)°8PAq) + 278(2p1 - 9 — )27 8(2p2 - g + TiA(s, —°). (1.27)

It can be convenient to introduce “average” momenta p;* and velocities u!* according to [167]

1 1
—pf =py —=¢*, py=py+=q",

% % (1.28)
—Plzt=f7§t+§qu» p‘3‘=ﬁ§—5q“,
and, fori =1, 2,
pl=mul, ul=-1. (1.29)

In this way the mass-shell conditions turn into the following relations: by pj — p5 = 0 and p3 — p3 =0,

pirq=0, u-q=0, (1.30)
for i = 1, 2, while by p? + pJ = —2m? and p3 + p? = —2m3,

_ 1 _ 1

m%:m%ntzqz, m3 :m%—l—iqz. (1.31)

The Fourier transform of the S-matrix element S defined in (1.27) is then

dP . d°q _ _ .
[ et =11 [ 5 e eams(ap - oz 9Als, ~a7) = 1+ IFTLAIS.b). (132)

3 One can multiply both sides of (1.18) by 270(—p®)5(p® +m?) to make it manifestly symmetric.

4 For simplicity, we leave the 6 functions implicit since they are irrelevant for sufficiently small g, given the fact that p§ = —p9 +¢° and —p9 is
positive.
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«— —

Y41 2! m
D4 —P1

= = S — ="

Fig. 1. To the left, a diagrammatic picture of the elastic 2 — 2 amplitude A. To the right, a cartoon of two-body scattering in the center-of-mass
frame.

Going to a center-of-mass frame, one has

—p1 =(E1.p), —p2=(E,—p), ps=(E,—D'). pa=(E1,p’), (1.33)

where now p and p’ are (D — 1)-dimensional space vectors with |p| = |p’| = p. In this frame, E;, E5, p obey (1.13), (1.14),
(1.15), (1.16), and

¢"=(0,§)=(0,p'—p), F=131°=20*(1-p-p"), (1.34)

where p = p/p and similarly for p’. In fact, these properties correspond to further factorized forms of the S-matrix element
(1.27),

-2
S =2718(¢%) [(2;1)’3-15(”—”(6 )+ i2n8(p— P+ ¢ |)A(S’4£|q|)} (1.35)
D
S(p—p/ . D-2 A(s, —2p*(1—p - '
= 2716(c1°)(27r)””M 8P (p, p/)+i(£) Als. =21 =P 1) (1.36)
pP—2 27 4Ep
where in the second line p’ = p

g and 8°~2)(p, ') is the invariant delta function on the (D — 2)-sphere (for
)/ s

+
instance §@(p, p') = 8(60 — 0')8(¢ — ¢')/sin@ in D = 4 with standard spherical coordinates, which obviously implies

[27dg [ d6 sin6 8P, p') = 1). i )
Aligning the “average momenta” so that ﬁq‘ = (E4,0,...,0,p) and [)2“ = (E3,0,...,0, —p), one obtains

_ 1 -1
— =|E, —— D =|E, — D
D1 ( 1, 2q3p>s D4 ( 172q7p>7
(1.37)

-1 - 1
—p2=(E, =q,—p =E,—=q,—p
D2 ( 2 zqv p)’ D3 ( 25 2q7 p>7
and in this way
q=(0,q,0), (1.38)
while the energies 1331,2 can be obtained from the mass-shell conditions:

2
. o q
Ef,=p"+ il ms, . (1.39)

As is clear from (1.37), this parametrization corresponds to the so-called Breit (or brick-wall) frame, where each particle
bounces back in the transverse directions and moves unperturbed along the longitudinal directions.

Another amplitude that we will employ in the following, especially when dealing with emitted radiation, is the
2 — 3 amplitude .4® describing the collision of two energetic particles with incoming momenta —p;, —p, and outgoing
momenta ki, k, with the additional emission of a single graviton with momentum k, as depicted in Fig. 2 so that

pP=pi=-m}, pi=pi=-mi, K =0 (1.40)
and

pi+p2+ki+k+k=0. (1.41)
In this case, we find it convenient to define two “momentum transfers”

g1 =p1+ki, g2 =p2+ka, qGi+q+k=0. (1.42)
Employing the velocities (1.7), the amplitude will depend on the invariants

o=-v-1p>1, w; = —v1-k>0, wy = —v-k>0 (1.43)

8
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«— —

Y41 kl m
— k:l —P1
k H}k
— — ko —p2 M ko

Fig. 2. To the left, a diagrammatic picture of the inelastic 2 — 3 amplitude .A®). To the right, a cartoon of two-body scattering with emission of
gravitational radiation.

b2

where wj is the graviton’s frequency as seen in the rest frame of particle j (for j = 1, 2). Using (1.10), we can decompose
k" as
k= w10 + o0y + K, (1.44)
and k* = 0 implies
P
02 -1

As we shall discuss, the classical limit is obtained by considering q;, g, k simultaneously small compared with the
incoming particles’ momenta. Therefore the exact mass-shell conditions for the massive states

:ki >0, P = —w%—i—Zw]wza —a)%. (1.45)

-1 =0q1, 22 =0;, (1.46)
read to leading order®
pr-q1~0, p2-q2~0. (1.47)
In this way, we find
@~ —wply +dy @ N oy 0 (1.48)
as follows from the last two equations in (1.9), and
2 2

2 2. ?
1 T &¥ T
)

This follows immediately from v vl =0 = 2 and from the last equation in (1.11) for & = g;.
Ina2 — 2+ N process with emission of N gravitons, the conservation condition would read

2~
Q1"‘

+ a5, (1.49)

p1+p2+ki+k+P=0, (1.50)
with P the sum of all graviton momenta. Squaring this relation one finds
kq -k 2P . P?
o =k (p1+p2) + ’ (151)
mym; 2mymy

where P - (p; + p2)/+/S = Epaq is the energy lost to graviton emissions in the (incoming) center-of-mass frame, while
—P? > 0 represents the gravitons’ invariant mass squared. Clearly, by energy conservation E.,q < +/s, and thus

P. (P1 +P2) + Pz = 2\/§Erad (Erad) +Prad st (Erad) ?ad > 0. (1-52)

Therefore (1.51) shows that the massive particles’ relative velocity always decreases as a result of the emissions, o’ < o.
We shall return to this point in Section 8 and in the outlook.

1.3. Partial waves, unitarity, phase shifts and the eikonal phase

For later convenience, let us recall how the 2 — 2 scattering amplitude can be decomposed into partial waves by
expressing it in terms of angular momentum eigenstates, and how unitarity holds for each partial wave. For simplicity
we will discuss the procedure in D = 4 although generalization to arbitrary D is straightforward (see for instance [7,168]).
We shall also focus on scalar massive particles, see e.g. [169,170] for generalizations to the spinning case.

5 We could introduce “average” momenta that are exactly orthogonal to q;, g, respectively, analogous to [a’i , introduced in (1.29), but we will
not need the relations (1.47) beyond leading order.
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Let us start from the S-matrix element obtained in (1.36) by factoring out the motion of the center of mass, which we
may regard as the definition of the “reduced” S and T operators in this frame,

- e o P \2 A(s, —¢?)
(b'IS1B) = 6P5.B) + i ITIH) . B'1TIH) = (5 ) Zpr (153)
2 4Ep
where
(p'Ip) = 8PP p'). q=2psin_,  p-p'=cost. (1.54)

It is convenient to go to a basis with well-defined properties under rotations by means of the spherical harmonics Yju(p ),

i, m) = f 4G Yu®B) . Gl m) = S - (1.55)

For concreteness, aligning p’ along the z axis, the three components of p can be expressed in terms of # and ¢ as
p = (cos¢sind,sing sind, cosd) and d2(p) = sinfdfdp with 0 < ¢ < 27 and 0 < # < m. The states |j, m) in
(1.55) are eigenstates of the total angular momentum J? and of its component along a given axis, say J;,

Jli,m)y =G+ Dl,m), LU, m) = hmlj, m) . (156)

Since we are dealing with collisions of scalar particles, the invariance of S and T under rotations implies via the
Wigner-Eckart theorem that their matrix elements take the following diagonal form,

(', m'|Slj, m) = si(5)3jir S (', m'|Tj, m) = 2f(S)8j Smm’ » (1.57)
where fi(s) are suitable, m-independent functions, which we may identify as partial waves, and of course
si(s) = 14 2ifi(s). (1.58)
It is also common to express fi(s) in terms of the so-called phase shifts §;(s), according to
) eZiﬁj(s) -1 )
1+ 2ifi(s) = 29, fi(s) = — = e sin 5i(s) . (1.59)

Therefore, using (1.55) and the definition (1.57) of fi(s) we obtain

oo

A 2i+1_ .
BITH) =) %P'(p -p")fi(s), (1.60)
j=0

after recalling the addition theorem that links the spherical harmonics to the Legendre polynomials P;, (see for instance
DLMF (14.30.09))

J .
N a2+l
> Vi BWin() = = —Pi(b-b"). (161)

m=—j

Comparing with (1.53), we see that the original amplitude can be decomposed as follows,

87E —
Als, —q?) = % > (2 + 1)f(s)P(cosh). (1.62)
j=0
p [V
j;-(s)=ﬁ y d(cos 8) P(cos ).A(s, —qz)\qzzpsmg, (1.63)

where the latter relation can be obtained from the former using the orthogonality properties of the Legendre polynomials,

+1
2
[ 1 dx P(X)Py(x) = ﬁajk, P(1)=1. (1.64)

The virtue of the partial waves fj(s) is that the full non-linear unitarity condition STS = 1, which takes the following
form for the T-matrix,
—i(T—=ThH =T'T, (1.65)

becomes diagonal in j and its elastic contribution is particularly simple. Indeed, by taking the expectation value of (1.65)
on (j, m|---|j, m) and inserting a complete set of states on the right-hand side, by (1.57) one finds that the sum over
intermediate two-body states simplifies to a single term, and the result is

Imfi(s, j) = Ifi(s)|* + inelastic, (1.66)

10
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where each (j-dependent) inelastic contribution is non negative. This implies the bound

Imfi(s, j) = Lfi(s)I? (1.67)
or the (weaker) inequality
[fis) < 1. (1.68)

Indeed, (1.66) can be obtained starting directly from STS = 1 and recalling the definition of the phase shifts (1.59),
Isi(s)]> + inelastic = 1, e~2™2%() 4 jnelastic = 1 (1.69)
and thus one obtains the following bounds equivalent to (1.67),
Isi(s) <1, Im 26;(s) > 0 (1.70)

with the equality signs holding true for perfectly elastic scattering. Note that, unlike the Froissart bound, which depends
on the absence of massless particles, the bound on partial waves should also hold in the presence of long range forces, in
particular for gravity.

The eikonal phase, which constitutes the focus of this report, is closely related to the phase shifts discussed above.
The main difference is that the eikonal is introduced by performing the Fourier transform of the S-matrix elements rather
than their partial wave decomposition

4772 gl Als, —4°)
(27 )P-2 4Ep
where we are assuming the kinematics of the Breit frame (1.37). The technical advantage is that one does not have to
deal with Legendre (or Gegenbauer for D > 4) polynomials, while the drawback is that the exact diagonal form in (1.57)

is lost as we shall see in Eq. (5.26) below. However in the classical limit there is an approximate diagonalization and so,
in analogy with (1.59), it is convenient to introduce the eikonal phase 24(s, b)

S, D) =1+iAs,b)=(1+---)e*D (1.72)

S(s,b) =1+ iA(s,b) = 1+/ , (1.71)

where the eikonal 2§ scales as 1/h while the dots in the prefactor stand for quantum corrections. The impact parameter b,
unlike j, is a continuous variable directly related to a classical quantity. The precise relation between 24;(s) and 24(s, b) will
be discussed in Section 2.2 and more generally in Section 6.1, where we will also elaborate on the relation between (1.71)
and the covariant definition of the Fourier Transform introduced in (A.31).

1.4. Regimes of 2 — 2 scattering

As intuitively clear, the classical impulse Q, i.e. the total momentum transfer during a classical 2 — 2 collision, emerges
from the quantum description via the exchange of a very large number of gravitons, each carrying a momentum of order q.
The resummation mechanism described in the next sections will make this intuitive picture precise, effectively capturing
an infinite number of graviton exchanges and thus predicting the classical limit of the amplitude from its conventional
expansion in perturbation theory. Expressing the amplitude as a function of the collision’s impact parameter, this
resummation leads to the exponential of the original perturbative amplitude. Of course, due to the multiple interactions,
the transferred momentum Q exchanged in the classical process is much larger than the perturbative momentum transfer

q,
Q>q. (1.73)

In particular, the ratio Q /q goes to infinity in the classical limit, i.e. in the formal i — 0 limit.
As far as the classical process is concerned, we are particularly interested in the regime where Q is small in comparison
with the center-of-mass energy

s> Q2 (1.74)

while the masses are kept arbitrary so as to explore various limits. A first regime is when the total center of mass energy
is of the order of the masses

s, m3, m3> Q*  black-hole scattering, (1.75)

which we dub as “black hole scattering”. Indeed, this can be seen as a relativistic, open-trajectory analogue of a black-hole
binary system tracing out a non-relativistic, closed trajectory motion during the inspiral phase. From the conceptual point
of view, it is interesting to take the extreme case where the kinetic energy is much larger than the (large) rest mass energy
of the external states

s> mp > Q high-energy scattering. (1.76)

11
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This ultrarelativistic limit is in principle different from the case where the masses are set to zero and one describes the
scattering of two shock waves

s> Q*, m!=0  shock-wave scattering, (1.77)

as will become clear especially in Section 7.3. It will be interesting to compare the two cases above. In particular we will
see that for some quantities, such as the deflection angle up to 3PM, the transition from ml-2 > Q2 to mi2 — 0 is smooth,
while others quantities have rather different behaviors in these two regimes. Finally another interesting case is that of an
elastic process where the mass of one state is much larger than the mass and kinetic energy of the other one

s,mj>s—m; —mj, m5>» Q>  probe limit. (1.78)

In this limit the light external state can be seen as a probe particle traveling in the gravitational background produced by
the heavy object. Thus, in this case, the results can be checked by studying the geodetic motion of a test mass in a fixed
classical metric.

2. Leading exponentiation: an appetizer

In this section we describe, in the technically simpler massless case, how to extract the leading eikonal phase
%% both from perturbative quantum field theory, following [36,101,102,171], and from purely classical considerations,
following [6,172]. We also show how 2§, is directly linked to the deflection angle for the classical trajectory via a
stationary-phase approximation, and illustrate some related properties of the amplitude that become manifest in its
partial-wave decomposition.

2.1. Minimally coupled massless scalars: from amplitudes to geometry

In order to illustrate the leading-order exponentiation in the simplest possible gravitational setup, let us start from
the case of two massless scalar fields minimally coupled to gravity,

R D 1 D
s= [ gavE 5 % [ sutue .0, V=g, 1)

a=1,2

with kp = +/8mGp. Considering fluctuations about a flat Minkowski background g,,, = 1., + 2«p h,,, and adopting De
Donder gauge leads to the Feynman rules described in Appendix A.2. In particular, the propagators for the graviton and
for the scalar with “flavor” index a = 1, 2 are given by (G and G, are the same function, but it is somewhat helpful to
keep track of their subscript)®

—i —i

Guv,po (k) = Py po G(K),  G(k) = 210 Ga(kq) = 2= (2.2)
where
poo_1 2
oo = 5 <77/l.pnurr R 77/4\1'7,0(7) - (2.3)
Moreover, the leading scalar-graviton-scalar vertex reads
" (p, p') = —ikp [p“p’” +p'p" - n““(pp/)], (2.4)

where the scalar lines are regarded as both outgoing. One may consider replacing P, ,, with the projector over physical
graviton states (see (5.45) below), but this replacement is immaterial for our present purposes because t/*” is transverse,

ie. 7q'py =0=1"p), (and thus also 7;"'k, = 0 with k" = —p* — p/*) when p* and p"* are on-shell.
Let A(s, t) be the amplitude for the elastic scattering of 1 and 2. We shall consider its behavior in the Regge limit,
s=—(p1+p)>-t=—¢. (2.5)

In this regime, the incoming particles are highly energetic and barely graze off each other, so that py, p, are formally very
large compared to g, i.e. the deflection is very small. Moreover, we shall focus on the contribution to the amplitude at L
loops, A;(s, t), that arises from the exchange of n = L 4 1 virtual gravitons between the two energetic lines as depicted
in Fig. 3. As we shall discuss shortly, these “ladder” diagrams indeed provide the dominant contribution to the L-loop
amplitude in the Regge limit. We further denote by ¢4, £,, ..., £, the momenta of such exchanges, flowing from 2 to 1
(see Fig. 3). Clearly this contribution takes the form

n

, dP¢; .
iAn_q(s, t) = / [aw) (271)]0 2m)Ps® (q— ) J™, (2.6)

j=1

6 More precisely, since the propagator is diagonal in “flavor” space, Ggp(k) = Gq(k) Sap-

12
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— —

b1 2

P2 ps3

— —

Fig. 3. An example of (crossed) ladder topology. The thick line at the top (blue) refers to particle 1 and the thick line at the bottom (green) refers
to particle 2. The exchanged graviton lines are attached and labeled by ¢4, ..., £7 in a random way. They flow from bottom to top, as indicated for
the ¢4 line.

where ¢ = Zj ¢; and J®™ is given by a sum over all ladder topologies of suitable products of massless scalar propagators

together with the appropriate contractions between the projectors P, ,, and the vertices 7,". Before spelling out J™
explicitly, let us examine one such contraction and retain only the leading order in the Regge or near-forward limit,
¢ ~ q < +/s. We find

7" (p1 — &, —p1 + &) = 2ikpp/ p} (2.7)
and therefore
tluv(pl - Zis —p1+ gj)Pp.v,patzpa(pZ + eks —P2 — Zl) x~ —KL%SZ . (28)

For instance, in the case of a single exchange (tree level),

22
KpS
Ag(s, t) = ZZT

(2.9)

where the subscript 0 stands for tree level. Consequently, to leading order, all dependence on vertices and index
contractions factorizes according to

J® 2 (—kps?)" 1, (2.10)

and we can rewrite (2.6) as

iAna(s, t) = (—x3s%) f H n"D @r)’s® (g — ) 1™ (2.11)

=1

with I™ a purely scalar object given by a sum over all ladder topologies of suitable products of G; and G, propagators,
as we now describe.

Summing all possible ways of attaching the exchanged lines and averaging over their labeling, we can write I(V) = 1
and

1
=—!ch(pl—zal>-~-cl(p1—zal—~--—egn,1)

o€Sn (2.12)
X Y GoPa+Ler) - Galpr + oy + -+ L1 )

o’eSy

for n > 2, where S, is the permutation group for n objects and % compensates for multiple counting. Note that, thanks
to the explicit averages in Eq. (2.12), we solved for £,, = q— £{;; —--- —¥{5,_, (and similarly for £,/ ) without spoiling the
permutation symmetry of I, Two-particle and three-particle exchanges are illustrated in Fig. 4. Denoting by a subscript
1 the components orthogonal to p; and p-, to leading order in the Regge limit (2.5) we can decompose the D-momentum
conserving delta function as follows (the factor of 2s arises from the Jacobian of the appropriate change of variables, see
Eq. (A.42))

8P)(q — £) >~ 25 8(2p1£)8(2p2£) 8P H(q, — €4). (2.13)
Similarly, to leading order, we can make the approximation
—i —i

G — ) = ~
1oy =) —2pilx+ € —i0  —2piby —

(2.14)

13
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(a) Two-particle exchanges.

PO X A LA

(b) Three-particle exchanges.

Fig. 4. Ladder diagrams with two and three exchanged massless lines. The labels ¢4, ¢, (and ¢3) should be assigned in all possible ways.

and similarly for G,(p, + ¢). In this way, we obtain

™~ SR ! .. !
n! = 21ty — 00 —2p1(loy + - + €5, ) — 0
" (2.15)
1 1
53 ~ 5
2pad, 4 —i0 2p2(€ cee4 Ly ) —1i0
o'€Sy n—1
Letting
1 1
fla,...,a)= Yy — (2.16)

0€SH Goy oy et Gon-1

we can then use the delta function cast in the form (2.13) and the identity (see Appendix A.1 and Eq. (A.14) in particular)

S(w1 + -+ wp)f(wy — 10, . .., wy —i0) = (2im)""'8(w1) - - - 8(wn) (2.17)

to conclude that

CAn_a(s, t) /ch dPe;
5(2 2 —_—
= ]"[G (214)6(2p2) 55

(2.18)
x (27 )P~25(0~2) (ql —0y).

This leads naturally to define the following Fourier transform with respect to the (D — 2)-dimensional transverse
momentum’ q,

. : d°q g, AlS, —q1) d°2q,
b 2 b ’ 1
(s, b) = / e a(2p10 2 (20a0) AL, ) 3 s = / S5 O (2.19)
which yields
B _22\n dDe n
iAy 1(s, b) ~ % [/ G()e™ 27 8(2p1€)278(2p>0) o )D] ) (2.20)

The Fourier transform to the impact parameter b simply had the effect of diagonalizing the convolution between single-
particle exchanges occurring in momentum space. The near-forward regime (2.5) translates in impact-parameter space
into the large-distance limit

h
5 < Vs, (2.21)

where h has been reinstated for clarity. In conclusion, to leading order in this limit, adding up all contributions coming
from n-graviton exchanges leads to

o0
140 Aya(s, b) = e, (2.22)

n=1

7 See Appendix A.3, in particular Eq. (A.44), for more details concerning these Fourier transforms, including the relation between the two
expressions appearing in (2.19).
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with

- ix2s [ eibtr gP-2¢ iGps I' (&4
2i80(s, b) = i.Ag(s, b) = LD/ L D ( 2 )

= . (2.23)
2h Ki (2w )P—2 n (an) 2y 25

At this point, let us go back and explain what selects the n-graviton exchanges among all possible contributions to the
elastic amplitude to all loop orders. To clarify this point, notice that when an extra graviton is attached to the energetic
scalars the corresponding diagram is enhanced by a factor of kp+/s, since the 3-point vertex itself brings a factor of s,
see (2.7) and (2.8), and the extra energetic propagator (2.14) scales as ﬁ If a graviton is added to the diagram in any
other way, one obtains a contribution at the same order in the gravitational coupling, but without extra factors of \/s.
Notice that this is true also if higher-point vertices are used as for instance a contact interaction involving two gravitons
and two scalars: since we are working with a two-derivative action (A.15), this vertex can scale at most as /c,%s, while

two 3-point vertices connected by a propagator (2.14) would yield (KDS)Z\%. By dimensional analysis every time we lose

a factor of /s, there must be an extra factor of g ~ % proving that non-ladder diagrams are subleading in the limit (2.21).
In summary the classical, or eikonal, limit requires Gps b*~" > h so the full amplitude oscillates infinitely rapidly as

intuitively should be the case. By further taking the near-forward q < /s or large-distance b+/s > h limit, we can make

the problem tractable, so the regime of interest for our analysis is specified by the following hierarchy of length scales

D < Govb <, (2.24)

s
where ﬁs plays the role of a quantum wavelength and Gp+/s b*~? is the effective size of the curvature that characterizes
the colliding objects. In the leading-order large b approximation the full classical amplitude can be approximated by (2.22)
and (2.23) which as we saw follows from the resummation of ladder diagrams. The physically relevant D = 4 of (2.24)
is thus somewhat special, because the eikonal phase develops a b-independent infrared (IR) divergence: the combination
Gp+/s coincides with (one half) the Schwarzschild radius of a black-hole of mass /s and, from the finite part of the eikonal,
one can read the effective size G+/s log(bu) to be used in D = 4 version of (2.24). It is natural to identify the IR cutoff
with the inverse of the distance r between the binary and a far-away observer.

In the regime (2.24), it is indeed natural to take the impact parameter b and the energy +/s (or a length scale R, defined
in analogy with the Schwarzschild radius by RP~3 = Gp./s) as the classical quantities characterizing the collision. In terms
of these variables the leading eikonal is given by:

o iGps I'(%Y)  bsGrST (%)
2ity = S8 h g =i R R (2:25)
h (mb?) 7 h b T
To reiterate, in the classical limit we must require that R is much bigger than the Compton wavelength of a massless
particle (R > %). On the other hand, in order to apply perturbation theory, we need that the interaction be weak and

this corresponds to large values of b (b >> R). In conclusion, Eq. (2.25) is valid for large values of b and this is obtained by
considering the amplitude in the Regge limit (|t| < s). The factor of 1/h in (2.25) signals that this quantity should indeed
appear in an exponential e%% so it can describe the value of the classical action, while all non-exponentiated terms are
of order A" with n > 0 and describe quantum corrections.

Let us now show how we can calculate from this semiclassical action two important classical observables: the impulse
Q and the deflection angle ® depicted in Fig. 5. In the leading approximation, the exponentiation takes the form (2.22),
or briefly

S(s,b) = 1+ iA(s, b) =~ *®b) (2.26)

After exponentiation in impact-parameter space, we can Fourier transform back to momentum space®
S(s, —Q2) = zs/dD—Zbe—%bQ+2i30(s,b)’ (2.27)

Here Q describes the full exchanged momentum, or impulse, in the classical process, obtained after the eikonal
resummation. Therefore it is important to distinguish it from g, the momentum exchanged in the perturbative amplitude
in (2.9) via a single graviton. In the classical limit we can approximate (2.27) in terms of the stationary-phase contribution
getting, at the saddle point,
8268 re -1 pe
0= —2GD57£2 ) -,
ob, 72-2pp-3 b
where b denotes the magnitude of b*. Note that, unlike 2§y, the resulting leading-order impulse (2.28) is not singular as
D — 4 thanks to the action of the derivative that eliminates the b-independent Coulombic pole at D = 4. In terms of the

Q" = (2.28)

8 S(s, —Q?) should be distinguished from S(p;, p2; q) introduced in (1.27), which also includes the mass-shell delta functions.
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Fig. 5. Classical 2 — 2 scattering in the center-of-mass frame (1.33). The difference between b and by is ©(G?) and thus negligible in this section.

quantities introduced after Eq. (2.24), this becomes

Q  2r(3—-1Gp/s

E B z2-2  bP73
where the last inequality holds in the limit of large distances where the impact parameter is much larger than R. On the
other hand, from the Fourier transform (2.19), we have the usual relation b ~ h/q between the impact parameter and the
momentum of a single graviton exchanged. Then the ratio between the classical impulse (2.28) and this single-graviton
momentum transfer can be written as
Q _2Gps I’ ( ]) ®b

g h L3-2pp—4  h

<1, (2.29)

(2.30)

and can be interpreted as the typical number of exchanged gravitons in the classical process. This makes it manifest that
in the classical limit the number of gravitons exchanged is very large, as signaled by the factor of ™', while classical
observables, such as the impulse (2.29) or the deflection angle (see (2.32) below), remain small in the regime under
consideration.

We can now use (2.28) and (2.29) to compute the classical deflection angle ® defined as the angle between the
space-like components of the momenta —p; and p4 in the center-of-mass frame (1.33), as shown in Fig. 5. In this frame
Q2 = (p1 + pa)® = 2p*(1 — cos ®) where p - p’ = cos @, and thus

Q=2psine = sino = p 920 (2.31)

= in — in—=—|(-h—), .
psm 2 2 ab

where the second expression is obtained by using (2.28). The minus sign comes from the fact that [9,280| = —d,250.

Incidentally, this shows that the gravitational force is attractive because in this way the deflection of either particle points
towards the other one (see Fig. 5). Since, in the massless case,” p = 7 and the condition (2.29), which characterizes the

eikonal regime, ensures that Q /p is also small, we can expand sin ~ 2 , obtaining the leading-order deflection angle

4r(2 — 1) Gp/s
) ™ 2 D
O~ 0, o3 <1. (2.32)
T2
Similarly, one can go to the time domain by taking a Fourier transform over E = ./s. Again a stationary phase

approximation yields a relation between the eikonal and the Shapiro time delay AT which measures how much objects
are slowed down by the gravitational force [173-175]

AT = h —2 | (2.33)

as seen from the center-of-mass frame. Contrary to what happens for the deflection angle (2.28), in this case the Coulomb
divergence in &g (2.23) does not cancel, so a better IR-safe observable is for instance the variation of AT when b changes.

As we shall further discuss in Section 2.3, both deflection angle and time delay were found to agree with classical
GR expectations in the approximation in which each particle produces a non-trivial curved metric that affects the
geodetic motion of the other particle [6,176]. In conclusion, we have seen how the classical deflection and the time
delay, which we may attribute to an effective metric, emerges from standard (quantum) scattering amplitude calculations

9 The massive case will be discussed in Section 3.1.1 below.
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on flat background spacetime. Notably, this avoids possible challenges, particularly in string theory, with quantization
in curved space-time. See however [150-153] for discussions of the eikonal exponentiation in AdS spacetime, as well
as [121,122,177] for recent discussions in curved spacetimes.

In the ensuing sections we will see that the eikonal exponentiation generalizes well beyond the simple case sketched
here. While the basic idea is the same, it becomes more intricate when extended to the R/b corrections (subleading
eikonal) and to theories beyond GR including more fields or higher derivative couplings or to string theory. This
mechanism is expected to hold in all consistent gravitational theories, as we will discuss in some detail in this review.
However, first, we will comment on the connection between eikonal phase and partial waves, as well as on the
interpretation of the eikonal phase as a classical action for shockwave scattering.

2.2. Eikonal phase and phase shift

In this subsection we discuss the relation between the partial-wave decomposition introduced in Section 1.3 and
the eikonal phase. As we shall see, this will highlight how the eikonal exponentiation is also instrumental in solving
an apparent tension between the explicit result for the tree-level amplitude (2.23) and the unitarity bound (1.70).

The partial wave expansion of the resummed amplitude (2.27) is most easily performed for D = 4, but in this case
the leading eikonal phase (2.25) is divergent. On the other hand, after exponentiation, this divergence is an overall
b-independent phase which can be ignored (this is the usual Coulomb divergence due to the long-range nature of the
tree-level potential in three space dimensions). The finite b-dependent contribution is

G
280(s. b) — —§ log(ub)? . (2.34)

with u an inverse length scale introduced for dimensional reasons, so that the integral in (2.27) can be performed exactly
by using the general Fourier transform (A.49),

87Gs? [ 42h2\ " (1 — iag)
S(s, —0%) ~i ) 2.35
(=)= <Q2> (1 + i) (235)
Here
Gs
0= — (2.36)

is dimensionless and provides an analog of the fine structure constant of QED. We see that the expression (2.35) for the
resummed amplitude is equal to the one for single-graviton exchanges (2.9) with the substitution ¢ — Q times two extra
phase factors (the ratio of the two I"-functions is also a pure phase).

In order to apply the partial wave projection (1.63), we note that in the massless case 2p = /s and recall the Rodrigues
formula,

1 d

(x) = — — (x2 — 1Y
Pi(x) = 277 dx (x> —1Y. (2.37)
We then need to compute the following integral,
—1y ' 4 . .
( ,,)l dx— (1 = x%Y(1 — x)~ 1+ | (2.38)
2t )4 ox

Integrating by parts, one can easily bring all the derivatives with respect to x on the term with o, then the integral can

be performed by changing variable from x to z = % and recognizing that one obtains a quantity proportional to the

Euler Beta-function. By including all the factors of the amplitude (2.35) one obtains'®
7 . .
; S I — i
s5i(s) = ) — ( 2) ( +J. .Olc) . (2.39)
4u2h I'(1+j+iag)
We now consider the classical limit,
j~ac>»1, J=hj, (2.40)

where the quantum number j takes large values, in order to lead to a sizeable classical angular momenta J. Taking the
limit (2.40) in (2.39), and using the Stirling approximation, we find

28 = — [ac log(j* + &) + 2jarctan ozc] , (241)
J

10 At fixed Jj that ratio has singularities along the imaginary s-axis, known as 't Hooft’s poles. However, their presence depends on the large-Q
behavior of the resummed scattering amplitude which is beyond control of the leading eikonal approximation [16].
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where we used arctan "‘]—G = % log jf;gg Moreover, to leading order in the PM limit j > «o¢ > 1, this simplifies to
Gs
25;(s) =~ Y log(j?), (2.42)
and thus, comparing with (2.34),
260(s, b) = 28(s),  hj=] ~pb, (2.43)

up to subleading, b-independent corrections. At higher PM orders, as we shall see, it is instead important to maintain the
distinction between 26j(s) and 24(s, b). For this reason, we introduce a special symbol for 2;(s) in the classical limit,

which is a function of the continuous variable ] = hij. We shall come back to this point in Section 6.1.

This identification between b and j-expansions to leading order, which is also natural by geometric considerations (see
Fig. 5), seems to raise a problem with the partial wave unitarity bound (1.70). Indeed, focusing on the tree-level amplitude,
| Ao(s, b)| =~ [fi(s)| > 1 in the classical, high-energy regime, which seems to contradict (1.70). However the resummed
amplitude makes perfect sense since the large quantity Ay(s, b) = 28¢(s, b) ~ 28;(s) appears only as a phase %% Thus,
S(s, b) and s;(s) simply saturate the bound (1.70), by neglecting inelastic contributions,

Isis)? =1, (2.45)

as one can also see directly from (2.39). When taking inelastic processes into account, as we shall see in the following,
248 develops a positive imaginary part, so that

Isj(s)|” = e7>"Mm2) < 1 (2.46)

and the bound is still respected, but no longer saturated. In this way, the eikonal exponentiation is instrumental in
resolving the apparent tension between the high-energy behavior of perturbative amplitudes in gravity and the bounds
coming from the unitarity constraint. In fact, this was one of the main historical motivation for its study.

Let us now go back to the connection between partial waves and deflection angle. Starting from (1.62), we see that
the Q-space representation of the amplitude is given by a sum of the type

) 2)
S(s,Q) o< Y Pi(cos @)e*™, Q= 2psin > (2.47)
Jj

Using the large-j limit of Pj(cos @), (see for instance DLMF (14.15.11) with 4 = 0 and v = j and (6.4))

P(cos®) ~ ./ 29 i+ e~ (2.48)
(cos ~ cos — -, )
! j=oo ¥ wsin® J 2 4

the classical deflection angle can then be obtained by applying the saddle point condition to sum in (2.47), obtaining'’
025; ax(s,
3 J‘(s) _ _px(s)) ’ (2.49)
dj aJ
where we used the definition of x(s,J) (2.44) in the last step. Naturally, substituting the approximate expression (2.42)
for j > ac > 1 we simply recover the result of (2.32) for the leading-order deflection angle in D = 4,
2Gs  4G+/s
O~ —~ \[, pb~]="hj. (2.50)
J b
Of course, in a physical quantity as the deflection angle, the dependence on u drops out.
However, we can obtain a relation which formally does not rely on the PM expansion by substituting (2.39) for
j ~ ac > 1, according to which

@:

O=i(W({i+1—ing)—v({+1+ing)) (2.51)
where i is the logarithmic derivative of the I'-function. Using the following equation for :
= /1 1
142z)=-— - — 2.52
(1 +2) V+;<n HZ) (2.52)
we can write @ as follows:
nd 2 aTG dx o
O = Z 2762 ~ 2/ 1 S = 2arctan—,c (2.53)
moa MO ag 0 TX J
11 Here we use that, out of the two saddle-points ©@ = %9;(25;), since ® € [0, 7], only ® = —9;(25;) can be realized in theories like gravity where

the interaction is attractive, —9;(25;) > 0.
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where in the middle step we have approximated the sum with an integral by using x = «ag/m for large values of j.
Equivalently, we could have substituted in (2.51) directly the expression (2.41), obtaining the same conclusion. Then we
get

®

tan — = O[—,G . (2.54)

2
Taking into account that, in the classical limit, ji = pb; = ] we can compare this equation with (2.31). They have precisely
the same form in D = 4 except for the substitution of sin with tan and of b with b;. Taking into account the difference
between b and b; in Fig. 5 they are in agreement up to order G?. Let us also mention that, as discussed in Appendix B.3,
the probe-limit scattering of massive objects in A/ = 8 obeys a relation formally very close to (2.54).

2.3. Minimally coupled massless scalars: from geometry to amplitudes

Interestingly enough, the result (2.25) was also obtained, and at exactly the same time, by 't Hooft [6] from a calculation
that follows exactly the opposite logic with respect to the one of the two previous subsections. The starting point of 't
Hooft’s approach is the classical shock-wave metric produced by a massless particle of given energy E‘") moving, say, in
the positive-z direction at u = t — z = 0. That metric was obtained long ago by Aichelburg and Sexl (AS) in the classic
paper [178]. It can be easily generalized to arbitrary D (see e.g. [176]) and, in suitable coordinates, it reads

D-2
ds’ = —dudv + f(x )8(w)du® + Y "dx'dx',  v=t+z, (2.55)
i=1
where x;, = (x', ..., xP72) and, in order to satisfy Einstein’s equations with a source,
Ty = EVs(u)s® 2 (x')s5 1, (2.56)

f(x.) should satisfy the equation
D-2
0uf(xy) = —167GEWsP P x,),  oL=) a7 (2.57)
i=1

Hence, f is proportional to the well-known Green function in D — 2 dimensions. More specifically, one finds'2

D-2 D=2
4

. 2T 2
flx1) = —16nGDE“)m, r? = Z(xl)2, 2p 0 = (2.58)
D)2

i=1
(note that, in any D, f has the correct dimensions of a length).

Consider now the null geodesics describing the worldline of massless (test) particles moving in the opposite direction,
initially at v = 0 and at transverse coordinates x' = b'. They describe straight lines at t < 0, but suffer both a v-delay
and a deflection for t > 0.

These geodesics were considered in [6,179] for the AS metric and generalized in [176] for arbitrary D as well as for
extended sources. It turns out that, in these convenient albeit rather singular coordinates, the v-coordinate of the test
particle suddenly changes from zero to f(b). This v-delay is instantaneous and simply given by (using r — b):

r%)

v~ 6(u)f(b) = Av = f(b) = 4GpEMb* P —52; (2.59)

b4
where 6(u) is the Heaviside step function. We refer to [176,180] for more details about the solution of the geodesic
equation.

't Hooft next considered a Lorentz frame in which particle 1 is very energetic and produces the shock wave while
particle 2 is very soft and behaves as a test particle suffering the v-shift (2.59). Quantum mechanically, particle 2 has a
wave function ¥ ~ exp(i%) for t < 0 but, as it goes through t = 0, its phase picks up a shift given by

E@ A E@f(p G Jal =
v _ EPf(b) _ Gos I'(H) (2.60)

o h h pp-4 b4

where we have used that 4E(VE®) = s. The above equation is precisely the phase shift in (2.25).

As pointed out in [172] this raised a doubt: working in the boosted reference frame mentioned above, the shock wave
produced by the soft particle (2) is extremely weak, but it cannot be neglected because, when it is used to calculate its
contribution to the phase of the wave function of the energetic particle (1), it is multiplied by a large factor E(V) producing

12y [176] the AS metric was (almost trivially) extended to a “beam” of null energy which is still concentrated at u = 0 but has an arbitrary
transverse profile. Such effective shock waves naturally appear when the source is extended, like in the case of strings. See Section 3.2.6.
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in the end exactly the same contribution (2.60). So it seems that the total classical phase shift is twice the eikonal result
(2.25). This puzzle was solved in [172] by realizing that, in this geometric description, the classical action receives an
extra contribution from the boundary term needed to define properly the Einstein-Hilbert variational principle. In the
case at hand, this extra contribution cancels precisely half of the result obtained by simply summing the contributions of
the two particles, thus restoring the agreement with the amplitude-based result.

As we will see in Appendix B, the same idea can be applied, even more straightforwardly, to the scattering of massive
particles at the leading order in the probe limit (1.78), where particle 1 can be described by a stationary geometry and the
classical action is derived from the geodesic followed by the particle 2. A similar approach also works, with the appropriate
modifications, in the case of string-string collisions as discussed in detail in Section 3.2.6.

As discussed in Section 4.1.5, the probe limit actually determines not only the 1PM, i.e. O(G) eikonal phase, but also
the 2PM one, corresponding to a one-loop calculation on the amplitude side. Instead, new classical data that is not fixed
by the probe limit appears at 3PM, two-loop order, both in the massless and in the massive setups. Let us finally remark
that this elegant method based on approximating the problem as the one of a particle scattering in the metric produced
by the other particle represents the starting point of the so-called self-force expansion [29,181-183].

2.4. Collapse criteria in GR

Following up on the discussion of the previous subsection we would like to consider now the opposite situation in
which not only the probe approximation breaks down, but even a perturbative expansion in % is bound to fail (diverge?).
This is when classical GR arguments lead to the conclusion that a finite fraction of the initial energy should collapse to
form a black hole.

Of course, the quantitative study of such a regime is out of reach both by analytic and by numerical relativity
methods. Amusingly, however, some non trivial results can be obtained in the strictly massless case as first pointed out
by Penrose [184] for the axisymmetric situation (b = 0). The basic simplifying feature of massless collisions is that, by
causality, nothing happens before the two front waves (at u = 0 and v = 0) meet at t = 0. In other words, a simple
linear superposition of two AS shock waves of the form (2.55) exactly satisfies Einstein’s equations for t < 0.

The idea of Penrose, later extended to b # 0 by Eardley and Giddings [185], is to check whether or not a marginally
trapped closed surface (MTCS)!® can be constructed using the exact, known geometry at t — 0~. If the answer were
positive, then we would conclude from general theorems that such a surface evolves later into the horizon of a black hole
whose mass is bounded from below by the area of the initial surface. Unfortunately, the opposite statement cannot be
claimed to be true: even if one can prove that at t = 0 there is no MTCS, one cannot exclude that one such surface is
formed at some later time ¢ > 0. A fortiori, only a lower limit on the mass of the future black hole (and therefore an
upper limit on the total energy reaching future null infinity) can be given.

In his work [184], Penrose found that, at b = 0, a MTCS can be easily constructed and, from the value of its area, he
concluded that at least a fraction % of the total incoming energy goes into forming a black hole. Eardley and Giddings,

instead, managed to construct a MTCS (in D = 4) for b < y¢cG+/s with ygg ~ 1.61, meaning that the critical ratio for
collapse (Gfﬁ)cr < 1/ygc =~ 0.62.

An interesting generalization [186] (particularly in view of a collision of extended objects like strings) is the one in
which one considers the collision on two null beams of massless particles (moving again in opposite directions along the
z-axis). As physically expected, one finds that the transverse size of the beam “adds up” to the impact parameter (defined

as the transverse distance of the two beam'’s center of mass). One starts from a simple generalization of (2.57):
o f9%x,)=—-16x6px,), i=1,2, (2.61)

where p{®(x, ) is the energy density per unit transverse area of each beam. Since the solution (2.58) of (2.57) is nothing
but the Green function of the problem, the general solution of (2.61) is also known.

At this point one can check whether a MTCS is formed already at t = 0. Different physical situations were discussed
in [186]. Let us just mention two relatively simple cases:

¢ Axisymmetric collision on two non-homogeneous axisymmetric beams. This generalizes Penrose’s construction
to extended objects. In this case p)(x, ) depends just on the radial distance r from the symmetry axis. Consider the
energy in each beam below some given r:

zn,d/z

T r(d/2)

One finds that a MTCS can be constructed whenever one can find an r. such that:

2p P73 < 87 Gp/EN(r )E@ (1) (2.63)

where 1, plays the role of an effective impact parameter. In the special case of two identical homogeneous disks of
radius L (2.63) simply gives £2p_,LP~3 < 4nGp./s (L < 2G/sin D = 4).

:
E(r) = 25 f P 2, . (262)
0

13 5 (marginally) closed trapped surface is, loosely speaking, a closed surface whose future directed light cone is (marginally) inside the surface
itself. More precisely, it may be defined as a (D — 2)-dimensional closed surface whose outer normals have zero “convergence” (or “expansion”).
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e Collision of two homogeneous beams at b % 0. Considering for simplicity the case of D = 4 one finds that a MTCS
can be constructed at t = 0 provided:

G/s>2Land b < Gy/s — 2L. (2.64)

Comparing this to the point particle criterion of Ref. [185], we see that the role of b is now played by bes =
b + 2L suggesting that no black hole is formed if the total energy is such that G4/s < 2L, i.e. that the associated
Schwarzschild radius is smaller than the sizes of the two beams.

Many other interesting issues belong to this problematic. One is the nature of the “phase transition” between the
collapse and “dispersive” regime, see e.g. [187]. Is it first order, i.e. with the mass of the black hole having a lower bound
as soon as % > (%)Cr, or second order, in which case we may talk about the critical exponent & appearing in mgy ~ (b, —b)*
for b — b ? This question is related to one raised recently by Don Page [188] of whether at b = b the fraction of initial
energy being radiated in a massive point-particle collision approaches 1 in the limit of infinite Lorentz boost. These topics
being somewhat outside the scope of this report, we refer the interested reader to the literature.

3. Leading eikonal for generic gravitational 2-body scattering

In the introductory Section 2 we discussed how, in the massless case, the leading eikonal is obtained from the Fourier
transform to impact parameter space of the tree diagram with one graviton exchange in the Regge limit where s > |t|. In
this section we want to extend this result to the massive case in several gravitational theories. We start from Einstein’s GR
coupled to massive matter fields, then consider extended theories of gravity with extra massless fields (such as the dilaton)
or with higher derivative couplings and finally discuss the case of string theory. We focus on the tree-level approximation
and on the limit where the momentum exchanged is much smaller than both the center of mass energy and the masses,
since these contributions determine the leading eikonal. For minimally coupled massive scalars in GR the exponentiation
of the leading eikonal works exactly as in the massless case discussed in Section 2.1 (see [36,101]). Here we assume
that the leading eikonal exponentiates for all gravitational theories considered in this section and then discuss how to
generalize the analysis of Section 2.2 and extract the classical physics observables of interest. We will postpone to the
next sections the study of the one and two loop amplitudes relevant to eikonal exponentiation: they will serve as a check
of the assumption taken here and provide new information about the subleading terms in the eikonal expansion.

3.1. Field theory at tree-level

3.1.1. Minimally coupled massive scalars
We consider here pure D-dimensional GR minimally coupled to two scalar fields with masses m; and m;. This is a
simple generalization of the equal-mass setup analyzed in [101]. The action reads

R 1¢
S = [ d°x/|g| {ng -3 > [dupidupig™ + m?¢?]} . (3.1)
i=1
As discussed in the introduction, the eikonal exponentiation also lends itself to describe the classical interactions between
two Schwarzschild black holes at large distances, so we take the parameters m; and m, to be classically large, e.g. of the
order of ten solar masses. Because of the no-hair theorem, it is natural to use Eq. (3.1) as a starting point, since the mass is
the only feature that is relevant classically. In order to describe other compact objects, such as neutron stars, one needs to
add non-minimal couplings parametrizing tidal deformations or other classical quantities besides the mass, for instance
to describe spin.

To leading order in the conventional Born approximation, the interaction between the scalars ¢; and ¢, is captured by
the diagram with a single graviton exchanged between the two massive lines. By using the Feynman propagator (A.23)
and the vertex (A.28), which generalizes the one in (2.4),

t(p, p') = —ikp [p“p" +p"p" —n*'(p-p' —m})]. (32)
it is straightforward to calculate the contribution of this diagram, which in D dimension reads
1 22 [ 1 2mPm? ot
Ag(s, t) = =Dl _s—m-—m2)P - 24 —(s—m—m?)|. 3.3
o5 ) _t[z( Tmm) - 5 (o mi—m)) (33)
We then focus on the non-analytic terms in the t = —(p; + p4)?> ~ 0 limit which, as in the massless case, will capture

the long range interaction in impact parameter space. In this approximation the amplitude (3.3) is dominated by the pole
located at t = —q° = 0,

2 y(s, m;)

Aols, —q%) = 2«3 7 +0(a*)) (34)
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with

2 D—2 " D-2

where in the final step we give the result in terms of the variable o defined in (1.8). The leading term in (3.4) can be
derived by replacing (3.2) with the effective vertex

1 2mim? 1
yis,m) = ~(s—mj —m3)? — —12 =2mim} (02 ) , (3.5)

) . 1 1
Terr (P, P)) = 2ikpp"p", Pt =P ot P =P+ g, (3.6)

where one introduces an “average momentum” p* as in (1.28), so that p - ¢ = 0, and (3.6) differs from (3.2) by terms

suppressed in the small g limit (thanks to (1.28) and (p-p’ — mg) = %). The result for the massless amplitude is recovered
by considering the ultrarelativistic limit,

S
o — 00, mimpo ~ 5 s (37)

and it is easy to check that, in this limit, (3.4) reproduces (2.9).

Actually the Born approximation is not justified in the setup under analysis and, in the massive case, even the low
velocity limit is outside the tree-level regime of validity. This can be seen by adapting the derivation in Section 2.1
to this new kinematic setup. As before, we take the Fourier transform of (3.4) by keeping the external states on-shell
to rewrite the result in impact parameter space: as shown in Appendix A.3, we can decompose q in the component
q., which is perpendicular to the p;, and the longitudinal components and the latter can be neglected since they are
proportional to g2, see (A.37), and kill the pole in (3.4) yielding to irrelevant analytic terms. Thus we effectively deal with
the (D — 2)-dimensional Fourier transform appearing in the leading term of (A.40)

. d°2q Aols. —q3)
Ao(s, b)zf(zﬂ)p_l2 - T £ elin (3.8)

where E and p are respectively the total energy and the absolute value of the spatial momentum in the center-of-mass
frame (see Eq. (1.33)). Because of the scaling (1.2), Ay is large even at low velocities. Then, as discussed in detail in
Section 4, the 1-loop correction, arising from diagrams where two gravitons are exchanged between the scalar particles,
includes a term involving the convolution of Eq. (3.3) with itself. This yields in impact parameter space a contribution
proportional to Aé which signals a clear breakdown of standard perturbation theory since Ay is large. However we expect
that the eikonal exponentiation resums this class of contributions as in (2.22), so we can identify the leading tree-level
contribution (3.4) in impact parameter space with the 1PM eikonal.

Ag =28 . (3.9)

Then by using Eq. (A.45) to calculate (3.8), we find
L5 2mmGo (0% = 515) I (25%)
0= - .
VoI —1(xbh?)7
In the ultrarelativistic limit (3.7), Eq. (3.10) reduces to (2.23) and we recover the massless case once again. Notice
that in this limit Eq. (2.25) is the leading eikonal for any gravitational field theory in the two derivative approximation.
This universality is a consequence of the Regge limit thanks to the following two properties. First, in the high energy
regime amplitudes are dominated by the exchange of the states with the highest spin: indicating with j the spin of such
particles, their leading contribution to Ag scales as §'. Then, when we are interested in long range effects, we can focus
just on exchanges of massless particles. In gravitational theories the highest spin massless particle is the graviton which
gives rise to a universal'# contribution to Ag scaling as s2. Thus, in the ultrarelativistic regime, the presence of other lower
spin fields is irrelevant for the derivation of the leading eikonal.
Going back to general kinematics, we can proceed as in the massless case and use Eq. (2.31) to compute the contribution
of the leading eikonal to the deflection angle
®y 4Gpmim, (02 — L) I (B2
2psin -2 = 2! ( Lﬁ’j) (%) . (3.11)
2 /62 — 17 2 bP-3
As discussed in detail in the later sections, the subleading eikonal terms will provide further contributions to the physical
deflection angle ® and so, in a PM approach, this result can be trusted up to O(Gp)
4GpE (0% — 5) I (%2
o = AE D‘DZ_Z 5 )+o(G,§), (3.12)
(62 — 1) = bP-3

(3.10)

14 As we will see in Section 3.1.5 the universality of the graviton coupling can be spoiled in presence of higher derivative corrections.
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where we expanded the sin function to leading order and rewrote the momentum p in terms of the center-of-mass energy
E thanks to (1.13). However, also the expression in (3.11) is useful as it contains all the non-linear contribution to the
angle arising from the leading eikonal. For instance it allows to recover the full leading answer in the standard D = 4
Post-Newtonian (PN) limit ;- ~ ve < 1 where!®

1 G
=/J1+v%, —= m]lmz. (3.13)

JpN

One can easily recast the angle (3.11) in terms of the angular momentum by using the relation'® bj = bcos(®/2) = b,
which is obvious from Fig. 5, where by definition the angular momentum equals | = pb;. Then we have

O Gmim; (26% — 1 O, 1
tan -2 — 172 ( ) , 0N _ arctan ( ) . (3.14)
2 ] Vo2 —1 2 JPN Voo

where in the equation on the right we took the leading PN term finding the classic Newtonian result, see [189] and
references therein. In this regime, even if the scattering angle is finite, the momentum transfer in (3.11) is small because
p— 0.

Instead, in the leading PM approximation, we can use by = b + O(G%) obtaining

4GpE (02 — 55) I (52) pP-3

D—2 2 2
— + 0O(Gp) - (3.15)
(2—1s PP
Let us also collect here for later convenience the D = 4 expressions for the 1PM impulse and the deflection angle,
4Gmym; (0% — 1) 5 ~ 4GE(0?-13)
= —= 4+ 0(G%), O=———22 4L OGY). (3.16)
bvo?2 —1 b(o? — 1)

Another interesting limit is to take one mass much larger than the energy of the other, for instance m, > E;. In this
regime, we can see particle 1 as a probe propagating in the gravitational background of the heavy particle 2. So it should
be possible to obtain (3.15) by a classical calculation studying the geodetic motion in the appropriate curved geometry.
This probe limit provides a straightforward but important check on the diagrammatic calculations, in particular when
testing the subleading terms in the eikonal expansion. In this limit the total energy coincides with the rest mass of the
heavy particle (M) while o and p can be written in terms of the energy and the mass of the light probe particle

E
my=My, o—>—, E— MZ4+2ME,, p— JEZ—m>. (3.17)
my

By using (3.17) in (3.4) we have
(D—2)E? —m3

Ag ~ 4k2M? (3.18)
2T (D - 2)(—1)
In this limit the factor of 4Ep in (3.8) reduces to 4M, ”512 - m%, so in impact parameter space we have
- 2GpMy, (D —2)E2 —m? I (%2
260 = Jo(s, b) = —ooMn (D = 20F1 — m; ( 2[,1 : (3.19)
=2 Jp_m ()T
Then, by using again (2.31), we can derive the contribution from §y to the deflection angle
r(%2)(-2)E2 —m? (R\"
o - YT () 2 T <7> Lo, (3.20)
2r (%5) B -my b

where we used (B.2) to introduce the D-dimensional Schwarzschild radius. It is then easy to check that, at linear order
in G, Eq. (3.20) agrees with the result of the classical geodesic calculation (B.14) (since at leading order ] = pb; >~ pb =

JE? —m?b).

3.1.2. Graviton scattering off a massive scalar
Another instructive tree-level result describes the amplitude between two scalar and two gravitons. A direct derivation
from (3.1) requires to evaluate four Feynman diagrams and involves the cumbersome three-graviton vertex. It is possible

15 We follow the conventions of [189].

16 1 Section 6.1 we will present a derivation of this relation based on the standard partial wave decomposition as done in Section 2.2 for the
leading eikonal.
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to obtain a more compact expression by taking the field theory limit of a string amplitude [48]

2 P10 o 1,P B B
oo __ 2ebkaa)(kigy) |:k4k1 Ky pa} [k;{k1 LN n“ﬁ} ’

= —1 321
(9293) kaqy ~ kiqz kaqz  kiq (3:21)

where k; label the momenta of the massive scalars and g; those of the gravitons, see Fig. 6. The factorized form of the
result is a by-product of using the KLT approach [190] at the string theory level. If we focus on the D = 4 case, then it is
possible to rewrite the result in terms of the compact spinor helicity formalism. As usual one can express the massless
momenta in terms of a pair of commuting SU(2) spinors!’

Das = puCT(Z;, = )"a};d ) (322)

where 1 is the complex conjugate of A if one sticks to the standard Lorentzian signature. The two physical helicities of
the gravitons can be written in terms of

a)"d — )"cx @
el =v2 " e =27 (3.23)
7y [Afi]
by using et = (¢1)? and €=~ = (¢7)?, where we defined

(M) = 2o = —dpp’ = —(ud),
(] = dap® = —pPhy = —[uAl.

In (3.23) u and [ are arbitrary spinors and the freedom in their choice reflects just the possibility of performing gauge
transformation. Then one can contract the free indices in (3.21) with two graviton polarizations

(3.24)

. 2ih(kaqz)(k1G2) |: (e3k1)(e2ka) (821<1)(83k4)]
idg = —i—2"m " | epes +
(q293) q2kq q2kq (325)
|:~ . (E3k1)(E2ka) (§2k1)(53k4)]
X | €263 + -+ s
G2k4 q2kq

where the polarizations have been factorized according to €,, = ¢,&, and we rewrote the prefactor in (3.21) in terms
of (3.5). In D = 4, we can use (3.23) and we have ¢* = &*. One can choose explicit expressions for the auxiliary spinors
I, it to simplify the various scalar product: in particular it is convenient to take p, = A3, 3 = A, and similarly i, = A3,
3 = X2, where Qiog = Mighi- By using18

Sij = —ZZ,'ZJ' = (l]) []l] N (326)
for null vectors z;, z;, and introducing the notation
(iwj] = A w,ohk (3.27)
for any (not necessarily null) four-vector w*, we obtain the following results
1 (3k42 1 (2k43
8;](1:—Sz+k4:7< <4], —8;k1:8;1(4:7< <4]
V2 (32) V2 (32)
1 (2k43 1 (3k42
orky = —e5 ky = —— 2kl e ki = —e3ks = L B2l (3.28)
2 [32] V2 321
23
efq=0, efef = % . &fey =0, (3ka2](2kq3] = —(2kok3)k; + (2koka)(2k3ka) .
Then we can rewrite the tree-level amplitude separating the result for the various helicities of the gravitons we find!®
4 23]° mt
AT = 'K,ﬁ[ ]2 — 5 (3.29)
(23)? (s — m7)(u — myq)
4 3|kq|2]*
AT = ik? Blkal2] (3.30)

t(s —m2)u—m?)’

in agreement with Eq. (2.19) and (2.20) of [191]. Notice that the helicity violating amplitude A™+** does not have a %

pole since the ratio % is finite as t — 0. We are interested in terms dominated by the t-pole, which are automatically

17 s usual ol = (1,04 and 69 = (1, —o')* where o' are the Pauli matrices. The SU(2) indices are raised and lower as follows: A, = €qgA”,
2% = €*Pay and similarly 14 = ed"}):);, he = edﬁif‘ with €? = —¢j = 1.

18 e have some unconventional signs since we are using the mostly plus metric and so Tr(c,6,) = —2,,.

19 we take s = —(ki + q2), t = —(ky + ka)?, u = —(ky + q3)2.
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po \Q2 q3 / af

kl k4
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Fig. 6. The kinematics of a two scalar, two graviton amplitude.

leading in the limit (1.74) and so only the helicity preserving structure A1~ survives. We can extract the pole by
taking the approximation (3|k4|2]* ~ (3|ks4|3]* = (s — mf)“, since q; >~ —qs in the limit of small momentum transfer.
Thus the leading contribution to the amplitude with two massive scalars and two gravitons is again captured by (3.4)
with of course m; =0
. 2ik?
ATt ~ —t" y(s, my, my = 0). (3.31)
Moving then to the impact parameter space, we obtain the following eikonal phase describing the scattering of a graviton
off a massive scalar

Gpy(s,m;,my=0) I" (%
21  (@p)E

280 = (3.32)

3.1.3. The effect of the dilaton on the eikonal scattering

In the two previous subsections we considered theories in which the only massless particle is the graviton. In this
subsection and in the next one, we study how the tree-level result (3.4) changes in theories with a richer spectrum of
massless states. We start by considering the case where the massless spectrum, besides the graviton, includes also a
massless scalar focusing in particular on the case of the string theory dilaton. In a QFT setup the dilaton is automatically
included when considering a gravitational theory which is obtained via the double copy approach [192]. This technique
was used in [123,193-200] to derive classical quantities in various setups. Even if we will not make extensive use of this
approach, we sketch briefly the idea in an explicit example, since this has been a popular approach to derive (super)gravity
amplitudes with the presence of extra massless fields like the dilaton.

One starts from a gauge theory with no dynamical gravity — in our example a minimally coupled massive scalar field
in the adjoint representation of the gauge group. We will not need to specify the gauge group as only general properties,
such as the Jacobi identities, are used. The three-point amplitude involving two scalars and a gluon is given by:

iAg) = igf (ks — ks, = 2igf (ks — %)u : (3.33)

where ki, k3 are the momenta of the scalars and q is the one of the gluon. We can use this ingredient to compute the
four-point scalar amplitude with a gluon exchange

(k1 — k3)(kq — k) (k1 — ka)(k3 — kq)

i.A() — ng |:fala3bfa4a2b (k n k3)2 +fa1a2bfﬂgﬂ4b (k n kz)z
1 1
(ky — kq)(ko — k3)]
+ ajasb pazazb 3.34
fOf s 1 ko (3.34)
— ig2 | Fa1a3b a4a2bs —u ajazb a3a4bu -t ayjagh aza3bt —S
= RTR A = ST =1

The basic idea of the double copy is that there exists a color-kinematics duality based on the observation that, in each
term of the expression above, the color factors and the momentum dependent numerators satisfy appropriate Jacobi
identities.”0 Indeed, the color factors obey the standard Jacobi identity:

fa]a3bfa4azb +fa1a2bfa3a4b +fala4bfazasb =0 (3.35)
and corresponding kinematic numerators

fa1a3bfa4a2b <« (k1 —k3)ks —ky)=s—u

falazbfa3a4b (kl _ ’(2)(’(3 _ k4) —u—t (336)

foaabpaaash o (p )k —ks) =t —s

20 gor general amplitudes it is not straightforward to write the result that makes this feature manifest.
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satisfy a “kinematic” Jacobi identity, i.e. their sum vanishes. By following the double copy approach, one starts from (3.34)
and obtains a gravitational amplitude by substituting the color factors with the corresponding momentum-dependent
factors (3.36). This yields

o ko2 [u=sP (=t} (s—t)
on_l(?) [ e s ] ] (3.37)

where we mapped g — «p/2. This result is appropriate to describe the interaction among identical external states
and, for the case of two different scalars considered in (3.3), we can focus just on the first term in (3.37). By using
u=-s—t+ 2m% + 2m§, it is easy to see that even the 1/t part does not match the pure gravity result. The reason
for this is that the gravitational theory obtained by this construction contains extra massless fields, in addition to the
graviton?': a massless antisymmetric tensor and, crucially for us, a dilaton whose coupling to scalars is proportional to
square of the mass.

In summary, the long-range interaction between two massive scalars in a theory containing both gravitons and dilatons
takes the same form as (3.4), but with a different kinematic factor

. 1
yi(s, my) = E(S —mi—m3). (3.38)
Thus the tree amplitude to be used to construct the leading eikonal is
32rm?m2Gpo?
Ao(s, —¢*) = 1q722 +0((g*)) (3.39)

instead of the one in (3.4). Then, by following the usual steps, we obtain the leading eikonal

_2mimyGpo I (%5%)

280 = == (3.40)
Vo2 —1(wh?) 7
It is easy to isolate the contribution due to the dilaton exchanges and
32rm2m3Gp
Ag(s, —q*) = —/—12_ 341
o(s, —q°) D=2 (3.41)
from which we can also read off the dilaton-scalar-scalar coupling,
2kpm?
(3) DI 2
Ay’ = — . 3.42
0 D-2 (3.42)
We can check the interpretation above simply by adding to the initial Lagrangian (3.1) a dilaton ¢
D R 1 LV 2 LV 2 Zoe 2
S= [ ExVIC1) 55 = 5 | dupdueC" + > 0upidu Gt + mievpzgl ) | 1. (3.43)
b i=1

Then it is straightforward that the exchange diagram involving the dilaton yields an extra contribution canceling the final
term in (3.5) and thus reproducing (3.38).

3.1.4. Maximally supersymmetric gravity

We can further enrich the theory including extra fields. An interesting case is that of supergravities whose perturbative
expansion has been studied in great details at high loop order [201-205]. Focusing on the maximal supersymmetric
case, the four point amplitude among massless states is determined by a single scalar function even in a string theory
setup [206]. In the field theory limit we have
K

AO =8nG s
stu

(3.44)
where the kinematic prefactor K can be written as a pair of 4-index tensors K appearing also in the corresponding string
amplitude, see for instance Eq. (7.4.57) of [206] and Section 7.4.2 of the same reference for the explicit expressions of
K (see also [109]). It is convenient to organize the graviton multiplet in terms of on-shell realization of supersymmetry,
see [207] for a realization relevant to D = 4 and [208] for higher dimensional cases. The basic idea is that K encodes a
super-momentum conserving delta function 8('8)(Q) involving the sum of the supercharges of the external states.

In D = 4, all 28 = 256 states of the A’ = 8 supermultiplet can be packaged into the on-shell superfield
o) =h""+ 1+ + 0"’ 0o + - - + '’’’ n®n"n*h (3.45)

21 Notice that the double copy amplitude contains also a contribution linear in t which is absent in (3.3). This signals that the action contains an
extra contact term interaction between the four scalars.
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where »* denotes auxiliary Grassmann variables that saturate the R-symmetry indices A, B, C, . .. (taking values from 1
to 8) of the various fields. For instance, h** denote the positive/negative-helicity gravitons h™, while @apcp collect the
70 scalars present in the theory. In this formalism, one can write a 2 — 2 “super-amplitude”, which concisely encodes
all 2 — 2 scattering amplitudes among any four given states of the supermultiplet, and takes the following very compact
form [167,209]

B4 )

= ) 3.46
= szt @ (3.46)
where the “super-momentum” conserving delta function is given by
184
80%Q) = o [T X nfnf (3.47)

A=1ij=1

The super-amplitude (3.46) should be thought of as a function of four copies of the on-shell superfield (3.45), ®@(#;), with
i=1,2, 3, 4 labeling the states as in Fig. 7, and of course

s=—(p1+p2l, t=—(pr1+psf, u=—(p1+ps’. (3.48)
We consider three possible situations. The first one is given by the choice
Pr=¢2=9¢nu=r1, $3 =1 = @se7s =T . (3.49)

The idea is to focus on a complex scalar T (corresponding for instance to the axio-dilaton of type IIB via dimensional
reduction) and its complex conjugate. In order to extract the contribution due to the corresponding states from the
super-amplitude (3.46), one should take the appropriate derivatives with respect to the auxiliary Grassmann variables
as dictated by the way their fields feature in the superfield (3.45). For our case, since

(3.50)
n=0

8
) - d
351_[8—A, 8EH—A, (3.51)
we need to calculate

AT = 31325354/40‘ . (3.52)
—

The differential operators, which could be also interpreted as Grassmann integrals, only act on §'®(Q) and it is easy to
see that the result is simply

810,330489(Q)| = (12)*(34)*. (3.53)
n=0
In this way, we obtain
2t
AT‘L")‘E!’ — s 3.54
0 stu (3.54)
which is of course symmetric in the exchange 1 <> 2. Similarly, for the choice
P1=¢s=¢ru="1, Gr=¢3 =568 =7, (3.55)
we have
P k2td
ATI‘)TT — _ 3_56
0 stu (3.56)
and for the choice
P=¢3=¢unu=r1, D=1 =@se78 =T, (3.57)
we have
- k2u?
.ATTA)II = . 3.58
0 stu (3.58)

Egs. (3.56), (3.58) can be deduced directly from (3.54) by crossing symmetry in the t and u-channel respectively, although
it is instructive to derive them from the super-amplitude (3.46) by applying the appropriate differential operator,

AT = 810503040 o’ AGTTTT = 910,0304A0 o (3.59)
n= n=
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Fig. 7. Scattering of four states in A/ = 8 supergravity.

Yet another choice is to consider linear combinations of the above states, for instance an axion and a dilaton, as both
in- and out-states,

bredi= T == (3.60)
1 4 N 2 3 V2 .
The corresponding amplitude is given by
1 _ _ _ _
Ag = _Z(al + 01)(02 — 92)(93 — 95)(9a + 34)Ao (3.61)
=
or, expanding the derivatives and recognizing the amplitudes calculated above,
1 . . o
Ag = 5 (Agr—nr _ Aéz—)n’ +A8r—>rr) (362)
and finally
A th oyt
do= 2t (3.63)

2stu

In this way, by construction, the result is s <> u symmetric. This will be useful in Section 6 since the s <> u symmetry
simplifies the analysis of the analytic properties of this amplitudes at higher loops. At tree level, of course (3.63) coincides
with (3.54) up to irrelevant analytic terms as t — 0 that correspond to short-range contributions in b-space.

One can introduce masses for the scalars by means of a Kaluza-Klein compactification. To this end, we can re-interpret
(3.63) as (say) 10-dimensional, and perform a toroidal compactification of 6 spatial dimensions, letting

pqdz(pqL’Oa"'»O’Osml)a pﬁl:(pgﬁo»n-,O,O,_ml),

Py =(,0,...,0,m,0), p¥=(p4,0,...,0,—my,0), (3.64)
in such a way that

0=pYpim =pypri+mi,  0=pypow = psps, +m; (3.65)
and similarly for ps, ps. Likewise, from the 4D perspective,

—2p1-pp=s—-mj—m5, —(p1+ps=t, —2pi-ps=u—mj—mj, (3.66)
and therefore

A= (s —mi —mi)t —t* 4 (u — m} — m))* (3.67)

2(s —m? — m3)t(u — m? — m3)

Calculating the leading eikonal by going to impact-parameter space is now straightforward, and neglecting contributions

that lack the 1/t pole, one finds again the result
2m1szD02F(DT’4)

280 = 53

Vo2 —1(mh?) 7

which we had obtained in (3.40) when discussing the ' = 0 theory emerging from the double copy. Therefore, as far

as the long-range effects captured by the leading eikonal exponentiation are concerned, switching on supergravity is
equivalent to taking into account the additional dilaton exchanges between the two massive particles.2?

(3.68)

22 Iy the approach above, we assumed that the compactification scale is much smaller than the classical length scales relevant to the binary, such
as the impact parameter and the effective size GE of the colliding objects. Thus, long-range effects are captured just by the exchange of states with
zero Kaluza-Klein numbers yielding for instance Eq. (3.68). See [210] for a treatment in which the dynamics of the Kaluza-Klein modes is included
in an eikonal context.
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Following the familiar steps, we can take —p?;ib of (3.68) to obtain the leading deflection angle

o AGE(mb*)o?I(1 — €) o) 4GEc?

9 — _

(62 —1)b p—4 (02 —1)b

Let us conclude by looking again at the probe limit m; < my, in which E @ m; = M and o =~ E,/m,, so that from (3.69)

we find
AGM(mb?)o?I(1 —€) ) 4GMo? )

O = oG*) — ———— + 0(G 3.70

(2 —1)b +ol )D—>4 (02—1)b+ () ( )

in agreement with (B.41) in D = 4 to leading order in G. In fact, show that the 1PM term determines completely the

probe limit of the maximally supersymmetric case in four dimension [211], and the result can be obtained by proceeding
as we did in Section 2.2. Starting from the phase shift determined by (3.68),

+ 0(G?). (3.69)

2m1szcrz

28 = x() = logJ . (371)

02 —
one obtains an equation analogous to (2.54),

® 2mym,Go? 1 2MGo?
tan — = ~

2 Jo2—1] blo2-1)

where we have used that ] = pb and, in the probe limit, p >~ my+/o? — 1, thus recovering (B.41).

(3.72)

3.1.5. Effective field theories beyond GR

All cases discussed so far focus on gravitational theories whose action contains just two-derivative terms. At large
distance this is certainly a reliable approximation, but it is interesting to see how higher derivative corrections can modify
high energy scattering. By following [ 154] we start discussing the case where the standard gravitational action is modified
by quadratic and cubic terms schematically as follows

Sar = %/d’)x IGI [R+ BR* + LR’] | (3.73)
Kp
where [; are the length scales determining when the new higher derivative terms start becoming relevant, which we take
to be parametrically larger than ¢p. From an effective field theory point of view, it may appear strange to assume that
the I; are decoupled from ¢p, but this is quite natural in setups where the modification in (3.73) arise from a classical
microscopic dynamics, as in string theory, or from integrating out non-gravitational degrees of freedom as in [169,175].
In explicit string constructions the scales I; can be written in terms of the string length £, but in this section we will
work within an effective field theory approach and keep them arbitrary just assuming I; > £p. It is interesting to focus
on the corrections in (3.73) because they are the only ones that can modify the on-shell 3-graviton amplitude. Strictly
speaking this amplitude vanishes because the on-shell conditions force the momenta of the external states to be collinear.
However one can either complexify the momenta or work in a signature with two times to define a non-trivial on-shell
3-graviton amplitude. So from (3.73) we have

As =AY + AP + AT (3.74)

where Ago) is the contribution from the Einstein-Hilbert part of the action one and the other two terms are higher
derivative corrections with two and four additional derivatives respectively. The Einstein-Hilbert contribution reads

i) = —2ikp [(162)e391) + cycl] [(182)(E3q1) + eyl ] (375)
where ¢&;,&;, = h;,, is a symmetric tensor representing the polarization of one of the external gravitons and in each
parenthesis one needs to sum over the cyclical permutations. The correction proportional to l% reads

iAG) = 2ikol? {I(e162)es01) + cyell[E1:)E2a5)Esa)] + 2 < 2 (376)

while the one proportional to Iﬁ is

iAS) = 2ikpl} [(£192)(e243 )e3q1)] [(B102)(B2q3)(E3q1)] - (3.77)

Since these on-shell couplings are written in the factorized form following from the KLT or the double copy relations,
one can immediately see that they are obtained by taking the products of the space-time part of the standard 3-gluon
coupling and its higher derivative modification related to a Tr(F?) in the Lagrangian. In the supersymmetric theories the
modification in (3.77) is not allowed and in the maximally supersymmetric case also (3.76) is set to zero and so, in this
case, the 3-point vertex cannot be deformed. In the case of pure gravity in D = 4, the modification (3.76) does not
contribute to the eikonal since it can be derived by the Gauss-Bonnet term which is a total derivative in four dimension.
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In the following we will keep D generic and we will not decouple the dilaton and the antisymmetric tensor arising from
the double copy construction.

We can now discuss how the higher derivative corrections modify the tree-level amplitude (3.21) describing scattering
of a graviton off a massive scalar. We focus in particular on the high-energy limit and look for terms that scale at least as
the factor of y(s, m;, my, = 0) present in the Einstein-Hilbert case (3.31). In order to do this we can simply combine, by
using a de Donder propagator (A.23), an on-shell 3-graviton vertex obtained from (3.74) and the vertex with the external
scalars (A.25). As a warming up exercise one can derive (3.31) from (3.75): by combining the scalar vertex with the de
Donder propagator, one obtains

2

which can be saturated with the variation of (3.75) with respect to €1 ,, (identifying that graviton as the particle exchanged
in the t-channel). Only the term proportional to g;€1q; can produce a leading contribution in the energy since, when
saturated with (3.78), it yields the scalar product 2(k1q;)(ksq2) >~ —v(s, mf, m, = 0) where in the last step we neglected
a term proportional to t. This reproduces exactly the result (3.31). One can follow the same approach by using (3.76)
which provides the corrections proportional to I% to the scattering discussed above. Again in this effective vertex there
is a term proportional to g;e1q, which for the same reasons above provides a contribution that scales with the energy
exactly in the same way as the term coming from the standard Einstein-Hilbert 3-graviton vertex. The main qualitative
difference that we find in this case is that the polarization of the external graviton appear dotted with the exchange
momentum ¢

Kp 2m2
AE:IE = —q—z (klukm; + klvk4u — Ny f) s (378)

. 2ik2

iAg ~ TtD y(s, my, my = 0)(25) [ger€2q]. (3.79)
By following similar steps, one can obtain the correction related to I4

. 2i/<§ 4

iAo ~ —— " y(s. my, ma = 0)(2L,) [(ge19)(qe2q)] - (3.80)

Seen as contributions to a tree-level amplitude the results in (3.79) and (3.80) do not have anything unusual, but since
they behave as (3.31) in the limit (1.74) we expect them to exponentiate and contribute to leading classical eikonal. As
before we rewrite the result in impact parameter space:

Gpy(s, my,my =0) I' (52 212

260 = oY ; j (2 ZD;l €1j€2ij + (D — 4)?22611']'1711162#”' —
o4 — (h?)2 . (381)

(D—2)D - 4);161ih€2jk171jhk] ,

where we labeled the physical polarizations with the indices i, j, . .. of the transverse space and
bib;
Mj= & —(D—2) ,;zj ,
D
ijnk = 8By + Snidik + Sixdin — 0 ( brbidij + bnbjdik (3.82)
bib;bnb
+ bibwdjk + bjbiSin + bibikdjn + bibjép — (D + 2)% ) .

Of course the first term in (3.81) is just the Einstein-Hilbert contribution of Eq. (3.32) which is identical for all the
polarizations of the graviton. Notice, on the contrary, that the corrections related to I, and I, are not universal and depend
on whether the polarizations involved have a trivial projection (or not) along the direction b of the impact parameter. The
main novelty of the eikonal (3.81) with respect to the cases discussed so far is that it acts non-trivially in the space of the
polarizations of the incident massless particles. Thus, instead of being a phase it becomes an operator mixing different
helicities of the graviton, the dilaton and the antisymmetric tensor. As discussed in Section 4.2.4 this is the origin of
causality violating contributions in the eikonal scattering for these modified theories when the impact parameter becomes
of the order of I, 4 [154].

3.1.6. Including classical spin

In this subsection we generalize the calculation of the leading eikonal phase to the case in which the massive particles
also have a “classical spin”, i.e. an intrinsic angular momentum as opposed to the one associated to their orbital motion.
At the level of solutions of Einstein’s equations, introducing spin corresponds to going from the Schwarzschild solution,
characterized by its mass, to the Kerr solution describing a black hole with both a mass m and spin J,, provided the
inequality J, < Gm? is satisfied (with the equality sign corresponding to the “extremal” case). Both the Schwarzschild and
Kerr solutions involve the full non-linear structure of GR.
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One can, however, construct a linearized version of the Kerr black hole by keeping in the GR Lagrangian only the
kinetic term of the gravitational field and a term that describes its interaction with the energy-momentum tensor of the
spinning matter. Then, from it, one can extract the three-point amplitude involving two massive particles with spin and
a graviton [59,60,63] (the round parenthesis indicates symmetrization without additional factors, A“B?) = A“B# + A#B*):

™(p, p', k; a) = kppexplie” papa®k?)p’ (3.83)

where all three momenta entering the vertex are regarded as outgoing, and can take complex values in order to obey
both momentum conservation and the mass shell relations,

1 _ -
pu +p//t + kKt = 0, 5 (p/u _pu) — pu , pz — _m2 — p/z , kz —0= p- k. (3.84)

The effective vertex (3.83) involves the spin vector a* of the massive object. This is related to the spin tensor S*¥ through
the following relations,?3

1 _ _
a’ = —5 " P DS, ,  SM =€""p,a, (3.85)
and satisfies in particular
a-p=0, Jo=ma, (3.86)

where J, is the magnitude of the spin angular momentum, as can be seen by going to the rest frame. Of course, in the
a; — 0 limit, Eq. (3.83) reduces to the non-spinning effective vertex (3.6).

Using the above properties as well as the identities involving €, ,, collected for convenience in Appendix C, one can
show that

€ up@kPe" s a’ld pP = —(a-ky’8", p’ . (3.87)
As a result, the matrix exponential in (3.83) can be rewritten in the more explicit form
i’ aib _ v .sinh(a - k) | o _
e rap K 5o — |:cosh(a -k)8”, + 176 papl kP | p* | (3.88)

and the vertex reads

- sinh(a - k) ,_ _ _ _
™ (p,p, k; a) = ik [Cosh(a -k)2p*p" + ’# ("€ 0" KD + 5" oK) ] ' (589
We note that the trace of this vertex only comes from the cosh part,
N (p, ', k; @) = 2ikp* cosh(a - k). (3.90)

We can now sew together two copies of the on-shell vertex (3.89), describing each the motion of a distinct particle
labeled by 1 and 2, with the de Donder propagator (A.23), obtaining the following 2 — 2 amplitude for the scattering of
two massive spinning objects,

iAo = T™(p1, Pa, —q; @1)Gpv, po (@) (P2, P3, G; @2) . (3.91)

Here of course ¢ is not zero, unlike for k* in (3.83). Therefore, the expression (3.91) is only accurate up to contact terms,
i.e. contributions whose residue at g*> — 0 vanishes, which only contribute to short-range effects. Vice-versa, the relations

p12:9q=0, p1-a1 =0, pr-ax=0 (3.92)

still hold and we may now consider real kinematics. Writing explicitly (3.91) we get
K©? oy 0y aneey o g SinN(aiq)
Ap = ra |:C05h((11Q)p’fP1 - E(GMyaﬂp1 +e yaﬁplf)P]faﬂﬂT] (3.93)
pey Y o =pam sinh(a,q)
X (277;4;)77\10 - nll,unpn) I:COSh(ﬂz(I)ngz + E(epxéﬂpz +€ Aénpg)p%aganzz .

The term with cosh(qa;) cosh(ga;) can be easily computed and one gets

2% 5 50

—zmlmz(Za — 1) cosh(qay) cosh(qa,), (3.94)

q

23 19 leading order in k*, we may disregard the difference between p*, p* and —p’*.
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For the computation of the term with sinh(qa;) sinh(ga,) we can take advantage of the fact that only the first term of the
de Donder propagator contributes (the second term vanishes according to the observation before (3.90)) and one gets:
2«2 sinh(a;q) sinh(a,q)
@  qa qa;

x (—(emﬂﬁ?ﬁ% a§q° )€ 35, P1P5050") + (pmz)e"yaﬂfﬁaﬁ‘q"’epmﬁéaiq") (3.95)
The second term in the big round parenthesis can be computed using the relation

€’ upD7 070" €prsnP503q" = (D1 - P2)ar - q)(az - Q)+ (a1 - P2 G2 - Py — P1 - P20y - 42) @° (3.96)
that can be obtained from the formulas in Appendix C, while for the first term we need the following relation

— (€uvapPy D505 G € uapD' P35 0" ) = [(B1 - P2)* — P1P3] (a1 - qa2 - g — a1 - 02G°) + P1 - Pty - P22 - P1q° (3.97)

Actually any term proportional to ¢® in (3.96) and (3.97) can be neglected because it will give an analytic piece. This
means that the term with sinh(qa;) sinh(qa;) is equal to

2 2
%mﬁmg(zcﬂ — 1)sinh(qa; ) sinh(qa,). (3.98)

Finally, the two mixed terms can be computed similarly, and one gets the following final result

2k2m2m?
0= Kilzza [a(l + v?)cosh(a - q)
q - (3.99)
w B sinh(a; - q)

sinh(a; -
— 2i€0pV) V) <a2q —————= cosh(a; - q) + a‘i‘qﬂM
a - q a

cosh(a, - q)) ]
where the term in the first line comes from the sum of the terms in (3.94) and (3.98) and the identity o%(14+v?) = 202 —1.
In the previous equation we used

P~ mpl, Py~ myvy, 0= —v1- 0y (3.100)

and introduced

a* =df +d, a:ﬁ. (3.101)
In the center of mass,

py ~(Ei.p), Py =(E,—P), ¢ =(0,q), (3.102)
letting

p=(0,0,p), G=(q.0)=(q".¢.0), (3.103)
we have

€uapP; P3a70° = —mimpov(p x 1) - 4, (3.104)
so that (3.99) can be rewritten as follows

Ag = Mrrj% [ (1+ v?)cosh(a - q)

+2iv ((;3 X 3) - 00829 ocar @)+ (B x @) -7 S D) ochia, - q)) ] . o
a-q a -

Comparing (3.97) and (3.104), we see that

(@197 =aiq” — (b x d1)-q). (3.106)
We note that taking a square root of (3.106) and setting g = 0, one can effectively replace

a;-q— Fi(p x d;)-q (3.107)

in (3.99) at the price of short-range corrections (similarly for a,). One can check this in the m, = 0 case [75] by writing
2 = (p,+p3)? in terms of the spinor formalism as in (3.26). Then one can extract the leading term for small q by sending
either (23) or [23] to zero. This choice is related to the potential sign ambiguity introduced by the square root (3.107),
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see [75] for a discussion of this point. However this sign is immaterial in (3.105) and the terms in the second line of that
equation recombine via sinh « cosh 8 + sinh 8 cosh« = sinh(« + 8), leading to

2l mem2e? o o
.= ";722"[(1 + v?) cosh(i(p x @) - § ) + 2v sinh(i(p x @) - q)], (3.108)
which can be also recast in the compact form
2m2m2s2 L L
Ag = % Z(l + nu)encd c=pxa. (3.109)
n==%1

Starting from (3.109), and going to impact-parameter space in the usual way,

~ szlmzd dZ—Zeq ei(E‘H)E)'a
200 =g = ———— 1 e, 3.110
0 0 4v Z (1+70) Qrp-2 @ ( )
n==1
and, using (A.45), we obtain the leading eikonal phase including classical spin,
2mim 1 I'(—e
250:'6417204 — Z(1+nu)2%. (3.111)
voom T oh (Ib+nc|")
We remark that ¢ is orthogonal to p by its definition (3.109). The impulse is therefore given by
. 028 2mimyo 1 b+ nt
—Q=- = S (P (3.112)
db VoM TR |b+nc |

We see that the entire spin dependence is encoded in the shift b— b+ ¢, which is reminiscent of the Newman-Janis
shift [212], relating Kerr to Schwarzschild black holes.

These results are valid for generic spin orientations (see Fig. 8). Let us now consider the case in which both spins are
parallel to the angular momentum in the center of mass frame as in Fig. 8(a). That is, we align the impact parameter by
letting

b* = (0, —b,0,0), (3.113)
so that L = b x p = (0, pb, 0), then
al.z = (Ov a],27 O)s a],z >0 ) E = (_aa Os O) ) (3'114)
as summarized in Fig. 8(a). In this case, (3.111) reduces to
K2mymyo 1+02 /1 2v b+a
28 = - ~ + log(b* — @ - 1lo O(e), 3.115
0 5% [ o <E + log( )+y> o gb_a] + O(¢) ( )

and the impulse is given by

sz]mzo' 1 (] +U2)— Z%a
v 4rh _a
b2

br
—Q“=Q?, Q= (3.116)
which agrees with Eq. (82) of Ref. [59]. The previous result corresponds to the case where the two spins are parallel to
the orbital angular momentum (see (3.114) and the equation for L after (3.113)). If we had instead taken them to be
anti-parallel, we would have obtained a plus sign in the last term in the numerator of (3.116). This implies that the sign
in the last term in the numerator of (3.116) is such that for parallel (antiparallel) orbital angular momentum and spin the
deflection angle decreases (increases) in agreement with expectations [213].

We remark that, in view of the bound on the spin, a < Gm, and of the PM limit Gm < b, the parameter a/b is always
very small. For this reason, the final results (3.112), (3.116) should be thought of only as a convenient way to package
their power series around a/b = 0.

3.2, String theory

Because of the presence of a massless spin-two state in its spectrum, string theory naturally contains gravity and, at
sufficiently low energies (large distances), it reduces to an effective gravitational field theory. It is therefore natural to
study the gravitational 2-body scattering in a string theory framework.2* The focus of this section is to derive the leading
eikonal in a truly stringy regime, i.e. when an effective field theory description is not reliable and the results obtained in

24 Although the large distance physics discussed in this report appears to be insensitive to the ultraviolet completion of the theory, it is also
desirable to work in a framework in which such a completion is explicitly implemented.
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(a) Scattering with aligned spins. (b) Scattering with generic spin orientations.

Fig. 8. Scattering of spinning objects in the center-of-mass frame.

the previous subsections cannot be used. Particular emphasis is given to the new phenomena arising in a string context
which are related to the existence of Regge trajectories and to the extended nature of the fundamental objects. This
analysis was first performed in [8,10] focusing on the string theory version of the high-energy massless scattering?®
discussed in Section 2. Here we start from the slightly simpler fixed-target setup where a light string scatters off a stack
of Dp-branes [22]. Then we will summarize the results obtained in the string—string collision case in Section 3.2.6.

Conceptually, we follow exactly the same approach discussed in the field theory context: we use scattering amplitudes
to derive the dynamical information relevant for the leading eikonal and then, as a second step, show how to interpret
the result as the motion of a probe in a curved background (in the spirit of Section 2.3). In the main text we focus mostly
on type II superstring theories, which are free of tachyonic instabilities, and we refer to the original references for the
derivations of several string results that are the starting point of our analysis. In Appendix D we provide some of these
derivations in the context of bosonic string theory where it is possible to focus on the key features by using a simpler
formalism. It turns out that the tachyonic instabilities do not play an important role in the definition of the string eikonal,
since as we shall see they do not contribute to long-range effects, which instead arise from the expansion of the leading
Regge trajectory around t = 0. Thus bosonic string theory provides the perfect arena both for developing the technical
analysis and for discussing some interesting features of non-supersymmetric setups (see for instance Section 3.2.5). In
order to make the comparison between supersymmetric and bosonic string theories easier we indicate the number of
spacetime dimensions with d: of course we have d = 10 for type II theories or d = 26 for the bosonic theory, but several
results at high energies take the same functional form if the spacetime dimension is formally indicated with d (while D
will denote the number of noncompact dimensions).

3.2.1. String-brane scattering at tree level

We consider the scattering of a massless closed string off a stack of N coincident Dp-branes in type II theories where
some space-like directions can be compactified on circles. While we will stick to this simple setup, it should be possible
to extend this analysis to more complicated configurations with orbifold compactifications and more general boundary
conditions [214]. The leading contribution is captured by a worldsheet with the topology of the disk and two punctures
in its interior (see Figs. 9 and 10). The boundary of the disk lies on one of the Dp-branes and the punctures describe
the ingoing/outgoing closed string that, for sake of simplicity, we take to be a massless NS-NS state. We focus on the
case p < 6 so that the gravitational backreaction of the Dp-branes decays far away (see Section 4.2.3 for a discussion
of this viewpoint). The leading tree-level contribution to this 1 — 1 scattering takes the usual form of a ratio of
I'-functions [215-217]

g2 !
«gNT, (-« ES)F(_%t) _ K(pi, &)
—T’C(Pi,ﬂ') T @0 = (F22
r(1—a’E2—%t)  («E2)

where our string conventions on the gravitational coupling «; and the D-brane tensions T, are summarized in
Appendix D.1.3. The closed string momentum is not conserved in the transverse directions 4 = p+1,...,d — 1 and
p1+ p2 = q is the momentum transferred to the Dp-branes with t = —g?. Momentum is conserved along the Dp-branes,
in the directions ©« = 0, 1, ..., p, so we introduce Es2 = —(pi)ﬁ and we will be interested in the high-energy eikonal regime
corresponding to the limit E2 > |t|. The result (3.117) is closely related to the tree-level amplitude for four open strings,
as is the case for general mixed open/closed string amplitudes, see [218] for a detailed discussion at tree-level. Then the
kinematic factor K is the same one discussed for supergravity in Section 3.1.4 and the closed string polarizations (€;),.
should be thought as pairs of open string polarizations (&;),,, as done for scalar-graviton scattering in Section 3.1.2. The

Ao(pi, €) = Ao , (3.117)

25 As we will see, this high-energy limit is dominated by the leading Regge trajectory of the graviton, while subleading Regge trajectories, such
as the one of the dilaton, become irrelevant.
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Fig. 9. Scattering of a massless string off a Dp-brane. The blue circles represent punctures associated to the incoming and outgoing closed string
and the green disk rests on the Dp-brane. The thin red line represents a heavy open string produced in the s-channel (Fig. 10(b) below), while the
thick black line represents a closed string exchanged in the t-channel (Fig. 10(a) below).

. S5 ) a

@
(a) The closed-string channel. (b) The open-string channel.

Fig. 10. Two degeneration limits of Fig. 9. The blue dots represent punctures associated to the incoming and outgoing string states, while the
boundary of the green disk lies on the Dp-branes. The picture on the left depicts the corner of the worldsheet moduli space relevant in the large
distance regime where the closed strings in gray are those of the leading Regge trajectory, see Section 3.2.3. The picture on the right depicts the
region capturing the closed/open string transition, see Section 3.2.2.

two I'-functions in the numerator of (3.117) encode different sets of poles: the Gamma that depends on t contains the
poles that lie on the closed string Regge trajectory oosed(t) = 2 + “T/t while the other contain the s-channel poles on the
open string Regge trajectory aopen(Esz) = 1+o/E52. We prefer to indicate the total energy in the center of mass for the string
brane scattering as E; rather than /s as perhaps would be more natural by using the relations with the 4-point open string
amplitude mentioned above. The reason is that one can see this process as the probe limit of a 2 — 2 scattering where
the D-brane stack is the heavy state and we reserve s for the total center-of-mass energy of this scattering, including the
rest energy of the D-branes.
At leading order in the limit E2 3> |t| we have

K(p1, €13 P2, €2) = (@E2 V€1 mel” + -+, (3.118)
where €7 ,, are the polarizations of bosons in the NS-NS, and then, by using
I'(a+b) T

Fato) , as a>»b,c, (3.119)
we get
NT ! 2. CZ/ 11/
Ag =~ ""2 P (—%t) e T (/E2) T (3.120)

The overall normalization is directly related to the classical length scale R, of the geometry describing the gravitational
backreaction of the Dp-branes, see Eq. (D.7). Notice that we wrote explicitly the phase factor of (—a/Esz)aTt arising from

the Stirling approximation (3.119): a simple way to make the appropriate choice of branch cut in the factor of e T s
to make sure that the imaginary part of the amplitude is positive (recalling that t < 0). As usual, this follows from the
relation between this imaginary part and the production rate of new degrees of freedom, in this case open strings attached
to the Dp-branes. We will discuss this interpretation of the phase in Section 3.2.2 showing that there is a quantitative
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link between the imaginary part of (3.120) and the amplitudes describing the transition from the external closed string
and a particular class of open string states.

When the momentum transferred is small in comparison to the string scale «’|t] <« 1, the string amplitude is
dominated by the exchange of massless states and, since we already took the high energy limit, we are just isolating
the graviton propagating between the Dp-branes and the external closed strings

4kgNT, ([ E?

Ag =~ - . 3.121

0 > ( ; ( )

It is possible to make contact with the probe limit discussed at the end of Section 3.1.1 by identifying the Dp-branes with

the heavy particle. We can wrap the extended space-like direction of the Dp-branes on a p-dimensional torus of volume

V. and then they would describe a target of mass My in the noncompact D = (d — p) dimensions (see also the comments
around (D.4))

NT,V, 1V
My = NV, = . S = (3.122)
Kq KD Kd

The string calculation already includes the factor 1/(2My) which is part of the Fourier transform (3.8) used when both
particles in the scattering are dynamical, as in the probe limit we have 4Ep — (2M})(2E;), where we used (3.17) with
E1 — E; and m; — 0 since we are considering a massless probe. So we have to compare (3.121) with (3.18) divided by
2M;, and for m = 0. By using (3.122), we find full agreement. This approximation is reliable when the impact parameter b
of the process is much larger that the string length ¢; = /o', as it follows from the usual relation |q| ~ fi/b connecting
the impact parameter b and the momentum |q| ~ +/—t of a single graviton exchanged between the string probe and the
Dp-branes.

For general values of «’|t| there are two novelties of the string result with respect to the field theory one: the first is
the appearance of a phase and the second is the fact that the simple t-dependence related to the field theory propagator
for the graviton is substituted by a I"-function. Both are string effects: the first related to the existence of an open string
sector supported by the Dp-branes and the second related to the existence of higher-spin massive closed string states. Of
course these features are a consequence of the extended nature of the elementary objects used in this case and appear
generically in all string theories.® Then it is natural to expect that the string eikonal is qualitatively different from the field
theory one when the impact parameter is of the order of the string scale, however it turns out that there are deviations
at distances that are parametrically larger. In order to provide a first example of such phenomenon let us introduce

: dP2q Ao(Es, %)
260 = Ao(E;, b) = / P e
S

where, as mentioned above, we need to include just the factor of 1/(2E;) because the factor of (2M;) is already included
in the amplitude. Following the treatment in [10], we make the massless pole of the string amplitude explicit

NT, 4E2 't
o= S 2 (1 _ ‘L) el (3.124)

where we introduced

(3.123)

Y = B(E) —ima’ .  with I(E)= /o’ In(a’E2) . (3.125)

The appearance of the effective string length I,(E;), with the extra factor of In(v/o’Es), will play an important role and
signals that elementary energetic strings are larger than expected from naive dimensional analysis. When (3.124) is used
n (3.123), we can rewrite the dependence on g of all factors that are analytic as ¢ — 0 in terms of derivatives with
respect to the impact parameter. For instance we have
S v?2 3.126
b= = — 7 (3.126)
Then we find the following integral representation of the leading string eikonal

o di=P=2q Kk4NT,E Y
280=11 —VZ — P ——q¢* +igb
° < - )/ (2m)i—r=2 ¢ X\ TgT T
di-r=2g )
2 +7 )+igb
_KdNTEI"(l—i— V)[ dT/ anpz ~¢(1+)

3 o 5\ [P Yoodb s ;
= kaNTE (14 % 7V —— 1 7 e, (3.127)
4 0 (4m) 2

26 Details change depending on the particular setups: for instance in the case of the string graviton-graviton scattering of Section 3.2.6 the degrees
of freedom responsible for the imaginary part of the tree-level amplitude are closed strings in the s-channel.
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where in the last step we introduced T=p / [4(T+%)]. For real values of Y, the integral yields the incomplete I"-function
y(z, a) with

a L o0 az+ke a
z,a)= dtt* ‘e ' = - 3.128
v(z.a) /0 Z WZ+1).. .+ (3.128)
so by analytical continuation we can write
kaNT,E; a'V? 5\ d=4-p d—4—p b?
289 = 1 b 2 Y=, 3.129
0 o +— (mb*)” 14 5 Y ( )

also when Y is given by (3.125). As usual, we expect that this result exponentiates after including the leading contributions
of worldsheet diagrams with h+ 1 boundaries on the Dp-branes. This is based on the same counting used in the QFT case:
by using (D.7) we see that the first factor in (3.129) is proportional to the classical scale R P73 50 by dimensional analysis
8o scales as (R,/b) ¥¥=P=3E;b/h and is a large quantity in the classical limit. In Section 4.2 we w111 provide an explicit check
of this exponentiation at the string level, focusing just on a particular regime since an exhaustive analysis is not yet
available in the literature. Here we assume the eikonal exponentiation and discuss the behavior of (3.129) at large and
small distances with respect to the effective string scale introduced in (3.125). In the large distance regime b > I(Es) we
can use

2 2
y ( , %) ~TI(z)— e‘T (ﬁ/) . (3.130)

To leading order, the above expression does not depend on the impact parameter and yields a real contribution to §p in
Eq. (3.129). In the large distance limit we can neglect the overall I"-function in (3.129) as it yields corrections suppressed
by o' /b?,

250 ~

d—p—4 d—p—3 . , d—p-3 b2
VaE I ()R, 4 mhs T ( i ) e BlE) (3.131)
2 (923) bt oo (9222) | In(eE2) \ (Es)

where we wrote the leading real and imaginary terms and used (D.7). This is obtained by expanding the y-function around
the first term of the following equation

b? b? .7 b?

— = + 1 k]

Y  B(E) In(o’E2) 2(E)
since the second one is suppressed by 1/ ln(a’Esz) at high energy. Then the expansion of the y-function is obtained from
the integral expression in (3.128)

(3.132)

b2

- d—4-p
5 5 e B (_b
<d—4—p b*\ _ (d—4-p b ) (ls(Es)) 3.133)
v 2 v )7 2 BE)) T e ' 3

The real part of (3.131) can also be written as 2GpMyEsI" (252) (/7b)~°~*) with the identifications 3 = 87 Gp, D = d—p
and (3.122). This reproduces the QFT result in Eq. (3.19) for m; = 0, as expected since in this regime the field theory setup
of Section 3.1.1 is a good effective description. The exponentially suppressed contributions are relevant for the imaginary
part and can be derived directly from the amplitudes (3.120) as done in (3.146). Taking _FE of the real part of (3.130),
one finds the deflection angle (B.28) obtained in Appendix B.2 by solving the geodesic equatlon

In the opposite regime, where the impact parameter is small with respect to the effective string length b < I,(E;), we

can keep just the first term in the expansion (3.128) obtaining

d—4-p
kgNT,Es (mY)™ 2 b? 1
280 ~ 1+0(—, —— . 3.134
0 47 a_;;_p + Y’ In(a’E2) ( )

It is interesting to consider the high-energy stringy regime where b?> < |Y|, which is possible because of the In(a’E2)
enhancement in (3.125). Then, the I"-function in (3.134) can be approximated to 1 (since the shift proportional to o’V?>
yields corrections suppressed by «’/Y) and the leading contribution to 2§, takes a simple b-independent form. Notice,
however, that this result is not real: by using (3.125) and expanding the factor Y in the regime va’ ~ b < I(Es), one
can see that the leading imaginary contribution takes the same form as in (3.131) without the exponential factor which
is negligible in this regime

Fid ( R, )dp3 Vra'Eg
2r (£2=2) \K(E) In(/’E2)

Because of the presence of this imaginary part the elastic partial wave unitarity discussed in Section 1.3 is violated. This
is not surprising since, when the probe gets close to the Dp-branes, it can excite the open strings degrees of freedom, i.e.

Im(28,) =~ (3.135)
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the closed string can “touch” the target and make a transition to an open string whose endpoints are anchored to one of
the Dp-branes. The less obvious aspect of this phenomenon is that it starts when b ~ I(Es) rather than simply when the
impact parameter is of the order of the string length. In order to restore unitarity, one would need to include explicitly
the open string degrees of freedom and promote 2§, to an operator that can describe a closed/open string transition as
discussed in Section 3.2.2.

3.2.2. The closed/open string transition
Let us discuss in some more detail the imaginary part of (3.120)

ot
NT o 't 't NT, (@'Ej)'* 4

lm(Ao) =~ Kdzip(OI,E;)H—Tt sin (-T[%) r <—OZT> = JTKdz u ﬁ ) (3136)
o

where in the final step we used
b4

r'z)yr(1—z)= — . (3.137)
sin(rz)
A similar formula holds also for the imaginary part of the bosonic string amplitude (D.33)
NT, O{’EZ 1+aT/[
m(Ag) ~ 7 8 p () (3.138)

2 rE+g)
with & = 2, instead of £ = 1 as in (3.136).

This imaginary part is clearly a string effect since it vanishes in the o’ — 0 limit and we will now show that it is due to
the propagation of new degrees of freedom in the s-channel which in our setup are open strings representing excitations
of the target Dp-branes. Let us illustrate this by starting from the full amplitude (3.117) (or (D.26) in the bosonic case).
For simplicity in the superstring case (3.117) we choose the external states to be a Kalb-Ramond field with polarizations
along the spacelike directions of the D-brane worldvolume: then the factor K(p;, €;) takes the form given in the square
parenthesis of (3.140b) [219]. However, as expected, only the leading term in Es will be relevant for the final result, so
one can also focus directly in Ag in (3.117). By using the relation

o0

rkx) -1 1
m—gmm’ (3.139)

it is possible to rewrite the string amplitudes mentioned above as a series of the s-channel poles

a't
= KdNTp 1F<2+*+“> 1
Z , (3.140a)
2+“) —o’'E24+n—1
P )
NT 't 1 1
AP = B0 (B2 4 (a'B2) (2 § . , (3.140b)
2 4 ~nlr(1+ oty —o'E2 +n

where we used again (3.137). The amplitude in the first line refers to bosonic string theory where the probe particle
is a tachyon, while the second line refers to the superstring case with the Kalb-Ramond state mentioned above. The
square parenthesis in superstring case follows from the prefactor in (3.117) as one can see with a calculation similar to
the one discussed for supergravity in Section 3.1.4. The poles in a’52 correspond to open strings of mass M2 =n/a’ (or
M? = (n — 1)/’ in the bosonic case) propagating on the disk and the residue is a polynomial in t of degree n which is
the maximum spin for the states of mass M,. While the result in (3.140) seems to be real, there is actually an imaginary
part which is hidden in the ie prescription which is not written explicitly and should be reinstated. This can be done as
follows

1 1
—
I R T

1 : 2 2

where the first term in the last step indicates the Cauchy Principal Value and the second one is the imaginary contribution
due to ie Feynman'’s prescription. Notice that this fixes the sign of the imaginary part of (3.141) providing a first principle
justification for the prescription discussed after (3.120). Then we can write the imaginary part of the amplitude in a unified
way for the bosonic and the superstring case

1 F(E‘F%tﬁ-n)
Fn+E-1 rE+2)

where we used the delta functlon to simplify the square parenthesis in the second equation of (3.140b). Because of
perturbative unitarity, each term in the sum represents the modulus square of a 2-point amplitude describing a closed

21m(Ag) = migNT, Z S(—a'E2+n—(&—1)), (3.142)
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string transforming into a linear combination of open strings at level n. Since we are interested in the limit o’E2 > 1, we

can approximate the sum as an integral over the continuous variable x = a/”Ez
S

o 00

ZS(—a/E52+n—($—l))—>/ dx8(—1+x) (3.143)
n=0 0

and rewrite the ratio of the n-dependent I"-functions by using the limit (3.119) obtaining

et
kaNT, («/E2)' "4
2 rE+g)
in agreement with (3.138).

Exactly as in the field theory case, one can extract the long-range description of this string scattering amplitude by
taking its Fourier transform to impact parameter space (3.123). Starting from the imaginary part, we can extract the

leading large distance behavior by approximating I (S + "‘%) ~ 1 and then, since t = —q?, the Fourier transform
translates into a Gaussian integral

Im(Ap) =~ 7 (3.144)

b
d*=27Pq Im Ao(Es, ¢*) ib k4NT, o'Eje @ n@ED)
— > q ~ P s

Im(280) = / omy 3 e = — - (3.145)

s (o' In(e’'E2)) 2

Then the standard eikonal %% is not a phase as it includes a real factor e~'™%% with
d—3—p b2
b Vro'E R -
Im(260) ~ ———— > ( . ) e EE (3.146)
2I (=) /In(«’E2) \ Is(E)

where we used (D.7). This result is consistent with the one obtained in (3.135) from (3.134).

It is interesting to notice that the & dependence drops out in (3.146), so the stringy imaginary part of the tree-level
eikonal takes the same form both in the superstring and in the bosonic case. Clearly supersymmetry does not play a
crucial role in the closed/open string transition at high energies. Thus for the rest of this subsection we can focus on the
slightly easier setup of bosonic string theory without losing any physically interesting qualitative feature. Our aim is to
provide a characterization of the open strings produced when the probe is captured by the Dp-branes. Since the incident
closed string probe has zero space-like momentum along the Dp-brane worldvolume, the open strings responsible for the
imaginary part (3.146) will be “static” and have just a non-zero energy component o/ES2 =n, — 1, where n, indicates the
level of the open string produced. So one should be able to retrieve (3.146) from the “square” of the operator V describing
the tree level transition between a generic closed string V. and a generic open string Vo.

To be more specific, by following [220], we introduce the open-closed string vertex V that, when saturated with a
particular open string state (V,| on the left and a particular closed string state |V.V,) on the right, provides their coupling

N _ NT, _
(VolV|(VeVe )p)) = 4/ K‘;a,” (Ve(p)Ve(p)Vo). (3.147)

where p is the momentum of the closed state which is described as a ket-vector |V.V,) on the left hand side to stress that
it contains a holomorphic and an antiholomorphic part. In formulae we expect

Im(Ag) = e (Ve Ve Xp2)IV T VI(VeVe)(pa)) - (3.148)

The explicit form of V was first discussed in [221,222] (in the case of all Neumann boundary conditions) and can also
be derived from the overlap of generic Del Giudice, Di Vecchia, Fubini (DDF) states [223] by following [224]. This is the
same formalism that we will use in Section 3.2.4 to describe the closed string transitions that are relevant for the tidal
excitations. We refer to the literature for the derivation (see [220] and references therein) and here it suffices to say
that the operator describing the closed/open transition takes the form V ~ exp[a;Nyd;], where the operators a indicate
the light-cone creation (for the open string) or annihilation (for the closed string) oscillators of level k,I and Ny, are
explicit coefficients known as Neumann coefficients. The index for the level includes also zero where it represents the
energy/momentum of the states. The key idea is to start from the exact expression of the Neumann coefficients and take
the Regge limit to obtain simplified expressions in the gauge where the space-like part of the light-cone vector is along the
direction of momentum of the closed string (this choice will also be used later in the closed string context, see (3.161)).
For instance we can write the transition between an incident closed string tachyon with vanishing transverse momentum
and a generic open string state as follows

N NT, i 1 o]
Uosm0l0) = 552 8 (B2 1= D44, ) o i), (3.149)
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where here the d’s represent the open string oscillators satisfying [a_n, a’;] = n5k+n,08‘7. The delta function enforces the
energy conservation and, as mentioned, means that the level of the open string produced is large n, ~ o/ESZ. In the high
energy regime we have n, > 1 and, as shown in [220], the Neumann coefficient

_kﬂ _I‘ﬁ
N3 = __* a3 a ) 3.150
K ar(k+D\ k ! ( )

where «; () are the dimensionless left (right) moving light-cone momenta for the incident closed string, while a3 is
the momentum of the open string produced. It is convenient to align the light-cone along the direction of motion of the
closed string which we take to be a tachyon. Then we have

= Vo (Es+p) = v/no — 1+ /n, + 3~2f(1+
1
=o' (Es—p)=+/no—1—+/no + ﬁ<1—2n>, (3.151)
a3 = —2vE; = =2 n0—1~—2\/n>0(1—%>,

0

where we used o’'E? = n, — 1 and «'p* = n, + 3 for the tachyon and took the large energy limit. Then one can check that
the Neumann coefficients (3.150) are suppressed as 1/n, in this limit if k, [ are kept fixed. Instead if both k, I scale with
n, the Neumann coefficients stay finite

xX*yY 1
raA+x)ra+y)x+y’
This means that we can describe the final open string state in terms of few oscillators in the light-cone gauge (3.151).
It is difficult to prove analytically (3.148) even in the case q¢ = 0, but, in this case, it is interesting to notice that it is
easy to obtain a convincing numerical check in the light-cone gauge mentioned above: one can expand the exponential
in (3.149) and focus on the contribution that is linear in N3 for each vertex. Then in (3.148) we obtain a contribution

with two sums over the open string levels which at high energy can be approximated with two integrals. By recalling
that in the bosonic case the indices i, j run from 1 to 24, we obtain the following numerical estimate for (3.148)

2x-H 2y+18 NT
/ dx/ X+Y =1 _ 929 “aNTr g2 (3.153)
(1+x)0r2(1+y) 2

which is already very close to the full result (3.144). By going to next order and including in (3.149) the quadratic terms
in the Neumann coefficients coming from the expansion of the exponential, one can check numerically that this new
contribution is subleading and changes the numerical coefficient (3.153) from 0.929 to 0.998 [220]. It is clear that in this
gauge the expansion is converging very quickly so one can describe the open string produced in the transition at t = 0
as a linear combination of states with a pair of @, oscillators plus small corrections with the insertion of few other pairs
(with the levels summing up to n, globally).

We refer again to [220] for the generalization of (3.149) to the case of a non-vanishing transferred momentum g. By
indicating the resulting closed/open vertex as Vg, one can introduce its impact parameter version via the usual Fourier
transform obtaining

dd—p—qu
(27.[ )d—p—z

N ~ =2 k=nx, l=nyy. (3.152)

127

V,]0) = ey, |0y, (3.154)
where \A/qL is similar to (3.149), but contains also linear terms in the exponential with the open string oscillators [220].
In the high energy limit, the final result takes the form of a squeezed coherent state

9y 1 ’ ’ <]+l Z k“—
Vyl0) = Ve e (V4% Db “)

(o’ logo’E2) 2

(3.155)

b2
with the expected exponential factor e B(Es) [220] which explicitly shows that the closed/open string transition is
suppressed unless the impact parameter is smaller than the effective string length [;(E;). It would of course be interesting
to generalize this analysis to the case where two open strings are produced by looking at the cuts of the annulus
contribution to the closed string scattering. In this case there is a richer phase space for the final states and we expect
that the total energy is shared preferably equally among the open strings. However, as far as we know, this analysis has
not been carried out explicitly even in the bosonic case.

3.2.3. The Reggeon vertex formalism
As usual in tree-level string theories, Eq. (3.117) displays an infinite set of equally spaced poles. As discussed in the
previous sections, in the high energy regime E; > |t| the poles in the s-channel merge to form a cut, while the poles in
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t-channel appear explicitly in the result (3.120) and in the eikonal (3.134). In this regime the dominant states exchanged
between the Dp-branes and the scattered string have maximal spin at each mass level, i.e. they should lie along the leading
Regge trajectory of the closed string spectrum. In Appendix D.2.1 we show this quite explicitly by following the approach
of [225,226] and even if our summary there focuses on the bosonic theory, the generalization to the superstring case is
straightforward. Here we follow the approach taken in [149] that was applied to the string-brane scattering in [227,228].

The basic idea is that, at high energy, the dominant region in the integral over the worldsheet moduli (see for
instance (D.28)) corresponds to diagrams where two closed string vertex operators are very close: the size of the relevant
region scales as (o/ESZ)_l, as pointed out also in the discussion after (D.31) for the bosonic string. Thus instead of calculating
the full string amplitude and then take the high energy limit, it is possible to first take a generalized OPE to define a new
ingredient, the “Reggeon vertex”, that then can be attached to the Dp-branes (or another Reggeon vertex in the case of
the string-string scattering) to obtain directly the high energy limit of the amplitude. In this discussion we can keep the
vertex operators V; general as the only feature we need is the exponential factor eP1.2X that is always present for states
with nonzero momentum. A disk amplitude with two closed strings takes a form similar to (D.28)

o Kd d221d222 _ _ _

Ao = Cs,—— /7<0|v§ Y(zi, 20V (25, 2,)1B) (3.156)
8w dVsi(a.p)

but with generic vertex operators27 Vi. In (3.156), Cs, is fixed as in (D.13) and the vertex operators have a normalization

factor ;‘—f{ as in (D.27). By introducing z = # and w = z; — z; we can write the contribution from the exponential to
the OPE as follows

_ _ _ / ; =y, P1—P; P — o O Z, Z
VE 1)(21’ 2 )V;O)(Zz, Z) ~ |w|® P1P2 oigX(2.2)+ 12 (w X+05X) ( ) . (3.157)
|w|2n1 |w|2n2
where O(z, z) comes from the contribution of the non-exponential part of the vertices V; and oﬂpi2 = —4n;. We are focusing

only on the most singular term as w — 0 as the subleading contributions are suppressed at high energies. As mentioned,
the motivation for taking the OPE approximation above is that the high energy result is dominated by the region of
lwl? < 1/(a /Ez) <« 1. However this means that we need to treat exactly the terms where w is enhanced by factor of E;, as
in the combination proportional to (p; —p>) in the exponentlal of (3.157). By using the on-shell conditions we can rewrite
the first contribution in this exponential as o’p1p; = —%% + 2n; + 2n,. In order to obtain a non-trivial result in the high
energy limit, the OPE between the polynomial part of the vertices should compensate the factor |w|?*™+2"2 coming from
contraction of the exponential part leaving a pole and this is why we are focusing on the leading term m (3.157). One
can check that such contribution can exist by considering states in the leading Regge trajectory V; ~ 7?] P] Nl gipX that
contain a polynomial of degree n; in the picture —1 (or n,+1 in the picture 0) in 90X and similarly for the antiholomorphic
sector

) 2 2
M=y Mo [ ZjgxMi L = iaxMm) e
o o
{M;} 2. (Mo 2. My (Mo ;9% M1 (Mo 5.,/,M1
Sy = Fax JIBX + (p2¥ )Y 00X ™ — ny 00y (3.158)
2 2
J=iaxM L ZigxMe)
o’ o

The leading contribution is when all factors of 3X and 38X in both vertices are contracted either among themselves or
with the exponential part of the other vertex, yielding a factor of |w|™ 2m=2n; and finally there is an extra factor of |w| ™2
from the contraction of the terms with p,y (and p,¥) in the second term of 7?2 Mi) (and 73 ) When the leading term in
the sum (3.157) is trivial, then the transition between the states described by V; and V), is suppressed at high energies.
Thus we can isolate the dependence on w obtaining

2

d?z,d%*z _ _ d“w = p1-Pp
EATR ) a1 2 Va2, 22) ~ Oz, 2) e [ S | TH 2R ek 100 (3.159)
dVgl_(z,R) 2

where we can set z = 1 and the factor of 27 in the measure comes from the residual conformal invariance. We can then
perform the integral over w and @ by using®®

F(l—A—‘L’f

o = 4 o
u(ul®)” _Tte =i —B°)Y Tt s N
d2 (| |2) A B(u+11) 2 )( Z)A 1+ (3 60)
rA+4h)

which can be checked by introducing a Schwinger parameter t to rewrite the first factor as an exponential and then by
carrying out the Gaussian integration and the integration over t.

27 Focusing on NS-NS states we need to take one vertex, say V; in the superghost picture (—1, —1) and the other in the picture (0, 0).
28 The factor 2 in front comes from the normalization of d?w discussed after (D.14).

41



P. Di Vecchia, C. Heissenberg, R. Russo et al. Physics Reports 1083 (2024) 1-169

In order to extract the energy dependence it is convenient to introduce a set of two light-cone vectors e* such that

I 1 I3
2o gim B

1
e ) = — lim = ,
() /2 Es—~o0 Eg /2 Es—>o0 Eg

Then in the case at hand, © contains just the superghost contributions and a factor of (p, ¥ )(p2¥) from the vertex in the
zero picture, and we can use (3.160) to capture the high energy behavior

(efe7)=1. (3.161)

o't
d*z1d%z, _ _ o we T (_T) ;
/ 22, 2V 25, 2p) = €T (@B 0 e (3.162)
dVsi2.r) r(1+ )

ot
B i 5 1 5. 1
yte v yte? (i‘ / ,ax+> (i, / ,ax+> ,
o o

where @' is the result of the contractions between the string coordinates in V; and V; as discussed after (3.158). When
inserted in (3.156), the operatorial part of (3.162) is trivial as the holomorphic and antihomorphic parts are contracted
among them, while O’ is a c-number that by construction follows from the correlator (Vg_l)e’qx Véo)) Thus we can factorize

the amplitude (3.156)
Ao~ (VIVIVEY) T (Vi 1B) (3.163)

where we introduced a Reggeon vertex V,({]) describing the collective contributions of the states exchanged in the
closed-string channel, the Reggeon propagator IT; and the couplings to the Dp-branes described by the boundary state
|B) [229,230]. The Reggeon vertex is basically given by (3.162)

o't ot
4

_ [2 .. 2 ,
W=k |yte ( ,i8X+> Ye ( ,iax+> eex (3.164)
o o

The factors of v/o'E; in (3.162) are automatically produced when inserting the Reggeon vertex in the 3-point correlator
in (3.163) by performing the contraction between dX* and the exponential factors e1.2X see (D.38). The split between the
propagator and the boundary state contribution is defined as follows for later convenience, see the discussion after (3.178),

r _L/t> ’
1 o ( 4 _ NT, t
mszwi—ﬁﬁ,owm=m3wo+%» (3.165)

We can use the OPE with the supercurrent to obtain the Reggeon vertex in the (0, 0) picture from the expression in the
(—1, —1) picture given in (3.164) obtaining

at_q
2 't 2 4
VO = iy [—wax+ax+ —iqyytaxT — °‘4w+a¢+] (‘/a/iax+> (3.166)

o't

ot _q
2 - - "t - 2 L
—SAXTAXT —iquytaxt — o gtagt | ) Siaxt) e

o 4 o

In conclusion we have constructed a Reggeon vertex operator Vg both in the picture 0 and in the picture —1 that, when
inserted in (3.163), gives the correct high energy behavior of the amplitude for any choice of the two vertex operators V;
and V,.

3.2.4. The string eikonal operator: the closed string sector

The main advantage of the approach discussed in the previous section is that the external states in the string-brane
scattering are arbitrary. So it is possible to go beyond the scattering of massless states discussed in Section 3.2.1 and
consider inelastic transitions of course focusing always on the leading contribution at high energy that has the same scaling
as the elastic amplitudes (3.120). As we will see, such transitions are unavoidable in string theory and promote the eikonal
phase discussed in Section 3.2.1 to an eikonal operator that acts on the Hilbert space of the closed string excitations [8,10].
This is an effect of the tidal forces acting on the scattered string that get enhanced at high energies [231]. As we will see
explicitly in Section 4.2.2, in the case at hand these tidal forces are related to the gravitational field produced by the
Dp-branes.

There are several ways to derive the eikonal operator related to tidal excitations. In the original approach [8,10], one
obtains the result by factorizing elastic loop amplitudes, where arbitrary tidally excited states appear in the intermediate
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channel. Here we follow the opposite approach and study directly inelastic tree-level amplitudes. Various techniques can
be used to connect the eikonal operator and the string amplitudes [227,228,232]: here we will use the results obtained in
the previous section and use the Reggeon vertex as the object that encodes all the contributions relevant at high energies.
In practice we will derive an explicit expression for the correlator (V,ViV1) appearing in (3.163) (even though it will be
simpler to use the (0, 0) picture version in (3.166) so that both external states V; ; can be written in the (—1, —1) picture).
Alternative approaches include the direct evaluation of the inelastic correlators by using vertex operators or the use of
the Green-Schwarz 3-string vertex [233,234], as discussed in detail in [232].

The basic idea is to use the DDF formalism [223] (see also [235-237] for an explicit discussion of the NS sector of
superstring theory) to deal with the vertex operators V; . For more recent work on the DDF states see [238-242]. So we
briefly review the key ideas of such construction. The starting point is an auxiliary tachyonic state with momentum pr

’

o
pr:0),  —pr=1. (3.167)

Then we need to introduce a null vector k whose scalar product with pr is one, and (d — 2) space-like vectors ¢; that are
perpendicular to k. In summary we have

’

o
Eka =1, ij =0, €i€j = 8,']‘ . (3168)

Focusing on the NS sector for simplicity, the physical states are constructed by acting on the ground state (3.167) with
the following DDF oscillators

2 .
Apj=—i f dw (), <\/ — X" + in(kww“) e kKL (w) (3.169)
0 o

i , 2 ok (k) — g o OV) | €M
B,.J—zygdw(enu(\/;ax (k) — " (koX) + wuw)(kax) o

where n (r) is a positive integer (half-integer). Of course a similar definition holds for the anti-holomorphic part with the
exchange X; — Xg, ¥ — ¥, see Appendix D.1.2 for our string conventions. As usual, it is necessary to impose the GSO
projection: in order to describe the matter part of the states in the (—1, —1) picture, we have to select only the states
containing an odd number of B_, j, so the first non trivial physical state is obtained by applying the operator B_1 15

We are now ready to write explicitly the Reggeon vertex (3.166) in the DDF basis for the incoming and outgomg states

AEDPOLDy (3.170)

where |vi(‘”) are the operators corresponding to the DDF states introduced above. The general overlap between three
DDF states was discussed in [224] in the bosonic case and in [237] for the NS string and evaluating the contour integrals in
the definition of the DDF oscillators (3.169) yields the Neumann coefficients defining the generic couplings among three
string states.2? Evaluating (3.170) turns out to be much simpler and the key point is that we can choose k to simplify
the high-energy limit of (3.170), which can be done by choosing k to be along e* introduced in (3.161). Then things
become particularly simple in the fermionic sector: the Reggeon vertex does not contain any ¥~ (or ¥ ™) insertions, so
no contractions are possible for the terms proportional to kiyr (or ki) which then can be set to zero. Then for our propose
we can approximate the DDF oscillators as follows

2 .
Apj—> —i 7§ dw (€)uy/ —0XHe ") (3.171)
z [07

B_rj— —iygdw (ej)ﬂw“(kax)%e*irk&(w)
z

where the contour integrals are around the tachyon exponential factor ePT*?), We can also approximate the Reggeon
vertex in (3.166) keeping only:

5 ot 5 AN
W > kg (,//iax+> (,//iéx+> el (3.172)
o o

The Reggeon vertex does not depend on the transverse fermionic coordinates €;y, so the oscillators B and B must pair up
between the incoming and the outgoing state and the contour integrals in their definition reduces to the ones appearing in
the 2-point function. In summary the Reggeon vertex in the fermionic sector acts simply as the identity operator. For the
bosonic transverse oscillators (3.171) there are two options: they can be paired between the two external states as in the

29 The same result is obtained in the light-cone approach, see [243] for the bosonic case and [233,234] for the superstring.
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fermionic case, which of course requires that they appear in identical pairs, or they can be contracted with the exponential
factor of the Reggeon vertex (3.172). The latter option is the technical origin for the inelastic transitions we are interested

in. Each one of such contractions yields a factor of j:\/gejq times an integral over the insertion w which turns out to be
equal to one. The same result holds also for the anti-holomorphic modes. Finally the level matching condition implies that
the difference of the total holomorphic and anti-holomorphic mode number vanishes for each external state. So we can
equate this difference for the first and the second state and then take away the contribution of all modes that are paired
since they contribute equally to both sides. Thus we see that the bosonic modes that are contracted with the exponential
factor in the Reggeon vertex satisfy the following constraint

Yom =Y =)y m-y i. (3.173)

We can then summarize the action of the Reggeon vertex in (3.170) as an exponential constructed with the DDF bosonic
oscillators and the transferred momentum q

0) 1 [Tdo g
Vi = kq (o'E?) 5 e (3.174a)
0
. o A, . ;\ s
X =i|— D gino 4 T p—ino ) 3.174b
V3 Z( i - (3:174b)

n#0

where the integral over o enforces the constraint (3.173) and the energy dependent factors follows from the contraction
of the fields 9X* in (3.172) with the exponential part of the external states. The exponential is normal ordered so the
positive modes are contracted with the incoming state |V;) and the negative modes with the outgoing one (V;|.

An advantage of the approach based on the Reggeon vertex discussed here is that it is fully covariant and so it can be
used to provide a full characterization (in terms of the little group SO(d — 1)) of the (massive) excited states produced
by tidal excitations. It is then possible to carry out explicit checks between the results obtained by using (3.174) and
those obtained by the direct evaluation of the corresponding covariant amplitudes, see [232] for a detailed discussion of
the transition between the ground state to the first and the second massive level. All results are consistent with the key
properties of (3.174): the excitations added or damped by the tidal forces involve only the bosonic oscillators and are
always in the spatial direction perpendicular to the (fast) motion of the scattering string

We can use (3.174) to write the high-energy result for the string-brane scattering as an operator instead of a matrix
element between two specified states as in (3.163)

~  NTkg o 't i (do g
Ao = 72”'“%*1% r(—%) (a’Ef)”Tt/ ﬁ e, (3.175)
0

where we used (3.165). Notice that the non-operatorial overall factor matches that of Eq. (3.120). As usual we can derive
the eikonal in the impact parameter space by using (3.123). As we discussed in Section 3.2.1, when the impact parameter
becomes of the order of I,(E) = /o’ In(«’EZ), the dynamics is dominated by the open strings attached to the Dp-branes
and the picture of a closed string to closed string scattering is not reliable. So, let us focus on the case b > I;(Es) where
o't is very small and the elastic factor in (3.175) reduces to the field theory result (3.121). Then it is straightforward to
perform formally the Fourier transform (3.123) at the operatorial level, since the last factor in (3.175) provides just a shift
b — b+ X in the result

d—p—2 1 2
230 2/(‘1 P=2q Ao(Es, q )eibq

27)P-2  2F,
d—p-2 27 ig(b+% 2 (3.176)
di-r—2q do : elab+X) . do -
=) oy [ o e Ty 2 12O
0 0

where we followed the steps in (3.127) for b?> > I?(E;) and wrote explicitly the normal ordering prescription. Thus, at
the level of the leading eikonal, the generalization to the full string level takes the appealing form of an average of the
effective QFT result, but with the appropriate “local” impact parameter for each point along the string: the part of the
closed string that are closer to the Dp-branes feel a stronger gravitational force than those that are further apart. As we
will see in Sections 4.2.2 and 4.2.3 this is at the basis of the tidal effects that are enhanced in the high energy limit.

3.2.5. Graviton scattering in bosonic string theory

In this subsection we show that, in sharp contrast with what happens in field theory discussed in Section 3.1.5, the
terms appearing in the graviton scattering in the bosonic string that come from a quadratic (Riemann)? and a cubic term
(Riemann)? do not contribute to leading order at small impact parameter. Therefore in the bosonic string there is no risk
of negative Shapiro time delay. The disk amplitude with two closed string tachyons is discussed in Appendix D.2. In the
Regge limit it reduces to Eq. (D.33) from which one can derive the eikonal (D.35) for the tachyon scattering off a stack of
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N coincident Dp-branes. In the same regime the disk amplitude of a massless state is given instead by:

T N 2. a/ Dt/ ,t
Agg N Kdzp e—mTt(a/Esz)l+Tt1—v (_1 _ aj) (3.177)

o _ o L
X ((6162) - 5(61(1)(6261)> <(6162) - 5(61(1)(62(])) ,
where, as usual, we split the closed string polarization into its holomorphic and anti-holomorphic part G, = €,€,.
Notice that the quantity in the first line in (3.177) is just the elastic scattering of a tachyon on the Dp-branes (D.33).
This result can be compared with that obtained for the supersymmetric case in Section 3.2.1, which we report below by
combining (3.118) and (3.120)

!/ ’ ’
Ag ~ (6162)(E1€2)Kd£pN r <—°‘Tt> e T (/E2) T (3.178)
A first qualitative difference between (3.177) and (3.178) is that the leading Regge trajectory in the latter includes the
tachyonic (ground) state of the bosonic theory. The second difference is that even in the high energy Regge limit the
bosonic amplitude has a non-trivial dependence on the polarization tensors, see the second line in (3.177). As emphasized
in [154], this is a direct consequence of the modification of the three-graviton vertex in the bosonic theory which yields
a quadratic (Riemann)? and a cubic term (Riemann)® in the effective action, while in the maximally supersymmetric case
these corrections are forbidden by supersymmetry. Because of this, the Lorentz structure in (3.177) is the same as the
one appearing in Section 3.1.5 except that in the tree-level graviton-brane scattering there is a single parameter (v/o’) in
the three-point vertex, while in the effective QFT description (3.74) there are in general two independent parameters (I,
in (3.76) and l; in (3.77)).

We can follow the same approach discussed in Section 3.2.1 for the superstring and Appendix D.2 for the bosonic case
and derive the eikonal for the graviton scattering: it is sufficient to rewrite the momentum transfer q appearing in the
second line of (3.177) in terms of a derivative with respect to the impact parameter and use the result (D.35) for the first
line of (3.177). Thus we obtain

26 = ((elez) + %(elabxezab)) ((éléz) + %(élab)(ézab))

W'V 3.179)
r{i+ —b) (
. KaNTyEs ( 4 [(nbz)fﬁfpy <d—4—p b2>] '

2
4n 1% 2 Y
-

For the current analysis we ignore the absorptive effects, related to the imaginary part of Y, and concentrate our attention
on the leading real part by replacing Y with l?(Es), see Eq (3.125). By focusing on the regime vo' <« b <« Iy(E;) we can
use (3.128), keeping only the term with k = 0, and approximate the square parenthesis in (3.179) as follows

d—4-p

d—4—p d—4—p b? 2 E)) 2 b?
oo (2 ] ()

2
This means that the differential operators in the I"-functions and in the polarization dependent prefactor act on a function

of % that starts with a constant, thus they do not contribute to leading order at small impact parameter. Notice that
s \Es

also the tachyonic pole of the bosonic string becomes harmless.3°

The pattern discussed above is in sharp contrast with the QFT case discussed in Section 3.1.5, since in that case the
eikonal (3.81) for the scattering of massless states contained terms that grow in the regime where the impact parameter
is smaller than the length scales weighting the higher derivative corrections b <« I, 4 (as we mentioned ¢ in the string
analysis plays the role of both I, and I of the effective description). As we will see in Section 4.2.4 this plays a crucial
difference in the behavior of the deflection angle and the Shapiro time delay obtained in two cases.

3.2.6. String-string scattering at tree level

Although for pedagogical reasons we have started our discussion of gravitational scattering in string theory from the
case of string-brane collisions, historically the first case considered was the one of (massless) string—string collisions
at transplanckian energy in (Type II) critical (i.e. d = 10) superstring theory (see Fig. 11). Such a theory is ghost and
tachyon free and looks like a fully consistent quantum theory of gravity at least in perturbation theory. In that same
approximation it differs from GR, even at large distance, because of the presence of other gravitationally coupled massless
modes, besides the graviton. However, by going to high-energy, graviton exchange (or better the Regge trajectory on which
it lies) dominates because of its higher spin and therefore by studying string-string collisions at transplanckian energy
one can draw interesting lessons for generic theories of quantum gravity involving extended objects. For the original
motivations for studying such gedanken experiments we refer to the introductory Section 1.1.

30 This is essentially due to the fact that tachyon exchange is suppressed by two powers of the energy with respect to graviton exchange and
therefore it is negligible in the high-energy limit.
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Fig. 11. Scattering of two massless closed strings represented by blue and green circles. The thick black line corresponds to closed strings exchanged
in the t-channel. The thin red line to very massive closed strings in the s-channel.

The original idea, in the late eighties, was to consider the collision of massless strings (e.g. gravitons or dilatons) and
to study the process in a parameter space containing three relevant length scales: the fundamental length ¢ of string
theory, see Appendix D, the impact parameter b of the process, and the characteristic scale of the geometry associated

with the total center-of-mass energy R ~ (GE )ﬁ. Note that this latter scale depends on Newton’s constant G, which,
in string theory can be traded for the string coupling g;. By considering the regime of weakly-coupled string theory,
g < 1, one can arguably dispose of a fourth length scale, the Planck length ¢p, since it will be much smaller than ¢;, see
again Appendix D. Since the physics of the process can only depend on dimensionless ratios, the final parameter space
is effectively two-dimensional.3! The other free parameter is the number D of non-compact spatial dimensions, having
assumed the remaining (d — D) to be very small and static.

The parameter space is naturally divided in three regions, each one characterized by which length scale dominates
over the other two (see Fig. 12). In region I, one has b > I(s), R corresponding to a weak-gravity, point-like regime. In
region II, the string scale I;(s) dominates over b and R. We may call it the string-gravity regime because it is here that
string-size effects are strongly enhanced and deviations from GR are most evident. Finally, when R > ¢, b we enter in
the strong-gravity regime where, classical gravitational collapse is expected to occur. A sketch of a possible critical line
separating the collapse from the “dispersion” regime is shown in Fig. 12. It uses the physical expectation - following from
the collapse criteria discussed in Section 2.4 - according to which the size of the colliding objects plays the role of an
additional contribution to the effective impact parameter. This is why the critical line is expected to bend downwards and
hit the real axis when R ~ £ (or /s ~ g;2M;). Obviously, if one were able to solve completely the problem in the collapse
region by constructing a unitary S-matrix, one would solve the (in)famous information paradox raised by Hawking in the
seventies [19].

We should finally mention that dividing the parameter space in just three regions is a gross approximation. There are
interesting sub-regions, as we will discuss in Section 4.2.5.

This being said, let us start by considering, as the simplest example, the tree-level four-dilaton amplitude. It is fully
symmetric in all three Mandelstam variables and given by

tu su st\ I — Y1 — LUy — 4t
Am0=w4}+—+—>( i)( ﬁ)((i
N F(1+T)F(1+T)F(1+T)

t u
with s + t + u = 0. In the Regge limit, s — oo at fixed t, using (3.119) on the four I"-functions that depend on s, it
becomes:

(3.181)

327G I(—%t) (a/ )”“zf ey
—_— | = e at,
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Ao(s, t) ~ (3.182)

4

It is possible to obtain directly the high-energy formula above by using the approach of Section 3.2.3 where the amplitude
is constructed by gluing together two 3-point correlators involving a Reggeon vertex

o 4 F<_T[) o dt 2 1yt 2
C52 (V1V4VR) <7HR> Csz (VRV2V3> = —/7,[6 Iz |:Kd (O{ Es) 4 ] . (3183)
z o« {1+ %)

31 One can also neglect the mass of the colliding strings, first by taking the initial states to be massless, and then by using the dynamical fact
that only the excitation of relatively light massive strings is induced by tidal forces (see Section 4.2.2).
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Fig. 12. A broad-brush phase diagram from collapse criteria, where the effective string scale I;(s) appearing on the vertical axis is defined in (3.187).
We also show, qualitatively, the impact parameters b, and b, below which string-size (tidal) and radiative corrections, respectively, start to be
relevant in the weak gravity regime. We also illustrate in the two panels how the relative importance of the two kinds of corrections strongly
depends on D. See Section 4.2.5 for further details.

The square parenthesis follows from the two correlators involving the Reggeon vertex, where each field along the plus
light-cone direction takes the leading value +/o'E;, where E is the energy of each initial state so s = (2E,)? (recalling that
we are working in the center-of-mass frame). The overall prefactor combines the various normalizations and Reggeon
propagator (3.165) and, by using (D.13) and (D.3), one can check that (3.183) agrees with (3.182). In the field theory limit
this result reduces to

2
s
Ao(s, t) = 8nG——. (3.184)
(=1)
In the same limit, the leading eikonal phase is given by
d”2q . Aols, t sr(%2
260(s. b) = 9 i AolS: ) _ nc# . (3.185)
(2 )P—2 2s 770 pD—4

This can be compared with (2.23) showing that, indeed, GR and string theory share the same ultra-relativistic large impact
parameter limit.

However, even at arbitrarily high energy, this agreement fails to persist at somewhat lower values of b. Naively, one
would expect this to happen when b becomes O(¥;), possibly modulo a logarithmic enhancement as in (3.125). This turns
out not to be the case. As we will discuss in Section 4.2.5, at a b; parametrically larger than ¢; (see Eq. (4.120)), the
phenomenon of tidal excitation kicks in®2 as a result of the gravi-Reggeon exchange already discussed in Sections 3.2.3,
3.2.4 in the case of string-brane collisions, with the only difference that now the Reggeon vertex affects both strings.

One can follow the same steps discussed in (3.127) and rewrite (3.182) in impact parameter space as follows

ra—<v? _ _4 b2
280(s, b) = eI =5V a ) [(bzn)_n y (—D 4 b)] , (3.186)
r(1+4v2) 2 Y.

where

’

N
Yo = B(s)—ina’,  [(s) =20 log “7 . (3.187)

32 This phenomenon was first discussed in [10] where it was called diffractive excitation in analogy with a well-known phenomenon in hadronic
physics. The true physical interpretation in terms of tidal forces was first given by Giddings [244].
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For b > Is(s) we can ignore the ratio of two I'-functions and use (3.130) obtaining

D-6
Gs I'(%52) _pa 22 (B2\ T
280(s, b) ~ W— Gs(mb*) 2 e ¥ (7) +--- (3.188)
From (3.188) we have
Re 28,(s, b) Gs T(5%) Gs(nb?) 7 5 (2 v (3.189)
e20o(s,b) ~ ——— — Gs(mw 2 e 58| — .
(J/mb)P—4 12(s)
for the real part and
o' 2ot~ D—6 E(s)
Im 28o(s, b) ~ E(—S)Gs(nls(s)) ze 5&(1— 5 st (3.190)

for the imaginary part. As in the string-brane case, the exponentially suppressed term provides the leading imaginary
part.

The real part of (3.186) has an amusing shock-wave interpretation in terms of the generalized Aichelburg-Sexl metrics
discussed in Section 2.4. Neglecting again the correction coming from the ratio of the two Gamma-functions, it can be
shown [245] to correspond to a shock-wave metric where the function f(x, ) is obtained from Eq. (2.57) by substituting,
as in Eq. (2.61), E( times the transverse §-function with a Gaussian profile:

2

_X
p(x1) =EW e 5O (/ml(s)* ", (3.191)

i.e. with an approximately uniform-density beam of size ~ I(s) that reduces to the delta function of (2.57) for Is(s) — O.
In other words, while the delta-function profile provides only the first term of (3.188) as shown in (2.60), the Gaussian
profile provides instead the entire real part of (3.186). The proof of the above statement is straightforward. Following 't
Hooft’s derivation of the leading eikonal phase sketched in Section 2.3, we know that what determines the phase is, up
to an energy factor, the time delay Av suffered by one particle as it moves in the shock-wave produced by the other
particle. According to Eq. (2.59), this time delay is determined by the quantity f(x,) appearing in the (generalized) AS
metric (2.55). Therefore, we can either extract f(x ) directly from (3.186) and determine the transverse profile of the
beam by using (2.57) with the profile (3.191) or, given the profile (3.191), by using (2.57) to fix first f(b) and then, from
it, the real part of (3.186).

Without repeating here the discussion given above in the case of string-brane collisions we now simply give the analog
of (3.176) for string-string scattering:

R 1 2 2 R R
50 = — f dO’]dO’z : So(E, b +X1(O’1) —Xz(O’z)) Ly (3192)
a2 Jo  Jo

where )A(Lz are Hermitian (and commuting) closed-string position operators for each incoming string, and Jq is the leading
eikonal (3.185). R

For b > I,(s), 8o(E, b) is real and thus §y is Hermitian up to exponentially small corrections. The physical interpretation
of (3.192) is that the graviton is exchanged between one point on one string and one point on the other string. The
(transverse) coordinates of each string are however operators and (3.192) picks up an expectation value of the transverse
distance between those two points. The physical consequences of the shift in b, tidal excitations due to the extended
nature of quantum strings, will be discussed in Section 4.2.2. Here we just mention that, unlike the singular point-like
case, the string-corrected eikonal has a finite b — 0 limit and a smooth expansion in b around it. This is the string-string
counterpart to what we have already discussed in the string-brane collision, see (3.134). One finds [10]:

Re 28 ~§ 1 ( 1 _ b? _|_> (3.193)
"R (i)’ \D—4 (D 2)E(s) ' '

Another, even more distinctive feature of string theory as opposed to traditional QFT, is that, already at tree level,
graviton exchange does not correspond to a real scattering amplitude. This can be seen immediately in (3.182) through
its last factor, typical of Regge-pole behavior. This imaginary part comes from the presence of s-channel poles in the tree-
level Shapiro-Virasoro amplitude corresponding to the heavy (i.e. of mass /s) closed-string intermediate states produced
in that channel. It is the very essence of Dolen-Horn-Schmid duality [246,247], as it is incorporated in string theory, that
this imaginary part matches, on average, the imaginary part corresponding to the Regge-pole behavior given in (3.182).

Note, however, that the imaginary part of the amplitude, unlike the real part, is order «’ and lacks the graviton pole
at t = 0. This lack of a singularity corresponds, in b-space to an exponential cut-off at large impact parameter. More
quantitatively one finds [10]:

D-2
2

e KO (3.194)
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This result fully justifies having neglected Im 24, in the previous, weak-gravity (large b) regime. At higher string-loop
level we expect multiple string formation in the s-channel. In Section 4.2.5 we will discuss how one can have a qualitative
idea of the dominant process as a function of the total initial energy up to the already mentioned expected threshold of
gravitational collapse, /s ~ Mg, 2,

From (3.189) and (3.193) we can compute the deflection angle for small and large impact parameter. We get

4GS I(%52) N 4G./s

0= pD-3 D—4 p b > IS(S), (3195&)
T2
8G./5b 4G/5b
o= }/i V5 b < Iy(s). (3.195b)

— > ,
(D—2)r 2z P2(s) HO)

where the arrow indicates the limit D — 4. The first, for large impact parameter, coincides with the one of a massless
point-particle moving in the Aichelburg-Sexl metric (see (2.50) that can be derived from (2.60)). The second instead is
intrinsically stringy because of the presence of «'. Since the deflection angle increases with b for small b and decreases
with b for large b, it is to be expected that it will have a maximum at some intermediate b. We will discuss this and what
happens in the intermediate region in Section 4.2.5.

3.2.7. Brane-brane scattering at leading order

It is possible, and of course interesting, to study the scattering between non-perturbative objects in string theory.
When dealing with D-branes, one can use an exact CFT description in terms of the open strings attached to them as we
have already done in the string-brane analysis. The calculation by Polchinski [248] for two static parallel D-branes was
immediately generalized to the case of moving D-branes [249], see [250] for a derivation in the closed string channel by
using the boundary state formalism briefly summarized in Appendix D.1.4. The case of DO-brane scattering is of particular
interest because in this setup one can see the emergence of the 11-dimensional Planck length £,; which is the fundamental
scale of M-theory [251]. Here we will not provide a detailed analysis of the eikonal scattering for the brane-brane case,
but will just highlight some similarities and differences with the more detailed analysis of the previous sections.

Technically the leading order eikonal for the D-brane scattering is captured by a world-sheet whose topology is an
annulus. The boundary conditions are given by reflection matrices that generalize the one discussed in (D.23), as they now
have to encode the information about the velocities of the D-branes. At large distances, this diagram is best described as
a long thin cylinder and is dominated by the exchange of massless closed strings. Focusing on the case of the scattering
between two DO-brane bound states, the fields mediating such interaction are the dilaton, the Ramond-Ramond vector
and of course the graviton. Since type IIA string theory can be viewed as M-theory compactified on a circle and DO-branes
are just 11-dimensional supergravity fields with non trivial Kaluza-Klein numbers, it is not surprising that the scattering
between DO-branes falls in the setup described in Section 3.1.4. A difference with respect to the configuration summarized
in (3.64) (beside the fact that the starting point is now a 11-dimensional theory) is that the KK-modes lie in the same
direction. As discussed in [167,211] this amounts to generalizing the factor of ¢ in the numerator of (3.68) to (o —cos ¢)?
with ¢ = 0 for KK-modes in parallel directions (rather ¢ = 7 /2 which is appropriate for the choice made in (3.64)). Thus
for DO-brane scattering we have the following large distance eikonal phase

_ 2m1mZGd(cr — 1)21—'(%)

Vo — 1(nb2)%
In this case we need to set d = 10 for type IIA theory and the mass of each DO-brane bound state is simply m; = n;to,
where n; is the number of DO-branes constituents (identified with the KK-mode in the M-theory picture) and tp is the
mass of a single DO-brane see (D.5). In the discussion below we focus for simplicity on the case n; ~ O(1).

By lowering the impact parameter, we expect to see the inelastic channels typical of string theory. For instance at high
energy (s> miz), there should be a scale b; below which the internal degrees of freedom of each DO-brane bound state are
excited and the elastic amplitudes is suppressed. This is the analogue of what was discussed in Section 3.2.4 for the case of
elementary strings, but now the excitations are open strings starting and ending on the same DO-brane bound state. From
the argument given in Eq. (4.122) we expect that, in the case of D-brane scattering, the scale for these tidal excitations
is bf ~ g,Gipa’s. The extra factor of the string coupling g in comparison to the string case is due to the tension of the
D-branes which is larger by 1/g; with respect to that of fundamental strings (equivalently the production of a D-brane
excitation requires a closed-open string vertex and so it is suppressed by g;). It would be interesting to check this with
an explicit calculation and provide a precise description for these inelastic transitions in terms of an eikonal operator. To
our knowledge, this has not been done yet in the literature.

Instead, the string gravity regime depicted in Fig. 12 was already discussed in the original paper [249] by looking at the
imaginary part of the annulus partition function in the full string result. In this case the degrees of freedom responsible
for this suppression of the elastic D-brane scattering are the open strings stretched between the two colliding D-brane
bound states. Naively one would expect that this channel opens when the impact parameter is of the order of the string
scale, but exactly as it happens in the string-brane (Section 3.2.1) and the string-string (Section 3.2.6) cases, there is an
enhancement factor scaling logarithmically with the center of mass energy and so again the relevant scale is I;(s) defined
in (3.187). Thus in the ultrarelativistic regime string effects dominate short-distance brane-brane scattering.

2680

(3.196)
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Finally, at low velocities the interaction between DO-branes is weaker as already suggested by (3.196) which vanishes
as (o — 1> ~ p . In this regime the scattering between two DO-branes remains essentially elastic, although quantum
mechanical, up to 11-dimensional Planck length [251]. It remains to be seen whether the process becomes (semi)classical
down to b = ¢;; if one considers the collision of two bound states with n; > 1 DO-branes.

4. Exponentiation and the subleading 2-body eikonal

In the previous two sections we have extracted the leading eikonal &y in various gravitational theories from the tree-
level amplitude. Its exponentiation, as we have seen, is equivalent to the statement that, in the (n — 1)-loop amplitude in
impact-parameter space .4,_;, the leading classical term equals — %(2&30)”. From the leading asymptotics of the resummed
amplitude 14iA4 ~ e?% one can then compute classical observables, like the deflection angle and the Shapiro time delay,
for collisions with large impact parameter, b >> R with R the typical size of the colliding objects.

However, the result obtained in this way is only accurate to leading order in the small parameter %. How can we
compute the corrections to this leading behavior? Since this regime is the one characterized by weak gravitational
interactions between the colliding objects, an equivalent question is: How do we retrieve the classical PM expansion of the
deflection angle? The answer is that we have to calculate higher-order corrections in the eikonal phase § = §g + 81+ - - -
and, as we shall see, this can be done by looking at subleading terms in the classical expansion of loop diagrams. In this
section, we perform this analysis for the one-loop amplitude A;.

Indeed, by the exponentiation of 2i8y, the leading term in the classical limit of i.4; must be given by %(21’80 )? and is thus

proportional to hiz but the one-loop amplitude contains also an additional sub-leading term that is again proportional

to % as it happened for the tree diagram itself. The former term is sometimes referred to as “super-classical” or as an
“iteration”, because it is the most singular in the classical limit and it does not provide any new information compared
to the tree-level amplitude. The latter identifies instead a new classical term and one can extract from it the sub-leading
eikonal 2i§;. It is natural to conjecture that also this sub-leading eikonal 2i§; exponentiates and this can be argued on
general grounds [36,102,252], although we will not discuss this proof in detail here. As we will see, its contribution is
indReecl subdominant for large impact parameter with respect to the leading one, i.e. it is suppressed by one more power
of 7.

lbf course, the one-loop amplitude also contains quantum terms that scale like h" with n > 0. We will see that, although
these extra terms do not contribute to the eikonal phase at one loop, they play an important role in the extraction of the
sub-sub-leading parts of the eikonal at two loops.

More concretely, since at each order of the perturbative expansion we find additional classical terms that ought
to exponentiate contributing to higher sub-leading parts of the eikonal and quantum terms that do not need to
exponentiate,>> we are then led to the conclusion that, in the classical limit, the full amplitude in impact parameter
space is encoded in the following expression:

1+ iA(s, b) = [14 2iA(s, b)] €** 4.1)
where, schematically, in D = 4
GE? GE (GE\’
28:280+281+282+~--:? logb+?+ N + (4.2)
is the classical eikonal and
2A =2A,+ 24, + —GE21+h+ +GE31+h+ (4.3)
- 2 “\» Eb b Eb '

is the quantum remainder. In the bottom-up approach we are going to adopt, we shall first calculate the perturbative
amplitude order by order in the loop expansion A = Ay + .A; + A, + - - -, concentrating on the limit of small momentum
transfer, take the Fourier transform from momentum space to impact-parameter space, and then determine §, and A, by
solving

idy = 2i8g , (4.4)
|

iA = 5(21’50)2 +2i8 + 2iAq, (45)
]

idy, = 5(21‘50)3 + 280 2i81 + [2i8; + 2i80 2iA1] + 2iA, . (4.6)

33 One could exponentiate also the quantum part 1+ 2iA = 25"*™ \which amounts to a redefinition of the coefficients of the expansion (4.3).

We prefer not to do so in order to define an object, 28, which directly yields the classical observables such as the deflection angle.
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These relations are predicted by the formal re-expansion of (4.1) for small G and define 26,, 24, at an operative level,
while also dictating the structure of super-classical terms, which only arise, at each level, from iterations of lower-order
terms. In particular, the ©(b~') terms of 4; determine 28; and its ©(b—2) terms determine 2A;. Moreover, while 24 is
irrelevant for determining 2§; at one-loop level, it is needed at two-loop level, together with 26, in order to solve (4.6)
for the unknown 28, once the ©(b~2) terms of .4, are computed.

Let us also mention that, while the leading eikonal is always real, sub-leading eikonals have, in general, also an
imaginary part that is connected to the existence of inelastic channels. In this case, the classical deflection angle can
be computed from the real part of the sub-leading eikonals, since the real part is the one contributing to classical phase
oscillations, while the imaginary part only gives rise to an overall exponential suppression. This issue is going to be
particularly acute in the two-loop eikonal that we will discuss in the next section, where the imaginary part actually
contains long-range infrared divergences associated to soft graviton emissions.

In this section we restrict ourselves to the one-loop level, however, and analyze in detail the classical limit of the
one-loop scattering amplitude i.4; in massive A’ = 8 supergravity and in GR. This gives us the opportunity to check that
the leading super-classical term is indeed obtained from the quadratic term of the expansion of the leading eikonal e%?%,
ie. that id; ~ % (2i80)* as in (4.5). We will then extract, from the next to the leading term, the sub-leading eikonal 25,

and also, from the next to the next to the leading term, the quantum 2 A, that is important in reproducing the two-loop
amplitude according to Eq. (4.1).

4.1. 1-loop (2PM) in QFT

This section is divided in two sub-sections. In the first one we study the case of massive N’ = 8 supergravity and in the
second one the case of GR. In the massive case under consideration it is convenient to use the relative Lorentz factor o,
already introduced in (1.8), and also to define a related variable z which has the advantage of rationalizing some square
roots, via

s —m2 — m2 1 1
a:_p1pz _ 1 2:7(24‘5)7 ZZO'—\/OT—], (47)

mimy 2mymy 2

where s is the Mandelstam variable. In particular 1 <o < oo and 0 < z < 1, with 0 = 1 or z = 1 corresponding to the
case of two particles mutually at rest, and o — oo or z — 07 to the case of an ultrarelativistic collision.

4.1.1. Massive N’ = 8 supergravity

Let us start from the maximally supersymmetric case, introducing the masses via Kaluza-Klein compactification as
discussed in Section 3.1.4. For the s-u symmetric collision discussed there, corresponding to the elastic scattering of an
axion and a dilaton, the one-loop amplitude in A/ = 8 supergravity with massive external states is given by [167,211]

A= (8716)2? [(s —mi— m%)4 + (u—mi— m%)4 - t4] (In + Iy) (4.8)
where
e VE€
C(E) = W , (49)

while I;; stands for the box integral,

1
b= /E (=2p1€ + €2 — i0)(2po£ + €2 — i0)(£2 — i0)((€£ — q)2 — i0) (4.10)

with the shorthand notation

d4—2€e
/:eysf/ S (4.11)
¢ 1€

and k; stands for the crossed box integral, obtained from Iy replacing p; with ps. A schematic representation of these
topologies is given in Fig. 13. Let us also recall that ¢ = p; + p4.

We then face the task of evaluating the integrals Iy, I;. A key simplification in this respect is that we do not need their
exact expression, but, since the typical perturbative momentum exchange is q ~ g and we focus on the regime of large
impact parameters, we can restrict our attention to the limit

s, mi, m3 > |t] = q° (4.12)

characterizing the classical PM regime. More precisely, since we are interested in the long-range terms in b-space after
Fourier transform, we can concentrate on non-analytic terms in the small-q> expansion. A systematic strategy that is well
suited to this type of calculations is the method of regions [253,254]. In this approach, the guiding principle is that the
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Fig. 13. The box and crossed-box topologies.

asymptotic expansion of the desired integrals as ¢ — 0 is captured by Taylor-expanding the integrand with respect to
all possible scalings of the loop momentum ¢ that give rise to non-scaleless integrals in dimensional regularization. In
our case, the nontrivial scaling choices are £ ~ ©(q°), which defines the hard region, and £ ~ ©(q), which defines to the
soft region. The hard region is effectively a power series in g* and thus only gives rise to strictly localized contributions
in b-space. Conversely, the soft region is the one responsible for the non-analytic terms we are after, so we can safely
discard the former and concentrate on the latter.

Although we refrain here from exhibiting the full soft-region calculation of I, which was performed in detail for
instance in [48,49,167], let us show how the leading soft term in Iy + I can be retrieved, following [109]. Starting from
(4.10), the leading soft term in Ij; reads

1
= /e (—2p1€ — i0)(2pa€ — 10)(€2 — i0)(€ — q)? — i0)’

where we used the scaling condition ¢ ~ ¢, while py, p, are g-independent to leading order. Sending ¢ — q — ¢, recalling
q = p1+ ps = —p, — p3 and using 2p1q = q2, 2p>q = —q?, Eq. (4.13) can be rewritten to leading order in the form

(4.13)

| N] 1
"2 /e (€2 —i0)((€ — )% — i0)

1 1 (4.14)
X - — + - —~ |-
(=2p1€ —i0)(2p€ —i0) ~ (2p1£ — i0)(—2p2€ — i0)
Adding the crossing symmetry partner I and applying very similar manipulations, one then finds
I+ I~ ! / !
T 2 ) @ o)~ qp - i0) 15
. 1 1 4 1 (4.15)
X .
2p1€ —i0  —2p1€ —i0 | | 2p.€ —i0  —2p,¢ —i0
This localizes the integration on a (D — 2)-dimensional subspace
3(2p1£)8(2pat
1”+1ﬁ:—2n2/ . (,pl)(pzz) . (4.16)
¢ (62 —i0)((€ — q)* — i0)

Choosing p; = (—E1,0,...,0,—p), p» = (—E»,0,...,0,p), g = (0, gq., 0) one can use the delta functions to perform the
integrals with respect to £° and ¢; in £ = (¢°, ¢, £;), obtaining

i€ dZ—Zee

Iy + Iy >~ e”E¢ / Ty = > (4.17)
2pE ] £5(€1L —q1)

with E = Eq + E,. The last integral is straightforward to perform using Schwinger or Feynman parameters, and one gets

im I'(1+¢) IN'(—e)?

2pE (g*)'*¢ I'(—2e)

Iy + Iﬁ ~ elE€ . (418)

When substituted into (4.8), recalling that pE = m;my+/02 — 1 as in (1.13), we thus obtain the leading contribution
iAi(s,q%) _ (87G)* (4m\“ (=2xmim3) o* I(14e€)l*(—e)
4pE  (4nP \ ¢ q> 62—1  TI'(=2€)
Sub-leading and sub-sub-leading terms in g are obtained by retaining higher-order contributions in the soft-region
expansion. This can be done via direct integration in the soft region as exemplified here [48,49,108,109] or, more

systematically, using Integration-By-Parts identities, reduction to master integrals and soft differential equations adapted
to the soft region [47,167].

(4.19)
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The resulting expression, complete to sub-sub-leading order, reads

iAq(s, q%) _ a2 4n | —2mmim; of I'(1+e€)?*(—e) (4.20)
4pE q? q> o2—-1 I'(—2e¢)
+2iﬁm1m2(m1 +my) ot  Tle+ )3 —e) io®  I'*(—e)['(1+e€)

JE (02— 1) r(—2e¢) S (02—12  I(=2€)
ime
x[mlmz[(l + 26)(02 logz4+o0+/02 — 1)+2i7r(02 - 1)]—1—7;50] } )
Let us now introduce a notation to distinguish leading, sub-leading and sub-sub-leading terms in the g-expansion of
Ai(s, %) according to
A= AP+ A 4 AP (421)

in such a way that A[lk] ~ O(qg7*=2¢). The A[lz] term, corresponding to the first line of Eq. (4.20), is the super-classical
term. Its Fourier transform in impact parameter space (see Eq. (A.45)) indeed reproduces the quadratic iteration term of
the expansion of the leading-order eikonal,

. € 2
2imym,G( b?) 02”‘”) = %(21‘80)2 .

0% —1

~ 1
. 112]

A b) =
! 1 (37 ) 2 (

(4.22)

in agreement with the leading-order term in (4.5). The Fourier transform of AE“, which appears in the second line of
Eq. (4.20) and is sub-leading for small g, gives instead the sub-leading eikonal according to
2i8, = A (4.23)

so that>4

Amb? P CPmimy(my +my) o T(3 =263 —e)
NETZ (62 — 1) I(=2e)

Note that this next-to-leading eikonal, arising from box integrals, represents the first correction to (3.68) and is
proportional to the sum of the masses. Taking the by now familiar derivative with respect to b, this translates into the
following expression for the deflection angle,
_AGE(nb? Y02l (1—€)  AGPE(nb? o’ (my +my) (3 —2)%(3 —€)
- (62 —1)b (62 =127 b? I(=2¢)
Consistently with the above considerations, the ©(G?) correction vanishes identically for the collision of two (massless)
shoc21<waves. Moreover, even for massive objects, it happens to be zero in D = 4 [211], while it does provide a nontrivial
(’)(';—2) correction to the deflection angle in higher-dimensional spacetimes.

Finally, going to impact parameter with sub-sub-leading term A[lo] one gets the first contribution to the quantum
remainder,

2iA, =AY, (4.26)

261 = (4.24)

e +0(G?). (4.25)

finding a real part given by

8G2mymy(mh? )% ot (a logz ++o?% — 1)

— 2 (4.27)
Re2A; = b2 oI 1) (14+2e)“(1—¢),
and an imaginary part given by
8G?03(nb?)* I’ (1 —€) [e 5
m2a, = =2 [5s0 +2mim(0® — 1] (4.28)

In this section we focused on the elastic amplitude (4.8). Looking more in general at the 2 — 2 scattering of massless
states in A/ = 8 supergravity, we remark that there can be inelastic contributions at the level of .A[lu. However this does not
imply that the 2PM eikonal becomes an operator, because there is an O(G) contribution to A that encodes the transition
between different massless states (so this Ag is nontrivial, in this more general setup, and becomes an operator). By using
the natural generalization of (4.1), one can verify that the amplitudes in the massless sector are consistent with the 2PM
eikonal (4.24), see [43] for an explicit check of this point in the probe limit where massless states scatter off a stack of
Dp-branes.

34 Let us point out a typo in the expression for 28; in Ref. [47], which should be multiplied by 1/2.
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4.1.2. Real-analytic, crossing-symmetric reformulation

In the previous subsection we have collected the contribution of the different one-loop diagrams noticing that they
combine into much simpler expressions than those of individual diagrams. They are in the form of an expansion in
powers of ¢® i.e. of the quantum level at which they contribute. Furthermore, as computer outputs, they simply collect
independently real and imaginary terms and express the result in terms of a choice of the two independent Mandelstam
variables, g> = —t and s (or of quantities like o and z, themselves functions of s and the masses).

On the other hand, we expect the full amplitude to satisfy two exact properties:

e Real analyticity i.e. A(s*, ¢%) = (A(s, g?))*;
e Crossing symmetry ie. A(s, ¢°) = Au = —s + ¢* + 2m? + 2m3, ¢*).

Those two properties, which should hold order by order in g%, are not at all apparent in the formulae of the previous
subsection, but they must be hidden somewhere, of course up to the order in g? at which we stop our expansion. Here we
will explicitly show how to rewrite the tree and one-loop amplitudes, given in the previous section in a real-analytic and
crossing-symmetric form. Besides its usefulness for the interpretation of the result this also serves as a rather stringent test
of the calculations themselves. A similar analysis will be carried out at the two-loop level in Section 6 where analyticity
and crossing will turn out to be very useful for actually fixing the entire two-loop amplitude from its imaginary part. Let
us mention in passing that analyticity and crossing also played a key role in recent developments [255,256].

To this purpose it is useful to introduce variables which are related to those introduced earlier in Section 1.2 by s <> u
exchange:

. u—mi—ms q?
o0=——1—=°2=—|0-— ,
2mymy 2mymy
o - 1 q2/(2m1m2)>
z:a—\/oz—lz—7<l—7 +0(q"), (4.29)
z Vo —1 I

_ _ 1 - 1 .
26:(Z+j), 2 02—1:<:—Z>.
z z

We also have to bear in mind that the factor 4’%5 appearing in some formulae cannot be ignored when discussing analyticity
and crossing symmetry of the amplitude.
The tree-level amplitude (3.67) is already manifestly crossing symmetric and real analytic,

76 16mim;(c* +64) — ¢*

= 4.30
° q? mimio G (4.30)
Up to terms that lack the pole at g = 0, we may equivalently write
1671 Gm2m?
Ao(s, ¢*) = # (0 +5?%). (4.31)

At one-loop, Eq. (4.20) suggests trying the following analytic, crossing-symmetric ansatz for the super classical term:
16GPm3m3 [(4n \© I'*(—e)r(1 log(—z log(—z
_ i 2<l> (—e)I( +e)[(04+64)< 8-2) ig( ))}
q I'(—2¢) Vor—1 J&2-1

.Aslcl.(s7 qZ) . (432)
q
It is easy to check that, when expanded in g? using (4.29) and the branch choice log(—z) = logz + ixr, (4.32) reproduces
both the super-classical (first line in (4.20)) and the O(¢°m;m;) terms in the square bracket of (4.20).

The remaining terms are as follows:

e A classical contribution proportional to (q%)~'/? (second line in (4.20)). It is real and can be trivially symmetrized in
s — u since the error in doing so is of order (q%)"/?;
e A quantum contribution of O(¢) that can be written in the crossing-symmetric form:

47 \€ I'*(—e)(1+€)
A%, ) =16GFmm | — ) —————— —°
1(897) 1M 42 F(—20)

5 =5 > 4 ~4
P N o’log(—z) o°log(-2) o o
A @) = 6[((02—1)3/2 Teropr) T\t
_ (mi+m) (oflog(—z)  5%log(~2)
2mimy;  \(02— 132 * (62—1)32)°

Note that in (4.34) we can again neglect the difference between ¢ and —o as well as the difference between z and —1/z.
As a result, the last line of (4.34) gives a purely imaginary contribution in the physical region.

In the above equations crossing symmetry is manifest. Concerning real analyticity, it can be checked by using, in
particular, the analytic properties of the combination log(—z)(c* — 1)~'/2. We will come back to the checks of real
analyticity after we include the two-loop results in Section 6.

AT (s, %), (4.33)

(4.34)
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Fig. 14. The two-graviton cut needed to obtain the one-loop integrand for the amplitude in the classical limit. Each blob represents a tree-level
amplitude with two scalars and two gravitons.

4.1.3. General relativity

Let us now turn to the collision of two massive scalars minimally coupled to GR. The logic we will apply is the same
as for the &/ = 8 example discussed above. That is, we want to calculate the one-loop amplitude for the collision of two
massive scalars minimally coupled to gravity, focusing on the non-analytic terms in the limit of small momentum transfer
7.

Of course, in the absence of supersymmetry, the amplitude integrand is not as simple as (4.8), and deriving it from
Feynman diagram techniques would pose a nontrivial challenge. Following [48,108], a powerful integrand construction
technique that we can apply to overcome this problem is the method of generalized unitarity. The one loop integrand we
are after is a rational function, and its residues at the poles corresponding to the on-shell limits for certain internal lines
are nothing but (sums of products of) tree-level amplitudes obtained by “cutting” such lines. A further simplification arises
from the observation that, in order to capture all non-analytic terms associated to the long-range eikonal dynamics, we do
not need to determine the full integrand, but rather only the contributions coming from the two-graviton cut depicted in
Fig. 14. Indeed, we can neglect any topology involving contact interactions between the two massive lines, which would
correspond to strictly localized effects.

We shall disregard topologies associated to vertex corrections and self-energy diagrams, which give rise to integrals
that always vanish in the soft region. This may seem in principle not justified, because, although arising from the hard
region only, these dressings of the one-graviton exchange naively appear in the amplitude with a kinematic prefactor 1/¢?
(non-analytic). The key observation is that they also give rise to divergent terms that ought to be treated by appropriate
coupling and wave-function renormalization. However one can check that the IR-divergences due to the two-graviton
cut in Fig. 14 in fact exhaust the full IR-divergence of the one-loop amplitude predicted by the general exponential
pattern [1,107]. Therefore, all infrared divergences arising from vertex corrections and self-energy diagrams must cancel
against one another, and we need not worry about them. The cancellation of the corresponding finite terms then ought
to follow from the Ward identity linking the renormalization constants for charge and wavefunction, as discussed in
Ref. [257] for the case of electrodynamics, although we will not analyze it in detail here.

Let us then turn to the evaluation of the two-graviton cut. The amplitude for each blob in Fig. 14 is the one already
discussed in Section 3.1.2,

Apoap(ki ka2, q1, q2) = (4.35)
kq
can be taken as follows, using momentum conservation to eliminate k,, [48]

- (k -k

Apoap = 22 q1 - (ki +q2)q1 - ky
ai - q2 436
i+ el Ca+ark | [ k+erk  k+alk (4.36)

- + - +7 .
qi1 - (k1 + q2) ki - q q1 - (k1 + q2) ki -qq

This expression is of course highly non-unique, because one can always perform gauge transformations, i.e. shifts
. Pso oEp o B B a .. . . e
proportional to ¢} £ + q{&” or to q5¢” + q,¢* obtaining an equivalent amplitude. The advantage of the specific form
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Fig. 15. Triangle and bubble topologies.

(4.36) is that it is exactly transverse with respect to each graviton momentum [48,258],
qq)-Apa.ocﬁ = qqua,aﬁ =0, qg-"lpa,aﬂ = qupa,aﬂ =0, (437)

as can be checked using the mass-shell conditions. This simplifies the sum over intermediate graviton polarizations
involved in the cut in Fig. 14, and one can cast the amplitude of interest in the form

qul d q2 D
iA4(s, 7)PsP(q —q; —
(5. 9) = Z/Qm(hj() @—a - a) w3s)
X Apo.ap(P1. Pas =1, —02)G"7'7 (q1)G*P*P (q2) Ao (P2, P3. 41, G2)
where G*"#? denotes the De Donder propagator (A.23),

—i

0= 3@ )

(an popone - =2 nuvnpd) . (4.39)

The overall factor of % in (4.38) is due to the reflection symmetry of Fig. 14 about the vertical axis, or equivalently to the
two possible choices of labeling for the loop momentum, either gy = ¢,q; =¢ —qorq; =4¢,q, =q — ¢.

The resulting integrand involves not only box and crossed box topologies (Fig. 13), as its N/ = 8 counterpart, but
also triangle and bubble topologies (Fig. 15). Moreover, while the numerators of box and crossed box are constant in the
loop momentum, the remaining topologies involve nontrivial numerators. As we already mentioned above, the task of
performing such integrals is considerably simplified by employing integration-by-parts identities after expansion in the
soft region. Using these techniques, one can reduce the calculation to a simple set of three master integrals [167], the
leading-order box and triangle, plus a trivial scalar bubble integral.

For illustrative purposes, let us consider a scalar triangle integral (let us recall the shorthand notation fe introduced
n (4.11))

1
u:ﬁhhﬂ+ﬂlwﬁ 0)(¢ —qP —i0)’

Again focusing on the soft region, where £ ~ O(q), and on the leading-order contributions, we can massage this integral
as we did for the leading box, obtaining

(4.40)

1 1 1 1
M_zﬁ[@ﬁ—m+—bw—mkﬁ—mmwwﬂ—m) (441)
so that
~i 8(2p1£)
fa =1 /g (2 —i0) (¢ —qP —i0) (4.42)

To evaluate this integral it is convenient to pick a reference frame where

p1 = ( Jmi+ 3G 1g ) p4=(\/m +1G1% 1g ) (4.43)

so that ¢ = (0, ¢ ) and, to leading order for small g,

_ 23 1 1 2
e ® Hff =%y :eyEeﬁf(i—l-e)F(i—e)
2m1 |Z |2|Z _ a |2 2m] (qz)%+5 r (1 - 26)

Ia (4.44)

Combining this result with the box and bubble integrals, one can obtain an expression for the amplitude complete up
to sub-sub-leading order in the small-q expansion, which we now illustrate. For simplicity, let us again break down the
result as follows

A= AP+ AN 4 AP (4.45)
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where each term scales according to A(ln) ~ g "2¢, The leading term, which is entirely determined by the box and
crossed-box contributions, and is given by

AP (87GP (4x )\ 2rmimi(0? — 55 I(1 4 €)' (—€) (4.45)
4pE — (4n) \ @ q* (o2 —1) I'(—2e) ' '
The subleading one reads instead
A (8GR (4n>f e+ (4 —ey? [ de/mmimy(my +my)o? — 515 )
4pE ~ (4P \ @ r(1-2e B 21
D (4m)* \q ( ) qlo2 —1)2 (4.47)
n Zﬁmlmz(ml +m2) <02 _ 4+ (1 — 26)(0’2 — 1)) ]
qlo? — ])% 16(1 —€)? ’

where the first line of this expression comes from the subleading expansion of box and crossed box, while the second
line comes from the leading-order triangle contributions. Note that the first line vanishes in D = 4, as ¢ — 0. The
subsubleading term instead combines all three types of topologies, and we find it convenient separate box/crossed box,
triangle and bubble contributions according to

AP = A A A (4.48)
We find, from the box and crossed box topologies [43],

A (8mGy <4n>€(02 ) )r(1 —ePIr(1+¢) [ —ns (0?2 — 555)

4pE ~ (4n)? \ ¢? b—2 I'(1—2¢) 2 _1)2
1 (o =1) (4.49)
2imym; (40 arccosho N (1+2¢)(0? — 555) (1 aarccosha)) }
o —1 Vo2 =1 0?2 —1 o2 — 1 ’

from the triangle topologies,

A (8GY (4n )\ imim, (1—ePT(2+e€)
4pE ~ (dn ) (q2> 2vo? —1e(1—ePI(1 - 2e) (450)
X|:]_262(1_6)11—186+862]
(1+e)1—-2¢)]"

and, from the bubble,

A (8GR (4n\© imym, r(1—ePr(+e)
4pE (4w )? <q7> Vo2 —14€(5—2€)(3 —2e)I (1 — 2€)

(451)

0% (16€® — 210€® + 633¢ —522)  17¢> — 68¢? + 65¢ — 2
x 2 —1 2e -1y

We can now go to impact parameter space using Eq. (A.45). Let us start from the superclassical term AHZJ in (4.46),
which gives

i 1 {2immyGrb? Y (0% — 2 )r(=)\° 1
iA2(s, b) = ( mGrb N (o7 ~ gl (e} ~(2i80)? . (452)
2 o 1 2

Thus, as in the previous case, we again obtain a cross check of the exponentiation of §q, according to which the leading
superclassical term in the one-loop amplitude must be given by 2%(21'80)2 as dictated by (4.5).

The Fourier transform of the subleading, classical term AE”, appearing in (4.47), gives the next to the leading classical
eikonal

2i8; = iA4.'(s, b). (4.53)
so that
218, = iszlmz(nfl +my) |: FZ(% - G)F(% — 2¢) (023_ ﬁ)z (454)
(b2)2 > I(—2€)o? —1)2
4r(3 —e?r(; —2e) < 5 4+(1—2€)(02—1)>]
_ _ 455
T T 20vero1 U 16(1 — ¢)? (4.55)
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Like the leading eikonal, 26, is also a purely real quantity. Taking a derivative with respect to b according to
e 02§ 1026,
psin—=——- = OM=———"——
psiny ob p b
we can then obtain the 2PM correction to the deflection angle, in generic spacetime dimensions. Combining with the 1PM
result (3.12), we thus obtain the following expression for the deflection angle,

_AGE(0’ - ) (1-¢

- (62 — 1) —<h1-2¢

, (1= 260CE(m; +m,) [ (g —arG —20) (o - 55)°
n%_zebz_k I(—2¢e)o? — 1)

Ar(3 —e?r( —2¢) ([, 4+ -2)o*-1) 3
I'(1—2¢)o2-1) ( B 16(1 — €)? )]+O(G)'

(4.56)

(4.57)

Note that the 2PM correction is present only if both masses are non vanishing. In contrast with the A = 8 case, although
the box and cross-box contributions (4.54) do not contribute for D = 4, the triangle contribution (4.55) survives, and we
get:

3n62m1m2(m1 + mz)(Saz — 1)

281 = (4.58)
! 4bvo? — 1
and for the deflection angle [259]
4GE(o? — 1) 37 GPE 502 —1
o— ( 3) | 3nG’E(my + my)(50 ) +Oo(E. (4.59)

b(o? — 1) 402 — 1)b2

Finally the Fourier transform of the sub-sub-leading term A[]O] given by (4.48) identifies the leading quantum remainder

2iA, =iAV. (4.60)

This is a quantum term and indeed will not contribute to the classical eikonal. However, it will be needed at two-loop
level in order to solve (4.6) for the unknown 26,. Actually, since we will be able to obtain the two-loop amplitude only
to the first few orders in the € expansion around € = 0, i.e. D = 4, let us evaluate this quantum remainder for small ¢,
although performing the Fourier transform of the full expression (4.48) is straightforward using (A.45). We thus obtain

G2 (202 —1)°

ZlAl = —€
b? (0’2 - 1)2
iG2mymy, (wb2e’)* (20 (202 — 1) (602 — 7) arccosho 1 — 4902 + 185 (461)
b2r(c? — 1)3/2 o2 — 1 15
. G*mimy 80(202% + 1)arccosho 923402 — 1783 )
+ ie - + + O(€7).
nb?V/o? — 1 (02 —1)32 450

This expression for 2iA; is accurate through O(¢) for both real and imaginary part. In particular its ©(1) real part vanishes,
while its imaginary part is nontrivial to O(1) and O(e). The terms involving arccosho of course only come from the
box/crossed box contributions (4.49) already obtained in [48]. Moreover, the ©O(1) imaginary part and the O(¢) real part
agree with [109]. As we will discuss in the next chapter, this quantum piece will play a role in our discussion of the two-
loop eikonal. On the one hand, it is needed to perform the subtractions dictated by (4.6). Moreover, it will be instrumental
in determining the amplitude itself from its analyticity and crossing-symmetry properties.

4.1.4. Real-analytic, crossing-symmetric reformulation

Following the procedure we used for the &' = 8 case in Section 4.1.2, let us recast the 3PM GR result in an explicitly
real-analytic and crossing-symmetric form. Using the same notations as in (4.29) the tree level amplitude (3.4) can be
written, up to higher orders in ¢, as

167G
Aols, %) = T’gmﬁmg[(az - 5) + (- 55)]- (4.62)

At one-loop, in analogy with Eq. (4.20), we can deal separately and rather trivially with the purely real classical terms
(4.47) behaving like % For the remaining terms, inspired again by the N/ = 8 case of Section 4.1.2, we try the

NG

58



P. Di Vecchia, C. Heissenberg, R. Russo et al. Physics Reports 1083 (2024) 1-169

ansatz:

(4.63)

« (87GY [(4An \© I'*(—e)'(1+ €) 4m>m3
-'41 l‘(s7 qZ) — 172

(4np \ ¢ r(—2e) 7

2 U N (e 1 V| [log=2) | log(~2)
[(" _2(1—e)) +<” _2(1—6))“¢02_1+¢az_1]'

This reproduces, in b-space, the iteration of the tree contribution (4.46) and, furthermore, takes care of some quantum
terms. Up to purely real pieces, the full structure of (4.48) is reproduced by the following additional real-analytic
crossing-symmetric terms:

(87G)? [(4n \ I'*(—e)['(1+¢€)
=

q2

477 )2
2 1 5 1 olog(—z) o log(—z)
<“ _2<1—e)>+<" _2<1—e)m\/62—1 " ¢52—1]
X 1 27, 1 2|1 olog(—~z) & log(—2)
{(U 21— e)) + <U 201 —e)> } [(02 “1pn + G2 — 1)3/2}

m2+m2 [/, T\ (o, 1\’ |[ log(-2) log(~2)
~ amm, {(” 20 —e)> + <" 20 —e)) [(02— e e 1)3/2] :

We have checked that the sum of (4.63) and (4.64) reproduces the superclassical term (4.46), as well as the box and
crossed box contributions (4.49), modulo a single real term given by:

2

(0% = 55)
o2—-1
We also note that the triangle (4.50) and bubble (4.51) contributions are real (indeed they do not exhibit any on shell

intermediate states). Together with (4.65) they can be made crossing symmetric trivially. This exhausts the analytic study
of the one-loop terms in GR.

A?dd'(s, qZ) _

( am?m3 A2, (4.64)
padd.

g = [

€

2

AT = —2¢ (4.65)

4.1.5. The probe limit

It is instructive to study the regime where one mass is much larger than all other energy scales as was done at leading
PM order at the end of Section 3.1.1 for GR and of Section 3.1.4 for N’ = 8 supergravity. Of course in this limit one should
reproduce the results obtained from the classical motion of a probe in a fixed background describing the heavy object,
see Appendix B.1. This is easily checked by taking the limit m, >> E; summarized in (3.17). Focusing first on the case of
GR, it is sufficient to take (4.57) in the probe limit, m; = m, <« M = mj, to obtain

o VT 028

2r (55%) B -mp \b
VAT (D=3) (R\*P7 (2D - 5)2D — 3)E; — 6(2D — 5)E;m; + 3m; (4.66)
8r(p—2) \b (E2 — m2)
+ 0(G)

where we used (B.2) for R;. The leading term matches (B.14) while the subleading correction matches (B.15). It is
straightforward to repeat the check in the case of A/ = 8 supergravity by starting from (4.25), for which we get

o VT (557 P (&)Di ﬁF(D—§)< £ >2<RS>2(D3) )

0(G?).
r(&2) E2-m2\b ruo-4 \E2—ml + o)

> b

As already noticed, for D = 4 the 2PM correction in (4.67) vanishes and the 1PM result agrees with the probe limit (B.41).

At 2PM order, it is actually possible to make the link in the opposite direction and reconstruct the deflection angle for
generic masses from the result in the probe limit. The idea is to consider the following ansatz for the classical impulse Q
in an elastic scattering in the PM expansion [260],

26mim; & 26m \"' /2G6m, \ "2
Q=—-— Qi (0) ( ) () (4.68)
J/p kkaz:O e by by

where we restrict to D = 4. The key assumption here, sometimes referred to as “good mass polynomiality”, is that the
dependence on the masses m; always enters via the combination 2Gm;/J and it is thus tied to the PM expansion itself.
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Each coefficient Qy,k, (o) is only a function of o, which contributes to the result at PM order k; + k, + 1. Moreover, since
the impulse Q must be symmetric under particle-interchange symmetry, in the elastic case, we must have

Qyky (0) = Quyiy (0) . (4.69)

In the probe limit m; < my, in Eq. (4.68) only the terms with k; = 0 survive to leading order, and thus one can deduce
the functions Qur(0) = Quo(o ) from the deflection angle calculated in Appendix B.1 by studying the motion of particle 1,
with mass my = m,, in the background sourced by particle 2, with mass m, = M. In the case of GR, by (B.17), (B.18) we
have at the first two orders

Qo) = 221 gy = T (4.70)
o‘=77 0-=77, .
° o?—1 ! 16 /o2 —1

where we used E/m, >~ o in the probe limit. Of course, substituting back Qg and Qo; into (4.68) one recovers precisely
the 2PM accurate deflection angle (4.59). On the contrary, at 3PM a new function Q;(o’) appears that cannot be fixed by
looking at the probe limit, and needs to be determined by studying the problem where both particles are fully dynamical.
This will be the subject of Section 6 for both N/ = 8 supergravity and GR. Moreover, as we shall see in Section 8,
in general the impulse Q; of particle 1 and that Q, of particle 2 can differ in the presence of radiative effects, thus
introducing additional structures. For recent developments concerning the assumption of good mass polynomiality to
O(G*) see [138,140,261].

4.1.6. Tidal effects in field theory

Following Refs. [50,51,54,262], one can conveniently include finite-size effects associated to tidal deformations in the
scattering amplitude approach by introducing higher derivative operators that are quadratic in the scalar field and involve
powers of the Weyl tensor. Focusing for simplicity on the leading, quadratic order, these can be decomposed into the so-
called E (“electric”) or mass-type and B (“magnetic”) or current-type tidal operators. The resulting “tidal vertex” involves
two massive lines and two graviton lines, and thus produces corrections to the sewing procedure of Fig. 14 (while it does
not affect the single-graviton, tree-level exchange). Without going into details, let us quote here for completeness the
expression for the resulting one-loop correction to the impulse, which are of course equivalent to the tidal modifications
of 28, up to a derivative with respect to b. For the case in which particle 1 is subject to tidal deformations (the analogous
case in which object 2 can be deformed is obtained trivially by interchanging particle labels),

Reb 32 3504 — 3002 + 11 Reb 1962 — 5
=L : =L /o2 —1(76% 4+ 1), 471
Qs G m? 02 —1 % G m ( ) (4.71)
with (i = 1,2)
1 1
R = 157G’ mim3/ (64b") . cp = 61<§2>R1.5 /G, = 3—2j§2)Ri5 /G (4.72)

and k;, j; are the colliding objects’ Love numbers, while R; is the radius of object i. For typical compact objects, R; = Gm;/K;
where K; is the body’s “compactness” of order 0.1, 0.2 for neutron stars [30]. Thus, we see that the leading tidal corrections
(4.71) are weighted by the dimensionless power-counting parameter (Gm/b)® /K> (for m ~ m;, and K =~ K ;) relative
to the leading-order impulse (3.16). This shows how PM effects measured by Gm/b can compete with finite-size effects
measured by the compactness parameter K.

4.2. Eikonal exponentiation in string theory at one loop

The first goal of this section is to analyze an explicit example of a one-loop amplitude in string theory. We will see that
also in this case the leading term in the classical limit does not contain new information as it provides just a contribution
towards the exponentiation of the tree-level result. The main difference with the QFT cases analyzed so far is that already
the leading eikonal do (3.176) is an operator: as discussed in Section 3.2.4, this operator acts on the space of the possible
string states. The non-trivial check presented here is that the leading term of the one-loop result is the square of Jy,
extending Eq. (4.6) to the more general setup where the colliding objects have a non-trivial structure. After gaining
confidence that the full eikonal operator exponentiates, we revisit the physics related to tidal excitation. We show that,
at the leading order, this classical effect is captured by a probe analysis focusing on the string dynamics in a non-trivial
background. This generalizes to the string case the idea that the leading deflection angle for a point-like particle can be
derived by solving the geodesic equation, see (3.20) and (B.14). We conclude this part on string theory by discussing more
in detail how the exponentiated form of the leading eikonal captures the tidal effects on the string probe and how this
can exponentially suppress the elastic scattering even at very large distances if the probe energy is large enough.

4.2.1. 1-loop in string theory
We work in the setup discussed in Section 3.2.1 and consider the first correction to the 1 — 1 scattering of a NS-NS
massless state in presence of a stack of N coincident Dp-branes in type II theories. From the world-sheet point of view,
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Fig. 16. Scattering of a massless string off a Dp-brane at one loop.

Im z

Rez

Fig. 17. Alternative representation of the one-loop scattering of a closed string off a Dp-brane. The green circles are the boundaries of the worldsheet
and rest on the Dp-brane, while the blue dots represent punctures associated to the asymptotic closed-string states.

this amplitude is captured by a diagram with the topology of an annulus with two boundaries (which are supported
by the Dp-branes) and two punctures in the interior of the annulus representing the external closed string states, as
depicted in Fig. 16. We will parameterize this surface as done in [22]: the “thickness” of the annulus is related to e~™*,
with 0 < A < oo, while for the location of the punctures we use
. 1

z; = e (Freitie) g < o < R 0<w<1. (4.73)
(see Fig. 17). In type II theories, the behavior of this amplitude is constrained by supersymmetry and the kinematic
dependence is the same as in the tree-level case [206], so we can extract a scalar function .4,

Aq(pi, €) = K(pi, €) Aq (4.74)

that captures all the dynamical information. The derivation of .4; is conceptually similar to the one summarized in
Appendix D.3 for bosonic string theory, but technically requires to deal with some of the complications of superstring
theory such as the sum over the spin structures. Here we start from the final result below and refer to the literature [263,
264] for a derivation and further references. In the superstring case we have

NT,\* o o1 % b1y o
Ay = (K"z ”) é—ﬂ(znza’)—” - / dx/dzzl Pz~ TE e BV (4.75)
0
with

0:(ix i0)01(iA(¢ — p)lir

Ve gt ot log | 1AL+ NG — p)ii) (4763)
01(ir¢ + w|ir)01(Ire — w]i))
01(ix )01 (irp — wlix

Vi = 87ap1 s + log | AUAPF @lit)(ikp = wlit) | (4.76b)
01(iMe + w]ir)01(Ire — wl]ir)
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where for the Jacobi theta-functions 6; we follow the conventions of [265] where

0](\)',[) _Ze 4 sin n_v)l_[ Zmnr)(] _ eZniveZTrinr)(l _ e—27riv627rint)] (477)
n=1

and we used the change of variables
w=w—w, p=p1—p2, {=p1+p2. (4.78)

Since we are interested in the long-range interaction between the stack of Dp-branes and the external probe, we wrote
the amplitude in the so-called closed string channel where the large-A limit is simple and describes a superposition of
closed string states exchanged between the Dp-branes and the scattered closed string. In this limit the world-sheet has the
shape of a sphere connected to the Dp-branes by two thin tubes and with two punctures representing the external states.

The factor of A~ a in (4.75) follows from the Gaussian integration of the center-of-mass momentum of the virtual
closed string propagating between the two boundaries, which can be non-trivial only along the d —p — 1 directions where
the Dp-branes impose Dirichlet boundary conditions. After implementing the change of variables in (4.73) and (4.78),
Eq. (4.75) reads

NT,\* o o <
A= () 2L on20)y S 200 ) dA/ de doa T ey e (4.79)
2 ) 16n e

where the region of integration for p depends on ¢: max{—¢, —(1 - } < p < min{¢, 1 — ¢}. The precise definition of
R(¢) will not play any role in our analysis, since we focus on the leading contribution dominated by the p ~ 0 region, see
however [228] for a more general setup where this point becomes relevant. As expected the integrand in (4.75) does not
depend on w; + w; and so, in (4.79), we have trivially performed the integration over this variable. Our goal is to extract
the leading contribution in the classical limit of the integral (4.75) and show that it provides the first term needed to
exponentiate the 1PM stringy eikonal operator (3.176). In this context the classical parameters are R, in (D.G), describing
the gravitational backreaction of the Dp-branes, and E;, describing the probe state. So, as in the tree-level analysis, we are
interested in the large E; limit which from (4.79) is suppressed unless one takes also p small. Thus, for our purposes, we
can use in (4.79) the approximate expressions

Vo —27p? — 4sin’ o (77 4 e 270 (4.80)
Vi > —278(1 = ¢) + In (4sin’ 7o) .

In the expression for V; we kept only the terms that do not have any exponential factor involving A, while for V; we kept
also the first exponential terms that become relevant in the region A ~ In(« ’Ez) and considered only the p-dependent
terms that are enhanced by a factor of A. In order to extract the classical terms contributing to the 2PM eikonal operator
81, one would need a better approximation for V; and V; as partially discussed in [22]. The complete expression for 8 at
string level is not known, so we will not pursue further this analysis here.

By following closely the derivation discussed in Appendix D.3 for the bosonic string, we can rewrite (4.79) in terms of
d, = (d—p—2)integral involving the full tree-level amplitude (3.120) and a kernel written in the square bracket below

Ay d k Ao(Es, K)Ag(E. K) it k)B ]+a/k( K) ! (4.81)
1—4Es (27[)‘& 0\ Ls, olEs, q s ) 2 q a2 . .

The structure is familiar from the QFT case: the convolution over k becomes just a standard product in impact parameter
space, the factor of 2E; is the one needed to pass from the amplitude to the eikonal (see Eq. (3.123)) and the extra factor
of % comes from the expansion at the second order of the exponential with the leading eikonal (see the first term on the

r.h.s. of (4.5)). The kernel in the square parenthesis is a string effect as one can see by checking that in the &’ — 0 limit
it becomes the identity plus subleading corrections

2a/k(q7k) 1 o 1 72 (o 2
—— Bl -4+ —=k(q—k), = ) |21+ — | =k -(q—Kk 4.82
|: = (2 + - ka-K 2) + 5 <2 (q ()) + (4.82)

In order to completely factorize the result in (4.81), it is sufficient to rewrite the kernel as an expectation value of operators
written in terms of the string coordinates X introduced in Eq. (3.174)

1 (1 o 1 , 2 (T dey . o
B =+ —Kkiky, = | =27¢kkg / —L . gllaX(on) .. pikeX(ea) . 0y 483
ﬂ(2+2122) <|Hozﬂ 10) (4.83)

where the fields X were introduced in (3.174) and contain the physical excitations of the string involving the DDF
oscillators, see Section 3.2.4 for a general discussion. Then the interpretation of the kernel appearing in this string theory
case is clear: it is related to the possibility of having excited string states in the intermediate steps. Even when focusing
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on a particular elastic amplitude, where the initial and the final states are dilatons, the gravitational field of the Dp-
brane can stretch the string probe and excite it to a different state while it propagates. As already discussed, this is an
entirely classical effect capturing the tidal forces on an extended probe [244]. As a further check of this interpretation,
this phenomenon can be quantitatively described by quantizing the string worldsheet action in the background produced
by the Dp-branes, as we will discuss in Section 4.2.3. However, as usual with the eikonal exponentiation, classical effects
provide constraints on loop amplitudes and in particular in this case the leading contribution (as oz’Es2 becomes large) of
the h-loop diagram (i.e. a worldsheet with h + 1 boundaries and no handles®”) should match the following convolution
involving the tree-level result and the kernel discussed above

AL it M gk 27 doy Ag(E KD ke —
Zho_ 0 LI T ikiXlen) .0 gL ki—q] . 4.84

This indeed reduces to (4.81) for h = 1 (one loop) thanks to (4.83). Thanks to this factorized form of the leading
contributions, it is straightforward to resum them in terms of the leading eikonal operator that was derived by studying
the inelastic transition at tree level in Section 3.2.4. As usual, after going to impact parameter space by taking the Fourier
transform (3.123) the convolution becomes a product and we obtain

oo

i“‘Ile 28 2i5
Zfz(m[e 0_1]|0) = S=e%0 (4.85)
h=0 =%

where the operator 8, was introduced in Eq. (3.176) where the impact parameter b is shifted by the corresponding string
coordinate X. Then, at leading PM order, the evolution of an initial (light) string probe interacting with the Dp-branes is
captured by the S-matrix S above. Notice that while 8, is normal ordered, this is not the case for the evolution operator
S, and this plays an important role in the analysis of tidal forces as discussed in the next section.

4.2.2. Tidal forces in string theory

In this subsection we mainly discuss the suppression of the elastic channel as a consequence of the tidal excitations
of the colliding string. This is a direct consequence of the eikonal operator derived in the previous section: as we will
see, when this operator is used to estimate an elastic amplitude a dumping factor arises from the normal ordering of the
oscillators. A brief summary on the nature of the inelastic channels is postponed to Section 4.2.5 where the same problem
is considered for the case of string-string collisions. Thus, while leading eikonal for a point-like scalar object is a pure
phase and describes an elastic scattering, in the string case a new dynamical scale b, appears: when the impact parameter
is below this scale the elastic scattering is exponentially suppressed as the internal degrees of freedom of the string are
excited during the scattering. In formulae we have

b; N d—p—2 ﬁES F(digiz) d—p—3
1(01S|0)| ~ exp [— (;) L BT = (d—p—B)WRp : (4.86)

where we approximated S by the leading eikonal operator as in (4.85) and wrote b; in terms of the string tension T =
to stress that it is a classical quantity. See also the discussion around Eq. (4.120) below.

Notice that at high energies b, is parametrically larger than the string scale so tidal forces can become relevant also at
large distances. In this regime we can expand the leading eikonal operator (3.176) by taking |X| < b: at the zeroth order,
one of course recovers the point-like eikonal (3.185), the linear term is absent since the integral over o of X in (3.174)
vanishes, and the leading effects are encoded by the quadratic term. We have

_1
2ra’

19%%(b) 1 , bib; bib;
- = —ul |8 — 2 4.87
2abab, 2| TR [T R | (487)
where
,_ _NAET (SRR
My = 2 r (d—g—?») pd-p-2 "’ : )
4.88
d—p—2 d—p—3
2 _ /TE;s r (=52 Ry _ 2
o= "7 (d_p_B)Wb‘H’*Z =—(d-p—3)y; .

Note that /,L)%/ < 0 while /,L(z) > 0, but this will not play an important role in the following. Then at the second order in the
|)A( | < b expansion we have

A : 2 Ao ain b;b; bib;
2i8g ~ ,2i : 2 (g _ 1 2717
e%i%0 ~ o2ido exp{z/0 2ﬂx'XJ [My(&] bz)—i—uo bzi“’ (4.89)

35 As in Section 3.2, in the string-brane case we are taking the probe approximation where the string coupling is small, but with g;N fixed, so
we ignore the contributions of worldsheets with handles.
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By using the mode expansion (3.174) we have

/2,, do XX = o Eoo L [2T“ - 3"1‘] (4.90)
=« - — — - ) .
0 27 p— n 0,n +.n —.n

where, by following [10], we introduced the combinations

. 1 (i - ; ; 1 o (s
i, = —AlK) | ori sy (AQnA{,) +A9nAfn)) . (491)

T 2n ‘ 2n
In order to evaluate the first string corrections to the leading eikonal, it is convenient to choose a basis parametrized by y;,
wherei=1,...,(d —p— 3) indicate the coordinates orthogonal to the scattering plane and i = 0 indicates the direction

along the impact parameter. This diagonalizes the structure in (4.89) and we can consider (d — p — 2) decoupled families
of generators T:' that satisfy the commutation relations of the si(2, R) algebra

[Tgi.n» Tij,m] =o' Snm ZTg,in ’ [T(}JA,,in7 Tij,m] = 48" Snm Tii,n : (4.92)

It is now possible to use the properties of the sl(2, R) algebra to derive the exponential suppression of the elastic scattering
of an unexcited string mentioned in (4.86). Starting from

o ., d—p-3
i ; i 5 5 5 5 . .
¢ ~ g0 ey {Z = [Mg <2Tgf’,, —r, T, 1) iy (2ngn O - 1)} ] (4.93)
n=1 i=1
we can use the identity
T"?i - Ji - Ji x i Ji x Y
ex<2 o~ Tton T_,n> _ e_ﬂT‘y*-” = 2In(1=0T, e‘mﬂ,n (4.94)

to calculate the elastic amplitude (0|S|0). The terms proportional to Ti';n vanish when acting on the unexcited initial/final
state and the same happens for the oscillator contribution to ngn, see (4.91). Then (4.93) reads

00 - io//t(z) o ialﬂ}g’ d=p=3
+R . n n
(0]e%%)0) ~ %% | | — — (4.95)
o g io s
il [ R (B

By using Weierstrass’s formula for the I"-function and then taking the absolute value square which is directly related to
the probability of the transition, we obtain

Y 2 . 2
1(0]e%0|0)| ~ ‘emor (1 — io/p2) 1= (1 - iom;))

d—p-3
/2 4.96
~ o—2Im25 na/ué Ty ( )
sinh (') sinh (noz/,u;)
where we used I'(1 + ix)["(1 — ix) = Sin’;"nx. As discussed in Section 3.2.1, the imaginary part of the leading eikonal is

negligible when b >> [,(E;), so in this regime we can focus on the last two factors. In the leading eikonal approximation
b > Ry, we have

2

A 2 —p— ’
|(0le*0)[” ~ (d — p — 3) (2 |2 " e ) (497)

where we used the last identity in the second equation (4.88). Then, by using (4.88), we obtain (4.86) in the regime where
wi (and |u§|) is large, i.e. by > b.

In summary, when the impact parameter is below the scale (4.86), internal bosonic excitations of the string along
the directions y and b are excited according to parameters summarized in (4.88), while no excitations are created at this
order along the remaining direction. As we will see in the next section, the same result can be recovered by studying the
propagation of a string in a curved background.

4.2.3. A geometric description of the eikonal scattering

In the QFT setup the probe limit of the eikonal has a simple geometric interpretation as it is entirely captured by the
classical motion in the background sourced by the heavy object, see Section 4.1.5 and Appendix B. It is natural to expect
that a similar pattern holds also for the string eikonal operator and the aim of this section is to show that this is indeed
the case. Again we focus on the case of the string-brane scattering that has been the main example analyzed, but the
same idea applies more generally (see Section 4.2.5 below). It is natural to see stack of Dp-branes as the heavy object
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and the scattering string state as the probe. Thus the first ingredient we need is the supergravity solution describing the
gravitational backreaction induced by the Dp-branes. In the string frame it reads [266]

ds> = [H(r)] "2 napdxdx? + [H(r)]2 8dx'dy |
_ 4.98)
2(0) _ 2 3p 1 (
e = Hr)] 2 , Chro,(x)=——-—1,
g [H(r)] 01--p(X) H)

where the indices o, 8 =0, ..., p are along the Dp-brane worldvolume while the indicesi,j=p+1,...,d— 1 span the
transverse directions. The fields in the second line are the dilaton (¢) and the Ramond-Ramond (RR) p + 1-form potential
that couples minimally to the Dp-branes and the harmonic function H(r) is

R d—p-3
H(r)=1+ (r”) ., rr=x, (4.99)

where the scale R, is given by (D.6) in terms of the string coupling g5 and the number of Dp-branes N. The classical
motion of a point-like object in the geometry above is discussed in Appendix B.2, but we now need to generalize this
analysis to the full string case starting from a string action that includes the couplings to the non-trivial background
fields. The presence of RR fields makes the exact description more complicated as one would need to resort to the Green-
Schwarz [206,233,234,267] or the pure-spinor (see e.g. [268,269] and references therein) formalisms. However the analysis
of the Reggeon vertex in Section 3.2.3 suggests that the fermionic degrees of freedom on the worldsheet do not play any
role at the level of the leading eikonal as the string excitations induced by the tidal forces are fully captured by the bosonic
field X*. Thus we can focus just on the universal part of the (gauge fixed) string action

4o’

where the metric is the one given in the first line of (4.98). Even this simplified starting point contains much more
information than needed for our purposes since we are interested in the classical dynamics of an energetic string probe.
In this case we can follow the approach of [270] and approximate the background metric by taking just its behavior
around the null geodesic describing at leading order the trajectory of the string center of mass. We sketch the main steps
of this approach below.

First it is convenient to choose coordinates adapted to the motion of the center of mass which takes place in a plane
of the transverse space. In polar coordinates (B.25) this plane is parametrized by r and ¢ and it is convenient to choose

H d
du=§dr, dv = —dt + by do + Fdr dz=d¢+£du, (4.101)

/ drdo [9:X" 0, X" — 0,X" 0, X"1 8y » (4.100)

where we introduced the shorthand notation F = , iH(r) - % and ¢ = ¢(u) is the value of the angle along the geodesic
parametrized by u. So, from (4.101) and (B.27) we have
dp(u) d¢ dr b
o) _dedr b (4.102)
du dr du r2/H(7)
where, following the convention above, r is the value of r along the geodesic describing the motion of the string center of
mass. This is at constant values of v, z and the (d — p — 3) coordinates orthogonal to the scattering plane that we indicate
with y'. In these coordinates the metric in (4.98) takes the following form
dv> 2bdvdz (rF) dx?
ds* = 2dudv — — + +—=d? + =2
vH VH vH vH
A similar change of coordinates can be implemented on the RR gauge field and then it is possible to take the Penrose limit
on the full solution by introducing a small parameter ¢ and rescaling the coordinates (x%,y',z) — €(x%, )", z) together
with v — €2v. It was shown in [270] that in the limit € — 0, the leading term is O(e?) and yields a solution of the same
supergravity field equations relevant for the original configuration (4.98). In this limit the geometry (4.103) reduces to

(FFM)? , dx? S — -
NG z° + m—i—r \/Iﬁsm (p)ay™= . (4.104)

We can take this result in the canonical form by introducing the coordinates yg, y; and X,

+r*VHsin’(¢p — ¢)d2] , 5 . (4.103)

ds® ~ 2dudv +

1 ~
Ha | i o
z=—go, Y=t X =Hik,
r Harsing (4.105)
~ 1] rF 2 S D Ut _1
v=v+5 Yo ouln H—% +; 8uln(rsm¢H4>+xaauln(H 4)
obtaining
ds? = 2dudd + dj3 + di2 + d§? + (GiR?2 + GsI? + Goa) du? (4.106)
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with
2 FF iF\’
Gy = 85 InH 1 + <8u lnH%> , Go= 83 In (—1) + (Bu In —1> , (4.107)
H4 H3%
- _ 2
G, = 02In (F sin¢H%) + (au 1nfsin¢H%) . (4.108)
In order to capture the dynamics of energetic semiclassical string probes it is then sufficient to use the action
1 2 R R R
=8 7— f dr/ do 1P 3,Ud,U (gﬁxg P2+ goyg) , (4.100)
T o

where S, is the string action in flat space (i.e Eq. (4.100) with g,,, = n,,). As standard, we are using uppercase symbols
to indicate the string embedding fields corresponding to the various coordinates. The string analysis is greatly simplified
by choosing a light cone gauge where the string oscillations along U(o, t) are gauged away so that we have

Ulo, 1) = d'EsT (4.110)

so we can keep using a lowercase symbol to indicate this coordinate. Then, at high energies, the interaction between the
string probe and the background becomes localized at T ~ 0 since t = u/(«'E;), so by changing variables from 7 to u, we
can write

E o] 2 R R R
Sx~S§, — 5/ du/ do (Q;(X‘f(o,0)+ngiz(a,O)+gng(o,0)). (4.111)
—00 0

As usual for semiclassical strings captured by a Penrose limit, the worldsheet action is described by free massive fields
where the effective mass square parameters are

E; [ EaS I 1\2

> dug=E [ du|oimn +(8ulnH4) ~0, (4.112a)
—00 0 L

ES o o0 i 2 - .7 1 - . 7 1 2 2

5 du G; = E; du [0, In (r sm¢H4) + (8u In (r sm¢H4>) ~ug, (4.112b)
—00 0 L

E [ o [ FF FF )2

5‘ du Gy = ES/ du [ 3Z1n (%) + (au In %) } ~ul, (4.112¢)
—o0 0 L H4 Hs4

where the final results are valid at 1PM (i.e. at order (R, /b)=P=3) and the parameters uﬁ, ,u% have been introduced
in (4.88). In the equations above, we restricted the integration over u from infinity to the inversion point r, (which
corresponds to u = 0) and included the overall factor of two to account for the contribution of the second part of the
trajectory from r, back to infinity. The two integrals in (4.112a) vanish at 1PM order. The second one can be neglected
since it scales as (R, /byX4=P=3) "while the first one can be written as a total derivative of a function that vanishes at the
extremes, as done below

/wduazlnH—% —foodra ( F oy 1nH—%) =0 (4.113)
0 ! B s ' «/ﬁ ' o .

Here we used (4.101) to rewrite 9, as (9,1)d, and the special values F(r,) = 0, while H(r,) is finite, F(co) = 1 and 9,H — 0
as r — oo. Evaluating the remaining two integrals requires a slightly more detailed discussion which is summarized at
the end of Appendix B.2 and the result is summarized in (4.112b) and (4.112c). Thus, as promised, we rederived from
a geometric analysis the parameters (4.88) determining the strength of the tidal excitations. It would be interesting to
extend the comparison between the eikonal operator and geometric description of this section at subleading PM order to
see whether the geometric interpretation of the string excitations holds beyond the leading eikonal.

4.2.4. String eikonal and classical causality

In the previous sections we discussed how the leading string eikonal exponentiates as an operator and what novelties
this implies with respect to the field theory case. This exponentiation holds in the case of bosonic string theory,
see Appendix D for more details, which provides an interesting setup to study the higher derivative corrections to the
on-shell 3-graviton vertex discussed in 3.1.5 from an EFT point of view. The main point we wish to convey is the following:
the string-brane scattering in bosonic string theory provides classical observables that are affected by «’-corrections that
take the form of (3.76) and (3.77) with £, ~ £4 ~ £;. A naive field-theory limit yields causality violations, in the form of
negative time delays, when the impact parameter is of the order of £, 4 s [154]. As discussed below, in the eikonal context,
this can be seen by looking at the energy derivative of the leading eikonal. Equivalently, one can look at deflection angle
and notice that the higher derivative corrections seem to make gravity repulsive when b ~ ¢, 4 ;. We will show how this
pathological behavior is avoided in string theory.
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A first observation is that, in bosonic string theory, the 3-graviton amplitude takes the form of (3.74) with Eﬁ = —26% =
5. Then we saw that, at the level of the leading eikonal, string effects are captured by the shift b — b + X (3.176). By
applying this recipe to the long-range eikonal (3.131)

VIE T (S5 R "

280 ~ 2 r (d p— 3) pd—p—4

(4.114)

one obtains an eikonal operator that is directly related to the EFT eikonal (3.81): the latter can be obtained from the
former simply by taking the expectation value in the massless sector

(£1, 811280(b + X)le2, &2) (4.115)

where |g,8,) = £4i8q;A A _,|0).

However, this result does not describe the elastic amplitude in the classical regime since one needs instead to take the
expectation value of the exponentiated eikonal e? as discussed in Section 4.2.2. The novelty here is that e*% is not a
diagonal phase even in the massless sector. Thus in order to calculate the deflection angle of a massless state, one should
first diagonalize 8y in the massless sector and then apply the usual relation (2.31) for the deflection angle or (2.33) for
the time delay.

Let us then start by analyzing the EFT eikonal (3.81). The key observation of [154] is that regardless of the signs of the
higher derivative corrections (Z%, Zj = 0) there always exists an eigenstate of the EFT eikonal with a negative eigenvalue.
In order to show this let us focus on the eigenvectors that lie in the space of the two states with polarizations

1 ~ A ~ A
Eigj—)fgzﬁ(aij_bjbj) , 88]—>€ = b;b; (4.116)

(let us recall that f),» = b;/b). This space is orthogonal to the other physical states and so it can be studied separately.
From (3.81), one obtains

2500 258 _ s [1H26+ (D= 1) —(D—-1vD =3¢
28ba b0 | —~(D—1)vD—-3cs; 1-2(D—3)c;+(D—1)D~3) (4.117)
262 Ej{
=(D-2)77 . =DD-2)%.

Let us also emphasize that the matrix appearing in (4.117) is symmetric and real. One can check that the determinant
of (4.117) always becomes negative when |c;|, [c4| > 1, which means that the two eigenvalues
1—(D—4), + %(D —2)D—1)c4 = DTZ 4c3 — 4WQQ +(D—12c; (4.118)

have generically opposite sign and one of them must be negative. States corresponding to eigenvectors with a negative
eigenvalue have a non-standard behavior: both the deflection angle and the Shapiro time delay due to the gravitational
scattering would be negative as they are related to derivatives of the eikonal. This would happen when b > ¢;, £4 which
may seem to be within the range of validity of an EFT approach if ¢, 4 > ¢p. However, the string theory analysis shows
that, even when the higher derivative corrections in (3.73) have a classical origin, this pathological behavior is avoided.

In order to see this, we must recall that the string eikonal (D 35) has a more complicated structure than the EFT
eikonal used for the argument above. In particular when b < I(E;) = /o’ In(o’E2) the string eikonal becomes a constant
plus corrections proportional to 132, see for instance (3.134). Then the correspondmg eikonal operator, which is as before
obtained with the shift b — b+ X, differs from EFT eikonal at scales much larger than b ~ £;: instead of growing at small
distances, it becomes almost constant. The key ingredient for this is the Regge behavior which modifies the functional
form in the impact parameter as showed in (3.127). It is important that the effective string scale Is(E) (3.125), where the
softer behavior kicks in, is enhanced by a factor of ln(oz’Esz) with respect to the scale of the higher derivative terms in the
effective action. This is the effect of the exchange of the whole leading Regge trajectory and the same mechanism would
not work in a theory with a finite number of extra higher spin states beyond the graviton [154,271].

4.2.5. String-string scattering beyond tree level

In Section 3.2.6 we have discussed the main features of high-energy string-string scattering at tree level and anticipated
some results that follow from the exponentiation in b-space of the tree-level result discussed in this section. Such an
exponentiation indeed goes through in the case of string-string collisions as well: the only difference with respect to
the case of string-brane collisions discussed in detail in Sections 4.2.1 and 4.2.2 is that now both incoming strings get
excited through the exchange of the (gravi)reggeon: this is a consequence of factorization of Regge-pole residues, related,
in turn, to t-channel unitarity. Without repeating here the discussion about tidal excitations given above in the case of
string-brane collisions we simply give its analog for string-string scattering:

S = exp(2i) (4.119)

67



P. Di Vecchia, C. Heissenberg, R. Russo et al. Physics Reports 1083 (2024) 1-169

with & now given in Egs. (3.192), (3.185) (instead of (3.176)). For b > I(s), 8 is Hermitian and thus S is unitary.
This result was first obtained in [10] by proving the exponentiation of the tree-level string scattering amplitude. An
elegant rederivation [272-275] follows from considering the quantization of one string in the Aichelburg-SexI metric (see
Section 2.3) produced by the other string. The corresponding classical action takes the form of (4.100) with g, now given
by (3.192). It is greatly simplified by choosing the gauge u = +/a’t which allows, thanks to the §(u) in (2.55), to carry out
the integration over t. This leaves just the o integral of the profile function f(x, (o)) of the transverse string coordinates
as in (3.192). Actually, the explicit form of the eikonal operator, including «’ corrections, allows one to reconstruct [273]
the generalization of the AS metric produced by the profile (3.191).

At a qualitative level we can estimate the importance of the string corrections by noting that the normal ordering in
§ produces, at the level of S, corrections to the eikonal phase of order ‘235‘320 €2 which are, naively, of relative order eg
with respect to 24 1tself The crucial point, however, is that some of these corrections are imaginary and thus cannot be
neglected as soon as i ifzo €2 becomes O(1). A simple calculation, using 28¢ in (2.25), shows that this happens at a critical
value of b —that we denote by b,- given by:

Gs Gs
bP—2 ~ ﬁzf > €072 for - > o (4.120)

with RP~3 ~ G./s. The above result can also be guessed from the two following qualitative physical arguments. One of
them goes as follows. The Newton potential acting on two points of a string at a transverse distance 2Ab from each other
is given by

D-3 RD 3
) = U(b+ Ab) — U(b — Ab) =2——Ab. (4.121)

b+ Ab

Taking the distance 2Ab of the two points on the string to be of order £;, and assuming that the two points move at the
speed of light, we can compute the difference between the two forces acting on them. The tidal forces start to be relevant
when such a difference is equal to the string tension times their distance £;:

RP-3 by SR 47Gs
ZﬁJE bf ~2— ! h

pb-2

U(b £ Ab) = <

s~ Tl = ~ 4o’ Gs ~ % (4.122)

t

where we have used that R° ~ G/sand T = 5.

Alternatively, (4.120) can be obtained by con51der1ng how the different bits of one string (say the one of energy E;)
suffer, as a result of the metric produced by the other string (of energy E,), slightly different deflection angles. The spread
A® of these deflection angles is roughly:

AB; ~ %% = GEp4h*P. (4.123)
Such a spread corresponds to an invariant excitation mass AM; ~ E;A®; ~ GE{E»£b*>~P. Requiring AM; ~ M; (the mass
of the first excited level) leads to the same estimate (4.120) for b, after using s ~ E{E; as in (2.60).

Quantitatively, the phenomenon is described by the same gravi-reggeon vertex operator defined in (3.166), acting now
on both external strings. After exponentiation of the tree-level amplitude in b-space, the resulting S-matrix is explicitly
unitary within a Hilbert space containing just two-(massive or massless) strings. We just stress here that, although single
gravi-reggeon exchange can only excite a small number of string oscillators, the full S-matrix (4.119) will populate a large
number of excited states. Some details of this S-matrix have already been discussed in Section 4.2.2. We just mention that
the elastic amplitude gets suppressed as a result of the opening of the inelastic channels. One finds:

Gs 552

_Gs %5 b, _
Al ~ e T 07 ~ e3P 1, (b by). (4.124)

The exponential suppression of the elastic amplitude for b < b; implies, by unitarity, that inelastic final states,
consisting of two tidally excited strings, are copiously produced. The differential cross section do /(dM; dM;) for producing
two massive strings of mass M; and M, (summed over the degeneracy of each mass level) was studied in [ 10]. Interestingly
enough, the cross section starts growing like the (exponential) degeneracy of each mass level as if all states of a given mass
were democratically produced. However, such a growth stops when M; ~ Ms(b,/b)°~2. The distribution has a maximum
around that value of M;; and then falls off as a Gaussian.

A much more detailed analysis of the tidal excitation spectrum was made in [232] for the case of string-brane scat-
tering. This shows how the apparently incoherent sum of different contributions actually comes from a unitary evolution
of the system. Indeed, each gravi-Reggeon exchange induces elementary transitions obeying very simple selection rules
while the final spectrum takes its apparently statistical form as a consequence of the eikonal exponentiation.

In the above discussion we have not considered graviton (and other massless particle) emission, a topic discussed in
the following sections in the point particle limit. As one lowers b, radiation phenomena become important and things get
increasingly complicated. The parameter controlling the importance of radiative corrections, relative to the leading order
deflection, is formally (R?/b?)?~3 but, once again, they become relevant as soon as their contribution to the imaginary
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part of the eikonal phase becomes O(1). A naive estimate of the critical impact parameter b, at which this happens is
given by

2(D-3)
9b4 D <R> ~1, ie. b > Rfor gbf‘D > 1. (4.125)
h b, h
This is a fair estimate of b, for quantities that do not suffer from infrared divergences which is generically the case
for D > 4. For D = 4, instead, many quantities are infrared sensitive: for instance, the elastic amplitude goes to zero
together with the IR regulator. The estimate (4.125), however, should still apply to infrared safe quantities, such as the
total radiated energy. Comparing now b, of (4.120) with b, of (4.125) we see that which kind of corrections comes first
as one lowers b, depends on D and on the ratio R/{s: as shown in Fig. 12, radiative corrections take the upper (lower)
hand at small (large) D. In any case the above discussion would imply that, in going towards b ~ R, we cannot keep just
the string-size corrections and neglect the classical radiative corrections. Unfortunately, to this date, no calculation taking
both corrections simultaneously into account is available.

Fortunately, a big simplification occurs if we lower b as much as we want while keeping R < ¢; (thus entering region
Il in Fig. 12). In this case, string-size effects should replace the expansion parameter R?/b? by R?/(b?® + €2) < R?/€2 < 1
justifying a perturbative (yet stringy) approach.® This amounts to saying that string-size corrections shield the bad
short-distance regime of local quantum gravity.

Let us list now the most significative results in this string-gravity regime:

o The classical deflection angle reaches a maximal value ®,; given by

GA/S
m ~ (R/Is(s)° > ~ % (4.126)
Is7(s)
which is reached for b ~ Is(s), i.e. when the two strings graze each other. This result simply comes from the smooth
behavior of the stringy eikonal at small b, Eq. (3.193). Indeed, taking the derivative of Re 2§ with respect to b, one
obtains (see (3.195)):

8G/sb
(D—2)7 7 P(s)
which grows monotonically with b. It reaches the above-mentioned maximal value at b ~ Ii(s) before starting to
decrease according to the second equation in (3.195).
e For ® > ©®) there is no real saddle point in b and, as a result, the elastic amplitude is exponentially suppressed. In
order to find the actual damping of the elastic amplitude one has to find the dominant complex saddle point. This
was done in Ref. [13] of which we give below a more streamlined version. Let us rewrite (3.186) in the form:

Gs(b?)*7" D—4 o0 _
2605, b) = =X DLZ F( )—f dte't’T 1| 5 Y. =[(s)— ima . (4.128)
2 b2

Yo

e =

- b <« Is(s), (4.127)

T2

The first term is the field theory leading eikonal for the scattering of massless particles. It is easy to show that, after
adding to it the tidal corrections, such term cannot provide a relevant complex saddle point. This can come, instead,
from the second term, denoted by 280 , Which contains string-size (i.e. finite-beam, see (3.191)) effects. Indeed, at
large complex values of b (i.e. at |b|* > 1(s)), 28(5) can be exponentially enhanced. Its large |b| behavior is easily
obtained by integration by parts and reads

D
_ Gs )7 b2\ *t2 Gs _p?
28s.b) = — =0 e < ) =5 5% " (4.129)
Tz Ye 7’7 b2 Y2 -
We can now go back to the amplitude in momentum/angle space by a standard Fourier transform. Keeping ® <« 1
and fixed we get:
D4 37% _ b=

Als, ©) = / dP-2p =07 gmiGsn 2 b7y 2o Ve (4.130)

Looking for a (complex) saddle point gives the equation:
b2

1 a 1
/s 2Gs YZe ¥ s _n [ 4y2 G/s
7@: P =7@Me Ye — | . @MEIDT. (4.131)
TZ y. 7 p, b 2 (s)

36 This is still a physically motivated guess leading, as we shall see, to very sensible consequences. It would be interesting to have further explicit
checks of its validity.
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It is now clear that for ® > ®), the saddle point has to be predominantly imaginary and with a negative imaginary

part in order to produce damping. Writing b; = —if; the previous equation becomes:
1 1
e 4 Y2 B ( e ) B2 4Y72
—l = —e Yo — log —l s g — . (4.132)
Oun D 4 ,Bs On Yc /357-[ %

The last term is subleading for large values of \f—% and thus we get:

1 ® i ® i
=Y?,/lo - — = b;=— .
Bs ¢ g On ) s )
Inserting this saddle point in (4.130) we find that the first exponential dominates over the second one by a
log % > 1 and arrive at the final expression [13]:

(4.133)

—_

A v2 in /5 s 1
A, ) = [ Apy| ~ ¢ 2 OCNVBE T L Ok loe g (4.134)

Taking into account that %‘” ~ g2 <« 1, we can also approximate (4.134) by

_ s 7 aols -2
| Ay | ~ e~ OV loglg)logs ™ (4.135)

The parametric form of the suppression is consistent with the behavior found, using a completely different method,
by Gross-Mende-Ooguri (GMO) [9,11,14] in the overlapping kinematical regime in which @ is small and kept fixed
at small g;. We recall that the Gross-Mende approach [9,11] is based on the behavior at high-energy, fixed-angle, of
the elastic (closed) string-string scattering amplitude at each loop level, generalizing the original tree-level (open
string) result in [276]. This regime exhibits an exponential damping of the amplitude:

AC(S, Eiree ~ gze’*sf(o) f(©) = —sin? % log sin? % — cos? % log cos? % >0. (4.136)
This tree-level behavior is in tension, at least at small ®, with expectations based on classical gravitational deflection
which would suggest an unsuppressed amplitude at high energy. Thus, at fixed angle, one is actually in the opposite
situation with respect to the fixed-t large-s behavior where, as already mentioned, the tree-level result is too large
to be compatible with unitarity bounds. We have seen how the eikonal resummation of loops in that kinematical
regime is capable of restoring unitarity bounds. Similarly, loops also come to the rescue at fixed angle. As shown
in [9,11], loop amplitudes, in spite of being of higher order in the string coupling, are enhanced, relative to the tree:

o'sf(@)

A, Oh—toops ~ g2 e ™ A1+ | (4.137)

where the milder exponential overcompensates the extra powers of g; at sufficiently large s. That means, of course,
that the perturbative series diverges at high energy and that a non perturbative resummation is needed.

In [14] it was shown that, in a finite high energy window, such a divergent series can be Borel resummed. It is
precisely in such an energy window that we can compare the result of [ 14] to the one based on the leading eikonal
in the stringy regime at small deflection angle. One finds quite an amazing agreement between the two results:

s a5 o 2 oatz )
Ancr| ~ e Vo loa e onte ) gyo| ~ ¢V 5 O los G onis ) (4.138)

where the second equation follows from Eq. (3.31) of [14] (which uses units in which ¢’ = %) for small ®:

| Acuol| ~ e~V 2/ (@) logle™) (4.139)
The difference (a log( % ) replacing a log(iz)) is already apparent in the transition between the fixed-t ((°f s )aT with

o's 52
L3 92|
t = —ssin® 5) and small fixed-® regime (e 8 o7 log 02 ) at tree level. Let us stress that the above damping in |Aacy |

is only reliable in the stringy regime and has to be modified at higher energies when gravitational radiation further
damps the elastic channel. Such effects are also (presumably) neglected in the GMO approach. Furthermore, the Borel
resummation leading to |Agyo| could only be ju4stiﬁed in a finite energy range. In Eq. (3.31) of Ref. [14] is claimed

to be valid in the window logg; % < s/M2? < g; °

e The impact parameters that can be actually probed at high energy at fixed @ never go below the string-length scale.
Indeed, for ® < ®), one finds two real saddle points in b, one above and one below ¢, but the former is found to be
the dominant one [13]. On the other hand, as we have just seen, for ® > ©®,, the imaginary saddle point (4.133) too
has an absolute value larger than £;. All this suggests an effective generalized uncertainty principle (GUP) holding
true in string theory and reading [13,277-279]:

h
AX > 5+ o AP > 2J/a'h = 2. (4.140)
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e Let us now turn to the consequences of exponentiating the full tree-level string-string scattering amplitude including

its imaginary part given in (3.194) at b < I,(s).3” This problem was already addressed in [10], was further analyzed
in [280] (see also [281]), and was also used more recently in [282].
The basic point is how to interpret the imaginary part of the exponentiated scattering amplitude at a fixed loop order
in terms of its s-channel cuts through the exchanged Reggeized gravitons. Fortunately, old work by Abramovsky,
Gribov and Kancheli (AGK) [283] (see also [284]) provides very simple “cutting rules” for the relative weights when
cutting m out of the total number n of exchanged gravitons at (n— 1) loop order.>® These rules (when directly applied
in impact parameter space) tell us that the full imaginary part of the n-graviton exchange graph is the result of a
contribution

(4Ims)"

o = (=1 m!(n — m)!

, n=12,..., m=1,2,....,n—1,n (4.141)

due to cutting m out of n gravi-Reggeons, and a contribution
4Imd)"
oy = (—1)”% — 2ReS™ n=12,..., (4.142)
n!

when no gravi-Reggeon is cut, where S is the full n-gravi-Reggeon exchange contribution to the S-matrix. As the
symbol o, indicates, these are also to be interpreted as cross sections into inelastic channels with m cut gravi-
Reggeons (i.e. m closed strings). It is trivial to check that, for any given n, the sum of all contributions from m = 0
to m = n gives back twice the full imaginary part of T™ = i(1 — S™), as it should.

In analogy with what was done for the description of tidal excitations, we shall again promote the eikonal phase to
an eikonal operator [280] acting on both the tidally-excited pairs of strings and, at a more “coarse-grained” level, on
a Hilbert space labeled by the number of cut gravi-Reggeons. A new unitary S-matrix reproducing the AGK cutting
rules takes the form:

S = exp(il) , (4.143)

where the Hermitian operator Iis given by:

I=(@ 48+ =2i5 -8ty Cc+ch)y=1T, (4.144)
and the operators §,8%, C and Ct satisfy the commutation relations
[c.cl1=1, [5,8"1=[C,81=[C,8"1=0. (4.145)

Using well-known harmonic-oscillator formulae, Eqgs. (4.143), (4.144) lead to the more convenient form:

S — eZiSei«/fzi(stlf) CTei\/72i(r§73T) c (4.146)

Eqs. (4.144), (4.146) imply that, as long as § is real (i.e. for b > I(s)), Sjs essentially Hermitian, the oscillators
C, Ct are turned off, and one recovers the unitary S-matrix (4.119) with § given by the usual recipe (3.192). On
the other hand, as one goes to values of b of order I(s) or lower, § in (3.131) picks up an imaginary part and
consequently (4.119) is no longer unitary, signaling the opening up of new channels. These correspond to unitarity
cuts going through the gravi-reggeons themselves. In order to recover unitarity we should further extend the Hilbert
space by including, in the final state, whatever goes on shell after cutting the gravi-reggeons. A detailed account of
this “whatever” being unavailable, we limit ourselves to counting the number of such gravi-reggeons through the
number-counting operator Ne = CTC.

Indeed, from (4.146) one can calculate the average number of heavy strings produced. For Im 2§ of Eq. (3.194) of
O(1) or smaller, i.e. for \/s < Msgs‘l, a single closed string carrying the whole center of mass energy is formed.
Instead, in the energy interval Msgs‘1 < /S < Msgs‘2 the average number of produced strings grows like Im 26,
i.e. like s. Consequently, by energy conservation, the average energy of each produced string decreases like 1/4/s.
More precisely:

MZg;?
=

As one approaches the supposed threshold of black hole production s ~ Mg~ 2 the most probable final state will
consist of g;2 strings of energy M; = % which appears to be consistent with a smooth transition to a Hawking-like
behavior in which the Hawking temperature matches the Hagedorn temperature of string theory and the string
entropy matches the Bekenstein-Hawking entropy of a black hole of radius ¢;. Unfortunately, the approximations
made cease to be valid when the energy going across each cut Reggeon goes below the string scale.

(Ey ~ (4.147)

37 Interestingly, as b — I(s), the imaginary part due to tidal excitations “saturates” and becomes of the same order as the one due to formation
of s-channel resonances.

38 Given that the topology of the diagram is that of a sphere with (n — 1)-handles, any value of 0 < m < n is allowed.
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e Comparatively less work has been devoted to the study of heavy string scattering. An exception can be found in [285]

where one considers the high-energy collision of a light/massless string on a heavy one (with the energy of the light
string smaller than the mass of the heavy one). The idea is to take the heavy string mass to lie as close as possible to
the so-called correspondence point, M = Msgs‘z, where fundamental strings and black holes share many properties,
including their entropy ~ gs‘2 > 1 (see [286,287] and references therein).
One then checks whether the probe string can be sensitive to properties of the heavy one other than its mass or spin.
One finds that, at least below the corresponding point (where the heavy string’s Schwarzschild radius is smaller than
£s), the light strings is also sensitive to the quadrupole moment of the heavy string, which therefore acts as some
kind of “quantum hair”. If that feature would persist all the way till the correspondence point, and possibly beyond,
this would imply that some quantum hair can be detected for stringy black holes. Unfortunately, this conclusion
cannot be reached on firm grounds since the approximations used become unjustified precisely as one approaches
the correspondence point.

5. Unitarity and radiation-reaction

Radiation reaction effects are contributions are due to the effective force acting on the system as a result of the emission
of gravitational waves (and of additional massless modes, in the supersymmetric case). Intuitively, as the two colliding
objects deflect due to the mutual “potential” attraction, they emit energy and angular momentum due to Bremsstrahlung.
This in turn further bends their trajectories, giving rise to dissipative terms in the eikonal. This reflects in additional
contributions to the deflection angle, which appear to lowest order at two loops (3PM). This chapter and the next
are devoted to the calculation of these interesting new effects. While in the next chapter we will derive them from a
complete two-loop calculation of the elastic scattering amplitude, in this chapter we follow very closely the approach of
Refs. [47,106] and obtain them by combining the contribution to the unitarity relation of the three-particle cut, involving
two massive particles and a graviton, with the properties of real analyticity and crossing symmetry of the elastic scattering
amplitude. We apply this method to both GR and massive A/ = 8 supergravity. In particular, to obtain the radiation-
reaction we do not need the complete three-particle cut, but only the part that is divergent as g that is obtained from
the five-point amplitude involving four massive particles and a graviton keeping only the leading term in the Weinberg
limit of small graviton momenta k* — 0, which behaves as % with o = k°.

The chapter is organized as follows. In the first section, starting from the unitarity relation, we discuss the two-particle
and three-particle cuts in momentum and impact-parameter space. In the second section we explicitly compute Im 25,
for both GR and massive A/ = 8 supergravity. Finally, in the third section, we discuss the constraints of real analyticity
that relate this imaginary part to the radiation-reaction effects.

5.1. Unitarity in momentum space and in impact-parameter space

The unitarity of S = 1+ T, i.e. STS = 1 translates to
—iT+iTt =T'T, (5.1)
whose matrix elements between states |a), |b) yield
— i(27)°8(Pa — Py) (Ma—sb — Mprq) = (bITT|a). (52)
Inserting a complete set of free states on the right-hand side and restricting to P, = P, then gives

—1i (Maab - ﬂbaa) = Z(ZN)D(S(PQ + PI)MaaIﬂbel 5 (53)
I

where the sum includes Lorentz-invariant phase-space integrals over all the intermediate states j € I and, in general,
sums over their spins/helicities. Since we will focus on the case in which a — b is an elastic 2 — 2 process for (real)
massive scalars, for which the amplitude is a function A(s, t) of the two Mandelstam invariants (1.22), we have

2Im Map = ) (270 )°8(Pa + P)Mams Moo (54)
I

Let us write,
Im A(s, t) = Imypc A(S, t) + Imzpe A(S, t) + - - (5.5)

and discuss each cut separately (see below). Taking the Fourier transform of (5.5) according to (1.32), and noting that
FT[Im A](s, b) = Im FT[A](s, b) because A(s, —q?) is a symmetric function of g, we get

Im FT[.AI(s, b) = Imypc FTLAI(s, b) + Imspe FTLAI(s, b) + - - - . (5.6)
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5.1.1. Elastic unitarity
The elastic contributions come from the two-particle cut

Physics Reports 1083 (2024) 1-169

2Imypc A = / d(LIPS); AL A% (5.7)
(where L. and R. stand for “left” and “right”) or in the pictorial form
p1 ==y P == e e e 2
’/ \\ I/ \\ ’/ \\
21myp. ] 3 = / d(LIPS), o e (5.8)
\\ /I ‘\ /I \\ //
D2 H\\‘T'/ﬁPB D2 —< // = \\,/H D3

with d(LIPS), the Lorentz-invariant phase space measure for the intermediate two-particle states. For simplicity, we do

not consider inelastic 2 — 2 processes for the time being.

Let us now check that the impact-parameter Fourier transform diagonalizes this two-particle phase space convolution.
We can start from (5.8) and go to impact-parameter space via the Fourier transform for the 2 — 2 process (1.32). When

applying this Fourier transform to both sides of (5.8), we obtain

d’q '
2 Imyy FT[A] = / (Zn;[, 2m8(=2p1 - 1 + 12780202 - g1 +q3) 1 D
D2 —<
=Py
qu . 'I \\
8 / o 2m8(—2p1 - q+ @ 278(2p - q+ )™ | 1 [[a- @
(ZJT)D \ /'

Then we change integration variables according to ¢ = q; + ¢} and use

8(=2p1 - q1 + q¢3)8(—=2p1 - g+ ¢°) = 8(—2p1 - g1 + 41)8(—2(p1 — q1) - 4 + q7)

and similarly
82p2 - 41+ a1)82p2 - 4+ 4°) = 8(2p2 - 1 + 4Oz + a1) - 4 + a7)
which hold thanks to the properties of the delta function. Then we get,

d°q,

(27T)D 2m8(—2p1 - q1 + q%)2n8(2p2 Sq1 + q%)eib'ql

2 Imyy FTLA] = /

D2

D ./

d
E

(2m)P

278(—=2(p1 — q1) - 45 + ¢2)2782(p2 + @1) - G + g?)e N

=
(5.9)
(5.10)
(5.11)
<= (1 — D1
!I \|
\ ‘hT }
e Ty )
(5.12)

\
\
[d; |
1

/
’

——=D3

As shown in Appendix A.3, the Fourier transform FT[.A] differs from the linearized one .4 employed in the definition
of the eikonal exponentiation (4.1) by G-independent corrections suppressed by 1/b* (more precisely, by powers of the
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dimensionless quantity 1/(pb)?), and thus we arrive at

- ~ 2 1
2Imypc A = | A(s, )| (1 +0 <b2)) . (5.13)
Using the eikonal exponentiation (4.1) on the right-hand side we find
- . 1
2Imyp A = [[1+ 2iA(s, b)]e**P) — 1|2 <1 +0 <ﬁ>) ) (5.14)

We can expand this in G to obtain various constraints. To leading order in G, of course we get that the tree-level amplitude
is real

21Imypc Ag =0 (5.15)
and hence the leading eikonal is real,
Im28, = 0. (5.16)

To first subleading order in G, i.e. O(G?), we get

2Imype Ay = (280)° (1 +0 (;2)) : (5.17)

This is the first interesting constraint, since it reveals that the imaginary part of the one-loop amplitude up to O(1/(b?)'~2%¢)
is exhausted by the eikonal exponentiation. In this way, this constraint ensures that 28 is real

Im28, =0, (5.18)

while in general 2A1, being of the same order as the corrections in the right-hand side of (5.17) can itself develop
an imaginary part. Additionally, Im 2A; receives contributions from inelastic 2 — 2 processes, e.g. from intermediate
two-gravitino states in supergravity.

To O(G?), we find instead

- 1
[mzpc Ay = (280 25] + 280 RCZA]) <1 + O <7>> . (519)

b2
Therefore, the imaginary part of the two-loop amplitude due to the two-particle cut up to O(1/(b?*)*/>=2¢) is exhausted
by the exponentiation. On the other hand, the imaginary part of 2§, is not captured by the two-particle cut. By power
counting in G, it must be due to the three-particle cut,

Im 28, = Imsye Ay, (5.20)

which we shall illustrate in the next subsection.

Before proceeding, for illustrative purposes, let us explicitly calculate the b-space contribution of the two-particle cuts
to order G%. We start from Eq. (5.12) and consider the situation in which the amplitudes appearing on its right-hand side
are the tree-level ones, i.e. such that

do 1 ap F(—E)

Ao(s, —q*) = —,  Ao(s,b) = 280(s,b) = — — : 5.21
o(s, —q°) p o(s, b) o(s, b) AEp 4n (xb?) (5.21)
We retain here a generic g-independent prefactor ao, for the sake of generality; for instance

ap = 327 Gmim; (0% — 575-) (5.22)

for collisions of minimally coupled massive scalars in GR. We start by evaluating the Fourier transform in the second line
of (5.12). We can write rewrite it as follows

qu/ , , -
/ (271)1‘7 278(2p) - 4y — 47 27 8(2p) - qy + q7)e™ N Ao(s, —q7)
(5.23)

_ [ P4, 5(2p., - ¢, 2782, - ¢ e L2

= (Zn)Dn Py - qy)amol4p; - q)e qu
where we have introduced the notation p} = p1 —qy, p, = p>+q; and we have used the fact that any correction involving
positive integer powers of q/f, such as those due to the application of Eq. (A.40), can be neglected because they give rise
to contact terms in b. At this point we may use (A.44) and (A.45) in the familiar way, up to an important point: the result
only depends on the projection of b* orthogonal to p; and p) (and not to py, p2), so that

qull w o Ao 1 a F(—G)
278020, - ¢ )2782p, - ¢ et — = — — 7
/ @y OB TOCR TR o = G b
74

(5.24)



P. Di Vecchia, C. Heissenberg, R. Russo et al. Physics Reports 1083 (2024) 1-169

where b'(g;)? is the square of such projection,

1
b?(q1) =b* — ?(b Sq1)?. (5.25)

At this point we can substitute back into (5.12), taking again into account that any positive integer power of q% can be
safely dropped, so that
dq i do 1 a I'(—€)
2ImFT[A4,] = / — L 278(2p1 - q1)278(2ps - q1 )N | S || —— ———2 . (5.26)
(27 )P q7 | L 4Ep 4m (wb*(q1))~
In this step, we need to expand (5.25) appearing in the second factor to subleading order for large b. This term also
depends on gy, which manifests the lack of complete factorization, if such subleading terms are taken into account. In the
end, using (A.45) and its derivatives with respect to b*, one arrives at

1=26)[ 1 a F(1—e)] o
W[@E?] +o(b). (5.27)

To summarize, the FT of the two-body convolution of the tree-level amplitude is the product of the FT only to leading
order in 1/b?, while this factorization receives corrections to first subleading order. On the one hand, here we calculated
it using the properties of the Fourier transform under considerations to achieve the “almost factorized” form (5.26). On
the other hand, in Eq. (6.111) below we provide an expression for the two-particle convolution accurate to leading and
subleading order in g%. One can verify that, using (A.40), taking FT of (6.111) one indeed recovers (5.27).

2Im FT[.A] = [280(s, b)]* —

5.1.2. Inelastic unitarity
The first inelastic contributions come from the three-particle cut of the 2 — 2 amplitude .A. This is obtained by “gluing
together” two copies of a 2 — 3 amplitude
==y
’/ qlT \\
! \
AP(py, pa, q1, G2, k) = Lk (5.28)
\ ‘bl !

\

D2 — \\»7‘—4; k2

where blue and green lines represent classical states with masses m; and m,, while massless lines are drawn in black.
The drawing inside the dashed bubbles does not represent a specific topology, but just provides a visual help to recall the
definition of the g; variables, such that

G1+q+k=0. (5.29)

We will discuss momentarily on the precise form of the product of five point amplitudes appearing in this gluing, which
of course involve index contractions with appropriate projector insertions. For the moment, let us write it schematically
as

21msp A = / d(LIPS) A AP (5.30)
(where L. and R. stand for “left” and “right”) or in the pictorial form
p1 ==y P == s e
’// \\\ ”/ Qﬂ \\\ ”/ TQ4 \\\
21msp. L] 3 = / d(LIPS) ! k| S ) (5.31)
\\\ ,I \\\ qu /, \\\ lq3 /I
P2 — \T’/——>p3 P2 —= ,/—>k2 = \\‘//*) P3
where
Pk 0verp2y 4 ki 0vs( 1,2 2 ) 2
d(LIPS) = P 27 6(k™)5(k )(271)0 2 0(k7)8(k7 + my)2m6(k;)8(k; + m3) (5.32)

is the Lorentz-invariant phase-space measure for the intermediate states. Using momentum conservation we can retain
only, say, k and k; as independent integration variables in the measure.
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We enforce the classical limit as follows. As by now familiar, we assume that the momentum transfer ¢ = p; + p4 for
the full 2 — 2 process be small compared to the momenta of particle 1 and 2, depicted by thick colored lines in (5.31),
so that to leading order

p1~ —mus +0(q) ~ —ki,  p2~ —malx +0O(q) ~ —kz. (5.33)
By momentum conservation, this is tantamount to assuming the scaling
g1~ g2~ k~0O(q). (5.34)

We thus take the momenta q;, and k to be simultaneously small, of the order of the elastic momentum transfer q.
Equivalently, reinstating momentarily f, this can be regarded as a formal i — 0 limit in which the wavenumbers q; ,/h
and k/h are held fixed. Eq. (5.34) expresses the soft-region scaling that we discussed when evaluating loop integrals and
is justified by the fact that it captures all non-analytic contributions in g?. It also allows us to simplify the integration in
a similar way as before. Using q; = p; + k; and k as independent integration variables simplifies the LIPS measure as
follows to leading order in the scaling (5.34),

d°k dP
d(LIPS) ~ 270K (K2 —L 2 8(2p; - 1)278(2p3 - (g1 + K)), (5.35)
(2m)P 2r)P
and leads us to adopt the following routing
P =———=Da P == S Pa
! ! ! QIT ) ! Tq - (\]1
2 Imgp, Loq] } = / d(LIPS) \ =k = } (5.36)
) —q—kl v k-t
D2 H\»ﬁm D2 H\d/ﬂ = \»,/H D3

for the integrated momenta. Since the massless momentum k will mostly remain as a spectator in the following
manipulations let us also introduce a shorthand notation for its on-shell phase space integration,

. dk Overi2
/sz(zﬂ)DZnG(k 15(k2). (5.37)

Our basic ingredient (5.30) will be the 2 — 3 tree-level amplitude in Eq. (3.1) of [104], which had been obtained
from the low energy limit of a string amplitude in a toroidal compactification. In this way it naturally includes the
contributions of the dilaton, of vectors and scalars arising in the Kaluza-Klein compactification, and of the graviton. To
include all such contributions simultaneously, we find it convenient to formally promote all spacetime indices u, v, ... to
10-dimensional ones M, N, . . . according to conventions specified below. The tree-level contribution to .A®® in the classical
limit reproduces the result of [123,127,288] and can be then written in the following convenient form,>’

(SN 3 pi'pY(k-q1)  pYpY(k-q2)
AP = (87G)2 { B | — —= — —
(p1 - k)*q; (D2 - k)*qy

L@ @ @) py (@ = @) (@ - 3)”
2(py - k)q5 2(p - k)q;
L@@ -a)M) ((p1 - k)p3' — (p2 - k)PY') ((p1 - K)PY — (P2 - K)DY)
26343 el (5.38)
apipl i — 2(ppl + i) 4plipY (2L — 2(pYpY + pYpY)
+ (2p1 - p2) > + 5
qZ q]
+(q1 — @M (=2(p1 - KPS + 2(p2 - K)PY) + (g1 — @) (—2(p1 - KDY + 2(ps - k)pﬁ”)) }
242
a3

the quantity B is defined in (5.41) below depending on the theory under consideration. The main feature of (5.38) is
that it satisfies kMAE)S)MN = kNAE)S)MN = 0 for arbitrary values of the free index, which makes the calculations in general
dimensions easier [48,258]. Notice that the terms proportional to 8 and the remaining terms are independently gauge

invariant. It is also symmetric in its two spacetime indices, ABS)MN = ABS)NM.

39 The full theory also allows for other 2 — 3 processes involving fermionic external states. However, these would yield contributions that are
subleading in the limit of small momentum transfer.
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When focusing on A/ = 8 supergravity, we choose the fo
pY = (p{;0,...,0,0,m),
where p‘]‘_2 are (4 — 2¢)-dimensional momenta and the dots

M =();0,...,0,0,0), p¥=(ps;0,..,000

p¥ = (p4;0,...,0,my,0),
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llowing 10D kinematics [106]%0
(5.39)
stand for 2 + 2¢ zero entries. In contrast, in the case of GR,

). (5.40)

The momenta k and q’l"fz are always non-trivial only in the 4 — 2¢ non-compact directions so that they effectively
coincide with k* and g} ,, e.g. g/ = (q}:0,...,0,0,0). Another difference between A" = 8 and GR is related to the

contribution of the dilaton as an internal state exchanged be

tween the massive objects. This exchange can only occur in

N = 8 supergravity, while for GR the contribution of the dilaton has to be subtracted. This can be taken into account by

specifying the parameter § as follows in the two theories,

).

Let us now describe more precisely how the A/ = 8 super:
cases, the kinematics is dictated by the momentum flow de

1

N=8
ﬂ D-2

2.2 2 GR 2.2 2
=4mimic®, BN =4mim; (o? —

'AE.,S) = A(p1, p2. k1, ka, k),

5
AL = A (py, p3, —

(5.41)

gravity and GR amplitudes enter the integrand (5.30). In both
picted in Eq. (5.31), so that

ki, —ky, —k). (5.42)

Index contractions are instead theory dependent. In the maximally supersymmetric case, we simply work in M, N, ...
indices and saturate the Lorentz indices with the Minkowski metric, contracting the two amplitudes according to

5 5 5)MN 5)*%RS
AP AT = AT g s AT

(5.43)

because in this case the amplitude .A®MN is transverse and traceless. As already stressed, the advantage of this trick is

that it effectively encompasses graviton, dilaton and Kaluza-

/L, v, ... indices and on the top of this we need to subtra
contraction
AT

5 5 5
AE_)A;)* = AE‘ v [nll,,onl)(r - ﬁnp,unpg]

The structure within square brackets arises from the trans

I, o (k). Explicitly, for any reference null vector r#, letti
can construct this projector according to

P (k) = % (I*° e + I — 2 e

The transversality condition k, A®*” = 0 then turns (5.45)

Klein vectors/scalars at the same time. For GR we work with
ct the contribution of the dilaton, and thus we employ the

(5.44)

verse-traceless projector over physical degrees of freedom
ng AH —r#/(r - k) and 1"’ = np*¥ + A*kY 4+ AVk", one

(5.45)

into the combination within square brackets in (5.44), which

is the one appearing also in the de Donder propagator, simplified by using A" = A®* We will use (5.43) and (5.44)
as a convenient shorthand notation to suppress explicit index contractions between 2 — 3 amplitude also in Section 8.
We can now start from (5.36) go to impact-parameter space via the usual Fourier transform for the 2 — 2 process

(see Appendix A.3)

/

In the remainder of this section, we need not worry about

dPq

(2m)P

278(2p1 - q)278(2p; - ) e

will be working to leading order in ¢ ~ 1/b. When applyin

integration variable by letting ¢ = q; + q4. After doing this,

3(p1 - q1)3(2p1 - q) = 8(p1 - q1)3(2p1 - (g1 + q4)) = 8(p1
and similarly

8(p2 - (g1 +k))8(2p2 - q) = 8(p2 - (q1 + k))8(2p2 - (qa —

(5.46)

the difference between FT[.A] (A.31) and A (A.44), since we
g this Fourier transform to both sides of (5.36), we change
an important step is to use
- q1)3(2p1 - q4) (5.47)

k), (5.48)

40 For sake of simplicity here we focus directly on the case ¢ = 7 in the notations of that reference.

77



P. Di Vecchia, C. Heissenberg, R. Russo et al. Physics Reports 1083 (2024) 1-169

which hold thanks to the properties of the delta function. Then we get,

/ q]T \

- dP . !
21“‘3"“4:/ / B oors2py - q1)2m82ps - (g1 + K)ePn | =
k (ZJT)D _q;\ _ kl h

R s
R

- pe 1" (5.49)
e
dDQ4 ib-q4 i \]
X 5278(2p1 - q4)278(2p; - (qa — k))e iy '
(2]7:) < lk
\ —fla

=~———— D3

We may reinterpret the 3 — 2 amplitude in the second line as a 2 — 3 one by flipping all external momenta and relabel
qs = —q, in the integration. Since moreover to leading order p, >~ —p;, p3 = —p, We can write

5 dD ) I \
21Imszpe A = / _/ a 278(2p1 - q1)278(2py - (q1 + k)P L =
k (27)° k'eqil ) ¢

—k'—q

D2 — \\‘Tﬁ
I _ . (5.50)
dD / rl ql]T k
X / qlDzmxzp1 - q,)278(2p; - (¢ + k))e T
(27’[) _k\ q/l i
— 44 ,

PR s

In this equation, the two quantities appearing within square brackets are equal to each other and can be identified as
the Fourier transform of the five-point amplitude, .A®). Of course, (5.50) only fixes the definition of .A®) up to an overall
phase, which would of course cancel in the product A 45, In order to treat the two momenta q; and ¢, on the same
footing, it is natural to define

P1 ;/4;\; k]

/ \

/ q1T \\

. dP iby-qy+i |
A= / G gp 27021 02mOCp, gt =k (531)
‘\ Cbl /I

P2 — \\»ﬁ kz

with b* = by — bS and of course q; 4 g2 + k = 0 as indicated in the figure. We shall come back to this Fourier transform
in Section 8. As we shall see, this is indeed the appropriate Fourier transform to leading order in the PM expansion. We
have thus related the imaginary part of the b-space 2 — 2 amplitude to the integral over the massless particle’s phase
space of the product of two b-space 2 — 3 amplitudes,

21m28; = 2Im3yc A = /A“) A (5.52)
k
Let us recall that index contractions are left implicit and can be restored by using (5.43) for A/ = 8 supergravity and (5.44)
for GR.

To conclude, we have discussed how the imaginary part of the amplitude in b-space arising from the three-particle
cut can be calculated in two different ways. The first is to calculate the three-particle cut (5.30) in momentum space and
then take its Fourier transform at the very end. The second is to first take Fourier transforms of the five-point amplitudes
via (5.51), contract them as in (5.43), (5.44) and integrate over the graviton phase space, according to (5.52). The former
method is more powerful as far as loop integration techniques are concerned. The reason is that, in momentum space, one
can interpret the phase-space delta functions as “cut propagators” and apply the full machinery of master integrals and
differential equations for two-loop topologies. The latter makes the interpretation of this imaginary part more transparent,
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since (5.51) is actually the waveform, as we will discuss in Section 8, and as we shall see it is particularly useful when
studying the low-frequency limit.

5.2. Calculation of Im 24,

By the relation (5.52), it is easy to see that the divergent part of
Im 28, = Im3y A, (5.53)

can be obtained by only considering the leading term in the soft limit k* — 0 of the five-point amplitude in (5.38) that
diverges as % with w = k9, and that arises from the first two lines of (5.38). Since in this limit q; ~ —q,, the Fourier
transform (5.51) can be easily performed and one obtains the results summarized in Section 4 of [106]. In this way, one
obtains

G3( BN =82 2_9
(Im283) nr—g (b) = _% |:02 + ?;20_1); arccosh0i| + 0(9) (5.54)

for massive A’ = 8 supergravity, where V=3 is given in (5.41), and [289]

3( BGRY2 _e.2 o2
(Im 283 )gr(b) =~ 167 {8 50>  o(3-20?%)

0
2 Tb 0% — 17 3 07— 1)% arccosh a:| + O(€”) (5.55)
for the graviton contribution in GR, where SR is given in (5.41). We refer to Section 5.1 of [ 106] for more details on these
steps, while in this report we shall obtain Egs. (5.55) and (5.54) as special cases of a more general setup from Eqgs. (7.92)
and (7.106) below.
The complete expression for (Im2§,), including not only the divergent contribution but also the finite one, can be
obtained from reverse unitarity. In GR one gets Eq. (6.28) of [47]

2mim3(202 — 12G3

Im26, = 2 (aneyE)k
h? (02 — l)
1 o (202 —3)arccosho 8 — 552
x [ (—f + log(4(0® — 1))) ( ( ) + ? )
€ o2 —1 3
o (20% -3 252 — 1) (4c? — 1262 — 3
— (arccosh o )? ( ) (0 S0 o g ) (5.56)
o?—1 (1-202)
o (880° — 2400* 4 24002 — 97)
+ (arccosh o) 5
3(1-202)" Vo2 -1
0 (3-20%)  —1400° 4 2200* — 12702 + 56
+Liz(1—22)( )+ o 2200 — 1ot ]
o?—1 9(1-20?)
while in massive A" = 8 supergravity one gets Eq. (4.21) of [47]
16 2 263 4 b2y53e 1 2_2
Im28)=8 = — mymyC” o (rb%e™) o2+ CT(671)51rccosh<7
b2 (02 — 1) € (62 — 1)1
22
— log(4(c* — 1)) |:<72 + LI) arccoshai|
o =12 (5.57)
22
+ (=1 |1+ 0(073) (arccosh o ?
(02 —1)2
22
PG SRR P }
(02 —1)2

Notice that the previous equations have both terms that, at high energy, behave as (log o' )>. However these terms cancel
each others and one is left with an high energy behavior as logo in agreement with the analysis of [104] based on
analyticity and crossing symmetry.
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5.3. Radiation reaction from Im 26§, by real analyticity

In this section we follow the approach of Ref. [106] and using unitarity and real analyticity, we obtain a relation that
connects two terms of Im 24, to the radiation reaction contribution, Re 28§RR), of the two-loop eikonal. Such a relation is

i i 1
——Re 285 1 [1 +— (_7 + log(o? — 1))] Re 265, (5.58)
e b4 €
The part in the round bracket comes from the integral over the frequency of the graviton given by*!

wb
(b?) e / 4 o) (5.59)
0

w

where the factor (b%)~'*3¢ is precisely the one expected (also on dimensional ground) to appear in 28, and wb is an
appropriate upper limit on the classical dimensionless quantity wb. On the other hand, the integral over w produces a %
divergence in the particular combination:

/Owb d;w(a)b)’k = —i(&)* = —i + log wb + O(¢) (5.60)
To obtain an estimate of the cutoff wb, one can use (1.47) for single-graviton exchanges, according to which

DY al ~ P11l < IPalldal, P9 @51 ~ [Pz - G2l < [Pzl 12| (5.61)
and therefore

w=k°=—q?—q8s|q?|+|q3|s%|al|+%|az|. (562)

In the classical limit, |g;| ~ 1/b and thus wb is bounded by

— b1l 1pal
wbh="— +—/. (5.63)
b}l b3l
Using the explicit expressions (1.13), (1.15), (1.16) in the CM frame, one finds
wb=+vo2—1(14+0(c —1)) (5.64)

In this way we have obtained the term in the round bracket in (5.58). In order to obtain the last term outside of the round
bracket one must observe that, because of real analyticity, the amplitude between the two branch points o = +1 must
be real and therefore in this region the term in the round bracket should be log(1 — o). When we go from this region to
the physical region ¢ > 1 then we get

log(1 — 02 —i0) = log(c? — 1) — im (5.65)

obtaining Eq. (5.58) that allows us to determine the radiation reaction from the infrared divergent term of Im 26,. For GR
we obtain:

8GPm2m3(0? — 12 | 8 — 542 3202
Re 28RRCR(p) = 1My 2) o _al 01 ) arccosho |, (5.66)
hb%(o? — 1)2 3 (62 —1)z
while in the case of massive A/ = 8 supergravity one gets:
- 16G*m2m3o* 22
Re 2650-V=8(p) = 19| 52 olo 1) arccosho | . (5.67)
hb2(o? — 17 (02— 1)t

In conclusion, we have derived the radiation reaction from Eq. (5.52) and from the properties of unitarity and real
analyticity, without needing to construct the full two-loop amplitude. The arguments that brought us to the structure
in the round bracket of (5.58) are confirmed by the first two terms of the explicit results for Im 2§, given in (5.56) and
(5.57).

41 We need to keep D = 4 — 2¢ only for the integral over |T<| while the integration over the angular variables can be done for € = 0, so that
effectively d®'k = |k|° “d|k| sin6 d6 de.
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6. The 2-body eikonal at 3PM

The exponentiation pattern of Eq. (4.4), which we explicitly illustrated in Section 4 up sub-leading order, suffices to
eliminate all super-classical redundancies arising from tree-level and one-loop order. Thus, it allows one to extract from
the amplitude genuine classical information up to two loops, i.e. ©(G?) or 3PM order. The purpose of this chapter is to
perform this step explicitly. We will start by sketching the calculation of the two-loop amplitude in the classical limit, to
then check that super-classical terms cancel out consistently with Eq. (4.4) and finally obtain the 3PM correction to the
eikonal, 25,.

A novelty compared to lower loop-orders is the emergence of an imaginary part in the amplitude that is due, via the
unitarity relation, to the presence of nontrivial three-particle cuts, as we discussed in Section 5. At one loop, the imaginary
part of the amplitude is due to two-particle cuts only and is effectively subtracted in the exponentiation (4.4) at classical
level, so that 2§ is real and only the quantum remainder 2A; can develop an imaginary part. By contrast, at two loops, the
three-particle inelastic channels leave behind a nonzero (in fact, infrared divergent!) imaginary part of 2§, as in (5.20).
In ensuing chapters we will discuss a more systematic way to deal with such additional channels, restoring the expected
Hermiticity of the eikonal 2§, which requires to promote it to an operator.

The focus of this chapter is instead on illustrating an interesting physical phenomenon that is captured by 2§;:
radiation-reaction effects, which first occur at 3PM order and can be singled out by their time-reversal odd expansion
in the small-velocity limit. On the other hand, such radiation-reaction contributions are crucial in order to ensure consis-
tency, finiteness and universality of the results at high energies (or high velocities). In particular they are instrumental in
ensuring agreement between the high-energy behavior of massive scattering and the universal result for the deflection
angle of massless objects.

As for the one-loop level, we shall first focus on the technically simpler /¥ = 8 case, considering the s-u symmetric
scattering of massive states obtained via Kaluza-Klein compactification, and then move to collisions of massive scalars
minimally coupled to GR. We also provide more details on the relation between the eikonal phase, the phase shifts and
the radial action, which as we shall see is also instrumental in performing the analytic continuation from the case of
unbound orbits to bound systems.

6.1. Partial wave decomposition: from b to b;

In Section 2.2 we discussed how classical observables emerge in the leading eikonal approximation for the massless
scattering. Starting from the resummed amplitude in the impact parameter representation, in the classical regime we
can perform the Fourier transform back to momentum space (2.27) by using a saddle-point approximation (2.28). The
resummed amplitude can then be decomposed in partial waves, as in (1.63), and in the classical limit (2.40), as expected,
the orbital angular momentum of the system becomes large J/h = j > 1. The partial wave analysis of that section is
limited to the case of the leading eikonal in D = 4, while the derivation based on the impact parameter representation
seems more general and was already used in (4.59) to derive the 2PM deflection angle in GR. The purpose of this section is
to show that the same results can be obtained also by performing the partial wave decomposition in the classical regime
starting from the eikonal amplitude at an arbitrary PM order [290] (see also [169]).

We start by generalizing (2.27) to the massive scattering in D = 4 by first defining

S(s,b) = 1+ iA(s, b) = efRe23(sb) (6.1)

Here we remove the 1/€ pole in 26y, associated to the Coulombic falloff of the field, and introduce an appropriate cutoff
scale in the leftover logarithm, as we did in (2.34), and we temporarily drop the imaginary part of 25(s, b) that enters at
3PM, which will not enter the ensuing stationary-phase arguments. In Q-space, Eq. (6.1) translates to

. . b .
S(s,Q) = 4Ep‘/‘d2b€7'Q'be’REZ5(s’b) — SﬂEpfdb bJo <%> elReZé(s,b)’ (6.2)
where we used the fact that 26 depends only on b? and the identity
+m d o
Jo(x) = / % eising (6.3)
-7

(together with the fact that the integrand is a periodic function of ¢ with period 27 ). For large arguments x = Qb/h > 1,
one also has

Jo(x) ~ \/% (e“x—%) + e—"<x—%>) . (6.4)

Using this relation and picking the first term, which corresponds to Q* being anti-aligned to b*, as in our conventions
for gravitational scattering, we obtain

S(5,Q) ~ (...) f db b e @+iRe2(sb) (6.5)
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Here and in the next few equations we need only worry about rapidly oscillating phase factors, and accordingly
omit irrelevant slowly-varying prefactors. We then go to angular momentum-space by projecting on the jth Legendre
polynomial as dictated by (1.63),

+1 S
Si(s) ~ (---) / dbb / d(cos @) Pj(cos @ )en 2Psin +iRe20(s) (6.6)
-1
where we employed the relation between Q and ®, which is again the same as the one encountered in (2.31),
. O
Q = 2psin 5 (6.7)
Using finally the large-j limit of the Legendre polynomial (2.48) we arrive at
559~ /n o / b e_ij(~)+% 2pbsin § +iRe 25(s,b) ' (6.8)
0
Collecting the terms appearing in the exponent, we recover the phase shift in the classical limit from (2.44) and
1 O
x(s,]) = 7 (—j@ + 2pb sin 5) + Re 24(s, b), (6.9)
which must be extremized by a double saddle point in @ and b at fixed
by = / . (6.10)
p
Taking derivatives of (6.9), the two saddle point conditions give
) e d Re 25(s, b)
b, =bcos —, 2 —=—-h—-. 6.11
) cos > p sin 3 b ( )

Egs. (6.7), (6.10) and (6.11) identify the sought after relations among the properties of the trajectory depicted in Fig. 18,
linking them to the eikonal phase. In the classical limit, S;(s) is itself a rapidly oscillating phase factor, S;(s) o %) with
28i(s) = x(s,J) given by (6.9). Using the saddle point conditions, one can also recast it as follows in terms of b and by,

2
x(s,]) = ﬁ — arccos b—j + b— —1 ] +Re2§(s, b). (6.12)
h b\ b2

The derivative of x(s,]) in (6.9) with respect to j = J/h then takes the following form

ax(s,]) ®100 . O dRe25(s,b) | ab
—h =0 b; — bcos — —|2psin —+h——— | —, 6.13
3 +p|b 5 D 5 + 3b o ( )
so that, owing to the saddle point conditions (6.11), it gives back the saddle-point value of ®,
ax(s,
o = —n 2XBJ) (6.14)
aJ
For this reason x(s, J) is closely connected to the radial action I(s, J), which obeys [291,292]
al(s,
o +x =060 (6.15)
aJ
so that
I(s,]) = —n] +hx(s.]). (6.16)

The expression (6.9) then provides the connection with the eikonal phase.

Eqs. (6.9) and (6.12) provide this connection only implicitly, since one ought to solve the saddle point conditions
in order to express the right-hand side as a function J. In particular, in (6.12), b should be eliminated using the first
condition (6.11), which in turn involves the deflection angle calculated using the second condition in (6.11). In order to

illustrate how this works in practice let us consider the case of the perturbative PM expansion®2:

Re(28) = —do In(b) + » ndgn , (6.17)
n=1

42 Although the relation (6.12) is non-perturbative in G it may actually break down at sufficiently small impact parameter if the relation between
b and by cannot be straightforwardly inverted.
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Fig. 18. Classical 2 — 2 scattering in the center-of-mass frame (1.33). é denotes the impulse and @ the deflection angle. The impact parameter
by is perpendicular to the spatial momentum of either particle in the far past, and thus defines the angular momentum according to | = p bj, with

p=1p|=|p’|. Its magnitude differs by that of the eikonal impact parameter b by terms of order ®?% as in (6.11).

where d, captures the (n 4+ 1)PM correction. It is straightforward to derive explicitly the first few terms of the classical
deflection angle expressed as a function of J perturbatively to any given order. For instance up to order O(G’) we have
3

dp dp*-%
X(s.J)=—dglog) + 2 4 2212
J J , (6.18)
dsp — 3dodip | dap* — U (dodo — &) + 555
+ 0(G%)
33 44
so that via (6.14),
dy d dyp? — %
e = -0 + %p + %
I J . (6.19)
3 1
dsp’ —]48‘15‘1119 L G’ = T (dZJ‘:O —d) s o).

Likewise, via (6.16), Eq. (6.18) also gives the corresponding expansion of the radial action I(s, J).

The derivation presented above linking x(s,J) to the eikonal phase via saddle point conditions generalizes straight-
forwardly to generic D, as one can check thanks to known properties of Gegenbauer polynomials: [DLMF §18.15(i) using
(18.7.1)] and [DLMF §10.17(i)].

6.2. Massive N' = 8 supergravity

We go back to the elastic 2 — 2 scattering in /' = 8 supergravity where the external states are massive thanks to
non-trivial Kaluza-Klein momenta in the compact directions [167,211]. We focus on the s-u symmetric process already
defined in Section 3.1.4, where the states labeled by p; and p4 are dilatons with KK momentum in one compact direction
and those labeled by p, and ps3 are axions with KK momentum in another orthogonal compact direction [47,106,167]

As before, the starting ingredient for our analysis is the momentum-space amplitude in the small-q expansion, where,
as already emphasized, we can restrict to the terms that are non-analytic in q>. We will also neglect terms of order
O(qz)%‘26 or smaller, which are irrelevant for determining 25, and would only enter the calculation of the quantum
remainder 2A,. In view of this, the relevant part of the s — u symmetric two-loop scattering amplitude [117] is given by
the following sum of scalar Feynman integrals It where T indicates the integral’s topology:

Ax(s, ¢*) = (87G)? [(s — m] — m3)* + (u— m} — m3)*] (6.20)

1
2(4m A2
x [(s —mi —m3) (hy + 2hx) + (u — m§ — m3)* (I + 2Ig) + (Iy + IH)].

Let us write down the integrals explicitly and sketch their evaluation as ¢ — 0. We follow the kinematic conventions
of Section 1.2, in particular the variables introduced in (1.40), (1.29). In terms of these variables, the planar double box
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integral reads

b — / dPe, dP¢, 1
] PR D2 2y w4 (€2 — € - )] [<20l -ty + (€2 — £ - q)] 621)
1 .
[—2im16s - us + (€3 — €5 - )] [2M2€s - uz + (£ — €5 - Q)] 242 (€1 + £, — q)?
the non-planar double box integral reads
I — / d°e, d°¢, 1
R P2 P2 (2 - uy + (6 + € - )] 2l - up + (2 + & - q)]
1
- 3 - > (6.22)
[2m1€ - uy + (63 + €3 - q)] [2M2(€1 + €2) -tz + (€1 + €21 + (€1 + £2) - q)]
1
20+ +9)°
and the H diagram reads
I _/ d°e, d°¢, 1
7] im0z im0 [—maly - up + (63 — €1 - Ql[—2m1 6o - uy + (€5 — £3 - q)] (6.23)
1 .

003(E1 + €2 — (€1 — Q) (€2 — q)?
The Feynman —i0 prescription is left implicit throughout. The remaining “barred” topologies are obtained from the
previous three by crossing symmetry, i.e. replacing u; by —u; (or equivalently u; by —u,).
The expansion of these integrals for small g can be simplified by resorting to the method of regions. The relevant,
non-analytic contributions emerge from the expansion in the soft region, where ¢; ~ £, ~ O(q), while myuy, myu, are
formally held fixed.*> Conveniently, all dependence on the masses factorizes in this step: for instance, to leading order,

1 /‘ dPey dP¢, 1

mymy J P2 4P (0 - up)(—2€5 - ur)02 381 + £ — q2(1 — @) (2 — q)*
The overall dependence on g® can be also easily factorized by rescaling the loop momenta. The resulting integrals are
thus functions of the single invariant y = —u; - u,. Still, such integrals are not elementary for generic ¢, in contrast with
the situation at one loop. Convenient strategies to evaluate them are centered on the method of ordinary differential
equations in canonical form in the variable x = y — /y? — 1. These equations afford simple iterative solutions order by
order in € in terms of polylogarithms in the variable x. The boundary conditions for these equations can be determined
by performing yet another expansion by regions in the limit y — 1%, which luckily does yield elementary integrals for
generic € [47].

Performing the calculation according to this strategy, we get the following result:

Als. ) = 8G)? [Ame e \* [ 2x2mimd | (1+22\? (1+22\°
25,40 = 4 )4 q? €2q? 1-22 z
3 2)

€? z2)%z

(
(1+
(1-
mm m2 |:<:i_;> :| [6in(mf+m§)z(1+zz)2

+6mym; [4(1 +22)2(1 = 2%) + 2(iw + 2logz)(1 + z%)?

~

Iy (6.24)

4rmim

s [r(1-2 Y +i(—1-42%logz + 2%)]

2
+ <% - Liz(zz)) (2> + 1)(z* — 62° + 1) — 2(1 + 2*)*(1 — Z%) log(1 — Z?)

+2(ir logz + logz) (22 + 42* — 25) H } (6.25)
where as in (4.7)
1 1
z=0—+o?2—-1, a=<z+>. (6.26)
2 z

43 The asymptotic expansion of the H topology also has non-analytic contributions that emerge from the mixed soft-hard region, where ¢; ~ O(q),
¢, ~ ©(m). However, these only contribute to order ©(q>%¢) to the amplitude.
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The above result can be organized in the following convenient form (we recall that c(¢) was defined in (4.9)):

cleR | A%2 400 420 (1.0
3 €(e) 2 2 24

+
(q2 )26 62q2 q €2 €

Ay = (87G) (6.27)

up to terms that are further suppressed in ¢?, i.e. O((qz)%’zf) or smaller, or that are subleading in €. Note in particular that

the coefficient of ((q2)1+2e€)*1 vanishes identically. A term of O(e°(q?)~172¢) is also needed in order to fully reproduce

the (’)(83) exponentiation and will not be discussed further. Similarly, O (qz)‘%‘k) terms start contributing to order O(¢°)
)

via .A(ZO‘U. Using the method described in [47], one can check that .A(ZO'] is consistent with the iteration term 24, 2i8, to

leading order in €. The fact that the O((qz)’%’k) contributions indeed reproduce such iteration term for generic € has
been checked in Ref. [108].
Explicitly, in terms of the variable z and o, the above coefficients read

A(z’z) _ 27Z2m‘11m‘21 (Zz + 1) 6 _ _327T2m‘11m‘2106 (6 28)
’ 72 -1)2 (c2-1) '
oo _ ATmm @ 1) awming (22 +1)° (24— 422 log () ~ 1)
2 23(22_1)2 23(22_1)4
2r’mimio’ o® o’
=12 _i2mmim] log(z) | » 6.29
(0= 1) T 2((02—1)3/2 Foroy )> o2

and

Re AL — 22mem3 (2% 4 1) 6 (m? + m3) z + 2mym,)

2 (22 -1)*
4rimim3 (22 + 1) * (z* — 422 — 1) log (2)
z(22-1) 46 7 ) (6.30)
9 2.2 2 2 2 9 9 9
= S |:(m1 ~|—m2)(02 —1)? emim, <(02 —1)? - (02— 1)3/2)]
1 o(o? —2)
2..3.3_4
+ 167 mimyo ((02 7 T e 1p log(z),
together with
A0 — 2emim3 (z* — 62% + 1) (2 + 1) > Li ()
S 2 (2 -1)*
rmim; (—24(z* — 1)+ 7(z* — 622 + 1)) (22 +1)°
323 (22 - 1)*
drmim; (24 — 42> — 1) (22 + 1) *log? (z)  4mwm3m3 (2% + 1) ®log (1 — 2?)
z(z2—1)4 22 (2 -1)3
_ 8amim; (2% + 1) °log (2) 631
23 (22 —1)* ' (6.31)
_ lSnm?mgos(oz — 2)Lip (22) — eammim? o6 B §n3m3m305(02 —-2)
(62— 1) P21 37 TR (52— 1)2
1 o(c?—=2) 32rmimioClog (1 — 22)
3.3 4 2 1M
— 16mrmimyo <(02 T ez o1y log” (z) + (02 - 1) 33

1
32rm>mio’ g + log (2) .
1 (02— 1)2 02— 1)~

6.2.1. Eikonal and deflection angle to 3PM order

We have already computed 28 in Section 3.1.4 and 2A; in Section 4.1.1. This information can now be used to verify
that the eikonal exponentiation takes place as expected up to two loops and to extract 2§, from the previous amplitude
through the following relations:

|
Re(28,) = Re A, + g(250)3 +280Im2A4,,
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Im(28;) = Im A, — 28y Re 24, . (6.32)
We obtain the following result, where we highlight in blue the terms associated to radiation-reaction,

4amimiG3 (14 22)*

_ 2y2 2 2 2 4
Re(28,) = b222(1 — 22y |:(l +2z)(1—2z°)4+2z°(1+4z° — z )logz:|
6.33
1663m%m% o ot o°(c? —2) ( )
= — arccosh o - S
b2 (02 —1)2 0?2 —1 02 —1)3
and
4mimiG® (1 + %) (wb?e)*e [ 1 2 s 4 4
Im268, = 5 1= 257 g(l—i-z)[(l—GZ +2%)logz — 1+ 2%]
— [ 22° (14 42° — z%) log’ 2 + (14 2° (1 — 2°) [2 — 2log(1 — 2%) + 2 log z] (6.34)
72
+ <? - Liz(22)> 2+ 1)z* — 622+ 1) “
or equivalently
16 2 2G3 4 b2 VE \3€ 1 2_2
Im2§, = — mimyG” o (rb7e’) - (rz—i-Ll)arccosha
7 b? (02 —1)2 € (02 —1)2
2_2
— log(4(c? — 1)) |:c72 + olo ]) arccosh o:|
(02 = 1)2 (6.35)
2_2
+@?=-1|1+ Lg (arccosh o )?
(02 —1)7
2_2
+ 0(071)”2(1 —2%)+20? },
(02 —1)2
where we made the branch-cut singularity for z > 1 more explicit via
2
Lix(2%) = — Lip(1 — 22) + % — log(z%)log(1 — 22). (6.36)
and used
—1
—logz = arccosho = log (a ++vVo?2— 1) = 2arcsinh,/ GT , (6.37)
1
log(1 —2%) = > log(4(c® — 1)) — arccosho . (6.38)

An important observation is that, in the ultrarelativistic limit ¢ >> 1 the terms proportional to (¢ logo )? present in
the second and third last lines of Eq. (6.35) cancel out against each other, yielding

_ log(s) (8Gs)PI(1—e)® [ 1 1 ]

——4-+0
32(nb?)i-3 2t ToE

This is crucial in order to ensure agreement between the present calculation and the universal massless result [15]
according to the general pattern discussed in [104].
For later convenience, let us also remark that the function defined by

£) = arccosh ¢ (6.40)

Jer =1
for ¢ > 1 can be actually analytically continued to all complex ¢ except for a branch cut at ¢ < —1. In particular, f(¢) is
analytic for —1 < ¢ < 1 where it takes the form

Im 282

(6.39)

arccos ¢

@)= —. (6.41)
Ny
More explicitly, the Taylor series for f(1 4 z) around z = 0,
2 nl(—z)"
1 = —_— 6.42
042 =3 o (6.42)
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is absolutely convergent for |z| < 2, and convergent for z = 2, where it yields f(3) = % log(1 + +/2), while it diverges
for |z] > 2 and for z = —2. These properties lie at the heart of the analytic continuation from unbound to bound
trajectories [291-293]. Indeed, ¢ = o > 1 for scattering kinematics, such that the center-of-mass energy reads E =

m3 + 2mymyo + m3 > m; + my, while —1 < ¢ < 1 for bound states, such that E = \/m% +2mymy¢ +m3 < my + my.
The fact that f(¢) has a branch point at { = —1 will also provide useful information for the analysis of soft spectra carried
out in Section 7.
Let us finally turn to the deflection angle @, which follows straightforwardly from 2§. Keeping in mind the link between
b and b; derived in Section 6.1, we obtain

O = O1pm + Opm + O3py (6.43)
with, to leading non-vanishing order in € at each PM order,
4Gm1m202
O = —5, 6.44
= (6.44)
8rm?mi(m; + my)G*ec?
Oopn = — 1Mo+ ma)ees” (6.45)
]2\/mf +m3 + 2mymyo (6% — 1)
P 16m3m3o%G3
3PM = 33(02 — 1)32 646
32mimic® o . 0% —2) (6.46)
33 5 > —|0® — ————~ |arccosho ¢ .
JBmi+m5 4+ 2mimyo) |o° —1 (02 —1)2

The 1PM contribution corresponds to a tree diagram where both the graviton and the dilaton are exchanged, the 2PM
contribution is absent for ¢ = 0 in agreement with the results of Ref. [211] at one loop. The first term in ®3py comes
from the expansion of tan(%) at small ® while the remaining terms are genuine new contributions from Re §,.

In the ultra-relativistic limit o >> 1 the leading term ©(c#log o) in the second line of (6.46) cancels and only the first
line survives reproducing the universal and finite ultra-relativistic result of [15],

G3s?

Re 28, ~ (6.47)

Thanks to analyticity and crossing arguments, as discussed in [104], this cancellation can be seen as a consequence of the
one occurring in the imaginary part as highlighted below Eq. (6.38).

It is also instructive to look at the opposite limit o — 1 which is relevant to the PN regime. In this respect, one should
note that, as can be better appreciated looking at the second form of Eq. (6.33), the first and last term (highlighted in blue
color) contain only even powers of p ~ +/o2 — 1, while the second term has only odd powers. This means that the first and
last term represent half-integer-PN corrections to the deflection angle, which are a consequence of dissipative processes,
i.e. the signature of radiation reaction. Instead, the second term in (6.33) corresponds to the more conventional integer-
PN expansion due to the conservative dynamics. More precisely, in the deflection angle (6.46), such dissipative effects
appear starting at 1.5PN. This seems in tension with the 2.5PN scaling of radiation reaction effects that is expected from
GR calculations. As we shall see, this apparent mismatch is due to the presence of additional massless states propagating
in the supersymmetric theory, while the same calculation in GR will lead to 2.5PN radiation-reaction effects, as it should.

6.2.2. Real-analytic, crossing-symmetric reformulation at two loops

We will now extend to two loops the procedure followed in Section 4.1.2 to recast the explicit results of the previous
subsection in real-analytic and crossing-symmetric form. We first combine the different contributions in the known form
of Eq. (6.25), which suggests the ansatz:

(87G)® [Ame 7 \* i
A(s, q°) = (0* 4+ 6MA(s, ¢%),

(4m )4 q?
A AP(s, ) AMGs, @)
Ay(s, ¢*) = =2 ot 2 > (6.48)

where & has been introduced in (4.29). In order to reproduce Eqs. (6.28) and (6.29) we find:

N 8imim? o? 52
oy [ (2 o)

q? c2—-1 ¢¢2-1
— 8mim; < ﬁ log*(—z) + ﬁ log(—Z)
2 =2
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and for Egs. (6.30) and (6.31):

A,y 2 md) o2
Smimy M im0 1P (6.50a)
2

_32(0571)3/2 (log(~2) ~ log(z) (6.50D)
2 _ 2 1

+4% (log(—2) — log(z)) (Liz(ZZ) — Lip <27>) (6.500)

8 1

~3(07 =1y L(10g(~2) ~l0g’(2)) + 7% (log(~2) ~ log(2)) ] (6.50d)
3

—Sﬁ (log(—z) — log(2)) (log(—2z) + log(z)) (6.50e)
0'2 1

+8m (log(—z) — log(z)) |:log(1 —7%)+log (1 - 22) } (6.50f)

The two previous equations have been derived using log(—z) = ix +logz and the following identities and branch choices:

e RN L ST P PN 2 .
— Lip = :le(z)+€+§log(—z):le(z)—?—i-Zlog z + 2im log z;

1
log (1— Z—2> =log(1—2z%)—2logz —im. (6.51)
Combining these with (6.36) we can also write the combination appearing in (6.50c) in a form:
1
Lix(z%) — Li, (z—2> = —2 (Liz(1 — %) + log z* log(1 — z*) — log® z — im logz) (6.52)

that is useful to discuss the non relativistic (o, z — 1) limit.

We can check that the expressions (6.49) and (6.50) satisfy crossing symmetry and real-analyticity. The first property
follows simply from the fact that, at this order in g%, we can use the identification z = —%.

Checking real analyticity is a bit more subtle. For (6.49) one needs to take into account the subleading (in g?) term
origination from the first line. This (purely real) term exactly cancels a similar term coming from the second line. Then
one is left with a purely imaginary term from the second line:

16mimino
————=—ilogz, 6.53
02 —1p % (6.53)
that can be written in real-analytic crossing-symmetric form as
o 1 _ _
- 8m?m§m5(log(—z) + log(—2))(log(z%) — log(z%)). (6.54)

At this point checking that the amplitude is real in the unphysical region o2 < 1 is straightforward once one realizes
that, in that region, |z|> = 1, in other words z is a pure phase and thus logz is purely imaginary. This implies that the
term in Eq. (6.53) is real and the same is true for the last term in (6.49) because of an extra factor i coming from /o2 — 1.

Coming now to (6.50), real analyticity is easily checked along the same lines for (6.50a), (6.50b), (6.50d) and (6.50e).
Concerning instead (6.50c) and (6.50f) one has to remember that, in the unphysical region, z~! = Z. Since both Li,(z?)
and log(1 — z?) are real-analytic functions, the combinations involving them, appearing in (6.50c) and (6.50f) give a
purely imaginary and purely real factor, respectively. Because of the different powers of (6> — 1) appearing in the two
contributions this is exactly as needed for real analyticity. In conclusion, we have shown that Eq. (6.49) and Eqgs. (6.50)
are real analytic functions. Note that this would not have been the case for the eikonal itself.

6.3. General relativity

In this section we illustrate the calculation of the 3PM eikonal from the 2 — 2 amplitude for the collision of two
massive scalars in GR. This calculation was carried out for the first time in full detail in [109]. The underlying principles
of this calculation are the same as those presented in the maximally supersymmetric case. One aims to reconstruct the
amplitude A4, to its first few orders in the small-q expansion, perform the Fourier transform to b-space, obtaining .4;,
and retrieve the classical information from Re 2§, by matching with the exponentiation. More explicitly, armed with the
g-expansion of A, or equivalently with the 1/b-expansion of 4, and with the lower-loop order data 28y, 281, 24, one
checks that in the equation

. (2i8)
Mz = 3;)

+ 2i8¢ 2i61 + 218 + 1280 2144 (6.55)
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the first two terms on the right hand side cancel out against analogous superclassical terms of the right-hand side, and
obtains 2§, by subtracting i258y 2iA; from the rest. The main novelty is the fact that the gravity integrand takes a much
more involved form compared to the neat expression (6.20), where only scalar integrals appeared. Still, one can reconstruct
this integrand in a convenient way using generalized unitarity techniques [38,39,109,111,118] and then perform the
integration using the same families of master integrals that were needed in the A/ = 8 case [109].

Instead of following this route, here we shall adopt a different strategy, which combines unitarity, analyticity and
crossing symmetry with the eikonal exponentiation itself. The idea is to start from (6.55), which we may rewrite as

(2i8o)°
3!

id, = + 2i80 2i81 + i[Re 28, + i1m 28, + 1289 2A1] (6.56)
and regard 4, and Re 26, as the unknown quantity. Indeed the tree-level and one-loop information determines 28, 281,
2Aq, and Im 28, can be obtained by performing a relatively simpler integral over three-particle phase space, as we have
discussed in Section 5. This data determines all imaginary parts arising from the three-particle and two-particle cuts of the
amplitude (plus a portion of the real part arising from 289 Im2A,). We can then make a real-analytic and cross-symmetric
ansatz for A, up to the (q*)~%¢ order relevant for the classical limit, complete of its real and imaginary parts. As we shall
see, the available data will be enough to fix this ansatz up to a single unknown function f;(o'), which however appears
with an extra power of s in front and is thus dominant in the limit of small mass ratio. Therefore, using the results of
Appendix B.1, this last term can be fixed too by matching with the probe-limit calculation. This will lead us to the complete
result of A, appropriate to then retrieve Re 25, and the classical deflection angle.
Let us start by adopting a notation for the small-q and small-e¢ expansion of the amplitude:

Ay = AP+ A+ A+ o(g' )
B <47T€_VE>2E |:A(22,2) A(zl,l) N A(ZZ,O) A(zl,O)

¢ €2q2 €q €2 + €
—k—4¢

(6.57)

+ O(q)] ,

where A[zk] ~q and in the second line we introduced a notation similar to the one employed for the ' = 8 in (6.27)
for convenience. As is by now familiar, Agz] and Agﬂ are simply determined by the iteration of classical terms, i.e. the first

two terms on the right-hand side of (6.56). Therefore they must be given by the inverse Fourier transform of —%(280)3
(see (3.10)), '

3
314,44 2 1 3
422 _ _64716 i (J B 2(1_6)) [ - ey 2e) o2€VE (6.58)
2 - ) .
(02 = 1) I'(1—3e)

and by the inverse Fourier transform of 28 2i§; (see (4.58)),
a1y 6im2G (my +my) mim3 (202 — 1) (1 - 502)
A =
o2 —1
where we expanded for simplicity to leading order in ¢, although both 28y and 2§, are of course known in any dimension.

The new classical information is contained in AEOJ, which, comparing with (6.56), must take the following form in
b-space

+ O (e), (6.59)

AP) = Re 28, + 280 2iA1 +i1m 25, . (6.60)
We may rewrite this in g-space as
./450] = .AIZIEW + -A2pc + -A3pc . (661)

Our next task, following the above strategy, is to reconstruct the second and third term from two-particle and three-
particle cuts.

6.3.1. Two-particle and three-particle cuts
For the two-particle cut we can use

iAgpe = dmmyy/o2 — 1 / d>2be 92i8, 2iA, . (6.62)

The leading eikonal is (3.10)

2imymyG (02 — 55-) I'(—¢)

iy (0® - 5% )_ (6.63)
Vo -1 (nbz)

and the quantum remainder at one-loop order, 24, is given by (4.61). At this stage, we can use the inverse Fourier

transform (A.49)

—ibq 4mimavo? —1 wl€I(2€)
/ 2-2¢, € _ 1My
4mqim, 02— 1/(1 b (b2)1*3f = (q2)2€ 2*4€F(1 — 36) (664)
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to obtain iAy,. after multiplying 2i8y and 2iA;. Since 24, is O(e~1) and in addition (6.64) involves a singular factor I'(¢),
the first two nontrivial orders are captured by retaining up to ©(e 1), for which we find

2G3wsm2m? (202 — 1)
e(q? ) (o2 — 1)2
i2G*mim3 (202 — 1) (

Ach =

20(202% — 1)(662 — 7)arccosh o

1— 4902 + 1804)

2,7k \ %€ 3 21 15

e (% ) (0 =1) 7 (6.65)
iGGm3m3 ( 40 (202 — 1) (80* + 20 — 11) arccosh o

()% (0? — 1)% 02 —1

184680°% — 3072854 + 13113062 — 1753 )
225 ’

Then, we need to add the imaginary part coming from the three-particle cut. As we know from Section 5, this is related
to Im 26§, by Fourier transform. In b-space, we have (5.56),

2mimi(20% — 1°G°

b? (02 - 1)2

2 _ 2
<[ (=1 +tortata? - 1) (”(20 o) arccoshe | 8 5“)

Im26, =

(7T bZeyE )35

0% —1 3

0% —1 (1-202)°
o (880° — 2400* + 2400% — 97)
+ (arccosh o) 5
3(1-20%) Vo2 -1
o (3 - 202)

o2 —1

2 2 _ 4 2 _
_ (arccosho? (a (202 =3)  2(0? — 1)40* — 120 3)) (6.66)

—1400° + 2200 — 12702 4 56 ]
9(1-202)° ’

Since Xm = iIlm 26,, we can again go to g-space using (6.64), finding

+ Lip(1—2%)

4im*m3(202 — 1)°G® (4mwe e \*
Aspe = 3 2
€ (02 — 1)2 q

2 — 1 3

2— 542
< (=1 + ogtato? - 1) <° (o7 SJarccosh | 80 )

2 _ 2 4 2 _
 (arccosho? (a (202 —3) | Ao” — 14o® ~ 120 3)) (667)

o’ -1 (1-202)°
o (8805 — 2400* + 24002 — 97)
+ (arccosh o) 3
3(1-20%) Vo2 -1
o (3 - 202)

o2 —-1

+ Liy(1—22)

N —14006 + 2200* — 12702 + 56 }
9 (1 — 202)2

Comparing the decomposition (6.57), (6.61) with the above explicit formulas for A,,. and A3y, we discover that AZO

2
must be purely imaginary in order for AJ*" not to have O(e~2) real contributions that would result in a divergent eikonal
phase, and is given by

420 _ 2’ mim; (20° — 1) (20(202 — 1)(60% — 7)arccosho  1—4902 + 1804)
20 —
(02 _ 1)% «/ﬁ 15
(6.68)
. 4Gm3m3(20% — 1) (o (202 — 3) arccosho N 8 — 502
o 1) NE 5 )

90



P. Di Vecchia, C. Heissenberg, R. Russo et al. Physics Reports 1083 (2024) 1-169

Of course the imaginary part of A}"% is also determined by the cuts, i.e. by the O(e~'(q?)~%) terms of (6.65), (6.67),

1m 400 G*mim3 ( 40 (207 — 1) (80* + 202 — 11) arccosh o
m ’ =
P e P
1846805 — 3072804 + 1311302 — 1753 )
225

Aamim3(202 — 1°G*

(2= 1)?

X [log(4(02 - 1))(

o (20% — 3)arccosho 8 — 502
+

Vo -1 3 (6.69)
2 2 . )
~ (arccosho [ £ (202 —3) L 2ot 1) 1220 3)
o -1 (1 — 202)

o (880° — 2400* + 2400% — 97)
3(1- 202)2 c?—1
o(3-20?%) N —1400° + 2200* — 1276 + 56 ] .
o2 —1 9(1-202)°

+ (arccosho)

+ Liy(1—22)

For convenience, we may trade the unknown function A" in (6.61) for an equivalent one A}"""), obtained by removing

the contribution of the 2-particle cut (6.65) to the real part of A(zl‘o):

Re 400 _ 2GPmsmim} (202 — 1)3
’ (0> —1)’

4 Almen) (6.70)

6.3.2. Real-analytic, crossing-symmetric ansatz in GR

In this subsection we will follow a shortcut, based on analyticity and crossing symmetry, in order to reconstruct the
full two-loop scattering amplitude (at the relevant classical level) from its imaginary part, the idea being that the latter is
easier to compute from lower-loop-order on shell amplitudes. As it turns out, the only missing information is contained
in purely real terms that can be easily computed from the probe limit.

In order to pursue this program we start with an ansatz using the analytic structures we have already seen in the
N = 8 case discussed in Section 6.2.2. Let us first notice that (6.59) can be written in the analytic crossing symmetric
form:

00 67 G* (my + my) mim3 (202 — 1) (1 — 50?)
(LD —

(log(—z) + log(—2)) + O (¢) . (6.71)
o —1

For the other terms we try, in analogy with (4.63), the following ansatz:

(87G)® [4mwe 7\ * .
Ay(s, q°) = Aq(s, ),

4 2
A(g]zz) 2 )q A (6.72)
A 5,q°, € 5,4
Aofs, )= Z g+

In order to reproduce Egs. (6.58) and (6.68) we try the same analytic structures appearing in (6.49). This uniquely
determines:

A[ZZ](S’ qz) 8n2m1m2 0%~ 2(11—5) 6% — 2(11—5) 2 1 \2 -2 1 \2
m3m3 == 7 o2 _1 + 52 -1 [(G - 2—26) + (U - 2—25) ]CGXP(E)
5 N2 2 12 o(402—-5) G(46%-5)  , _
1180* — 25902 + 81 1186* — 25952 + 81 _
T log(—2z)+ ————— log(-2)| |,
60(02 — 5)(02 —1)3/2 60(c2 — 5)(02 —1)3/2
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with

r(1—ePra+:2
Cenpl€) = r(€1) _(35 ) e (6.74)

Note that we have kept a more complete ¢ dependence in the first line of (6.73). In this way, when we expand that line
to lowest order in g* (by setting & = —o), it reproduces, at all €, the superclassical (iteration) term —é(2i80)3. At first

order in 6 + o we get corrections which, at lowest order in €, combine with the terms in the second and third line of
(6.73) while at O(€) they contribute to A[zﬂ.

Concentrating on the former, note that the last line of (6.73) gives a purely imaginary contribution (up to negligible
corrections of higher order in g2). The second line, instead, is proportional to log?(—z)—log?(—Z) and therefore carries both
areal and an imaginary part. Amusingly, the former is exactly canceled by the subleading (and obviously real) contribution

from the first line and the final result reproduces exactly the purely imaginary result (6.68).

Turning now to Agﬂ, we have to combine the above-mentioned leftover piece from the first line of (6.73) with Egs. (6.30)
and (6.31) with an appropriate ansatz for the real-analytic, crossing symmetric 2\[2” itself. Based on the analogy with the
N = 8 case we try

Als.?)  ,md+md)[fo+ (0% —1)]

mim; = mym, (02 —1)2 (6.75a)
+ (02 fbl)a/z (log(—2z) — log(2)) (6.75b)
+ _Je (log(—z) — log(2)) | Liz(z%) — Li 1 (6.75¢)

(02 —1)2 g 8 2 2\ 2 ]
+ (szﬁ [(log*(—z) — log*(2)) + 7* (log(—z) — log(2))] (6.75d)
+ 7(0213 7 (log*(~2) — log*(2)) (6.75¢)

fr 1

+ 0z 1) (log(—z) — log(2)) [log(l —2°)+ log (1 - 22)] (6.75f)
where the unknown functions f,, ..., f; are polynomials in o. The first line of the ansatz (6.75a) is motivated by the

analogue equation for the A/ = 8 case, see (6.50a), but here we allow for an extra contribution, f;, besides the one from
the 2-particle cut in the first line in (6.65).
Matching onto the known terms in (6.69) fixes uniquely all the coefficients f; except for f,, which is purely real. We

thus obtain the following result consisting of six distinct real-analytic crossing-symmetric structures paralleling exactly
the ones we found in /' = 8:

AlN(s, ¢?) L (m? 4+ m2) [fu+ (202 — 1)*]

08 _ it o (6.76a)
UG8 ST+ NPT T oy ) log) (6.76b)
#720ZCE tog-a)— tost (1) -1 (1)) (6760
_g% [(log*(—2) — log*(2)) + 7 (log(—2) — log(z)) ] (6.76d)
o
#2075 ogt-2) - ogtz) [log(l -+ og (1 ;)} . (6760
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6.3.3. The 3PM eikonal 26,
Substituting (6.76), (6.73) into (6.72), and expanding for small g® as instructed by (6.57), we finally obtain

2G3wsm2m? (202 — 1)
(o2 = 1)’

Sfa(o 4
% — 3mimo (140° +25)

4mym; (3 + 1202 — 40*) arccosh(o)
02 -1
2mymy (202 — 1)2 8 —50% o (20% — 3)arccosh(o)
* o2 -1 3(02—1)+ ( 2 3/2 :|’
0 — 1)

where the last three lines provide the sought after contribution A}""" in (6.70).

Following the same steps as for ' = 8, we can start from the complete expression (6.57), go to b-space, subtract all
iteration terms as dictated by (6.55), in particular those due to 2892A+, and drop the imaginary part Im 26§,. However,
since (6.77) is already the real part of the ©(q~#¢) term, this procedure is equivalent to starting from (6.77) and dropping
the first term on the right-hand side. This term is just the real part of (6.65), i.e. the one arising from 285 2A1. The final
step is to restore the appropriate overall factors appearing in (6.57) and go to b-space.

In other words Eq. (6.77), without the term in the first line, is the subtracted two-loop amplitude that, when translated
in impact parameter space, directly gives the 3PM eikonal. In Section 6.3.4 we will instead show which subtractions are
appropriate for obtaining the radial action and we will see that they are different from the ones for obtaining the eikonal
(though of course closely related).

The result is the 3PM eikonal phase

Re A(Z]’O) =

+ 2nGPm?m3 [
(6.77)

ac3m2m? [ (202 —1)* (8 —50%) o (1402 4 25)

Re26%" = -
€ 20, b2 6(0’2—1)2 3 /02_1
(202 =1)* (202 —3)  —4o* + 1202 + 3 o8
+LS +arccosho | 2 (05 + = —Z s )
amym, (02 —1)° 2(02—1)? ot =1

with f;(o) as in (6.86) below. Eq. (6.78), together with the imaginary part (6.66), completes our discussion of the eikonal
exponentiation up to 3PM. While in the approach presented here they all appear on the same footing, the various terms
in (6.78) have different physical interpretations that we can now illustrate.

As already alluded to, the term in green in the second line will fixed by probe limit calculation momentarily. The terms
in black contain instead genuine 3PM dynamical information, associated to the so-called “potential” interaction between
the two objects. They are due to the fact that each body perceives gravitational attraction towards the other one, but
this occurs in a fully relativistic manner as dictated by GR. Historically, they were the first 3PM effects to be calculated
analytically [38,39], a result that was achieved by using amplitude techniques.

The terms highlighted in blue instead have a different meaning. They are due to the fact that a system of two objects
undergoing nontrivial deflections is not a conservative one. The two objects can in general lose energy and angular
momentum that can be stored in the gravitational field. The effect of this phenomenon is that the two bodies feel an
additional, non-conservative force called radiation-reaction force [294,295]. To 3PM order, this reaction force is captured
by the terms in blue and is actually due to a 2PM order loss of angular momentum that the two-body system transmits
to the gravitational field [289,296].

The interplay between potential and radiation-reaction terms is crucial in order to ensure that the high-energy limit
of (6.78) matches onto the corresponding result for the massless 3PM eikonal [15]. Taking 0 — oo with

s =E* =m? 4+ 2mimyo + m3 ~ 2mymyo , (6.79)

one finds again (6.47) in precise agreement with Ref. [15]. In particular, in this limit, a cancellation occurring in the
sgluare brackets of (6.78) between potentlal and radiation-reaction terms is crucial in order to ensure that terms of order
Ty (6.47) for Re 268, (and of the associated log(s) in the Im 2§, (6.39)) is

due to the fact that, in the ultrarelativistic limit, graviton exchanges dominate the interactions because they couple with
the highest power of the energy, both in A/ = 8 and in GR.

We can now go from the eikonal to the deflection angle using the familiar saddle-point equation
® dRe2s

2psin — = —
psin ab

(6.80)
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To this order, it is important to include in the left hand side the full deflection angle up to 3PM order, complete of its
1PM and 2PM terms, since the next-to-leading order term in the Taylor expansion gives rise to a contribution of order
(©TMY3 1et us collect here the result for the deflection angle complete up to 3PM:

_ 4GE (62 —13)  37G’E(my+my) (502 — 1)

b(O’Z—l) 4(02—1)b2
8G’E 202 —1)* (8 —502) o (1402 + 25
i ( )" ( : ) (3 s ), sh(o) 3 o
6 (02 —1)2 @2 =1 4mym, (o2 — 1)
202 — 1) (202 — 3 454 2 353 (262 — 1)
+ arccosh o U( 7 ) (03 ) 40 +1263+3 N 52(0 3)
2(02 - 1) (02 —1)2 3b3 (02 — 1)

with fy(o) as in (6.86) below. To confirm the physical interpretation of the various contributions, it is instructive to take
the small-velocity limit, i.e.

1
0= — v—0. (6.82)

Then, the green term in (6.81), which is associated to the probe limit, scales like G>v™. In the PN counting where G ~ v?,
this corresponds to a 1PN effect. The potential interaction terms, appearing in black in the last two lines of (6.81), are
proportional to G*v=2, so they are 2PN effects. Instead, the radiation-reaction terms in blue scale as G3v~! indicating
a 2.5PN effect. This half-odd PN order and the odd power of the velocity is indeed the hallmark of a dissipative effect.
Comparing with the situation in A/ = 8, we note that in that case radiation-reaction effects started showing up already to
1.5PN order. This is due to the presence of additional states in the spectrum of classical fields, in particular the ones
associated to Kaluza-Klein vectors that couple to the dipole of the system, unlike the graviton, which couples to its
quadrupole.

In order to express the final result in terms of the system’s angular momentum, it is important to recall that b is not
exactly orthogonal to the incoming particle velocities. It is instead related to the orthogonal impact parameter b; such
that J = p by by the additional saddle-point equation b; = b cos(®/2) as in (6.11). This difference of order G? is important
in the factor of 1/b appearing in 1PM term of (6.81), and leads to an additional contribution to the 3PM result when
expressed in these variables. The deflection angle complete up to 3PM order can be then cast in the form

o _ AGmim; (e*=13) N 3rG?mim3 (my + my) (502 — 1)

JVo? -1 4E]?
| 8 mim (202 —1)° (8—50%) o (140 +25) sfu(o) 65
s3 6(c2—1) 32— 1)1 A4mimy(o? —1)7/2 :
2 3
arccosho | o (202 —1)" (20% -3 2Gcm3m3 (202 — 1
9 ( )( )—4a4+1202+3 _ 1 2( 32)
o2 —1 2(02—1) 3]3(02_1)/
Finally, in the probe limit m; < m,, we find the following 3PM contribution**
2GmImifi(o)  263mim3 (202 — 1)’
@3PM,pr0be = 122 - 12 ( ) (684)

Plo?—1p2 33 (02 — 1)

and we can compare this with (B.19) which requires (taking into account the prefactor in (B.13) with Ry = 2Gm; as in
(B.2))

3
2Gmy JEj —mj\  _120E¢m? + 60E2m + 64ES — 5mS

@3PM,pr0be = (685)
j 125 — )’
with E, = myo and m, = m;. As promised, equating (6.84) with (6.85) fixes the unknown polynomial to be
falo) =2(1206% — 1062 + 1)(c* — 1). (6.86)

6.3.4. Extracting the radial action from the amplitude

In this subsection we shall go back to the connection (6.9) between the eikonal phase, which is the main focus of
the present report, and the phase shift, which is more directly related to the radial action as highlighted by (6.16). As
44

my
my*

~

The other terms in (6.83) are negligible because they are down by a factor @
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reviewed in Section 1.3, the main property of the states with well-defined angular momentum is that they diagonalize
the 2 — 2 elastic S-matrix, and the corresponding diagonal elements define the phase shift (see in particular (1.57) and
(1.59)). Correspondingly, such a basis also diagonalizes the sum over intermediate two-particle states (1.66). On the other
hand, the b-space Fourier transform at the basis of the eikonal formalism does not achieve this diagonalization exactly, as
dispzlayed in particular by Eq. (5.13), but only up to terms that are further suppressed by powers of 1/b? or, equivalently,
of g°.

In order to recover the phase shift from the amplitude one should subtract all super-classical terms by matching to
(1.59) and not the b-space expression (4.1). Following the notation introduced in (2.44) for the phase shift in the classical
limit, let us similarly define the symbol F(s, J)

2fi(s) = F(s,J) (6.87)

for the partial-wave amplitude in the same limit, when | = hj becomes classically sizeable. In this way, suppressing again
h from now on, (1.59) becomes

1+i7(s,]) = e**D(1 +ip(s. ), (6.88)
where p(s, J) denotes the quantum remainder in the J-basis. The loop expansion for (s, J),

F(s,)) = Fols., )+ Fi(s, )+ Fals, ) +---,  Fils,]) ~ oG+, (6.89)
translates into a PM expansion for x(s, J),

x(s.0) = xo(s. )) 4 xa(s. )+ xa(s. )+ xuls.])~ O(GHT) (6.90)
and similarly for the quantum remainder p(s, J). This in turn dictates the following relations,

ifo = IXQ s (691)

RV

. 1 . .

i7 = );) Tixo+ipr, (6.92)

. (iXo)3 . . . . .

i = ==+ (0)ix0) + lixa + (ixo)ion)] (6.93)

Despite the resemblance with (4.4), (4.5), (4.6), at loop level these equations dictate slightly different subtractions, which
do remove the superclassical terms, but in general can leave behind different classical corrections, as we now turn to
illustrate.

As we checked in (2.43) in the massless setup, the leading-order expressions for the eikonal phase and the phase shift
match,

Xo(s.J) = 280(b)], - (6.94)

This is not surprising because corrections in the relation (6.11) between b and b; = J/p are suppressed by powers of G?
in the PM expansion. Similarly we can conclude that

xi(s,J) = 251(b)|b_>b] . (6.95)

We had already seen this in (6.18), whose first two terms on the right-hand side are equivalent to (6.94), (6.95), as follows
from the definition (6.17) of dq, d,. In fact, (6.94) and (6.95) can be easily checked by noting that the characterizing
property (6.14) is trivially equivalent to (6.11) to this order:

@H’M @ZPM
2sin % =™ 1 9™ 1 o(G?) (6.96)

and correspondingly

1 0(281(s, b) + 28(s, b 9(284(s, b 268(s,b
_ 18(28:(s,b) +28(s, b)) _  3(28:(s, by) + 2&( 1))+O(G3). (6.97)
p ab aJ
To subleading order in the amplitude, however, we encounter the first novelty. Indeed, repeating the steps in
Section 5 that lead to (5.13), but exploiting the exact diagonalization granted by the J-projection, we obtain the following
consequence of the unitarity relation:

21mype F(s,J) = |7 (s, ]I (6.98)
without corrections (in contrast with (5.13)). In turn, this ensures that not only that
Im xo(s,J) = Im x4(s,J]) = 0 (6.99)

(consistently with (6.94), (6.95) and with the fact that 23, 281 are real), but also that the quantum remainder is real to
this order

Im pi(s,J) = 0. (6.100)
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This reflects at two loop level (6.93) into the following link:

1
Re x = Re 7, + 5(x0)3, (6.101)

where, being purely real, p; has dropped out. In other words, there is no need to know the one-loop remainder in order
to calculate Re x,: one only needs to take into account the cubic contribution involving the leading-order phase shift, xo,
in the above equation.

Rather than working in J-space, it is more convenient to calculate the subtraction appearing in (6.101) in momentum
space, where it translates to the (exact) triple convolution of the tree-level amplitude. Letting the subscript M stand for
“momentum space”, we have

pl — "= — < — e d R — — Hp4
1 \\ rl \\ rl \\
k= [ [0 ol awesy | el auesy | e (6102)
D2 — \‘T'/—gy <—\\‘/ ‘ — (—\\‘/ d — D3

This expression is easy to calculate to any desired accuracy in g2, using the reverse unitarity strategy, since clearly it
corresponds to a double cut of the double-box integral I appearing in the amplitude itself (6.20). Its leading-order
contribution must cancel the super-classical terms in the real part of the partial wave, while its subleading contribution
will contribute to classical order. More concretely, since all internal massive lines must be cut, one can obtain the result
by looking at the g-expansion in Eq. (3.22) of [47] and the sought-for subleading contribution is given by (3.24 g) of that
reference.

Let us consider, for the sake of generality, a tree-level amplitude of the form

a
Aols. —4) = =, (6.103)
q
so that
~ 1 ao F(—G) 1PM 1 8250 1 do F(l — E)
Ag =280 = — — s e = —— = . 6.104
0= %™ 4Ep 4x (wbh?) < p 9b  AEp?2ml-c pl-2 (6.104)
In particular, for the case of minimally interacting massive scalars,
ap = 32wGmim; (0% — 555-) . (6.105)
Then using reverse unitarity as explained above (see Eq. (3.11) of [110]), one obtains
2 3 3
3 €q 4 ay'(—e€) r(1+ 2e¢)
=|1-—+4+0 6.106
(XO)M |: 3p2 + (q )] 16E2p2 (47‘[)27261_'(—36) (q2)1+25 ( )
Taking into account the small-q expansion of the two-loop amplitude
Ay = AP+ A+ AP+ o(g ) (6.107)
where A ~ g7%~% a5 in (6.57), and going to b-space, we find
- 1 - -
Re Aa(s, b) + 5 FTI( xo)yl = AN(s, b) + Re AY)(s, b)
: (6.108)

(280)3 (@1PM)3

313
In this way, the superclassical ©(b*) terms cancel out between the first term of each line. Note that the subleading
corrections in the Fourier transform (A.40) do not play any role, precisely thanks to this cancellation.
The remaining classical terms that are left behind determine the 3PM phase shift according to

bp + O(b~373),

- b
Re xa(s,]) = [Re AP(s, b) — ”(@”’Mf} : (6.109)
6 b—by

Here, in the last step, we have used the fact that the Fourier transform to b-space and the J-projection agree to leading
order, and that after the subtraction the quantity we are after does not receive any subleading contribution (neither in 1/J
nor in G).

This subtraction is not identical to the analogous one dictated by the eikonal exponentiation (4.5), (4.6). Indeed, as
discussed in Section 5, provided that there are no available inelastic 2-particle channels, the imaginary part of 24 is also
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dictated by the tree-level amplitude (6.103) via

p=—= = = P4
rl rl \\
2Im A4(s, —q°) = / : qu ] d(LIPS), | Tq _,| q1 (6.110)
\\ l \\ II
D2 (—\\‘T'/ﬁ H\‘T%pe,

i.e using again reverse unitarity (see Eq. (A.19) of Ref. [110]),

eq? ( 4)] 1 ar(—e I'(1+e)

2Im2A4(s, — 1—-—+4+0 —
m2Ai(s, —q") = [ ap? T UGB amy e r(—20) (@)

(6.111)

As ensured by (5.13), going to b-space the leading term simply reproduces the contribution (28;)? dictated by the eikonal
exponentiation, while the subleading term determines

2¢ ail'(1—e)?

2Im2A4(s, b) = GEPP T6m 5 () (6.112)
Therefore, using

Re 28,(s, b) = Re AL)(s, b) + 28¢(s, b) Im 2A(s, b), (6.113)
we obtain

Re 28,(s, b) = Re AY!(s, b) — %p(@lm)? (6.114)

We are now in a position to make a precise comparison between the 3PM eikonal phase and phase shift. Subtracting
(6.109) and (6.114),

J

24
We remark that Re 28,(s, b), which appears in (6.1 15), is the O(G?) of Re 268,(s, b) regarded as a function of b. This should not
be confused with the 0(63) of Re 28(s, by/ cos = 9 >), regarded as a function of by. As discussed for instance above (6.83), the
substitution b = b;/ cos & (6 11) would induce addltlonal O(G?) terms, hence the need to pay attention to this distinction.
These terms, however, do not cancel out agamst the right-side of (6.115) so that the phase shift is not simply obtained
from the eikonal phase by taking b = b;/ cos 9 into account,

Re 28,(s. b), L~ Rexa(s.)) = Z(OPMy3 (6.115)

Re 26 (s, b/ cos &) # Re x(s,]). (6.116)

The difference (6.115) is precisely the one needed to reproduce the last term in the first line of (6.18), which we had
derived formally from the saddle-point conditions. In turn, this is crucial to ensure that, while the eikonal phase is linked
to the angle by (6.11), the phase shift obeys (6.14). Indeed, in the notations of (6.17), (6.18), (6.19),

2 2 _ 4
O™ = @p, Re 268, = dz—p, Re x, = dzpiu.
J 2 2
Hence the difference between eikonal phase and phase shift exactly matches the one derived in (6.115).

To complete the spectrum of possible definitions for the subtractions, let us consider employing the Fourier transform
with the complete mass-shell delta functions. We begin by recalling that the standard form of the exponentiation is
dictated by (4.1), were the A(s, b) is the Fourier transform with linearized delta functions as in (1.71) and (A.44). In contrast,
suppose we were to define

(6.117)

14 iFT[AI(s. by) = [1 + 2iA(s, by)]e2*b) (6.118)
with FT[A] as in (1.32) and (A.31). Then, while of course
280(s, by) = 280(s, b) ybﬁb . 284(s.by) = 285(s.b)|, b (6.119)
one finds a nontrivial difference for Zﬁl and 252 to the effect that
bp -
Re 25,(s. by) = [Rezaz(s b+ P oy ] - [ReAgm(s, b)]b ) (6.120)
b—by —by

where we used (6.114) in the last step, and therefore
Re 25(s, by) = Re 28(s, bcos &) = Re 25(s, b) (6.121)
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up to 3PM order.
Let us conclude this section by presenting the radial action up to 3PM in GR for the scattering of minimally coupled
massive scalars in terms of the coefficients defined in (6.17),
3

dip | dop ? - %
I(5.J) = =) = dolog + == + T’ (6.122)
where
do — 2Gmymy(202 — 1) 4= 37 GPm2mi(m; + my)(502 — 1) ’ (6.123)
o2 -1 4Ep
and

2
dy = 8G3m%m§ { (202 _ 1) (8 — 502) B o (140,2 + 25)

6 (02 —1)° 3Vo? -1
X (6.124)
25(120* — 1002 + 1) 0 (202 -1)" (202 —3) —40*+120%+3
+ 5— +arccosho S + 71
mim; (62 — 1)? 2(02—1)2 o

6.3.5. Radial action, effective potential, PN limit and bound orbits

In this subsection, we determine the deflection angle and the radial action in terms of a potential present in the
Hamiltonian describing the relative motion of two black holes. This serves as a tool to re-sum the PM contributions in
a controlled way and access the PN limit that also applies to the case of bound orbits. We conclude by presenting the
2PN-accurate expressions for the periastron advance, revolution period for generic bound orbits and for the binding energy
of circular orbits. The idea of matching to an effective potential has its roots in the EOB approach, and here we will follow
the particularly simple incarnation given in [297].

We start from the Hamiltonian describing the relative motion in a plane of two black holes:

JZ

H = p? + V), V= Z rnfn, (6.125)
where V(r) is the potential given as an expansion in the Newton constant. From the three Hamilton equations

oH . . OH . oH 2

= =P =0, F=_-—=2p, i (6.126)

00 pr 0ps r2
we get that the angular momentum p, = J is a constant of motion and the relation

a6 2

— = J , with p, =,/p?— I v(r). (6.127)

or  r2p, r2

Thus the deflection angle is

o0 d o0 a 2
e :—n+2]/ rz :—n—Z/ dra—,/pz—]—z—V(r), (6.128)
e 12 /pz _ % —V(r) T ] r

where p? is the constant value of the Hamiltonian and, in our case, p is equal to the momentum in the center of mass
frame. The factor — is there to ensure that ® = 0 if the potential vanishes and the factor 2 takes care of the motion
from infinity to the point of minimal distance r, and from r, back to infinity where r, is the largest positive root of the
condition of turning point, p,(r,) = 0. As shown in [298] one can avoid to determine it by computing the deflection
angle by using instead the following equivalent expression (in Appendix B.1 we review a similar approach to calculate
the deflection angle in the probe limit)

k
o k V( /u2+b2) (u2+b2)k—1
O = Zok by) ; Zb/ du (a) ( ! ) S (6.129)
0

(b
b= ob? p*

where as usual J = pb;. From the deflection angle we can reconstruct the radial action I by using (6.15)

- /(@ +m)d] (6.130)

and “the 4" is so that | - —xJ when ® — 0; moreover the J-independent part of I is fixed so as to agree with the
1PM expression for 28y via (6.16) and (6.94). Then, the relation between the radial action and the potential is given by

=-7j +2f = —V(r). (6.131)
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It can also be written in a more convenient way as

k
-1 (V( [z 1 bz)) (2 + b2)
] ]
=] — Z k‘ / (ab2> T (6.132)
The integral over u can be easily computed by changing variable to u = b; sinh w and using
oo d d—2
f o= Chaih ) (6.133)
o cosh" “w 2r(=-)
In this way we get
f1GDbJZEF(—€) fG*m G3 f1f2 fi
I(J,0)=— ! oG, 6.134
.0 = =g 4 2L 0 BET L (b B ) e (6134

where for the k = 1 contribution we reinstated the dimensional regularization parameter by using —% in place of —
in the potential. Then, by using (6.15), we can derive the deflection angle (in D = 4)

G [G*m 26 i £}
H*quF@+m 243

From the knowledge of the PM expanded deflection angle one can of course determine the coefficients f,. Comparing the
equation above with (6.83), we obtain up to 3PM

e =

) + O(GY). (6.135)

2m2m3(26% — 1) 3m?mi(m; +my)(50% — 1)
f]:%, fr= 2 252 (6.136)
and
= 2E(126* — 1002 +1) 3(20% — 1)(50% — 1)(m; + my)
3= (02 — 1) 202 — 1)
2 20(1402 + 25 464 — 1202 —3
mm; |:_ o(140” + )—2 U d cosh™(o)
E 3 |
202 — 12 [ 8 — 502 202 -3
N (20 ) o +( o Jo cosh~'(0) . (6.137)
2 2 3
o2—1 \30*—-1)  (52_1)2

It is possible also to derive the parameters f, directly by matching the gravity scattering amplitudes against those of an
effective theory encoding the potential (6.125) [37]. In this way one can derive at each PM order an object, Anpy(0, q),
that satisfies the following impetus formula [260,291,292,298]:

G 1 dq .
wh = ﬁ/ 2 e Appm(a, ). (6.138)

At the tree level Ajpy is the one in (3.4). At one loop A,py is given in (4.47) for € = 0. Finally at two loops,
Aspu(o, ¢°) = 4G mim3n log ¢°E
[ 3202 — 1)(502 — 1)(m; + my)  2E(126% — 1002 + 1)
x _

2(0’2—1) (0’2—])
2mym; ( 2(—3 — 1202 + 40*)cosh™! (o)  20(140% + 25)
+
E 02 -1 3
(202 —17 ( 8—502 (202-3)0
T Ve (3(02 o " (“)> )} (6.139)

which coincides with the part proportional to log g* of Eq. (8) of [38], with the addition of the two terms coming from
radiation reaction. Once the parameters f,, and so the potential V(r) (6.125), are determined, one can use this information
n (6.128) to find an “improved” deflection angle that resums a class of higher order corrections. A detailed analysis
discussing also this approach is found in [297,299-302] showing excellent agreement with data from numerical relativity.
The idea of resumming is at the basis of the EOB approach [31,32] that can be used to find accurate waveforms for bound
systems by using an analytic approach.
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A particularly simple case is the one in which the potential contains only f; and f,, which effectively reduces the
calculations to the textbook Coulomb/Newton case. In this case the deflection angle can be computed exactly as a function
of G,J and o. To show this it is convenient to introduce the two dimensionless quantities:

- fi - f2

== ; M=mqy+m;y. 6.140
fi M ;L= PETVE 1+my ( )
Then Eq. (6.128) becomes
2
0(,E) 4 f . (6.141)
Tx + fl L
p2r2
where
J? =J? - f(GMpY? (6.142)
and r, is the positive root of the equation:
ficM  J2
140 J EA. (6.143)
r p r

that has the two roots:

1 / 12
re = |/ (iGM? + — f1iGM (6.144)

and r, = r,. Rewriting the quantity in the square root in (6.141) in terms of the two roots and changing the integration
variable as

e P (6.145)
r r_
we get
O(,E)+n /ﬁ z 2J . (l)
= = arcsin({ — | . (6.146)
2 pvri(=r)Jo V1-22  pJri(—r) NG
By using (6.144) we get
0(.E fo(GMp)? 1
25in2[ VBt [ L zp)]=1+ (6.147)
4 ] 4j2
(pF1GM)?

which, by using trigonometric identities and recalling that 0 < ® < m, can be shown to agree with Eq. (7.6) of [291]
written below

O(,E)+n 1 4
U.E)+m _ T otan —2 |, (6.148)

2 2 £ 2
1— fzy 1— by
A It

\S]

where we introduced y = Mhp

An interesting feature of (16.148) is that its PN expansion captures the 1PN result to all order in the Newton constant
G. We can see this by first using the results (6. 136) for GR to rewrite (6.148) in terms of the parameters jpy and v
introduced in (3.13) and then by taking the 11m1t L~ ve « 1 up to the first subleading order with o' = jpyve fixed.

) and 22 ~ 5 we obtain

Using, in this limit, the approximation % 3 T
PN

© arctano + ! 3 (arctan + n) +
= o+ — a4+ =
2 2 2

307 +2 ) +0(jpd) (6.149)
Jpn )

ala? +1

where we have used tan~! o(1+x) = tan" ! o+ Ij’r"‘z +--- withx = 3: +2 The first term above is the OPN scattering angle

obtained in (3.14), while the second term is the 1PN correction at all orders in the PM expansion, see for instance [189].
One can also obtain the result (6.149) from the probe limit calculation, as reviewed in Appendix B.1. Integrating (6.149)
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as in (6.130), we have

G G
[~ 2 [Za —2arctano — « (log (®+1) + 210g< m1m2> —4log voo>
o

o Voo

(6.150)

Gmym
+a v (—210g(a2+ 1) + 3ma + 6a arctan o —4log< ! 2) +810gvoo) —n].
o

As discussed in [291-293], it is possible to extract information about bound binary systems starting from the resummed
PN results for the scattering process. The basic idea is to analytically continue the unbound observables to the region where
the angular momentum is kept fixed but the center-of-mass energy is below m; 4+ m,, due to the presence of a nontrivial

binding energy. In practice, we need to extend the Lorentz factor from the region o > 1to 6 < 1, which can be done in
two ways because of the branch cut p ~ /o2 — 1. The recipe for defining the radial action I for the bound case is to take

the linear combination of these two possibilities
[=1(Vo?=1— iV1=62,)+1(o? =1 > —iy/1—-62,]). (6.151)

In the PN limit this analytic continuation is equivalent to sending v, — +iv,,. Applying this recipe to (6.150), at 1PN
order we find

T = —2n) + 20Gmmy 22— L 46 Grmim; +O(2PN) (6.152)
= —27T g 1My T . .
V1—52 J

This can be directly obtained from (6.149) by noting that all its terms are odd under vy, <> —vo, (Or equivalently « — —a«)
except for 3n/(2jlz,N) and therefore cancel out in (6.151). The J-independent term on the right hand side of (6.152), which
we can take from the PM expansion (6.134), originates from the analytic continuation of bjzfl"(—e) in the second term of
(6.134): since J is kept fixed in (6.151), we have to send b; — Fib; as v/o? — 1 — =+iv/1 — 2. The term 0O(G?)in (6.152)
follows from the only contribution in (6.149) that is even under vy, <> —vs,. We can rewrite (6.152) in the variables used
by [30], introducing also the symmetric mass-ratio v = mymy,/(m; + m,)?,

. 1 v Gmimy
11—~ = Yes). — , 6.153
o &p <2 883> J \/5 \/f ( )
thus trading J, 6 for jp, €5, and obtain, in the small &5 limit (at fixed jp),

. 1 1 _
= —72Gmym, [2“/]; - @(6—, 42
JB

Ve Gn 4

It was pointed out in [291] that the radial action for the bound case vanishes in the case of circular trajectories which is
the most relevant one for describing the typical black hole binaries [30]. By using (6.154) we obtain the following relation

15)] + O(2PN) . (6.154)

~ . v+9
I=0, = JB,circ:1+8B

+ O(2PN) , (6.155)

in agreement with [30] and with the closely related derivation given in [303].
Of course, it is also possible to introduce the bound radial action in the PM expansion. Substituting Eq. (6.134) into
Eq. (6.151) we obtain at the 2PM approximation

- 262 —1 G*m2m3 3(562 — 1)
I=—2n) + 2nGmym, +7 (my 4+ my)=———— + O(3PM) . (6.156)
1—-62 J 2E
By using the result above in the boundary-to-bound dictionary [291,292], one can derive the periastron advance K = gf
and the period T, of the bound motion
y - 351
AO =—gI, Ty=0dl= (6.157)

85\/m% +2mymy6 + mj

It is straightforward to check that, using (6.156) in (6.157) and rewriting the result in terms of the variables (6.153), one
obtains Eq. (347b) of [30] (at order 1/jg, but at all orders in gg) for the periastron advance K and Eq. (347a) of the same
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reference (at order 1/+/jz, but at all orders in &) for the angular frequency n = 27 /T*:

ne 8 L 154w+ | 555 4 300+ 1107 1+ 22(_5 1 20)
= —_=— —(— v —_— v Y — (= Y
G +my) | 8 128 i’
+ % | 9385 — 49950 — 31502 113507 1 %0 (17 — 9v + 2v?)
3072 jie

16 ) ) 1
+575 (—10080 + (13952 — 1237%) v — 1440v%) | + O | — | 1,
Jp ¢ (6.158)

3 2
K=1+22,%

3 15

Jp

3
+83[§4 (5—5v+47) + 12 (—10080 + (13952 — 1237%) v — 1440v?)
B JB

+ 2 (7392 + (8000 + 1237%) v + 336v2)] e (%8) .
Jp

7. The eikonal operator in the soft limit

The 3PM eikonal for the elastic 2 — 2 scattering presents a few interrelated puzzling features. The most evident
one is perhaps the appearance of an infrared-divergent (positive) imaginary part 2% = e~'m20¢iRe28 jndjcating that the
probability for this process to take place is in fact infinitely suppressed in the limit D — 4. The appearance of an imaginary
part also makes the eikonal manifestly non-unitary and this suggests a way out. It indicates that we neglected channels
that are actually important also in the classical limit. Indeed, by considering a strictly 2 — 2 process, we neglected the
fact that the two-body system emits radiation. The aim of this section is to take the first step in order to ameliorate
this treatment by including the presence of soft radiation in the final state. To this end, we will promote the eikonal
phase to a Hermitian operator [112] depending on the graviton creation/annihilation operators and on the Weinberg soft
factor [1,304], taking inspiration from earlier approaches based on the Bloch-Nordsieck method and more recently on
dressed states [143,305,306].

As we will see, this will highlight how soft gravitons are responsible for the infrared divergent imaginary part of 24.
Moreover, another shortcoming of the elastic eikonal framework is that, by its very nature, it does not provide formulas to
calculate observables associated to the gravitational field. Introducing soft radiation as well, via the soft eikonal operator,
we will also gain access to the properties of gravitational waves at low frequencies: the Zero-Frequency Limit (ZFL) of
the energy emission spectrum and the memory effect. In fact, thanks to the exact, nonperturbative nature of the soft
theorem, the resulting formulas will even allow us to take a peek beyond the conventional PM approximation considered
so far. As we shall discuss, this will be crucial in resolving yet another apparent puzzle concerning the high-energy limit.
In the naive large-o limit the 3PM expression for the ZFL of the spectrum seems ill-behaved. However, this is not the
signal of an actual pathological behavior, bur rather of the breakdown of the PM approximation. The exact expression
derived thanks to the soft theorem instead provides the correct answer, even in the true ultrarelativistic limit, allowing
us to make contact with the massless setup.

A subtle point is related to the effects of static gravitational fields, whose Fourier transform is localized exactly at
zero frequency. Clearly these fields do not carry energy-momentum, so their inclusion is not relevant for evaluating the
corresponding spectra. Instead, they can in general carry angular momentum and are therefore important for the angular
momentum balance of the particles+field system. As shown in [289], and as we will obtain below, their contribution to
the angular momentum of the full gravitational field is in fact the leading one in the PM expansion and starts at O(G?).
In order to accommodate for such effects, we will consider a different dressing of the elastic process, which essentially
encodes static gravitational modes via the —i0 prescription.

Being based on the leading graviton theorem, the formulas presented in this section hold for generic deflections and
are independent of the PM expansion. Moreover they apply not only to the two-body scattering of spinless, point-like
objects, but also to collisions involving spinning or tidally-deformable bodies as well as to multi-body scatterings. This is
due to the universality of the soft factor, whose expression only depends on the momenta of the hard particles. Of course,
spin and tidal effects for instance do enter the explicit expression of the results, but only insofar as they influence the
relation between final and initial momenta, i.e. the impulses.

In the present section, since we are restricting to leading order in the soft approximation, it is sufficient to work
by using the momenta of energetic external particles in the elastic process as given, as in [1,304] and more recently
in [143,307-310]. Taking into account radiation back-reaction on the trajectories of the massive objects will be instead
crucial when considering the full gravitational-wave spectrum in the ensuing section.

45 et us recall that &p ~ C% and jp ~ c® as in (344) of [30].
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7.1. Soft eikonal operator without static modes

We can include soft radiation by following the method of Bloch-Nordsieck [311,312] and Weinberg [1,304] (see
also [305,306,313]). Let us consider the S-matrix element S y for the emission of N soft gravitons on top of a background
hard process involving particles with momenta p,, where n runs over the hard states. The subscript “s.r.” emphasizes that
we are restricting our attention to soft radiation. The total S-matrix element factorizes as the matrlx element SM) (the
superscript (M) stands for “momentum space”) for the hard process times N universal factors fj(k) expressed in terms of
the polarization j of the graviton and of its momentum k, [1,304,311,312]

Hw RISl = W), w) = 3 PP (7.1)
sr N - ] — % nv s - Dn - k ) .

where k = +/87G. Of course an analogous formula holds for soft absorption processes, with w;(k) replaced by —wj (k). We
keep graviton momenta always future-directed. For simplicity, we omit the p, from the arguments of w]( ). As emphasized
by Weinberg (see e.g. [314]), the formula (7.1) applies to the case in which the “bare” amplitude S™ is connected, hence
in our case to the iT part of S = 1 + iT. Extending (7.1) to the disconnected part of the S-matrix will be crucial for the
inclusion of static effects and for the calculation of the angular momentum loss given in the next section.

We introduce creation/annihilation operators for the gravitons, obeying canonical commutation relations

21 0(K°)8(k?)[q; (k), a}(k/)] = (2m )PPk — k) 85, (7.2)

with i, j labeling physical polarizations, and we define

/ / = 276(k°)8(k*)0(w* — K°). (7.3)

Following Wemberg [1], we have introduced a frequency scale w* below which the approximation (7.1) is valid, and in
practice this can be taken w* ~ v/b for eikonal scattering. On the other hand we do not need an infrared frequency
cutoff thanks to dimensional regularization. We can then capture the factorization (7.1) for soft emissions by defining an
exponential operator depending on the oscillators, (the sum over repeated polarization indices is left implicit)

o2ibsr. efk* [wj kel ()—w(k)a; (k)], (7.4)

and dressing the matrix element for the underlying process according to (here |0) denotes the oscillators’ vacuum)
N SM)
SS("r’” e L — (7.5)
N (0le?®sr-|0)

Then, the matrix elements (7.1) are recovered using the commutation relations (7.2) in

Sy = (0laj, (k1) - - - @iy (ky)SEP10) (7.6)
and similarly, for absorption processes (O|S§'\f)a‘L1 . T |0)

Let us now focus on the case in which the background process is the elastic 2 — 2 scattering which has been the main
object of study in the previous sections of this Report. We consider the Fourier transform to b-space of the two factors
in (7.5) separately. By construction the second factor, which describes the elastic process, gives the eikonal. However,
thanks to the division by (0]e?-|0) in (7.5), one needs only the real part of 28, as the infrared divergent contribution
to the imaginary part is automatically encoded in the new operator part, as we shall see momentarily.*® The first factor
in (7.5) is instead regular as Q — 0, so we can write it as a differential operator acting on a delta-function §°~2(b) trading
each Q with a derivative

0
Iz 7.7
Q" — lab (7.7)

in the Fourier transform. Of course the product of these two factors in (7.5) becomes a convolution in b space. However,
since one factor is just a delta function, the integral of the convolution can be performed straightforwardly, and one
obtains

e [+ wsfto-vjtog k)][1+2zA( )] e'Re26b) (7.8)

where the external momenta p, in the first line contain derivatives acting on the b-dependent functions in the second
line.

46 11 this section, we focus on the infrared divergent contribution to this imaginary part. The finite contributions also involve non-soft modes and
can be reproduced via a similar mechanism which will be discussed in Section 8.
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Let us make a few general comments before using (7.8) in some concrete calculations. First, the classical S-matrix
obtained by neglecting the quantum remainder A is explicitly unitary since only the real part of 26 enters this equation
and the inelastic prefactor is the exponential of an anti-Hermitian operator. Second, we obtain the dominant contribution
in the classical limit when the derivatives hidden in the external momenta p,, due to (7.7) act on the rapidly oscillating
eikonal phase, so that effectively

u d Re28(b)
Qt — T (7.9)
Since the soft factor w;j(k) becomes proportional to Q in the small-Q limit (see for instance Eq. (2.11) of [106]), we see
explicitly how the disconnected term of the elastic S-matrix element drops out under the action of the derivative (7.9) in
(7.8). Lastly, let us discuss how the factors involving graviton oscillators in (7.8) can be regarded as soft dressing of initial
and final states. To this end, it is sufficient to define

i K Dy P
wjgut/m( jﬂv Z fn , ntn (710)
neout/in n
with n, = +1 (ny, = —1) if n is a final (initial) state of the background process, and to introduce the dressed states

Ji (8" 0a () (0 0))

lout/in) = e |Woutfin) » (7.11)

where |Wouyin) only involve massive (hard) states. In this way, if |Wou) = e'®2®)|y5,), then we can rewrite this relation
in terms of dressed states as follows,

t T t *
lout) — fk( (ke () -2 (k) k) /k( af (l)-+wi (k)a,(k)) ¢iRe230) iy

t * g .
_ i (ot 0-u )] G0~ o k) ajuo) e/ Re250) i) (7.12)

since one can check that the two dressings for initial and final states commute as operators, owing to the reality of
the combinations w"""(k) themselves, and one obtains a total dressed state with w;(k) = w"(k) — wi"(k). Therefore,
lout) = S;; |in) with Ss, precisely taking the overall dressing factor into account.

We can now apply the eikonal operator to discuss the contribution of low-energy gravitons to observables, includ-
ing the waveforms, memory, and the particle-energy emission spectrum. The general procedure, given any quantum
observable O, is to take its expectation value according to

(O> = (lpin|s;r,r<ossm|'pin) . (7.13)

Physically, this means to evaluate the mean value of O in the final state of the scattering event, obtained by the action
of Ssr.. Thus we follow the same strategy as in the KMOC approach [116], but here we take the classical limit as a first
step approximating the full S-matrix with the eikonal (operator). Let us start from the classical field, which is obtained
by inserting in the expectation value (7.13) the free gravitational field [119]

Hy(x) = / [smv(k)aj(k) ¢ g7 (kal (k) *”"*]. (7.14)
This yields k
h*(x) = (H™(x)) = f ' [wiy (k)™ + wir”(k)e ™ ] | (7.15)
where k
K PaDy

(7.16)

jay _ v T v —
wit (k) = M2 (k) w™ (k),  w" (k)_; ok

and I7T o (k) is the standard transverse-traceless projector over physical degrees of freedom (5.45). Of course the prediction
(7.15) is only accurate for a detector placed at a large distance r from the sources. Taking this limit (see Appendix F) at a
fixed retardeg time u, so that r > |u|, b, and moving along the null vector n*, which characterizes the angular direction,
(7.15) yields

1 T dw .
h*Y(x) ~ — n)e ', 7.17
) arr | o 2im wry (@) (7.17)
where we used that w,, (k) = —wj,,(—k). Adjusting the normalization by comparing
g = N + 2W;w =Nw + 2/{th , (7.18)

47 We can send w* — oo as long as we focus on the value of the resulting integral for large |u| > b.
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we define the waveform according to
W, = ichy, . (7.19)

Performing the Fourier transform in (7.17) requires in principle to specify how the 1/w singularity at @ = 0 is
circumvented (see (7.65) below) [ 144,307-310]. However, as stressed in [315,316], the key point is that the behavior of the
waveform at large |u| is completely determined by this pole at w = 0, and possible ambiguities are in fact u-independent.
Considering the invariant combination

AW, (n) = Wy (u > 0,n) — W, (u < 0,n), (7.20)
and recalling that H“”(wn) = H““(n), we thus obtain the memory effect [317]

AW, (n) = —17““ )Z p”p" : (7.21)

i.e. the leading result of [307-310] or the term indicated as A,, in [310]. However, this approach does not capture
non-linear memory effects [289,318-320].

Let us instead consider the projection of Sy, |¥i,) back onto the initial state |¥;,) with no gravitons. Then one needs to
normal order the inelastic exponential through the usual Baker—Campbell-Hausdorff formula e**8 = eAeBe= 3148l 5o the
amplitude for the elastic process is given by

1 [ )
(Win|Ss.r. |¥in) = exp [—2 / w,ﬁu(k)n“”"’”(k)wpa(k)} elRe20(b) (7.22)
k

where focused on the classical contribution (ignoring A). The transversality condition k" w,,, = 0, which holds for gravity
by momentum conservation, grants

w:v(k)ﬂ’”’p"(k)wm(k) = w;v(k) (n"pnw — ﬁ r]’”n’”) W,e (k) = w*(k) w(k), (7.23)

where we introduced a useful condensed notation according to which explicit index contractions are suppressed, as in
(5.44). We will use this repeatedly in the following. Recasting (7.22) as

i[Re25(b)+3 [ w*(k)w(k)]

(Pin|Ss.r. [¥in) = e[ (7.24)

we see that the damping factor that emerged from the reordering of the exponential factors can be interpreted as an
imaginary contribution to the classical eikonal: the infrared-divergent one as € = (4 — D)/2 — O,

*
Im28(b) = %/ w*(k)yw(k) + 0(°) = %/Q(w* — K w*(k)yw(k) + O(€°). (7.25)
k k

Note that this integral is scale-invariant in the limit ¢ — 0, which means that its 1/¢ term is in fact independent of the
cutoff w*. We thus see the origin of the infrared-divergent imaginary part we had already encountered in the previous
section. It emerges because the elastic amplitude neglects the contributions of soft-graviton emissions [1]. The integral
entering (7.25) can be evaluated as follows to leading order in ¢, retaining also the logarithmic dependence on the cutoff.
Introducing velocities analogous to (1.7) for each state according to

Py = naMypvy (7.26)
so that v2 = —1 and v} is future-directed, we can use the following identity,
m.m * *\—2€ F,
/ nMm / MnMm _ |:(a) ) :| nm2 +O(60) (7.27)
(P - K)Pm - K) S (v - k)(vm - k) —2e | (27)
where
arccosh o, .
Fom = 77”77’"2—’”" , Onm = —VUp " Uy = _ﬂnnmpn Pm . (7.28)
ofm— 1 mympy

To show (7.27), it is convenient to perform a decomposition of the integrated momentum k* analogous to (1.10) for each
pair n, m, letting
OpmV o — VN
K= wn U + om Vs + KL, O, = (7.29)
’ Opn — 1
Taking the Jacobian determinant 1/,/02, — 1 into account (see also Appendix A.3) and focusing on the rest frame of
particle n where k° = w,, we obtain,

/* 1 / " dow, /‘da)m / 72k (1o =0+ 2000n0m — oy (7.30)
(U - K)(vm - k) ,F,,zm 2y O\ Ty — 1 ’ '




P. Di Vecchia, C. Heissenberg, R. Russo et al. Physics Reports 1083 (2024) 1-169

where we have used k - vp;m = —wn . Changing integration variables by letting @, = ®, wm = wx and k| = wx'],
performing the integral over xﬁ and focusmg on the leading term as ¢ — 0, we find

0 (—x* 4 20umx — 1) + O(€°). (7.31)

* 1
/k (vn - K)o - k) (2m) \/anm / w2 /

Noting that the Heaviside 6 function restricts the integration over x to lie between the two (positive) roots oym ++/02, — 1
finally leads to

/* 1 B |:(w*)—26:| arccosh oy i O(EQ) (7.32)
v (o Kvm-k) | —2¢ | @) Jo2 —1 '

where we used that arccosh opn = £ log(onm £ /02, — 1). This shows (7.27), and using this equation in (7.25), one finds

Im25(b) = [ — ] Z MM (0.2, — 1) Fam + O(€°). (7.33)
A similar calculation concerns the insertion of the energy—-momentum operator
P = fk e al(kai(k),  P* = (P%) (7.34)
as in Eq. (7.13), which leads to
P* = /k* k*w*(k)w(k), (7.35)

thanks to (7.23). Since we employ the leading soft approximation, we can only resolve the ZFL of the energy emission
spectrum,

. dE 9P° (7.36)
m-—=—, .
o—>0dw  Jdw*
or, using (7.35),
. dE * 047,0. % * £ 0 *
lim — = [ §(0* — Kk w*(k)w(k) = 0* | §(w™ — k" )w*(k)w(k) (7.37)
©=0 do k k
(with f, as in (5.37)). Comparing with (7.25), we then see that
dE ]
lim — = lim 20" — Im28(b) + O(e°). (7.38)
w—0 dw e—0 ow*

Using (7.38) and the explicit result (7.33), we see that this derivative cancels the divergence and extracts the coefficient
of log w* in the ¢ — 0 expansion, leading to

dE
lim — = lim [—4¢ Im 2§(b)] (7.39)
w—0 da) e—0
or, more explicitly,
. dE 2G 5 ’
c!)lino o= 2 MM (0 — 3) Fam - (7.40)

As already mentioned, the scope of validity of the formulas (7.33), (7.40) is rather wide, since they retain an exact
dependence on the background hard kinematics, they generalize straightforwardly to scatterings involving an arbitrary
number of initial and final states, and are also valid if the colliding objects have spin or an internal structure, e.g. if they
are subject to tidal deformations. This highlights a general mechanism: the infrared divergences of the elastic amplitude
determine the ZFL of the energy emission spectrum via massless quanta [1,106].

Focusing on the 2 — 2 case, in order to obtain a more explicit formula it is sufficient to use o, = 1 and F,, = 1,
while for n # m we have o, = oy, and

Q? Q?
O1p=034=0, O3=0n=0q, ou=1+_—, on=1+_——, (7.41)
2mj 2m;
where we introduced the shorthand notation
2 2 2
u—m;—m
og =0 — Qe __ 12 (7.42)
2mymy 2mymy
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Then, Eq. (7.40) becomes

dE 4G arccosh o arccosh o
lim 2mymy (0% — 1) — —2mm, (aé—%)iQ
w—0 da) 4 o?—1 o2 —1
vV

QZ
5 2 arccosh (1 + —2>
+ 3B ((1+ %) -1 il (7.43)
2 J 21111.2 2 > ’ .
i=1,2 QZ
(1 + 2mz) -1

where, as discussed, the transferred momentum Q should be interpreted by using (7.9), which corresponds to the
substitution Q* — —b"2psin % As already emphasized, while later on we will focus on certain interesting kinematic
limits, the dependence of this formula on the dynamics of the background elastic process, and in particular on Q /m;, is
exact.

7.2. Eikonal operator including static modes

Let us now turn to the contribution of low-frequency gravitons to the waveform in position space, in particular its
value at early retarded times, and to the angular momentum [289,321]. As we shall discuss, both quantities are sensitive
to static-field effects, and therefore to how one approach the ~1/w singularity at w = 0 in the radiation spectrum.

As we emphasized, the soft eikonal operator (7.8) is based on the standard Weinberg soft theorem, which includes
soft gravitons with low but nonzero frequency. As such, it does not include effects that arise due to exactly static fields,
whose Fourier transform is localized at zero frequency. To include them it is sufficient to replace the standard soft factor
wj(k) in (7.8) by*®

/8w GphpY
(k) = 0, (k) F*V(k), F*'(k) = —n 7.44
filk) = &y (k) F** (k) (k) an‘k_io (7.44)
and to consider the following operator (neglecting the quantum remainder for brevity)
5. = e[ waltg00g®] i (7.45)

where the definition of 25 will be specified momentarily. By including the —i0 prescription in (7.44) even for real emissions
of gravitons, we are now dressing the full S-matrix, including the identity term, and thus include possible “emissions”
localized at w = 0 from disconnected pieces of the hard matrix element. This construction is not a standard application of
Weinberg’s theorem, which only holds for connected amplitudes [314,322], and in this way it also captures static effects.
In fact, the same static term in the asymptotic field also follows from the worldline approach in which one solves for the
particle trajectories and the field using retarded propagators [129,134].

To see how this modification reflects the definition of dressed states, compared to the one discussed in the previous
subsection, let us now consider

£ = 67, (k) S Ip"‘:)" (7.46)
neout/in -1

and

* .Ou“"(k)a}r(k) fout/m*(k)aj(k))

|ouT/IN) = els G [Woutfin) (7.47)

(the notation |ouT/IN) is meant to distinguish these states from |out/in) in (7.10)). In this way, if we start again from
|Wout) = e R€20®) @y and we rewrite it in terms of dressed states, we get

ou il outs in( gt ins
jout) = efe (0] 00— 0y 01)) = i (700 G 0y0) iRe2506) (7.48)

In this new setup, the two dressings for initial and final states no longer commute, and using the Baker-Campbell-
1
Hausdorff formula e?e? = eA*Bet 2148l gne obtains

o (500] 0017 (i) 3 i (5P G R ™ () ) +iRe 25(0)

|out) = [IN) , (7.49)

where
fitk) = £ (k) — £ (k) (7.50)
48 et us note that the symmetric Lorentz tensor F*V in (7.44) should not be confused with the symmetric coefficients Fy, introduced in (7.28)

earlier on.
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and therefore, comparing with (7.45), we see that |ouT) = S, |IN) provided the phase takes the value

2i8(b) = iRe 28(b) — 2i8%"(b),  2i89"(b) = —% /k Zj;f’“t*(k) (k) — F (k)™ (K)) - (7.51)
The last equation, whose right-hand side is manifestly imaginary, identifies a contribution to the phase due to the dressing
(hence the superscript “dr.”). The integral that we need to calculate in order to determine the resulting phase correction

reads

. < . < } : (7.52)
-k+i0)pm - k—10)  (pn - k —i0)(pm - k +i0)

2i5%" (b Z /

neout
mein

|: 8nGmimy (o —5)  8mGmimi(op, — 3)

Sending k* — —k* in the second term, we see that this expression recombines as follows,

4 1
2i89"(b) = 5 > 87Gmymu(02, — $)lm (7.53)

neout
mein

where, introducing the velocities v} according to (7.26)
L = / a4k ZJTSgn(kO)(S.(kZ)Q(a)* - |k°.|) .
(27 Y42¢ (v - k + 10) (v - k — i0)
Here sgn(k®) = 6(k°) — 6(—kP) takes the value +1 (resp. —1) if K > 0 (K° < 0). The integrals I,; can be evaluated

in a manner similar to (7.27), as we turn to illustrate. Sending ¢ = % — 0, which as we shall see leads to a finite

(7.54)

leading-order contribution, and focusing on the rest frame of particle n where k® = w, = —v, - k, we can decompose the
integrated momentum according to (7.29) to arrive at
L= / " sgn(wn) dowy / da)md'kf_ i (kz B —w? + ZCanmUnm — a),i) (7.55)
,/O‘nzm - Nnwn + 10) (—Nmwm — i0)2(27 ) O — 1

after taking the Jacobian determinant 1/,/02, — 1 into account. Changing integration variables by letting w, = o,
wm = wx and k2 = w?x?, so that

sgn(wy) do, dom Ak = ©° do dxdx® (7.56)
and performing the integral over xi by means of the delta function,

wdx

, U T
" (2m) ,/a,,zm _ —npw +10) J 2(—nmwx — i0)

The Heaviside 6 function restricts the integration over x to lie between the two positive roots ony, £ /02, — 1, so that
the integrals over w and x factorize, leading to

0 (—x* 4 20umx — 1) (7.57)

w*

arccosh oy wdw

Inm = - — .
" 2 Joz =1 -y (—i0 + 10 (—nme — i0)
The new ingredient that we need to evaluate is thus the integral over “positive and negative frequencies”
to* wdw in
=——(m — . 7.59
/ o+ 10— —10) 2 ) (759

To see this, let us make the i0 prescription more manifest by introducing a small A > 0. Clearly the integral vanishes if

(7.58)

nn = Nm because ff;* wdw/(w?* + A?) is zero by parity. If 5, = —n, the integral reduces instead to
+o* d ir +o*
—/ w3)2=—P%w—um%—7”]
_o (0 —iAny) ® — A1y (7.60)
i n 2inp o™ ;
= —im —_— ———— —i7ny,
In (w*) 4+ A2 asot in
which shows (7.59), and this leads to the final expression for I,
in arccosh o
Inm = ——(n — 1) = (7.61)

2 Qo2 — 1
Note that the result no longer depends on the cutoff w*, so we may now send it to zero. What we obtain is thus a
contribution localized at the zero-frequency end of the spectrum, i.e. an effect intrinsically due to field configurations
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that are static in time domain. Substituting (7.61) into (7.53), we obtain

h
2i5%(b) = —iG Y mymp(02, — H) (7.62)
neout O‘nzm -1
mein
so that, using (7.41) and expanding for small deflections Q = Qipm + O(G?),
iGQ2 8 — 502 202 — 3)arccosh
Qi) = O e o 007 Z3)arccosha | o ca) — jre 28%(b) + 0(GY), (7.63)
2 3062 -1) (62 —1)2

where we have recognized the 3PM radiation-reaction phase Re 25§R(b). We also neglected a b-independent O(G)
contribution, which would be tantamount to a finite shift of the (IR-divergent) Shapiro time delay. In this way, recalling
that 2i89(b) defines the subtraction defining 2i§(b) in (7.51), we see that the inclusion of static modes in the dressing
leads to an eikonal operator in which the overall phase 2i5(b) is the conservative eikonal phase up to 3PM, i.e. it does not
include radiation-reaction effects. We shall see in later sections that the information about these effects is not lost, but is
actually encoded in the “soft factor” fij(k) rather than in the explicit phase.

Let us now turn to the prediction of this eikonal operator for two observables: the memory waveform and the angular
momentum of the field. Proceeding like for (7.17), but taking the expectation on the S, |Wi,) state including static effects,
we find the following asymptotic limit for the gravitational field considering a large distance r at fixed retarded time u
and angles given by n* (see also Appendix F)

1 T dw . K php°
Y ~ — — ¥ (wn)eTi¥, = 114 (k — 7.64
4nr[w 2im mm (@n) )Z k—i0’ (7.64)

and performing the integral over @ by means of the Fourier representation of the Heaviside 6 function,

+o00 dw e*iwu +o00 dw eiwr]nu
[t | = 6(nu), (7.65)

oo 12 —mpow — 0 oo 277 w — i0

this leads to
papg 6(naut)

2G
W“UZKh“v’V—I_[/’f; n) .
r (=napq - 1)

(7.66)
Note that for u > 0 (u < 0) only the out (in) contributions n, > 0 (n, < 0) survive, so that the difference AW, yields
the memory effect (7.21). Expanding (7.66) to leading order in the PM regime, where the out states are equal to the in
states up to O( ) deflections, one instead finds

WA ~ Z p“pa G, (7.67)

aem

i.e. the waveform has a u-independent O(G) contribution. This is the leading-order static field, whose inclusion was
possible precisely thanks to the —i0 prescription in (7.44). Before moving on to computing different contributions to
the angular momentum of the process let us make a few remarks on the traditional GR perspective on this issue.

The issue of angular momentum and of its loss in GR is a subtle one and has a long history (see e.g. [323]). The
approach based on the use of Bondi-Sachs coordinates [324,325], which is very convenient for describing the energy loss
by the system via gravitational-wave emission, cannot be trivially extended to angular momentum. The problem is that
the definition of Bondi’s angular momentum, Jp, suffers from a gauge ambiguity related to the possibility of performing
supertranslations, a subgroup of the BMS transformations [326,327] that preserves the Bondi-Sachs coordinate conditions.

As an example, the O(G) static term in (7.67) can always be removed completely by performing a BMS supertranslation,

2k8rhap = 26 T(n) ,has — r(2DaDg — yasDDc) T(n), (7.68)

where A, B, C, ... label angular directions and y4z = (94n) - (dpn) is the metric on the sphere with covariant derivative D,
by choosing [321]

n)=2G) (pa-n)log(pa - n/ma). (7.69)
aein

This raises the issue of whether such a static contribution has a physical meaning. In [321] it was argued that the true
radiated angular momentum is the one computed by using a particular BMS gauge, called the canonical gauge in the
GR literature, which amounts to setting the initial shear of the Bondi-Sachs metric to zero. In the post-Minkowskian
expansion this contribution starts at ©(G?) and is insensitive to exactly zero frequency gravitons. It was also proposed
that the additional static contribution to angular-momentum loss corresponds to choosing a different Bondi gauge, dubbed
“intrinsic”.
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The issue has been further addressed in [328,329] and, more recently, in [330,331]. The outcome of these investigations
is that both the radiative and the static contributions to the angular momentum loss by the two-body system can be
defined in a BMS-invariant way. The former contribution is indeed the one computed in the canonical gauge, while the
latter can also be given in gauge invariant form. In the approach of [321,329] it corresponds to a different gauge fixing of
Js, while in [328,330,331] the mechanical angular momentum loss is identified with the difference between the final and
initial Bondi angular momentum computed in two different Bondi gauges. In formulae:

AJmeen = J5P W — +00) — JS(u — —o00), (7.70)

where the upper label (—) refer to the usual canonical gauge choice at u — —oo, while the label (+) is defined by setting
the final shear to zero (because of the memory effect this actually means that at u — +o0o we are no longer in the
canonical gauge). By adding and subtracting a term ]l(;)(u — +00) one ends up with:

Afmech = (]éf)(u — 400) —JS (u — —oo)) + (éﬂ(u — 400) —JS (u — +oo))
= Ajrad +Ajstat

mech mech *

(7.71)

Eq. (7.71) makes it clear that the first term is insensitive to a u-independent (i.e. strictly zero-frequency) contribution
to ]é_) while the second term, being evaluated after radiation has stopped, is the difference of two constants and is
proportional to the final shear once the initial shear is set to zero [331]. Such a difference is nothing but the well known
memory and corresponds to the zero-frequency limit of the News tensor’s Fourier transform. In [331] the two prescriptions
have been shown to agree at O(G?).

If the decomposition (7.71) can be confirmed at all orders in G, it would establish a clear and strict connection between
the above BMS-based approach and the amplitude-based one discussed in this section where we distinguished strictly
zero-frequency gravitons from those with any non-vanishing frequency. In [331] it has been explicitly checked that the
definition (7.71) of the static contribution to the angular momentum loss is in full agreement with the one computed at
O(G?) in [144,332] and discussed hereafter. Perhaps another interesting remark before turning to the calculation is that
the same technique to compute the static angular momentum loss applies also in the case of a massless scalar field (see
(7.110) below), for which no BMS ambiguities arise.

To discuss the angular momentum of the gravitational field, we take the expectation in the S;. |¥i,) state of the
corresponding operator in De Donder gauge, which reads as follows

: v,po 9 v g0
]aﬂ = _l/kaLv(k)(DM P k[am + 2n“p8[a8ﬂ])apg(l<), (772)
where
1
DI = P T — ) (7.73)

is the tensor structure appearing in the gauge-fixed De Donder action (see Appendix A.2). At this stage we face the problem
of simplifying the intermediate state sum using the physical projector (5.45). In particular, we would like to see how the
dependence on the reference vector A* appearing in that projector eventually cancels out. Relying on the transversality
property k, F*” = 0, we obtain the following result, expressed as a sum of orbital and spin contributions,

Tap = Lap + Sap - (7.74)
Here the orbital angular momentum reads (with the soft F*¥ as in (7.44))
* SF”“” F™ gF’
. _ * - I * CFMH L F* I
iLap _/’: Fook ST D Zk["‘ I + 2k Fgy A - F* =20 - Fk Fp | (7.75)

with A - F* = A4F*F, F' = 1,,F*° and

3 1 og of
—g=-\f—=-—g], 7.76
fakﬁg 2 ( ok ok g) (7.76)
while the spin angular momentum is given by
iSup = / (2F; o Fly + 2k gFoy A - F* 420 - Frki Fh) - (7.77)
k

Therefore, the dependence on the reference vector A* drops out in the sum and we obtain the simple expression [144,332]

<~

5 * Vo v o a v a
Jap = —l/k Fio | (0700 = 555 007 Koy + 208185 | Fio - (7.78)
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The two terms within square brackets are reminiscent of the orbital and spin part of the gravitational angular momentum,
in particular the factor of 2 is associated to dealing with a spin-2 field. However, the two terms are not separately gauge
invariant, as one can easily check, pointing to the fact that only their sum can be given a well defined physical meaning.
Indeed, in order to obtain (7.78) where the intermediate transverse-traceless projections have dropped out, one needs
to rely on nontrivial cancellations between the orbital and the spin term (we refer to [144] for further details on this
derivation). The integrals appearing in (7.78) can be reduced to (7.54) by first combining pieces with “positive and negative
frequencies” like we did for (7.51). In this way we can write (7.78)
;2
7 = "5 o — 1) MK — ik 3 pup PP oK) (7.79)

n.m n.m
in terms of the integral
K — /‘ d*k sgn(k®)2m8(k?)k"60(w* — |K°])
(2m)* (pnk + i0)(pynk — i0)?
The integral (p,,K) can be expressed in terms of I, in (7.61)

= Ap" + Bp" . (7.80)

Inm I Nn — Nm NnNm ArCCOSh oy
(pmK) = =— , (7.81)
" My 2 MMy (27 )2,/02, — 1
while (p,K) can be easily computed
d*k sgn(k®2m8(k*)0(w* — |K°)) inn
(pnK) = / Z . =-——" (7.82)
(2m) (pmk — i0) (2w )*m2,
from the product of the two integrals
/w* wdw ; 1 /” sin 0do 1 (7.83)
= —I7T N = = . .
o (=i — 102 @ Jo (En—IPalcosOP ~ (2upm
As a result the coefficient A in (7.80) is given by
_ mrzn(an) + (PnPm)pmK _il Mm + Mn + (0 — 1m) (Opm Apm — 1) (7.84)

(Pupm)? —m2m2, 2 @ryPmimg (o7, — 1)

with A,y as in (7.86) below, B is not needed because it will not contribute when inserted in the first term of (7.79), by
antisymmetry. For the same reason, also the term with », + 1, in (7.84) does not contribute, and we find the following
expression for the angular momentum carried by the static gravitational field in D = 4, after sending w* — 0,

TP == cmplpl, (7.85)

nein meout
with
1\ onmAnm — 1 arccosh o
— 2 _ ) Zmm&Zmm 7 _ ST
Chm = 2G |:<Unrn 2) o 1 ZanmAnm} , Apm = e . (7.86)

The expression (7.85) is Lorentz covariant, translation invariant and valid for arbitrary kinematics p,, of the background
hard process, i.e. it holds regardless whether or not the outgoing momenta can be regarded as small deflections of the
incoming ones. In fact, just like Weinberg’s theorem, the formula holds independently of the number and of the specific
details of the hard particles taking part in the background hard process, which may also carry spin or be subject to tidal
deformations: one need only assign their momenta. However, of course, it only captures the contribution to the angular
momentum due to static/zero-frequency fields.

For a 2 — 2 process, pj = Q* — p, pj = —Q* — p} up to O(G*) corrections, and thus

T = PllaQﬂ] (13 — C1a) — pE“Qﬁ] (C2a — €23) + O(GY). (7.87)

where we have used that o013 = 094. In the PM expansion, using ci4 — c13 = gI(a) +O(G3), 3 — Cog = gI(a) + 0(G?)
with

1 8 — 502 o (202 — 3) arccosh o
SI(0) = 7 + 72 : (7.88)
2 3(e2-1) (02 —1)
we find
G o
T === —p2) QP 1(0) + O(GY). (7.89)

111



P. Di Vecchia, C. Heissenberg, R. Russo et al. Physics Reports 1083 (2024) 1-169
In particular, substituting (3.16) for the 1PM impulse and using

p
Q' = _?QIPM +0(G%), (7.90)

we get

B _ G2m1m2(202 — 1)

1
b2Jo?2 — 12
which, in the center-of-mass frame where —p; = (E;, p) and —p, = (E», —p), matches the O(G?) results in Eq. (4.6)
of [289] and in Eq. (12) of [332]. However, as already emphasized, thanks to the universality of the soft theorem (7.89)
is also valid when the particles carry classical spin [81], provided one substitutes the appropriate 1PM deflection. Taking
into account the 2PM correction to the deflection (4.58) on top of that, Eq. (7.89) also correctly accounts for the ©(G?)
static angular momentum, as well tidal effects [57]. However, to that order, additional genuinely radiative terms also
appear and we shall see in the next sections how they can be calculated in the eikonal framework.

T (o) (p1 — p2)“bP! + O(G?), (7.91)

7.3. The ultrarelativistic and massless limits

It is very instructive to inspect the behavior of the spectrum (7.43) in several physically relevant limits. The standard PM
regime requires that Q2 ~ (p@®)* « 2mi2. In this limit, one can extract the leading (3PM) contribution by Taylor-expanding
the first line of (7.43) in Q2, while the second only give subleading contributions,

. dE _2G_,[ 8—-50> (20%—3)oarccosho
lim — >~ —

w0 da) T 3(02—1) (02 —1)3/2

When rewritten in terms of the divergent part of Im 2§, using the simple link (7.39), the result (7.92) then reproduces the
divergent part of Im 2§, in (5.55) (and agrees with Eq. (5.14) of [106]), once we use Q >~ Qqpy (see (3.16) for the explicit

expression). Moreover, to the leading 3PM order, Eq. (7.92) has been explicitly shown to hold also if the colliding objects
carry spin, for generic spin alignments [81]. If we then consider in the formal ultra-relativistic limit o — oo, Eq. (7.43)

gives:

dE 4G S 5

lim — ~ —Q? ( log - 2. (7.93)
w—0 dw T mpmy 6

(7.92)

However, the exact expression (7.43) shows that the PM approximation breaks down, even when ® is small, when one
of the two particles becomes ultra-relativistic, p > m;. Indeed, while in this regime the first line in (7.43) can always
be expanded to first order in Q?/s, the second one presents instead a branch point at Q> = —4m?, corresponding to the
t-channel thresholds (outside the physical region). This implies that the PM expansion starts to diverge whenever for at
least one index i, (see Eq. (6.42) and comments below it)

Q
Zm,'

Since Q =~ p ® which is of order ./mymyo /2 ®, we thus recover the bound first pointed out by D’Eath [333] for the
validity of the PM approximation

miq my
max{/m2 / 1} 2[ <1. (7.95)

In view of this bound one could say that the PM approximation holds for weakly gravitating systems with “generic” but
not entirely arbitrary speeds.

For the ZFL of the emitted energy spectrum, however, the ultrarelativistic reglme or equivalently the massless limit,
can be obtained from (7.43) by considering 2p — +/s and m;,m; < Q = ﬁsm . The mass singularities appearing
separately in each line of the formula neatly cancel against each other and then (7. 43) reduces to (see e.g. [143] where
the result is extended to an arbitrary number of external massless legs)

> 1. (7.94)

dE 4G s—Q2
m— slo Zlog —— 7.96
w—0 da) b |: g - QZ + Q & Q2 :| ( )
or in terms of the deflection angle
dE 4G e e ® ®
lim — ~ —— 21 2 — 4 sin®> — logsin® — 7.97
w1~>0 1o - S [cos 5 0g oS 5 + sin 3 og sin > | ( )

which agrees with the leading soft limit of Eq. (5.12) of [310]. If we then consider the small ® limit of (7.97), after taking
the ultrarelativistic limit, at leading order for ® <« 1 we have

dE Gs@2 4
lim — 1+1log— |, (7.98)
T e?

w—0 da)
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which reproduces the result obtained in [334] (see also [333]) within a classical GR approach and in [142] from a
scattering amplitudes perspective. As anticipated, the true ultrarelativistic behavior of the spectrum exhibits a non-
analytic dependence on @ and thus on the Newton constant G, compatibly with the breakdown of the PM approximation.
These features are in fact shared by the leading-order angular momentum loss. For the component orthogonal to the
scattering plane, one finds in the ultrarelativistic limit

@

co
TV ~ 2Gs sin® log — 3 , (7.99)
sin =

2
which when further expanded for small @ yields
JY ~Gs® lo 4 (7.100)
g 57 .
again exhibiting the characteristic non-analyticity in the Newton constant.

7.4. The N' = 8 eikonal operator in the soft limit

To include the presence of other massless fields (scalars and vectors), which are needed to discuss the case of N' =8
supergravity where the massive particles are described by KK modes, we can use the fact that S-matrix elements for soft
emissions factorize in a way analogous to (7.1), with soft factors that instead of w;(k) are given by

w (k) =Y e £ 00Ph wk) =3 (7.101)
J - nn n pn i k ’ j - p" K k .
n n

for vectors and scalars respectively. As above, n, takes the value +1 for outgoing and —1 for incoming states, while e,
and g, denote suitable couplings. These new soft particles are easily accommodated in the eikonal operator by including
in the exponent of (7.8) the relevant operators ay for the dilaton (with coupling g, = —« m2/+/D — 2) and ay, j for two
vectors (e, = ~/2 x m;) and as, for two scalars (g, = « ml.z). The corresponding “memory waveforms” are also obtained in
a very similar way.

In analogy with (7.40), we find the following simple and general expressions for the energy emission spectra,

dEVeC

lim —— = P;ene,,.(—o,m.mm, (7.102)
des 1 8n8m
lim —— = HZ Fam - (7.103)

~ My,

Combining scalars, vectors and the graviton, we obtain a remarkably simple result for the N' = 8 spectrum,

_ dEN=8 _ 26
lim — MM (o, ) Fam (7.104)
w—0 dw T

nm

where o,,, = onm — 1 if n and m have momenta compactified along the same KK direction (so that m, = my) and
0,m = Onm Otherwise. Specializing (7.104) to the 2 — 2 kinematics as in (7.41), we have

n

. dEN=8 4G , arccosho

lim 2mimyo* ———
w—0 dow

, arccoshog
> = 2mymyoy ——
g% = O'é -1

(7.105)

@ arccosh( + %]2%) Q27 arccosh( ZQZ> :|

47711 Q2 4m2 Qi
2m 2 %

The standard relativistic PM regime, where Q% < 2ml. in the equation above, has an analytic PM expansion whose leading
term reads

lim dEN=8 4GQ’[ o? (62 — 2)o arccosh o
o 0?2 —1 (62 —1)3/2

w—0 dw b/ 4
Approximating Q ~ p® with ® the leading deflection angle given in (6.44), and exploiting the link (7.39), this reproduces
the divergent part of Im 2§, in (5.54).

On the contrary, in the regime (7.94), the small-® expansion is non-analytic and interestingly, in extreme ultrarela-
tivistic kinematics where the masses can be neglected, one obtains again (7.96). Indeed, the contributions related to the
dilaton, and the Kaluza-Klein scalars and vectors become negligible in this regime, as suggested by the fact that (7.102),
(7.103) scale with lower powers of o,,,, compared to (7.40), and the graviton provides the dominant behavior. At ultra-high

(7.106)
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energies, in this way, only the contribution due to the emission of gravitons survives. This is a universal expression for
two-derivatives theories in accordance with the expectation that gravity dominates the high-energy limit not just for the
elastic scattering, as argued in [104], but also in the (soft) radiation sector.

The inclusion of static modes for vector and scalar fields proceeds along similar lines as for the graviton case discussed
above by means of the —i0 prescription, i.e. by introducing the modified soft factors

ey (k) p
vec k) = e 2

f} (k) En rlnnpn.k_l.o
using which one then finds the following vector and scalar waveforms,
Yo 1 0

en Py, 0(nntt) (@(x)) ~ 8 O(nuut)

&n
) = 7.107
0 %quo (7.107)

1
Ay ~ —IIR) Yy —F—=—, — (7.108)
g 4r Xn:En—kH-x 4rr “—~ E, —kq - R
where IT*" is the transverse projector. For the angular momenta one finds
s _ v, Of of*
Jaﬁ = _5 A <f k[a By - k[a akﬂjf (7.109)
and
1 ZnE€m OnmAnm — 1
SC\UY _ _ [ V], 7.110
(%) Tor 2 mam o7 O = Pl P (7.110)
for the scalar case, as well as
gy = —i | F*(n"'k i+5"5” F, (7.111)
Y N TGV A '
which evaluates to
1 ene, OnmAnm — 1
(jvec)aﬁ = ﬁ mnr: |:_Unm % + Anm:l (M0 — nm)P,lf'Pﬁf (7.112)
n,m nittm nm

for the vector. Combining this with the graviton result discussed above, one arrives at the following simple formula for
the static angular momentum loss in N/ = 8,

o G 19 OnmApm — 1 , a
= > > [Gningznm - zgnmAnm:I (0 — nm)PIPE) (7.113)

n,m nm 1

where o, = oam — 1 if n and m corresponds to states compactified along the same direction, so that m, = mp, while it
equals o,,, = onm otherwise.

8. The eikonal operator beyond the soft limit

In this section, we discuss a framework that allows us to combine the dynamical information about graviton exchanges
that is contained in the elastic eikonal, which, as we have seen, determines the deflection of the colliding black holes, with
the information about graviton emissions that is contained in the inelastic amplitudes. Building on the idea of introducing
creation/annihilation operators for gravitons already introduced in the previous section, we construct here an eikonal
operator that dictates the final state of the collision out of two ingredients: the eikonal phase and coherent graviton
emissions with generic, i.e. not necessarily soft, frequencies. As we shall see, this provides a comprehensive strategy to
calculate observable quantities associated to the scattering up to O(G>): the waveforms themselves, the emitted linear
and angular momentum, and the changes in the linear and angular momentum of the colliding objects. In particular, this
will allow us to explicitly check the corresponding balance laws.

8.1. The elastic eikonal revisited
So far the external states involved in the scattering have been described simply in terms of momentum eigenstates.

Following [116], we now introduce wavepackets ®; to describe classical particles, so the initial state for the 2 — 2
scattering reads

W):/ / B(—p1)@(—p2)e” 1202 | —py, —p) . (8.1)
—P1Y-P2

The wavepackets are peaked around the classical value (that with an abuse of notation we will still indicate with —p;)
and we use the following notation for the on-shell integrals

d°pi 0yq( 2 2
/p. = / 2n P 270(p; )8(p; + my) . (8.2)
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By following [120], we can formally write the final state S.|y) = (1 + iT)|¥) in the elastic case (the subscript ¢ stands
for “conservative”) as

Selv) = f / f / O(=p1)B(=p2)eP P 222 ps. by (b, palS|—p1, —Pa) (8.3)
—P1 Y —p2 YP3 VP4

Of course we are interested only in the classical contribution to the S-matrix element which, as discussed in the previous
sections, is more easily captured in an impact parameter representation, see (4.1). Thus we write the momentum-space
S-matrix element

(p3. paliT| — p1, —p2) = (27)° f d°Q 8Apy + pa — Q)82 + p3 + Q)iA(—(p1 + p2)*. Q) (8.4)
as the inverse Fourier transform of the eikonal result
27m8(2p2Q) 278(2p1Q) iA(—(p1 + p2)*, Q%) = / d®x [(1 4 2iA(b)) (¥ — 1)] e ™2 . (8.5)

In this subsection, for ease of notation, we simply drop the imaginary part of 25. Let us discuss the quantities b and p; in
this relation. The momenta are simply defined as in (1.28), with g* replaced by Q*,

- Q - Q - Q - Q
= — —, = — - =, = —, = - =, 8.6
Pr=—P1+ - P2=—P2— pa=p1t+ 3 ps=p2— (8.6)

so the delta functions on the Lh.s. of (8.5) follow from the fact that the p; are on-shell. Then in order to produce these
delta functions from the r.h.s., the eikonal in the square parenthesis should not depend on the components of x along p;,
thus we introduced b to indicate the components of x orthogonal to p; recovering the property bp;; = 0 of the eikonal
impact parameter. By using (8.4) and (8.5) in (8.3) we get

Sely) = f |p3, pa)eP1Pagib2P3 f 4" / d°x
‘ P3 Y P4 ! (zn)D

x el 201-020g200)e 101 1 2iA(D)) b (ps — Q)P(Q +3) - (8.7)

8.1.1. Saddle points
The key idea of the eikonal approach is to approximate the integrals with the stationary phase contribution and this
can be done in (8.7) both for x and Q [120]. From the condition on x we obtain
028(b)  928(b) b,
_ _ 2u 8.8
oxH ob b (88)
by

where we used aaTZ = . We thus recovered the second relation in Eq. (6.11). In this approach, the relation between b

and the initial angular momentum follows from the other stationary phase condition
028(b) b, ab”

~9b b oaQr’

where the r.h.s. follows from the implicit dependence of b on Q. In order to make this explicit, we need to decompose x

along b and the space spanned by p;

(by = b)) —x" = (8.9)

X =b" +(p1+ P2)'A1 + (p1 — P2)'A2 = " + (pa + p3) ‘A1 + (pa — p3 — Q)Az, (8.10)
which implies

ab” __ ., 0Aq _ o~ ., 0A

50 —(p1 +P2)V@ — (b —Pz)v@ +38,A . (8.11)

since the derivatives involved in the stationary point conditions are calculated by keeping x, ps 4 fixed. By using (8.6),
(8.10) and (8.11) in (8.9), and noting that only the last term in (8.11) gives a nonvanishing contribution to it, we get

by = (b1 — bp)* = b" — (p1 + p2)"A1 — (p1 — p2)'Asz . (8.12)

The classical values of A; , can be determined by imposing that bp; = 0 and byp,, = 0 and by using (8.6) in (8.12). We
obtain

m? —m2)|Q|b s|Q|b
,_ imomielb -, sleb 5.13)
4mim;(o? — 1) 4mims(o? — 1)
By contracting (8.12) with b;, we obtain b? = b;b. Contracting it instead with b, and recalling that Q - b = —|Q|b, since
the force is attractive for gravitational theories, we get
sQ? @)
ﬁ:ﬁ@——T%;——>:Hm¥—, (8.14)
4mims(o? — 1) 2
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where in the final step we used the relation (2.31) between the value of Q at the stationary point and the elastic scattering
angle together with (1.13). We thus recover the first relation in Eq. (6.11) as well.

8.1.2. Impulse and angular momentum
We now use the elastic eikonal operator (8.7) to calculate the impulse by taking expectations of the momentum
operator for particle 1,

Py = / pal(p)ai(p). (8.15)
p

Applying this operator to the initial state (8.1), we obtain
P = [ [ eiepi@atopall-pr, —pa et (5.16)
—P1Y—p2
after using that |—p;) = aI(—p1)|0) and therefore the expectation value,

WPy = / (®1(=p1) (=p"). (8.17)

—b1

where we have used (p|p')20(p°)s(p* + m?) = (27 )P8P)(p — p') that follows from the canonical commutation relations.
For the final state, using (8.7), we get

PiSclyr) = / / e 174 @y (py — Q)e 273 @y(p3 + Q) ply I3, Pa)
P3 Y P4

D (8.18)
% / d"Q / Py pilb—x)-Q-+2i6(s.b)
(27 )P
and for the expectation value calculated at the saddle point,
wistpisan = [ [ 9101 - QF 12atpa + Q)P (8.19)
b3 Y4
Formally performing the shifts p}y = Q* — p/, pt = —Q* — p}, we recover
(WISIPYScly) — (WIPY |y) = / f Q¥ [@1(=p1)I? [@2(—p2)* — Q" (8:20)
—P1 Y P2

Of course for particle 2 we find
(WISIPYScly) — (wIPs 1Y) = —Q. (8.21)

The Jacobian for the change of variables considered in the last step, as well as the integral over the fluctuations around
the saddle points, would require further study. We shall return to this point in the outlook Section 9.

We will provide the analogous derivation for the angular momentum in the more complete eikonal framework
discussed in the ensuing sections which will also include dissipative effects (see Eq. (8.152) for the complete final result).
However, let us isolate here the conservative portion of the answer corresponding in particular to (8.156) for particle 1,

AL b 028(b) 0248(b)
(1c)ep = b1 Qg + P4[aW , ALpeyp = —baa Qs + P3[aW . (8.22)
4 3

Focusing first on particle 1, we recall that 2§ depends on p), both via 0 = —p3 - ps/(mym;) and via the projection that
relates b; to b* as in (8.10). As a result, we find

328(s, b)
AlLjcyp = b1 Qg + [P11a P21 + (P14 P2)1w Qa1 ] 1Py + (A1 + A2)p1e Qg (8.23)
1-D2
and similarly, for particle 2,
928(s, b)
ALgeyp = —ba1aQp) — [Pt P2181 + (1 + P21 Q1] I + (A1 — A2)p2pe Qg - (8.24)
1°DP2
As a result
ALgcyp + ALgoas = (by + A1(p1 + p2) + Az(pr — Pz))[a Qg - (8.25)
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Using (8.12), we see that the combination between round brackets is precisely b,. Since b*Q#! = 0 by (8.8), we get
ALicep + ALgeep = 0. (8.26)

Therefore, as expected, no mechanical angular momentum is lost by the two-body system in the conservative approxi-
mation.
To study (8.23) on its own, let us choose a frame where the center-of-mass sits in the origin of the transverse plane

Eib? + Epbe =0, (8.27)
ie.
o Ez o o El o
be = = by . b§ = _fbf . (8.28)
Let us also decompose the transferred momentum using p/, py and bj“ as basis vectors,
2E, ., © 2E, ., © D .
= Zsin? —p* — —=sin® —p, — = sinOb!". 8.29
Q A L 7P~ ) (8.29)
Using (8.29) we get
y . ., @ EE ,0  OEEDb
BIQP + (A + Apl*QP = —2sin? — "2 b (p; 4+ pp) 4 25in? — tan — 2~ ploph) (8.30)
2 E 2 U2 e p
If we now go to the frame where the center-of-mass is also initially at rest,
—pi =(Enp),  —p§=(E.—p), (8.31)

we see that, if we restrict to spatial components, all terms in (8.23) vanish after using (8.30),
il
ALy =0. (8.32)

This tells us that indeed angular momentum is conserved separately for each particle, in this special frame. The mixed
components ALY do not vanish, in general. However, they are actually not well defined, since they depend on the Shapiro
time delay 0268¢/9E ﬁ + log(b/bg), which is infinite in D = 4 due to the long-range nature of the gravitational force.
This requires a subtraction which leaves behind an arbitrary cutoff scale by in the remaining logarithm.

8.2. Coherent state approximation beyond the soft limit

As discussed in the previous section, in order to include radiation in the eikonal framework we need to introduce
creation/annihilation operators describing the physical gravitons (or in general massless particles) that can be pro-
duced/absorbed in the scattering process. So far we focused on the soft limit which in our context means that the typical
energy of the radiation quanta is much smaller than that of the potential gravitons exchanged between the two energetic
particles: w <« hv/b. In the previous section we used the approach by Bloch-Nordsieck/Weinberg [1,311,312] to describe
soft radiation as an exponential dressing of the “hard” elastic scattering as done in several papers [15,142,143,307-
310,335]. However, in the spirit of the eikonal exponentiation, we expect that classical radiation exponentiates at all
frequencies at least in a PM expansion. The natural guess is that, to describe frequencies w > v/b, the functions wj
in (7.8) should be derived from the classical limit of the whole 5-point function .4®). We will use W; to indicate these
more general functions appearing in the operatorial part of the eikonal beyond the soft approximation.

We start by taking the most straightforward generalization of the approach followed in the elastic case and introduce
the impact parameter representation of A® by taking its Fourier transform

D
A, 0,00 = [ (2‘;% 5(2p1d1 — 62)5(2pags — L) IR A5Wq, g k) (8.33)
where q; + g2 + k = 0 and the delta functions enforce the on-shell condition for the energetic particles. As usual, in the
classical limit we need to expand the full amplitude for small values of g; and k with respect to hard momenta p; since the
soft momenta are proportional to f in the classical regime. We expect also in the inelastic case the same pattern discussed
in Section 4 for the elastic scattering: the leading tree-level contribution as i — 0 should exponentiate and account for
the leading term in the classical limit at each loop level. Of course perturbative amplitudes at a fixed order in G will also
have terms that scale as the leading tree-level contribution: by comparing their form with the formal expansion in G of
the eikonal operator 6 one should be able to fix in principle the form of § order by order in the PM approximation. As
a consistency check, contributions of order O(G") that are more divergent than the classical terms should be completely
determined by lower order data. In our analysis we will focus on the leading PM contribution to the operator part of the
eikonal and discuss how the approaches of Sections 7.1 and 7.2 can be generalized beyond the soft approximation. In
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both cases, we take the following generalization of the elastic eikonal (8.7)

) i dDQ] dDQz
ib1p. ibyp [0} —
Slyr) = /p3 /p4 e V1PaeT2 3/ 2n )P / 2 )D¢(P4 Q)P (ps — Q)

y f Px, / Py elb1=x1)QHi02 1) 201 22) s 1 ) (8.34)

where the operator €% is determined by the 4-point and 5-point function as sketched above.

Let us stress that the final state (8.34) contains a large number of gravitons as it has the same coherent state structure
of the soft eikonal operator (7.8). While this may not be surprising, since we are describing the classical radiation produced
during the scattering, it is not obvious that the operator e** can be determined just by the classical limit of the 4 and the
5-point amplitudes order by order in G. It is argued in [ 120] that this is a consistency requirement because it ensures that
the variance in the distribution of the emitted gravitons becomes negligible in the classical limit. A first check is of course
to verify that the tree-level 6-point function involving two gravitons in the final state does not yield classical contributions
that should be included in the eikonal. This is discussed in [120] for the technically simpler case of QED and in [336] for
gravity: in both cases the assumption above holds. This supports the intuitive picture that the soft quanta are emitted one
at the time when the energetic particles bend in the scattering. However, as mentioned in the outlook, this point deserves
further investigation studying also the inelastic amplitudes at loop level. We expect that the eikonal operator involves
also corrections that are non-linear in the creation/annihilation operators for the soft quanta. For instance, terms of this
type are probably needed to capture contributions related to the Compton-like 4-point amplitude with two gravitons and
two energetic particles.

8.2.1. Eikonal operator without static modes
In order to define explicitly the eikonal operator (8.34), we then need to combine the classical information extracted
from the 4 and the 5-point functions. A first approach is to define [120]

p2i8(x1.%2) :/ d°Q dex e—iQ(x—xl+xz)ezias(b)ei/k[wj(xl .Xz.k)a](kHWj*(xl,Xz,k)aj(k)] ’ (8.35)
(2m)P

where 85(b) is related to the elastic eikonal discussed in Section 8.1, while W; is derived from the classical limit of the
5-point amplitude. Of course both objects will have a PM expansion and at 1PM and 2PM §;(b) is the same as the elastic
eikonal discussed in Sections 3 and 4. The leading mixed term in this expansion, 26 ; in the one-loop 2 — 3 amplitude
has been recently checked to be consistent with the exponentiation (8.35) [146-148]. We know that at 3PM §, develops
an imaginary part, see Section 5, but here we do not need to include it as it will be automatically generated by the
operator part we are adding: it is the same mechanism that in Section 7 yielded the divergent imaginary part of §, from
the normal ordering of the soft eikonal operator, see (7.25). Thus we identified §s(b) with the real part of the elastic eikonal
and, following [145], we take its dependence on the external momenta as follows,

1
265(b) =  [Re25(012, be) + Re 25(034, be)] (8.36)

where we symmetrize between incoming o1, = — 222 and outgoing o34 = p3 p“ momenta. This last step starts being
relevant only at 4PM, so beyond the scope of this re\}lew but we will briefly comment in Section 9 on why the approach
taken in (8.36) is useful.

In the radiative sector we have a similar PM expansion where W, = Wg; +Wy; + - - starts at order G*2. Since we will
work at the first PM order for the operator part, we focus on Wy;. This is obtained simply by using the classical tree-level
5-point function (5.38) in (8.33) and then contracting it with physical polarization tensors such as the ¢, ; introduced

n (8.84). For our analysis we need just the leading term and so we can use the linearized version of the delta functions,
8(2p1q1) 8(2p2q2), since 2piq; > q7

d°q, ;
WE (%1, X2, k) = / ﬁ €M) 5(2p, - g 278202 - 42) AP (q1. 420 K). (8.37)

where, as before, q; + g + k = 0 and Ags)“”(ql, q2, k) is given in (5.38). In the same spirit of Eq. (8.36), we take W*' to
depend on p; and p,,

~ 1 Q ~ 1 Q
= —(pa —p1)=Dps — —, ==(p3—p2)=Dp3— —, 8.38
p1=5(Pa—p1)=ps— P2 =5(Ps —P2)=ps — 3 (8.38)
rather than on p; and p,. In order to clarify the meaning of the integrations in (8.34), it is convenient to change variables
as follows x; = x4 + "7* Xy = X4 — %* Qi =Q.— % and @ = —Q. — g By rewriting (8.37) in terms of x.. we see that W,

depends on x,. only through an overall factor of e~*+*, When using this fact in (8.34), one can see that the integration
over x simply implies that P is equal to the sum of the momenta of the emitted gravitons, as it can be seen by expanding
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the last exponential with the creation modes. Therefore, at a generic order (af), we have P = Z'r‘;':] km. The factorized
dependence on x implies also the following transformation property under translations

M n o 2y —ia-ky 4 1V
X1, = X, t0a", Wy — e "Wy . (8.39)

The same property will hold also at the subleading PM orders as long as we start from a definition with the functional
form of (8.37).

It is instructive to use the stationary phase approach to calculate the norm of the final state (v|STS|y). Classical
unitarity implies that it should be equal to the norm of the initial state (y|4) and here we would like to see that at least
all large phases cancel at the stationary point. By using (8.34) and (8.35) we have

D /
(wISTS|y) = / f d Q‘ °Q dPx’ e~ 2 (br—x )} Q+Q (¥ =X, x5 —i265(b')
P3.P4 (2 )
x/ d°Q; dDX./ o, I3 (by—xr )-Qr —iQ(x—x1 +2 ) +i255(b) (8.40)
@ ") @rp

e 2 Wi X132 W (x1.x2. k)= 3 i Wi () 6 KD, 6 KO fi W38y 6y KY W (k1.2 )

X @1(pa — Q) @5 (p3 — Q) P1(ps — Q1) Pa(ps — Qo).
The stationary conditions for Q; and Q/ yield

0268s(b i OOWi*(x1, X2, K)Wi(X1, X2, k , OWi(x1, X2, k
Xm:biu-i‘ 8551) /[2( j(l 2 )M](1 2 ))—IVVJ(], 2»k) ](IMZ )i| (8.41)
Q K 9Q; I
9254(b") /[l AW (X1, X5, kKIW(x7, X5, K)) . OW™(x], X5, k) ]
X, =b;, + — — —1i Wi(X1, X2, k)| .
T e k2 0Qy oy T
Similarly from the variation of x; and x;, we have
. i O(OWi*(x1, X2, K)Wj(x1, X2, k . OWi(x1, X2, |
sz(—l)l“Q#+/ 1O (%1, X2 <l (X1, X2, k) LW, X ) ;(Xluxz k) (8.42)
kL2 0x; 0x;
. i dOW(x,, x5, K)Wi(X, X5, k) BW (%), x,, k)
Qq/u, — (_])1+1Q/; _ / |: f) 1° 2 e J\* M2 _ ] 1,M 2 VVj(X],XZ,k)
0x'; ox’;
and from the variations of x, x’, Q and Q’
B 0284(b) _9254(b)
Xo=( =m0 Q= (843)
, 0284(b") 0284(b")
x;:(xﬁ—xz)ﬂ—f-aQ;m, Q=" - (8.44)
We can satisfy these equations by requiring
9265(b) 0284(b)
X;=XM=(X1—X2);¢ W, =Q, = P
, , 3
Q) = Q= (-1""Q, — I/Wj*(xl,Xz, k)WVVj(XhXL k), (8.45)
1

/ 928(b)
4= b = = b = 2 /m (X1, 32, k) Q W1, %, K),

where fdg = (fog — gof)/2. When (8.45) are satisfied, all large phases cancel in the evaluation of (¥|STS|y), so they
define the classical values of various quantities. For instance, we can use (8.45) and the relations

p1+ps=Q, p2+ps=Q, (8.46)

which follow from the presence of the wavepackets &;, to express Q; in terms of the initial data b; ; and p1 5.

As mentioned after (8.38), some of the integrals could have been performed exactly, but we preferred to treat all the
variables on the same footing. By summing the results for the Q;’s and using the factorized dependence on x; of W, we
recover

Q' + Q' = — | W¥(x1, x2, k)K" Wj(x1, x5, k) = —P* (8.47)
k

ensuring momentum conservation.
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8.2.2. Eikonal operator including static modes

As we saw in Section 7, for some applications it is convenient to include in the eikonal operator also the static
contribution arising from the zero-frequency modes and this can be easily done also by following the formalism discussed
in the previous section. To this end we introduce an auxiliary frequency scale w* such that the full result is well
approximated by the soft limit for frequencies below w*. Then we can write the eikonal operator simply by splitting the
operator part in two terms, one for w > w*, where it coincides with the formulation in (8.35), and the other for v < w*
for which we follow the approach of Section 7. This splitting is useful only in the intermediate steps so to implement the
dressing with the zero-frequency modes discussed in Section 7.2, but on the final results we will take the limit w* — 0.
Thus the differences between this approach and that of the previous section are limited to the static contributions related
to zero-frequency contributions and the —i0 prescription, see the comments after Eq. (7.45). In formulae we have

) D
eZiB(xl,xz) _ d Q dDX e—iQ(x7X1+x2)ei285(b)
) @r)p
5 + * I * in, T _ cins .
G —ko)[fj““taj —foue aj]e— J; 0w —ko)[j}.‘“aj —fin aj] (8.48)

< ek H(ko—w*)[wj(xl,Xz,k)a;r(k)+vvj*(x1,xz,k)aj(k)].

We can follow the same steps of Section 7.2 and combine the oscillators in the second line of (8.48) into a single
exponential. This is equivalent to simply redefining the eikonal phase as in (7.51), that is

2i8(b) = 2i84(b) — 2i8"(b) (8.49)

with
1 [ . ; i
2i0%(b) = - fk (7™ 050 = ™ (") = GQyT(0) (8.50)

where 28%"(b) was derived in Eqs. (7.51) and (7.63), and has been reported again here just for convenience after using
(7.88). Thus we can rewrite (8.48) as

2i8(x1.x2) __ dDQ dPx e~iQx—x1+x2) i23(b)
e = | Gap xe e
« ok e(w*—ko)[fjaj(kﬁ —fj*(k)aj(k)] o e(ko—w*)[wj(xl Xa.h00] (Wi ,xz,k)aj(k)]

(8.51)

E]

where fi(k) = E"“t(k)—jj-i“(k). The operator (8.51) has to be used in (8.34) to obtain the full eikonal operator. The discussion
of classical unitarity for this eikonal operator follows the same steps discussed from Eq. (8.40). One can check that the
various integrals are dominated, in the classical limit, by the following values

325(b) 325(b)
X, = (X1 —Xx2), + TR = (8.52a)
4 F
Qi = (—1"Q, —i | Wi(x1, xa, k)WWj(xl, X2, k), (8.52b)
k i
025(b) [ . ]
(X — bi), = ﬁ — l/@(w -k f (k)a—ufj(k)
k 5 (8.52¢)
i f B0 — ") Wy x1. X2 k)~ Witr. 12, ).
k 9

where one should use (8.36) and (8.38).

8.2.3. The N' = 8 eikonal operator

It is straightforward to construct the eikonal operator (8.35) or (8.51) relevant to the classical limit of ' = 8 amplitudes
for 2 — 2 processes involving massive scalars plus additional emissions of gravitons, dilatons, and KK scalars and vectors.
For the elastic eikonal phase, one should use the A* = 8 result which we derived in the previous sections up to O(G?).
For the inelastic portion of the operator, instead, one can introduce new ladder operators associated to the new emitted
massless states, as discussed in Section 7.4, paired with appropriate 2 — 3 amplitudes for the emission of such states.
However, it is more convenient to adopt the approach of Section 5 and simply promote the appropriate Lorentz indices
i, v, ...to 10-dimensional ones M, N, .. ., employing of course the A" = 8 coupling in Eq. (E.22). This effectively captures
all possible types of emissions and exchanges relevant to the classical limit.
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8.3. Computing observables from the eikonal operator

In this section we illustrate how the eikonal operator allows us to calculate in a systematic way observable quantities
that characterize gravitational collisions. The general strategy, as already discussed in the soft limit based on Eq. (7.13),
is to take expectation values of the appropriate operators in the final state obtained by acting with the eikonal operator
on the initial state. Since in this way the final state now includes radiation, this will allow us to obtain not only the
deflection angle, but also the leading-order (L.0.) gravitational waveform as well as the 3PM linear and angular momenta
of the gravitational field generated by the collision. Moreover, since the operator incorporates both field and the massive
degrees of freedom in a dynamical fashion, it will also provide expressions for the corresponding changes of mechanical
linear and angular momenta of each particle taking part in the collision that explicitly obey the corresponding balance
laws.

8.3.1. Waveforms

As we discussed in order to obtain (7.17) in the zero-frequency limit, starting from the canonically normalized field
operator H,,(x) and taking its expectation value in the final state dictated by the eikonal operator, we obtain the metric
fluctuation W, (x),

g/w(x) = Nuv + ZWMV(X) . (853)

Proceeding in the same way, but using this time the eikonal operator (8.35), we find the following waveform in D = 4
that goes beyond the soft approximation

+00 a4
WH(x) = / 4o iougur (@(1,8),  Wr(k) = AR (8.54)
o 2 r /8nG

where w is the frequency measured by an asymptotic detector, u is the corresponding retarded time and (1, X)* a null
vector characterizing its direction with respect to the source. To obtain the L.O. waveform, we may employ Wj" given in
(8.37), which is the impact-parameter version of the classical 2 — 3 amplitude, with the further approximation x{ , ~ b7,
of the saddle-point conditions (8.45). Using the kinematics conventions given in Section 1.2 (see in particular Eq. (1. 10)
and Egs. (1.43) and following), we may cast it in the form

4
W0 = g [ S e sy g )2moton - 4AS (. 42,0 (8.55)
4mym, (27‘[ )4

where q; 4+ g2 + k = 0. In this way we will recover the frequency-domain expression VT/“”(k) for the waveform [129].
Performing the frequency Fourier transform (8.54) leads to the expression W*¥ for the metric fluctuation in (retarded)
time domain [128,337,338], which however we will not discuss explicitly here.

The starting point for computing the L.O. waveform is thus the five-point amplitude A; """ in the classical limit given
in Eq. (5.38). We find it convenient to rewrite the theory-dependent coefficient 8 by factormg out the mass dependence
according to

(&

B =2mimic, (8.56)
so that, in D = 4,
Bor = 4mim3 (6° — 1), By—s =4mimio”. (8.57)
and
SR=202-1, /= =202. (8.58)

We also recall that Eq. (5.38) is symmetric Ag’ v — AE)S)”" and encodes gauge invariance via the important property

k, A =0 (8.59)

(5)uv

In order to perform the Fourier transform, it can be useful to isolate the terms in .A; """ that have either 1/q§ or 1/ q%

from those that have both factors, wrltlng
1

5)uv 5 v v (5)uv
A = Loy ey Lo (8.60)
1 a; 1%
where AP, API, AP only contain q; and g, in the numerators. For terms of the first kind, we may solve g = —q;—k
in the mtegrand of (8.55), obtaining
e*lbz k d4q1 . 1
W (k) = 7/ eP N2 8(v1 - q1)278(vs - g1 — wp)— AP (8.61)
01 4mimy (27 )4 q% 0.1 G2=—q1—k
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with b* = b¢ — bj. Performing the decomposition (1.10) of the integrated momentum ¢} and taking the Jacobian factor
1/+/o2 — 1 into account (see also Appendix A.3), we see that the delta functions set g;j; = 0 and qyj2 = —w; (as already
noted in (1.48)) so that

W;Lv(k) B e*ibz»k dquL eib'Q]L 1 A(5)Mv I (8 62)
0,1 - /5 1 2 2 0,1 |92 =—q1 —K '
4mimy+/o? — 1 (27} q%L—i—% q1 = —w202 +q11
and this integral can be evaluated in terms of a modified Bessel function of the second kind Ky(z),
d? elb-a1L 1
/ (2:111; = EKO (£22), (8.63)
a1+ 225
where we introduced the dimensionless combinations
w1b b
= o= (8.64)
o2 —1 o2 —1
so that
W) = — o o Ko(22) (8.65)
0.1 ———=0.1 |q2 =—q1— . .
8mmimyv/o? — 1 fﬁ = *wlzvz +aq1L
q1L = —idp
In the last step we have used the identity q elbaL = 18“ iba11L to rewrite all instances of q]l appearing in AS)"“”

as derivatives with respect to the impact parameter b*. The dlscussmn of the second kind of terms in (8.60) is entlrely
analogous, with the only difference that for those it is more convenient to solve the momentum conservation condition
as ¢f = —qj — k", so that
7ib1~k )
W) = —————— A Ke(20). (8.66)
8rmimyvo? — 1 @ =—w101+ g1
G21 = —idp

Finally, we turn to the calculation of the third kind of terms in (8.60), which, proceeding as above, can be cast in the form

E)S)pw v
. rr (42 = —q1 —
e—iba-k dQlL ' g1 = —wpty +
LY ib-qq | 202 +q1L
Wo,ir(K) = P . . (8.67)
((QU_ +ki)+ o2_ ]> (qH + (,2,1)
where P = —a)f + 2w w0 — a)g as in (1.45). The basic integral to be performed in this case is
dZQIL eib‘QIL 1
/ o} 5 - 5 = EH' (8.68)
((Qu +ki P+ 211) (qu + (,231)
Introducing Schwinger parameters, one finds
+20X1Xy W] Wy +X5 !
b / dx;dx, eix]lQ( +ib-kxy +%) 5.69)
R 200 +xp) . '

Letting x; = b?x/(4)1), X, = b?y/(4)) with Feynman parameters x,y obeying x + y = 1, and using the integral
representation

Ki(z o 2 d
we) _ / e (8.70)
z 0 4)2
for the modified Bessel function of the second kind K;(z), one can express H as the following parametric integral,
b> (1 Ki(R2(x
PR 1(£2(x)) dx (8.71)
2 Jo 2(x)

where, again letting x +y = 1,

X) = \/.Q]zxz +28218220xy + 22)2. (8.72)
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Therefore,

—iby-k
e A(S v

5 a0 (g2 =—q1—k [
16rmimyvo? — 1 q1 = —w2¥ +q1L
q1L = —idp

1
bz/ e—ixhkwdx]. (8.73)
0

Wo.ine(K) =

To perform the remaining b-derivatives in (8.65), (8.66) and (8.73), it can be useful to recall that
Ky(z) = —Ki(z), (zK1(2)) = —zKo(2). (8.74)

Proceeding in this way, and collecting the three pieces according to (8.60), we obtain the following result for the
covariant frequency-domain waveform (8.54), letting

W (k) = Wi, (k) + Wi (k). (8.75)
Then
~ G*mymy _in.e DKo(82)) . b
Wh (k [A.““e ivjk DRO05G) i B e bk 9] 8.76
0.12(K) = brw1a)2 (62 -1 ];2 i Jol—1 0%j 1(8) (8.76)
with

Al{'u = Co (0'2 — 1) Ul(Mkv)wz + v1"v1”a)2 (206{)2 (CQ — 4(0’2 — 1)) + 2C0(,()])
+ 200" v, w1, (2(02 —-1)— Co) ,
B = (b-k)vi"vi" @y + v1"bVwiwn (8.77)

and A}", B," are obtained by interchanging particle labels (v}’ <> vy, b} <> b} and hence b* <> —b*). Here and in the
following £(1g") = gng'm’ 4 g1 g/ without additional factors. Moreover,

2GPmimy, [ Ki(£2(x))
v —ib(x)-k Hv LV
W (k) = o /0 e dx[C Ko(200) + D = 55 ] (8.78)
where
b*(x) = xb’ + ybY (8.79)
(let us recall that y = 1 — x) together with
C*™ = co(o? = 1) [27]’” —i(x —y)b(“k”)] — 2¢ (vl“v1” —ovHu¥) + vz"vz") (8.80)
—ib(MU;))(ZO'a)] (2 (0'2 — 1) — C()y) — ZCOXa)z) —ivz(“b“)(ZUwz (2 (02— 1) — CoX) — 2C0ya)1) s
and
b? 2b*b¥
D* = co(o? — 1)(3()( — PRk — :z(x)2) (8.81)
+ b?v1 kM (x — y) (coxwr + ows (coy — 2(0? — 1))
+ D20,k (y — x) (coyws + oy (cox — 2(0* — 1))
2b%v " vy”
ﬁ (CO (Xw1 + oywy) 2 +2 (02 — 1) w7 (a)z (02()( —y)— 1) — 20xa)1))
2b%vyH v,
ﬁ (Co (yw, + oxwq) 242 (02 — 1) w1 (a)1 (02(y —X)— 1) — ZUywz))
2b%v,Hyy)
+ﬁ(oxwl( ( 1)—COX)
+ wiw; (2(02—1)—60( )Xy)+aya)2( (02—1)—Coy)) .
As a cross check, one can verify that k, W' (k) = 0 by integrating by parts with respect to x, using b-ke*** = —ig,e*>"* This

causes the terms arising from integration by parts to cancel against the remaining integrated terms, wh11e the boundary
terms cancel against the non-integrated ones. The expressions we obtained in this way are valid for both GR and /' = 8
provided one takes into account the appropriate conventions discussed below Eq. (5.38).

In order to extract two gravitational physical degrees of freedom encoded in the waveform, we construct a pair of
orthogonal polarization tensors as follows. We keep ¢y generic so as to capture both gravitational-wave emissions in GR
and in & = 8 supergravity. We first introduce reference vectors &, and eg,‘ such that (more explicit expressions for such
reference vectors are given below in Eq. (8.91) and following)

ég-ég:l:e¢~e¢, ég-e¢:O, ég-k:€¢-](:0 (882)
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and
- v1-@ V-8 1
&-b=0, ey v =0, ——— =2 _ __ (8.83)
owi—wy; ocwy—w AP

Let us recall that P had been introduced in (1.45) and is nonnegative. We then construct the following transverse-traceless
polarization tensors

l > v >V 1 SH7 v
eh’ = E(e’ged) +&pey), el = E(ege’g —ejey) (8.84)
and define
W, (k) = Wi (k),  Wi(k) = e, WE(K). (8.85)

Isolating for convenience two contributions for each polarization according to
Wi+ (k) = Wiz /4 (K) + Wirr, »/4-(k) (8.86)
we find the following expressions. For the x polarization,

4isz1 myCo

Wia (k) = ———"2"2bey (e P Ky (21) v1-89 — e P2¥Ky (25) 128 8.87
12.x (k) brio? — 1) o ( 1(£21) v1-€ 1(522) v2-8) (8.87)
and
- 4iGPmim, (¢ T
Wier (k) = 1 ( 012 —2aﬁ> beeg / e PR (2 (x))dx (8.88)
rvoZ—1\ VP 0
with b*(x), £2(x) as in (8.72). For the + polarization, we find
Wy (k)
2G*mym b-k - . ; .
= 7”[1'— co (€72 K (822) (v2-89 )1 — ™1k (21) (v1-89 Y 2) (8.89)
roiw; (02 — 1) b
e P1KKo(£21) v1-Bowy — €72 KKo(822)v2 801 ,,
+ e ]ﬁ ((O' — 1) (4730 — Coa)la)z) — CQPG)]

and finally

2 1 2
Wirr +(k) = 726 M dxe_“’(")"‘ [ (b'e¢)

—5 oK1 (£2(x))£2(x) — coKo(£2(x))
rv/o? —1 0 b (8.90)
M (C @?w? +2P? — dom o 73) ]
2(x)P 0% 12 '
Introducing an additional vector b~ satisfying b* = b? and bv “l1p =b- b = 0, the explicit decomposition of the
reference vectors &, ej; in terms of the basis vectors v}, vy, b*, b* reads
i w10y — wpvl . (b-k)b* —(b-k)b* .
g = T ey = = . (8.91)
by/(b-k)? + (b - k)?

In the center-of-mass (CM) frame where

1 1 o
UI{L = 7(E‘la 0, 07 p)7 U; = 7(E2a Oa 09 _p)7 b :(Oa Oa b7 0)5 b = (07 ba Os O)a (8'92)
my my
we can introduce the explicit parametrization
k" = w(1, sin 6 cos ¢, sin 6 sin ¢, cos O) (8.93)

and the polarization vectors
- 1 .
8 =~ (c0s0.0.0.1),  ej=(0.—sing,cos¢,0), (8.94)
sin @

which satisfy (8.82), (8.83). In particular, P = w?(62 — 1)sin? . We provide a more complete list of kinematic relations
in Appendix E, together with an expression for the x and + projections in terms of reference vectors eg , eg such that eg
is not necessarily orthogonal to b*.
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Let us now explore the soft limit k* — 0 of the full waveform W“"(k) (8.75). To leading order in this limit, we find
4GZim]m2C0
b2rv/o? — 1 w?w? (8.95)

X (vz’lvz”aﬁ(b-k) - (b-k)vl"vl“a% - v1(“b”)w§a)1 + vz(“b”)wzw%)

W (k) =

which is in agreement with the PM limit of Weinberg’s soft theorem (translated to b-space), using the leading-order
deflection Qipy = 2Gmimyco/(b+/o2 — 1). Indicating by log(wb) a generic log-enhanced dependence on the graviton’s
overall scale,*® we find to subleading order in the soft limit

4G’mym; (4(0? — 1) — o) o log(wb)

Wéfﬁ(k) = 35 (vl“vl”wg — 01" o0y + w%v;v;)
r (02 — 1) w1w:
2G?*mymycg log(wb
_ 1M Co log(wb) (k(ﬂsu) — e ~k) (8.96)
rvo? — 1lojw,
with &% = wzvf + w1vy. Setting ¢g = cg'R to discuss the case of particles interacting only gravitationally, we can

compare with the subleading log-theorem [309,310], which predicts the form of the trace-reversed metric perturbation
et = W — Inns W according to

4G*mymy (202 — 3) o log(wb)

r (02 — 1)3/2 w1y

es; (k)= (vﬂ‘m“w% — 1% w0y + w%vé‘vﬁ) . (8.97)

We see that the first line of (8.96) agrees with (8.97), while the second line of (8.96) vanishes when contracted with
physical polarizations. Instead, we do not find agreement with the “sub-subleading” O(wlogw) soft contribution to
waveforms emitted during collisions of massless objects [142], which lie above the bound (7.94). For instance, for the
x polarization, we find

WXL + Wx.o(wlogw) ~

. 1+ 1(wb)2 log(wb)(sin #)? (8.98)
W><LA 4

in any center-of-mass frame, where p; + p, = 0 (the above relation is instead independent of the translation frame), as
o — 00, while the result of [142] gives rise to a similar relation but with the factor of % replaced by %
Finally, let us calculate the dilatonic waveform. For this case, we set ¢y = ¢; =8 in order to include not only dilaton

emissions but also dilaton exchanges, and take the trace according to

~ 1 ~

W= — W (8.99)

V2

Contracting indices generates some terms proportional to b-k from Wiﬁu that we can integrate by parts to obtain a more
compact expression. The result is W = W5 + Wi with

—~ 42G*mimyo? i b-k . b-k .
le(k) _ f 1Mo 7e—lb14k1<1(91) _ 7e—lb2'k1<1(92)
r b (0'2 - 1) w1 w)
( 2 2) ( ) 2) (8.100)
o —2)wy +owq _ibi ok o —2)w1+owy —ibyk
e "1 Ko($2 e 2Ky (£2
sor(o? — 1372 o($21) + (0l — 1772 0(§22)
and
~ 4/2bG*m;m v KR
Win(k) = _u(wg +w§)/ e—rb(x)-kM. (8.101)
r 0 2(x)

8.3.2. Linear momentum

Once the waveforms are given one can easily write down the corresponding formulas for the spectrum of emitted
energy and momentum for each polarization as a function of frequency or retarded time. In frequency domain, which is
more relevant for interferometers, one has
2 dwd$2(n)

dPy = K" oWy 4|

49 For instance log($21) = log(wb) + - - -, log(£2,) = log(wb) + - - - where the dots denote non-log-enhanced terms.
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where, as discussed in Appendix F, the measured frequency and the detector’s angular positions are characterized by
k* = wn*, while d§2(n) is the angular measure. In particular, using (8.93), the gravitational energy emitted in a given
direction 6, ¢ takes the form (see e.g. [337,338])

Y , :w|wwx,+|zsine%. (8.103)

These differential spectra, which characterize the angular and frequency distribution of the energy carried by grav-
itational waves, have been studied, for instance, in [337,338] for massive objects at finite o, and in [142,333] for the
ultra-relativistic case. Leaving to future work a more detailed study of the spectrum in different kinematical regimes, let
us mention a few of its broad features in the frequency domain after integration over the angular variables.

As we have already mentioned, in the limit @ — 0 the spectra tend to the well-known ZFL [339]. The characteristic
frequency range for which a soft expansion in powers of wb is valid is of order 1/b and in D = 4 contains logarithmically
enhanced sub- and sub-sub-leading corrections. Such a mild w dependence also holds above 1/b as long as wb does not
exceed +/o. Above this frequency the spectrum drops, first like a small power of w, and then exponentially when wb > o 3
This qualitative feature of the spectrum is responsible for the o dependence of the total radiated energy to be discussed
below. It would be interesting to compare this spectrum with the one of the ultra-relativistic limit i.e. above the bound
(7.94), ©+/o > 1, but, so far, this has only been done in the small-w limit as already discussed in Section 7.

Here we shall focus on the calculation of the total emitted energy and momentum, which is obtained by integrating
(8.102) over the graviton phase space, to leading order in the coupling,

P* = / ABeH A1) (8.104)
k

Following the steps discussed in Section 5, this can be conveniently rewritten in terms of the Fourier transform of a
three-particle cut, according to

===k | &=
,’/ a1 \\\ ”/ 194 \\\
Pt = FT/d(LIPS)k" e L i B , (8.105)
\ 02| ) \ las )
p2 (—\\\»7'/_—? ka %\7/—% ps

where FT stands for the Fourier transform (5.46). The integral on the right-hand side can be calculated using the reverse-
unitarity method, i.e. by reinterpreting the delta functions involved in the LIPS as cut propagators. The result in GR
is [47,117,118]

31022
G’mim;

P =~ (I + 1) &), (8.106)
with

&(o) o+1 o arccosho
~ 1 ,

- file) + fo(o)log 5 +f5(0) W
fio) = 2100% — 5520° + 33904 — 91203 + 314802 — 33360 + 1151

ne= 48(02 — 172 ’
(o) 35064 + 6003 — 15002 + 760 — 5 (8.107)

o)=— ,
2 8Vo? —1

(202 —3) (350* — 3002 + 11)
f3o) = £
8 ((72 — 1)

Let us now check that this emission of energy and momentum is matched by corresponding radiative losses of energy-
momentum of the colliding objects, i.e. by the integrals in (8.52b), which we denote as follows to leading order in the PM
expansion using the further saddle point conditions (8.52a),

1 9AB) _ ey DAGK

= | | A i — . 8.108

Q=35 /k[ b * b’ (8.108)
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Proceeding in the by now familiar way (see Section 5), we can recast this as the following three-particle cut,

p1 = ’ - \ = k] 7 m N —2- P4
: ! a \\ ; 1/da \\
Qi = 3 PT/ d(LIPS) (¢ — qf) : =k = } . (8.109)
\\\ Q2l ,/ \\\ l% /’
D2 H\»,/sz =<1———=D3

We can then use the same techniques employed to calculate Pfad, based on reverse-unitarity, obtaining the following
result

Gm?m?
Q'=- b3l 2 vy E(o), (8.110)
with &(o’) as in (8.107), and similarly for particle 2
Gm?m?
)= b3l Zv‘l‘ &lo). (8.111)
We see that (8.106), (8.110), (8.111) obey the energy-momentum conservation condition
P*+Q/'+Q =0. (8.112)

This can be seen as a consequence at the level of integrals of the basic identity g} + g} + k* = 0 among the integrated
momenta. Taking into account that the additional Q,, contribution enters the total impulse Q;,, (8.52b) with opposite sign
for the two particles, we thus recover the complete energy-momentum balance law,

PY+QF 4+ Q) =0. (8.113)

Here we used that the only contribution to the energy-momentum of the gravitational field is the radiative one given in
(8.104), P* = PH,
Let us comment on the difference between (8.45) and (8.52) when it comes to the non-radiative part of the impulse.
In the former case, Q* is determined by the derivative of the full eikonal phase Re 28 up to 3PM, which therefore includes
both conservative and radiation-reaction effects, as we discussed in Section 6,
13 G 2 bll 13
In the latter case, Q“ is determined by the derivative of the “reduced” phase 23, which does not include such effects, due
to the subtraction of (8.50). However, this difference is accompanied by the appearance of a new static contribution in
the relation (8.52c) linking x* to b*, which we denote by
Ax, = (1 — %, — by) i/@(a)* kO)F*(k)< o0
=W =2 === - Anl T AAk
" = ol 9]
To the order under consideration, using the on-shell conditions and the same integrals involved in the evaluation of 7%#
in Section 7, one obtains

)F(k)+o(c3). (8.115)

1
Ax, ~Q, G, G= 5 (C14+C3 —C13—C24) . (8.116)

where Q,, in this case is the conservative part of the impulse.
This quantity contributes with an extra term to the relation between b and b; in (8.12) and this implies that, in
computing Q* in (8.52a), we can use the relation b = x + GQ(b = x) getting

325(x+6Q(b=x))  925(x) 9225(x) .
= = O(G™). 8.117
Q axH ox* +6Q XXM + o) ( )

The second term gives the radiation reaction that can be written as
ye 0Q° _ GZ(0) 9Q* _
4b ab 4 3b,

GI(o) G h#
Ql; = _EQEPMI(U)ITZ

+ 0o(GY, (8.118)

where, at leading order, we have put x = b, and G = %I(a) by (8.114), as well as Q = Q;py. In this way, the predictions
of the two formalisms for the full impulse agree.
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8.3.3. Angular momentum
The angular momentum of the gravitational field sourced by the collision is given by the sum of two pieces,

Jaﬂ zlaﬁ + jaﬂ. (8119)

The second one, 7*#, is the contribution due to static modes, which starts at 2PM order and which we have already
calculated in (7.85). The first one, J, is instead new. It starts at 3PM order and arises due to genuine gravitational wave
emissions. Its expression is the same as (7.78), with the gravitational waveform A" replacing the “soft factor” F**. For
convenience, let us break it down as follows

. 9AB) ] "
Jop =J9 IS, I =i / ko AV I = / 248 AB) (8.120)
k

As already mentioned, the two terms in the previous equations are formally reminiscent of the orbital and spin terms
of the gravitational angular momentum, but only their sum is physically meaningful and gauge invariant. One of the
main advantages of the expression (8.120) for the angular momentum is that it is manifestly covariant under Lorentz
transformation. To see how it transforms under translations,

by, = by, +a", (8.121)
let us first remark that, under (8.121), A®*(k) transforms according to

APV (k) > ek ZOMv(ky | (8.122)
as is clear from the explicit expression (5.51). Then, taking into account the differential operator in (8.120), we see that

Jb s JoP 4 glopPl (8.123)

after comparing with the radiated energy-momentum (8.104). In this way, we see that (8.120) is in fact Poincaré covariant.

Following the above strategy, we shall now recast these expression in a form which is amenable to the application of
reverse-unitarity. Let us start from ] ﬂ, for which this manipulation is straightforward:

- I

pr = == py
St Sofa-a
JS) = 2iFT / d(LIPS) I e 3 (8.124)
~q—kl v e tk—q
b2 H\\»T‘/ﬁ <——\\//—> D3
[o Blu

as follows by applying the same steps discussed in Section 5, carrying along the appropriate index contractions. Let us
now turn to ]g’;, for which the presence of a derivative with respect to k* makes the connection between the b-space
and the g-space representation less straightforward, unlike all quantities considered so far. We first rewrite the defining
expression (8.120) in a frame where by = 0 and thus b* = b{, which can always be attained by performing an appropriate
translation according to Egs. (8.121), (8.122), (8.123). In this way we find

p ==
’/ qlT \\
! \
) = / o / “a 52m8(2py - 1)278(2pa - (g1 + KDV L =
kB! (2m) \ Ik
—qn - kl
D2 — \7‘%
- (8.125)
L/; - — Py
dP / Tda
! \
* / qli) 278(2p1 - 44)278(2p; - (qa — k))e™ % _T:i !
(27'[) K \\ lk - (’]4
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where we have already appropriately “flipped” the 2 — 3 amplitude in the second line by rewriting it as a 3 — 2 one.
Shifting q4 = q — ¢1, and using 8(2p1 - q1)8(2p1 - 4a) = 8(2p1 - q1)8(2p1 - q), we have

qu P qu
.r(0) ib- 1
l.’aﬁ (2 )D T ( D1 q)e /k/ (27T)D 0 ( D1 q])

= = = o~ o,
8 I// q]T \\\ I// Tq _\\q‘l
XKoo | 270202 @+K) S 2000 (g - a1 — k) 5 !
—qn—kl g Ak—q
D2 — \\»T‘/ﬁ =~ d — D3

When we let the differential operator act on the square bracket, we need to distinguish two types of terms. For the terms
where the derivative acts on the amplitude, we can use again

8(2p2 - (q1 + k)3(2p2 - (@ — g1 — k)) = 8(2p2 - (q1 + k))3(2p2 - q) . (8.126)
Instead, for those where the derivative acts on the delta function we can use the following property,
38(2p - (q1 + k) 38(2pz - (q1 + k))
e (2 (a— g1 — k) = ——— = 8(2p2 - @)
okP kP
35(2p; - q) (8.127)
+82p2 - (g1 +K) ———,
aq

which follows from the distributional identity §'(x)8(y — x) = §'(x)8(y) + 8(x)8’(y). In total we get three terms: the first
one involves the standard Fourier transform in the usual transverse plane §(2p; - q)5(2p - q) and the derivative acts on
the amplitude, the second one involves the standard Fourier transform and the derivative acts on the phase-space delta
function §(2p, - (g1 + k)), while in the last one the derivative acts on one of the delta functions appearing in the Fourier
transform, 8(2p, - q). Grouping together the first two terms, we thus find

pl = / — \ ] = 7 — N = p4
) ’I/ Q1T \\\ ’I/ Tq _\(\]1
p(0) | = «—l I
g = FT / i gy | ALIPS) il !
—q -kl g yk—gq
D2 — = _ d = = _ d e D3
Py et o o o P (8.128)
’I/ ChT \\\ II/ Tq _\(\4]1
—FT{2) / d(LIPS )k ! e S 3
_ql\\\— ki /’ ‘\\ lk —/q +q1
P2 —~— - = =~ - =
with FT?) given by
d°q 8(2p2 - q) .
FIP [fu(q)] = f oy 270001 )27 Te“’q £.(q). (8.129)

This modified Fourier transform acts on a quantity that looks like the g-space expression of P“. However, due to the
derivative acting on &(2p; - q), we can no longer calculate this quantity by assuming v, - ¢ = 0. To evaluate (8.129), let us

start by introducing velocities as in (1.7), p{ = —myv!" and py = —myv} so that
FIo [, (q)] = ;o2 / L gsor - 9)278 (s - )€ 5,(0) (8.130)
a 4mqim, (27‘[ )D w ' .

Proceeding as in Appendix A.3, and in particular decomposing the integrated momentum g* as in (1.10), we find

d’?q. 8(q1)dgyi 278'(q2)dqye
FT@ — / 11)day 12)dq)
o Vo) = = | s amymy/o? —1

129

e £ (q). (8.131)
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Integrating by parts (i.e. using the definition of the § distribution) we can recast this as the ordinary Fourier transform
of a derivative, obtaining

Bl
FTEXZ) [ u.(q)] = vy FT |:fp,(Q):| . (8132)
9q)2
The second line of (8.128) can be simplified using (8.132) so that
p== = s =2 py
8 ’I/ qlT \\\ ’I/ Tq _\?‘1
(o) _ / | = —1 |
Uop = FT/k k[a—akﬁ] d(LIPS") .\ I ,
—q— K g 4k—q
p2 <—\\\,/—> = \\‘//*) ps3
p1 = = - q; D (8.133)
8 ’I/ qlT \\\ I// Tq _\(\]1
— Uy FT T / d(LIPS)k 5, : ,ﬁ k = }
iz ~m—kl v lk—g+a
P2 =1 ="

The dependence on g in the integrand appearing in the second line comes from v, - g and from the invariants that
involve qj; and a loop momentum, or in ¢? itself: I(v - q, q - £1, q - £2, ¢*). Then, since

v2-q=—4q2,

L1-q=41-qL+€1-02q)2,

G-q=4Ly-qL+L2- 0242, (8.134)
¢ = (ﬁ_ + Qﬁz
we find
al ol . 5 31
b~ ama g T g ) (8.135)

because ¢ is quadratic in gy so its derivative vanishes at q;; = 0.

Let us comment as to why there are no ambiguities associated to derivatives of delta functions. As is clear from (5.51),
one is allowed to choose different expressions for the five-point amplitude provided that they only differ by terms that
vanish when

v1-Z1:O or v2-€1+v2~£2:O, (8136)

thanks to the delta functions. Different choices for these modifications will change each line in (8.133) separately, but will
not change the total sum, provided of course that the same choice is made consistently in both lines. The easiest option
is to just treat q; and k as completely independent integration variables, and let the derivative of the delta functions
automatically take care of their interdependence on-shell due to the longitudinal components.

Although we discussed the above steps for b§ = 0, we present the final results in a frame where b{ 4+ b4 = 0, related to
the previous one by a translation by —b*/2 (see Eqs. (8.121), (8.123)), where particle-interchange symmetry is manifest.
Defining £+ and F in terms of the functions £ in (8.107) and C given by

c g +g logo-l—l +g o arccosh o
- = 2 3 s
r o 2 2ol —1

10507 — 4116° + 2400° + 5370* — 6830 4 1110 4 3860 — 237
&= 24(c2 — 12 ’

3505 — 900 — 700° + 1602 + 1550 — 62 (8.137)
8= 402 —1) ’

(202 —3)(350° — 600 — 7003 + 720?% + 190 — 12)
8 =—
4(02 —1)°
[117,118,332] by letting

CVol—1=—-€& +0E_, F=€& —3&=—E_+1€, (8.138)
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we find
GPm?m? (0 — 1) —2/02 —1C
af ~ 1'% [axBl _ ployBl _
JO ~ T.F(o)(b 961 plef ) Flo)= oD . (8.139)
After a translation
E, — E
o 5 2 1 pu (8.140)
(E1 + E)
which places the center of mass (or rather “center of energy”) in the origin of the transverse plane, Eq. (8.139) becomes
" G*mim, . C(o)
J b~ b; |:b[ (mypy — mzpl)ﬂlzi]
- o o= (8.141)
+ 12 28(0)27 (b[‘" lmy +myo) — bpll(m, + mla)) ]
E o

that, in the center of mass system where —p; = (Eq, p) and —p, = (E;, —p), reproduces Eq. (15) of Ref. [332] except for
the static (zero-frequency) modes. Adding (8.141) with such contribution as given by (7.89) expanded up to O(G?), one
reproduces the full result of Ref. [332],

Let us now provide the analogous formulas expressing the angular momentum that is lost by each particle, which we
derive in full detail. Acting with the angular momentum operator

) daq(kq)
Liayp = —lf fl];(’<1)’<1[o¢17ﬂ]1 (8.142)
ky ok;

on the initial state (8.1) and using the commutation relations, one finds

Ly) = / / —ip} oy D1(— Pl)) Do(—py) V1P| —py —py)
P1 P2

(8.143)
* f / blla(—P}f])q)l(—p])CDz(—Pz)e'b]‘plﬂbz'pz|—P1, —p2) -
—P1Y—p2
The corresponding expectation value is therefore
WL ly) = / @;(=p1) (—ipl0fl@1(=p1)) + / B (=1 (=po)P (8.144)
—p1 —h1

Let us now act on the final state dictated by the eikonal operator. For notational simplicity, we discuss the action of the
eikonal operator (8.35) which does not include the static-mode contrlbutlons involving F*’. They can be easily reinstated
by replacing Wj(x1, x2, k) with O(k® — w*IW(x1, Xa, k) + O(w™ — )f](x1 X2, k). Doing this and replacing Re 2§ with 26, one
obtains the result for (8.51). For 51mp11c1ty, we also suppress the additional integrals over x and Q, which do not play a
role in the derivation. With this proviso, we start by calculating

LonupSIY) = / / e brPaitps | by
p3 Y D4

d”Q, D D, b b 2is
% dPx, d®x, ei(b1=x1)-Qq +ilba —X3)-Q2 +2i3(b)
(27 )P ZJT)D

928(b) 9
biwPaip) + Pafe —57~ + fp4[a7ﬁ]W(X1, x2, k) a'(k)
op, k opy
x el W(Xl’xz’k)at(k)w) D1(pa — Q1) P2(p3 — Q2) (8.145)

e[ [ i
P3 Y P4
D D
X/ d°Q / d°Q /dDX1/dDX2 ei(bl—xl)-Ql+i(b2—x2)-Q2+2i5(b)
2z J 2x)P
d

)
. i t
x| =ipae —57 P1(pa — Q) | V1220 W0) @, (p; — @)
0py
In order to make the expression slightly more compact, we used (5.52) in the exponents to reabsorb the imaginary part
of 2§ arising from the reordering of the exponential factors. In the last line we can use

0 d 0
P4[a7ﬁ]¢1(P4 —Q)=({pPs—Q )[aiﬁj@l(m — Q1) — Qo —; ¢1(P4 Q) (8.146)
3174 3P4 Q1
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and integrate by parts the second term. Doing this and defining the operator

0 d
O(yup = Paja —;7 . 7+ Qe —7 Y (8.147)
p4 1

we can write

LonupSIY) = / / e ibrPaitzs | by
p3 Y P4

D D
X/ " d"Q, /dDX1/dDX2€ by —x1)-Qq+i(ba —x2)-Q2+2i8(b)
(2mx)P J (2m)P

X <X1[a\Q1|;a] +O(1)a525(b)+/O(l)aﬂw(xuxz,k) a*(k))
k

x el e Wik 0a'®)0y @ (py — Q) Ba(ps — Q) (8.148)
o[ [ e g
p3 Y P4

D D
X/ " / d"Q, /dDX1/dDX2€ by —x1)-Q1+i(ba —x2)-Q2+2i8(b)
(2mx)P J (2m)P

. d i X1,X: a
X (b1[a|(134 — Qq)ip) — i(pa — Q1)[aﬁ¢1(194 - Q )) el e a0y @) (py — Q).
Dy

For the expectation value, we find

(WIS LaypSIv)

/ / dDQl / dDQZ de /dDX/ e i(bq—x/ )Ql—t(bz—x )QZ—IREZS(b)
P3.P4 (27[

dDQl D D i(b1—x1)-Q1+i(by—x2)- Re 258(b
X dPx; | dPx, eP17x1)Qi+ib2—x2)-Q+iRe25(b)
2r )P (2n)D

X (Xl[a\QHﬂJ + O(])aﬂZ(S(b) — I/W*(Xq, X,Zv k)O(])aﬂW(Xl, X2, k)) |0)
k

« g~ Im 25(b")=1Im 28(b)+ f, W*(x) x5 k)W (x1,%2,k)

X @1(pa — Q1) D5 (p3 — Q) P1(ps — Q1) P2(p3 — Q2)

(8.149)
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X dPx; | dPx, eP1—x)-QiFibr—x
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Py
« g~ Im 28(b")—1m 28(b)+ fi, WX} x5 k)W(x1,X2,k)
x ®1(ps — Q) D5 (p3 — Q;) P2(p3 — Q2).
At the saddle point,

(WIS LinapSI¥)

= / |@1(pa — Q1)I* |D2(p3 — Q)
P3:P4

X (Xl[a\Qllﬁ] + O(1)up Re 28(b) —

k

W*(x1, X2, k)O(13apW(X1, X2, k))

(8.150)
+ / D1(pa — Q)" |Da(ps — Q)
P3.P4

d
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and shifting the integration like in Section 8.1.2, ps = Q; — p1, p3 = Q2 — p> and recognizing the last line as the angular
momentum of the initial state (8.144), we finally obtain

(WIS LnesSI¥) — (W ILayp )

_ 2 2
_/—pl.—p2|¢]( P11 |D2(—=p2) (8.151)

X (xl[a\QHﬂ] + Oyup Re28(b) — i | W*(X1, X2, k)O(1)apW(X1, X2, k))

k

with Oy, the operator (8.147).
Performing the appropriate replacements discussed below (8.144), if we are interested in the angular momentum up
to G? including the static modes, we thus have
928(b) . [ - 9 - -
ALE‘{? = X1(a|Qiip) + Pafd 51 — I/A(s)pqaﬁflm - I/F OupF + O(GY), (8.152)
ap4 k p4 k

where we have neglected the second term in the operator (8.147) in O(1y,425 and similarly in .A**0y;),5.4%), because it
would give O(G*) effects since A®* A®) is already O(G?). Instead, as we shall see, it is important to keep it in F*O(1y,F
because it grants the identity

w aGHY oGHY
OmyupF"" = p4[aﬁ + Pl[aﬁ ) (8.153)
Dy P

where G"*"(p4, P3, P1, P2) is the “soft factor” seen as a function of four independent hard momenta, i.e.
F""(p4, p3, Q1, Q2) = G""(pa, p3, Q1 — pa, Q2 — p3). (8.154)
In the following, we will calculate (8.152), breaking it down into the following terms
B B B B
ALY = ALY + ALY + AL (8.155)

and similarly for particle 2. The conservative term reads as follows, using that the difference between x‘]‘ and b’{ is aligned
with Q* as can be seen from the saddle point condition (8.52a) and from Egs. (8.8), (8.9),

op 9 Re 25(b) 9 Re 25(b)
ALy = X110 Q) + Pater ——57— = D111 Qg1 + Pajer ——57— - (8.156)
apl 0Dy

We already calculated (8.156) in Eq. (8.23) and following. The radiative terms is given by

where Q is the radiative contribution to the impulse as in (8.108) and we defined the shorthand

9AB)
]iotﬂ = /pi[a ﬂ] A(s)* . (8158)
k op;
Focusing for definiteness on particle 2 in a frame where b§ = 0, and proceeding in a manner entirely analogous to what
we did for J#, one arrives at the following expression in terms of three-particle cuts,

p == — -~ =
) Cai Coja-
Jous = FT / vate —5; | d(LIPS) : il !
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and employing reverse-unitarity we obtain the result

Gm2m? E b[‘"vﬂJ 1
af 1" + 1 [a ¥ A1
AL1 ~ - be”‘vz s

b3 o—1 2
(8.160)

Gmim2 | &bt 1
af 12 | <+ 2 - [ B8]
AL," ~ b3 p— +25b v |-

Of course the expression for particle 1 is obtained by interchanging particle labels everywhere. The radiative quantities
(8.139) and (8.160) obey the balance law

JP + AL + ALY =o. (8.161)
Finally, the static-mode contributions to the changes in the angular momenta are given by the following formula valid
up to O(G?),

<> <>

d 9 .
Actt = /F* Pate—57 + Qe —; | F + b2, (8.162)
k opy 0Q

where Q‘f is the static contribution to the impulse, (8.114). Under a translation (8.121), Acf”g — Aﬁf‘ﬂ +a Q?J. Making
use of the identity (8.153), we see that

- 3 d Y S
=i F |\ Pate —7 + Qe —57 | F=—1 [ C'Pite —576 — 1 | CPaje —57C = Joyep +Jeares » (8.163)
k opy 0Q; k op; k opy
where we have defined
. " a
Joep = =1 | CPuia —5G- (8.164)
k 8pn

Of course, a similar manipulation works for particle 2. The integrals appearing in these combinations can be evaluated in
the same way as those we discussed in the previous section and give the following result for m = 1, 2, 3, 4,

2l =Y camPEPE = > dun PP, (8.165)
Nn=—"0m nn=nm
n#m

For instance,
ZJZﬁ = C14p[1apg] + c24p5"‘pf] - dlZP?PE] . (8.166)

with ¢, as defined in (7.86) and

2

o2 _1
Ay = 2G ——= . (8.167)
ofm— 1

In conclusion, we find the following result for (8.162) and for the analogous expression for particle 2

AP =P P bl AL = 5P bl ol (8.168)
Here, Qf = —Qf is the 3PM radiation-reaction contribution to the impulse,
GQ2,\,b” 2Gmimy(20% — 1
QY = —Q]il(a), Qipm = # (8.169)
2b? bvo? —1
with Z(o) as in (7.88). One can easily check that
P 1 v = gt (8.170)

Moreover, b[{x Q’f] +b[2” Qg] = (b —by) Q’f] = bj[“ Q’f] = 0 (up to O(G*) corrections as follows from (8.12)) which vanishes
by antisymmetry. As a result, these static contributions obey the “separate” balance law

TP+ ALt + ALl =0 (8.171)
so that, in conclusion,
JP 4 AL + A =o. (8.172)
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9. Summary and outlook

Conventional perturbation theory provides, in the common practice, the main tool to approach scattering-amplitude
calculations. It is based on the assumption that, in the regime of interest, the relevant coupling constant can be regarded
as sufficiently small. A textbook example is Quantum Electrodynamics, in which elementary charges couple via the fine-
structure constant, e?/h & 1/137. The situation is dramatically different when it comes to gravitational interactions of
classically sizeable objects, such as black holes with masses (and, thus, energies) much larger than the Planck mass, whose
effective coupling GE?/h is extremely large. This seemingly renders our most effective techniques to calculate scattering
amplitudes useless to study the classical limit of gravity.

In this report, we illustrated how the eikonal exponentiation serves as a convenient, flexible and conceptually
transparent tool to attack this problem in a variety of different theories and setups. This mechanism “builds” classical
gravitational interactions by resumming the exchanges of many gravitons, in accordance with the intuition that their
number, like any quantum number, should become large in the classical limit. Their contributions to the 2 — 2 amplitude
A exponentiate, so that in the classical limit 1+i.4 ~ e?% with 28,(s, b) the leading eikonal phase, which is simply dictated
by the single-graviton exchange and indeed proportional to GE?/A. In this way, perturbation theory comes back into the
game since, by matching to the eikonal exponentiation, the calculation of higher-loop amplitudes allows one to obtain
successively more refined approximations for this exponent, 2§o+268;+- - -, weighted by the classical small PM parameter
GE/b. In turn, the rapidly oscillating nature of the exponentiated amplitude fixes the values of the classical exchanged
momentum, the impulse, via a saddle point condition.

After reviewing the combinatoric proof of the leading eikonal exponentiation, and illustrating its connection with the
impulse and classical deflection angle, as well as the close relation with the phase shifts perhaps more familiar from
elementary treatments of the angular momentum in quantum mechanics, we went on to discuss the single-exchange
O(G) eikonal phase 28y and its manifold applications: minimally coupled massive particles in GR, both spinless and
carrying a classical spin, massive particles in maximal supergravity, and string collisions. In many situations, proving the
exponentiation to all orders is impractical, and one can resort to a more pragmatic approach of checking the constraints
it imposes at each loop level. In this spirit, we presented the discussion of one-loop amplitudes in the classical limit both
in order to retrieve the next-to-leading ©(G?) phase 28; and as a means of checking the i(28y)?/2! term dictated by the
two-graviton exchanges. A similar pattern holds for high-energy string scattering, and in the string setup new interesting
phenomena arise. In particular, already the leading string eikonal is promoted to an operator: for instance, excitations in
the s-channel have to be included at short distances, while tidal deformations can become important also at large distance.
We showed that the leading energy contribution of the one-loop elastic amplitude in string theory is consistent with the
exponentiation of the leading eikonal operator, but currently a similar analysis for massive string states is lacking.

After a detour into the interconnections between unitarity and the b-space exponentiation, we reviewed the two-
loop, O(G?), calculation focusing on maximal supergravity and GR. The O(G?) eikonal 26, is the lowest-order contribution
to the classical exponent at which imprints of the dissipative nature of the scattering problem manifest themselves. It
possesses both so-called radiation-reaction terms in its real part, which reflect into time-reversal-odd contributions to
the deflection angle, and an infrared-divergent imaginary part. The latter is due to the fact that the 2 — 2 amplitude
by its very nature neglects the emitted radiation, and, via unitarity, this corresponds to nontrivial three-particle cuts
that the standard exponentiation does not account for. We therefore took a first step to amend this shortcoming by
combining the eikonal exponentiation with the Weinberg exponentiation of soft quanta, which ought to be included in
the description of any physical scattering event in order to obtain infrared-safe final quantities and to restore manifest
unitarity. The general nature of soft theorems also allowed us to take a peek beyond the conventional PM regime, by
relaxing the assumption that the impulse be parametrically small compared to the masses. The resulting exponential
structure combining elastic collisions with inelastic emission processes takes the form of an operator, and in the last
section we provided a self-contained discussion of this eikonal operator to O(G>) beyond the soft approximation, where
it neatly disentangles conservative and dissipative effects, and allows one to calculate a variety of different observables
such as the emitted energy and angular momentum during the collision.

Together with the emergence of these new theoretical structures, which we illustrated in detail in this report, the
classical limit also presents simplifying features, mainly when it comes to evaluating loop integrals. In this limit, as long
as the colliding objects stay far apart, one can focus on those contributions to loop integrals that are non-analytic in
g-space and therefore relevant to the long-range behavior in b-space [340,341]. A key simplification in this respect is due
to the method of region [253,342], which permits to focus on such contributions directly, without the need to first evaluate
the full integrals and then take their asymptotic expansions. We have briefly presented a few simple applications of this
method, while dedicating more space to the physical lessons that can be extracted from the results of its application.
Similarly, we have extensively applied, but only sketched, the powerful method of reverse-unitarity [117,118,343-346],
which allows one to calculate phase-space integrals from discontinuities of more conventional loop integrals. In summary,
we hope to have been able to convey the main physical ideas behind the eikonal exponentiation of gravity amplitude
up to O(G?), and to have stimulated the reader’s interest and curiosity towards this angle of approach to the problem of
gravitational scattering, which not only led to the discovery of new patterns and to an improved theoretical understanding
of gravity, but also to very concrete new predictions for gravitational observables.

At this stage, several open challenges lie ahead, both from a conceptual and from a technical standpoint. Remaining at
“low” PM orders, all observables including the deflection angle and the emitted energy and angular momentum can be
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determined up to 3PM from the knowledge of the 2 — 2 amplitude up to two loops and of the tree-level 2 — 3 amplitude
in the classical limit [47,117,118,145,332]. However, as we have reviewed in the respective chapters, these observables
behave very differently when one considers collisions with increasing center-of-mass energies. The deflection angle up to
3PM turns out to be perfectly smooth in the limit in which this energy E (equivalently, the Lorentz factor o) is taken to be
large by keeping the leading deflection angle GE/b small and fixed, i.e. in the ultrarelativistic limit. This is actually crucial
in order to ensure agreement with an early calculation of this quantity for collisions of massless objects [15], and in order
to clarify its universality. In this limit, the massless particle with the highest spin, the graviton, dominates, since it couples
to the highest power of the energy, and the deflection angle becomes the same for any theory where this condition is
satisfied. In contrast, the 3PM emitted energy and angular momentum only make sense below the bound given by (7.94),
i.e. provided /o (GE/b) is at most of order one [333,337,338]. Trusting their 3PM expressions beyond this threshold leads
to nonsensical conclusions, as the systems seems to be able to radiate much more energy and angular momentum than
it possessed to begin with! A veritable “energy crisis”.

Guided by the example of the Zero-Frequency Limit of the energy emission spectrum, which is governed by soft
theorems and can thus be calculated independently of the PM approximation [112,144], it is highly likely that this
singularity arises due to the fact that we are attempting to calculate the coefficient of a power series, the “expansion
in powers of G” (or PM expansion), of a quantity which is actually not analytic in G. This issue emerged very clearly in the
ZFL of the spectrum [112], where the full expression starts exhibiting a branch singularity precisely at the bound (7.94).
In that case, the correct high-energy limit for the fraction of energy radiated at frequencies between 0 and 1/b does not
behave, unphysically, like (GE/b)? log o, which is unbounded as o — oo, but rather exhibits (bounded) non-analytic terms
of the type (GE/b)* log(GE/b). It is tempting to speculate that a similar mechanism may apply to the full emitted energy
and angular momentum as well, in order to produce a possibly non-analytic but still physically sensible answer for their
ultrarelativistic limits. This task is made challenging by the fact that soft theorems no longer apply to such integrated
quantities, but it is also of great interest since it would provide a connection with the results obtained for the scattering
of massless objects in Refs. [142,143,335].

Scatterings of massless states have been the subject of intense studies up to two loops in string theory, already in
the early days of the gravity eikonal [15] and, hopefully, the progress within a QFT approach discussed in this report will
motivate new further studies in this string theory context. It would be interesting to derive the 2PM string eikonal operator
(281 in our notation) and use the new results on higher-loop string amplitudes obtained over the past 20 years (see for
instance [347] and references therein) to investigate systematically the eikonal exponentiation in string theory beyond
the one-loop level, which is what has been included in this report. Moreover, little is known as far as the exponentiation
of string amplitudes involving massive states is concerned, see however [228]. Borrowing from the mileage and intuition
gained in the field theory context, where the corresponding studies have reached three loops [40,41], in particular the
focus on the non analytic terms that dominate the long range dynamics, will certainly provide a pivotal simplification,
compared to the study of the full amplitude. Moreover, it could prove useful to introduce masses via Kaluza-Klein
compactification rather than by considering excited string states.

Moving on to a broader perspective, outstanding efforts have been recently devoted to the endeavor of bringing
amplitude-based techniques for gravitational-wave physics closer to timely phenomenological applications, along two
main directions: analytically continuing the results obtained from scattering amplitudes to the bound-system kinematics,
and including all relevant effects beyond the point-particle approximation. Moving forward, it will of course be interesting
to undertake similar analysis by means of the eikonal exponentiation as well.

In the present report we have discussed a few basic steps towards making the information extracted from the
amplitude more directly available for applications to bound systems, of which binary mergers represent the key relevant
example for observational purposes, in the spirit of the so-called Boundary-to-Bound dictionary [291-293,348]. This
connection is essentially based on an analytic continuation, one could say, from “positive” to “negative” energy (after
subtracting the rest mass in the CM frame). In addition, since most binary systems revolve along on quasi-circular
trajectories, the resulting information also needs to be matched from a regime of large eccentricities, more directly
accessible from the PM expansion, to small or vanishing eccentricities. We have illustrated how this can be done in
practice, starting from 1PM and 2PM data in order to retrieve all PN data up to 2PN, while we leave the investigation of
how 3PM and 4PM eikonal data may eventually combine to yield the 3PN and 4PN information for future work.

String scattering represents a prototypical example where the colliding objects possess an internal structure, which
manifests itself as a dependence of the eikonal operator on the string’s excitation modes (see Section 3.2.4). For
phenomenological applications, one can similarly introduce such deformations, encoding in particular tidal Love numbers
and higher-multiple modes in the amplitude approach [50-54] in an EFT spirit [113] by means of suitable additional
parameters. This is particularly relevant for neutron stars, whose tidal deformability properties are expected to provide
insights into their Quantum Chromodynamical origin, internal structure and on the resulting equation of state. Including
classical spin effects is also important and this poses a challenge as far as the amplitude approach is concerned. Indeed,
while masses and tidal deformabilities can be simply encoded in a Lagrangian formulation via suitable continuous
parameters, the intrinsically quantized nature of spin s in the quantum world poses an obstacle to taking the classical
limit, in which hs should become classically sizeable and s attain very large values. In this report we have presented a
self-contained account of a simple strategy to include classical spin effects in the leading eikonal, i.e. to first order in GM /b
but formally to all orders in the spin parameter. At present, the inclusion of spin from one-loop order onward relies on a
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Fig. 19. Dominant diagrams contributing to the semiclassical eikonal phase. The shaded blob stands for a generic connected tree-level topology.

strategy to break down the calculation into an expansion in spin multipoles. The missing ingredient to upgrade this to an
all-order-in-spin calculation, the Compton-like amplitude with classical spin, remains partly elusive, despite encouraging
recent developments [58-84,349-352] including possible ties with states built out of the string spectrum [353]. The only
exception is the calculation of the radiation reaction at two-loop order [81] that, as in the spinless case discussed in [106],
is only based on the soft limit of the five-point amplitude. The result obtained with this approach agrees in the small spin
limit with the complete two-loop calculation for the spin one case fully described by an extended N = 2 world-line
supersymmetry [136].

Coming to the frontier in the G-expansion [38-41,47,104,118,131,135,138,289,332,354], a potentially loose end con-
cerns the integrals over fluctuations around the saddle points characterizing the classical limit. Following the literature,
we have presented the derivation of classical observables associated to the scattering by taking appropriate expectations
of the relevant operators on the final state dictated by the action of the eikonal operator (minus their expectation on the
initial state), and evaluated the integrals by means of the saddle point conditions. In principle, one should be able to check
that the Gaussian integrals for the fluctuations about such classical values eventually produce suppressed contributions,
either weighted by powers of i or, perhaps more plausibly, of GE/b. In the latter case, it will be of course important
to take them into account in the appropriate way when moving to higher orders in this parameter. Put another way, it
should be possible to explicitly check the normalization condition for the final state, which, in a novel fashion, brings us
back to the original issue of unitarity restoration in the classical limit.

In this connection let us mention, for completeness, a partially successful attempt [355] at constructing a semiclassical
unitary S-matrix in the case of ultrarelativistic (massless) collisions. In Sections 3.2.6, 4.2.5 we have discussed what has
been achieved in the two regimes labeled as I and II in Fig. 12. Unfortunately, the most interesting regime, the one
leading classically to gravitational collapse, is also the most difficult one to analyze. So far, it has only been approached
in the point-particle limit and in D = 4 (although going to D > 4 one would avoid having to deal with some infrared
divergences). The problem at hand is that the PM expansion is an expansion in powers of R/b and, precisely because
of gravitational collapse, it is expected to break down at some critical value of O(1) for that ratio (see Fig. 12). The
only simplification that looks to be fully justified is that, order by order in the above expansion, the dominant diagrams
contributing to the semiclassical eikonal phase consist of connected tree-diagrams involving the gravitons emitted by the
two energetic particles as external lines (see Fig. 19). Adding disconnected diagrams with the same external legs should
exponentiate the eikonal phase in a standard way (much like the two-particle reducible contributions of Ref. [111]).
Summing tree-diagrams is supposed to be equivalent to solving a classical field theory. Using work by Lipatov [356]
one can make a reasonable guess about the form of such field theory in the high-energy limit. After simplifying further
Lipatov’s action a two-dimensional field theory was proposed and studied in [355] with reasonable success in view of the
rough approximations made. We refer to the literature concerning those developments and only mention here that critical
values for R/b in good agreement with the classical expectations discussed in Section 2.4 were indeed found [357-359].
On the other hand, in spite of considerable effort [360,361], control of unitarity could not be achieved in any simple way
above the critical value. At the same time, no strong claim of unitarity loss below b, can be made in view of the many
unjustified approximations made along the way.

Coming back to the PM expansion, there still are aspects of the full 4PM result [138] that need to be investigated
including a more detailed comparison with the PN approaches [261,362]. It will certainly be interesting to continue the
analysis of the classical dynamics at three loops beyond the case of scalar particles, along the lines of [354], and also
to calculate the angular momenta at 4PM. Recently the conservative classical dynamics at four loops was studied for
the relativistic scattering in electrodynamics [363], paving the way for the analysis of the GR case at 5PM. From the
4PM order, new exciting physical phenomena manifest themselves: tail and recoil effects. The tail effect is caused by an
interaction between the two-body system and the gravitational energy that is first emitted and then reabsorbed by the
system itself [30,364,365]. For this reason, it can be regarded as a “globally conservative” type of interaction which is
however nonlocal in time, and thus very different from the typical “potential” interactions, whereby each objects feels
the gravitational pull of the other one. Recoil is caused by the net emission of linear momentum and represents a novel
dissipative effect that combines with the more familiar back-reaction of radiation emissions on the relative motion to that
order. Notably, recoil implies that, even if the system is observed from the initial center-of-mass frame, the two bodies
will in general experience different deflection angles compared to their original direction of motion. It will be important
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to investigate how such phenomena fit together in an improved version of the eikonal operator, yet to be formulated,
in order to clarify the classical limit of the amplitude(s) up to 4PM order. A first step in this direction has been taken
in [145] where the linear reaction [296] at 4PM was derived from an expansion of the stationary phase conditions (8.52),
using in particular the prescription (8.36), finding perfect agreement with the result of [332]. In addition the high-energy
behavior of the 4PM deflection angle(s) currently available in the literature points to a breakdown of the smoothness
property enjoyed by it up to 3PM. Whether or not this is to be regarded as a manifestation of the bound (7.94) certainly
deserves further investigation.

This also relates to another open puzzle in massless A/ = 8 supergravity amplitudes, where it was observed that the
exponentiation of the elastic 2 — 2 amplitude fails precisely starting to order ©(G*) due to a superclassical mismatch
proportional to Im 2§, [44,45]. Armed with the appropriate eikonal operator, whose phase is by construction manifestly
real, it will hopefully be possible to move past this obstacle by appropriately including all relevant inelastic channels as
well.

As we have discussed in the last two sections of this report, the first step in this direction, which up to 3PM completely
clarifies the structure of the exponentiation and allows for a systematic calculation of the observables, is to combine
eikonalized (virtual) graviton exchanges with coherent (real) graviton emissions, effectively producing an operator that
links elastic 2 — 2 with inelastic 2 — 3 amplitude. One cannot help but wonder whether the ingredients entering the
next order will eventually turn out to be essentially the same, or if instead new ones are to be included. For instance
it is possible that new amplitudes will need to be exponentiated, in particular the Compton-like graviton scattering in
Fig. 6, as suggested by the fact that they appear as possible sub-diagrams or cuts of higher loop 2 — 3 and 2 — 2
amplitudes [146-148,257] (while of course analogous 1 — 3 processes with two final gravitons in the final states
are kinematically forbidden). A closely related issue concerns the possible emergence of correlations among graviton
emissions, in particular due to the constraint of total energy conservation. Such effects, which ought to be encoded to
leading order in the 2 — 4 amplitude with two graviton emissions, have been shown to be absent at tree level, and the
picture of a coherent, uncorrelated emission has not received corrections so far [120,336]. Further research and careful
scrutiny will hopefully help to clarify these points. Here we would like to mention some of the most recent developments
which confirm the usefulness of the eikonal approach in the analysis of subleading PM corrections.

Extending the logic presented in this report, it is natural to generalize the eikonal operator in (8.35) or (8.48) including
in W also the subleading PM contributions that can be extracted from the classical limit of the 2 — 3 amplitude at
1-loop. It would then be possible to derive the NLO PM scattering waveform by following the same steps of Section 8.3.1.
Starting from the result for the classical 1-loop 5-point amplitude [146-148,257], this problem is being under intense
investigation. First, the relation between the classical amplitude and the gravitational waveform becomes more subtle at
NLO. As discussed in [255], the gravitational waveform is one of the asymptotic observables requiring a non-standard time-
ordering from the S-matrix point of view, which, in the KMOC approach, is implemented by taking into account carefully
some cut contributions. At NLO, these contributions implement a change of frame for the waveform [366], thus making the
result very natural from the point of view of the eikonal exponentiation mentioned after (8.35) and explaining the need
of such a rotation to match the PM waveform against known PN [367] or soft data [368]. Beside this, it was realized that
the choice of BMS frame affects the NLO waveform also beyond its delta-function contribution at zero-frequency [366]. A
detailed comparison between the NLO PM waveform and the PN results, including several non-linear effects, is discussed
in [369,370] finding perfect agreement. It is certainly interesting to extend this comparison to higher order to see whether
the intuition based on the eikonal exponentiation can again provide useful guidance.

Besides the applications mentioned above, the key idea underlying the gravitational eikonal (resummation of leading
contributions leading to an exponentiation) is likely to provide new insights also in other contexts. For instance, the
AdS/CFT duality is the perfect setup to study some of the fundamental questions that motivated the early analysis of the
gravitational eikonal as mentioned in the introduction. Advances in the analytic calculation of holographic correlators
through a bootstrap approach [371,372] can provide new tools to improve our understanding of the gravitational eikonal
in this context and possibly use it to study the nature of black-hole microstates. The eikonal approach can be useful also
to analyze the gravitational scattering in more general curved backgrounds, see for instance [373,374], which again can
encode interesting information about the nature of black holes as for instance pointed out in [375].
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Appendix A. Field theory details and conventions

A.1. Permutation identities

Let us first show by induction that

1 1 1
Flay,...,aqy) = — = . A1l
( 1 n) Z a01 a<71+"'+a0n aj---0ay ( )

o0eSy
For n = 2, we find
1 1 1

Flar, @) = + =—. (A2)
al(ar +a)  @lap+ar) @@
Moreover, denoting by S,(j) the permutations such that o, = j, we can write
1 . 1 1
Fan..a)=———— Y[y L. 1 ] (A3)
a1 +---+ap o aeSnU)aal Ugy + -+ g,
The quantity within brackets is equal to F(as,...,@;, ..., a,), where @ means that g; is omitted. Using the induction
hypothesis we then find
n n
~ 1 ar+---+a
ZF(a1,...,aj,...,an)=Z — = L (A.4)

so that (A.3) leads to (A.1). The quantity f in (2.16) is related to F by
flay,....a0) = (a1 +---+apF(ay, ..., an), (A5)

and therefore it is given by

n

1
a 3 e ey a == —_— = - A,6
flar, ..., a) Za1-~~aj-~~an (A6)
Jj=1
We shall now use (A.6) together with
. 1 Lo
218(w) = / etde — = / e = Oq ()i dy (A7)
i — i0
to simplify
T(w1,...,wp) =278(w1 + - + op)f (01 — 10, ..., wy, —i0),. (A8)

Let us again start from the n = 2 case, for simplicity. We have

T(w1, w) = f dtydtyif(t; )e'w12—teiv2ts / dt; dt,i0(t, e 21 —t2)giert (A.9)
so that shifting t; — t; — t; in the first term and t; — t; — t; in the second leads to

T(w1, wy) = /dtldtzi[e(tz —t1) 4 6(t; — )] e@1t1eie2t2 (A.10)
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and thus
1
27 T(a)1, a)z) = 2im (S(Cl)] )8(&)2) . (A]l)
T
A similar manipulation goes through for generic n, where
n
T(w1, ..., wp) = f dey - dty Y e [ Jio(n)e 5= (A12)

=1 ki
In each term of the sum over j, we can send t; — t; — t; for all k # j, to obtain

n
T(1,... on) =" f dey - - dey ettt S T oG — 1) (A13)
J=1 k#j
Noting that the factor involving the theta functions is 1 for any ordering of t, ..., t, finally yields
1
Z—T(w1,...,wn) = 2in )" 18(w;) - - - 8(wn) . (A.14)
T

A.2. Feynman rules

In this appendix we collect useful Feynman rules. We start from the classical action describing a massless scalar ¢
minimally coupled to gravity,

R 1
S = / ﬁ«/—g dPx — 3 / 3,08" 3,0 /—gd°x, (A.15)
K
with ¥ = +/87G. Defining g,,, = 1, + 2« h,, and retaining quadratic terms only, one finds
1
5(2) = 5 / h*Y [Dhuu - auaah(xu - avaahoé,u + allalf’hg — Nuv (Dhg - aaaﬂhaﬂ)] de
1 D
+5 [ popdx, (A16)
where indices are raised and lowered using the Minkowski metric. To quantize the theory we go to De Donder gauge,
o 1 o
3%hue = 3 a,.hs . (A17)

This requires adding to the action a gauge-fixing term plus suitable ghost contributions, which however do not play any
role in our classical analysis. The net effect is to replace S with

S8 = %/hw (m,w - %nwmhg> dx + % / ¢ og dPx . (A.18)
Rewriting the graviton part in terms of

Dyv.po = % (MupMve + Moo — Nuvlpo) » (A.19)
we find

s@) = % / W'Dy, s Oh?? dPx + % / ¢ og d°x. (A.20)

The inverse of D, o iS

1 2
P;w,pa = 5 <nﬂpnva + NuoMvp — mﬂuvnpc;) s (A21)
which satisfies
Vv, p0o 1 v v
DH™P Ppcr,aﬁ = E (555/3 + 5()[8;;) s (A22)

and this fixes the propagators to be

—iPyy. po —i

—_— Gk)= ——. A23
k? —i0 (k) k? —i0 ( )
The leading scalar-graviton interaction term

Guv,p(r(k) =

S = —« / B [—aﬂqs 3,0 + % nw(a¢)2] dPx, (A.24)
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which translates to the vertex
™(p,p') = —ik [p“p’” +p"'p" —n""(p -p/)], (A25)

where the scalar lines are regarded as both outgoing.
In case the scalar has mass m,

R 1
$= [ gaVEdx—3 / (upg"" 09 + m'¢?) V=g d’x, (A.26)

can be discussed along similar lines. The massive scalar propagator is given by
—i
Gu(k) = —— A27
k) = s (A27)
while the leading scalar-graviton vertex in De Donder gauge reads

™(p,p') = —ik [p"p"” + p'p"* — (- p — m?)]. (A28)
Note that this vertex is transverse with respect to the graviton momentum,
™ (p, p)py+p,) =0, (A29)
whenever the scalar lines are on-shell p?> = p”?> = —m?. Moreover, its trace reads
wv N s 2-D N2 2
N T (p, p') = —ik [2 (p+Dp) +2m ] , (A.30)

which is zero in the massless case, up to terms that vanish on the graviton’s mass shell.
A.3. Useful Fourier transforms to impact parameter space
In this appendix we collect a few useful properties of the Fourier transform into impact parameter space. Taking the

D-dimensional Fourier transform of the S-matrix element one obtains the invariant expression (1.32) and this leads us to
consider Fourier transforms of the following type,

d°q ib.

FIIe) = / o 2201 0 = @28 2pa -+ 4 (). (A31)
with f(q?) playing the role of the invariant amplitude .A(s, —g?). In order to recast this in a more explicit way, let us start
from the case in which p; and p, are massive momenta, rewriting p} = —mv} and p} = —m,v} as in (1.7) so that

1 qu qZ qZ .
FT[fI(b) = —— | —— 278 (vi-q+ — ) 276 ( vy - q— =— ) e®f(q%). A.32
[f1(b) 4m1m2/(2ﬂ)n T (v1 q+2m1) mo\v2-a— 5 - fa) (A32)
It is convenient to change integration variables by decomposing the integrated momentum according to (1.10) so that

q"* = Iv}’llq‘“ + lv)quz + qu_ (A.33)
where by definition q, - p1, = 0. Therefore

(dq)* = U3 (dgy1)* + 201 - V2 dgdqy2 + V3 (dg)2)* + (dgL ) (A.34)
and the determinant of this metric is given by

.. e 1
— detg = (U] . U2)2 — U%U% = ﬁ . (A35)
Therefore,
dqy: d
qu — q“] q”] dD*ZqL , (A36)
o2 -1
and we find
1 dqy: dgy, d°*q. q q’ ib-
FT[f1(b) = L 8 -3 — ) e"f(q%). A37
[f1(b) amm, | Jor—1np-2 W= o qi2 + 2 f(a) (A37)

We are only interested in evaluating this Fourier transform for very large b, orthogonal to p; and p, (up to O(G?)
corrections), and therefore we can expand the integrand for small ¢ ~ 1/b. Using the Taylor expansion of the delta
functions and noting that (cf. (1.45))

2 2
i — 20qq)2 + qj;
q2: Il e I +qu,

(A.38)
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we obtain

FT[f](b) =

el 2 S e
4m1m2J<T/ 2nD2 (f(qi)+4m%m§( ¥ CfO]_p + ) (A39)

(the superscript ’ stands for a total derivative with respect to the argument x) or equivalently, using the identity (1.13),

1 dD_qu ib 1 ’
q 2 —[x? .

) = g [ s ()4 g [y - ). (A40)

In the massless case, p1 = p% = 0, we can instead adopt the decomposition
1

¢" = - (#ix +phx) +dl (A41)

where again q, - p12 = 0. Since X1, = —2p; .1 - q, we then find
dx1dx 1

(dgf = ———= +(dq.?.  J—detg= (A42)
and in this way (A.31) evaluates to

FTIf1(b) = P29 o g2y + ! [Preo],_p +- (A43)

2s | (2n)P-2 L7 =g} ’ '

Recalling that in the massless case E = 2p = /s, we see that the expression (A.40) is thus valid for both massive and
massless setups. It is easy to see that the first term on the right-hand side of (A.40) corresponds to simply dropping the
¢ in the arguments of the delta functions appearing in (A.31), for which we adopt the notation

z qu ib-q 1 dD_ZqJ' ib-q1 2
Fby = f G 2O 22 - )M (e = o f e fah). (A44)

Since in most applications f(g?) has a power-law dependence on g2, the basic type of integrals that we need to calculate

is:

d’2q . v 22 I(1+v—e)

Ip(v) = e’ (4?) = , D=4-2e. A.45

b(v) / (2r)P-2 (q ) =€ [(—v)(b2)+1—e ( )
A quick way to see this is to introduce Schwinger parameters, so that

o] t—]—v dD—2q . 2

()= [ dt —— elha-ta A.46

o(v) fo () / (22 (A.40)
and performing the Gaussian integral and letting t = 1/x leads to

1 o - 2
Ip(v) = ?/ dxx~ 1P e x| (A.47)
(47)°7 I'(~v)

Recognizing the I'-function in the last equation then yields Eq. (A.45).
Expanding the ident%ty (A.45) around v = 0 on both sides, one can also deduce the Fourier transform of any power of
the logarithm [log(q2 )] . For instance expanding to linear order, we obtain

d’%q ib. 2 r(1—e)
/ (27 P2 e"log (q°) = O (A.48)

In the main text we also use the inverse Fourier transform (from b to g-space) which can be easily obtained from
(A.45) by appropriately interchanging the roles of g and b,

or@-1-v

T v—2
/dD Zbeflbq(bZ) 22U+2 — 21—,(]}) ) (q2)1+ P (A49)

Appendix B. The deflection angle in the probe limit

The deflection angle is a key classical observable in the 2 — 2 gravitational scattering which can be derived from
scattering amplitudes thanks to the eikonal exponentiation. In the limit where the mass of one particle is much larger
than any other energy scale in the problem, the result obtained from the eikonal approach should agree with a classical
calculation describing the propagation of the other particle in the curved geometry produced by the heavy one. In order
to carry out explicitly such a calculation, we need to know how the two particles couple to the massless fields in the
theory under consideration. These couplings determine the classical solution for the massless fields produced by the
heavy object, and this solution in turn determines the classical trajectory of the light probe in such background, neglecting
its backreaction. In this appendix we will discuss some explicit examples of such probe-limit calculations for GR, brane
scattering and N = 8 supergravity.
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B.1. Geodesic motion in Schwarzschild

The simplest case is of course that of a scalar particle with a large mass. While it is possible to describe its gravitational
field by following a diagrammatic approach [376] (see also [48,377,378]), deriving the D-dimensional Schwarzschild metric
order by order in the large distance expansions R;/r < 1, here we will use directly the exact (Schwarzschild-Tangherlini)
black-hole solution in D spacetime dimensions,

-1
2 RN o R\ 2, 2402
ds“=—(1-| = e+ 1-| = dre +r°ds2;_,. (B.1)
r r

The precise relation between the Schwarzschild radius R; and the mass of the heavy scalar M is

Q-3 167GM 8 (%1)eMm 52
T D=2 2P (D-2) '
i’l
where in the last step we used the area of the n-dimensional sphere of unit radius £2, ”i). One can write the action
for a minimally coupled probe of mass m, as :
1 dx* dx’
S=— [dr|ez) ' =—"g,, —mie(r)] , B.3
2[ (()drdrgu p()) (83)
where t parametrizes the trajectory and e(t) is an auxiliary variable defining the world-line metric. The action is
invariant under reparametrization r — t/(t) if ¥* is a scalar (xX*(z’) = x*(tr)) and €/(t’)dt’ = e(r)dr. Then we

“

can choose a parametrization (a ‘““gauge”) in which e(t) is constant and the equation of motions for e(t) become a
constraint. We shall also take into account that the motion takes place in the plane determined by the initial velocity
and by the impact parameter, indicating with ¢ the angle in this plane. For later convenience, we write the constraint
coming from the variation of e(t) for a metric of the form (B.1) but with generic functions of the radial coordinate r:
dsz = gt[dtz _’_grrdr2 + r2g¢¢d¢2,

de\? dr\? dg\?
|g"|<dr) - ”(dr) — gy (d‘r) =e'm;. (B.4)

Since we work with metrics that do not depend explicitly on the time and are spherically symmetric, we obtain the
following conservation laws for the energy E and the angular momentum J of the probe

dt , do
eE, = Ignla ., e=r 800 47 - (B.5)
By using these results in (B.4) we obtain
1
d eZEZ 2 2 2
a _ | &5 _i<zf +m§> , (B.6)
dr et |8 & \T°8p¢
and
_1
d 1 2 E2 1 mZ 2
jzi S0 o 8oo = + &2 . (B.7)
dr |geelgrr J2 g \T J

Here =+ refer to the incoming/outgoing portion of the trajectory, since a scattering process r(+7) — oo and there is an
inversion point r, corresponding to the largest root of j—;

E2 1 2
——— (!— + mf,) =0. (B.8)
geclgr & \ 7789 .

Thus the scattering angle reads

0o -1
© =2f dr(i—‘f) (%) _x (B.9)

g 2 -
AT T
T |grt|grr &ir

For the Schwarzschild metric we have |gi| = g,' = 1— (%)Di3 and g4, = 1, so (B.9) reduces to an incomplete elliptic
integral.

Nl—
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For our purposes it is useful to write an explicit perturbative solution in the PM expansion. We first start from (B.8)
which for Schwarzschild’s case reads

2
E;_<1_<’:5> )(’r +m>:0. (B.10)

For general D we can solve this constraint perturbatively: the leading contribution is obtained by ignoring the term
proportional to (Rs/r,.)P~3 and then it is straightforward to find the corrections in an expansion for large |

B ] 00 Eg Cn ; ; Rs n(D-3)
W[ZH( woms)
o= L C2=%, (B.11)
2 8(Ef —m?)
(D —3)(3D — 8)E; — 4(3D — 8)Em’ + 8m;
G=- 16(E2 — m2)? ’

Then we can write (B.9) in the Schwarzschild case after mtroducmg the variable u =r, /r

o= 2 [alg- (- (%) )(f)} 1)

We can then use (B.11) in the equation above to rewrite the integrand in term of | instead of r, and then expand it for
small values /Eg - mlz7 Rs/]. The integral in u can be performed in terms of Euler’s Beta and we obtain
n(D—3)
E3 —mZ R
O = Z Oy | —— (B.13)

whose explicit terms up to 3PM are

Var (5 —1)[(D—2)E} —mZ]

O = , B.14
] 2r (51) (B2 —m2) (B:14)
4 2172 4
o, — VT (D—3) (2D —5)2D — 3)Ej — 6(2D — 5)EZm? + 3m; (5.15)
8I'(D —2) (E2 — m2)? ’ '
wl (32 -4
0 = L=z iy
8r(3-3) (B.16)
x [ (3D —8)(3D — 6)(3D — 4)ES — 15(3D — 8)(3D — 6)E, m; )
+45(3D — 8)EZmj — 15m$ | .
For convenience, let us write out the D = 4 expressions as well:
2E> —m?
6 =——L_F (B.17)
EZ —_ m?2
p mP
37 (5E2 — m?
, = 16((5217—m2p))’ (B.18)
p p
4.2 2,4 6 6
_ —120Eym; + 60E;m; + 64E; — 5m; . (B.19)

P 12 (£} — m3)

It is also instructive to study the result for the deflection angle in the PN (as opposed to PM) expansion, restricting for
simplicity to D = 4. For this purpose, it is convenient to introduce the variables v, jpn (as in (3.13)) and « according to,

1
Ep=mp /1402, vy = Pl J = GMmjpy . (B.20)

In these variables, Eq. (B.10) for the inversion point takes the following form

( GZMJPN><]_ZGM>:O. (B.21)
UPNOl Ty '
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The PN limit can be then introduced by considering the scaling limit
jen ~0O(c), G~O(™?, a~0O() asc— o0, (B.22)

which reflects the fact that the angular momentum becomes large and the velocity small, while keeping o = GMm,,/(Jvso)
of order one. It is straightforward to solve (B.21) perturbatively in the limit (B.22), obtaining

r. = GM [jlz,Na(\/l fa?—a)— <1 + 112>] + o (B.23)
o

for the OPN and 1PN contributions. Substituting into (B.12), expanding in the same limit and performing the resulting
elementary integrals, one then obtains the following PN-expanded deflection angle

2 T 302 42 4

O =2arctana + - |3 (arctana + —) + |+ o(c™). (B.24)
Jon 2 o(1+ a?)

This calculation actually reproduces the deflection angle up to 1PN independently of the probe-limit approximation, i.e. the

first two lines of Eq. (45) of [189].

B.2. Geodesic motion in D-brane metric

For the analysis of the string-brane scattering it is useful to discuss the geodetic motion in the gravitational
backreaction of a stack of Dp-branes. It is straightforward to adapt the analysis of the previous section to the case where
the metric is given by (4.98). By writing the transverse space in polar coordinate this metric takes the following form

ds? = [H(r)| "2 napdx*dx® + [H(N)? (dr? + r2dg?d23, ) (B.25)
where H(r) is the harmonic function given in (4.99). We can then read the components of the metric involved in the
geodesic equations (B.4) and (B.5)

8l = gr =gpp = VH (B.26)

Since we are focusing on the motion of light string state with a large kinetic energy, we can neglect the terms involving
the probe mass and from (B.7) we obtain

~

d¢ ﬂ:b] ﬂ d¢ :tb]

2F ~
y rz\/l - (E)z + (R*”>H_3 " 1= pir
r r

where F = £,/H(r) — f—é o =R,/r and B] = b;/R,. One can follow the same steps as in the previous section to find the
scattering angle by integrating (B.9), where the turning point r, (or p,) is defined as in (B.8). At the leading PM order we

get
I () (R
O, =71 - (H%) <7> . (B.28)

For completeness let us quote also some exact result when the integral in (B.9) can be expressed in terms of elementary
functions

. (B.27)

1 b
p=d—4 => 6O =2arctan| —— |, p=d-5 :@:L—n (B.29)
2b V=1

and when (B.9) reduces to a complete elliptic integral such as the case of a stack of D3-branes in type II theories

by (-~ .
p=d-7=0 =21+ Kks)— 7 , l<3:51<b]—,/b]2—4>—1. (B.30)

Here K is the complete elliptic integral of the first kind

1
1<(1<3):/ dx .
0 /(1 —x2)(1—Kk2x2)

Notice that when we have 3 transverse directions (i.e. p = d —4) the full deflection angle in the probe limit is determined
by the leading eikonal as a consequence of supersymmetry as pointed out in [211].

We conclude this appendix by providing some details on the integrals in (4.112) relevant for the semiclassical dynamics
of a string probe (rather than just a point-like object) in the D-brane metric. Starting from (4.112b), it is convenient to

(B.31)
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proceed as done for (4.112a): we can neglect the second term in the square parenthesis since it scales as (R, /byXd=p=3)
and rewrite the first term as a total derivative with respect to the radial coordinate. Then we have

1 [ o F - by cos ¢ ©,
— du Gy :/ dr o; |:8— In (r sm¢H4)} = — 17_ ~—— (B.32)
2 /_oo " "LVH P2V/Hsing |;_,, b

The only non-trivial contribution arises when the derivative inside the square parenthesis acts on Insin ¢, since this
produces a factor of ‘;—‘f which, thanks to (B.27), cancel the overall factor of F and yields a finite contribution as r — r,. In
the final step we used by >~ b, ¢(r,) = @;’” and (B.28). Then one can check that the result in (B.32) agrees with the one

in (4.112b) with u; defined in (4.88). When evaluating (4.112c), it is more convenient to evaluate explicitly the derivatives
for both terms in the square parenthesis obtaining

| oo ~ [o(rri) o g r 1
f/ du g0=/ du | ——~ =/ p [18r (fFH‘4>] . (B.33)
2J- 0 FFH™ 4 r. TFH™2 LH2

oo

Then it is straightforward to evaluate the expression above to 1PM order obtaining

) 0 2 d—p—3
%/_Mdu gO:/b df;;% |:(d—p—4)—(d—p—1)l;2i| (%) , (B.34)
where we used again r, ~ b at 1PM. Thanks to the relation
[t AR
b r2 — b2 2I0(x)

one can check that, after performing the integral, (B.34) reproduces (4.112c) with Mg defined in (4.88).

, (B.35)

B.3. Probe limit of the N' = 8 case

In order to perform the classical calculation for the massive A/ = 8 case it is easier to start from the setup discussed
in Section 3.1.4 and dualize it to a frame where all the massive objects are Dp-branes. This can be done by the following
chain of dualities:

o lift the setup to M-theory and then go back to type IIA by compactifying along the 9th direction; in this way we the
first particle is transformed into a bound state of n; DO-branes, while the second particle is unchanged;

e perform T-dualities along the directions 7, 8, 9 so that the external states become a bound state of n; D3-branes
and a F1-string wrapped n, times along the direction 8;

e since we are now in type IIB string theory we can perform a S-duality and obtain bound states of n; D3-branes and
n, D1-branes;

o for convenience we can T-dualize back to type IIA along the 8th direction to get n; D2-branes and n, DO-branes.

All objects in each step are point-like in the noncompact directions and the string frame metric produced by the bound
state of D2-branes is
1

1
4GM 2 4GM \ 2
ds® = (1 + 7> (—dt? + dx3 + dx3) + <1 + —) dx? . (B.36)
r r

The classical solution includes also a non-trivial RR 2-form, which does not play any role in this problem, and a dilaton’°

1
4GM\ 4
e? = (1 + T) , (B.38)

where M is the mass of the D2-brane bound state. The action for the DO-brane probes involves both the fields above and

read
dx+ dx”
S=—myo [ dre? — 1, B.39
P / Buv dr dt ( )
50 If the number of noncompact direction is D we have
(=3 T (=3
(%2) &oTom _ I ( 2 )4GDM, (B.37)

D-1 2

o
T2 2

big

) . r(22) 46om

and the harmonic function is 1+ —5=5——.
7 2 D3
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where of course we restrict the motion in the noncompact space. This action is equivalent to (B.3) with an effective metric
gt = e ??g,,. We can then calculate the deflection angle by using (B.9) with

e VAN
g§8f=<1+7 ) C gl =gl =1. (B.40)

Then in this case the deflection angle is given by a circular integral

1
> dr 4GM\ , > o\
I'x

2GM o2
= 2arctan 5 o721 (B.41)
) 0% —

where used E, = mpo and | = mpbv/o? — 1.
Appendix C. Some relations satisfied by the Levi-Civita tensor in D = 4

In this Appendix we provide some relations satisfied by the product of two the four-dimensional Levi-Civita tensors.
We list them here

ep,up(relwpn — _4| (C])

€M% €05 = —685 (C2)

€M € ys = —285;‘ (C.3)

6/1,1),0(:r6ﬂﬂy(S — _agﬁg (C4)
and

€M% €pys = —8U 85 + 8 Sun — ShSufs + 85 Suf (C.5)
where

8;’;’ = 8583’ — (Ssptsj (C.6)
and

vpo _ qv o P Qo v P Qo P Qo v p oo o
Bhys = 05 (885 — 8587) — 8, (8583 — 8585) + 85 (8587 — 8743) - (C7)

We use the convention where €g123 = 1.
Appendix D. String theory background

In this appendix we provide some details on how to derive the relevant amplitudes in the context of the bosonic theory
which is technically simpler than the superstring case while capturing all the main features.

D.1. String theory conventions

Here we collect our string conventions and a short discussion about the boundary state that is needed to describe the
stack of Dp-branes used in the main text.

D.1.1. Scales and coupling constants
Free string theory in flat spacetime is described by the Nambu-Goto action:

Sstring = —T/d‘[/ dan
0

x=0.x(o,1), X = 0,x(0, 1), XX =n,x"x", (D.1)

where the double integral is nothing but the area swept by the string and T is the classical string tension with dimensions
of an energy per unit length (in units in which ¢ = 1). At the classical level (e.g. in the context of cosmic strings) T is
the only free parameter and the classical equations of motion are obviously independent of it.°! The inverse of T has

51 When moving in a non trivial geometry the size of the string relative to the characteristic scale of the geometry does instead matter at the
classical level.
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the same dimensions as an angular momentum per squared mass (recall that we have set ¢ = 1) and has been denoted
traditionally by 27’ since it first made its appearance in hadronic physics as the slope of the linear Regge trajectories:
at) = a(0) + a't.

In a quantum context what matters is the action in Planck units, a dimensionless quantity, and this necessarily
introduces a fundamental area Ef as the natural replacement of Planck’s constant in string theory [277]. In this review
we adopt the following relation between these various quantities:

Sstring T Area Swept h
= — (Area Swept) = ————, bi=~a'h=,—, D.2
h n 2 2702 5= Varh V2nT (:2)

where we should note the analogy with the definition of the Planck length in four dimensions, £p = «/Gh, with G replacing
the role of «’. The similarity goes even further: classical GR has no intrinsic length (or mass) scale while quantum gravity
does. Physically, £s plays the role of a minimal length scale, a minimal size for fundamental quantum strings, and a short-

distance cutoff regularizing quantum corrections. Its inverse, My = % is the energy/mass scale associated with string

excitations and with the cutoff in momentum space. In string theory it is thus natural to take ¢; as the basic unit of length
and to express any other quantity, according to its dimensionality, in terms of ¢, ¢, h, and of dimensionless numbers. The
latter, when not directly fixed, are associated with the value of dimensionless scalar fields, called moduli.

In the rest of this Appendix, and elsewhere in this review, we will follow the common practice of using interchangeably
o’ and Zf (i.e. set h = 1) except when the distinction is physically relevant. As an example, «(t) is dimensionless (being
an exponent characterizing power-like Regge behavior) and therefore o’ cannot be just the inverse of T. What appears in
the above expression for «(t) is actually “T[ = # but we shall omit the i~! factor throughout.

In perturbative string theory the strength of the gravitational interaction depends on «’ and on the moduli of the
theory as follows:

22h = 16mGah = 16m¢472 = 272" (27 )1 3g2 («/'n) T = 27 2° (2m )1 3g2 042, (D.3)

where ¢, is the d-dimensional Planck length, g;, the string coupling, is related to the expectation value of the dilaton and
of course we have d = 10 for critical superstring theory and d = 26 for the bosonic theory. Note that at very weak string
coupling ¢4/¢; <« 1. This physically means that string-size corrections intervene well before quantum gravity loops get
out of control. That does not mean, however, that straight perturbation theory is always reliable at g2 <« 1: although
there is a formal loop expansion in powers of g2, these can be enhanced by large kinematical factors such as powers of
the energy or infrared singularities as discussed in the main body of this report.

When some of the directions are compactified on a manifold of volume V. and only D directions are non-compact, it
is useful to introduce the Newton constant lc; = 8mGp for the D-dimensional theory appropriate for describing physics
at distances much larger than the size of the compact dimensions:

&=
c

=8y 2. (D.4)

It follows that the ratio £p/¢s is further reduced if V. > ZSd*D, the case of “large extra dimensions”. In this report only the
case of string-size extra dimensions will be considered.

The spectrum of type II and bosonic string theories also contains Dp-branes, non-perturbative objects which can
support the end-points of open strings [248]. In its simplest configuration a Dp-brane enforces Neumann boundary
conditions on the string fields along p spatial directions and time, and Dirichlet boundary conditions along the remaining
d — (p + 1) directions. In other words, the end-points of an open string move on a (p + 1)-dimensional Minkowskian
submanifold. The tension (i.e. energy per unit p-dimensional surface) of these objects is

T, - d—2p—4
T, = K—'d’ . with T, =2"F"Vz@rva) P,

(D.5)

which of course fixes its coupling to gravity. In the superstring case the Dp-branes are minimally coupled to the (p + 1)
Ramond-Ramond potential with a RR charge density u, given by u, = ﬁTp (i.e. charge per unit p-volume).

In Section 3.2, we use a stack of N Dp-branes as a target in a (thought) scattering experiment with fundamental strings.
It is then convenient to introduce the scale R, of the geometry sourced by the Dp-branes

I (“52) gN @rvarys

RIP3 = D.6
p . d—g—1 4 2 d—% ( )
In terms of the tension T, we have
d—p—
TN _ 75 R (D.7)
- d—p-3) :
2 (=)
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D.1.2. String mode expansion
Our conventions on the string coordinates and their mode expansion in the closed string case are

XMz, 2)=X"(2) + X' (2) .

o o oM
X'@) =au—iopInz+i/ = do
n£0 n (D.8)
o o aM
X¥Z)=qr—i=pyInzZ+i/— Yy Lz ",
R ( ) qr 2 pR P Z n
n#0
In the closed string sector the modes «, and &, are independent and, after canonical quantization, satisfy the commutation

relations

[a,l;/l, Ol,l;’,] = ﬂMNn Sngm » [552/1, 5[%] = UMNn Sntm » [O[nMa 55,[1\’1] =0. (D.9)

It is convenient to take also the left/right center of mass and momentum operators to be independent
i i
[ar,piT = on™ . lag PRl = 5™ s[4 pR] = [ax s pr] =0 (D.10)
and impose, for the non-compact directions, an identification on their eigenvalues of the physical states pﬁ/’ = pﬁ” =pM,

. . . . / / -
where p is the total momentum. It is also convenient to introduce /% p} = o and /% p}' = &, so we have

axM — —i,/%za,’y’z—"—l XM = —i‘/%Z&ﬁ/’E‘”‘l . (D.11)
n n

Then we have the following Operator Product Expansions (OPE)
/ MN

axMzaxNz) ~ — = T
@I @)~ = e e t (D.12)

/
elkiXu(z1)plkaXi(z2) (21 — 22)%’<1kzei(k1+k2)XL(Zz) I

and similarly for the anti-holomorphic part.

D.1.3. Normalizations for string amplitudes

We associate a factor of z% to each string vertex operator and indicate with Cs, the normalization of the closed
string tree-level amplitudes where the worldsheet has the topology of a sphere. Imposing perturbative unitarity on the
factorization of a 4-point function into two 3-point amplitudes one obtains

Kg\2 o
C (—) N D.13
2\27) 8x ( )
The factor of o’ /(87) is related to the closed string propagator
' = ' d’z g
Pla)= L (Lo +Ip— 20" = —Z glomazlo—a (D.14)
2 87 Jiz1<1 Iz
where a = 1 in the bosonic theory and a = % in the NS-NS sector of type II theories. The overall normalization
of the left-hand side is chosen so to have residue one at various mass poles (for instance, close to the tachyon pole,
behaves as 1/(p? + m%), with m% = —4/a’), while on the right-hand side we use the definition of the measure

d’z = idz A dz = 2 dRe(z)dIm(z) as in [265].

D.1.4. The boundary state

In this subsection we give a short introduction to the boundary state that describes the Dp-branes. For more details see
for instance [229]. Dp-branes are extended p dimensional objects characterized by the fact that open strings have their
endpoints attached to them. The open string with the endpoints at o = 0, 7 attached to two parallel Dp-branes satisfies
the usual Neumann boundary conditions along the directions longitudinal to the world volume of the branes

aaxa|a:0,n =0 o :0’ 1,~~~,P (D]S)
and Dirichlet boundary conditions along the directions transverse to the brane
Xlomo =Y 5 X'oor = v’ i=p+1,...,d—1 (D.16)

where y' and w; are the coordinates of the two Dp-branes and we take o and t in the two intervals 0 < ¢ < 7 and
0<t<T.
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The previous are the conditions in the so-called open string channel, but those characterizing the boundary state are
instead those in the so-called closed string channel. This nomenclature follows from the fact that the annulus diagram
can be constructed in two ways: as one-loop of open strings or as a tree diagram with a closed string propagators
connecting two boundary states. These two descriptions are connected by a conformal transformation in terms of the
variable ¢ = o +it:

{=0+it—> —if=1—i0. (D.17)

After the inversion o — —o the previous conformal transformation simply amounts to exchange o with 7 and viceversa

(0,71) > (7,0). (D.18)

Finally in order to have the closed string variables ¢ and t to vary in the intervals o € [0, 7] and 7 € [0, f] corresponding
to a closed string propagating between the two D branes one must perform the following conformal rescaling

T b4
o — —0 T = —1, (D.19)
T T

with T = 72 /T.

The equations characterizing the boundary state are obtained by applying the conformal transformation previously
constructed to the boundary conditions for the open string given in (D.15) and (D.16). At t = 0 we get the following
conditions:

0:X%|:=0|Bx) =0 a=0,...,p, (D.20)

X's—0|Bx) = ¥ i=p+1,...,d—1. (D.21)

Analogous conditions can be obtained for the Dp-branes at t = T.
The previous equations can be easily written in terms of the closed string oscillators by making use of the expansion
in Eq. (D.8), obtaining

(o +@%,)IBx) =0, (o, —&,)Bx) =0 Vn#0,

p“IB) =0 (' —y)IBx) =0, (D.22)

where § = q; + qg and p = p; = pi. Introducing the reflection matrix
v pap i

RYY = (n°F, —8") , (D.23)
the equations for the non-zero modes can be rewritten as

(ohf + Rp“v&ﬂn)le) =0 Vn#0O. (D.24)
The state satisfying the previous equations can easily be determined to be

B} = 280P-1(G — y) ﬁe‘%“‘"nva-" 10)¢|0)z[p = 0) (D.25)

2 o o o £ .

where the normalization %’J is fixed by imposing that the computation of the annulus diagram in the open and in the

closed string channel gives the same result.
D.2. String-brane scattering: the bosonic theory at tree-level

The simplest possible setup where we can study the string theory leading eikonal is the scattering of two closed
string tachyons of momenta p; and p, off a stack of N Dp-branes in bosonic string theory. The tree-level string amplitude
capturing the scattering process mentioned above is

T, T(—@’E2 = )T (—%t - 1)
Ay =5 T (D.26)
s 4
where the kinematics is identical to the one discussed in the superstring case after (3.117). It is useful to provide some
detail on the derivation of Eq. (D.26) as this will help in clarifying the key physics novelty of the string eikonal with
respect to the field theory setup.
As standard we start from the vertex operators describing the emission of the external states. For the closed string
tachyon we have

_ Kd ~ _ Kd in.x(s 3.
Vr(zi, Zi) = EVT(ZI',Z:') = gelp,x(z,,z,) , (D.27)
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where XM(z;, z;) are the string embedding coordinates given in (D.8), the momenta are on-shell pi2 = ;‘—, (see Appendix D.1
for our string theory conventions) and the exponentials are understood to be normal ordered. The tree-level amplitude
corresponds to world-sheet with the topology of the disk with the two closed string insertions at two points (zy, z2) in
its interior

o'k d?z,d*z _ _
d /#(OWT(ZMZl)VT(ZZ,ZZNB)~ (D.28)

I'= ¢y —=N
A =G 8w dVsya.r)
Here |B) is the boundary state describing the stack of Dp-branes, see Eq. (D.25), |0) is the SL(2, C) invariant vacuum and our
conventions on the string normalizations are summarized in Appendix D.1.3. The effect of |B) on the world-sheet fields is
to identify the holomorphic and the anti-holomorphic parts through the reflection matrix R, which is the identity along
the Dp-branes and minus the identity in the transverse directions. After the identification, the anti-holomorphic fields are
placed at 1/z; and 1/z;, while the holomorphic ones are inside the disk of unit radius at z; and z, and |z| = 1 represents
the world-sheet boundary. Finally the measure can be easily obtained by fixing three punctures, say 1/z,, 1/z; and z, and
by integrating over the remaining one inserting the contribution of the c-ghost

d?z,d? 1 1
CA%% _ re (—) c (—) c@)) (D.29)
dVsi(a.r) ¥2) Z

1 1\/1 1 1 21 2
=dz (T - T) (T _Z2> <T _22> = (T —Zl> (T —22> dx
Vi) Z1 Z1 Zy Z Z1

where in the last step we introduced the SL(2, R) invariant cross-ratio

X = oz <% _ %) . (D.30)

(#-2)(-2)

The cross-ratio x is manifestly real and, since the z;'s are inside the disk of unit radius, it lies between zero and one. In
particular, the limit x — 0 corresponds to |z; — z;| — 0 describing a world-sheet where the two external states interact
first via a 3-point closed string vertex with one leg glued to the disk. Then by using the on-shell conditions, momentum

conservation (14 R,)p1 + (1 4+ R,)p2 = 0 and the ordering é > \Z%I > |z1| > |zz] we have

T 1 1 2 1 2 1 %/mem 1 %/Plnppz
Ay = @N/ dx (_— - Zz> (_— - Zl) (_— —Z1> <f —Zz>
2 0 Z] 22 Z] Z]

%/Plpz , %lepPZ O’7/1727312112
1 1 <y 1 1
P (z1 — zp) 2F172 ;—Zl ;_ZZ (D.31)
2 1 2 2

l !
= Kd—Tpr dx (1 — x) @B —2x—%t=2
2 0

where we used (D.13) the normalization factor Tj” of the boundary state (see Eq. (D.25)) to simplify the overall
normalization and

pip2 = w PrRppy = —2E2 +m},  piRpy = 2E} + ﬂ : (D.32)
where ml2 = —%. Thanks to the integral representation of the Euler Beta function one obtains (D.26).
Exactly as in the field theory setup the eikonal is captured by the limit ES2 >> |t| and by using (3.119)
NT, o o't kgNT oo TS F( - aTt)
Al ~ %(—a’zsf)”%r (-1 - 7) = %(0[’53)”7 SrrawrTa (D.33)
4 4

Notice that this result can be directly derived directly from the last line (D.31). When o’E? > 1 then the x-integral can
be performed by focusing on the region x — 0 with «’E2x finite: by expanding the integrand in this regime and finally
extending the region of integration to infinity, we have

4T, *© / o kg T, o o't

AT ~ QN/ dxe? BT 2 = MOEN(_/ BT T (-2 — 1), (D.34)
2 Jo 2 4

which agrees with (D.33). This shows explicitly that the result is entirely captured by the limit discussed before (D.31).

We can now follow the same approach used in Section 3.2.1 for the superstring and perform the Fourier Transform (3.123)
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of the bosonic result. Then we obtain

r <1 + %) ,
NT,E —4— d—4— b
28, = 4P [(nbz)*f" "y (7;, —)] , (D.35)

47 l—ﬂ 2 Y
2

which is very similar to (3.129) except for the tachyonic pole and the fact that the critical dimension is d = 26. We recall
that y(z, a) denotes the incomplete I'-function.

D.2.1. The Reggeon vertex formalism for bosonic strings

In this section we follow [149,225,226] and show that the t-channel pole in (D.33) is related to a particular class of
closed string states in the leading Regge trajectory. Actually it is not difficult to present the argument for the scattering
of general closed string states instead of focusing on tachyons (D.27), so we consider directly the case where we have
generic physical vertex operators V; and V, in (D.28) at the place of two Vr. Notice that our discussion does not require
the two vertex operators to be equal and this will be exploited later in Section 3.2.4.

As suggested by the discussion after Eq. (D.33), the eikonal result can be obtained by focusing on the degeneration
channel where the world-sheet looks like a vertex involving the three closed string states with one of them being off-
shell and propagating until it interacts with the stack of Dp-branes. By inserting a complete set of states between the
3-point interaction and the boundary state we have

AP Py ) / *dZZ(ZZ)‘*Z*“T“<v1v29z><gz|3> , (D.36)
0 2 87 5 2T
14

where Q, is a generic state of momentum q = (p; + p») at level ¢ and the sum, of course, covers all possible levels
¢ =0,1,...; the integral over the phase of z is trivial, as the level matching condition has already been implemented, and
the factor involving zz = x follows from the closed string propagator (D.14). We now need to see how the contributions
of different states Q, in (D.36) scale with the energy of the incident string and, in the eikonal limit, we would like to
focus on the leading terms. In order to do so it is convenient to decompose the polarizations of the states Q, by using
the vectors (e*) defined in (3.161) and the directions orthogonal to them. Factors of E; can arise from the contractions
between 3'X+ = e;j, 3"XM in Q, and the universal exponential factors e1.2X in V; ,. Thus, in the high-energy regime, the
decomposition (D.36) is dominated by the states

0 l
1(. /2 [2_ .
Qg:w(i Ol/ax*) <i wax*) e . (D.37)

Below we summarize the contractions between the world-sheet coordinates in Q, and V;, that are relevant for
evaluating (D.36)

/ 2 arX+( 1p1X / E F 1 ( )eiplx(w) (D38)
o —w

)2 IR

i 7arx+(z) ippX(w) / E Pl 1 eszX(w) .
o zZ—w

Another source of factors of E; is the contraction of 9"X*(z) with the tensor part of the external vertex operator when
this describe a massive state. In this case we have

2 M 1

i‘/f/afxﬂ )i XM(w) ~ (Vo'Es) o a;—laf;]ﬁ, (D.39)
o —w
M

where vM indicates the longitudinal polarization for a massive state of spatial momentum p;. It is then clear that the
leading contributions to (D.36) come from the states Q, that have the highest number of factors of X™, so, at level ¢,
it is convenient to have (8X*)’ rather then structures with higher derivatives such as 8"X*. Thus in summary, in the
high-energy regime, the relevant states exchanged between the incident string and the stack of Dp-branes are>?

4 4
1(. /2 [2 - s
ok = — i/ =axT) (i) =axT ) =2, (D.40)
2! o’ o

Beside being off-shell these states do not satisfy exactly the BRST constraint also because etq ~ 1/E, but in the high-
energy regime this violation becomes irrelevant so it does not affect our calculation. Notice that at level ¢ such state

52 The overall factor of 1/¢€! ensures that the two point function is normalized to one.
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yields a contribution proportional to (+/a’Es)*, so only the graviton (¢ = 1) yields a result compatible with a classical
eikonal contribution, while all contributions of higher spin states (¢ > 2) grow too quickly with the energy. It is only
after resumming the contributions of the whole tower of states in the leading Regge trajectory that one finds the eikonal
result (D.34).

The basic idea of the Reggeon vertex approach is to perform the sum over the states (D.40) formally at the operator
level. We first notice that the scalar product (Qle) is independent of £ thanks to the normalization in (D.40) and one is left
with only the normalization of the boundary state in (D.25). Thus, when focusing on the contributions of the states (D.40),
Eq. (D.36) reads

NT a/t :
A~ szd(Vﬂ/z/ dx [ (,/ L0X T [ = 3X+>:| X277 7y
0

NT A A o 2 i ot

de V1V, / dx e« "3X+“)X+x’2’*t e’qx) (D.41)
NTpKd DD |: /2 8X+ / 8X+:| eiqx)r<_1_o%t>
NTpKd

2

where the hat on the vertices means that they are stripped of their normalization as in (D.27). As already mentioned,
x = zz and, at high energy, we can extend the integral over x from the interval (0, 1) to (0, co). In the manipulations
above we treated the combination appearing the square parenthesis as a positive quantity as its leading contribution
when inserted in a correlator is «E?2 as follows from (D.38). Then the integral over x has to be evaluated via an analytic

continuation on E? and this is the origin of the phase in the final step. The symbols H}?” and Vy indicate the Reggeon
propagator glued to the boundary state and the Reggeon vertex

NT, .« 't
m = it o2 28 (D.42)
R 2 4

2 2 1+ leit
4 |4/ =idx* [ =idx T elaX (D.43)
/ !
o o

It is convenient to separate a Reggeon propagator and its coupling to the Dp-branes 17,? P = Mr{V}|B) as follows

o/ _Le—i%fr(_ _aT/t)
N

i F( 1- T) (V1VWg) = Hl?pO}ﬂ}zvR) )

NT, o't

. (IBy =27 —T(2+—) . (D.44)
2 4

The motivation for doing so is that the Reggeon vertex V; and propagator /T can be used to derive the high-energy limit

of pure closed string amplitudes, as done in Section 3.2.6. At this stage the split in (D.44) is somewhat arbitrary, but it can

be justified by sketching how to adapt the steps in (D.41) to the tree- level amplitudes with four external closed strings.

In this case, the integrand in (D.36) takes the schematic form (zz)¢~%~ (V1 V;20Q0){(Q¢V3Vy) and the holomorphic and the
anti-holomorphic sectors are independent. It is then convenient to factorize the calculation by summing independently
over the number of the holomorphic and the anti-holomorphic insertions since the level matching condition is imposed
at the end by the integral over the phase of z. By focusing on the operator part, we need to consider the integral

r 14 0
1 [2 1 [2 ot
d*z — | zi,/ =axt) — |zi,/ =8XT) |(@zz) %7
Je! ( o ) Nal ( o

0_

¢

~i
Il

12

r ¢ i
L Oy FR N B Oy
NG (1 a/ax ) 7 (1 a/ax ) . (D.45)

ot - . . .
~2=°7 as an exponential by introducing a Schwinger parameter

A standard approach is to rewrite the factor of (zz)
o't

_ o o0 T]+T
(zz) % = / dre P r—_ ~ (D.46)
0 r (2 + “Tt)

Then the 2D integral over z in (D.45) is Gaussian and the final integral over t/ = 1/t yields a I'-function. Then one can see
that the tree-level amplitude with four closed strings is captured, at high energy, by the correlator (V1V, Vg) ITg(VrV3V4)
involving the same Reggeon vertex (D.43) as before and the propagator Iy in (D.44).
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It is straightforward to follow the steps discussed in Section 3.2.4 and obtain the bosonic eikonal operator from the
Reggeon vertex (D.43). The final result has the same structure as in the superstring case (3.175), just with the overall
factor which follows from (D.44)

. NTpkq _;dt o't 21 m/z”da iR
Ay~ ——e a2 | -1- — 'E2)* — el D.47
0 5 < 4>(a ) o ( )

D.3. String-brane scattering: the bosonic theory at one-loop

In the closed string channel the annulus amplitudes can be evaluated using two boundary states. For instance the
one-loop correction to the amplitude in (D.28) is

o'Kq 2 Kd 1 d%q
Aj = Cp2 <§N> (E) a2 — d’21d%2, (B|Vr(z1)Vr(22)q ' qo'1B) (D.48)

o'ig

where, as in (D.28), we inserted a factor of _*N for each closed string propagator P (D.14), a factor of g—g for each vertex
and a symmetry factor é related to the residual symmetries of the annulus.
The contribution of the zero modes g* and p* to (D.48) is

SR [(Ez ) (108 1)’ ~tlog 21 10g \Zz\}
:

d—

QP8P (py + po)2n®a’a)” 2 (D.49)
where we introduced A via log |q] = —z A and used the on-shell conditions for the external tachyons m% = m% =—4/a'.
The contribution of the non-zero modes has two effects. First it yields the usual annulus measure

1

dpuy = 2wdr— ]_[ S — (D.50)

|q] (1-1q? )

Then it transforms the dlSk Green function log(z; —z;) into the annulus one, which can be expressed in terms of the prime

form log E(z;, z;), where
nz 2n%
(1-1a2) (1-1a™2)

E(z,2) = (z _Zj)l_[ o (D.51)
et (1—1qI™)
or in terms of the Jacobi 6-function (4.77)
; 01(vi — vjlir
E(zi,2) = 20 eintrtn AW Vl2) (D52)
01(0Jir)

Then we can generalize the disk integrand derived in Appendix D.2 to the annulus topology. As done in Section 4.2 we
introduce the variables

Zi = e2niu,~ = e27ti(i)»p17w1) .z = eZnivj = eZﬂi(i)»pszz) (D53)

and obtain the following result for the one-loop amplitude

2 ’
r_ [ kdTpN o 2 -4t 4
A]—< ; ) EC O (2n)f0 5 |2]_[ |2n“ (D.54)

X4/ dp1/ dm/ daﬂ/dwz @B 2V Gt Ve ® (Oll)‘))4 i
(27 )402(irp — w|iV)P2(—irp — wlid)

where the factor 4 in the second line comes from the normalization of d?z; and d?z, discussed after (D.14), we switched
to the variables introduced in (4.78) and the functions Vs, V; are exactly those appearing in the superstring amplitude
defined in (4.76). As in the superstring case, the kinematic configuration we are interested in (large E; and small R, /b)
implies that the integral is dominated by the region of small p and large A. In this limit we have

T.N 2 / o 00 d)\‘ 1 1
A{~(K" P ) L 1(2;1)4/ i eZ”*/ d;/ do
2 167 0 A 0 0

1525 ,2 't . _
><2/ dp e ¥ EH” 2 (-0 (4 6in? 7o)~
R(%)

x exp [4o/E} sin’(mw) (e 4 e H170)] (4 sinz(mu))_2 ,

where the region of integration R(¢) is defined after (4.79). The final factor in the last line comes from the last fraction in
Eq. (D.54) and is not present in the superstring case as one can see by comparing (D.54) and (4.79). As we will soon see,

(D.55)
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this difference is related to the presence of a tachyonic state in the bosonic theory. The integral over p ~ 0 is Gaussian
(after a Wick rotation E; — iE,.). By writing the exponential in the last line as a double series of terms proportional to
e~ 2™ and e~27m*1-8) we obtain an expression very similar to the integrand I; in Appendix A of [22]. Then the integral
over w can also be performed and one obtains

2
kqTyN o 9 y\_d=p=1 4/ 22 -9t
Al ~ —2n (27 d E2Y4™ 3
! ( 2 ) 8”( ) () 0 g,/Za/Ez(a $)
o0
1 seay(-Dm-n 1 (1 ot 1
n,m=0

d—p—6

NS

x I (—m) 7 [—24(1 — )%+ 20— 1) +2(m - 11 - ;)]

where the last line comes from the integral over A. This expression is very similar to the superstring case, except that
n, m are shifted ton — 1, m — 1, due to the presence of the tachyon pole (¢***) in the first line of (D.55) and of the last
factor (sin~#(ww)) in the final line of the same equation. We can trade the integral over ¢ for a momentum integral in
D = d — p — 2 dimensional space by using the identity

1 _ _ / d_'%
/ de T (-‘1‘2'%6) [—Zg(l - ;)“Tt +2(n—1)¢ +2(m — 1)(1 — ;)]
0
_ /\d=p=2 dd-P—2k o ! o ) !

where we used bold symbols to indicate the transverse (d — 2) vectors following the convention introduced in (1.37). We
can rewrite the sums as integrals by using

o st f Am iom /" (D.58)

!
f—ml m+t ¢ 2mi m+4t

where the contour includes all the poles in the I"(—m) and not the other ones. We can then deform the contour and focus
on the poles of the propagators in (D.57), which are the only ones that contribute to the leading term in the energy. We
find

d—p—6
T,N\> o dp- in 71 o
S
d—p— dd—p—Zk ! ! A o
x (2ma) 5 / 2y izl (—1 + %kz) r <—1 + %(q— k)2> el G Wi G (a—ko?
d 2 o 21 1 / / /t 1
x (4o/B2)" T B (5, —T = (@ — T+ 5) Fooe, (D.59)

where the dots stand for the contributions of the other poles that involve also the Euler Beta-function in the second line
of (D.56). These contributions are needed to cancel spurious singularities in (D.59). For instance the last line has a pole
when o'(k?> —kq) ~ 1 wh1ch does not correspond to the propagation of a physical state However this reglon 1s suppressed

by a factor of («’E2)~ > with respect to the o’k?, o'q? < 1 since we have (4'E2)" % ~5 ek ~ (4a'E2)" o 5, thus it
is not reliably captured by (D.56). In particular at this subleading order one should add the contribution neglected in (D.56).
Selecting a pole from the Euler Beta-function and the other from (D.57), one obtains a structure that exactly cancels the
spurious pole in (D.56) mentioned above. We thus focus on the leading contribution written in (D.56) and recast the Euler
Beta-function as the correlator introduced (4.83). By using Eq. (D.33) we can rewrite (D.59) in the following factorized
form

d—p—6

' . i 71 p P2k
A~ | oy e TS 2re) | [ s (D.60)
1
87 20/E2 4 (2m)tp=2

2
d i A
y .AO(ES, k)AO E.. q — K)(0| 1—[/ doi . lkX (71) ella—KX(o2) . |0) .

Since the square parenthesis on the first line is just i/(4Es), we indeed obtain (4.84) for h = 2 for the case of external
tachyon states in bosonic string theory.
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Appendix E. More on the 2 — 3 kinematics and on the x, + waveforms

In this appendix we provide a list of relations that apply to the 2 — 3 kinematics discussed at the end of Section 1.2
and which can be useful, in particular, to manipulate the waveforms presented in Section 8.3.1. We also present alternative
expressions for the x, 4+ projections of the b-space amplitude jgs)" ", i.e. the leading-order gravitational waveform, that
are equivalent to those presented in Section 8.3.1.

Let us begin by recalling that the incoming momentum vectors p; and p, define to the incoming particle’s velocities
vl and v} by (1.7), which satisfy v = —1, v = —1, and are related to the Lorenz factor o by o = —v; - v, as in (1.8).

The projector onto the plane spanned by v and vy can be read off from (1.10),

1

Pt = —{)th, - E“vZV = 5=
1 2 o2 —1

, [V} v — o (v vay + vy v1) + V5 0] (E.1)

where Y, ¥4 are the dual velocities defined by (1.9). This projector of course satisfies

L e P* vy = vl , P* PP =P . (E.2)
For any vector £, we may then rewrite its decomposition (1.10) into longitudinal and transverse projections as follows,
=g +&, & =PLE,  §-E.=0. (E.3)

In terms of the invariant products 0 = —vy-vy; > 1, w; = —vy -k > 0 and wy, = —v, - k introduced in (1.43), one
can explicitly compute the longitudinal projections of various vectors. Since we always work in a regime in which the
momentum transfers qq, g, are small, and thus (1.47) hold to leading order, we recover (1.48),

n

wy(vy — ovy) w1(v) — ovy)

Gy~ -ty = —5———. @y~ -l = — o — (E4)
and define
1 1
L s I ~ Iz
A= 202 1) [—vf (@1 4+ 0w) + v (@y + own)] = i(q] — q2) (E.5)

for later convenience. From now on we shall not distinguish between ~ and = signs, for simplicity, since we always work
to leading order in the approximation (1.47). Then from the following relations we find

b?w? b?w?
2.2 2 _ 2 2.2 1 _ 2
b gy, = P 25, boqy, = i £ (E.6)
and
wy(—wy +ow) wi(—w1 + owy)
k‘q]H == 2—, k‘qZH == 2— (E7)
g4 —1 o4 —1
When saturating (E.5) with the polarization vector &, defined in (8.91), that is
TR Sl (E8)
N
with P = —@? + 20120 — w? as in (1.45), we find
1 - 1w
5(‘11 —q2)| - & = % (E.9)

Let us now give the explicit expressions of the previously introduced quantities in terms of o, in the center-of-mass
frame, choosing the following explicit parametrization for the graviton momentum k* defined in (8.93),

k* = wn”, n* = (1, sinf cos ¢, sinH sin ¢, cosH). (E.10)
We get
w (m1 + myo — cosOmy/o2 — 1) w (mz 4+ myo + cosdmivo? — 1)
on NG 2 NG (E.11)
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)

5 My +myo +mia/o?2 — 1cosé Wy
vay = NG =

S % —1 C Jor 1

(E.12)
2 = w My +myo — mys/o?2 — 1cosé o
2l /s o2 —1 o2 -1
together with
(mz + myo + my cos 0% — l) (m2\/0‘2 —1—(m + mzo)cose)
k-qu =’ 5 )
svos—1 (E.13)
kg , (M +myo —my cos /a2 — 1)(my+/02 — 14 (my + myo)cosh)
Q= :

svo?—1
Adopting the notation
k' =k, (E.14)

we also find

P =—wf 4+ 2000 — 03 = (0? — 1K, kK =w’sin’d (E.15)

In particular, the last two relations make it obvious that 7 > 0, consistently with (1.45).
We conclude this appendix by presenting expressions for the x, + projections of the impact-parameter space 2 — 3
amplitude in terms of polarization vectors ef, e} such that

eg-k=0, ey k=0, ey v =0, (E.16)

but such that eg‘ is not necessarily orthogonal to b* (in contrast with the vector ée” employed in Section 8.3.1, see
Eq. (8.83)). We thus start from the five-point amplitude given in Eq. (5.38) (using M = u, N = vand 8 = R as in
(5.41) as appropriate for GR), perform the Fourier transform (8.55), thus obtaining W;" = A" by following the steps
detailed in Section 8.3.1, and project it along the two polarizations according to

- - - ~ 1
5 5 5 5
-A(x) _ AE) )wedmeeu 7 A(Jr) _ AE) )/w5 (eeﬂeeu _ edm%v) ) (E17)

Explicitly, in the center-of-mass defined by (8.92) and (8.93), where the longitudinal directions are 0 and 3, the velocities
have vanishing components along the 1, 2 axis, while

o M +mo 3 Mmvo?—1

vy = , vy = ———
1 ﬁ 1 \/E (E.18)
vo_mz—i-m]a 03— mivo?2 —1
2 \/g ’ 2 — \/g .
Then, we choose
el = (0, cos 9 cos ¢, cos O sing, —sind), eg = (0, —sin¢, cos ¢, 0), (E.19)
so that (E.16) hold and
ez =1, ep-es =0, eé:l. (E.20)
For the x polarization, we get
3
- 87G)2 . 22 . 2 .
'A(XS) — ( T )2 l(be¢) { ﬂ |: <%e—1bk/21<1(91) _ Melbkﬂlﬁ(ﬂz))
4Ep(27) (p1k)b (p2k)b
1 ) R 1
+i / dxe’l%(z"’”<(be9)9(x)1<1(9(x)) +i(x — E)(lce9)191<0(52(x))>
0
1
+ (egAp)b / dxe—"kz”<2X—1>1<0(:2(x))}
0
! —ikb(2x—1)
— 4p1p2((p1k)(p2es) — (p2k)(p1€s)) / dxe 'z bKo(£2(x)) ¢, (E21)
0

53 In order to compare with the formalism used in Section 6 of Ref. [47] we need to use the following identities cfyzl(2 = q%»zu, d12K? = (kq12))
and b?K*f(x) = £2%(1 — x) where £2(x) is given in (E.24).
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where for GR we have (see Eq. (5.41))
B =B =2mimi(20° — 1), (E.22)

while, for the polarization + we get

A(S) _ (S”G)% (P1€9)2 o—ikb/2
T 4Ep(4r) (p1k)?

2
Meikbﬂ ((kq”\ )KO(QZ) + i(kB) %1(1(92 )>

Lons $21
((k(hu )Ko(£21) — i(kb) TKl(-Ql))

Tk

e ; ~ 2
+ %eﬂbm <(—(€9k) + 2(ep A))Ko($21) + 2i(€9b)711<1(91)>
1
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where
2(x) = \/.Q]zxz + 23(1 — X 4 2821220x(1 — x). (E.24)

Note that the vector ég‘ employed in Section 8.3.1 and the vector e’; employed here differ by a vector proportional to
kK = wn*

g, =(—cotf,0,0,—1/sin0) = e, — cotO n*. (E.25)

Therefore, by gauge invariance, either choice must actually yield the same projected waveforms. We have verified
explicitly, as a check of the correctness of our the expressions, that the sum of Egs. (8.87), (8.88) for the x polarization
agrees with Eq. (E.21) and the sum of Eqs. (8.89), (8.90) for the + polarization agrees with Eq. (E.23), as a consequence
of k* A7 = 0 (taking into account the overall factor in (8.54)).

Appendix F. From the field to the asymptotic waveform

From the eikonal operator (8.35), or from its soft versions (7.8) or (7.45), we obtain expressions for the expectation of
the canonically normalized field (7.14) in the final state of the form

Y (x) = / [e" T (k) — e i7" (k)*] (F.1)
k
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with 7#(k) = Wi (k) or T#"(k) = —iwiy (k) or T*"(k) = —iFf; (k) respectively in those three cases. An important
property that can be seen to hold in all three applications considered in the text is
TH(—k) =T (k). (F.2)

The prediction (F.1) in only reliable for the gravitational field sourced by the collision far away from the sources, and
one thus faces the issue of taking the asymptotic limit of (F.1) in a null direction. This amounts to considering a detector
placed, spatially, very far away for retarded times comparable to the one at which the scattering event takes place. To
this end, we introduce the decomposition

X =utt +rn*, (F.3)

where t# is the detector’s four-velocity, t> = —1, and n* is a future-directed null vector, such n> = 0 and —t - n = 1,
characterizing its direction. In this way, u describes the retarded time of the asymptotic detector and r > 0 represents
its distance from the source, so we want to take the limit

r— o0, u, n* fixed. (F.4)

It is convenient to change integration variable in (F.1) in a similar way, letting k* = p t* +» m* with w > 0, and such
that m?> = 0 and —t - m = 1. Taking into account that the corresponding metric reads

(dkY = —dp? + 2dp dw + w*(dm)?, (F.5)
we find that Eq. (F.1) takes the following form
* dw d®2m . I
h*V(x) = i - D=2 7—;1.\) m e—lwu+m)rn-m +(c.c.), E6
0 fo © 0 f—(zﬂm (wm) (cc) (£6)
(where c.c. stands for “complex conjugate”). The fact that r — oo in the last term in the exponent can be compensated
by letting m = n + z, where the new integration variable z must obey t -z = 0 and z - n = —z?/2, and focusing on the
region z ~ ©(1/4/r). Then, to leading order we can approximate m ~ n everywhere else, obtaining
> dw ~ ; a2z i2
h*V(x) ~ i — P27 (wn e’”"”/ ——_e72%" 4 (cc.). F.7
) fo % P2 o) S +(cc) (E7)
Performing the Gaussian integral over z, we thus obtain the desired asymptotic limit,
v i * do D4~y —iwu
Y (x) ~ ————~ —w 2 T (wn)e + (c.c.). (E.8)
202inr)z Jo 27
Although the previous expression holds in arbitrary dimensions, we can focus on D = 4,
1 *® dw . .
WX~ — | = T (wn)e " 4 (c.) (F.9)
4rr Jo 2w

and finally, using (F.2), we note that the two terms combine to yield a single integral over “positive and negative
frequencies”,
1 ® do . )
W) ~ — | 2L F(n)e e (F.10)
Anr J_o 27
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