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Abstract

Motivated by conceptual problems in quantum theories of gravity, the gravitational eikonal ap-
proach, inspired by its electromagnetic predecessor, has been successfully applied to the trans-
planckian energy collisions of elementary particles and strings since the late eighties, and to string-
brane collisions in the past decade. After the direct detection of gravitational waves from black-
hole mergers, most of the attention has shifted towards adapting these methods to the physics
of black-hole encounters. For such systems, the eikonal exponentiation provides an amplitude-
based approach to calculate classical gravitational observables, thus complementing more tradi-
tional analytic methods such as the Post-Newtonian expansion, the worldline formalism, or the
Effective-One-Body approach. In this review we summarize the main ideas and techniques behind
the gravitational eikonal formalism. We discuss how it can be applied in various different physical
setups involving particles, strings and branes and then we mainly concentrate on the most recent
developments, focusing on massive scalars minimally coupled to gravity, for which we aim at being
as self-contained and comprehensive as possible.
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1. Introduction

1.1. Aims and outline

Gravitational scattering, as seen from a Quantum-Field-Theory (QFT) perspective, was not a
popular subject among particle theorists until the mid eighties. When in 1965 Steven Weinberg
studied infrared gravitons in his now classic paper [1], he felt obliged to provide some “reasons for
now attacking this question”. One, he said, is “because I can”, the second was that “something
might go wrong” . . . but, he immediately added, “does not”. For 20 more years or so particle theory
was so much focused on the newly-formulated Standard Model of non-gravitational interactions—
and of the elementary particles affected by them—that little attention was paid to the gravitational
force in spite of the daring 1974 Scherk–Schwarz proposal [2, 3] that the old (and unsuccessful)
hadronic string theory should be recycled as a viable way to reconcile General Relativity (GR)
with the quantum theory.

The situation changed dramatically in 1984 following the so-called first string revolution trig-
gered by the breakthrough work by Green and Schwarz [4] making it at least plausible that some
fully consistent (i.e. anomaly free) superstring theories could actually be candidate theories for all
known forces and elementary particles. Although that idea still belongs to the dream category,
the Green–Schwarz development gave a strong motivation for studying its implications as a full-
fledged theory of quantum gravity. Starting in 1987 several groups [5–17] started to analyze, in
the spirit of the “thought (gedanken) experiments” of the old quantum mechanics days, quantum
gravitational scattering at transplanckian energies1

√
s≫MP ≡

√
~

G
, i.e.

Gs

~
≫ 1 . (1.1)

Among the initial aims of those investigations we would like to mention:

• Understanding how unitarity bounds on partial waves, which are violated at tree level, get
restored by loop corrections. This question can be asked both in QFT and in a string-theory
context.

• Connecting the high-energy, fixed-angle behavior of string scattering amplitudes to modifi-
cations of gravity at short distance.

• Studying regimes in which the process is expected, classically, to lead to black-hole formation
and, quantum mechanically, to subsequent black-hole evaporation. The construction of a
unitary S-matrix in such a context would guarantee that information is preserved thus
solving Hawking’s famous paradox [18, 19]. Alternatively, find a breakdown of unitarity.

For scattering of elementary particles or strings which are much lighter than the Planck mass,
the transplanckian regime (1.1) constitutes an ultra-relativistic limit, and is essential for dealing
with the above questions. First, because gravity becomes the dominant force only at sufficiently
high energies and this allows one to obtain (almost) theory-independent results. Second, because
high energies are necessary (although, as we shall see, not always sufficient) in order to probe
short distances. And, finally, because one would like to deal with black holes whose radius is
(much) larger than the Planck length ℓP =

√
G~ in order to apply to them the semiclassical

approximations used in [18].
A high-energy limit naturally leads to a semiclassical approximation to gravitational scattering,

simplifying considerably all the calculations. In non-relativistic quantum mechanics the semiclas-
sical limit goes under the name of WKB approximation (see e.g. [20, 21]). In a more general

1For simplicity in this introduction we work in four spacetime dimension. We remind the reader that the very
concept of a transplanckian energy is quantum-mechanical: classical GR has no intrinsic mass or length scale (G−1

is a mass per unit length in units where c = 1 which we use throughout unless explicitly stated).
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relativistic framework, it is associated with the so-called eikonal approximation, the basic tool to
be described in this review article. The early applications of the eikonal approximation have met
with considerable success in some regimes, including those in which point-particles and extended
objects (strings, branes) behave differently [8, 10, 13, 15–17, 22–24]. Parts of this review will be
dedicated to these aspects of gravitational scattering. By comparison, less progress was made on
the regime where gravitational collapse is classically expected to occur. In particular whether and
how unitarity is preserved is still an unanswered question. We shall therefore make a less detailed
account of those aspects of the problem.

In the last few years, in the wake of the first direct observation of gravitational waves by
ground-based interferometers [25, 26], the same semiclassical approximation turned out to be a
useful tool for studying collisions of very heavy objects, provided they remain at sufficiently large
distances with respect to their size. Typical candidates are, of course, astrophysical black holes
which, besides being extremely compact, are characterized by the same quantum numbers as those
of an elementary particle, i.e. mass and spin (plus possibly some conserved charges) as long as the
process is only sensitive to the geometry outside their horizon.

Since semiclassical black holes, and a fortiori astrophysical ones, are much heavier than MP ,
one does not have to consider, for them, a highly relativistic regime in order to justify the ap-
proximation (1.1) and, in particular, the eikonal approach. And for current physical applications
it is often rather the opposite, i.e. a nonrelativistic approximation is viable. For black holes such
as those featuring in the events observed by LIGO/Virgo [25], with masses of about mi ∼ 30M⊙
(with M⊙ ≃ 2 × 1030kg the solar mass), the ratio between the Schwarzschild radii 2Gm

c2 and the

reduced Compton wavelength ~

mc obeys

2Gm2

~c
≃ 1079 ≫ 1 , (1.2)

Therefore, for such systems, the classical limit is obviously an excellent approximation. What is
less obvious is the use of a point-particle approximation. This is expected to be good for black
hole collisions at distances much larger than their Schwarzschild radii while for neutron stars
the detailed interior of the star matters and has to be incorporated through some non-minimal
coupling to gravity of the effective point particle.

It thus comes as no surprise that the traditional techniques for studying the collision and merger
of compact astrophysical objects have been based on classical GR. Among the most important
ones are those using numerical relativity (as pioneered in [27] and reviewed e.g. in [28]), the
self-force approach [29], the Post-Newtonian expansion (see e.g. the nice review in [30]), and the
Effective-One-Body (EOB) framework [31, 32], although the latter does make use of quantum
mechanical concepts for the determination of effective potential’s parameters.

More recently, however, the idea that scattering amplitudes—the bread and butter of quantum
field theory calculations—could be recycled for use in the physics of compact astrophysical sys-
tems has made its way in the scientific community [33–42]. Furthermore, as stressed by Damour
in [35], even the ultra-relativistic high-energy regime we have already mentioned could provide
very valuable information on the classical GR problem. As is also immediately clear from (1.2),
in an amplitude-based approach, one is not dealing here with straight perturbation theory, which
can be thought as an expansion for “small-G”. One should therefore identify the appropriate way
of resumming certain infinite sets of diagrams. The essential, simplifying feature, which is shared
by WKB and eikonal methods, is that in the semiclassical limit the amplitude is controlled by
a large phase, typically representing a large, classical action in units of ~, in which the coupling
constant sits in the exponent. To obtain this form, it is crucial that particular contributions of
entire classes of loop diagrams “exponentiate”, i.e. appear to the appropriate power and with the
right combinatoric factor to all loop orders. Sometimes this can be explicitly checked, at least
at the level under scrutiny, sometimes it can be justified by other methods (like in the world-line
approaches), and sometimes will just be assumed. The validity of the eikonal approximation thus
needs to be checked on a case-by-case basis, but, as we shall discuss, it has been successfully
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applied to semiclassical scattering for both massive and massless scattering [15, 43–47], in various
spacetime dimensions [48, 49]. Amplitude techniques, including also the eikonal, have been applied
the case in which the colliding objects can be subject to tidal deformations [50–57] or carry spin
[58–84]. Tidal effects [85–95] may in particular provide clues on the equation of states of neutron
stars [96], on the nature of black holes [97] and on possible exotic astrophysical objects [98–100].

A very important feature of the semiclassical/eikonal approximation is thus that it allows one
to take easily the classical limit itself, usually through a saddle-point approximation. On the one
hand agreement with classical expectations provides a check of the quantum result. On the other
hand, and perhaps more interestingly, the eikonal approximation offers a new tool for computing
classical observables. The perturbative nature of such calculations is recovered by looking for an
expansion of the exponent, after the resummation. In this way, the eikonal exponentiation provides
a simple way to recover the classical limit by matching to the Post-Minkowskian (PM) regime,
in which the colliding objects remain sufficiently far apart and interact weakly, or, equivalently,
undergo sufficiently small deflections,

G
√
s

b
≪ 1 . (1.3)

For reference, to obtain a rough estimate of this parameter, we may consider again the situation
of a merger event in the early inspiral phase, as measurable by LIGO/Virgo’s detectors, where
the typical relative separation r0 between the two objects is such that

Gmi

r0
≃ 1

6
. (1.4)

This small but non-negligible ratio motivates us to investigate higher orders in the PM expansion,
which translate in higher-order approximations of the eikonal phase [101, 102, 48, 103–106, 47, 107–
112]. In this way, the eikonal exponentiation provides an alternative approach for computing
classical gravitational observables from scattering amplitudes, complementing various types of
EFT setups [113–115, 37, 49], the KMOC framework [116–122] as well as PM worldline EFT
methods [123–136, 55, 56, 137–140] (see [141] for a comparison between these two approaches).

As already mentioned the gravitational eikonal approximation can be justified in a large variety
of situations and this review will try to cover as many of them as possible indicating, in each case,
both the achievements and the challenges lying ahead. One such challenge is represented by
inelastic processes, such as gravitational radiation or internal excitations (as it happens in string
theory), in which eikonal phase becomes an operator [142, 143, 110, 112, 144, 119, 145–148]. We
organized the material according to the order in G at which the eikonal phase (or operator) is
computed. We believe that by starting from tree-level and then working our way up to two loops,
we could organize the material in a pedagogical style and make the presentation as accessible
as possible. At each loop level we will consider the case of pure Einstein gravity and of some
supersymmetric extensions of it. At tree level and one loop, we will discuss the case of string
theory as well. In the same spirit, we also describe first the two-to-two amplitude and only then
turn to radiative processes and to radiation reaction.

A very interesting development of the eikonal methods that we shall not cover in this report
concerns their application to scattering processes taking place in asymptotically AdS spacetimes,
and their connection to holographic CFTs. This analysis has been initiated in [149–153] focusing
on the high-energy scattering of light states as was done in the eighties in flat space. Through
the AdS/CFT duality, the eikonal approach highlighted the existence of bounds on particular
couplings in holographic CFTs, see for instance [154–157]. The eikonal regime has been also used
in the analysis of the CFT correlators with heavy operators [158–163] and applied to the study of
tidal excitations in AdS [164], and of higher point correlators [165]. Another recent development
which we will not discuss is the use of the eikonal approach in the context of the so-called celestial
CFT [166].

With this general plan in mind, let us discuss how the report is organized. In the remainder
of the present section, we shall spell out our kinematics conventions, review the definition of
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partial waves and discuss qualitative features of different regimes of gravitational scattering. In
Section 2, we provide a self-contained, elementary treatment of the leading eikonal resummation
for a gravitational 2 → 2 process involving massless scalar objects. We show how to calculate
the leading eikonal phase 2δ0, prove that it exponentiates and how it directly gives the deflection
angle. This very simple example is mainly meant to whet the reader’s appetite and lends itself
to two quite different derivations that lead to the same result. One is based on the amplitude
for a single graviton exchange and the other one is based on solving the geodesic equation in the
Aichelburg–Sexl netric. We also illustrate how partial-wave unitarity, which is violated at finite
loop order, is recovered via the resummation.

In Section 3, we calculate the leading-order eikonal phase 2δ0 in several different field theories,
ranging from minimally coupled massive scalars to graviton scattering off a massive scalar, dilaton
gravity,N = 8 supergravity, higher-derivative corrections of GR and scattering of spinning objects.
We then turn to tree-level string amplitudes, for which we mainly focus on string-brane scattering
(the analog of a probe-limit calculation) and also introduce the eikonal operator, which accounts
for transitions between different excited modes of the string. Section 4 is instead devoted to
one-loop calculations, which allow us on the one hand to check the first constraint arising from
the exponentiation of the tree-level result and on the other hand to calculate the first sub-leading
correction to the eikonal phase 2δ1. Like for the previous one, we discuss both fields and strings.
In Section 5, we encounter for the first time 2 → 3 amplitudes, which enter the discussion of
the unitarity cuts of the 2 → 2 amplitudes. We review in detail this point, focusing on the
interplay between momentum-space convolutions and their impact-parameter Fourier transforms.
This also serves as an occasion to anticipate the calculation of the imaginary part of the two-loop
results, which is instead presented in Section 6 for N = 8 supergravity and for GR. There, we also
comment more in detail on the definition of the impact parameter and on the connection between
eikonal phase, radial action and phase shifts.

The remainder of the report is devoted to the inclusion of radiation in the final state. This
is done first following soft theorems as in Section 7, restricting one’s attention to low-frequency
radiation, and then, to leading order in the PM expansion, but capturing the full spectrum, by
exponentiating the tree-level 2→ 3 amplitude as in Section 8. We summarize our conclusions and
prospects for the future in Section 9.

Several appendices are included in order to make the material sufficiently self-contained.
Appendix A collects conventions about Feynman rules and useful results concerning Fourier trans-
forms from momentum to impact-parameter space. In Appendix B we present the calculation of
the deflection angle in the probe limit for several theories. A brief Appendix C collects useful
identities involving the completely antisymmetric tensor. Appendix D contains material that
serves as background for the string-theory content of Sections 3, 4. In Appendix E we summa-
rize a list of kinematic relations that apply to the 2 → 3 process involving graviton emissions
and include expressions for the waveforms that complement those presented in Section 8. Fi-
nally, in Appendix F we illustrate how the on-shell metric fluctuation is linked to the asymptotic
waveform.

1.2. Kinematics and conventions

Before proceeding further, let us spell out here for later convenience the main conventions that
will be employed in the rest of the review.

The basic object of study of this work is the collision of two energetic objects with masses
m1 and m2. These define the initial states of a scattering process. For convenience, all external
momentum vectors will be regarded as outgoing, so that −p1 and −p2 represent the physical
momenta for such incoming particles. We work with the mostly-plus signature for the metric,

ηµν = diag(−1, 1, . . . , 1) , µ, ν = 0, 1, . . . , D − 1 , (1.5)

so that
p21 = −m2

1 , p22 = −m2
2 . (1.6)
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When the two incoming states have nonzero masses, we define their velocities according to2

pµ1 = −m1v
µ
1 , pµ2 = −m2v

µ
2 , v21 = −1 , v22 = −1 . (1.7)

Then their relative speed is sized by the invariant

σ = −p1 · p2
m1m2

= −v1 · v2 =
1√

1− v2
, (1.8)

where v is the velocity of either particle as seen from the rest frame of the other one. Of course,
σ → 1+ in the near-static limit, while σ → ∞ in the ultra-relativistic limit. It is also convenient
to introduce the “dual” velocities

v̌µ1 =
σvµ2 − vµ1
σ2 − 1

, v̌µ2 =
σvµ1 − vµ2
σ2 − 1

, v1 · v̌1 = v2 · v̌2 = −1 , v1 · v̌2 = v2 · v̌1 = 0 . (1.9)

In particular, these vectors allow one to conveniently decompose any given vector ξµ in terms of
its longitudinal and transverse components according to

ξµ = ξ‖1v̌
µ
1 + ξ‖2v̌

µ
2 + ξµ⊥ , (1.10)

with
ξ‖1 = −ξ · v1 , ξ‖2 = −ξ · v2 , ξ⊥ · v1 = 0 , ξ⊥ · v2 = 0 . (1.11)

In a center-of-mass frame, the initial momenta take the form

−p1 = (E1, ~p ) , −p2 = (E2,−~p ) , (1.12)

where ~p is a (D− 1)-dimensional spatial vector. Let us collect here a few useful relations that link
the relativistic factor σ and the masses m1,2 to the total energy E = E1 + E2, the single-particle
energies E1,2 and the absolute value p = |~p | of the spatial momentum in such a frame,

Ep = m1m2

√
σ2 − 1 , (1.13)

E = E1 + E2 =
√
m2

1 + 2m1m2σ +m2
2 , (1.14)

E1 =
m1

E
(m1 + σm2) , (1.15)

E2 =
m2

E
(m2 + σm1) . (1.16)

We define the scattering amplitude for the process α→ β in the standard way by decomposing
the S operator according to S = 1 + iT and by letting

〈β|T |α〉 = (2π)Dδ(D)(Pα + Pβ)Aα→β , (1.17)

where the momentum conserving delta function takes into account that all momenta are formally
outgoing. We normalize single-particle momentum eigenstates with mass m according to the
Lorentz-invariant convention

2πθ(p0)δ(p2 +m2)〈p| − p′〉 = (2π)Dδ(D)(p+ p′) , (1.18)

which is equivalent to the more common normalization3

〈p| − p′〉 = 2
√
|~p |2 +m2(2π)D−1δ(D−1)(~p+ ~p ′) . (1.19)

A case that we will often consider in the following is that of an elastic 2 → 2 scattering
depicted in Fig. 1. We shall denote the corresponding amplitude simply by A and label the

2While pµ1,2 are past-directed to comply with the all-outgoing convention for external momenta, vµ1,2 are future-

directed, hence the minus signs in (1.7) and also in (1.28) below.
3One can multiply both sides of (1.18) by 2πθ(−p′0)δ(p′2 +m2) to make it manifestly symmetric.
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p4

p3

p1

p2

−p1

p3

p4

−p2

Figure 1: To the left, a diagrammatic picture of the elastic 2 → 2 amplitude A. To the right, a cartoon of two-body
scattering in the center-of-mass frame.

incoming particles by 1, 2 and the outgoing ones by 3, 4, in such a way that

p21 = p24 = −m2
1 , p22 = p23 = −m2

2 . (1.20)

As already mentioned, all external momenta are regarded as outgoing so that they satisfy the
conservation condition

p1 + p2 + p3 + p4 = 0 (1.21)

and thus define the standard Mandelstam variables via

s = −(p1 + p2)
2, t = −(p1 + p4)

2, u = −(p1 + p3)
2. (1.22)

As usual, s is linked to the total energy in the center-of-mass frame E by E =
√
s. We also define

the momentum transfer,
q = p1 + p4 = −p2 − p3 , (1.23)

which is related to the Mandelstam invariant t by t = −q2. Of course, u can be written in terms
of s and t using momentum conservation and the mass-shell conditions,

s+ t+ u = 2(m2
1 +m2

2) . (1.24)

More explicitly, following the notation in (1.17),

〈p4, p3|T | − p2,−p1〉 = (2π)Dδ(D)(p1 + p2 + p3 + p4)A(s, t) . (1.25)

Let us note, for later convenience, that one can also factor the overall momentum-conserving delta
function by recasting the S-matrix element as follows,

2πθ(p04)δ(p
2
4 +m2

1)2πθ(p
0
3)δ(p

2
3 +m2

2)〈p4, p3|S|− p2,−p1〉 = (2π)Dδ(D)(p1+ p2+ p3 + p4)S (1.26)

where, using δ(D)(p1+p4)δ
(D)(p2+p3) = δ(D)(p1+p2+p3+p4)δ

(D)(q) for the disconnected piece,
with q as in (1.23),4

S = S(p1, p2; q) = (2π)Dδ(D)(q) + 2πδ(2p1 · q − q2)2πδ(2p2 · q + q2)iA(s,−q2) . (1.27)

It can be convenient to introduce “average” momenta p̄µi and velocities uµi according to [167]

−pµ1 = p̄µ1 −
1

2
qµ , pµ4 = p̄µ1 +

1

2
qµ ,

−pµ2 = p̄µ2 +
1

2
qµ , pµ3 = p̄µ2 −

1

2
qµ ,

(1.28)

and, for i = 1, 2,
p̄µi = m̄iu

µ
i , u2i = −1 . (1.29)

4For simplicity, we leave the θ functions implicit since they are irrelevant for sufficiently small q, given the fact
that p04 = −p01 + q0 and −p01 is positive.
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In this way the mass-shell conditions turn into the following relations: by p21 − p24 = 0 and
p22 − p23 = 0,

p̄i · q = 0 , ui · q = 0 , (1.30)

for i = 1, 2, while by p21 + p24 = −2m2
1 and p22 + p23 = −2m2

2,

m̄2
1 = m2

1 +
1

4
q2 , m̄2

2 = m2
2 +

1

4
q2 . (1.31)

The Fourier transform of the S-matrix element S defined in (1.27) is then

∫
dDq

(2π)D
S eib·q = 1+ i

∫
dDq

(2π)D
eib·q2πδ(2p̄1 · q)2πδ(2p̄2 · q)A(s,−q2) = 1+ iFT[A](s, b) . (1.32)

Going to a center-of-mass frame, one has

−p1 = (E1, ~p ) , −p2 = (E2,−~p ) , p3 = (E2,−~p ′) , p4 = (E1, ~p
′) , (1.33)

where now ~p and ~p ′ are (D− 1)-dimensional space vectors with |~p | = |~p ′| ≡ p. In this frame, E1,
E2, p obey (1.13), (1.14), (1.15), (1.16), and

qµ = (0, ~q ) = (0, ~p ′ − ~p ) , q2 = |~q |2 = 2p2(1− p̂ · p̂ ′) , (1.34)

where p̂ = ~p/p and similarly for p̂ ′. In fact, these properties correspond to further factorized forms
of the S-matrix element (1.27),

S = 2πδ(q0)

[
(2π)D−1δ(D−1)(~q ) + i2πδ(p− |~p+ ~q |)A(s,−|~q |

2)

4Ep

]
(1.35)

= 2πδ(q0)(2π)D−1 δ(p− p′)
pD−2

[
δ(D−2)(p̂, p̂′ ) + i

( p

2π

)D−2 A(s,−2p2(1 − p̂ · p̂′))
4Ep

]
(1.36)

where in the second line ~p ′ = ~p + ~q and δ(D−2)(p̂, p̂′) is the invariant delta function on the
(D−2)-sphere (for instance δ(2)(p̂, p̂′ ) = δ(θ−θ′)δ(φ−φ′)/ sin θ in D = 4 with standard spherical

coordinates, which obviously implies
∫ 2π

0 dφ
∫ π

0 dθ sin θ δ(2)(p̂, p̂′ ) = 1).
Aligning the “average momenta” so that p̄µ1 = (Ē1, 0, . . . , 0, p̄) and p̄

µ
2 = (Ē2, 0, . . . , 0,−p̄), one

obtains

−p1 =

(
Ē1,−

1

2
q, p̄

)
, p4 =

(
Ē1,

1

2
q, p̄

)
,

−p2 =

(
Ē2,

1

2
q,−p̄

)
, p3 =

(
Ē2,−

1

2
q,−p̄

)
,

(1.37)

and in this way
q = (0,q, 0) , (1.38)

while the energies Ē1,2 can be obtained from the mass-shell conditions:

Ē2
1,2 = p̄2 +

q2

4
+m2

1,2 . (1.39)

As is clear from (1.37), this parametrization corresponds to the so-called Breit (or brick-wall)
frame, where each particle bounces back in the transverse directions and moves unperturbed
along the longitudinal directions.

Another amplitude that we will employ in the following, especially when dealing with emitted
radiation, is the 2 → 3 amplitude A(5) describing the collision of two energetic particles with
incoming momenta −p1, −p2 and outgoing momenta k1, k2 with the additional emission of a
single graviton with momentum k, as depicted in Fig. 2 so that
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k1

k2

p1

p2

k
−p1

k2

k1

−p2
k

Figure 2: To the left, a diagrammatic picture of the inelastic 2 → 3 amplitude A(5). To the right, a cartoon of
two-body scattering with emission of gravitational radiation.

p21 = p24 = −m2
1 , p22 = p23 = −m2

2 , k2 = 0 (1.40)

and
p1 + p2 + k1 + k2 + k = 0 . (1.41)

In this case, we find it convenient to define two “momentum transfers”

q1 = p1 + k1 , q2 = p2 + k2 , q1 + q2 + k = 0 . (1.42)

Employing the velocities (1.7), the amplitude will depend on the invariants

σ = −v1 ·v2 ≥ 1 , ω1 = −v1 ·k ≥ 0 , ω2 = −v2 ·k ≥ 0 (1.43)

where ωj is the graviton’s frequency as seen in the rest frame of particle j (for j = 1, 2). Using
(1.10), we can decompose kµ as

kµ = ω1v̌
µ
1 + ω2v̌

µ
2 + kµ⊥ , (1.44)

and k2 = 0 implies
P

σ2 − 1
= k2⊥ ≥ 0 , P = −ω2

1 + 2ω1ω2σ − ω2
2 . (1.45)

As we shall discuss, the classical limit is obtained by considering q1, q2, k simultaneously small
compared with the incoming particles’ momenta. Therefore the exact mass-shell conditions for
the massive states

2p1 · q1 = q21 , 2p2 · q2 = q22 , (1.46)

read to leading order5

p1 · q1 ≈ 0 , p2 · q2 ≈ 0 . (1.47)

In this way, we find
qµ1 ≈ −ω2v̌

µ
2 + qµ1⊥ , qµ2 ≈ −ω1v̌

µ
1 + qµ2⊥ , (1.48)

as follows from the last two equations in (1.9), and

q21 ≈
ω2
2

σ2 − 1
+ q21⊥ , q22 ≈

ω2
1

σ2 − 1
+ q22⊥ . (1.49)

This follows immediately from v̌21 = v̌22 = 1
σ2−1 and from the last equation in (1.11) for ξ = qi.

In a 2→ 2 +N process with emission of N gravitons, the conservation condition would read

p1 + p2 + k1 + k2 + P = 0 , (1.50)

5We could introduce “average” momenta that are exactly orthogonal to q1, q2 respectively, analogous to p̄µ1,2
introduced in (1.29), but we will not need the relations (1.47) beyond leading order.
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with P the sum of all graviton momenta. Squaring this relation one finds

σ′ ≡ −k1 · k2
m1m2

= σ − 2P · (p1 + p2) + P 2

2m1m2
, (1.51)

where P · (p1+p2)/
√
s = Erad is the energy lost to graviton emissions in the (incoming) center-of-

mass frame, while −P 2 > 0 represents the gravitons’ invariant mass squared. Clearly, by energy
conservation Erad ≤

√
s, and thus

2P · (p1 + p2) + P 2 = 2
√
sErad − (Erad)

2 + ~P 2
rad ≥ (Erad)

2 + ~P 2
rad ≥ 0 . (1.52)

Therefore (1.51) shows that the massive particles’ relative velocity always decreases as a result of
the emissions, σ′ ≤ σ. We shall return to this point in Section 8 and in the outlook.

1.3. Partial waves, unitarity, phase shifts and the eikonal phase

For later convenience, let us recall how the 2 → 2 scattering amplitude can be decomposed
into partial waves by expressing it in terms of angular momentum eigenstates, and how unitarity
holds for each partial wave. For simplicity we will discuss the procedure in D = 4 although
generalization to arbitrary D is straightforward (see for instance [7, 168]). We shall also focus on
scalar massive particles, see e.g. [169, 170] for generalizations to the spinning case.

Let us start from the S-matrix element obtained in (1.36) by factoring out the motion of the
center of mass, which we may regard as the definition of the “reduced” S and T operators in this
frame,

〈p̂ ′|S|p̂〉 = δ(2)(p̂, p̂′) + i〈p̂ ′|T |p̂〉 , 〈p̂ ′|T |p̂〉 =
( p

2π

)2 A(s,−q2)
4Ep

, (1.53)

where

〈p̂ ′|p̂〉 = δ(2)(p̂, p̂′) , q = 2p sin
θ

2
, p̂ · p̂′ ≡ cos θ . (1.54)

It is convenient to go to a basis with well-defined properties under rotations by means of the
spherical harmonics Yjm(p̂ ),

|j,m〉 =
∫
dΩ(p̂)Yjm(p̂)|p̂〉 , 〈j′,m′|j,m〉 = δjj′δmm′ . (1.55)

For concreteness, aligning p̂ ′ along the z axis, the three components of p̂ can be expressed in
terms of θ and φ as p̂ = (cosφ sin θ, sinφ sin θ, cos θ) and dΩ(p̂) = sin θ dθ dφ with 0 ≤ φ < 2π and
0 ≤ θ ≤ π. The states |j,m〉 in (1.55) are eigenstates of the total angular momentum J2 and of
its component along a given axis, say Jz,

J2|j,m〉 = ~
2j(j + 1)|j,m〉 , Jz |j,m〉 = ~m|j,m〉 . (1.56)

Since we are dealing with collisions of scalar particles, the invariance of S and T under rotations
implies via the Wigner–Eckart theorem that their matrix elements take the following diagonal
form,

〈j′,m′|S|j,m〉 = sj(s)δjj′δmm′ , 〈j′,m′|T |j,m〉 = 2fj(s)δjj′δmm′ , (1.57)

where fj(s) are suitable, m-independent functions, which we may identify as partial waves, and
of course

sj(s) = 1 + 2ifj(s) . (1.58)

It is also common to express fj(s) in terms of the so-called phase shifts δj(s), according to

1 + 2ifj(s) = e2iδj(s) , fj(s) =
e2iδj(s) − 1

2i
= eiδj(s) sin δj(s) . (1.59)
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Therefore, using (1.55) and the definition (1.57) of fj(s) we obtain

〈p̂ ′|T |p̂〉 =
∞∑

j=0

2j + 1

2π
Pj(p̂ · p̂ ′) fj(s) , (1.60)

after recalling the addition theorem that links the spherical harmonics to the Legendre polynomials
Pj , (see for instance DLMF (14.30.09))

j∑

m=−j

Y ∗
jm(p̂)Yjm(p̂′) =

2j + 1

4π
Pj(p̂ · p̂ ′) . (1.61)

Comparing with (1.53), we see that the original amplitude can be decomposed as follows,

A(s,−q2) = 8πE

p

∞∑

j=0

(2j + 1)fj(s)Pj(cos θ) , (1.62)

fj(s) =
p

16πE

∫ +1

−1

d(cos θ)Pj(cos θ)A(s,−q2)
∣∣
q=2p sin θ

2

, (1.63)

where the latter relation can be obtained from the former using the orthogonality properties of
the Legendre polynomials,

∫ +1

−1

dxPj(x)Pk(x) =
2

2j + 1
δjk , Pj(1) = 1 . (1.64)

The virtue of the partial waves fj(s) is that the full non-linear unitarity condition S†S = 1,
which takes the following form for the T -matrix,

−i(T − T †) = T †T , (1.65)

becomes diagonal in j and its elastic contribution is particularly simple. Indeed, by taking the
expectation value of (1.65) on 〈j,m| · · · |j,m〉 and inserting a complete set of states on the right-
hand side, by (1.57) one finds that the sum over intermediate two-body states simplifies to a single
term, and the result is

Im fj(s, j) = |fj(s)|2 + inelastic , (1.66)

where each (j-dependent) inelastic contribution is non negative. This implies the bound

Im fj(s, j) ≥ |fj(s)|2 (1.67)

or the (weaker) inequality
|fj(s)| ≤ 1 . (1.68)

Indeed, (1.66) can be obtained starting directly from S†S = 1 and recalling the definition of the
phase shifts (1.59),

|sj(s)|2 + inelastic = 1 , e−2 Im 2δj(s) + inelastic = 1 (1.69)

and thus one obtains the following bounds equivalent to (1.67),

|sj(s)| ≤ 1 , Im 2δj(s) ≥ 0 (1.70)

with the equality signs holding true for perfectly elastic scattering. Note that, unlike the Froissart
bound, which depends on the absence of massless particles, the bound on partial waves should
also hold in the presence of long range forces, in particular for gravity.
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The eikonal phase, which constitutes the focus of this report, is closely related to the phase
shifts discussed above. The main difference is that the eikonal is introduced by performing the
Fourier transform of the S-matrix elements rather than their partial wave decomposition

S̃(s, b) = 1 + iÃ(s, b) = 1 +

∫
dD−2q

(2π)D−2
eib·q

iA(s,−q2)
4Ep

, (1.71)

where we are assuming the kinematics of the Breit frame (1.37). The technical advantage is that
one does not have to deal with Legendre (or Gegenbauer for D > 4) polynomials, while the draw-
back is that the exact diagonal form in (1.57) is lost as we shall see in Eq. (5.26) below. However
in the classical limit there is an approximate diagonalization and so, in analogy with (1.59), it is
convenient to introduce the eikonal phase 2δ(s, b)

S̃(s, b) = 1 + iÃ(s, b) = (1 + · · · ) e2iδ(s,b) , (1.72)

where the eikonal 2δ scales as 1/~ while the dots in the prefactor stand for quantum corrections.
The impact parameter b, unlike j, is a continuous variable directly related to a classical quantity.
The precise relation between 2δj(s) and 2δ(s, b) will be discussed in Subsection 2.2 and more
generally in Subsection 6.1, where we will also elaborate on the relation between (1.71) and the
covariant definition of the Fourier Transform introduced in (A.31).

1.4. Regimes of 2→ 2 scattering

As intuitively clear, the classical impulse Q, i.e. the total momentum transfer during a classical
2→ 2 collision, emerges from the quantum description via the exchange of a very large number of
gravitons, each carrying a momentum of order q. The resummation mechanism described in the
next sections will make this intuitive picture precise, effectively capturing an infinite number of
graviton exchanges and thus predicting the classical limit of the amplitude from its conventional
expansion in perturbation theory. Expressing the amplitude as a function of the collision’s impact
parameter, this resummation leads to the exponential of the original perturbative amplitude. Of
course, due to the multiple interactions, the transferred momentum Q exchanged in the classical
process is much larger than the perturbative momentum transfer q,

Q≫ q . (1.73)

In particular, the ratio Q/q goes to infinity in the classical limit, i.e. in the formal ~→ 0 limit.
As far as the classical process is concerned, we are particularly interested in the regime where

Q is small in comparison with the centre-of-mass energy

s≫ Q2 , (1.74)

while the masses are kept arbitrary so as to explore various limits. A first regime is when the total
center of mass energy is of the order of the masses

s, m2
1, m

2
2 ≫ Q2 black-hole scattering, (1.75)

which we dub as “black hole scattering”. Indeed, this can be seen as a relativistic, open-trajectory
analogue of a black-hole binary system tracing out a non-relativistic, closed trajectory motion
during the inspiral phase. From the conceptual point of view, it is interesting to take the extreme
case where the kinetic energy is much larger than the (large) rest mass energy of the external
states

s≫ m2
i ≫ Q2 high-energy scattering. (1.76)

This ultrarelativistic limit is in principle different from the case where the masses are set to zero
and one describes the scattering of two shock waves

s≫ Q2 , m2
i = 0 shock-wave scattering, (1.77)
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as will become clear especially in Subsection 7.3. It will be interesting to compare the two cases
above. In particular we will see that for some quantities, such as the deflection angle up to 3PM,
the transition from m2

i ≫ Q2 to m2
i → 0 is smooth, while others quantities have rather different

behaviors in these two regimes. Finally another interesting case is that of an elastic process where
the mass of one state is much larger than the mass and kinetic energy of the other one

s,m2
1 ≫ s−m2

1 −m2
2, m

2
2 ≫ Q2 probe limit. (1.78)

In this limit the light external state can be seen as a probe particle traveling in the gravitational
background produced by the heavy object. Thus, in this case, the results can be checked by
studying the geodetic motion of a test mass in a fixed classical metric.

2. Leading exponentiation: an appetizer

In this section we describe, in the technically simpler massless case, how to extract the leading
eikonal phase e2iδ0 both from perturbative quantum field theory, following [171, 101, 102, 36], and
from purely classical considerations, following [6, 172]. We also show how 2δ0 is directly linked to
the deflection angle for the classical trajectory via a stationary-phase approximation, and illustrate
some related properties of the amplitude that become manifest in its partial-wave decomposition.

2.1. Minimally coupled massless scalars: from amplitudes to geometry

In order to illustrate the leading-order exponentiation in the simplest possible gravitational
setup, let us start from the case of two massless scalar fields minimally coupled to gravity,

S =

∫
R

2κ2D

√−g dDx− 1

2

∑

a=1,2

∫
∂µφa g

µν ∂νφa
√−g dDx , (2.1)

with κD =
√
8πGD. Considering fluctuations about a flat Minkowski background gµν = ηµν +

2κD hµν and adopting De Donder gauge leads to the Feynman rules described in Appendix A.2.
In particular, the propagators for the graviton and for the scalar with “flavor” index a = 1, 2
are given by (G and Ga are the same function, but it is somewhat helpful to keep track of their
subscript)6

Gµν,ρσ(k) = Pµν,ρσG(k) , G(k) =
−i

k2 − i0 , Ga(ka) =
−i

k2a − i0
, (2.2)

where

Pµν,ρσ =
1

2

(
ηµρηνσ + ηµσηνρ −

2

D − 2
ηµνηρσ

)
. (2.3)

Moreover, the leading scalar-graviton-scalar vertex reads

τµνa (p, p′) = −iκD
[
pµp′ν + pνp′µ − ηµν(pp′)

]
, (2.4)

where the scalar lines are regarded as both outgoing. One may consider replacing Pµν,ρσ with the
projector over physical graviton states (see (5.45) below), but this replacement is immaterial for
our present purposes because τµνa is transverse, i.e. τµνa pµ = 0 = τµνa p′µ (and thus also τµνa kµ = 0
with kµ = −pµ − p′µ) when pµ and p′µ are on-shell.

Let A(s, t) be the amplitude for the elastic scattering of 1 and 2. We shall consider its behavior
in the Regge limit,

s = −(p1 + p2)
2 ≫ −t = −q2 . (2.5)

6More precisely, since the propagator is diagonal in “flavor” space, Gab(k) = Ga(k) δab
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Figure 3: An example of (crossed) ladder topology. The thick line at the top (blue) refers to particle 1 and the
thick line at the bottom (green) refers to particle 2. The exchanged graviton lines are attached and labeled by
ℓ1, . . . , ℓ7 in a random way. They flow from bottom to top, as indicated for the ℓ4 line.

In this regime, the incoming particles are highly energetic and barely graze off each other, so that
p1, p2 are formally very large compared to q, i.e. the deflection is very small. Moreover, we shall
focus on the contribution to the amplitude at L loops, AL(s, t), that arises from the exchange of
n = L + 1 virtual gravitons between the two energetic lines as depicted in Fig. 3. As we shall
discuss shortly, these “ladder” diagrams indeed provide the dominant contribution to the L-loop
amplitude in the Regge limit. We further denote by ℓ1, ℓ2, . . . , ℓn the momenta of such exchanges,
flowing from 2 to 1 (see Fig. 3). Clearly this contribution takes the form

iAn−1(s, t) =

∫ 


n∏

j=1

G(ℓj)
dDℓj
(2π)D


 (2π)Dδ(D) (q − ℓ) J (n), (2.6)

where ℓ =
∑

j ℓj and J (n) is given by a sum over all ladder topologies of suitable products
of massless scalar propagators together with the appropriate contractions between the projectors
Pµν,ρσ and the vertices τµνa . Before spelling out J (n) explicitly, let us examine one such contraction
and retain only the leading order in the Regge or near-forward limit, ℓj ∼ q ≪

√
s. We find

τµν1 (p1 − ℓi,−p1 + ℓj) ≃ 2iκDp
µ
1p

ν
1 (2.7)

and therefore
τµν1 (p1 − ℓi,−p1 + ℓj)Pµν,ρστ

ρσ
2 (p2 + ℓk,−p2 − ℓl) ≃ −κ2Ds2 . (2.8)

For instance, in the case of a single exchange (tree level),

A0(s, t) = ≃ κ2Ds
2

q2
(2.9)

where the subscript 0 stands for tree level. Consequently, to leading order, all dependence on
vertices and index contractions factorizes according to

J (n) ≃
(
−κ2Ds2

)n
I(n), (2.10)

and we can rewrite (2.6) as

iAn−1(s, t) ≃
(
−κ2Ds2

)n ∫



n∏

j=1

G(ℓj)
dDℓj
(2π)D


 (2π)Dδ(D) (q − ℓ) I(n) (2.11)

with I(n) a purely scalar object given by a sum over all ladder topologies of suitable products of
G1 and G2 propagators, as we now describe.
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(a) Two-particle exchanges.

(b) Three-particle exchanges.

Figure 4: Ladder diagrams with two and three exchanged massless lines. The labels ℓ1, ℓ2 (and ℓ3) should be
assigned in all possible ways.

Summing all possible ways of attaching the exchanged lines and averaging over their labeling,
we can write I(1) = 1 and

I(n) =
1

n!

∑

σ∈Sn

G1(p1 − ℓσ1) · · ·G1(p1 − ℓσ1 − · · · − ℓσn−1)

×
∑

σ′∈Sn

G2(p2 + ℓσ′
1
) · · ·G2(p2 + ℓσ′

1
+ · · ·+ ℓσ′

n−1
)

(2.12)

for n ≥ 2, where Sn is the permutation group for n objects and 1
n! compensates for multiple

counting. Note that, thanks to the explicit averages in eq. (2.12), we solved for ℓσn
= q − ℓσ1 −

· · · − ℓσn−1 (and similarly for ℓσ′
n
) without spoiling the permutation symmetry of I(n). Two-

particle and three-particle exchanges are illustrated in Fig. 4. Denoting by a subscript ⊥ the
components orthogonal to p1 and p2, to leading order in the Regge limit (2.5) we can decompose
the D-momentum conserving delta function as follows (the factor of 2s arises from the Jacobian
of the appropriate change of variables, see Eq. (A.42))

δ(D)(q − ℓ) ≃ 2s δ(2p1ℓ) δ(2p2ℓ) δ
(D−2)(q⊥ − ℓ⊥) . (2.13)

Similarly, to leading order, we can make the approximation

G1(p1 − ℓk) =
−i

−2p1ℓk + ℓ2k − i0
≃ −i
−2p1ℓk − i0

, (2.14)

and similarly for G2(p2 + ℓk). In this way, we obtain

I(n) ≃ (−i)2(n−1)

n!

∑

σ∈Sn

1

−2p1ℓσ1 − i0
· · · 1

−2p1(ℓσ1 + · · ·+ ℓσn−1)− i0

×
∑

σ′∈Sn

1

2p2ℓσ′
1
− i0 · · ·

1

2p2(ℓσ′
1
+ · · ·+ ℓσ′

n−1
)− i0 .

(2.15)

Letting

f(a1, . . . , an) ≡
∑

σ∈Sn

1

aσ1

· · · 1

aσ1 + · · ·+ aσn−1

, (2.16)

we can then use the delta function cast in the form (2.13) and the identity (see Appendix A.1
and eq. (A.14) in particular)

δ(ω1 + · · ·+ ωn) f(ω1 − i0, . . . , ωn − i0) = (2iπ)n−1δ(ω1) · · · δ(ωn) (2.17)

to conclude that

i
An−1(s, t)

2s
≃ (−κ2Ds2)n

n!

∫ 


n∏

j=1

G(ℓj)δ(2p1ℓj)δ(2p2ℓj)
dDℓj

(2π)D−2




× (2π)D−2δ(D−2) (q⊥ − ℓ⊥) .

(2.18)
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This leads naturally to define the following Fourier transform with respect to the (D − 2)-
dimensional transverse momentum7 q⊥,

Ã(s, b) =
∫
eibq2πδ(2p1q)2πδ(2p2q)A(s,−q2)

dDq

(2π)D
=

∫
eibq⊥

A(s,−q2⊥)
2s

dD−2q⊥
(2π)D−2

, (2.19)

which yields

iÃn−1(s, b) ≃
(−κ2Ds2)n

n!

[∫
G(ℓ)eibℓ2πδ(2p1ℓ)2πδ(2p2ℓ)

dDℓ

(2π)D

]n
. (2.20)

The Fourier transform to the impact parameter b simply had the effect of diagonalizing the convo-
lution between single-particle exchanges occurring in momentum space. The near-forward regime
(2.5) translates in impact-parameter space into the large-distance limit

~

b
≪ √s , (2.21)

where ~ has been reinstated for clarity. In conclusion, to leading order in this limit, adding up all
contributions coming from n-graviton exchanges leads to

1 + i

∞∑

n=1

Ãn−1(s, b) ≃ e2iδ0 , (2.22)

with

2iδ0(s, b) = iÃ0(s, b) =
iκ2Ds

2~

∫
eibℓ⊥

ℓ2⊥

dD−2ℓ⊥
(2π)D−2

=
iGDs

~

Γ
(
D−4
2

)

(πb2)
D−4

2

. (2.23)

At this point, let us go back and explain what selects the n-graviton exchanges among all possible
contributions to the elastic amplitude to all loop orders. To clarify this point, notice that when
an extra graviton is attached to the energetic scalars the corresponding diagram is enhanced by
a factor of κD

√
s, since the 3-point vertex itself brings a factor of s, see (2.7) and (2.8), and the

extra energetic propagator (2.14) scales as 1√
s
. If a graviton is added to the diagram in any other

way, one obtains a contribution at the same order in the gravitational coupling, but without extra
factors of

√
s. Notice that this is true also if higher-point vertices are used as for instance a contact

interaction involving two gravitons and two scalars: since we are working with a two-derivative
action (A.15), this vertex can scale at most as κ2Ds, while two 3-point vertices connected by a
propagator (2.14) would yield (κDs)

2 1√
s
. By dimensional analysis every time we lose a factor of

√
s, there must be an extra factor of q ∼ ~

b proving that non-ladder diagrams are subleading in
the limit (2.21).

In summary the classical, or eikonal, limit requires GDs b
4−D ≫ ~ so the full amplitude

oscillates infinitely rapidly as intuitively should be the case. By further taking the near-forward
q ≪ √s or large-distance b

√
s ≫ ~ limit, we can make the problem tractable, so the regime of

interest for our analysis is specified by the following hierarchy of length scales

~√
s
≪ GD

√
s b4−D ≪ b , (2.24)

where ~√
s
plays the role of a quantum wavelength and GD

√
s b4−D is the effective size of the

curvature that characterizes the colliding objects. In the leading-order large b approximation
the full classical amplitude can be approximated by (2.22) and (2.23) which as we saw follows

7See Appendix A.3, in particular Eq. (A.44), for more details concerning these Fourier transforms, including
the relation between the two expressions appearing in (2.19).
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from the resummation of ladder diagrams. The physically relevant D = 4 of (2.24) is thus
somewhat special, because the eikonal phase develops a b-independent infrared (IR) divergence:
the combination GD

√
s coincides with (one half) the Schwarzschild radius of a black-hole of mass√

s and, from the finite part of the eikonal, one can read the effective size G
√
s log(bµ) to be used

in D = 4 version of (2.24). It is natural to identify the IR cutoff µ with the inverse of the distance
r between the binary and a far-away observer.

In the regime (2.24), it is indeed natural to take the impact parameter b and the energy
√
s

(or a length scale R, defined in analogy with the Schwarzschild radius by RD−3 = GD
√
s) as the

classical quantities characterizing the collision. In terms of these variables the leading eikonal is
given by:

2iδ0 =
iGDs

~

Γ
(
D−4
2

)

(πb2)
D−4

2

= i
b
√
s

~

GD
√
s

bD−3

Γ
(
D−4
2

)

π
D−4

2

. (2.25)

To reiterate, in the classical limit we must require that R is much bigger than the Compton
wavelength of a massless particle (R ≫ ~√

s
). On the other hand, in order to apply perturbation

theory, we need that the interaction be weak and this corresponds to large values of b (b ≫ R).
In conclusion, Eq. (2.25) is valid for large values of b and this is obtained by considering the
amplitude in the Regge limit (|t| ≪ s). The factor of 1/~ in (2.25) signals that this quantity
should indeed appear in an exponential e2iδ0 so it can describe the value of the classical action,
while all non-exponentiated terms are of order ~n with n ≥ 0 and describe quantum corrections.

Let us now show how we can calculate from this semiclassical action two important classi-
cal observables: the impulse Q and the deflection angle Θ depicted in Fig. 5. In the leading

~p ′ = ~p4

−~p = −~p2 −~p ′ = ~p3

~p = −~p1

Θ~Q ~b ~bJ

Θ

2

Figure 5: Classical 2 → 2 scattering in the center-of-mass frame (1.33). The difference between b and bJ is O(G2)
and thus negligible in this section.

approximation, the exponentiation takes the form (2.22), or briefly

S̃(s, b) = 1 + iÃ(s, b) ≃ e2iδ0(s,b) . (2.26)

After exponentiation in impact-parameter space, we can Fourier transform back to momentum
space8

S(s,−Q2) = 2s

∫
dD−2b e−

i
~
bQ+2iδ0(s,b) . (2.27)

Here Q describes the full exchanged momentum, or impulse, in the classical process, obtained
after the eikonal resummation. Therefore it is important to distinguish it from q, the momentum

8S(s,−Q2) should be distinguished from S(p1, p2; q) introduced in (1.27), which also includes the mass-shell
delta functions.
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exchanged in the perturbative amplitude in (2.9) via a single graviton. In the classical limit we
can approximate (2.27) in terms of the stationary-phase contribution getting, at the saddle point,

Qµ = ~
∂2δ0
∂bµ

= −2GDs
Γ(D2 − 1)

π
D
2 −2bD−3

bµ

b
, (2.28)

where b denotes the magnitude of bµ. Note that, unlike 2δ0, the resulting leading-order impulse
(2.28) is not singular as D → 4 thanks to the action of the derivative that eliminates the b-
independent Coulombic pole at D = 4. In terms of the quantities introduced after Eq. (2.24), this
becomes

Q√
s
=

2Γ(D2 − 1)

π
D
2 −2

GD
√
s

bD−3
≪ 1 , (2.29)

where the last inequality holds in the limit of large distances where the impact parameter is much
larger than R. On the other hand, from the Fourier transform (2.19), we have the usual relation
b ∼ ~/q between the impact parameter and the momentum of a single graviton exchanged. Then
the ratio between the classical impulse (2.28) and this single-graviton momentum transfer can be
written as

Q

q
≃ 2GDs

~

Γ(D2 − 1)

π
D
2 −2bD−4

≃ Θb

~
≫ 1 (2.30)

and can be interpreted as the typical number of exchanged gravitons in the classical process. This
makes it manifest that in the classical limit the number of gravitons exchanged is very large,
as signaled by the factor of ~−1, while classical observables, such as the impulse (2.29) or the
deflection angle (see (2.32) below), remain small in the regime under consideration.

We can now use (2.28) and (2.29) to compute the classical deflection angle Θ defined as the
angle between the space-like components of the momenta −p1 and p4 in the center-of-mass frame
(1.33), as shown in Fig. 5. In this frame Q2 = (p1 + p4)

2 = 2p2(1 − cosΘ) where p̂ · p̂ ′ = cosΘ,
and thus

Q = 2p sin
Θ

2
⇒ sin

Θ

2
=

1

2p

(
−~∂2δ0

∂b

)
, (2.31)

where the second expression is obtained by using (2.28). The minus sign comes from the fact
that |∂b2δ0| = −∂b2δ0. Incidentally, this shows that the gravitational force is attractive because
in this way the deflection of either particle points toward the other one (see Fig. 5). Since, in the

massless case,9 p =
√
s
2 , and the condition (2.29), which characterizes the eikonal regime, ensures

that Q/p is also small, we can expand sin Θ
2 ≃ Θ

2 , obtaining the leading-order deflection angle

Θ ≃ 4Γ(D2 − 1)

π
D
2 −2

GD
√
s

bD−3
≪ 1 . (2.32)

Similarly, one can go to the time domain by taking a Fourier transform over E =
√
s. Again a

stationary phase approximation yields a relation between the eikonal and the Shapiro time delay
∆T which measures how much objects are slowed down by the gravitational force [173–175]

∆T = ~
∂2δ0
∂E

, (2.33)

as seen from the center-of-mass frame. Contrary to what happens for the deflection angle (2.28),
in this case the Coulomb divergence in δ0 (2.23) does not cancel, so a better IR-safe observable is
for instance the variation of ∆T when b changes.

As we shall further discuss in Section 2.3, both deflection angle and time delay were found to
agree with classical GR expectations in the approximation in which each particle produces a non-
trivial curved metric that affects the geodetic motion of the other particle [6, 176]. In conclusion,

9The massive case will be discussed in Subsection 3.1.1 below.
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we have seen how the classical deflection and the time delay, which we may attribute to an effective
metric, emerges from standard (quantum) scattering amplitude calculations on flat background
spacetime. Notably, this avoids possible challenges, particularly in string theory, with quantization
in curved space-time. See however [150–153] for discussions of the eikonal exponentiation in AdS
spacetime, as well as [177, 121, 122] for recent discussions in curved spacetimes.

In the ensuing sections we will see that the eikonal exponentiation generalizes well beyond
the simple case sketched here. While the basic idea is the same, it becomes more intricate when
extended to the R/b corrections (subleading eikonal) and to theories beyond GR including more
fields or higher derivative couplings or to string theory. This mechanism is expected to hold in all
consistent gravitational theories, as we will discuss in some detail in this review. However, first,
we will comment on the connection between eikonal phase and partial waves, as well as on the
interpretation of the eikonal phase as a classical action for shockwave scattering.

2.2. Eikonal phase and phase shift

In this subsection we discuss the relation between the partial-wave decomposition introduced in
Sect. 1.3 and the eikonal phase. As we shall see, this will highlight how the eikonal exponentiation
is also instrumental in solving an apparent tension between the explicit result for the tree-level
amplitude (2.23) and the unitarity bound (1.70).

The partial wave expansion of the resummed amplitude (2.27) is most easily performed for
D = 4, but in this case the leading eikonal phase (2.25) is divergent. On the other hand, after
exponentiation, this divergence is an overall b-independent phase which can be ignored (this is the
usual Coulomb divergence due to the long-range nature of the tree-level potential in three space
dimensions). The finite b-dependent contribution is

2δ0(s, b)→ −
Gs

~
log(µb)2 , (2.34)

with µ an inverse length scale introduced for dimensional reasons, so that the integral in (2.27)
can be performed exactly by using the general Fourier transform (A.49) ,

S(s,−Q2) ≃ i 8πGs
2

Q2

(
4µ2

~
2

Q2

)−iαG Γ(1− iαG)

Γ(1 + iαG)
. (2.35)

Here

αG ≡
Gs

~
(2.36)

is dimensionless and provides an analog of the fine structure constant of QED. We see that the
expression (2.35) for the resummed amplitude is equal to the one for single-graviton exchanges
(2.9) with the substitution q → Q times two extra phase factors (the ratio of the two Γ-functions
is also a pure phase).

In order to apply the partial wave projection (1.63), we note that in the massless case 2p =
√
s

and recall the Rodrigues formula,

Pj(x) =
1

2jj!

dj

dxj
(x2 − 1)j . (2.37)

We then need to compute the following integral,

(−1)j
2jj!

∫ +1

−1

dx
dj

∂xj
(1− x2)j(1− x)−1+iαG . (2.38)

Integrating by parts, one can easily bring all the derivatives with respect to x on the term with
αG, then the integral can be performed by changing variable from x to z = 1+x

2 and recognizing
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that one obtains a quantity proportional to the Euler Beta-function. By including all the factors
of the amplitude (2.35) one obtains10

sj(s) = e2iδj(s) =

(
s

4µ2~2

)iαG Γ(1 + j − iαG)

Γ (1 + j + iαG)
. (2.39)

We now consider the classical limit,

j ∼ αG ≫ 1 , J = ~j , (2.40)

where the quantum number j takes large values, in order to lead to a sizable classical angular
momenta J . Taking the limit (2.40) in (2.39), and using the Stirling approximation, we find

2δj = −
[
αG log(j2 + α2

G) + 2j arctan
αG

j

]
, (2.41)

where we used arctan αG

j = 1
2i log

j+iαG

j−iαG
. Moreover, to leading order in the PM limit j ≫ αG ≫ 1,

this simplifies to

2δj(s) ≃ −
Gs

~
log(j2) , (2.42)

and thus, comparing with (2.34),

2δ0(s, b) ≃ 2δj(s) , ~j = J ≃ pb , (2.43)

up to subleading, b-independent corrections. At higher PM orders, as we shall see, it is instead
important to maintain the distinction between 2δj(s) and 2δ(s, b). For this reason, we introduce
a special symbol for 2δj(s) in the classical limit,

2δj(s) = χ(s, J) , (2.44)

which is a function of the continuous variable J = ~j. We shall come back to this point in
Subsection 6.1.

This identification between b and j-expansions to leading order, which is also natural by
geometric considerations (see Fig. (5)), seems to raise a problem with the partial wave unitarity
bound (1.70). Indeed, focusing on the tree-level amplitude, |Ã0(s, b)| ≃ |fj(s)| ≫ 1 in the classical,
high-energy regime, which seems to contradict (1.70). However the resummed amplitude makes
perfect sense since the large quantity Ã0(s, b) = 2δ0(s, b) ≃ 2δj(s) appears only as a phase e2iδ0 .
Thus, S(s, b) and sj(s) simply saturate the bound (1.70), by neglecting inelastic contributions,

|sj(s)|2 = 1 , (2.45)

as one can also see directly from (2.39). When taking inelastic processes into account, as we shall
see in the following, 2δ develops a positive imaginary part, so that

|sj(s)|2 = e−2 Im 2δj(s) < 1 (2.46)

and the bound is still respected, but no longer saturated. In this way, the eikonal exponentiation
is instrumental in resolving the apparent tension between the high-energy behavior of perturbative
amplitudes in gravity and the bounds coming from the unitarity constraint. In fact, this was one
of the main historical motivation for its study.

10At fixed j that ratio has singularities along the imaginary s-axis, known as ’t Hooft’s poles. However, their
presence depends on the large-Q behavior of the resummed scattering amplitude which is beyond control of the
leading eikonal approximation [16].
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Let us now go back to the connection between partial waves and deflection angle. Starting
from (1.62), we see that the Q-space representation of the amplitude is given by a sum of the type

S(s,Q) ∝
∑

j

Pj(cosΘ)e2iδj , Q = 2p sin
Θ

2
. (2.47)

Using the large-j limit of Pj(cosΘ), (see for instance DLMF (14.15.11) with µ = 0 and ν = j and
(6.4))

Pj(cosΘ) ∼
j→∞

√
2Θ

π sinΘ
cos

((
j +

1

2

)
Θ− π

4

)
, (2.48)

the classical deflection angle can then be obtained by applying the saddle point condition to sum
in (2.47), obtaining11

Θ = −∂2δj(s)
∂j

= −~∂χ(s, J)
∂J

, (2.49)

where we used the definition of χ(s, J) (2.44) in the last step. Naturally, substituting the approxi-
mate expression (2.42) for j ≫ αG ≫ 1 we simply recover the result of (2.32) for the leading-order
deflection angle in D = 4,

Θ ≃ 2Gs

J
≃ 4G

√
s

b
, pb ≃ J = ~j . (2.50)

Of course, in a physical quantity as the deflection angle, the dependence on µ drops out.
However, we can obtain a relation which formally does not rely on the PM expansion by

substituting (2.39) for j ∼ αG ≫ 1, according to which

Θ = i (ψ(j + 1− iαG)− ψ(j + 1 + iαG)) (2.51)

where ψ is the logarithmic derivative of the Γ-function. Using the following equation for ψ:

ψ(1 + z) = −γ +

∞∑

n=1

(
1

n
− 1

n+ z

)
(2.52)

we can write Θ as follows:

Θ =

∞∑

m=j+1

2αG

m2 + α2
G

∼ 2

∫ αG
j

0

dx

1 + x2
= 2 arctan

αG

j
(2.53)

where in the middle step we have approximated the sum with an integral by using x = αG/m for
large values of j. Equivalently, we could have substituted in (2.51) directly the expression (2.41),
obtaining the same conclusion. Then we get

tan
Θ

2
=
αG

j
. (2.54)

Taking into account that, in the classical limit, j~ = pbJ = J we can compare this equation with
(2.31). They have precisely the same form in D = 4 except for the substitution of sin with tan and
of b with bJ . Taking into account the difference between b and bJ in Fig. 5 they are in agreement
up to orderG2. Let us also mention that, as discussed in Appendix B.3, the probe-limit scattering
of massive objects in N = 8 obeys a relation formally very close to (2.54).

11Here we use that, out of the two saddle-points Θ = ±∂j(2δj), since Θ ∈ [0, π], only Θ = −∂j(2δj ) can be
realized in theories like gravity where the interaction is attractive, −∂j(2δj) > 0.
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2.3. Minimally coupled massless scalars: from geometry to amplitudes

Interestingly enough, the result (2.25) was also obtained, and at exactly the same time, by ’t
Hooft [6] from a calculation that follows exactly the opposite logic with respect to the one of the
two previous subsections. The starting point of ’t Hooft’s approach is the classical shock-wave
metric produced by a massless particle of given energy E(1) moving, say, in the positive-z direction
at u ≡ t− z = 0. That metric was obtained long ago by Aichelburg and Sexl (AS) in the classic
paper [178]. It can be easily generalized to arbitraryD (see e.g. [176]) and, in suitable coordinates,
it reads

ds2 = −du dv + f(x⊥)δ(u)du
2 +

D−2∑

i=1

dxi dxi , v ≡ t+ z , (2.55)

where x⊥ = (x1, . . . , xD−2) and, in order to satisfy Einstein’s equations with a source,

Tµν = E(1)δ(u)δ(D−2)(xi)δuµδ
u
ν , (2.56)

f(x⊥) should satisfy the equation

2⊥f(x⊥) = −16πGDE
(1)δ(D−2)(x⊥) , 2⊥ ≡

D−2∑

i=1

∂2i . (2.57)

Hence, f is proportional to the well-known Green function in D− 2 dimensions. More specifically,
one finds12

f(x⊥) = −16πGDE
(1) r4−D

(4−D)ΩD−2
, r2 ≡

D−2∑

i=1

(xi)2 , ΩD−2 =
2π

D−2
2

Γ(D−2
2 )

(2.58)

(note that, in any D, f has the correct dimensions of a length).
Consider now the null geodesics describing the worldline of massless (test) particles moving

in the opposite direction, initially at v = 0 and at transverse coordinates xi = bi. They describe
straight lines at t < 0, but suffer both a v-delay and a deflection for t ≥ 0.

These geodesics were considered in [179, 6] for the AS metric and generalized in [176] for
arbitrary D as well as for extended sources. It turns out that, in these convenient albeit rather
singular coordinates, the v-coordinate of the test particle suddenly changes from zero to f(b).
This v-delay is instantaneous and simply given by (using r → b):

v ∼ θ(u)f(b)⇒ ∆v = f(b) = 4GDE
(1)b4−D Γ(D−4

2 )

π
D−4

2

(2.59)

where θ(u) is the Heaviside step function. We refer to [176, 180] for more details about the solution
of the geodesic equation.

’t Hooft next considered a Lorentz frame in which particle 1 is very energetic and produces the
shock wave while particle 2 is very soft and behaves as a test particle suffering the v-shift (2.59).

Quantum mechanically, particle 2 has a wave function Ψ(2) ∼ exp(iE
(2)v
~

) for t < 0 but, as it goes
through t = 0, its phase picks up a shift given by

E(2)∆v

~
=
E(2)f(b)

~
=

GDs

~ bD−4

Γ(D−4
2 )

π
D−4

2

(2.60)

where we have used that 4E(1)E(2) = s. The above equation is precisely the phase shift in (2.25).

12In [176] the AS metric was (almost trivially) extended to a “beam” of null energy which is still concentrated
at u = 0 but has an arbitrary transverse profile. Such effective shock waves naturally appear when the source is
extended, like in the case of strings. See Section 3.2.6.
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As pointed out in [172] this raised a doubt: working in the boosted reference frame mentioned
above, the shock wave produced by the soft particle (2) is extremely weak, but it cannot be
neglected because, when it is used to calculate its contribution to the phase of the wave function
of the energetic particle (1), it is multiplied by a large factor E(1) producing in the end exactly
the same contribution (2.60). So it seems that the total classical phase shift is twice the eikonal
result (2.25). This puzzle was solved in [172] by realizing that, in this geometric description, the
classical action receives an extra contribution from the boundary term needed to define properly
the Einstein-Hilbert variational principle. In the case at hand, this extra contribution cancels
precisely half of the result obtained by simply summing the contributions of the two particles,
thus restoring the agreement with the amplitude-based result.

As we will see in Appendix B, the same idea can be applied, even more straightforwardly, to
the scattering of massive particles at the leading order in the probe limit (1.78), where particle 1
can be described by a stationary geometry and the classical action is derived from the geodesic
followed by the particle 2. A similar approach also works, with the appropriate modifications, in
the case of string-string collisions as discussed in detail in Sect. 3.2.6.

As discussed in Subsection 4.1.5, the probe limit actually determines not only the 1PM,
i.e. O(G) eikonal phase, but also the 2PM one, corresponding to a one-loop calculation on the
amplitude side. Instead, new classical data that is not fixed by the probe limit appears at 3PM,
two-loop order, both in the massless and in the massive setups. Let us finally remark that this ele-
gant method based on approximating the problem as the one of a particle scattering in the metric
produced by the other particle represents the starting point of the so-called self-force expansion
[181–183, 29].

2.4. Collapse criteria in GR

Following up on the discussion of the previous subsection we would like to consider now the
opposite situation in which not only the probe approximation breaks down, but even a perturbative
expansion in R

b is bound to fail (diverge?). This is when classical GR arguments lead to the
conclusion that a finite fraction of the initial energy should collapse to form a black hole.

Of course, the quantitative study of such a regime is out of reach both by analytic and by
numerical relativity methods. Amusingly, however, some non trivial results can be obtained in
the strictly massless case as first pointed out by Penrose [184] for the axisymmetric situation
(b = 0). The basic simplifying feature of massless collisions is that, by causality, nothing happens
before the two front waves (at u = 0 and v = 0) meet at t = 0. In other words, a simple linear
superposition of two AS shock waves of the form (2.55) exactly satisfies Einstein’s equations for
t < 0.

The idea of Penrose, later extended to b 6= 0 by Eardley and Giddings [185], is to check whether
or not a marginally trapped closed surface (MTCS)13 can be constructed using the exact, known
geometry at t→ 0−. If the answer were positive, then we would conclude from general theorems
that such a surface evolves later into the horizon of a black hole whose mass is bounded from
below by the area of the initial surface. Unfortunately, the opposite statement cannot be claimed
to be true: even if one can prove that at t = 0 there is no MTCS, one cannot exclude that one
such surface is formed at some later time t > 0. A fortiori, only a lower limit on the mass of the
future black hole (and therefore an upper limit on the total energy reaching future null infinity)
can be given.

In his work [184], Penrose found that, at b = 0, a MTCS can be easily constructed and, from
the value of its area, he concluded that at least a fraction 1√

2
of the total incoming energy goes into

forming a black hole. Eardley and Giddings, instead, managed to construct a MTCS (in D = 4) for

b < γEGG
√
s with γEG ≃ 1.61, meaning that the critical ratio for collapse (G

√
s

b )cr ≤ 1/γEG ≃ 0.62.

13A (marginally) closed trapped surface is, loosely speaking, a closed surface whose future directed light cone is
(marginally) inside the surface itself. More precisely, it may be defined as a (D − 2)-dimensional closed surface
whose outer normals have zero “convergence” (or “expansion”).
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An interesting generalization [186] (particularly in view of a collision of extended objects like
strings) is the one in which one considers the collision on two null beams of massless particles
(moving again in opposite directions along the z-axis). As physically expected, one finds that the
transverse size of the beam “adds up” to the impact parameter (defined as the transverse distance
of the two beam’s center of mass). One starts from a simple generalization of (2.57):

2⊥f
(i)(x⊥) = −16πGρ(i)(x⊥) , i = 1, 2 , (2.61)

where ρ(i)(x⊥) is the energy density per unit transverse area of each beam. Since the solution
(2.58) of (2.57) is nothing but the Green function of the problem, the general solution of (2.61) is
also known.

At this point one can check whether a MTCS is formed already at t = 0. Different physical
situations were discussed in [186]. Let us just mention two relatively simple cases:

• Axisymmetric collision on two non-homogeneous axisymmetric beams. This gen-
eralizes Penrose’s construction to extended objects. In this case ρ(i)(x⊥) depends just on
the radial distance r from the symmetry axis. Consider the energy in each beam below some
given r:

E(i)(r) = ΩD−2

∫ r

0

ρ(i)(r′)r′D−3dr′ ; Ωd =
2πd/2

Γ(d/2)
. (2.62)

One finds that a MTCS can be constructed whenever one can find an rc such that:

ΩD−2r
D−3
c ≤ 8πGD

√
E(1)(rc)E(2)(rc) (2.63)

where rc plays the role of an effective impact parameter. In the special case of two identical
homogeneous discs of radius L (2.63) simply gives ΩD−2L

D−3 ≤ 4πGD
√
s (L ≤ 2G

√
s in

D = 4).

• Collision of two homogeneous beams at b 6= 0. Considering for simplicity the case of
D = 4 one finds that a MTCS can be constructed at t = 0 provided:

G
√
s > 2L and b ≤ G√s− 2L . (2.64)

Comparing this to the point particle criterion of ref. [185], we see that the role of b is now
played by beff. = b + 2L suggesting that no black hole is formed if the total energy is such
that G

√
s < 2L, i.e. that the associated Schwarzschild radius is smaller than the sizes of the

two beams.

Many other interesting issues belong to this problematic. One is the nature of the “phase
transition” between the collapse and “dispersive” regime, see e.g. [187]. Is it first order, i.e. with
the mass of the black hole having a lower bound as soon as R

b > (Rb )cr, or second order, in which
case we may talk about the critical exponent α appearing in mBH ∼ (bc − b)α for b → b−c ? This
question is related to one raised recently by Don Page [188] of whether at b = bc the fraction
of initial energy being radiated in a massive point-particle collision approaches 1 in the limit of
infinite Lorentz boost. These topics being somewhat outside the scope of this report, we refer the
interested reader to the literature.

3. Leading eikonal for generic gravitational 2–body scattering

In the introductory section 2 we discussed how, in the massless case, the leading eikonal is
obtained from the Fourier transform to impact parameter space of the tree diagram with one
graviton exchange in the Regge limit where s≫ |t|. In this section we want to extend this result
to the massive case in several gravitational theories. We start from Einstein’s GR coupled to
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massive matter fields, then consider extended theories of gravity with extra massless fields (such
as the dilaton) or with higher derivative couplings and finally discuss the case of string theory. We
focus on the tree-level approximation and on the limit where the momentum exchanged is much
smaller than both the center of mass energy and the masses, since these contributions determine
the leading eikonal. For minimally coupled massive scalars in GR the exponentiation of the leading
eikonal works exactly as in the massless case discussed in Subsection 2.1 (see [101, 36]). Here we
assume that the leading eikonal exponentiates for all gravitational theories considered in this
section and then discuss how to generalize the analysis of Subsection 2.2 and extract the classical
physics observables of interest. We will postpone to the next sections the study of the one and two
loop amplitudes relevant to eikonal exponentiation: they will serve as a check of the assumption
taken here and provide new information about the subleading terms in the eikonal expansion.

3.1. Field theory at tree-level

3.1.1. Minimally coupled massive scalars

We consider here pure D-dimensional GR minimally coupled to two scalar fields with masses
m1 and m2. This is a simple generalization of the equal-mass setup analyzed in [101]. The action
reads

S =

∫
dDx

√
|g|
{

R

2κ2D
− 1

2

2∑

i=1

[
∂µφi∂νφig

µν +m2
iφ

2
i

]
}
. (3.1)

As discussed in the introduction, the eikonal exponentiation also lends itself to describe the classi-
cal interactions between two Schwarzschild black holes at large distances, so we take the parameters
m1 and m2 to be classically large, e.g. of the order of ten solar masses. Because of the no-hair
theorem, it is natural to use Eq. (3.1) as a starting point, since the mass is the only feature that is
relevant classically. In order to describe other compact objects, such as neutron stars, one needs to
add non-minimal couplings parametrizing tidal deformations or other classical quantities besides
the mass, for instance to describe spin.

To leading order in the conventional Born approximation, the interaction between the scalars
φ1 and φ2 is captured by the diagram with a single graviton exchanged between the two massive
lines. By using the Feynman propagator (A.23) and the vertex (A.28), which generalizes the one
in (2.4),

τµνa (p, p′) = −iκD
[
pµp′ν + pνp′µ − ηµν(p · p′ −m2

a)
]
, (3.2)

it is straightforward to calculate the contribution of this diagram, which in D dimension reads

A0(s, t) = =
2κ2D
−t

[
1

2
(s−m2

1 −m2
2)

2 − 2m2
1m

2
2

D − 2
+
t

2

(
s−m2

1 −m2
2

)]
. (3.3)

We then focus on the non-analytic terms in the t = −(p1+p4)2 ∼ 0 limit which, as in the massless
case, will capture the long range interaction in impact parameter space. In this approximation
the amplitude (3.3) is dominated by the pole located at t = −q2 = 0,

A0(s,−q2) = 2κ2D
γ(s,mi)

q2
+O((q2)0) , (3.4)

with

γ(s,mi) ≡
1

2
(s−m2

1 −m2
2)

2 − 2m2
1m

2
2

D − 2
= 2m2

1m
2
2

(
σ2 − 1

D − 2

)
, (3.5)

where in the final step we give the result in terms of the variable σ defined in (1.8). The leading
term in (3.4) can be derived by replacing (3.2) with the effective vertex

τµνeff (p, p′) = 2iκDp̄
µp̄ν , pµ = −p̄µ +

1

2
qµ , p′µ = p̄µ +

1

2
qµ , (3.6)
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where one introduces an “average momentum” p̄µ as in (1.28), so that p̄ · q = 0, and (3.6) differs

from (3.2) by terms suppressed in the small q limit (thanks to (1.28) and (p · p′−m2
a) =

q2

2 ). The
result for the massless amplitude is recovered by considering the ultrarelativistic limit,

σ →∞ , m1m2σ ∼
s

2
, (3.7)

and it is easy to check that, in this limit, (3.4) reproduces (2.9).
Actually the Born approximation is not justified in the setup under analysis and, in the massive

case, even the low velocity limit is outside the tree-level regime of validity. This can be seen by
adapting the derivation in Section 2.1 to this new kinematic setup. As before, we take the
Fourier transform of (3.4) by keeping the external states on-shell to rewrite the result in impact
parameter space: as shown in Appendix A.3, we can decompose q in the component q⊥, which is
perpendicular to the p1,2 and the longitudinal components and the latter can be neglected since
they are proportional to q2, see (A.37), and kill the pole in (3.4) yielding to irrelevant analytic
terms. Thus we effectively deal with the (D − 2)-dimensional Fourier transform appearing in the
leading term of (A.40)

Ã0(s, b) =

∫
dD−2q⊥
(2π)D−2

A0(s,−q2⊥)
4Ep

eibq⊥ , (3.8)

where E and p are respectively the total energy and the absolute value of the spatial momentum
in the center-of-mass frame (see Eq. 1.33). Because of the scaling (1.2), Ã0 is large even at
low velocities. Then, as discussed in detail in Section 4, the 1-loop correction, arising from
diagrams where two gravitons are exchanged between the scalar particles, includes a term involving
the convolution of Eq. (3.3) with itself. This yields in impact parameter space a contribution
proportional to Ã2

0 which signals a clear breakdown of standard perturbation theory since Ã0 is
large. However we expect that the eikonal exponentiation resums this class of contributions as
in (2.22), so we can identify the leading tree-level contribution (3.4) in impact parameter space
with the 1PM eikonal.

Ã0 = 2δ0 . (3.9)

Then by using Eq. (A.45) to calculate (3.8), we find

2δ0 =
2m1m2GD

(
σ2 − 1

D−2

)
Γ
(
D−4
2

)
√
σ2 − 1(πb2)

D−4
2

. (3.10)

In the ultrarelativistic limit (3.7), Eq. (3.10) reduces to (2.23) and we recover the massless case
once again. Notice that in this limit Eq. (2.25) is the leading eikonal for any gravitational field
theory in the two derivative approximation. This universality is a consequence of the Regge limit
thanks to the following two properties. First, in the high energy regime amplitudes are dominated
by the exchange of the states with the highest spin: indicating with j the spin of such particles,
their leading contribution to A0 scales as sj . Then, when we are interested in long range effects,
we can focus just on exchanges of massless particles. In gravitational theories the highest spin
massless particle is the graviton which gives rise to a universal14 contribution to A0 scaling as s2.
Thus, in the ultrarelativistic regime, the presence of other lower spin fields is irrelevant for the
derivation of the leading eikonal.

Going back to general kinematics, we can proceed as in the massless case and use Eq. (2.31)
to compute the contribution of the leading eikonal to the deflection angle

2p sin
Θ0

2
=

4GDm1m2

(
σ2 − 1

D−2

)
Γ
(
D−2
2

)
√
σ2 − 1π

D−4
2 bD−3

. (3.11)

14As we will see in section 3.1.5 the universality of the graviton coupling can be spoiled in presence of higher
derivative corrections.
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As discussed in detail in the later sections, the subleading eikonal terms will provide further
contributions to the physical deflection angle Θ and so, in a PM approach, this result can be
trusted up to O(GD)

Θ =
4GDE

(
σ2 − 1

D−2

)
Γ
(
D−2
2

)

(σ2 − 1)π
D−4

2 bD−3
+O(G2

D) , (3.12)

where we expanded the sin function to leading order and rewrote the momentum p in terms of
the center-of-mass energy E thanks to (1.13). However, also the expression in (3.11) is useful as it
contains all the non-linear contribution to the angle arising from the leading eikonal. For instance
it allows to recover the full leading answer in the standard D = 4 Post-Newtonian (PN) limit
1

jPN
∼ v∞ ≪ 1 where15

σ =
√
1 + v2∞ ,

1

jPN
=
Gm1m2

J
. (3.13)

One can easily recast the angle (3.11) in terms of the angular momentum by using the relation16

bJ = b cos(Θ/2) = b, which is obvious from Fig. 5, where by definition the angular momentum
equals J = pbJ . Then we have

tan
Θ0

2
=
Gm1m2

(
2σ2 − 1

)

J
√
σ2 − 1

,
Θ0PN

2
= arctan

(
1

jPN v∞

)
. (3.14)

where in the equation on the right we took the leading PN term finding the classic Newtonian
result, see [189] and references therein. In this regime, even if the scattering angle is finite, the
momentum transfer in (3.11) is small because p→ 0.

Instead, in the leading PM approximation, we can use bJ = b +O(G2
D) obtaining

Θ =
4GDE

(
σ2 − 1

D−2

)
Γ
(
D−2
2

)

(σ2 − 1)π
D−4

2

pD−3

JD−3
+O(G2

D) . (3.15)

Let us also collect here for later convenience the D = 4 expressions for the 1PM impulse and the
deflection angle,

Q =
4Gm1m2

(
σ2 − 1

2

)

b
√
σ2 − 1

+O(G2) , Θ =
4GE

(
σ2 − 1

2

)

b(σ2 − 1)
+O(G2) . (3.16)

Another interesting limit is to take one mass much larger than the energy of the other, for
instancem2 ≫ E1. In this regime, we can see particle 1 as a probe propagating in the gravitational
background of the heavy particle 2. So it should be possible to obtain (3.15) by a classical
calculation studying the geodetic motion in the appropriate curved geometry. This probe limit
provides a straightforward but important check on the diagrammatic calculations, in particular
when testing the subleading terms in the eikonal expansion. In this limit the total energy coincides
with the rest mass of the heavy particle (Mh) while σ and p can be written in terms of the energy
and the mass of the light probe particle

m2 ≡Mh , σ → E1

m1
, E →

√
M2

h + 2MhE1 , p→
√
E2

1 −m2
1 . (3.17)

By using (3.17) in (3.4) we have

A0 ∼ 4κ2DM
2
h

(D − 2)E2
1 −m2

1

(D − 2)(−t) . (3.18)

15We follow the conventions of [189].
16In section 6.1 we will present a derivation of this relation based on the standard partial wave decomposition as

done in section 2.2 for the leading eikonal.
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k1 k4

ρσ q2 αβq3

Figure 6: The kinematics of a two scalar, two graviton amplitude.

In this limit the factor of 4Ep in (3.8) reduces to 4Mh

√
E2

1 −m2
1, so in impact parameter space

we have

2δ0 = Ã0(s, b) =
2GDMh

(D − 2)

(D − 2)E2
1 −m2

1√
E2

1 −m2
1

Γ
(
D−4
2

)

(πb2)
D−4

2

. (3.19)

Then, by using again (2.31), we can derive the contribution from δ0 to the deflection angle

Θ =

√
πΓ
(
D−2
2

)

2Γ
(
D−1
2

) (D − 2)E2
1 −m2

1

E2
1 −m2

1

(
R

b

)D−3

+O(G2
D) , (3.20)

where we used (B.2) to introduce the D-dimensional Schwarzschild radius. It is then easy to
check that, at linear order in G, Eq. (3.20) agrees with the result of the classical geodesic calcu-
lation (B.14) (since at leading order J = pbJ ≃ pb =

√
E2

1 −m2
1 b).

3.1.2. Graviton scattering off a massive scalar

Another instructive tree-level result describes the amplitude between two scalar and two gravi-
tons. A direct derivation from (3.1) requires to evaluate four Feynman diagrams and involves the
cumbersome three-graviton vertex. It is possible to obtain a more compact expression by taking
the field theory limit of a string amplitude [48]

iAαβ;ρσ = −i2κ
2
D(k4q2)(k1q2)

(q2q3)

[
kρ4k

α
1

k4q2
+
kα4 k

ρ
1

k1q2
+ ηρα

] [
kσ4 k

β
1

k4q2
+
kβ4 k

σ
1

k1q2
+ ησβ

]
, (3.21)

where ki label the momenta of the massive scalars and qi those of the gravitons, see Fig. 6. The
factorized form of the result is a by-product of using the KLT approach [190] at the string theory
level. If we focus on the D = 4 case, then it is possible to rewrite the result in terms of the
compact spinor helicity formalism. As usual one can express the massless momenta in terms of a
pair of commuting SU(2) spinors17

pαα̇ = pµσ
µ
αα̇ = λαλ̃α̇ , (3.22)

where λ̃ is the complex conjugate of λ if one sticks to the standard Lorentzian signature. The two
physical helicities of the gravitons can be written in terms of

ε+αα̇ =
√
2
µαλ̃α̇
〈µλ〉 ε−αα̇ =

√
2
λαµ̃α̇

[λ̃µ̃]
(3.23)

by using ǫ++ = (ε+)2 and ǫ−− = (ε−)2, where we defined

〈λµ〉 = λαµα = −λβµβ = −〈µλ〉 ,
[λµ] = λα̇µ

α̇ = −µβ̇λβ̇ = −[µλ] .
(3.24)

17As usual σµ
αα̇ = (1, σi)αα̇ and σ̄µ α̇α = (1,−σi)α̇α where σi are the Pauli matrices. The SU(2) indices are

raised and lower as follows: λα = ǫαβλ
β , λα = ǫαβλβ and similarly λ̃α̇ = ǫα̇β̇ λ̃

β̇
, λ̃α̇ = ǫα̇β̇

λ̃β̇ with ǫ12 = −ǫ12 = 1.
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In (3.23) µ and µ̃ are arbitrary spinors and the freedom in their choice reflects just the possibility
of performing gauge transformation. Then one can contract the free indices in (3.21) with two
graviton polarizations

iA0 = −i2κ
2
D(k4q2)(k1q2)

(q2q3)

[
ε2ε3 +

(ε3k1)(ε2k4)

q2k4
+

(ε2k1)(ε3k4)

q2k1

]

×
[
ε̃2ε̃3 +

(ε̃3k1)(ε̃2k4)

q2k4
+

(ε̃2k1)(ε̃3k4)

q2k1

]
,

(3.25)

where the polarizations have been factorized according to ǫµν = εµε̃ν and we rewrote the prefactor
in (3.21) in terms of (3.5). In D = 4, we can use (3.23) and we have ε± = ε̃±. One can
choose explicit expressions for the auxiliary spinors µ, µ̃ to simplify the various scalar product:
in particular it is convenient to take µ2 = λ3, µ3 = λ2 and similarly µ̃2 = λ̃3, µ̃3 = λ̃2, where
qi αα̇ = λi αλ̃i α̇. By using18

sij = −2zizj = 〈ij〉[ji] , (3.26)

for null vectors zi, zj , and introducing the notation

〈i w j] = λαi wµσ
µ
αα̇λ̃

α̇
j , (3.27)

for any (not necessarily null) four-vector wµ, we obtain the following results

ε+2 k1 = −ε+2 k4 =
1√
2

〈3k42]
〈32〉 , −ε+3 k1 = ε+3 k4 =

1√
2

〈2k43]
〈32〉 ,

ε−2 k1 = −ε−2 k4 = − 1√
2

〈2k43]
[32]

, ε−3 k1 = −ε−3 k4 =
1√
2

〈3k42]
[32]

,

ε±i qj = 0 , ε+2 ε
+
3 =

[23]

〈23〉 , ε+2 ε
−
3 = 0 , 〈3k42]〈2k43] = −(2k2k3)k24 + (2k2k4)(2k3k4) .

(3.28)

Then we can rewrite the tree-level amplitude separating the result for the various helicities of the
gravitons we find19

iA++;++ = iκ2D
[23]2

〈23〉2
m4

1t

(s−m2
1)(u −m2

1)
, (3.29)

iA++;−− = iκ2D
〈3|k4|2]4

t(s−m2
1)(u −m2

1)
, (3.30)

in agreement with Eq. (2.19) and (2.20) of [191]. Notice that the helicity violating amplitude

A++;++ does not have a 1
t pole since the ratio [23]

〈23〉 is finite as t→ 0. We are interested in terms

dominated by the t-pole, which are automatically leading in the limit (1.74) and so only the helicity
preserving structure A++;−− survives. We can extract the pole by taking the approximation
〈3|k4|2]4 ≃ 〈3|k4|3]4 = (s−m2

1)
4, since q2 ≃ −q3 in the limit of small momentum transfer. Thus

the leading contribution to the amplitude with two massive scalars and two gravitons is again
captured by (3.4) with of course m2 = 0

iA++;−−
0 ≃ 2iκ2D

−t γ(s,m1,m2 = 0) . (3.31)

Moving then to the impact parameter space, we obtain the following eikonal phase describing the
scattering of a graviton off a massive scalar

2δ0 =
GDγ(s,m1,m2 = 0)√

σ2 − 1

Γ
(
D−4
2

)

(πb2)
D−4

2

. (3.32)

18We have some unconventional signs since we are using the mostly plus metric and so Tr(σµσ̄ν) = −2ηµν .
19We take s = −(k1 + q2)2, t = −(k1 + k4)2, u = −(k1 + q3)2.
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3.1.3. The effect of the dilaton on the eikonal scattering

In the two previous subsections we considered theories in which the only massless particle is the
graviton. In this subsection and in the next one, we study how the tree-level result (3.4) changes
in theories with a richer spectrum of massless states. We start by considering the case where the
massless spectrum, besides the graviton, includes also a massless scalar focusing in particular on
the case of the string theory dilaton. In a QFT setup the dilaton is automatically included when
considering a gravitational theory which is obtained via the double copy approach [192]. This
technique was used in [123, 193–200] to derive classical quantities in various setups. Even if we
will not make extensive use of this approach, we sketch briefly the idea in an explicit example,
since this has been a popular approach to derive (super)gravity amplitudes with the presence of
extra massless fields like the dilaton.

One starts from a gauge theory with no dynamical gravity – in our example a minimally
coupled massive scalar field in the adjoint representation of the gauge group. We will not need to
specify the gauge group as only general properties, such as the Jacobi identities, are used. The
three-point amplitude involving two scalars and a gluon is given by:

iA(3)
0µ = igfa1a3b(k1 − k3)µ = 2igfa1a3b(k1 −

q

2
)µ , (3.33)

where k1, k3 are the momenta of the scalars and q is the one of the gluon. We can use this
ingredient to compute the four-point scalar amplitude with a gluon exchange

iA0 = ig2
[
fa1a3bfa4a2b

(k1 − k3)(k4 − k2)
(k1 + k3)2

+ fa1a2bfa3a4b
(k1 − k2)(k3 − k4)

(k1 + k2)2

+ fa1a4bfa2a3b
(k1 − k4)(k2 − k3)

(k1 + k4)2

]
(3.34)

= ig2
[
fa1a3bfa4a2b

s− u
(−t) + fa1a2bfa3a4b

u− t
(−s) + fa1a4bfa2a3b

t− s
(−u)

]
.

The basic idea of the double copy is that there exists a color-kinematics duality based on the
observation that, in each term of the expression above, the color factors and the momentum
dependent numerators satisfy appropriate Jacobi identities.20 Indeed, the color factors obey the
standard Jacobi identity:

fa1a3bfa4a2b + fa1a2bfa3a4b + fa1a4bfa2a3b = 0 (3.35)

and corresponding kinematic numerators

fa1a3bfa4a2b ←→ (k1 − k3)(k4 − k2) = s− u
fa1a2bfa3a4b ←→ (k1 − k2)(k3 − k4) = u− t (3.36)

fa1a4bfa2a3b ←→ (k1 − k4)(k2 − k3) = t− s

satisfy a “kinematic” Jacobi identity, i.e. their sum vanishes. By following the double copy ap-
proach, one starts from (3.34) and obtains a gravitational amplitude by substituting the color
factors with the corresponding momentum-dependent factors (3.36). This yields

iA0 = i
(κD

2

)2 [ (u− s)2
(−t) +

(u− t)2
(−s) +

(s− t)2
(−u)

]
, (3.37)

where we mapped g → κD/2. This result is appropriate to describe the interaction among identical
external states and, for the case of two different scalars considered in (3.3), we can focus just on the

20For general amplitudes it is not straightforward to write the result that makes this feature manifest.
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first term in (3.37). By using u = −s−t+2m2
1+2m2

2, it is easy to see that even the 1/t part does not
match the pure gravity result. The reason for this is that the gravitational theory obtained by this
construction contains extra massless fields, in addition to the graviton:21 a massless antisymmetric
tensor and, crucially for us, a dilaton whose coupling to scalars is proportional to square of the
mass.

In summary, the long-range interaction between two massive scalars in a theory containing
both gravitons and dilatons takes the same form as (3.4), but with a different kinematic factor

γ(dil)(s,mi) ≡
1

2
(s−m2

1 −m2
2)

2 . (3.38)

Thus the tree amplitude to be used to construct the leading eikonal is

A0(s,−q2) =
32πm2

1m
2
2GDσ

2

q2
+O((q2)0) (3.39)

instead of the one in (3.4). Then, by following the usual steps, we obtain the leading eikonal

2δ0 =
2m1m2GDσ

2Γ
(
D−4
2

)
√
σ2 − 1(πb2)

D−4
2

. (3.40)

It is easy to isolate the contribution due to the dilaton exchanges and

A0(s,−q2) =
32πm2

1m
2
2GD

(D − 2)q2
(3.41)

from which we can also read off the dilaton-scalar-scalar coupling,

A(3)
0 = −2κDm

2
1,2√

D − 2
. (3.42)

We can check the interpretation above simply by adding to the initial Lagrangian (3.1) a dilaton
ϕ

S =

∫
dDx

√
|G|
{

R

2κ2D
− 1

2

[
∂µϕ∂νϕG

µν +

2∑

i=1

(
∂µφi∂νφiG

µν +m2
i e

2κDϕ√
D−2φ2i

)]}
. (3.43)

Then it is straightforward that the exchange diagram involving the dilaton yields an extra contri-
bution canceling the final term in (3.5) and thus reproducing (3.38).

3.1.4. Maximally supersymmetric gravity

We can further enrich the theory including extra fields. An interesting case is that of supergrav-
ities whose perturbative expansion has been studied in great details at high loop order [201–205].
Focusing on the maximal supersymmetric case, the four point amplitude among massless states
is determined by a single scalar function even in a string theory setup [206]. In the field theory
limit we have

A0 = 8πG
K
stu

, (3.44)

where the kinematic prefactor K can be written as a pair of 4-index tensors K appearing also in
the corresponding string amplitude, see for instance Eq. (7.4.57) of [206] and Section 7.4.2 of the
same reference for the explicit expressions of K (see also [109]). It is convenient to organize the

21Notice that the double copy amplitude contains also a contribution linear in t which is absent in (3.3). This
signals that the action contains an extra contact term interaction between the four scalars.
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Figure 7: Scattering of four states in N = 8 supergravity

graviton multiplet in terms of on-shell realization of supersymmetry, see [207] for a realization
relevant to D = 4 and [208] for higher dimensional cases. The basic idea is that K encodes a
super-momentum conserving delta function δ(16)(Q) involving the sum of the supercharges of the
external states.

In D = 4, all 28 = 256 states of the N = 8 supermultiplet can be packaged into the on-shell
superfield

Φ(η) = h++ + ηAψA + · · ·+ ηAηBηCηDϕABCD + · · ·+ η1η2η3η4η5η6η7η8h−− , (3.45)

where ηA denotes auxiliary Grassmann variables that saturate the R-symmetry indices A,B,C, . . .
(taking values from 1 to 8) of the various fields. For instance, h±± denote the positive/negative-
helicity gravitons h++, while ϕABCD collect the 70 scalars present in the theory. In this formalism,
one can write a 2→ 2 “super-amplitude”, which concisely encodes all 2→ 2 scattering amplitudes
among any four given states of the supermultiplet, and takes the following very compact form
[209, 167]

A0 =
κ2

stu

[34]4

〈12〉4 δ
(16)(Q) , (3.46)

where the “super-momentum” conserving delta function is given by

δ(16)(Q) =
1

24

8∏

A=1

4∑

i,j=1

〈ij〉 ηAi ηAj . (3.47)

The super-amplitude (3.46) should be thought of as a function of four copies of the on-shell
superfield (3.45), Φ(ηj), with i = 1, 2, 3, 4 labeling the states as in Fig. 7, and of course

s = −(p1 + p2)
2 , t = −(p1 + p4)

2 , u = −(p1 + p3)
2 . (3.48)

We consider three possible situations. The first one is given by the choice

φ1 = φ2 = ϕ1234 ≡ τ , φ3 = φ4 = ϕ5678 ≡ τ̄ . (3.49)

The idea is to focus on a complex scalar τ (corresponding for instance to the axio-dilaton of type
IIB via dimensional reduction) and its complex conjugate. In order to extract the contribution
due to the corresponding states from the super-amplitude (3.46), one should take the appropriate
derivatives with respect to the auxiliary Grassmann variables as dictated by the way their fields
feature in the superfield (3.45). For our case, since

τ = ∂Φ(η)
∣∣∣
η=0

, τ̄ = ∂̄Φ(η)
∣∣∣
η=0

(3.50)

with

∂ ≡
4∏

A=1

∂

∂ηA
, ∂̄ ≡

8∏

A=5

∂

∂ηA
, (3.51)
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we need to calculate
Aττ→τ̄ τ̄

0 = ∂1∂2∂̄3∂̄4A0

∣∣∣
η=0

. (3.52)

The differential operators, which could be also interpreted as Grassmann integrals, only act on
δ(16)(Q) and it is easy to see that the result is simply

∂1∂2∂̄3∂̄4δ
(16)(Q)

∣∣∣
η=0

= 〈12〉4〈34〉4 . (3.53)

In this way, we obtain

Aττ→τ̄ τ̄
0 =

κ2s4

stu
, (3.54)

which is of course symmetric in the exchange 1↔ 2. Similarly, for the choice

φ1 = φ4 = ϕ1234 ≡ τ , φ2 = φ3 = ϕ5678 ≡ τ̄ , (3.55)

we have

Aτ τ̄→τ τ̄
0 =

κ2t4

stu
, (3.56)

and for the choice
φ1 = φ3 = ϕ1234 ≡ τ , φ2 = φ4 = ϕ5678 ≡ τ̄ , (3.57)

we have

Aτ τ̄→τ̄ τ
0 =

κ2u4

stu
. (3.58)

Eqs. (3.56), (3.58) can be deduced directly from (3.54) by crossing symmetry in the t and u-
channel respectively, although it is instructive to derive them from the super-amplitude (3.46) by
applying the appropriate differential operator,

Aτ τ̄→τ τ̄
0 = ∂1∂̄2∂̄3∂4A0

∣∣∣
η=0

, Aτ τ̄→τ̄τ
0 = ∂1∂̄2∂3∂̄4A0

∣∣∣
η=0

. (3.59)

Yet another choice is to consider linear combinations of the above states, for instance an axion
and a dilaton, as both in- and out-states,

φ1 = φ4 =
τ + τ̄√

2
, φ2 = φ3 =

τ − τ̄
i
√
2
. (3.60)

The corresponding amplitude is given by

A0 = −1

4
(∂1 + ∂̄1)(∂2 − ∂̄2)(∂3 − ∂̄3)(∂4 + ∂̄4)A0

∣∣∣
η=0

(3.61)

or, expanding the derivatives and recognizing the amplitudes calculated above,

A0 =
1

2

(
Aττ→τ̄ τ̄

0 −Aτ τ̄→τ τ̄
0 +Aτ τ̄→τ̄ τ

0

)
(3.62)

and finally

A0 = κ2
s4 − t4 + u4

2stu
. (3.63)

In this way, by construction, the result is s↔ u symmetric. This will be useful in Section 6 since
the s↔ u symmetry simplifies the analysis of the analytic properties of this amplitudes at higher
loops. At tree level, of course (3.63) coincides with (3.54) up to irrelevant analytic terms as t→ 0
that correspond to short-range contributions in b-space.
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One can introduce masses for the scalars by means of a Kaluza–Klein compactification. To this
end, we can re-interpret (3.63) as (say) 10-dimensional, and perform a toroidal compactification
of 6 spatial dimensions, letting

pM1 = (pµ1 , 0, . . . , 0, 0,m1) , pM4 = (pµ4 , 0, . . . , 0, 0,−m1) ,

pM2 = (pµ2 , 0, . . . , 0,m2, 0) , pM3 = (pµ3 , 0, . . . , 0,−m2, 0) ,
(3.64)

in such a way that

0 = pM1 p1M = pµ1p1µ +m2
1 , 0 = pM2 p2M = pµ2p2µ +m2

2 (3.65)

and similarly for p3, p4. Likewise, from the 4D perspective,

−2p1 · p2 = s−m2
1 −m2

2 , −(p1 + p4)
2 = t , −2p1 · p3 = u−m2

1 −m2
2 , (3.66)

and therefore

A0 = κ2
(s−m2

1 −m2
2)

4 − t4 + (u−m2
1 −m2

2)
4

2(s−m2
1 −m2

2)t(u −m2
1 −m2

2)
. (3.67)

Calculating the leading eikonal by going to impact-parameter space is now straightforward, and
neglecting contributions that lack the 1/t pole, one finds again the result

2δ0 =
2m1m2GDσ

2Γ
(
D−4
2

)
√
σ2 − 1(πb2)

D−4
2

, (3.68)

which we had obtained in (3.40) when discussing the N = 0 theory emerging from the double
copy. Therefore, as far as the long-range effects captured by the leading eikonal exponentiation are
concerned, switching on supergravity is equivalent to taking into account the additional dilaton
exchanges between the two massive particles.22

Following the familiar steps, we can take −p ∂
∂b of (3.68) to obtain the leading deflection angle

Θ =
4GE(πb2)ǫσ2Γ(1− ǫ)

(σ2 − 1)b
+O(G2) −−−→

D→4

4GEσ2

(σ2 − 1)b
+O(G2) . (3.69)

Let us conclude by looking again at the probe limit m1 ≪ m2, in which E ≃ m1 = M and
σ ≃ Ep/mp, so that from (3.69) we find

Θ =
4GM(πb2)ǫσ2Γ(1− ǫ)

(σ2 − 1)b
+O(G2) −−−→

D→4

4GMσ2

(σ2 − 1)b
+O(G2) (3.70)

in agreement with (B.41) in D = 4 to leading order in G. In fact, show that the 1PM term
determines completely the probe limit of the maximally supersymmetric case in four dimension
[211], and the result can be obtained by proceeding as we did in Subsection 2.2. Starting from
the phase shift determined by (3.68),

2δj = χ(J) = −2m1m2Gσ
2

√
σ2 − 1

log J , (3.71)

one obtains an equation analogous to (2.54),

tan
Θ

2
=

2m1m2Gσ
2

√
σ2 − 1

1

J
≃ 2MGσ2

b(σ2 − 1)
, (3.72)

where we have used that J = pb and, in the probe limit, p ≃ mp

√
σ2 − 1, thus recovering (B.41).

22In the approach above, we assumed that the compactification scale is much smaller than the classical length
scales relevant to the binary, such as the impact parameter and the effective size GE of the colliding objects. Thus,
long-range effects are captured just by the exchange of states with zero Kaluza–Klein numbers yielding for instance
Eq. (3.68). See [210] for a treatment in which the dynamics of the Kaluza–Klein modes is included in an eikonal
context.
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3.1.5. Effective field theories beyond GR

All cases discussed so far focus on gravitational theories whose action contains just two-
derivative terms. At large distance this is certainly a reliable approximation, but it is interesting
to see how higher derivative corrections can modify high energy scattering. By following [154]
we start discussing the case where the standard gravitational action is modified by quadratic and
cubic terms schematically as follows

Sgr =
1

2κ2D

∫
dDx

√
|G|
[
R+ l22R

2 + l44R
3
]
, (3.73)

where li are the length scales determining when the new higher derivative terms start becoming
relevant, which we take to be parametrically larger than ℓP . From an effective field theory point
of view, it may appear strange to assume that the li are decoupled from ℓP , but this is quite
natural in setups where the modification in (3.73) arise from a classical microscopic dynamics, as
in string theory, or from integrating out non-gravitational degrees of freedom as in [175, 169]. In
explicit string constructions the scales li can be written in terms of the string length ℓs, but in
this section we will work within an effective field theory approach and keep them arbitrary just
assuming li ≫ ℓP . It is interesting to focus on the corrections in (3.73) because they are the
only ones that can modify the on-shell 3-graviton amplitude. Strictly speaking this amplitude
vanishes because the on-shell conditions force the momenta of the external states to be collinear.
However one can either complexify the momenta or work in a signature with two times to define
a non-trivial on-shell 3-graviton amplitude. So from (3.73) we have

A3 = A
(0)
3 +A

(2)
3 +A

(4)
3 , (3.74)

where A
(0)
3 is the contribution from the Einstein-Hilbert part of the action one and the other two

terms are higher derivative corrections with two and four additional derivatives respectively. The
Einstein-Hilbert contribution reads

iA
(0)
3 = −2iκD [(ε1ε2)(ε3q1) + cycl.] [(ε̃1ε̃2)(ε̃3q1) + cycl.] , (3.75)

where εi µε̃i ν = hi µν is a symmetric tensor representing the polarization of one of the external
gravitons and in each parenthesis one needs to sum over the cyclical permutations. The correction
proportional to l22 reads

iA
(2)
3 = 2iκDl

2
2

{
[(ε1ε2)(ε3q1) + cycl.][(ε̃1q2)(ε̃2q3)(ε̃3q1)] + ε↔ ε̃

}
, (3.76)

while the one proportional to l44 is

iA
(4)
3 = 2iκDl

4
4 [(ε1q2)(ε2q3)(ε3q1)] [(ε̃1q2)(ε̃2q3)(ε̃3q1)] . (3.77)

Since these on-shell couplings are written in the factorized form following from the KLT or the
double copy relations, one can immediately see that they are obtained by taking the products of
the space-time part of the standard 3-gluon coupling and its higher derivative modification related
to a Tr(F 3) in the Lagrangian. In the supersymmetric theories the modification in (3.77) is not
allowed and in the maximally supersymmetric case also (3.76) is set to zero and so, in this case, the
3-point vertex cannot be deformed. In the case of pure gravity in D = 4, the modification (3.76)
does not contribute to the eikonal since it can be derived by the Gauss–Bonnet term which is a
total derivative in four dimension. In the following we will keep D generic and we will not decouple
the dilaton and the antisymmetric tensor arising from the double copy construction.

We can now discuss how the higher derivative corrections modify the tree-level amplitude (3.21)
describing scattering of a graviton off a massive scalar. We focus in particular on the high-energy
limit and look for terms that scale at least as the factor of γ(s,m1,m2 = 0) present in the

37



Einstein-Hilbert case (3.31). In order to do this we can simply combine, by using a de Donder
propagator (A.23), an on-shell 3-graviton vertex obtained from (3.74) and the vertex with the
external scalars (A.25). As a warming up exercise one can derive (3.31) from (3.75): by combining
the scalar vertex with the de Donder propagator, one obtains

A(1)
µν = −κD

q2

(
k1µk4ν + k1νk4µ − ηµν

2m2
1

D − 2

)
, (3.78)

which can be saturated with the variation of (3.75) with respect to ǫ1µν (identifying that graviton
as the particle exchanged in the t-channel). Only the term proportional to q2ǫ1q2 can produce a
leading contribution in the energy since, when saturated with (3.78), it yields the scalar product
2(k1q2)(k4q2) ≃ −γ(s,m2

1,m2 = 0) where in the last step we neglected a term proportional to
t. This reproduces exactly the result (3.31). One can follow the same approach by using (3.76)
which provides the corrections proportional to l22 to the scattering discussed above. Again in this
effective vertex there is a term proportional to q2ǫ1q2 which for the same reasons above provides
a contribution that scales with the energy exactly in the same way as the term coming from the
standard Einstein-Hilbert 3-graviton vertex. The main qualitative difference that we find in this
case is that the polarization of the external graviton appear dotted with the exchange momentum
q

iA0 ∼
2iκ2D
−t γ(s,m1,m2 = 0) (2l22) [qǫ1ǫ2q] . (3.79)

By following similar steps, one can obtain the correction related to l4

iA0 ∼ −
2iκ2D
−t γ(s,m1,m2 = 0) (2l44) [(qǫ1q)(qǫ2q)] . (3.80)

Seen as contributions to a tree-level amplitude the results in (3.79) and (3.80) do not have anything
unusual, but since they behave as (3.31) in the limit (1.74) we expect them to exponentiate and
contribute to leading classical eikonal. As before we rewrite the result in impact parameter space:

2δ0 =
GDγ(s,m1,m2 = 0)√

σ2 − 1

Γ
(
D−4
2

)

(πb2)
D−4

2

[
ǫ1 ijǫ2 ij + (D − 4)

2l22
b2
ǫ1 ijΠjhǫ2hi−

(D − 2)(D − 4)
l44
b4
ǫ1 ihǫ2 jkΠijhk

]
,

(3.81)

where we labeled the physical polarizations with the indices i, j, . . . of the transverse space and

Πij = δij − (D − 2)
bibj
b2

,

Πijhk = δhkδij + δhjδik + δjkδih −
D

b2

(
bhbkδij + bhbjδik

+ bibhδjk + bjbkδih + bibkδjh + bibjδhk − (D + 2)
bibjbhbk
b2

)
.

(3.82)

Of course the first term in (3.81) is just the Einstein-Hilbert contribution of Eq. (3.32) which is
identical for all the polarizations of the graviton. Notice, on the contrary, that the corrections
related to l2 and l4 are not universal and depend on whether the polarizations involved have a
trivial projection (or not) along the direction b of the impact parameter. The main novelty of
the eikonal (3.81) with respect to the cases discussed so far is that it acts non-trivially in the
space of the polarizations of the incident massless particles. Thus, instead of being a phase it
becomes an operator mixing different helicities of the graviton, the dilaton and the antisymmetric
tensor. As discussed in Section 4.2.4 this is the origin of causality violating contributions in the
eikonal scattering for these modified theories when the impact parameter becomes of the order of
l2,4 [154].
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3.1.6. Including classical spin

In this subsection we generalize the calculation of the leading eikonal phase to the case in
which the massive particles also have a “classical spin”, i.e. an intrinsic angular momentum as
opposed to the one associated to their orbital motion. At the level of solutions of Einstein’s
equations, introducing spin corresponds to going from the Schwarzschild solution, characterized
by its mass, to the Kerr solution describing a black hole with both a mass m and spin Ja, provided
the inequality Ja ≤ Gm2 is satisfied (with the equality sign corresponding to the “extremal” case).
Both the Schwarzschild and Kerr solutions involve the full non-linear structure of GR.

One can, however, construct a linearized version of the Kerr black hole by keeping in the GR
Lagrangian only the kinetic term of the gravitational field and a term that describes its interaction
with the energy-momentum tensor of the spinning matter. Then, from it, one can extract the
three-point amplitude involving two massive particles with spin and a graviton [59, 63, 60] (the
round parenthesis indicates symmetrization without additional factors, A(αBβ) = AαBβ+AβBα):

τµν(p, p′, k; a) = κDp̄
(µexp(iǫν)ραβa

αkβ)p̄ρ , (3.83)

where all three momenta entering the vertex are regarded as outgoing, and can take complex
values in order to obey both momentum conservation and the mass shell relations,

pµ + p′µ + kµ = 0 ,
1

2
(p′µ − pµ) = p̄µ , p2 = −m2 = p′2 , k2 = 0 = p̄ · k . (3.84)

The effective vertex (3.83) involves the spin vector aµ of the massive object. This is related to the
spin tensor Sµν through the following relations,23

aρ = − 1

2m2
ǫραβγ p̄αSβγ , Sµν = ǫµνρσ p̄ρaσ (3.85)

and satisfies in particular
a · p̄ = 0 , Ja = ma , (3.86)

where Ja is the magnitude of the spin angular momentum, as can be seen by going to the rest
frame. Of course, in the ai → 0 limit, Eq. (3.83) reduces to the non-spinning effective vertex (3.6).

Using the above properties as well as the identities involving ǫµνρσ collected for convenience
in Appendix C, one can show that

ǫνµαβa
αkβǫµργδ a

γkδ p̄ρ = −(a · k)2δνρ p̄ρ . (3.87)

As a result, the matrix exponential in (3.83) can be rewritten in the more explicit form

eiǫ
ν
ραβ aαkβ

p̄ρ =

[
cosh(a · k)δνρ + i

sinh(a · k)
a · k ǫνραβa

αkβ
]
p̄ρ , (3.88)

and the vertex reads

τµν (p, p′, k; a) = iκ

[
cosh(a · k)2p̄µp̄ν + i

sinh(a · k)
a · k

(
p̄µǫνραβa

αkβ p̄ρ + p̄νǫµραβa
αkβ p̄ρ

)]
. (3.89)

We note that the trace of this vertex only comes from the cosh part,

ηµντ
µν(p, p′, k; a) = 2iκp̄2 cosh(a · k) . (3.90)

We can now sew together two copies of the on-shell vertex (3.89), describing each the motion
of a distinct particle labeled by 1 and 2, with the de Donder propagator (A.23), obtaining the
following 2→ 2 amplitude for the scattering of two massive spinning objects,

iA0 = τµν(p1, p4,−q; a1)Gµν,ρσ(q)τ
ρσ(p2, p3, q; a2) . (3.91)

23To leading order in kµ, we may disregard the difference between p̄µ, p′µ and −p′µ.
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Here of course q2 is not zero, unlike for kµ in (3.83). Therefore, the expression (3.91) is only
accurate up to contact terms, i.e. contributions whose residue at q2 → 0 vanishes, which only
contribute to short-range effects. Vice-versa, the relations

p̄1,2 · q = 0 , p̄1 · a1 = 0 , p̄2 · a2 = 0 (3.92)

still hold and we may now consider real kinematics. Writing explicitly (3.91) we get

A0 =
2κ2

q2

[
cosh(a1q)p̄

µ
1 p̄

ν
1 −

i

2
(ǫµγαβ p̄

ν
1 + ǫνγαβ p̄

µ
1 )p̄

γ
1a

α
1 q

β sinh(a1q)

qa1

]
(3.93)

× (2ηµρηνσ − ηµνηρσ)
[
cosh(a2q)p̄

ρ
2p̄

σ
2 +

i

2
(ǫρλδη p̄

σ
2 + ǫσλδη p̄

ρ
2)p̄

λ
2a

δ
2q

η sinh(a2q)

qa2

]
.

The term with cosh(qa1) cosh(qa2) can be easily computed and one gets

2κ2

q2
m2

1m
2
2(2σ

2 − 1) cosh(qa1) cosh(qa2) , (3.94)

For the computation of the term with sinh(qa1) sinh(qa2) we can take advantage of the fact that
only the first term of the de Donder propagator contributes (the second term vanishes according
to the observation before (3.90)) and one gets:

2κ2

q2
sinh(a1q)

qa1

sinh(a2q)

qa2

×
(
− (ǫγσαβ p̄

γ
1 p̄

σ
2a

α
1 q

β)(ǫρλδη p̄
ρ
1p̄

λ
2a

δ
2q

η) + (p1p2)ǫ
ρ
γαβ p̄

γ
1a

α
1 q

βǫρλδη p̄
λ
2a

δ
2q

η

)
(3.95)

The second term in the big round parenthesis can be computed using the relation

ǫργαβ p̄
γ
1a

α
1 q

βǫρλδη p̄
λ
2a

δ
2q

η = (p̄1 · p̄2)(a1 · q)(a2 · q) + (a1 · p̄2 a2 · p̄1 − p̄1 · p̄2 a1 · a2) q2 (3.96)

that can be obtained from the formulas in Appendix C, while for the first term we need the
following relation

−(ǫµναβ p̄µ1 p̄ν2aα1 qβ)(ǫµναβ p̄µ1 p̄ν2aα2 qβ) =
[
(p̄1 · p̄2)2 − p̄21p̄22

] (
a1 · qa2 · q − a1 · a2q2

)
+p̄1·p̄2a1·p̄2a2·p̄1q2

(3.97)
Actually any term proportional to q2 in (3.96) and (3.97) can be neglected because it will give an
analytic piece. This means that the term with sinh(qa1) sinh(qa2) is equal to

2κ2D
q2

m2
1m

2
2(2σ

2 − 1) sinh(qa1) sinh(qa2) . (3.98)

Finally, the two mixed terms can be computed similarly, and one gets the following final result

A0 =
2κ2m2

1m
2
2σ

q2

[
σ(1 + v2) cosh(a · q)

− 2iǫµναβv
µ
1 v

ν
2

(
aα2 q

β sinh(a2 · q)
a2 · q

cosh(a1 · q) + aα1 q
β sinh(a1 · q)

a1 · q
cosh(a2 · q)

)]
,

(3.99)

where the term in the first line comes from the sum of the terms in (3.94) and (3.98) and the
identity σ2(1 + v2) = 2σ2 − 1. In the previous equation we used

p̄µ1 ≃ m1v
µ
1 , p̄µ2 ≃ m2v

µ
2 , σ = −v1 · v2 (3.100)
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and introduced

aµ = aµ1 + aµ2 , σ =
1√

1− v2
. (3.101)

In the center of mass,

p̄µ1 ≃ (E1, ~p ) , p̄µ2 ≃ (E2,−~p ) , qµ = (0, ~q ) , (3.102)

letting
~p = (0, 0, p) , ~q = (q, 0) = (qx, qy, 0) , (3.103)

we have
ǫµναβ p̄

µ
1 p̄

ν
2a

α
1 q

β = −m1m2σv(p̂× ~a1) · ~q , (3.104)

so that (3.99) can be rewritten as follows

A0 =
2κ2m2

1m
2
2σ

2

q2

[
(1 + v2) cosh(a · q)

+ 2iv

(
(p̂× ~a2) · ~q

sinh(a2 · q)
a2 · q

cosh(a1 · q) + (p̂× ~a1) · ~q
sinh(a1 · q)
a1 · q

cosh(a2 · q)
)]

.

(3.105)

Comparing (3.97) and (3.104), we see that

(a1 · q)2 = a21q
2 − ((p̂× ~a1) · ~q )2 . (3.106)

We note that taking a square root of (3.106) and setting q2 = 0, one can effectively replace

a1 · q → ±i(p̂× ~a1) · ~q (3.107)

in (3.99) at the price of short-range corrections (similarly for a2). One can check this in them2 = 0
case [75] by writing q2 = (p2 + p3)

2 in terms of the spinor formalism as in (3.26). Then one can
extract the leading term for small q by sending either 〈23〉 or [23] to zero. This choice is related
to the potential sign ambiguity introduced by the square root (3.107), see [75] for a discussion of
this point. However this sign is immaterial in (3.105) and the terms in the second line of that
equation recombine via sinhα coshβ + sinhβ coshα = sinh(α+ β), leading to

A0 =
2κ2m2

1m
2
2σ

2

q2

[
(1 + v2) cosh(i(p̂× ~a) · ~q ) + 2v sinh(i(p̂× ~a) · ~q )

]
, (3.108)

which can be also recast in the compact form

A0 =
κ2m2

1m
2
2σ

2

q2

∑

η=±1

(1 + ηv)2eiη~c·~q , ~c = p̂× ~a . (3.109)

Starting from (3.109), and going to impact-parameter space in the usual way,

2δ0 = Ã0 =
κ2m1m2σ

4v

∑

η=±1

(1 + ηv)2
∫

d2−2ǫq

(2π)2−2ǫ

ei(
~b+η~c )·~q

q2
, (3.110)

and, using (A.45), we obtain the leading eikonal phase including classical spin,

2δ0 =
κ2m1m2σ

4v

1

4π1−ǫ

∑

η=±1

(1 + ηv)2
Γ(−ǫ)

(∣∣~b+ η~c
∣∣2)−ǫ . (3.111)

We remark that ~c is orthogonal to ~p by its definition (3.109). The impulse is therefore given by

− ~Q = −∂2δ0
∂~b

=
κ2m1m2σ

2v

1

4π

∑

η=±1

(1 + ηv)2
~b+ η~c∣∣~b + η~c

∣∣2 . (3.112)
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(a) Scattering with aligned spins.
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(b) Scattering with generic spin orientations.

Figure 8: Scattering of spinning objects in the center-of-mass frame.

We see that the entire spin dependence is encoded in the shift ~b→ ~b ± ~c, which is reminiscent of
the Newman–Janis shift [212], relating Kerr to Schwarzschild black holes.

These results are valid for generic spin orientations (see Fig. 8). Let us now consider the case in
which both spins are parallel to the angular momentum in the center of mass frame as in Fig. 8a.
That is, we align the impact parameter by letting

bµ = (0,−b, 0, 0) , (3.113)

so that ~L = ~b× ~p = (0, pb, 0), then

~a1,2 = (0, a1,2, 0) , a1,2 > 0 , ~c = (−a, 0, 0) , (3.114)

as summarized in Fig. 8(a). In this case, (3.111) reduces to

2δ0 =
κ2m1m2σ

2v

[
−1 + v2

4π1−ǫ

(
1

ǫ
+ log(b2 − a2) + γ

)
− 2v

4π
log

b+ a

b− a

]
+O(ǫ) , (3.115)

and the impulse is given by

−Qµ = Q
bµ

b
, Q =

κ2m1m2σ

v

1

4πb

(1 + v2)− 2va
b

1− a2

b2

, (3.116)

which agrees with Eq. (82) of Ref. [59]. The previous result corresponds to the case where the

two spins are parallel to the orbital angular momentum (see (3.114) and the equation for ~L after
(3.113)). If we had instead taken them to be anti-parallel, we would have obtained a plus sign
in the last term in the numerator of (3.116). This implies that the sign in the last term in the
numerator of (3.116) is such that for parallel (antiparallel) orbital angular momentum and spin
the deflection angle decreases (increases) in agreement with expectations [213].

We remark that, in view of the bound on the spin, a ≤ Gm, and of the PM limit Gm ≪ b,
the parameter a/b is always very small. For this reason, the final results (3.112), (3.116) should
be thought of only as a convenient way to package their power series around a/b = 0.

3.2. String Theory

Because of the presence of a massless spin-two state in its spectrum, string theory naturally
contains gravity and, at sufficiently low energies (large distances), it reduces to an effective gravi-
tational field theory. It is therefore natural to study the gravitational 2-body scattering in a string
theory framework24. The focus of this section is to derive the leading eikonal in a truly stringy

24Although the large distance physics discussed in this report appears to be insensitive to the ultraviolet comple-
tion of the theory, it is also desirable to work in a framework in which such a completion is explicitly implemented.
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regime, i.e. when an effective field theory description is not reliable and the results obtained in
the previous subsections cannot be used. Particular emphasis is given to the new phenomena
arising in a string context which are related to the existence of Regge trajectories and to the
extended nature of the fundamental objects. This analysis was first performed in [8, 10] focusing
on the string theory version of the high-energy massless scattering25 discussed in Section 2. Here
we start from the slightly simpler fixed-target setup where a light string scatters off a stack of
Dp-branes [22]. Then we will summarize the results obtained in the string-string collision case in
Section 3.2.6.

Conceptually, we follow exactly the same approach discussed in the field theory context: we
use scattering amplitudes to derive the dynamical information relevant for the leading eikonal and
then, as a second step, show how to interpret the result as the motion of a probe in a curved
background (in the spirit of Section 2.3). In the main text we focus mostly on type II superstring
theories, which are free of tachyonic instabilities, and we refer to the original references for the
derivations of several string results that are the starting point of our analysis. In Appendix D
we provide some of these derivations in the context of bosonic string theory where it is possible to
focus on the key features by using a simpler formalism. It turns out that the tachyonic instabilities
do not play an important role in the definition of the string eikonal, since as we shall see they do
not contribute to long-range effects, which instead arise from the expansion of the leading Regge
trajectory around t = 0. Thus bosonic string theory provides the perfect arena both for developing
the technical analysis and for discussing some interesting features of non-supersymmetric setups
(see for instance Section 3.2.5). In order to make the comparison between supersymmetric and
bosonic string theories easier we indicate the number of spacetime dimensions with d: of course
we have d = 10 for type II theories or d = 26 for the bosonic theory, but several results at high
energies take the same functional form if the spacetime dimension is formally indicated with d
(while D will denote the number of noncompact dimensions).

3.2.1. String-brane scattering at tree level

We consider the scattering of a massless closed string off a stack of N coincident Dp-branes
in type II theories where some space-like directions can be compactified on circles. While we
will stick to this simple setup, it should be possible to extend this analysis to more complicated
configurations with orbifold compactifications and more general boudary conditions [214]. The
leading contribution is captured by a worldsheet with the topology of the disk and two punctures
in its interior (see Fig. 9 and Fig. 10). The boundary of the disk lies on one of the Dp-branes and
the punctures describe the ingoing/outgoing closed string that, for sake of simplicity, we take to
be a massless NS-NS state. We focus on the case p ≤ 6 so that the gravitational backreaction of
the Dp-branes decays far away (see Section 4.2.3 for a discussion of this viewpoint). The leading
tree-level contribution to this 1→ 1 scattering takes the usual form of a ratio of Γ-functions [215–
217]

A0(pi, ǫi) = −
κdNTp

2
K(pi, ǫi)

Γ
(
−α′E2

s

)
Γ
(
−α′

4 t
)

Γ
(
1− α′E2

s − α′

4 t
) ≡ K(pi, ǫi)

(α′E2
s )

2
A0 , (3.117)

where our string conventions on the gravitational coupling κd and the D-brane tensions Tp are
summarized in Appendix D.1.3. The closed string momentum is not conserved in the transverse
directions µ = p+1, . . . , d−1 and p1+p2 = q is the momentum transferred to the Dp-branes with
t = −q2. Momentum is conserved along the Dp-branes, in the directions µ = 0, 1, . . . , p, so we
introduce E2

s = −(pi)2‖ and we will be interested in the high-energy eikonal regime corresponding

to the limit E2
s ≫ |t|. The result (3.117) is closely related to the tree-level amplitude for four open

strings, as is the case for general mixed open/closed string amplitudes, see [218] for a detailed

25As we will see, this high-energy limit is dominated by the leading Regge trajectory of the graviton, while
subleading Regge trajectories, such as the one of the dilaton, become irrelevant.

43



Figure 9: Scattering of a massless string off a Dp-brane. The blue circles represent punctures associated to the
incoming and outgoing closed string and the green disc rests on the Dp-brane. The thin red line represents a
heavy open string produced in the s-channel (Fig. 10b below), while the thick black line represents a closed string
exchanged in the t-channel (Fig. 10a below).

(a) The closed-string channel. (b) The open-string channel.

Figure 10: Two degeneration limits of Fig. 9. The blue dots represent punctures associated to the incoming and
outgoing string states, while the boundary of the green disc lies on the Dp-branes. The picture on the left depicts
the corner of the worldsheet moduli space relevant in the large distance regime where the closed strings in gray are
those of the leading Regge trajectory, see Section 3.2.3. The picture on the right depicts the region capturing the
closed/open string transition, see Section 3.2.2.
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discussion at tree-level. Then the kinematic factor K is the same one discussed for supergravity in
Section 3.1.4 and the closed string polarizations (ǫi)µν should be thought as pairs of open string
polarizations (εi)µ, as done for scalar-graviton scattering in Section 3.1.2. The two Γ-functions in
the numerator of (3.117) encode different sets of poles: the Gamma that depends on t contains the

poles that lie on the closed string Regge trajectory αclosed(t) = 2+ α′t
2 , while the other contain the

s-channel poles on the open string Regge trajectory αopen(E
2
s ) = 1 + α′E2

s . We prefer to indicate
the total energy in the center of mass for the string brane scattering as Es rather than

√
s as

perhaps would be more natural by using the relations with the 4-point open string amplitude
mentioned above. The reason is that one can see this process as the probe limit of a 2 → 2
scattering where the D-brane stack is the heavy state and we reserve s for the total center-of-mass
energy of this scattering, including the rest energy of the D-branes.

At leading order in the limit E2
s ≫ |t| we have

K(p1, ǫ1; p2, ǫ2) = (α′E2
s )

2ǫ1µν ǫ
µν
2 + . . . , (3.118)

where ǫ1,2µν are the polarizations of bosons in the NS-NS, and then, by using

Γ(a+ b)

Γ(a+ c)
∼ ab−c , as a≫ b, c , (3.119)

we get

A0 ≃
κdNTp

2
Γ

(
−α

′

4
t

)
e−iπ α′t

4 (α′E2
s )

1+α′t
4 . (3.120)

The overall normalization is directly related to the classical length scale Rp of the geometry
describing the gravitational backreaction of the Dp-branes, see Eq. (D.7). Notice that we wrote

explicitly the phase factor of (−α′E2
s )

α′t
4 arising from the Stirling approximation (3.119): a simple

way to make the appropriate choice of branch cut in the factor of e−iπ α′t
4 is to make sure that the

imaginary part of the amplitude is positive (recalling that t < 0). As usual, this follows from the
relation between this imaginary part and the production rate of new degrees of freedom, in this
case open strings attached to the Dp-branes. We will discuss this interpretation of the phase in
Section 3.2.2 showing that there is a quantitative link between the imaginary part of (3.120) and
the amplitudes describing the transition from the external closed string and a particular class of
open string states.

When the momentum transferred is small in comparison to the string scale α′|t| ≪ 1, the
string amplitude is dominated by the exchange of massless states and, since we already took the
high energy limit, we are just isolating the graviton propagating between the Dp-branes and the
external closed strings

A0 ≃
4κdNTp

2

(
−E

2
s

t

)
. (3.121)

It is possible to make contact with the probe limit discussed at the end of Section 3.1.1 by
identifying the Dp-branes with the heavy particle. We can wrap the extended space-like direction
of the Dp-branes on a p-dimensional torus of volume Vc and then they would describe a target of
mass Mh in the noncompact D = (d− p) dimensions (see also the comments around (D.4))

Mh = NτpVc =
NTpVc
κd

,
1

κ2D
=
Vc
κ2d

. (3.122)

The string calculation already includes the factor 1/(2Mh) which is part of the Fourier trans-
form (3.8) used when both particles in the scattering are dynamical, as in the probe limit we have
4Ep→ (2Mh) (2Es) , where we used (3.17) with E1 → Es and m1 → 0 since we are considering a
massless probe. So we have to compare (3.121) with (3.18) divided by 2Mh and for m = 0. By
using (3.122), we find full agreement. This approximation is reliable when the impact parameter b
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of the process is much larger that the string length ℓs =
√
α′~, as it follows from the usual relation

|q| ∼ ~/b connecting the impact parameter b and the momentum |q| ∼ √−t of a single graviton
exchanged between the string probe and the Dp-branes.

For general values of α′|t| there are two novelties of the string result with respect to the field
theory one: the first is the appearance of a phase and the second is the fact that the simple t-
dependence related to the field theory propagator for the graviton is substituted by a Γ-function.
Both are string effects: the first related to the existence of an open string sector supported by
the Dp-branes and the second related to the existence of higher-spin massive closed string states.
Of course these features are a consequence of the extended nature of the elementary objects used
in this case and appear generically in all string theories26. Then it is natural to expect that the
string eikonal is qualitatively different from the field theory one when the impact parameter is of
the order of the string scale, however it turns out that there are deviations at distances that are
parametrically larger. In order to provide a first example of such phenomenon let us introduce

2δ0 = Ã0(Es, b) =

∫
dd−p−2q

(2π)d−p−2

A0(Es, q
2)

2Es
eibq , (3.123)

where, as mentioned above, we need to include just the factor of 1/(2Es) because the factor of
(2Ms) is already included in the amplitude. Following the treatment in [10], we make the massless
pole of the string amplitude explicit

A0 =
κdNTp

2

4E2
s

−t Γ

(
1− α′t

4

)
e

t
4Y , (3.124)

where we introduced

Y = l2s(Es)− iπα′ , with ls(Es) =
√
α′ ln(α′E2

s ) . (3.125)

The appearance of the effective string length ls(Es), with the extra factor of ln(
√
α′Es), will play

an important role and signals that elementary energetic strings are larger than expected from
naive dimensional analysis. When (3.124) is used in (3.123), we can rewrite the dependence on
q of all factors that are analytic as q → 0 in terms of derivatives with respect to the impact
parameter. For instance we have

t = −q2 =
∂2

∂bi∂bi
≡ ∇2 . (3.126)

Then we find the following integral representation of the leading string eikonal

2δ0 = Γ

(
1 +

α′

4
∇2

)∫
dd−p−2q

(2π)d−p−2

κdNTpEs

q2
exp

(
−Y

4
q2 + iqb

)

= κdNTpEs Γ

(
1 +

α′

4
∇2

)∫ ∞

0

dT

∫
dd−p−2q

(2π)d−p−2
e−q2(T+Y

4 )+iqb

= κdNTpEs Γ

(
1 +

α′

4
∇2

)(
b2

4

)− d−p−4
2
∫ b2

Y

0

dT̂

(4π)
d−p−2

2

T̂
d−6−p

2 e−T̂ , (3.127)

where in the last step we introduced T̂ = b2/[4(T + Y
4 )]. For real values of Y , the integral yields

the incomplete Γ-function γ(z, a) with

γ(z, a) =

∫ a

0

dt tz−1e−t =

∞∑

k=0

az+ke−a

z(z + 1) . . . (z + k)
, (3.128)

26Details change depending on the particular setups: for instance in the case of the string graviton-graviton
scattering of Section 3.2.6 the degrees of freedom responsible for the imaginary part of the tree-level amplitude are
closed strings in the s-channel.
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so by analytical continuation we can write

2δ0 =
κdNTpEs

4π
Γ

(
1 +

α′∇2

4

)[
(πb2)−

d−4−p
2 γ

(
d− 4− p

2
,
b2

Y

)]
, (3.129)

also when Y is given by (3.125). As usual, we expect that this result exponentiates after including
the leading contributions of worldsheet diagrams with h + 1 boundaries on the Dp-branes. This
is based on the same counting used in the QFT case: by using (D.7) we see that the first factor
in (3.129) is proportional to the classical scale Rd−p−3

p , so by dimensional analysis δ0 scales as

(Rp/b)
d−p−3Esb/~ and is a large quantity in the classical limit. In Section 4.2 we will provide

an explicit check of this exponentiation at the string level, focusing just on a particular regime
since an exhaustive analysis is not yet available in the literature. Here we assume the eikonal
exponentiation and discuss the behavior of (3.129) at large and small distances with respect to
the effective string scale introduced in (3.125). In the large distance regime b≫ ls(Es) we can use

γ

(
z,
b2

Y

)
∼ Γ(z)− e− b2

Y

(
b2

Y

)z−1

. (3.130)

To leading order, the above expression does not depend on the impact parameter and yields a real
contribution to δ0 in Eq. (3.129). In the large distance limit we can neglect the overall Γ-function
in (3.129) as it yields corrections suppressed by α′/b2,

2δ0 ∼
√
πEs

2

Γ
(

d−p−4
2

)

Γ
(

d−p−3
2

) R
d−p−3
p

bd−p−4
+

iπEs

2Γ
(

d−p−3
2

)
√

πα′

ln(α′E2
s )

(
Rp

ls(Es)

)d−p−3

e
− b2

l2s(Es) , (3.131)

where we wrote the leading real and imaginary terms and used (D.7). This is obtained by ex-
panding the γ-function around the first term of the following equation

b2

Y
≃ b2

l2s(Es)
+ i

π

ln(α′E2
s )

b2

l2s(Es)
, (3.132)

since the second one is suppressed by 1/ ln(α′E2
s ) at high energy. Then the expansion of the

γ-function is obtained from the integral expression in (3.128)

γ

(
d− 4− p

2
,
b2

Y

)
≃ γ

(
d− 4− p

2
,

b2

l2s(Es)

)
+ iπ

e
− b2

l2s(Es)

(
b

ls(Es)

)d−4−p

ln(α′E2
s )

. (3.133)

The real part of (3.131) can also be written as 2GDMhEsΓ
(
D−4
2

)
(
√
πb)−(D−4) with the identi-

fications κ2D = 8πGD, D = d − p and (3.122). This reproduces the QFT result in Eq. (3.19) for
m1 = 0, as expected since in this regime the field theory setup of Section 3.1.1 is a good effective
description. The exponentially suppressed contributions are relevant for the imaginary part and
can be derived directly from the amplitudes (3.120) as done in (3.146). Taking − 1

Es

∂
∂b of the real

part of (3.130), one finds the deflection angle (B.28) obtained in Appendix B.2 by solving the
geodesic equation.

In the opposite regime, where the impact parameter is small with respect to the effective string
length b < ls(Es), we can keep just the first term in the expansion (3.128) obtaining

2δ0 ∼
κdNTpEs

4π

(πY )−
d−4−p

2

d−4−p
2

(
1 +O

(
b2

Y
,

1

ln(α′E2
s )

))
. (3.134)

It is interesting to consider the high-energy stringy regime where b2 ≪ |Y |, which is possible
because of the ln(α′E2

s ) enhancement in (3.125). Then, the Γ-function in (3.134) can be approxi-
mated to 1 (since the shift proportional to α′∇2 yields corrections suppressed by α′/Y ) and the
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leading contribution to 2δ0 takes a simple b-independent form. Notice, however, that this result
is not real: by using (3.125) and expanding the factor Y in the regime

√
α′ ∼ b < ls(Es), one

can see that the leading imaginary contribution takes the same form as in (3.131) without the
exponential factor which is negligible in this regime

Im(2δ0) ≃
π

2Γ
(

d−p−3
2

)
(

Rp

ls(Es)

)d−p−3 √
πα′Es√
ln(α′E2

s )
. (3.135)

Because of the presence of this imaginary part the elastic partial wave unitarity discussed in
Section 1.3 is violated. This is not surprising since, when the probe gets close to the Dp-branes,
it can excite the open strings degrees of freedom, i.e. the closed string can “touch” the target and
make a transition to an open string whose endpoints are anchored to one of the Dp-branes. The
less obvious aspect of this phenomenon is that it starts when b ∼ ls(Es) rather than simply when
the impact parameter is of the order of the string length. In order to restore unitarity, one would
need to include explicitly the open string degrees of freedom and promote 2δ0 to an operator that
can describe a closed/open string transition as discussed in Section 3.2.2.

3.2.2. The closed/open string transition

Let us discuss in some more detail the imaginary part of (3.120)

Im(A0) ≃
κdNTp

2
(α′E2

p)
1+α′t

4 sin

(
−πα

′t
4

)
Γ

(
−α

′t
4

)
= π

κdNTp
2

(α′E2
p)

1+α′t
4

Γ
(
1 + α′t

4

) , (3.136)

where in the final step we used

Γ(z)Γ(1− z) = π

sin(πz)
. (3.137)

A similar formula holds also for the imaginary part of the bosonic string amplitude (D.33)

Im(A0) ≃ π
κdNTp

2

(α′E2
p)

1+α′t
4

Γ
(
ξ + α′t

4

) , (3.138)

with ξ = 2, instead of ξ = 1 as in (3.136).
This imaginary part is clearly a string effect since it vanishes in the α′ → 0 limit and we will

now show that it is due to the propagation of new degrees of freedom in the s-channel which
in our setup are open strings representing excitations of the target Dp-branes. Let us illustrate
this by starting from the full amplitude (3.117) (or (D.26) in the bosonic case). For simplicity
in the superstring case (3.117) we choose the external states to be a Kalb–Ramond field with
polarizations along the spacelike directions of the D-brane worldvolume: then the factor K(pi, ǫi)
takes the form given in the square parenthesis of (3.140b) [219]. However, as expected, only
the leading term in Es will be relevant for the final result, so one can also focus directly in A0

in (3.117). By using the relation

Γ(x)

Γ(x+ a)
=

∞∑

n=0

(−1)n
n!Γ(a− n)

1

x+ n
, (3.139)

it is possible to rewrite the string amplitudes mentioned above as a series of the s-channel poles

AT
0 =

κdNTp
2

∞∑

n=0

1

n!

Γ
(
2 + α′t

4 + n
)

Γ
(
2 + α′t

4

) 1

−α′E2
s + n− 1

, (3.140a)

AB
0 =

κdNTp
2

[
(α′E2

s )
2 + (α′E2

s )

(
α′t
4

)] ∞∑

n=0

1

n!

Γ
(

α′t
4 + n

)

Γ
(
1 + α′t

4

) 1

−α′E2
s + n

, (3.140b)
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where we used again (3.137). The amplitude in the first line refers to bosonic string theory
where the probe particle is a tachyon, while the second line refers to the superstring case with
the Kalb–Ramond state mentioned above. The square parenthesis in superstring case follows
from the prefactor in (3.117) as one can see with a calculation similar to the one discussed for
supergravity in Section 3.1.4. The poles in α′E2

s correspond to open strings of mass M2
n = n/α′

(or M2
n = (n− 1)/α′ in the bosonic case) propagating on the disk and the residue is a polynomial

in t of degree n which is the maximum spin for the states of mass Mn. While the result in (3.140)
seems to be real, there is actually an imaginary part which is hidden in the iǫ prescription which
is not written explicitly and should be reinstated. This can be done as follows

1

−E2
s + n−(ξ−1)

α′

→ 1

−E2
s +M2

n − iǫ
= PV

[
1

−E2
s +M2

n

]
+ iπδ(−E2

s +M2
n) , (3.141)

where the first term in the last step indicates the Cauchy Principal Value and the second one is
the imaginary contribution due to iǫ Feynman’s prescription. Notice that this fixes the sign of
the imaginary part of (3.141) providing a first principle justification for the prescription discussed
after (3.120). Then we can write the imaginary part of the amplitude in a unified way for the
bosonic and the superstring case

2 Im(A0) ≃ πκdNTp
∞∑

n=0

1

Γ(n+ ξ − 1)

Γ
(
ξ + α′t

4 + n
)

Γ
(
ξ + α′t

4

) δ(−α′E2
s + n− (ξ − 1)) , (3.142)

where we used the delta function to simplify the square parenthesis in the second equation
of (3.140b). Because of perturbative unitarity, each term in the sum represents the modulus
square of a 2-point amplitude describing a closed string transforming into a linear combination of
open strings at level n. Since we are interested in the limit α′E2

s ≫ 1, we can approximate the
sum as an integral over the continuous variable x = n

α′E2
s

∞∑

n=0

δ(−α′E2
s + n− (ξ − 1))→

∫ ∞

0

dx δ(−1 + x) (3.143)

and rewrite the ratio of the n-dependent Γ-functions by using the limit (3.119) obtaining

Im(A0) ≃ π
κdNTp

2

(
α′E2

s

)1+α′t
4

Γ
(
ξ + α′t

4

) , (3.144)

in agreement with (3.138).
Exactly as in the field theory case, one can extract the long-range description of this string

scattering amplitude by taking its Fourier transform to impact parameter space (3.123). Starting
from the imaginary part, we can extract the leading large distance behavior by approximating

Γ
(
ξ + α′t

4

)
≃ 1 and then, since t = −q2, the Fourier transform translates into a Gaussian integral

Im(2δ0) =

∫
dd−2−pq

(2π)d−2−p

ImA0(Es, q
2)

2Es
eibq ≃ πκdNTp

4

α′Es e
− b2

α′ ln(α′E2
s)

(πα′ ln(α′E2
s ))

d−2−p
2

. (3.145)

Then the standard eikonal e2iδ0 is not a phase as it includes a real factor e−Im2δ0 with

Im(2δ0) ≃
π

2Γ
(

d−p−3
2

)
√
πα′Es√
ln(α′E2

s )

(
Rp

ls(Es)

)d−3−p

e
− b2

l2s(Es) , (3.146)

where we used (D.7). This result is consistent with the one obtained in (3.135) from (3.134).
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It is interesting to notice that the ξ dependence drops out in (3.146), so the stringy imaginary
part of the tree-level eikonal takes the same form both in the superstring and in the bosonic case.
Clearly supersymmetry does not play a crucial role in the closed/open string transition at high
energies. Thus for the rest of this subsection we can focus on the slightly easier setup of bosonic
string theory without losing any physically interesting qualitative feature. Our aim is to provide a
characterization of the open strings produced when the probe is captured by the Dp-branes. Since
the incident closed string probe has zero space-like momentum along the Dp-brane worldvolume,
the open strings responsible for the imaginary part (3.146) will be “static” and have just a non-
zero energy component α′E2

s = no − 1, where no indicates the level of the open string produced.
So one should be able to retrieve (3.146) from the “square” of the operator V̂ describing the tree
level transition between a generic closed string Vc and a generic open string Vo.

To be more specific, by following [220], we introduce the open-closed string vertex V̂ that,
when saturated with a particular open string state 〈Vo| on the left and a particular closed string
state |VcV̄c〉 on the right, provides their coupling

〈V0|V̂ |(VcV̄c)(p)〉 =
√
κdNTp
2α′ 〈Vc(p)V̄c(p)Vo〉, (3.147)

where p is the momentum of the closed state which is described as a ket-vector |VcV̄c〉 on the left
hand side to stress that it contains a holomorphic and an antiholomorphic part. In formulae we
expect

Im(A0) = πα′〈(VcV̄c)(p2)|V̂ † V̂ |(VcV̄c)(p1)〉 . (3.148)

The explicit form of V̂ was first discussed in [221, 222] (in the case of all Neumann boundary
conditions) and can also be derived from the overlap of generic Del Giudice, Di Vecchia, Fubini
(DDF) states [223] by following [224]. This is the same formalism that we will use in Section 3.2.4
to describe the closed string transitions that are relevant for the tidal excitations. We refer to
the literature for the derivation (see [220] and references therein) and here it suffices to say that
the operator describing the closed/open transition takes the form V̂ ∼ exp[âkNklâl], where the
operators â indicate the light-cone creation (for the open string) or annihilation (for the closed
string) oscillators of level k, l and Nkl are explicit coefficients known as Neumann coefficients. The
index for the level includes also zero where it represents the energy/momentum of the states. The
key idea is to start from the exact expression of the Neumann coefficients and take the Regge limit
to obtain simplified expressions in the gauge where the space-like part of the light-cone vector is
along the direction of momentum of the closed string (this choice will also be used later in the
closed string context, see (3.161)). For instance we can write the transition between an incident
closed string tachyon with vanishing transverse momentum and a generic open string state as
follows

V̂p⊥=0|0〉 =
√
κdNTp
2α′ δ

(
α′E2

s + 1−
∑

âi−nâ
i
n

)
e

1
2

∑
k,l

N33
kl â

i
−kâ

i
−l |0〉 , (3.149)

where here the â’s represent the open string oscillators satisfying [âi−n, â
j
k] = nδk+n,0δ

ij . The
delta function enforces the energy conservation and, as mentioned, means that the level of the
open string produced is large no ∼ α′E2

s . In the high energy regime we have no ≫ 1 and, as
shown in [220], the Neumann coefficient

N33
kl = − α2

α1(k + l)

(−kα1

α3

k

)(−lα1

α3

l

)
, (3.150)

where α1 (α2) are the dimensionless left (right) moving light-cone momenta for the incident closed
string, while α3 is the momentum of the open string produced. It is convenient to align the light-
cone along the direction of motion of the closed string which we take to be a tachyon. Then we
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have

α1 =
√
α′ (Es + p) =

√
no − 1 +

√
no + 3 ∼ 2

√
no

(
1 +

1

2no

)
,

α2 =
√
α′ (Es − p) =

√
no − 1−

√
no + 3 ∼ − 2√

no

(
1− 1

2no

)
, (3.151)

α3 = −2
√
α′Es = −2

√
no − 1 ∼ −2√no

(
1− 1

2no

)
,

where we used α′E2
s = no − 1 and α′p2 = no + 3 for the tachyon and took the large energy limit.

Then one can check that the Neumann coefficients (3.150) are suppressed as 1/no in this limit if
k, l are kept fixed. Instead if both k, l scale with no the Neumann coefficients stay finite

N33
kl ∼ nx+y−2 xxyy

Γ(1 + x)Γ(1 + y)

1

x+ y
, k = nox , l = noy . (3.152)

This means that we can describe the final open string state in terms of few oscillators in the
light-cone gauge (3.151). It is difficult to prove analytically (3.148) even in the case q = 0, but,
in this case, it is interesting to notice that it is easy to obtain a convincing numerical check in
the light-cone gauge mentioned above: one can expand the exponential in (3.149) and focus on
the contribution that is linear in N33 for each vertex. Then in (3.148) we obtain a contribution
with two sums over the open string levels which at high energy can be approximated with two
integrals. By recalling that in the bosonic case the indices i, j run from 1 to 24, we obtain the
following numerical estimate for (3.148)

12πα′κdNTp
2α′ no

∫ 1

0

dx

∫ 1

0

dy
x2x+1y2y+1δ(x+ y − 1)

Γ2(1 + x)Γ2(1 + y)
∼ 0.929

κdNTp
2

α′E2
s , (3.153)

which is already very close to the full result (3.144). By going to next order and including
in (3.149) the quadratic terms in the Neumann coefficients coming from the expansion of the
exponential, one can check numerically that this new contribution is subleading and changes the
numerical coefficient (3.153) from 0.929 to 0.998 [220]. It is clear that in this gauge the expansion
is converging very quickly so one can describe the open string produced in the transition at t = 0 as
a linear combination of states with a pair of âik oscillators plus small corrections with the insertion
of few other pairs (with the levels summing up to no globally).

We refer again to [220] for the generalization of (3.149) to the case of a non-vanishing trans-
ferred momentum q. By indicating the resulting closed/open vertex as V̂q⊥ , one can introduce its
impact parameter version via the usual Fourier transform obtaining

V̂b|0〉 =
∫

dd−p−2q⊥
(2π)d−p−2

eib~q⊥ V̂q⊥ |0〉 , (3.154)

where V̂q⊥ is similar to (3.149), but contains also linear terms in the exponential with the open
string oscillators [220]. In the high energy limit, the final result takes the form of a squeezed
coherent state

V̂b|0〉 =
1

(πα′ logα′E2
s )

d−p−2
2

V̂ e
− 1

α′ log α′E2
s

(
bi+i

√
α′
2

∑
k

1
k
âi
−k

)2

|0〉 , (3.155)

with the expected exponential factor e
− b2

l2s(Es) [220] which explicitly shows that the closed/open
string transition is suppressed unless the impact parameter is smaller than the effective string
length ls(Es). It would of course be interesting to generalise this analysis to the case where two
open strings are produced by looking at the cuts of the annulus contribution to the closed string
scattering. In this case there is a richer phase space for the final states and we expect that the
total energy is shared preferably equally among the open strings. However, as far as we know,
this analysis has not been carried out explicitly even in the bosonic case.
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3.2.3. The Reggeon vertex formalism

As usual in tree-level string theories, Eq. (3.117) displays an infinite set of equally spaced
poles. As discussed in the previous sections, in the high energy regime Es ≫ |t| the poles in the
s-channel merge to form a cut, while the poles in t-channel appear explicitly in the result (3.120)
and in the eikonal (3.134). In this regime the dominant states exchanged between the Dp-branes
and the scattered string have maximal spin at each mass level, i.e. they should lie along the
leading Regge trajectory of the closed string spectrum. In Appendix D.2.1 we show this quite
explicitly by following the approach of [225, 226] and even if our summary there focuses on the
bosonic theory, the generalization to the superstring case is straightforward. Here we follow the
approach taken in [149] that was applied to the string-brane scattering in [227, 228].

The basic idea is that, at high energy, the dominant region in the integral over the worldsheet
moduli (see for instance (D.28)) corresponds to diagrams where two closed string vertex operators

are very close: the size of the relevant region scales as (α′E2
s)

−1, as pointed out also in the
discussion after (D.31) for the bosonic string. Thus instead of calculating the full string amplitude
and then take the high energy limit, it is possible to first take a generalized OPE to define a new
ingredient, the “Reggeon vertex”, that then can be attached to the Dp-branes (or another Reggeon
vertex in the case of the string-string scattering) to obtain directly the high energy limit of the
amplitude. In this discussion we can keep the vertex operators Vi general as the only feature we
need is the exponential factor eip1,2X that is always present for states with nonzero momentum.
A disk amplitude with two closed strings takes a form similar to (D.28)

A0 = CS2

α′κd
8π

N

∫
d2z1d

2z2
dVSL(2,R)

〈0|V(−1)
1 (z1, z̄1)V(0)

2 (z2, z̄2)|B〉 , (3.156)

but with generic vertex operators27 Vi. In (3.156), CS2 is fixed as in (D.13) and the vertex
operators have a normalization factor κd

2π as in (D.27). By introducing z = z1+z2
2 and w = z1− z2

we can write the contribution from the exponential to the OPE as follows

V(−1)
1 (z1, z̄1)V(0)

2 (z2, z̄2) ∼ |w|α
′p1p2eiqX(z,z̄)+i

p1−p2
2 (w∂zX+w̄∂z̄X) O(z, z̄)

|w|2n1 |w|2n2
+ . . . , (3.157)

whereO(z, z̄) comes from the contribution of the non-exponential part of the vertices Vi and α′p2i =
−4ni. We are focusing only on the most singular term as w → 0 as the subleading contributions
are suppressed at high energies. As mentioned, the motivation for taking the OPE approximation
above is that the high energy result is dominated by the region of |w|2 ≤ 1/(α′E2

s )≪ 1. However
this means that we need to treat exactly the terms where w is enhanced by factor of Es, as in
the combination proportional to (p1 − p2) in the exponential of (3.157). By using the on-shell

conditions we can rewrite the first contribution in this exponential as α′p1p2 = −α′t
2 +2n1 +2n2.

In order to obtain a non-trivial result in the high energy limit, the OPE between the polynomial
part of the vertices should compensate the factor |w|2n1+2n2 coming from contraction of the
exponential part leaving a pole and this is why we are focusing on the leading term in (3.157). One
can check that such contribution can exist by considering states in the leading Regge trajectory

Vj ∼ P{Mi}
j P̄{Ni}

j eipjX that contain a polynomial of degree n1 in the picture −1 (or n2 +1 in the
picture 0) in ∂X and similarly for the antiholomorphic sector

P{Mi}
1 = ψ(M0

√
2

α′ i∂X
M1 . . .

√
2

α′ i∂X
Mn1) e−ϕ ,

P{Mi}
2 =

(√
2

α′ i∂X
(M0

√
2

α′ i∂X
M1 + (p2ψ)ψ

(M0 i∂XM1 − n2ψ
(M0∂ψM1

)

√
2

α′ i∂X
M1 . . .

√
2

α′ i∂X
Mn2) .

(3.158)

27Focusing on NS-NS states we need to take one vertex, say V1 in the superghost picture (−1,−1) and the other
in the picture (0, 0).
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The leading contribution is when all factors of ∂X and ∂̄X in both vertices are contracted either
among themselves or with the exponential part of the other vertex, yielding a factor of |w|−2n1−2n2 ,
and finally there is an extra factor of |w|−2 from the contraction of the terms with p2ψ (and p2ψ̄)

in the second term of P{Mi}
2 (and P̄{Mi}

2 ). When the leading term in the sum (3.157) is trivial,
then the transition between the states described by V1 and V2 is suppressed at high energies. Thus
we can isolate the dependence on w obtaining
∫

d2z1d
2z2

dVSL(2,R)
V1(z1, z̄1)V2(z2, z̄2) ∼ O(z, z̄) eiqX

∫
d2w

2π
|w|−α′t

2 −2ei
p1−p2

2 (w∂zX+w̄∂z̄X) , (3.159)

where we can set z = 1 and the factor of 2π in the measure comes from the residual conformal
invariance. We can then perform the integral over w and w̄ by using28

∫
d2u (|u|2)−A−α′t

4 eB(u+ū) = 2π
Γ
(
1−A− α′t

4

)

Γ
(
A+ α′t

4

) (−B2)A−1+α′t
4 , (3.160)

which can be checked by introducing a Schwinger parameter τ to rewrite the first factor as an
exponential and then by carrying out the Gaussian integration and the integration over τ .

In order to extract the energy dependence it is convenient to introduce a set of two light-cone
vectors e± such that

(e−)µ =
1√
2

lim
Es→∞

pµ2
Es

= − 1√
2

lim
Es→∞

pµ1
Es

, (e+e−) = 1 . (3.161)

Then in the case at hand, O contains just the superghost contributions and a factor of (p2ψ)(p2ψ̄)
from the vertex in the zero picture, and we can use (3.160) to capture the high energy behavior

∫
d2z1d

2z2
dVSL(2,R)

V(−1)
1 (z1, z̄1)V(0)

2 (z2, z̄2) ≃ e−iπ α′t
4 (α′E2

s )
1+α′t

4

Γ
(
−α′t

4

)

Γ
(
1 + α′t

4

) O′ eiqX (3.162)

ψ+e−ϕψ̄+e−ϕ̄

(
i

√
2

α′ ∂X
+

)α′t
4
(
i

√
2

α′ ∂̄X
+

)α′t
4

,

where O′ is the result of the contractions between the string coordinates in V1 and V2 as discussed
after (3.158). When inserted in (3.156), the operatorial part of (3.162) is trivial as the holomorphic
and antihomorphic parts are contracted among them, while O′ is a c-number that by construction

follows from the correlator 〈V(−1)
1 eiqXV(0)

2 〉 Thus we can factorize the amplitude (3.156)

A0 ≃ 〈V(−1)
1 V(0)

2 V
(−1)
R 〉ΠR 〈V(−1)

R |B〉 , (3.163)

where we introduced a Reggeon vertex V(−1)
R describing the collective contributions of the states

exchanged in the closed-string channel, the Reggeon propagator ΠR and the couplings to the
Dp-branes described by the boundary state |B〉 [229, 230]. The Reggeon vertex is basically given
by (3.162)

V(−1)
R = κd


ψ+e−ϕ

(√
2

α′ i∂X
+

)α′t
4





ψ̄+e−ϕ̄

(√
2

α′ i∂̄X
+

)α′t
4


 eiqX . (3.164)

The factors of
√
α′Es in (3.162) are automatically produced when inserting the Reggeon vertex in

the 3-point correlator in (3.163) by performing the contraction between ∂X+ and the exponential

28The factor 2 in front comes from the normalization of d2w discussed after (D.14).
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factors eip1,2X , see (D.38). The split between the propagator and the boundary state contribution
is defined as follows for later convenience, see the discussion after (3.178),

ΠR =
1

2π
e−iπ α′t

4

Γ
(
−α′t

4

)

Γ
(
1 + α′t

4

) , 〈V(−1)
R |B〉 = 2π

NTp
2

Γ

(
1 +

α′t
4

)
. (3.165)

We can use the OPE with the supercurrent to obtain the Reggeon vertex in the (0, 0) picture from
the expression in the (−1,−1) picture given in (3.164) obtaining

V(0)
R = κd

[
− 2

α′ ∂X
+∂X+ − iqψψ+∂X+ − α′t

4
ψ+∂ψ+

](√
2

α′ i∂X
+

)α′t
4 −1

(3.166)

[
− 2

α′ ∂̄X
+∂̄X+ − iqψψ̄+∂̄X+ − α′t

4
ψ̄+∂̄ψ̄+

](√
2

α′ i∂̄X
+

)α′t
4 −1

eiqX .

In conclusion we have constructed a Reggeon vertex operator VR both in the picture 0 and in the
picture −1 that, when inserted in (3.163), gives the correct high energy behavior of the amplitude
for any choice of the two vertex operators V1 and V2.

3.2.4. The string eikonal operator: the closed string sector

The main advantage of the approach discussed in the previous section is that the external states
in the string-brane scattering are arbitrary. So it is possible to go beyond the scattering of massless
states discussed in Section 3.2.1 and consider inelastic transitions of course focusing always on the
leading contribution at high energy that has the same scaling as the elastic amplitudes (3.120).
As we will see, such transitions are unavoidable in string theory and promote the eikonal phase
discussed in Section 3.2.1 to an eikonal operator that acts on the Hilbert space of the closed string
excitations [8, 10]. This is an effect of the tidal forces acting on the scattered string that get
enhanced at high energies [231]. As we will see explicitly in Section 4.2.2, in the case at hand
these tidal forces are related to the gravitational field produced by the Dp-branes.

There are several ways to derive the eikonal operator related to tidal excitations. In the
original approach [8, 10], one obtains the result by factorizing elastic loop amplitudes, where
arbitrary tidally excited states appear in the intermediate channel. Here we follow the opposite
approach and study directly inelastic tree-level amplitudes. Various techniques can be used to
connect the eikonal operator and the string amplitudes [227, 228, 232]: here we will use the
results obtained in the previous section and use the Reggeon vertex as the object that encodes
all the contributions relevant at high energies. In practice we will derive an explicit expression
for the correlator 〈V2VRV1〉 appearing in (3.163) (even though it will be simpler to use the (0, 0)
picture version in (3.166) so that both external states V1,2 can be written in the (−1,−1) picture).
Alternative approaches include the direct evaluation of the inelastic correlators by using vertex
operators or the use of the Green–Schwarz 3-string vertex [233, 234], as discussed in detail in [232].

The basic idea is to use the DDF formalism [223] (see also [235, 236] and [237] for an explicit
discussion of the NS sector of superstring theory) to deal with the vertex operators V1,2. For
more recent work on the DDF states see [238–242]. So we briefly review the key ideas of such
construction. The starting point is an auxiliary tachyonic state with momentum pT

|pT ; 0〉 ,
α′

2
p2T = 1 . (3.167)

Then we need to introduce a null vector k whose scalar product with pT is one, and (d − 2)
space-like vectors ǫj that are perpendicular to k. In summary we have

α′

2
pTk = 1 , ǫjk = 0 , ǫiǫj = δij . (3.168)
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Focusing on the NS sector for simplicity, the physical states are constructed by acting on the
ground state (3.167) with the following DDF oscillators

A−n,j = −i
∮

0

dw (ǫj)µ

(√
2

α′ ∂X
µ + in(kψ)ψµ

)
e−inkXL(w) , (3.169)

B−r,j = i

∮

0

dw (ǫj)µ

(√
2

α′ ∂X
µ (kψ)− ψµ(k∂X) +

1

2
ψµ(kψ)

(k∂ψ)

(k∂X)

)
e−irkXL(w)

(ik∂X)
1
2

,

where n (r) is a positive integer (half-integer). Of course a similar definition holds for the anti-
holomorphic part with the exchange XL → XR, ψ → ψ̄, see Appendix D.1.2 for our string
conventions. As usual, it is necessary to impose the GSO projection: in order to describe the
matter part of the states in the (−1,−1) picture, we have to select only the states containing an
odd number of B−r,j , so the first non trivial physical state is obtained by applying the operator
B− 1

2 ,j
.

We are now ready to write explicitly the Reggeon vertex (3.166) in the DDF basis for the
incoming and outgoing states

〈V(−1)
2 V(0)

R V
(−1)
1 〉 , (3.170)

where |V(−1)
i 〉 are the operators corresponding to the DDF states introduced above. The general

overlap between three DDF states was discussed in [224] in the bosonic case and in [237] for the
NS string and evaluating the contour integrals in the definition of the DDF oscillators (3.169)
yields the Neumann coefficients defining the generic couplings among three string states29. Eval-
uating (3.170) turns out to be much simpler and the key point is that we can choose k to simplify
the high-energy limit of (3.170), which can be done by choosing k to be along e+ introduced in
(3.161). Then things become particularly simple in the fermionic sector: the Reggeon vertex does
not contain any ψ− (or ψ̄−) insertions, so no contractions are possible for the terms proportional
to kψ (or kψ̄) which then can be set to zero. Then for our propose we can approximate the DDF
oscillators as follows

A−n,j → −i
∮

z

dw (ǫj)µ

√
2

α′ ∂X
µe−inkXL(w) , (3.171)

B−r,j → −i
∮

z

dw (ǫj)µψ
µ(k∂X)

1
2 e−irkXL(w)

where the contour integrals are around the tachyon exponential factor eipT X(z). We can also
approximate the Reggeon vertex in (3.166) keeping only:

V(0)
R ≃ κd

(√
2

α′ i∂X
+

)α′t
4 +1(√

2

α′ i∂̄X
+

)α′t
4 +1

eiqX . (3.172)

The Reggeon vertex does not depend on the transverse fermionic coordinates ǫjψ, so the oscillators
B and B̄ must pair up between the incoming and the outgoing state and the contour integrals in
their definition reduces to the ones appearing in the 2-point function. In summary the Reggeon
vertex in the fermionic sector acts simply as the identity operator. For the bosonic transverse
oscillators (3.171) there are two options: they can be paired between the two external states as
in the fermionic case, which of course requires that they appear in identical pairs, or they can
be contracted with the exponential factor of the Reggeon vertex (3.172). The latter option is the
technical origin for the inelastic transitions we are interested in. Each one of such contractions

29The same result is obtained in the light-cone approach, see [243] for the bosonic case and [233, 234] for the
superstring.
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yields a factor of ±
√

α′

2 ǫjq times an integral over the insertion w which turns out to be equal

to one. The same result holds also for the anti-holomorphic modes. Finally the level matching
condition implies that the difference of the total holomorphic and anti-holomorphic mode number
vanishes for each external state. So we can equate this difference for the first and the second state
and then take away the contribution of all modes that are paired since they contribute equally to
both sides. Thus we see that the bosonic modes that are contracted with the exponential factor
in the Reggeon vertex satisfy the following constraint

∑
n1 −

∑
n̄1 =

∑
n2 −

∑
n̄2 . (3.173)

We can then summarize the action of the Reggeon vertex in (3.170) as an exponential con-
structed with the DDF bosonic oscillators and the transferred momentum q

V(0)
R → κd

(
α′E2

s

)1+α′t
4

∫ 2π

0

dσ

2π
: eiqX̂ : , (3.174a)

X̂j = i

√
α′

2

∑

n6=0

(
An,j

n
einσ +

Ān,j

n
e−inσ

)
, (3.174b)

where the integral over σ enforces the constraint (3.173) and the energy dependent factors follows
from the contraction of the fields ∂X+ in (3.172) with the exponential part of the external states.
The exponential is normal ordered so the positive modes are contracted with the incoming state
|V1〉 and the negative modes with the outgoing one 〈V2|.

An advantage of the approach based on the Reggeon vertex discussed here is that it is fully
covariant and so it can be used to provide a full characterization (in terms of the little group
SO(d − 1)) of the (massive) excited states produced by tidal excitations. It is then possible to
carry out explicit checks between the results obtained by using (3.174) and those obtained by the
direct evaluation of the corresponding covariant amplitudes, see [232] for a detailed discussion of
the transition between the ground state to the first and the second massive level. All results are
consistent with the key properties of (3.174): the excitations added or damped by the tidal forces
involve only the bosonic oscillators and are always in the spatial direction perpendicular to the
(fast) motion of the scattering string

We can use (3.174) to write the high-energy result for the string-brane scattering as an operator
instead of a matrix element between two specified states as in (3.163)

Â0 ≃
NTpκd

2
e−iα

′t
4 Γ

(
−α

′t
4

)
(α′E2

s )
1+α′t

4

∫ 2π

0

dσ

2π
: eiqX̂ : , (3.175)

where we used (3.165). Notice that the non-operatorial overall factor matches that of Eq. (3.120).
As usual we can derive the eikonal in the impact parameter space by using (3.123). As we discussed
in Section 3.2.1, when the impact parameter becomes of the order of ls(E) =

√
α′ ln(α′E2

s ), the
dynamics is dominated by the open strings attached to the Dp-branes and the picture of a closed
string to closed string scattering is not reliable. So, let us focus on the case b≫ ls(Es) where α

′t
is very small and the elastic factor in (3.175) reduces to the field theory result (3.121). Then it is
straightforward to perform formally the Fourier transform (3.123) at the operatorial level, since
the last factor in (3.175) provides just a shift b→ b+ X̂ in the result

2δ̂0 =

∫
dd−p−2q

(2π)d−p−2

Â0(Es, q
2)

2Es
eibq

≃
∫

dd−p−2q

(2π)d−p−2
NTpκdEs

∫ 2π

0

dσ

2π

: eiq(b+X̂) :

q2
=

∫ 2π

0

dσ

2π
: 2δ0(b + X̂) : ,

(3.176)

where we followed the steps in (3.127) for b2 ≫ l2s(Es) and wrote explicitly the normal ordering
prescription. Thus, at the level of the leading eikonal, the generalization to the full string level
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takes the appealing form of an average of the effective QFT result, but with the appropriate
“local” impact parameter for each point along the string: the part of the closed string that are
closer to the Dp-branes feel a stronger gravitational force than those that are further apart. As
we will see in Sections 4.2.2 and 4.2.3 this is at the basis of the tidal effects that are enhanced in
the high energy limit.

3.2.5. Graviton scattering in bosonic string theory

In this subsection we show that, in sharp contrast with what happens in field theory discussed
in Section 3.1.5, the terms appearing in the graviton scattering in the bosonic string that come
from a quadratic (Riemann)2 and a cubic term (Riemann)3 do not contribute to leading order
at small impact parameter. Therefore in the bosonic string there is no risk of negative Shapiro
time delay. The disk amplitude with two closed string tachyons is discussed in Appendix D.2.
In the Regge limit it reduces to Eq. (D.33) from which one can derive the eikonal (D.35) for the
tachyon scattering off a stack of N coincident Dp-branes. In the same regime the disk amplitude
of a massless state is given instead by:

AGG
0 ∼ κdTpN

2
e−iπ α′t

4 (α′E2
s )

1+α′t
4 Γ

(
−1− α′t

4

)
(3.177)

×
(
(ǫ1ǫ2)−

α′

2
(ǫ1q)(ǫ2q)

)(
(ǭ1ǭ2)−

α′

2
(ǭ1q)(ǭ2q)

)
,

where, as usual, we split the closed string polarization into its holomorphic and anti-holomorphic
part Gµν = ǫµǭν . Notice that the quantity in the first line in (3.177) is just the elastic scattering
of a tachyon on the Dp-branes (D.33). This result can be compared with that obtained for the
supersymmetric case in Section 3.2.1, which we report below by combining (3.118) and (3.120)

A0 ∼ (ǫ1ǫ2)(ǭ1ǭ2)
κdTpN

2
Γ

(
−α

′t
4

)
e−iπ α′t

4 (α′E2
s )

1+α′t
4 . (3.178)

A first qualitative difference between (3.178) and (3.177) is that the leading Regge trajectory
in the latter includes the tachyonic (ground) state of the bosonic theory. The second difference
is that even in the high energy Regge limit the bosonic amplitude has a non-trivial dependence
on the polarization tensors, see the second line in (3.177). As emphasized in [154], this is a
direct consequence of the modification of the three-graviton vertex in the bosonic theory which
yields a quadratic (Riemann)2 and a cubic term (Riemann)3 in the effective action, while in the
maximally supersymmetric case these corrections are forbidden by supersymmetry. Because of
this, the Lorentz structure in (3.177) is the same as the one appearing in Section 3.1.5 except
that in the tree-level graviton-brane scattering there is a single parameter (

√
α′) in the three-

point vertex, while in the effective QFT description (3.74) there are in general two independent
parameters (l2 in (3.76) and l4 in (3.77)).

We can follow the same approach discussed in Section 3.2.1 for the superstring and Appendix D.2
for the bosonic case and derive the eikonal for the graviton scattering: it is sufficient to rewrite
the momentum transfer q appearing in the second line of (3.177) in terms of a derivative with
respect to the impact parameter and use the result (D.35) for the first line of (3.177). Thus we
obtain

2δ0 =

(
(ǫ1ǫ2) +

α′

2
(ǫ1∂b)(ǫ2∂b)

)(
(ǭ1ǭ2) +

α′

2
(ǭ1∂b)(ǭ2∂b)

)

× κdNTpEs

4π

Γ
(
1 +

α′∇2
b

4

)

1− α′∇2
b

4

[
(πb2)−

d−4−p
2 γ

(
d− 4− p

2
,
b2

Y

)]
.

(3.179)

For the current analysis we ignore the absorptive effects, related to the imaginary part of Y , and
concentrate our attention on the leading real part by replacing Y with l2s(Es), see Eq (3.125). By
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Figure 11: Scattering of two massless closed strings represented by blue and green circles. The thick black line
corresponds to closed strings exchanged in the t-channel. The thin red line to very massive closed strings in the
s-channel.

focusing on the regime
√
α′ ≪ b ≪ ls(Es) we can use (3.128), keeping only the term with k = 0,

and approximate the square parenthesis in (3.179) as follows

[
(πb2)−

d−4−p
2 γ

(
d− 4− p

2
,
b2

Y

)]
=

(πl2s(Es))
− d−4−p

2

d−4−p
2

+O
(

b2

l2s(Es)

)
. (3.180)

This means that the differential operators in the Γ-functions and in the polarization dependent

prefactor act on a function of b2

l2s(Es)
that starts with a constant, thus they do not contribute to

leading order at small impact parameter. Notice that also the tachyonic pole of the bosonic string
becomes harmless.30

The pattern discussed above is in sharp contrast with the QFT case discussed in Section 3.1.5,
since in that case the eikonal (3.81) for the scattering of massless states contained terms that grow
in the regime where the impact parameter is smaller than the length scales weighting the higher
derivative corrections b≪ l2,4 (as we mentioned ℓs in the string analysis plays the role of both l2
and l4 of the effective description). As we will see in Section 4.2.4 this plays a crucial difference
in the behavior of the deflection angle and the Shapiro time delay obtained in two cases.

3.2.6. String-string scattering at tree level

Although for pedagogical reasons we have started our discussion of gravitational scattering in
string theory from the case of string-brane collisions, historically the first case considered was the
one of (massless) string-string collisions at transplanckian energy in (Type II) critical (i.e. d = 10)
superstring theory (see Fig. 11). Such a theory is ghost and tachyon free and looks like a fully
consistent quantum theory of gravity at least in perturbation theory. In that same approximation
it differs from GR, even at large distance, because of the presence of other gravitationally coupled
massless modes, besides the graviton. However, by going to high-energy, graviton exchange (or
better the Regge trajectory on which it lies) dominates because of its higher spin and therefore
by studying string-string collisions at transplanckian energy one can draw interesting lessons for
generic theories of quantum gravity involving extended objects. For the original motivations for
studying such gedanken experiments we refer to the introductory Section 1.1.

30This is essentially due to the fact that tachyon exchange is suppressed by two powers of the energy with respect
to graviton exchange and therefore it is negligible in the high-energy limit.
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Figure 12: A broad-brush phase diagram from collapse criteria, where the effective string scale ls(s) appearing on
the vertical axis is defined in (3.187). We also show, qualitatively, the impact parameters bt and br below which
string-size (tidal) and radiative corrections, respectively, start to be relevant in the weak gravity regime. We also
illustrate in the two panels how the relative importance of the two kinds of corrections strongly depends on D. See
Section 4.2.5 for further details.

The original idea, in the late eighties, was to consider the collision of massless strings (e.g.
gravitons or dilatons) and to study the process in a parameter space containing three relevant
length scales: the fundamental length ℓs of string theory, see Appendix D, the impact parameter
b of the process, and the characteristic scale of the geometry associated with the total center-of-

mass energy R ∼ (GE)
1

D−3 . Note that this latter scale depends on Newton’s constant G, which, in
string theory can be traded for the string coupling gs. By considering the regime of weakly-coupled
string theory, gs ≪ 1, one can arguably dispose of a fourth length scale, the Planck length ℓP ,
since it will be much smaller than ℓs, see again Appendix D. Since the physics of the process can
only depend on dimensionless ratios, the final parameter space is effectively two-dimensional.31

The other free parameter is the number D of non-compact spatial dimensions, having assumed
the remaining (d−D) to be very small and static.

The parameter space is naturally divided in three regions, each one characterized by which
length scale dominates over the other two (see Fig. 12). In region I, one has b ≫ ls(s), R corre-
sponding to a weak-gravity, point-like regime. In region II, the string scale ls(s) dominates over
b and R. We may call it the string-gravity regime because it is here that string-size effects are
strongly enhanced and deviations from GR are most evident. Finally, when R > ℓs, b we enter in
the strong-gravity regime where, classical gravitational collapse is expected to occur. A sketch of
a possible critical line separating the collapse from the “dispersion” regime is shown in Fig. 12.
It uses the physical expectation –following from the collapse criteria discussed in Section 2.4 –
according to which the size of the colliding objects plays the role of an additional contribution to
the effective impact parameter. This is why the critical line is expected to bend downwards and hit

31One can also neglect the mass of the colliding strings, first by taking the initial states to be massless, and then
by using the dynamical fact that only the excitation of relatively light massive strings is induced by tidal forces
(see Section 4.2.2).
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the real axis when R ∼ ℓs (or
√
s ∼ g−2

s Ms). Obviously, if one were able to solve completely the
problem in the collapse region by constructing a unitary S-matrix, one would solve the (in)famous
information paradox raised by Hawking in the seventies [19].

We should finally mention that dividing the parameter space in just three regions is a gross
approximation. There are interesting sub-regions, as we will discuss in Section (4.2.5).

This being said, let us start by considering, as the simplest example, the tree-level four-dilaton
amplitude. It is fully symmetric in all three Mandelstam variables and given by

A0(s, t) = 8πG

(
tu

s
+
su

t
+
st

u

)
Γ(1− α′s

4 )Γ(1 − α′u
4 )Γ(1 − α′t

4 )

Γ(1 + α′s
4 )Γ(1 + α′u

4 )Γ(1 + α′t
4 )

(3.181)

with s + t + u = 0. In the Regge limit, s → ∞ at fixed t, using (3.119) on the four Γ-functions
that depend on s, it becomes:

A0(s, t) ∼
32πG

α′
Γ(−α′

4 t)

Γ(1 + α′

4 t)

(
α′

4
s

)2+α′
2 t

e−iπ α′
4 t . (3.182)

It is possible to obtain directly the high-energy formula above by using the approach of Sec-
tion 3.2.3 where the amplitude is constructed by gluing together two 3-point correlators involving
a Reggeon vertex

CS2〈V1V4VR〉
(
α′

8π
ΠR

)
CS2〈VRV2V3〉 =

4

α′

Γ
(
−α′t

4

)

Γ
(
1 + α′t

4

)e−iπ α′t
4

[
κd
(
α′E2

s

)1+α′t
4

]2
. (3.183)

The square parenthesis follows from the two correlators involving the Reggeon vertex, where each
field along the plus light-cone direction takes the leading value

√
α′Es, where Es is the energy of

each initial state so s = (2Es)
2 (recalling that we are working in the center-of-mass frame). The

overall prefactor combines the various normalizations and Reggeon propagator (3.165) and, by
using (D.13) and (D.3), one can check that (3.183) agrees with (3.182). In the field theory limit
this result reduces to

A0(s, t) = 8πG
s2

(−t) . (3.184)

In the same limit, the leading eikonal phase is given by

2δ0(s, b) =

∫
dD−2q

(2π)D−2
eiqb
A0(s, t)

2s
= πG

sΓ(D−4
2 )

π
D−2

2 bD−4
. (3.185)

This can be compared with (2.23) showing that, indeed, GR and string theory share the same
ultra-relativistic large impact parameter limit.

However, even at arbitrarily high energy, this agreement fails to persist at somewhat lower
values of b. Naively, one would expect this to happen when b becomes O(ℓs), possibly modulo
a logarithmic enhancement as in (3.125). This turns out not to be the case. As we will discuss
in Sect. 4.2.5, at a bt parametrically larger than ℓs (see Eq. (4.120)), the phenomenon of tidal
excitation kicks in32 as a result of the gravi-Reggeon exchange already discussed in Sections 3.2.3,
3.2.4 in the case of string-brane collisions, with the only difference that now the Reggeon vertex
affects both strings.

32This phenomenon was first discussed in [10] where it was called diffractive excitation in analogy with a well-
known phenomenon in hadronic physics. The true physical interpretation in terms of tidal forces was first given by
Giddings [244].
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One can follow the same steps discussed in (3.127) and rewrite (3.182) in impact parameter
space as follows

2δ0(s, b) = Gs
Γ(1− α′

4 ∇2)

Γ(1 + α′

4 ∇2)

[
(b2π)−

D−4
2 γ

(
D − 4

2
;
b2

Yc

)]
, (3.186)

where

Yc = l2s(s)− iπα′ , l2s(s) = 2α′ log
α′s
4

. (3.187)

For b≫ ls(s) we can ignore the ratio of two Γ-functions and use (3.130) obtaining

2δ0(s, b) ∼
GsΓ(D−4

2 )

(
√
πb)D−4

− Gs (πb2)−
D−4

2 e−
b2

Yc

(
b2

Yc

)D−6
2

+ · · · (3.188)

From (3.188) we have

Re 2δ0(s, b) ∼
GsΓ(D−4

2 )

(
√
πb)D−4

− Gs (πb2)−
D−4

2 e
− b2

l2s(s)

(
b2

l2s(s)

)D−6
2

(3.189)

for the real part and

Im2δ0(s, b) ∼
πα′

l2s(s)
Gs(πl2s(s))

−D−4
2 e

− b2

l2s(s)

(
1− D − 6

2

l2s(s)

b2

)
(3.190)

for the imaginary part. As in the string-brane case, the exponentially suppressed term provides
the leading imaginary part.

The real part of (3.186) has an amusing shock-wave interpretation in terms of the generalized
Aichelburg–Sexl metrics discussed in Section 2.4. Neglecting again the correction coming from
the ratio of the two Gamma-functions, it can be shown [245] to correspond to a shock-wave metric
where the function f(x⊥) is obtained from Eq. (2.57) by substituting, as in Eq. (2.61), E(1) times
the transverse δ-function with a Gaussian profile:

ρ(x⊥) = E(1) e
− x2

⊥
l2s(s) (

√
π ls(s))

2−D , (3.191)

i.e. with an approximately uniform-density beam of size ∼ ls(s) that reduces to the delta function
of (2.57) for ls(s) → 0. In other words, while the delta-function profile provides only the first
term of (3.188) as shown in (2.60), the Gaussian profile provides instead the entire real part of
(3.186). The proof of the above statement is straightforward. Following ’t Hooft’s derivation of
the leading eikonal phase sketched in Section 2.3, we know that what determines the phase is,
up to an energy factor, the time delay ∆v suffered by one particle as it moves in the shock-wave
produced by the other particle. According to Eq. (2.59), this time delay is determined by the
quantity f(x⊥) appearing in the (generalized) AS metric (2.55). Therefore, we can either extract
f(x⊥) directly from (3.186) and determine the transverse profile of the beam by using (2.57) with
the profile (3.191) or, given the profile (3.191), by using (2.57) to fix first f(b) and then, from it,
the real part of (3.186).

Without repeating here the discussion given above in the case of string-brane collisions we now
simply give the analog of (3.176) for string-string scattering:

δ̂0 =
1

4π2

∫ 2π

0

∫ 2π

0

dσ1dσ2 : δ0(E, b+ X̂1(σ1)− X̂2(σ2)) : , (3.192)

where X̂1,2 are Hermitian (and commuting) closed-string position operators for each incoming
string, and δ0 is the leading eikonal (3.185).
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For b ≫ ls(s), δ0(E, b) is real and thus δ̂0 is Hermitian up to exponentially small corrections.
The physical interpretation of (3.192) is that the graviton is exchanged between one point on
one string and one point on the other string. The (transverse) coordinates of each string are
however operators and (3.192) picks up an expectation value of the transverse distance between
those two points. The physical consequences of the shift in b, tidal excitations due to the extended
nature of quantum strings, will be discussed in Section 4.2.2. Here we just mention that, unlike
the singular point-like case, the string-corrected eikonal has a finite b → 0 limit and a smooth
expansion in b around it. This is the string-string counterpart to what we have already discussed
in the string-brane collision, see (3.134). One finds [10]:

Re 2δ0 ∼
2Gs

~

1

(πl2s(s))
D−4

2

(
1

D − 4
− b2

(D − 2)l2s(s)
+ · · ·

)
. (3.193)

Another, even more distinctive feature of string theory as opposed to traditional QFT, is that,
already at tree level, graviton exchange does not correspond to a real scattering amplitude. This
can be seen immediately in (3.182) through its last factor, typical of Regge-pole behavior. This
imaginary part comes from the presence of s-channel poles in the tree-level Shapiro–Virasoro am-
plitude corresponding to the heavy (i.e. of mass

√
s) closed-string intermediate states produced in

that channel. It is the very essence of Dolen–Horn–Schmid duality [246, 247], as it is incorporated
in string theory, that this imaginary part matches, on average, the imaginary part corresponding
to the Regge-pole behavior given in (3.182).

Note, however, that the imaginary part of the amplitude, unlike the real part, is order α′

and lacks the graviton pole at t = 0. This lack of a singularity corresponds, in b-space to an
exponential cut-off at large impact parameter. More quantitatively one finds [10]:

Im 2δ0(s, b) ∼ Gsπ2α′ (πl2s(s))
−D−2

2 e
− b2

l2s(s) . (3.194)

This result fully justifies having neglected Im2δ0 in the previous, weak-gravity (large b) regime.
At higher string-loop level we expect multiple string formation in the s-channel. In Section 4.2.5
we will discuss how one can have a qualitative idea of the dominant process as a function of
the total initial energy up to the already mentioned expected threshold of gravitational collapse,√
s ∼Msg

−2
s .

From (3.189) and (3.193) we can compute the deflection angle for small and large impact
parameter. We get

Θ =
4G
√
s

bD−3

Γ(D−2
2 )

π
D−4

2

→ 4G
√
s

b
, b≫ ls(s) , (3.195a)

Θ =
8G
√
s b

(D − 2)π
D−4

2 lD−2
s (s)

→ 4G
√
sb

l2s(s)
, b≪ ls(s) , (3.195b)

where the arrow indicates the limit D → 4. The first, for large impact parameter, coincides with
the one of a massless point-particle moving in the Aichelburg–Sexl metric (see (2.50) that can be
derived from (2.60)). The second instead is intrinsically stringy because of the presence of α′.
Since the deflection angle increases with b for small b and decreases with b for large b, it is to
be expected that it will have a maximum at some intermediate b. We will discuss this and what
happens in the intermediate region in Section 4.2.5.

3.2.7. Brane-brane scattering at leading order

It is possible, and of course interesting, to study the scattering between non-perturbative
objects in string theory. When dealing with D-branes, one can use an exact CFT description in
terms of the open strings attached to them as we have already done in the string-brane analysis.
The calculation by Polchinski [248] for two static parallel D-branes was immediately generalised
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to the case of moving D-branes [249], see [250] for a derivation in the closed string channel by
using the boundary state formalism briefly summarised in Appendix D.1.4. The case of D0-brane
scattering is of particular interest because in this setup one can see the emergence of the 11-
dimensional Planck length ℓ11 which is the fundamental scale of M-theory [251]. Here we will
not provide a detailed analysis of the eikonal scattering for the brane-brane case, but will just
highlight some similarities and differences with the more detailed analysis of the previous sections.

Technically the leading order eikonal for the D-brane scattering is captured by a world-sheet
whose topology is an annulus. The boundary conditions are given by reflection matrices that
generalise the one discussed in (D.23), as they now have to encode the information about the
velocities of the D-branes. At large distances, this diagram is best described as a long thin
cylinder and is dominated by the exchange of massless closed strings. Focusing on the case of
the scattering between two D0-brane bound states, the fields mediating such interaction are the
dilaton, the Ramond-Ramond vector and of course the graviton. Since type IIA string theory can
be viewed as M-theory compactified on a circle and D0-branes are just 11-dimensional supergravity
fields with non trivial Kaluza–Klein numbers, it is not surprising that the scattering between D0-
branes falls in the setup described in Section 3.1.4. A difference with respect to the configuration
summarised in (3.64) (beside the fact that the starting point is now a 11-dimensional theory) is
that the KK-modes lie in the same direction. As discussed in [211, 167] this amounts to generalising
the factor of σ2 in the numerator of (3.68) to (σ − cosφ)2 with φ = 0 for KK-modes in parallel
directions (rather φ = π/2 which is appropriate for the choice made in (3.64)). Thus for D0-brane
scattering we have the following large distance eikonal phase

2δ0 =
2m1m2Gd(σ − 1)2Γ

(
d−4
2

)
√
σ2 − 1(πb2)

d−4
2

. (3.196)

In this case we need to set d = 10 for type IIA theory and the mass of each D0-brane bound
state is simply mi = niτ0, where ni is the number of D0-branes constituents (identified with the
KK-mode in the M-theory picture) and τ0 is the mass of a single D0-brane see (D.5). In the
discussion below we focus for simplicity on the case ni ∼ O(1).

By lowering the impact parameter, we expect to see the inelastic channels typical of string
theory. For instance at high energy (s≫m2

i ), there should be a scale bt below which the inter-
nal degrees of freedom of each D0-brane bound state are excited and the elastic amplitudes is
suppressed. This is the analogue of what was discussed in Sect. 3.2.4 for the case of elementary
strings, but now the excitations are open strings starting and ending on the same D0-brane bound
state. From the argument given in Eq. (4.122) we expect that, in the case of D-brane scattering,
the scale for these tidal excitations is b8t ∼ gsG10α

′s. The extra factor of the string coupling gs
in comparison to the string case is due to the tension of the D-branes which is larger by 1/gs
with respect to that of fundamental strings (equivalently the production of a D-brane excitation
requires a closed-open string vertex and so it is suppressed by gs). It would be interesting to check
this with an explicit calculation and provide a precise description for these inelastic transitions in
terms of an eikonal operator. To our knowledge, this has not been done yet in the literature.

Instead, the string gravity regime depicted in Fig.12 was already discussed in the original
paper [249] by looking at the imaginary part of the annulus partition function in the full string
result. In this case the degrees of freedom responsible for this suppression of the elastic D-brane
scattering are the open strings stretched between the two colliding D-brane bound states. Naively
one would expect that this channel opens when the impact parameter is of the order of the string
scale, but exactly as it happens in the string-brane (Sect. 3.2.1) and the string-string (Sect. 3.2.6)
cases, there is an enhancement factor scaling logarithmically with the center of mass energy and
so again the relevant scale is ls(s) defined in (3.187). Thus in the ultrarelativistic regime string
effects dominate short-distance brane-brane scattering.

Finally, at low velocities the interaction between D0-branes is weaker as already suggested
by (3.196) which vanishes as (σ − 1)2 ∼ p4∞. In this regime the scattering between two D0-
branes remains essentially elastic, although quantum mechanical, up to 11-dimensional Planck
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length [251]. It remains to be seen whether the process becomes (semi)classical down to b = ℓ11
if one considers the collision of two bound states with ni ≫ 1 D0-branes.

4. Exponentiation and the subleading 2–body eikonal

In the previous two sections we have extracted the leading eikonal δ0 in various gravitational
theories from the tree-level amplitude. Its exponentiation, as we have seen, is equivalent to the
statement that, in the (n−1)-loop amplitude in impact-parameter space Ãn−1, the leading classical
term equals − i

n! (2iδ0)
n. From the leading asymptotics of the resummed amplitude 1+ iÃ ≃ e2iδ0 ,

one can then compute classical observables, like the deflection angle and the Shapiro time delay,
for collisions with large impact parameter, b≫ R with R the typical size of the colliding objects.

However, the result obtained in this way is only accurate to leading order in the small parameter
R
b . How can we compute the corrections to this leading behavior? Since this regime is the
one characterized by weak gravitational interactions between the colliding objects, an equivalent
question is: How do we retrieve the classical PM expansion of the deflection angle? The answer
is that we have to calculate higher-order corrections in the eikonal phase δ = δ0 + δ1 + · · · and,
as we shall see, this can be done by looking at subleading terms in the classical expansion of loop
diagrams. In this section, we perform this analysis for the one-loop amplitude Ã1.

Indeed, by the exponentiation of 2iδ0, the leading term in the classical limit of iÃ1 must be
given by 1

2! (2iδ0)
2 and is thus proportional to 1

~2 , but the one-loop amplitude contains also an
additional sub-leading term that is again proportional to 1

~
as it happened for the tree diagram

itself. The former term is sometimes referred to as “super-classical” or as an “iteration”, because
it is the most singular in the classical limit and it does not provide any new information compared
to the tree-level amplitude. The latter identifies instead a new classical term and one can extract
from it the sub-leading eikonal 2iδ1. It is natural to conjecture that also this sub-leading eikonal
2iδ1 exponentiates and this can be argued on general grounds [102, 36, 252], although we will not
discuss this proof in detail here. As we will see, its contribution is indeed subdominant for large
impact parameter with respect to the leading one, i.e. it is suppressed by one more power of R

b .
Of course, the one-loop amplitude also contains quantum terms that scale like ~

n with n ≥ 0.
We will see that, although these extra terms do not contribute to the eikonal phase at one loop,
they play an important role in the extraction of the sub-sub-leading parts of the eikonal at two
loops.

More concretely, since at each order of the perturbative expansion we find additional classical
terms that ought to exponentiate contributing to higher sub-leading parts of the eikonal and
quantum terms that do not need to exponentiate,33 we are then led to the conclusion that, in the
classical limit, the full amplitude in impact parameter space is encoded in the following expression:

1 + iÃ(s, b) = [1 + 2i∆(s, b)] e2iδ (4.1)

where, schematically, in D = 4

2δ = 2δ0 + 2δ1 + 2δ2 + · · · =
GE2

~

(
log b+

GE

b
+

(
GE

b

)2

+ · · ·
)

(4.2)

is the classical eikonal and

2∆ = 2∆1 + 2∆2 + · · · =
(
GE

b

)2 [
1 +

~

Eb
+ · · ·

]
+

(
GE

b

)3 [
1 +

~

Eb
+ · · ·

]
(4.3)

33One could exponentiate also the quantum part 1 + 2i∆ = e2iδ
quant

which amounts to a redefinition of the
coefficients of the expansion (4.3). We prefer not to do so in order to define an object, 2δ, which directly yields the
classical observables such as the deflection angle.
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is the quantum remainder. In the bottom-up approach we are going to adopt, we shall first
calculate the perturbative amplitude order by order in the loop expansion A = A0 +A1 +A2 +
· · · , concentrating on the limit of small momentum transfer, take the Fourier transform from
momentum space to impact-parameter space, and then determine δn and ∆n by solving

iÃ0 = 2iδ0 , (4.4)

iÃ1 =
1

2!
(2iδ0)

2 + 2iδ1 + 2i∆1 , (4.5)

iÃ2 =
1

3!
(2iδ0)

3 + 2iδ0 2iδ1 + [2iδ2 + 2iδ0 2i∆1] + 2i∆2 . (4.6)

These relations are predicted by the formal re-expansion of (4.1) for small G and define 2δn, 2∆n

at an operative level, while also dictating the structure of super-classical terms, which only arise,
at each level, from iterations of lower-order terms. In particular, the O(b−1) terms of Ã1 determine
2δ1 and its O(b−2) terms determine 2∆1. Moreover, while 2∆1 is irrelevant for determining 2δ1
at one-loop level, it is needed at two-loop level, together with 2δ0, in order to solve (4.6) for the
unknown 2δ2, once the O(b−2) terms of Ã2 are computed.

Let us also mention that, while the leading eikonal is always real, sub-leading eikonals have,
in general, also an imaginary part that is connected to the existence of inelastic channels. In this
case, the classical deflection angle can be computed from the real part of the sub-leading eikonals,
since the real part is the one contributing to classical phase oscillations, while the imaginary part
only gives rise to an overall exponential suppression. This issue is going to be particularly acute
in the two-loop eikonal that we will discuss in the next section, where the imaginary part actually
contains long-range infrared divergences associated to soft graviton emissions.

In this section we restrict ourselves to the one-loop level, however, and analyze in detail the
classical limit of the one-loop scattering amplitude iÃ1 in massive N = 8 supergravity and in GR.
This gives us the opportunity to check that the leading super-classical term is indeed obtained
from the quadratic term of the expansion of the leading eikonal e2iδ0 , i.e. that iÃ1 ∼ 1

2! (2iδ0)
2

as in (4.5). We will then extract, from the next to the leading term, the sub-leading eikonal 2δ1
and also, from the next to the next to the leading term, the quantum 2∆1 that is important in
reproducing the two-loop amplitude according to Eq. (4.1).

4.1. 1-loop (2PM) in QFT

This section is divided in two sub-sections. In the first one we study the case of massive N = 8
supergravity and in the second one the case of GR. In the massive case under consideration it is
convenient to use the relative Lorentz factor σ, already introduced in (1.8), and also to define a
related variable z which has the advantage of rationalizing some square roots, via

σ = − p1p2
m1m2

=
s−m2

1 −m2
2

2m1m2
=

1

2

(
z +

1

z

)
, z = σ −

√
σ2 − 1 , (4.7)

where s is the Mandelstam variable. In particular 1 ≤ σ <∞ and 0 < z ≤ 1, with σ = 1 or z = 1
corresponding to the case of two particles mutually at rest, and σ →∞ or z → 0+ to the case of
an ultrarelativistic collision.

4.1.1. Massive N = 8 supergravity

Let us start from the maximally supersymmetric case, introducing the masses via Kaluza–
Klein compactification as discussed in Subsection 3.1.4. For the s-u symmetric collision discussed
there, corresponding to the elastic scattering of an axion and a dilaton, the one-loop amplitude in
N = 8 supergravity with massive external states is given by [211, 167]

A1 = (8πG)2
c(ǫ)

2

[(
s−m2

1 −m2
2

)4
+
(
u−m2

1 −m2
2

)4 − t4
]
(III + III) (4.8)
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where

c(ǫ) =
e−γEǫ

(4π)2−ǫ
, (4.9)

while III stands for the box integral,

III =

∫

ℓ

1

(−2p1ℓ + ℓ2 − i0)(2p2ℓ+ ℓ2 − i0)(ℓ2 − i0)((ℓ− q)2 − i0) , (4.10)

with the shorthand notation ∫

ℓ

= eγEǫ

∫
d4−2ǫℓ

iπ2−ǫ
, (4.11)

and III stands for the crossed box integral, obtained from III replacing p1 with p4. A schematic
representation of these topologies is given in Fig. 13. Let us also recall that q = p1 + p4.

p1

p2 p3

p4 p1

p2 p3

p4

Figure 13: The box and crossed-box topologies.

We then face the task of evaluating the integrals III, III. A key simplification in this respect
is that we do not need their exact expression, but, since the typical perturbative momentum
exchange is q ∼ ~

b and we focus on the regime of large impact parameters, we can restrict our
attention to the limit

s, m2
1, m

2
2 ≫ |t| = q2 (4.12)

characterizing the classical PM regime. More precisely, since we are interested in the long-range
terms in b-space after Fourier transform, we can concentrate on non-analytic terms in the small-q2

expansion. A systematic strategy that is well suited to this type of calculations is the method
of regions [253, 254]. In this approach, the guiding principle is that the asymptotic expansion of
the desired integrals as q → 0 is captured by Taylor-expanding the integrand with respect to all
possible scalings of the loop momentum ℓ that give rise to non-scaleless integrals in dimensional
regularization. In our case, the nontrivial scaling choices are ℓ ∼ O(q0), which defines the hard
region, and ℓ ∼ O(q), which defines to the soft region. The hard region is effectively a power series
in q2 and thus only gives rise to strictly localized contributions in b-space. Conversely, the soft
region is the one responsible for the non-analytic terms we are after, so we can safely discard the
former and concentrate on the latter.

Although we refrain here from exhibiting the full soft-region calculation of III, which was
performed in detail for instance in [48, 49, 167], let us show how the leading soft term in III + III
can be retrieved, following [109]. Starting from (4.10), the leading soft term in III reads

III ≃
∫

ℓ

1

(−2p1ℓ− i0)(2p2ℓ− i0)(ℓ2 − i0)((ℓ− q)2 − i0)
, (4.13)

where we used the scaling condition ℓ ∼ q, while p1, p2 are q-independent to leading order. Sending
ℓ → q − ℓ, recalling q = p1 + p4 = −p2 − p3 and using 2p1q = q2, 2p2q = −q2, eq. (4.13) can be
rewritten to leading order in the form

III ≃
1

2

∫

ℓ

1

(ℓ2 − i0)((ℓ− q)2 − i0)

×
[

1

(−2p1ℓ− i0)(2p2ℓ− i0)
+

1

(2p1ℓ− i0)(−2p2ℓ− i0)

]
.

(4.14)
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Adding the crossing symmetry partner III and applying very similar manipulations, one then finds

III + III ≃
1

2

∫

ℓ

1

(ℓ2 − i0)((ℓ− q)2 − i0)

×
[

1

2p1ℓ− i0
+

1

−2p1ℓ− i0

] [
1

2p2ℓ− i0
+

1

−2p2ℓ− i0

]
.

(4.15)

This localizes the integration on a (D − 2)-dimensional subspace

III + III ≃ −2π2

∫

ℓ

δ(2p1ℓ)δ(2p2ℓ)

(ℓ2 − i0)((ℓ− q)2 − i0) . (4.16)

Choosing p1 = (−E1, 0, . . . , 0,−p), p2 = (−E2, 0, . . . , 0, p), q = (0, q⊥, 0) one can use the delta
functions to perform the integrals with respect to ℓ0 and ℓ‖ in ℓ = (ℓ0, ℓ⊥, ℓ‖), obtaining

III + III ≃ eγEǫ iπǫ

2pE

∫
d2−2ǫℓ⊥

ℓ2⊥(ℓ⊥ − q⊥)2
, (4.17)

with E = E1 + E2. The last integral is straightforward to perform using Schwinger or Feynman
parameters, and one gets

III + III ≃ eγEǫ iπ

2pE

Γ(1 + ǫ)

(q2)1+ǫ

Γ(−ǫ)2
Γ(−2ǫ) . (4.18)

When substituted into (4.8), recalling that pE = m1m2

√
σ2 − 1 as in (1.13), we thus obtain the

leading contribution

iA1(s, q
2)

4pE
≃ (8πG)2

(4π)2

(
4π

q2

)ǫ
(−2πm2

1m
2
2)

q2
σ4

σ2 − 1

Γ(1 + ǫ)Γ2(−ǫ)
Γ(−2ǫ) . (4.19)

Sub-leading and sub-sub-leading terms in q are obtained by retaining higher-order contributions in
the soft-region expansion. This can be done via direct integration in the soft region as exemplified
here [48, 49, 108, 109] or, more systematically, using Integration-By-Parts identities, reduction to
master integrals and soft differential equations adapted to the soft region [167, 47].

The resulting expression, complete to sub-sub-leading order, reads

iA1(s, q
2)

4pE
= 4G2

(
4π

q2

)ǫ
{
−2πm2

1m
2
2

q2
σ4

σ2 − 1

Γ(1 + ǫ)Γ2(−ǫ)
Γ(−2ǫ) (4.20)

+
2i
√
πm1m2(m1 +m2)√

q2
σ4

(σ2 − 1)
3
2

Γ(ǫ + 1
2 )Γ

2(12 − ǫ)
Γ(−2ǫ) − iσ3

(σ2 − 1)2
Γ2(−ǫ)Γ(1 + ǫ)

Γ(−2ǫ)

×
[
m1m2

[
(1 + 2ǫ)

(
σ2 log z+σ

√
σ2 − 1

)
+2iπ(σ2 − 1)

]
+
iπǫ

2
s σ

]}
.

Let us now introduce a notation to distinguish leading, sub-leading and sub-sub-leading terms in
the q-expansion of A1(s, q

2) according to

A1 = A[2]
1 +A[1]

1 +A[0]
1 + · · · , (4.21)

in such a way that A[k]
1 ∼ O(q−k−2ǫ). The A[2]

1 term, corresponding to the first line of Eq. (4.20),
is the super-classical term. Its Fourier transform in impact parameter space (see Eq. (A.45))
indeed reproduces the quadratic iteration term of the expansion of the leading-order eikonal,

iÃ[2]
1 (s, b) =

1

2

(
2im1m2G(πb

2)ǫσ2Γ(−ǫ)√
σ2 − 1

)2

=
1

2
(2iδ0)

2 , (4.22)
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in agreement with the leading-order term in (4.5). The Fourier transform of A[1]
1 , which appears

in the second line of Eq. (4.20) and is sub-leading for small q, gives instead the sub-leading eikonal
according to

2iδ1 = iÃ[1]
1 (4.23)

so that34

2δ1 =
4(πb2)2ǫG2m1m2(m1 +m2)√

πb2
σ4

(σ2 − 1)
3
2

Γ(12 − 2ǫ)Γ2(12 − ǫ)
Γ(−2ǫ) . (4.24)

Note that this next-to-leading eikonal, arising from box integrals, represents the first correction to
(3.68) and is proportional to the sum of the masses. Taking the by now familiar derivative with
respect to b, this translates into the following expression for the deflection angle,

Θ =
4GE(πb2)ǫσ2Γ(1− ǫ)

(σ2 − 1)b
+

4G2E(πb2)2ǫσ4(m1 +m2)

(σ2 − 1)2
√
π b2

Γ(12 − 2ǫ)Γ2(12 − ǫ)
Γ(−2ǫ) +O(G3) . (4.25)

Consistently with the above considerations, the O(G2) correction vanishes identically for the
collision of two (massless) shockwaves. Moreover, even for massive objects, it happens to be zero

in D = 4 [211], while it does provide a nontrivial O(R2

b2 ) correction to the deflection angle in
higher-dimensional spacetimes.

Finally, going to impact parameter with sub-sub-leading term A[0]
1 one gets the first contribu-

tion to the quantum remainder,

2i∆1 = iÃ[0]
1 , (4.26)

finding a real part given by

Re 2∆1 =
8G2m1m2(πb

2)2ǫ

πb2
σ4
(
σ log z +

√
σ2 − 1

)

(σ2 − 1)2
(1 + 2ǫ)Γ2(1− ǫ) , (4.27)

and an imaginary part given by

Im2∆1 =
8G2σ3(πb2)2ǫΓ2(1− ǫ)

b2(σ2 − 1)2

[ ǫ
2
sσ + 2m1m2(σ

2 − 1)
]
. (4.28)

In this section we focused on the elastic amplitude (4.8). Looking more in general at the
2→ 2 scattering of massless states in N = 8 supergravity, we remark that there can be inelastic

contributions at the level of A[1]
1 . However this does not imply that the 2PM eikonal becomes an

operator, because there is an O(G) contribution to ∆ that encodes the transition between different
massless states (so this ∆0 is nontrivial, in this more general setup, and becomes an operator).
By using the natural generalization of (4.1), one can verify that the amplitudes in the massless
sector are consistent with the 2PM eikonal (4.24), see [43] for an explicit check of this point in
the probe limit where massless states scatter off a stack of Dp-branes.

4.1.2. Real-analytic, crossing-symmetric reformulation

In the previous subsection we have collected the contribution of the different one-loop diagrams
noticing that they combine into much simpler expressions than those of individual diagrams. They
are in the form of an expansion in powers of q2 i.e. of the quantum level at which they contribute.
Furthermore, as computer outputs, they simply collect independently real and imaginary terms
and express the result in terms of a choice of the two independent Mandelstam variables, q2 = −t
and s (or of quantities like σ and z, themselves functions of s and the masses).

On the other hand, we expect the full amplitude to satisfy two exact properties:

34Let us point out a typo in the expression for 2δ1 in Ref. [47], which should be multiplied by 1/2.
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• Real analyticity i.e. A(s∗, q2) = (A(s, q2))∗;
• Crossing symmetry i.e. A(s, q2) = A(u ≡ −s+ q2 + 2m2

1 + 2m2
2, q

2).

Those two properties, which should hold order by order in q2, are not at all apparent in the
formulae of the previous subsection, but they must be hidden somewhere, of course up to the
order in q2 at which we stop our expansion. Here we will explicitly show how to rewrite the tree
and one-loop amplitudes, given in the previous section in a real-analytic and crossing-symmetric
form. Besides its usefulness for the interpretation of the result this also serves as a rather stringent
test of the calculations themselves. A similar analysis will be carried out at the two-loop level
in Section 6 where analyticity and crossing will turn out to be very useful for actually fixing the
entire two-loop amplitude from its imaginary part. Let us mention in passing that analyticity and
crossing also played a key role in recent developments [255, 256].

To this purpose it is useful to introduce variables which are related to those introduced earlier
in Section 1.2 by s↔ u exchange:

σ̄ =
u−m2

1 −m2
2

2m1m2
= −

(
σ − q2

2m1m2

)
,

z̄ = σ̄ −
√
σ̄2 − 1 = −1

z

(
1− q2/(2m1m2)√

σ2 − 1

)
+O(q4) ,

2σ̄ =

(
z̄ +

1

z̄

)
, 2

√
σ̄2 − 1 =

(
1

z̄
− z̄
)
.

(4.29)

We also have to bear in mind that the factor 1
4pE appearing in some formulae cannot be ignored

when discussing analyticity and crossing symmetry of the amplitude.
The tree-level amplitude (3.67) is already manifestly crossing symmetric and real analytic,

A0 = −πG
q2

16m4
1m

4
2(σ

4 + σ̄4)− q4
m2

1m
2
2σσ̄

. (4.30)

Up to terms that lack the pole at q2 = 0, we may equivalently write

A0(s, q
2) =

16πGm2
1m

2
2

q2
(
σ2 + σ̄2

)
. (4.31)

At one-loop, equation (4.20) suggests trying the following analytic, crossing-symmetric ansatz for
the super classical term:

Ascl.
1 (s, q2) =

16G2m3
1m

3
2

q2

(
4π

q2

)ǫ
Γ2(−ǫ)Γ(1 + ǫ)

Γ(−2ǫ)

[
(σ4 + σ̄4)

(
log(−z)√
σ2 − 1

+
log(−z̄)√
σ̄2 − 1

)]
. (4.32)

It is easy to check that, when expanded in q2 using (4.29) and the branch choice log(−z) =
log z + iπ, (4.32) reproduces both the super-classical (first line in (4.20)) and the O(ǫ0m1m2)
terms in the square bracket of (4.20).

The remaining terms are as follows:

• A classical contribution proportional to (q2)−1/2 (second line in (4.20)). It is real and can
be trivially symmetrized in s− u since the error in doing so is of order (q2)1/2;

• A quantum contribution of O(ǫ) that can be written in the crossing-symmetric form:

Aqu.
1 (s, q2) = 16G2m2

1m
2
2

(
4π

q2

)ǫ
Γ2(−ǫ)Γ(1 + ǫ)

Γ(−2ǫ) Âqu.
1 (s, q2) , (4.33)

Âqu.
1 (s, q2) = −ǫ

[(
σ5 log(−z)
(σ2 − 1)3/2

+
σ̄5 log(−z̄)
(σ̄2 − 1)3/2

)
+

(
σ4

σ2 − 1
+

σ̄4

σ̄2 − 1

)]

− ǫ (m
2
1 +m2

2)

2m1m2

(
σ4 log(−z)
(σ2 − 1)3/2

+
σ̄4 log(−z̄)
(σ̄2 − 1)3/2

)
.

(4.34)
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Note that in (4.34) we can again neglect the difference between σ̄ and −σ as well as the difference
between z̄ and −1/z. As a result, the last line of (4.34) gives a purely imaginary contribution in
the physical region.

In the above equations crossing symmetry is manifest. Concerning real analyticity, it can be
checked by using, in particular, the analytic properties of the combination log(−z)(σ2−1)−1/2. We
will come back to the checks of real analyticity after we include the two-loop results in Section 6.

4.1.3. General Relativity

Let us now turn to the collision of two massive scalars minimally coupled to GR. The logic we
will apply is the same as for the N = 8 example discussed above. That is, we want to calculate the
one-loop amplitude for the collision of two massive scalars minimally coupled to gravity, focusing
on the non-analytic terms in the limit of small momentum transfer q2.

Of course, in the absence of supersymmetry, the amplitude integrand is not as simple as (4.8),
and deriving it from Feynman diagram techniques would pose a nontrivial challenge. Following
[48, 108], a powerful integrand construction technique that we can apply to overcome this problem
is the method of generalized unitarity. The one loop integrand we are after is a rational function,
and its residues at the poles corresponding to the on-shell limits for certain internal lines are
nothing but (sums of products of) tree-level amplitudes obtained by “cutting” such lines. A
further simplification arises from the observation that, in order to capture all non-analytic terms
associated to the long-range eikonal dynamics, we do not need to determine the full integrand,
but rather only the contributions coming from the two-graviton cut depicted in Fig. 14. Indeed,
we can neglect any topology involving contact interactions between the two massive lines, which
would correspond to strictly localized effects.

p1

p2 p3

p4

q1 q2

Figure 14: The two-graviton cut needed to obtain the one-loop integrand for the amplitude in the classical limit.
Each blob represents a tree-level amplitude with two scalars and two gravitons.

We shall disregard topologies associated to vertex corrections and self-energy diagrams, which
give rise to integrals that always vanish in the soft region. This may seem in principle not
justified, because, although arising from the hard region only, these dressings of the one-graviton
exchange naively appear in the amplitude with a kinematic prefactor 1/q2 (non-analytic). The key
observation is that they also give rise to divergent terms that ought to be treated by appropriate
coupling and wave-function renormalization. However one can check that the IR-divergences due
to the two-graviton cut in Figure 14 in fact exhaust the full IR-divergence of the one-loop amplitude
predicted by the general exponential pattern [1, 107]. Therefore, all infrared divergences arising
from vertex corrections and self-energy diagrams must cancel against one another, and we need
not worry about them. The cancellation of the corresponding finite terms then ought to follow
from the Ward identity linking the renormalization constants for charge and wavefunction, as
discussed in Ref. [257] for the case of electrodynamics, although we will not analyze it in detail
here.
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Let us then turn to the evaluation of the two-graviton cut. The amplitude for each blob in
Fig. 14 is the one already discussed in Subsection 3.1.2,

Aρσ,αβ(k1, k2, q1, q2) =
k1 k2

ρσ q1 αβq2

(4.35)

can be taken as follows, using momentum conservation to eliminate k2, [48]

Aρσ,αβ = 2κ2
q1 · (k1 + q2) q1 · k1

q1 · q2

×
[
(k1 + q2)

ρkα1
q1 · (k1 + q2)

− (k1 + q1)
αkρ1

k1 · q1
+ ηρα

] [
(k1 + q2)

σkβ1
q1 · (k1 + q2)

− (k1 + q1)
βkσ1

k1 · q1
+ ησβ

]
.

(4.36)

This expression is of course highly non-unique, because one can always perform gauge transforma-
tions, i.e. shifts proportional to qρ1ξ

σ + qσ1 ξ
ρ or to qα2 ζ

β + qβ2 ζ
α obtaining an equivalent amplitude.

The advantage of the specific form (4.36) is that it is exactly transverse with respect to each
graviton momentum [48, 258],

qρ1Aρσ,αβ = qσ1Aρσ,αβ = 0 , qα2Aρσ,αβ = qβ2Aρσ,αβ = 0 , (4.37)

as can be checked using the mass-shell conditions. This simplifies the sum over intermediate
graviton polarizations involved in the cut in Fig. 14, and one can cast the amplitude of interest
in the form

iA1(s, q) =
1

2

∫
dDq1
(2π)D

dDq2
(2π)D

(2π)Dδ(D)(q − q1 − q2)

×Aρσ,αβ(p1, p4,−q1,−q2)Gρσ,ρ′σ′
(q1)G

αβ,α′β′
(q2)Aρ′σ′,α′β′(p2, p3, q1, q2) ,

(4.38)

where Gµν,ρσ denotes the De Donder propagator (A.23),

Gµν,ρσ(ℓ) =
−i

2(ℓ2 − i0)

(
ηµρηνσ + ηµσηνρ − 2

D − 2
ηµνηρσ

)
. (4.39)

The overall factor of 1
2 in (4.38) is due to the reflection symmetry of Fig. 14 about the vertical

axis, or equivalently to the two possible choices of labeling for the loop momentum, either q1 = ℓ,
q2 = ℓ− q or q2 = ℓ, q1 = q − ℓ.

The resulting integrand involves not only box and crossed box topologies (Fig. 13), as itsN = 8
counterpart, but also triangle and bubble topologies (Fig. 15). Moreover, while the numerators
of box and crossed box are constant in the loop momentum, the remaining topologies involve
nontrivial numerators. As we already mentioned above, the task of performing such integrals is
considerably simplified by employing integration-by-parts identities after expansion in the soft
region. Using these techniques, one can reduce the calculation to a simple set of three master
integrals [167], the leading-order box and triangle, plus a trivial scalar bubble integral.

For illustrative purposes, let us consider a scalar triangle integral (let us recall the shorthand
notation

∫
ℓ introduced in (4.11))

I∆ =

∫

ℓ

1

(−2p1ℓ+ ℓ2 − i0)(ℓ2 − i0)((ℓ− q)2 − i0) . (4.40)
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Figure 15: Triangle and bubble topologies.

Again focusing on the soft region, where ℓ ∼ O(q), and on the leading-order contributions, we can
massage this integral as we did for the leading box, obtaining

I∆ ≃
1

2

∫

ℓ

[
1

2p1ℓ− i0
+

1

−2p1ℓ− i0

]
1

(ℓ2 − i0)((ℓ− q)2 − i0) (4.41)

so that

I∆ ≃ iπ
∫

ℓ

δ(2p1ℓ)

(ℓ2 − i0)((ℓ− q)2 − i0) . (4.42)

To evaluate this integral it is convenient to pick a reference frame where

p1 =

(
−
√
m2

1 +
1
4 |~q |2, 12 ~q

)
, p4 =

(√
m2

1 +
1
4 |~q |2, 12 ~q

)
(4.43)

so that q = (0, ~q ) and, to leading order for small q,

I∆ ≃ eγEǫ π
−1+ǫ

2m1

∫
d3−2ǫ~ℓ

|~ℓ |2|~ℓ− ~q |2
= eγEǫ

√
π

2m1

Γ
(
1
2 + ǫ

)

(q2)
1
2+ǫ

Γ
(
1
2 − ǫ

)2

Γ (1− 2ǫ)
. (4.44)

Combining this result with the box and bubble integrals, one can obtain an expression for the
amplitude complete up to sub-sub-leading order in the small-q expansion, which we now illustrate.
For simplicity, let us again break down the result as follows

A1 = A[2]
1 +A[1]

1 +A[0]
1 , (4.45)

where each term scales according toA(n)
1 ∼ q−n−2ǫ. The leading term, which is entirely determined

by the box and crossed-box contributions, and is given by

iA[2]
1

4pE
= − (8πG)2

(4π)2

(
4π

q2

)ǫ 2πm2
1m

2
2(σ

2 − 1
D−2 )

2

q2(σ2 − 1)

Γ(1 + ǫ)Γ2(−ǫ)
Γ(−2ǫ) . (4.46)

The subleading one reads instead

iA[1]
1

4pE
=
i(8πG)2

(4π)2

(
4π

q2

)ǫ Γ(ǫ+ 1
2 )Γ(

1
2 − ǫ)2

Γ(1− 2ǫ)

[
−

4ǫ
√
πm1m2(m1 +m2)(σ

2 − 1
D−2 )

2

q(σ2 − 1)
3
2

+
2
√
πm1m2(m1 +m2)

q(σ2 − 1)
1
2

(
σ2 − 4 + (1− 2ǫ)(σ2 − 1)

16(1− ǫ)2
)]

,

(4.47)

where the first line of this expression comes from the subleading expansion of box and crossed
box, while the second line comes from the leading-order triangle contributions. Note that the first
line vanishes in D = 4, as ǫ → 0. The subsubleading term instead combines all three types of
topologies, and we find it convenient separate box/crossed box, triangle and bubble contributions
according to

A[0]
1 = A[0]

12 +A[0]
1△ +A[0]

1# . (4.48)
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We find, from the box and crossed box topologies [43],

iA[0]
12

4pE
=

(8πG)2

(4π)2

(
4π

q2

)ǫ(
σ2 − 1

D−2

) Γ(1− ǫ)2Γ(1 + ǫ)

Γ(1− 2ǫ)

[−πs
(
σ2 − 1

D−2

)

(σ2 − 1)
2

+
2im1m2

ǫ
√
σ2 − 1

(
4σ arccoshσ√

σ2 − 1
+

(1 + 2ǫ)
(
σ2 − 1

D−2

)

σ2 − 1

(
1− σ arccoshσ√

σ2 − 1

))]
,

(4.49)

from the triangle topologies,

iA[0]
1△

4pE
=

(8πG)2

(4π)2

(
4π

q2

)ǫ
im1m2

2
√
σ2 − 1

Γ(1− ǫ)2Γ(2 + ǫ)

ǫ(1− ǫ)2Γ(1 − 2ǫ)

×
[
1− 2σ2(1 − ǫ) 11− 18ǫ+ 8ǫ2

(1 + ǫ)(1− 2ǫ)

]
,

(4.50)

and, from the bubble,

iA[0]
1#

4pE
=

(8πG)2

(4π)2

(
4π

q2

)ǫ
im1m2√
σ2 − 1

Γ(1− ǫ)2Γ(1 + ǫ)

4ǫ(5− 2ǫ)(3− 2ǫ)Γ(1− 2ǫ)

×
[
σ2
(
16ǫ3 − 210ǫ2 + 633ǫ− 522

)

2ǫ− 1
− 17ǫ3 − 68ǫ2 + 65ǫ− 2

2(ǫ− 1)2

]
.

(4.51)

We can now go to impact parameter space using Eq. (A.45). Let us start from the superclassical

term A[2]
1 in (4.46), which gives

iÃ[2]
1 (s, b) =

1

2

(
2im1m2G(πb

2)ǫ(σ2 − 1
D−2 )Γ(−ǫ)√

σ2 − 1

)2

=
1

2
(2iδ0)

2 . (4.52)

Thus, as in the previous case, we again obtain a cross check of the exponentiation of δ0, according
to which the leading superclassical term in the one-loop amplitude must be given by 1

2! (2iδ0)
2 as

dictated by (4.5).

The Fourier transform of the subleading, classical term A[1]
1 , appearing in (4.47), gives the

next to the leading classical eikonal

2iδ1 = iÃ[1]
1 (s, b) . (4.53)

so that

2iδ1 =
iG2m1m2(m1 +m2)

(πb2)
1
2−2ǫ

[
Γ2(12 − ǫ)Γ(12 − 2ǫ)

(
σ2 − 1

D−2

)2

Γ(−2ǫ)(σ2 − 1)
3
2

(4.54)

+
4Γ(12 − ǫ)2Γ(12 − 2ǫ)

Γ(1 − 2ǫ)
√
σ2 − 1

(
σ2− 4 + (1− 2ǫ)(σ2 − 1)

16(1− ǫ)2
)]

. (4.55)

Like the leading eikonal, 2δ1 is also a purely real quantity. Taking a derivative with respect to b
according to

2p sin
Θ

2
= −∂2δ

∂b
=⇒ Θ2PM = −1

p

∂2δ1
∂b

, (4.56)

we can then obtain the 2PM correction to the deflection angle, in generic spacetime dimensions.
Combining with the 1PM result (3.12), we thus obtain the following expression for the deflection
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angle,

Θ =
4GE

(
σ2 − 1

D−2

)
Γ (1− ǫ)

(σ2 − 1)π−ǫb1−2ǫ

+
(1− 2ǫ)G2E(m1 +m2)

π
1
2−2ǫb2−2ǫ

[
Γ2(12 − ǫ)Γ(12 − 2ǫ)

(
σ2 − 1

D−2

)2

Γ(−2ǫ)(σ2 − 1)2

+
4Γ(12 − ǫ)2Γ(12 − 2ǫ)

Γ(1− 2ǫ)(σ2 − 1)

(
σ2− 4 + (1− 2ǫ)(σ2 − 1)

16(1− ǫ)2
)]

+O(G3) .

(4.57)

Note that the 2PM correction is present only if both masses are non vanishing. In contrast with
the N = 8 case, although the box and cross-box contributions (4.54) do not contribute for D = 4,
the triangle contribution (4.55) survives, and we get:

2δ1 =
3πG2m1m2(m1 +m2)(5σ

2 − 1)

4b
√
σ2 − 1

(4.58)

and for the deflection angle [259]

Θ =
4GE(σ2 − 1

2 )

b(σ2 − 1)
+

3πG2E(m1 +m2)(5σ
2 − 1)

4(σ2 − 1)b2
+O(G3) . (4.59)

Finally the Fourier transform of the sub-sub-leading term A[0]
1 given by (4.48) identifies the

leading quantum remainder

2i∆1 = iÃ[0]
1 . (4.60)

This is a quantum term and indeed will not contribute to the classical eikonal. However, it will
be needed at two-loop level in order to solve (4.6) for the unknown 2δ2. Actually, since we will
be able to obtain the two-loop amplitude only to the first few orders in the ǫ expansion around
ǫ = 0, i.e. D = 4, let us evaluate this quantum remainder for small ǫ, although performing the
Fourier transform of the full expression (4.48) is straightforward using (A.45). We thus obtain

2i∆1 = −ǫ G
2s
(
2σ2 − 1

)2

b2 (σ2 − 1)
2

+
iG2m1m2

(
πb2eγE

)2ǫ

b2π(σ2 − 1)3/2

(
2σ
(
2σ2 − 1

) (
6σ2 − 7

)
arccoshσ√

σ2 − 1
− 1− 49σ2 + 18σ4

15

)

+ iǫ
G2m1m2

πb2
√
σ2 − 1

(
−8σ(2σ2 + 1) arccoshσ

(σ2 − 1)3/2
+

9234σ2 − 1783

450

)
+O(ǫ2) .

(4.61)

This expression for 2i∆1 is accurate through O(ǫ) for both real and imaginary part. In particular
its O(1) real part vanishes, while its imaginary part is nontrivial to O(1) and O(ǫ). The terms
involving arccoshσ of course only come from the box/crossed box contributions (4.49) already
obtained in [48]. Moreover, the O(1) imaginary part and the O(ǫ) real part agree with [109]. As
we will discuss in the next chapter, this quantum piece will play a role in our discussion of the
two-loop eikonal. On the one hand, it is needed to perform the subtractions dictated by (4.6).
Moreover, it will be instrumental in determining the amplitude itself from its analyticity and
crossing-symmetry properties.

4.1.4. Real-analytic, crossing-symmetric reformulation

Following the procedure we used for the N = 8 case in Subsection 4.1.2, let us recast the 3PM
GR result in an explicitly real-analytic and crossing-symmetric form. Using the same notations
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as in (4.29) the tree level amplitude (3.4) can be written, up to higher orders in q2, as

A0(s, q
2) =

16πG

q2
m2

1m
2
2

[ (
σ2 − 1

D−2

)
+
(
σ̄2 − 1

D−2

) ]
. (4.62)

At one-loop, in analogy with equation (4.20), we can deal separately and rather trivially with the
purely real classical terms (4.47) behaving like 1√

q2
. For the remaining terms, inspired again by

the N = 8 case of Subsection 4.1.2, we try the ansatz:

Ascl.
1 (s, q2) =

(8πG)2

(4π)2

(
4π

q2

)ǫ
Γ2(−ǫ)Γ(1 + ǫ)

Γ(−2ǫ)
4m3

1m
3
2

q2
(4.63)

[(
σ2 − 1

2(1− ǫ)

)2

+

(
σ̄2 − 1

2(1− ǫ)

)2
] [

log(−z)√
σ2 − 1

+
log(−z̄)√
σ̄2 − 1

]
.

This reproduces, in b-space, the iteration of the tree contribution (4.46) and, furthermore, takes
care of some quantum terms. Up to purely real pieces, the full structure of (4.48) is reproduced
by the following additional real-analytic crossing-symmetric terms:

Aadd.
1 (s, q2) =

(8πG)2

(4π)2

(
4π

q2

)ǫ
Γ2(−ǫ)Γ(1 + ǫ)

Γ(−2ǫ) 4m2
1m

2
2Âadd.

1 , (4.64)

Âadd.
1 =

[(
σ2 − 1

2(1− ǫ)

)
+

(
σ̄2 − 1

2(1− ǫ)

)][
σ log(−z)√
σ2 − 1

+
σ̄ log(−z̄)√
σ̄2 − 1

]

− ǫ

2

[(
σ2 − 1

2(1− ǫ)

)2

+

(
σ̄2 − 1

2(1− ǫ)

)2
][

σ log(−z)
(σ2 − 1)3/2

+
σ̄ log(−z̄)
(σ̄2 − 1)3/2

]

− ǫm
2
1 +m2

2

4m1m2

[(
σ2 − 1

2(1− ǫ)

)2

+

(
σ̄2 − 1

2(1− ǫ)

)2
][

log(−z)
(σ2 − 1)3/2

+
log(−z̄)

(σ̄2 − 1)3/2

]
.

We have checked that the sum of (4.63) and (4.64) reproduces the superclassical term (4.46), as
well as the box and crossed box contributions (4.49), modulo a single real term given by:

Âres.
1 = −2ǫ

(
σ2 − 1

D−2

)2

σ2 − 1
. (4.65)

We also note that the triangle (4.50) and bubble (4.51) contributions are real (indeed they do
not exhibit any on shell intermediate states). Together with (4.65) they can be made crossing
symmetric trivially. This exhausts the analytic study of the one-loop terms in GR.

4.1.5. The probe limit

It is instructive to study the regime where one mass is much larger than all other energy scales
as was done at leading PM order at the end of Section 3.1.1 for GR and of Section 3.1.4 for N = 8
supergravity. Of course in this limit one should reproduce the results obtained from the classical
motion of a probe in a fixed background describing the heavy object, see Appendix B.1. This is
easily checked by taking the limit m2 ≫ E1 summarized in (3.17). Focusing first on the case of
GR, it is sufficient to take (4.57) in the probe limit, m1 = mp ≪M = m2, to obtain

Θ =

√
π Γ
(
D−2
2

)

2Γ
(
D−1
2

) (D − 2)E2 −m2
p

E2 −m2
p

(
Rs

b

)D−3

+

√
π Γ
(
D − 5

2

)

8Γ(D − 2)

(
Rs

b

)2(D−3) (2D − 5)(2D − 3)E4
p − 6(2D − 5)E2

pm
2
p + 3m4

p

(E2
p −m2

p)
2

+O(G3)

(4.66)

75



where we used (B.2) for Rs. The leading term matches (B.14) while the subleading correction
matches (B.15). It is straightforward to repeat the check in the case of N = 8 supergravity by
starting from (4.25), for which we get

Θ =

√
π Γ
(
D−2
2

)

Γ
(
D−3
2

) E2

E2 −m2
p

(
Rs

b

)D−3

+

√
π Γ
(
D − 5

2

)

Γ (D − 4)

(
E2

E2 −m2
p

)2(
Rs

b

)2(D−3)

+O(G3) .

(4.67)
As already noticed, for D = 4 the 2PM correction in (4.67) vanishes and the 1PM result agrees
with the probe limit (B.41).

At 2PM order, it is actually possible to make the link in the opposite direction and reconstruct
the deflection angle for generic masses from the result in the probe limit. The idea is to consider
the following ansatz for the classical impulse Q in an elastic scattering in the PM expansion [260],

Q =
2Gm1m2

J/p

∞∑

k1,k2=0

Qk1k2(σ)

(
2Gm1

bJ

)k1
(
2Gm2

bJ

)k2

(4.68)

where we restrict to D = 4. The key assumption here, sometimes referred to as “good mass poly-
nomiality”, is that the dependence on the masses mi always enters via the combination 2Gmi/J
and it is thus tied to the PM expansion itself. Each coefficient Qk1k2(σ) is only a function of σ,
which contributes to the result at PM order k1 + k2 + 1. Moreover, since the impulse Q must be
symmetric under particle-interchange symmetry, in the elastic case, we must have

Qk1k2(σ) = Qk2k1(σ) . (4.69)

In the probe limit m1 ≪ m2, in Eq. (4.68) only the terms with k1 = 0 survive to leading order,
and thus one can deduce the functions Q0k(σ) = Qk0(σ) from the deflection angle calculated in
Appendix B.1 by studying the motion of particle 1, with mass m1 = mp, in the background
sourced by particle 2, with mass m2 = M . In the case of GR, by (B.17), (B.18) we have at the
first two orders

Q00(σ) =
2σ2 − 1√
σ2 − 1

, Q01 (σ) =
3π

16

5σ2 − 1√
σ2 − 1

, (4.70)

where we used E/mp ≃ σ in the probe limit. Of course, substituting back Q00 and Q01 into
(4.68) one recovers precisely the 2PM accurate deflection angle (4.59). On the contrary, at 3PM a
new function Q11(σ) appears that cannot be fixed by looking at the probe limit, and needs to be
determined by studying the problem where both particles are fully dynamical. This will be the
subject of Section 6 for both N = 8 supergravity and GR. Moreover, as we shall see in Section 8,
in general the impulse Q1 of particle 1 and that Q2 of particle 2 can differ in the presence of
radiative effects, thus introducing additional structures. For recent developments concerning the
assumption of good mass polynomiality to O(G4) see [138, 261, 140].

4.1.6. Tidal effects in field theory

Following Refs. [50, 262, 51, 54], one can conveniently include finite-size effects associated to
tidal deformations in the scattering amplitude approach by introducing higher derivative operators
that are quadratic in the scalar field and involve powers of the Weyl tensor. Focusing for simplicity
on the leading, quadratic order, these can be decomposed into the so-called E (“electric”) or mass-
type and B (“magnetic”) or current-type tidal operators. The resulting “tidal vertex” involves
two massive lines and two graviton lines, and thus produces corrections to the sewing procedure
of Fig. 14 (while it doesn’t affect the single-graviton, tree-level exchange). Without going into
details, let us quote here for completeness the expression for the resulting one-loop correction to
the impulse, which are of course equivalent to the tidal modifications of 2δ1 up to a derivative
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with respect to b. For the case in which particle 1 is subject to tidal deformations (the analogous
case in which object 2 can be deformed is obtained trivially by interchanging particle labels),

QE2
1
=
Rfb

G

3cE2
1

m2
1

35σ4 − 30σ2 + 11√
σ2 − 1

, QB2
1
=
Rfb

G

15cB2
1

m2
1

√
σ2 − 1

(
7σ2 + 1

)
, (4.71)

with (i = 1, 2)

Rf = 15πG3m2
1m

2
2/
(
64b7

)
, cE2

i
=

1

6
k
(2)
i R5

i /G , cB2
i
=

1

32
j
(2)
i R5

i /G (4.72)

and ki, ji are the colliding objects’ Love numbers, while Ri is the radius of object i. For typical
compact objects, Ri = Gmi/Ki whereKi is the body’s “compactness” of order 0.1, 0.2 for neutron
stars [30]. Thus, we see that the leading tidal corrections (4.71) are weighted by the dimensionless
power-counting parameter (Gm/b)5/K5 (for m ≃ m1,2 and K ≃ K1,2) relative to the leading-
order impulse (3.16). This shows how PM effects measured by Gm/b can compete with finite-size
effects measured by the compactness parameter K.

4.2. Eikonal exponentiation in String Theory at one loop

The first goal of this section is to analyze an explicit example of a one-loop amplitude in string
theory. We will see that also in this case the leading term in the classical limit does not contain new
information as it provides just a contribution towards the exponentiation of the tree-level result.
The main difference with the QFT cases analyzed so far is that already the leading eikonal δ̂0
(3.176) is an operator: as discussed in Section 3.2.4, this operator acts on the space of the possible
string states. The non-trivial check presented here is that the leading term of the one-loop result
is the square of δ̂0, extending Eq. (4.6) to the more general setup where the colliding objects have
a non-trivial structure. After gaining confidence that the full eikonal operator exponentiates, we
revisit the physics related to tidal excitation. We show that, at the leading order, this classical
effect is captured by a probe analysis focusing on the string dynamics in a non-trivial background.
This generalizes to the string case the idea that the leading deflection angle for a point-like particle
can be derived by solving the geodesic equation, see (3.20) and (B.14). We conclude this part
on string theory by discussing more in detail how the exponentiated form of the leading eikonal
captures the tidal effects on the string probe and how this can exponentially suppress the elastic
scattering even at very large distances if the probe energy is large enough.

4.2.1. 1-loop in String Theory

We work in the setup discussed in Section 3.2.1 and consider the first correction to the 1→ 1
scattering of a NS-NS massless state in presence of a stack of N coincident Dp-branes in type
II theories. From the world-sheet point of view, this amplitude is captured by a diagram with
the topology of an annulus with two boundaries (which are supported by the Dp-branes) and two
punctures in the interior of the annulus representing the external closed string states, as depicted
in Figure 16. We will parameterize this surface as done in [22]: the “thickness” of the annulus is
related to e−πλ, with 0 ≤ λ <∞, while for the location of the punctures we use

zi = e2π(−λρi+iωi) , 0 < ρi <
1

2
, 0 ≤ ωi < 1 . (4.73)

(see Figure 17). In type II theories, the behavior of this amplitude is constrained by supersymmetry
and the kinematic dependence is the same as in the tree-level case [206], so we can extract a scalar
function A1

A1(pi, ǫi) = K(pi, ǫi)A1 (4.74)

that captures all the dynamical information. The derivation of A1 is conceptually similar to the
one summarized in Appendix D.3 for bosonic string theory, but technically requires to deal with
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Figure 16: Scattering of a massless string off a Dp-brane at one loop.

Re z

Im z

z2

z1

1

e−πλ

Figure 17: Alternative representation of the one-loop scattering of a closed string off a Dp-brane. The green circles
are the boundaries of the worldsheet and rest on the Dp-brane, while the blue dots represent punctures associated
to the asymptotic closed-string states.
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some of the complications of superstring theory such as the sum over the spin structures. Here we
start from the final result below and refer to the literature [263, 264] for a derivation and further
references. In the superstring case we have

A1 =

(
κdNTp

2

)2
α′

16π
(2π2α′)−

d−p−1
2

∞∫

0

dλ

∫
d2z1 d

2z2 λ
− d−p−1

2 e−α′E2
sVs−α′t

4 Vt , (4.75)

with

Vs = −2πλρ2 + log

[
θ1(iλ(ζ + ρ)|iλ)θ1(iλ(ζ − ρ)|iλ)
θ1(iλζ + ω|iλ)θ1(iλζ − ω|iλ)

]
, (4.76a)

Vt = 8πλρ1ρ2 + log

[
θ1(iλρ+ ω|iλ)θ1(iλρ− ω|iλ)
θ1(iλζ + ω|iλ)θ1(iλζ − ω|iλ)

]
, (4.76b)

where for the Jacobi theta-functions θi we follow the conventions of [265] where

θ1(ν|τ) = −2e
πiτ
4 sin(πν)

∞∏

n=1

[
(1 − e2πinτ )(1 − e2πiνe2πinτ )(1− e−2πiνe2πinτ )

]
(4.77)

and we used the change of variables

ω = ω1 − ω2 , ρ = ρ1 − ρ2 , ζ = ρ1 + ρ2 . (4.78)

Since we are interested in the long-range interaction between the stack of Dp-branes and the
external probe, we wrote the amplitude in the so-called closed string channel where the large-λ
limit is simple and describes a superposition of closed string states exchanged between the Dp-
branes and the scattered closed string. In this limit the world-sheet has the shape of a sphere
connected to the Dp-branes by two thin tubes and with two punctures representing the external

states. The factor of λ−
d−p−1

2 in (4.75) follows from the Gaussian integration of the center-of-
mass momentum of the virtual closed string propagating between the two boundaries, which can
be non-trivial only along the d− p− 1 directions where the Dp-branes impose Dirichlet boundary
conditions. After implementing the change of variables in (4.73) and (4.78), Eq. (4.75) reads

A1 =

(
κdNTp

2

)2
α′

16π
(2π2α′)−

d−p−1
2 2(2π)4

∞∫

0

dλ

1∫

0

dζ

∫

R(ζ)

dρ

1∫

0

dω λ−
d−p−5

2 e−α′E2
sVs−α′t

4 Vt ,

(4.79)
where the region of integration for ρ depends on ζ: max{−ζ,−(1− ζ)} < ρ < min{ζ, 1− ζ}. The
precise definition of R(ζ) will not play any role in our analysis, since we focus on the leading
contribution dominated by the ρ ∼ 0 region, see however [228] for a more general setup where
this point becomes relevant. As expected the integrand in (4.75) does not depend on ω1 +ω2 and
so, in (4.79), we have trivially performed the integration over this variable. Our goal is to extract
the leading contribution in the classical limit of the integral (4.75) and show that it provides the
first term needed to exponentiate the 1PM stringy eikonal operator (3.176). In this context the
classical parameters are Rp in (D.6), describing the gravitational backreaction of the Dp-branes,
and Es, describing the probe state. So, as in the tree-level analysis, we are interested in the large
Es limit which from (4.79) is suppressed unless one takes also ρ small. Thus, for our purposes, we
can use in (4.79) the approximate expressions

Vs ≃ −2πλρ2 − 4 sin2 πω
(
e−2πλζ + e−2πλ(1−ζ)

)
, (4.80)

Vt ≃ −2πλζ(1 − ζ) + ln
(
4 sin2 πω

)
.
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In the expression for Vt we kept only the terms that do not have any exponential factor involving
λ, while for Vs we kept also the first exponential terms that become relevant in the region λ ∼
ln(α′E2

s ) and considered only the ρ-dependent terms that are enhanced by a factor of λ. In order

to extract the classical terms contributing to the 2PM eikonal operator δ̂1, one would need a
better approximation for Vs and Vt as partially discussed in [22]. The complete expression for δ̂1
at string level is not known, so we will not pursue further this analysis here.

By following closely the derivation discussed in Appendix D.3 for the bosonic string, we can
rewrite (4.79) in terms of d⊥ = (d− p− 2) integral involving the full tree-level amplitude (3.120)
and a kernel written in the square bracket below

A1 ≃
i

4Es

∫
dd⊥k

(2π)d⊥
A0(Es,k)A0(Es,q− k)

[
2α

′k(q−k)

π
B

(
1

2
+
α′

2
k(q − k),

1

2

)]
. (4.81)

The structure is familiar from the QFT case: the convolution over k becomes just a standard
product in impact parameter space, the factor of 2Es is the one needed to pass from the amplitude
to the eikonal (see Eq. (3.123)) and the extra factor of i

2 comes from the expansion at the second
order of the exponential with the leading eikonal (see the first term on the r.h.s. of (4.5)). The
kernel in the square parenthesis is a string effect as one can see by checking that in the α′ → 0
limit it becomes the identity plus subleading corrections

[
2α

′k(q−k)

π
B

(
1

2
+
α′

2
k(q− k),

1

2

)]
≃ 1 +

π2

6

(
α′

2
k · (q− k)

)2

+ · · · . (4.82)

In order to completely factorize the result in (4.81), it is sufficient to rewrite the kernel as an ex-
pectation value of operators written in terms of the string coordinates X̂ introduced in Eq. (3.174)

1

π
B

(
1

2
+
α′

2
k1k2,

1

2

)
= 2−α′k1k2〈0|

2∏

i=1

2π∫

0

dσi
2π

: eik1X̂(σ1) : : eik2X̂(σ2) : |0〉 , (4.83)

where the fields X̂ were introduced in (3.174) and contain the physical excitations of the string
involving the DDF oscillators, see Section 3.2.4 for a general discussion. Then the interpretation
of the kernel appearing in this string theory case is clear: it is related to the possibility of having
excited string states in the intermediate steps. Even when focusing on a particular elastic ampli-
tude, where the initial and the final states are dilatons, the gravitational field of the Dp-brane can
stretch the string probe and excite it to a different state while it propagates. As already discussed,
this is an entirely classical effect capturing the tidal forces on an extended probe [244]. As a further
check of this interpretation, this phenomenon can be quantitatively described by quantizing the
string worldsheet action in the background produced by the Dp-branes, as we will discuss in Sec-
tion 4.2.3. However, as usual with the eikonal exponentiation, classical effects provide constraints
on loop amplitudes and in particular in this case the leading contribution (as α′E2

s becomes large)
of the h-loop diagram (i.e. a worldsheet with h + 1 boundaries and no handles35) should match
the following convolution involving the tree-level result and the kernel discussed above

AL
h

2Es
=

ih

(h+ 1)!
〈0|

h+1∏

i=1

∫
dd⊥ki

(2π)d⊥

2π∫

0

dσi
2π

A0(Es,ki)

2Es
: eikiX̂(σi) : |0〉 δd⊥

(
h+1∑

i=1

ki − q

)
. (4.84)

This indeed reduces to (4.81) for h = 1 (one loop) thanks to (4.83). Thanks to this factorized
form of the leading contributions, it is straightforward to resum them in terms of the leading

35As in Section 3.2, in the string-brane case we are taking the probe approximation where the string coupling is
small, but with gsN fixed, so we ignore the contributions of worldsheets with handles.
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eikonal operator that was derived by studying the inelastic transition at tree level in Section 3.2.4.
As usual, after going to impact parameter space by taking the Fourier transform (3.123) the
convolution becomes a product and we obtain

∞∑

h=0

iÃL
h

2Es
= 〈0|

[
e2iδ̂0 − 1

]
|0〉 ⇒ S = e2iδ̂0 , (4.85)

where the operator δ̂0 was introduced in Eq. (3.176) where the impact parameter b is shifted by
the corresponding string coordinate X̂. Then, at leading PM order, the evolution of an initial
(light) string probe interacting with the Dp-branes is captured by the S-matrix S above. Notice

that while δ̂0 is normal ordered, this is not the case for the evolution operator S, and this plays
an important role in the analysis of tidal forces as discussed in the next section.

4.2.2. Tidal forces in String Theory

In this subsection we mainly discuss the suppression of the elastic channel as a consequence of
the tidal excitations of the colliding string. This is a direct consequence of the eikonal operator
derived in the previous section: as we will see, when this operator is used to estimate an elastic
amplitude a dumping factor arises from the normal ordering of the oscillators. A brief summary
on the nature of the inelastic channels is postponed to Section 4.2.5 where the same problem is
considered for the case of string-string collisions. Thus, while leading eikonal for a point-like scalar
object is a pure phase and describes an elastic scattering, in the string case a new dynamical scale
bt appears: when the impact parameter is below this scale the elastic scattering is exponentially
suppressed as the internal degrees of freedom of the string are excited during the scattering. In
formulae we have

|〈0|S|0〉| ∼ exp

[
−
(
bt
b

)d−p−2
]
, bd−p−2

t =

√
πEs

4T
(d− p− 3)

Γ
(

d−p−2
2

)

Γ
(

d−p−3
2

)Rd−p−3
p , (4.86)

where we approximated S by the leading eikonal operator as in (4.85) and wrote bt in terms of
the string tension T = 1

2πα′ to stress that it is a classical quantity. See also the discussion around
Eq. (4.120) below.

Notice that at high energies bt is parametrically larger than the string scale so tidal forces
can become relevant also at large distances. In this regime we can expand the leading eikonal
operator (3.176) by taking |X̂| ≪ b: at the zeroth order, one of course recovers the point-like
eikonal (3.185), the linear term is absent since the integral over σ of X̂ in (3.174) vanishes, and
the leading effects are encoded by the quadratic term. We have

1

2

∂2δ0(b)

∂bi∂bj
=
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2
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}
, (4.87)

where
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ŷ = −
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) R
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(

d−p−2
2

)

Γ
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) R
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= −(d− p− 3)µ2

ŷ .

(4.88)

Note that µ2
ŷ < 0 while µ2

0 > 0, but this will not play an important role in the following. Then at

the second order in the |X̂ | ≪ b expansion we have

e2iδ̂0 ≃ e2iδ0 exp



i

2π∫

0

dσ

2π
X̂ iX̂j

[
µ2
ŷ

(
δij −

bibj
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)
+ µ2

0

bibj
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]
 . (4.89)
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By using the mode expansion (3.174) we have
∫ 2π

0

dσ

2π
X̂ iX̂j = α′

∞∑

n=1

1

n

[
2T ij

0,n − T ij
+,n − T ij

−,n − δij
]
, (4.90)

where, by following [10], we introduced the combinations

T ij
±,n =

1

2n
A

(i
∓nĀ

j)
∓n , 2T ij

0,n = δij +
1

2n

(
A

(i
−nA

j)
n + Ā

(i
−nĀ

j)
n

)
. (4.91)

In order to evaluate the first string corrections to the leading eikonal, it is convenient to choose a
basis parametrized by ŷi, where i = 1, . . . , (d− p− 3) indicate the coordinates orthogonal to the
scattering plane and i = 0 indicates the direction along the impact parameter. This diagonalizes
the structure in (4.89) and we can consider (d− p− 2) decoupled families of generators T ŷi

n that
satisfy the commutation relations of the sl(2, R) algebra

[T ŷi

−,n, T
ŷj

+,m] = δij δnm 2T ŷi

0,n , [T ŷi

0,n, T
ŷj

±,m] = ±δij δnm T ŷi

±,n . (4.92)

It is now possible to use the properties of the sl(2, R) algebra to derive the exponential suppression
of the elastic scattering of an unexcited string mentioned in (4.86). Starting from

e2iδ̂0 ≃ e2iδ0 exp

{ ∞∑

n=1

iα′

n

[
µ2
0

(
2T ŷ0

0,n − T ŷ0

+,n − T ŷ0

−,n − 1
)
+ µ2

ŷ
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(
2T ŷi

0,n − T ŷi

+,n − T ŷi

−,n − 1
)]}

(4.93)
we can use the identity

e
x
(
2T

ŷi
0,n−T

ŷi
+,n−T
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−,n
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+,n e−2 ln(1−x)T

ŷi
0,n e−
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1−x

T
ŷi
−,n (4.94)

to calculate the elastic amplitude 〈0|S|0〉. The terms proportional to T ŷi

±,n vanish when acting

on the unexcited initial/final state and the same happens for the oscillator contribution to T ŷi

0,n,
see (4.91). Then (4.93) reads

〈0|e2iδ̂0 |0〉 ≃ e2iδ0
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ŷ
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. (4.95)

By using Weierstrass’s formula for the Γ-function and then taking the absolute value square which
is directly related to the probability of the transition, we obtain

|〈0|e2iδ̂0 |0〉|2 ≃
∣∣e2iδ0Γ
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1− iα′µ2

0

)
Γd−p−3
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0

sinh (πα′µ2
0)

)
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ŷ

sinh
(
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ŷ

)




d−p−3
(4.96)

where we used Γ(1 + ix)Γ(1 − ix) = πx
sinhπx . As discussed in Section 3.2.1, the imaginary part of

the leading eikonal is negligible when b ≫ ls(Es), so in this regime we can focus on the last two
factors. In the leading eikonal approximation b≫ Rp, we have

|〈0|e2iδ̂0 |0〉|2 ≃ (d− p− 3) (2πα′|µ2
ŷ|)d−p−2 e−2πα′|µ2

0| (4.97)

where we used the last identity in the second equation (4.88). Then, by using (4.88), we ob-
tain (4.86) in the regime where µ2

0 (and |µ2
ŷ|) is large, i.e. bt ≫ b.

In summary, when the impact parameter is below the scale (4.86), internal bosonic excitations

of the string along the directions ŷ and b̂ are excited according to parameters summarized in (4.88),
while no excitations are created at this order along the remaining direction. As we will see in the
next section, the same result can be recovered by studying the propagation of a string in a curved
background.

82



4.2.3. A geometric description of the eikonal scattering

In the QFT setup the probe limit of the eikonal has a simple geometric interpretation as it
is entirely captured by the classical motion in the background sourced by the heavy object, see
Section 4.1.5 and Appendix B. It is natural to expect that a similar pattern holds also for the
string eikonal operator and the aim of this section is to show that this is indeed the case. Again we
focus on the case of the string-brane scattering that has been the main example analyzed, but the
same idea applies more generally (see Section 4.2.5 below). It is natural to see stack of Dp-branes
as the heavy object and the scattering string state as the probe. Thus the first ingredient we need
is the supergravity solution describing the gravitational backreaction induced by the Dp-branes.
In the string frame it reads [266]

ds2 = [H(r)]
− 1

2 ηαβdx
αdxβ + [H(r)]

1
2 δijdx

idxj ,

e2φ(x) = g2s [H(r)]
3−p
2 , C01···p(x) =

1

H(r)
− 1 ,

(4.98)

where the indices α, β = 0, . . . , p are along the Dp-brane worldvolume while the indices i, j =
p+1, . . . , d−1 span the transverse directions. The fields in the second line are the dilaton (φ) and
the Ramond–Ramond (RR) p+1-form potential that couples minimally to the Dp-branes and the
harmonic function H(r) is

H(r) = 1 +

(
Rp

r

)d−p−3

, r2 = x2i , (4.99)

where the scale Rp is given by (D.6) in terms of the string coupling gs and the number of Dp-branes
N . The classical motion of a point-like object in the geometry above is discussed in Appendix B.2,
but we now need to generalize this analysis to the full string case starting from a string action
that includes the couplings to the non-trivial background fields. The presence of RR fields makes
the exact description more complicated as one would need to resort to the Green–Schwarz [267,
233, 234, 206] or the pure-spinor (see e.g. [268, 269] and references therein) formalisms. However
the analysis of the Reggeon vertex in Section 3.2.3 suggests that the fermionic degrees of freedom
on the worldsheet do not play any role at the level of the leading eikonal as the string excitations
induced by the tidal forces are fully captured by the bosonic field Xµ. Thus we can focus just on
the universal part of the (gauge fixed) string action

S = − 1

4πα′

∫
dτdσ [∂τX

µ∂τX
ν − ∂σXµ∂σX

ν ] gµν , (4.100)

where the metric is the one given in the first line of (4.98). Even this simplified starting point
contains much more information than needed for our purposes since we are interested in the
classical dynamics of an energetic string probe. In this case we can follow the approach of [270]
and approximate the background metric by taking just its behavior around the null geodesic
describing at leading order the trajectory of the string center of mass. We sketch the main steps
of this approach below.

First it is convenient to choose coordinates adapted to the motion of the center of mass which
takes place in a plane of the transverse space. In polar coordinates (B.25) this plane is parametrized
by r and φ and it is convenient to choose

du =

√
H

F
dr , dv = −dt+ bJ dφ+ Fdr , dz = dφ+

dφ̄

du
du , (4.101)

where we introduced the shorthand notation F =
√
H(r) − bJ

r2 and φ̄ ≡ φ(u) is the value of the

angle along the geodesic parametrized by u. So, from (4.101) and (B.27) we have

dφ̄(u)

du
=
dφ̄

dr̄

dr̄

du
= − bJ

r̄2
√
H(r̄)

, (4.102)
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where, following the convention above, r̄ is the value of r along the geodesic describing the motion
of the string center of mass. This is at constant values of v, z and the (d − p − 3) coordinates
orthogonal to the scattering plane that we indicate with yi. In these coordinates the metric
in (4.98) takes the following form

ds2 = 2du dv − dv2√
H

+
2b dv dz√

H
+

(rF )2√
H

dz2 +
dx2a√
H

+ r2
√
H sin2(φ− φ̄)dΩ2

d−p−3 . (4.103)

A similar change of coordinates can be implemented on the RR gauge field and then it is possible
to take the Penrose limit on the full solution by introducing a small parameter ǫ and rescaling the
coordinates (xa, yi, z)→ ǫ(xa, yi, z) together with v → ǫ2v. It was shown in [270] that in the limit
ǫ → 0, the leading term is O(ǫ2) and yields a solution of the same supergravity field equations
relevant for the original configuration (4.98). In this limit the geometry (4.103) reduces to

ds2 ≃ 2dudv +
(r̄F (r̄))2√
H(r̄)

dz2 +
dx2a√
H(r̄)

+ r̄2
√
H(r̄) sin2(φ̄)dyi2 . (4.104)

We can take this result in the canonical form by introducing the coordinates ŷ0, ŷi and x̂a

z =
H

1
4

r̄F
ŷ0 , yi =

ŷi

H
1
4 r̄ sin φ̄

, xa = H
1
4 x̂a

v =v̂ +
1

2

[
ŷ20 ∂u ln

(
r̄F

H
1
4

)
+ ŷ2i ∂u ln

(
r̄ sin φ̄H

1
4

)
+ x̂2a ∂u ln

(
H− 1

4

)] (4.105)

obtaining
ds2 ≃ 2dudv̂ + dŷ20 + dx̂2a + dŷ2i +

(
Gx̂x̂2a + Gŷ ŷ2i + G0ŷ20

)
du2 , (4.106)

with

Gx̂ = ∂2u lnH
− 1

4 +
(
∂u lnH

1
4

)2
, G0 = ∂2u ln

(
r̄F

H
1
4

)
+

(
∂u ln

r̄F

H
1
4

)2

, (4.107)

Gŷ = ∂2u ln
(
r̄ sin φ̄H

1
4

)
+
(
∂u ln r̄ sin φ̄H

1
4

)2
. (4.108)

In order to capture the dynamics of energetic semiclassical string probes it is then sufficient to
use the action

S = Sη −
1

4πα′

∫
dτ

∫ 2π

0

dσ ηαβ∂αU∂βU
(
Gx̂X̂2

a + GŷŶ 2
i + G0Ŷ 2

0

)
, (4.109)

where Sη is the string action in flat space (i.e Eq. (4.100) with gµν = ηµν). As standard, we
are using uppercase symbols to indicate the string embedding fields corresponding to the various
coordinates. The string analysis is greatly simplified by choosing a light cone gauge where the
string oscillations along U(σ, τ) are gauged away so that we have

U(σ, τ) = α′Esτ , (4.110)

so we can keep using a lowercase symbol to indicate this coordinate. Then, at high energies,
the interaction between the string probe and the background becomes localized at τ ∼ 0 since
τ = u/(α′Es), so by changing variables from τ to u, we can write

S ≃ Sη −
Es

2

∫ ∞

−∞
du

∫ 2π

0

dσ
(
Gx̂X̂2

a(σ, 0) + GŷŶ 2
i (σ, 0) + G0Ŷ 2

0 (σ, 0)
)
. (4.111)
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As usual for semiclassical strings captured by a Penrose limit, the worldsheet action is described
by free massive fields where the effective mass square parameters are

Es

2

∫ ∞

−∞
du Gx̂ = Es

∫ ∞

0

du

[
∂2u lnH

− 1
4 +

(
∂u lnH

1
4

)2]
≃ 0 , (4.112a)

Es

2

∫ ∞

−∞
du Gŷ = Es

∫ ∞

0

du

[
∂2u ln

(
r̄ sin φ̄H

1
4

)
+
(
∂u ln

(
r̄ sin φ̄H

1
4

))2]
≃ µ2

ŷ , (4.112b)

Es

2

∫ ∞

−∞
du G0 = Es

∫ ∞

0

du

[
∂2u ln

(
r̄F

H
1
4

)
+

(
∂u ln

r̄F

H
1
4

)2
]
≃ µ2

0 , (4.112c)

where the final results are valid at 1PM (i.e. at order (Rp/b)
d−p−3) and the parameters µ2

0, µ
2
ŷ

have been introduced in (4.88). In the equations above, we restricted the integration over u from
infinity to the inversion point r∗ (which corresponds to u = 0) and included the overall factor of
two to account for the contribution of the second part of the trajectory from r∗ back to infinity.
The two integrals in (4.112a) vanish at 1PM order. The second one can be neglected since it
scales as (Rp/b)

2(d−p−3), while the first one can be written as a total derivative of a function that
vanishes at the extremes, as done below

∫ ∞

0

du ∂2u lnH
− 1

4 =

∫ ∞

r∗

dr ∂r

(
F√
H
∂r lnH

− 1
4

)
= 0 . (4.113)

Here we used (4.101) to rewrite ∂u as (∂ur)∂r and the special values F (r∗) = 0, while H(r∗) is
finite, F (∞) = 1 and ∂rH → 0 as r → ∞. Evaluating the remaining two integrals requires a
slightly more detailed discussion which is summarized at the end of Appendix B.2 and the result
is summarized in (4.112b) and (4.112c). Thus, as promised, we rederived from a geometric analysis
the parameters (4.88) determining the strength of the tidal excitations. It would be interesting to
extend the comparison between the eikonal operator and geometric description of this section at
subleading PM order to see whether the geometric interpretation of the string excitations holds
beyond the leading eikonal.

4.2.4. String eikonal and classical causality

In the previous sections we discussed how the leading string eikonal exponentiates as an op-
erator and what novelties this implies with respect to the field theory case. This exponentiation
holds in the case of bosonic string theory, see Appendix D for more details, which provides an
interesting setup to study the higher derivative corrections to the on-shell 3-graviton vertex dis-
cussed in 3.1.5 from an EFT point of view. The main point we wish to convey is the following: the
string-brane scattering in bosonic string theory provides classical observables that are affected by
α′-corrections that take the form of (3.76) and (3.77) with ℓ2 ∼ ℓ4 ∼ ℓs. A naive field-theory limit
yields causality violations, in the form of negative time delays, when the impact parameter is of
the order of ℓ2,4,s [154]. As discussed below, in the eikonal context, this can be seen by looking
at the energy derivative of the leading eikonal. Equivalently, one can look at deflection angle and
notice that the higher derivative corrections seem to make gravity repulsive when b ∼ ℓ2,4,s. We
will show how this pathological behavior is avoided in string theory.

A first observation is that, in bosonic string theory, the 3-graviton amplitude takes the form
of (3.74) with ℓ24 = −2ℓ22 = α′

2 . Then we saw that, at the level of the leading eikonal, string

effects are captured by the shift b → b + X̂ (3.176). By applying this recipe to the long-range
eikonal (3.131)

2δ0 ∼
√
πEs

2

Γ
(

d−p−4
2

)

Γ
(

d−p−3
2

) R
d−p−3
p

bd−p−4
(4.114)
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one obtains an eikonal operator that is directly related to the EFT eikonal (3.81): the latter can
be obtained from the former simply by taking the expectation value in the massless sector

〈ε1, ε̃1|2δ̂0(b + X̂)|ε2, ε̃2〉 , (4.115)

where |εaε̃a〉 = εa iε̃a jA
i
−1Ā

j
−1|0〉.

However, this result does not describe the elastic amplitude in the classical regime since one

needs instead to take the expectation value of the exponentiated eikonal e2iδ̂0 as discussed in

Section 4.2.2. The novelty here is that e2iδ̂0 is not a diagonal phase even in the massless sector.
Thus in order to calculate the deflection angle of a massless state, one should first diagonalise δ̂0
in the massless sector and then apply the usual relation (2.31) for the deflection angle or (2.33)
for the time delay.

Let us then start by analysing the EFT eikonal (3.81). The key observation of [154] is that
regardless of the signs of the higher derivative corrections (ℓ22, ℓ

4
4 ≷ 0) there always exists an

eigenstate of the EFT eikonal with a negative eigenvalue. In order to show this let us focus on the
eigenvetors that lie in the space of the two states with polarizations

εiε̃j → ǫaij =
1√
D − 3

(
δij − b̂ib̂j

)
, εiε̃j → ǫbij = b̂ib̂j (4.116)

(let us recall that b̂i = bi/b). This space is orthogonal to the other physical states and so it can
be studied separately. From (3.81), one obtains

(
2δ̂aa0 2δ̂ab0
2δ̂ba0 2δ̂bb0

)
= 2δ0

(
1 + 2c2 + (D − 1)c4 −(D − 1)

√
D − 3 c4

−(D − 1)
√
D − 3 c4 1− 2(D − 3)c2 + (D − 1)(D − 3)c4

)
,

c2 = (D − 2)
2ℓ22
b2

, c4 = D(D − 2)
ℓ44
b4
.

(4.117)

Let us also emphasize that the matrix appearing in (4.117) is symmetric and real. One can check
that the determinant of (4.117) always becomes negative when |c2|, |c4| & 1, which means that
the two eigenvalues

1− (D− 4)c2 +
1

2
(D− 2)(D− 1)c4 ±

D − 2

2

√
4c22 − 4

(D − 4)(D − 1)

D − 2
c2c4 + (D − 1)2c24 (4.118)

have generically opposite sign and one of them must be negative. States corresponding to eigen-
vectors with a negative eigenvalue have a non-standard behavior: both the deflection angle and
the Shapiro time delay due to the gravitational scattering would be negative as they are related
to derivatives of the eikonal. This would happen when b & ℓ2, ℓ4 which may seem to be within
the range of validity of an EFT approach if ℓ2,4 ≫ ℓP . However, the string theory analysis shows
that, even when the higher derivative corrections in (3.73) have a classical origin, this pathological
behavior is avoided.

In order to see this, we must recall that the string eikonal (D.35) has a more complicated
structure than the EFT eikonal used for the argument above. In particular when b < ls(Es) ≡√
α′ ln(α′E2

s ) the string eikonal becomes a constant plus corrections proportional to b2, see for
instance (3.134). Then the corresponding eikonal operator, which is as before obtained with the
shift b → b + X̂, differs from EFT eikonal at scales much larger than b ∼ ℓs: instead of growing
at small distances, it becomes almost constant. The key ingredient for this is the Regge behavior
which modifies the functional form in the impact parameter as showed in (3.127). It is important
that the effective string scale ls(Es) (3.125), where the softer behavior kicks in, is enhanced by a
factor of ln(α′E2

s ) with respect to the scale of the higher derivative terms in the effective action.
This is the effect of the exchange of the whole leading Regge trajectory and the same mechanism
would not work in a theory with a finite number of extra higher spin states beyond the graviton
[154, 271].
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4.2.5. String-string scattering beyond tree level

In Subsection 3.2.6 we have discussed the main features of high-energy string-string scattering
at tree level and anticipated some results that follow from the exponentiation in b-space of the
tree-level result discussed in this section. Such an exponentiation indeed goes through in the
case of string-string collisions as well: the only difference with respect to the case of string-brane
collisions discussed in detail in Subsections 4.2.1 and 4.2.2 is that now both incoming strings
get excited through the exchange of the (gravi)reggeon: this is a consequence of factorization of
Regge-pole residues, related, in turn, to t-channel unitarity. Without repeating here the discussion
about tidal excitations given above in the case of string-brane collisions we simply give its analog
for string-string scattering:

S = exp(2iδ̂) (4.119)

with δ̂ now given in Eqns. (3.192), (3.185) (instead of (3.176) ). For b ≫ ls(s), δ̂ is Hermitian
and thus S is unitary. This result was first obtained in [10] by proving the exponentiation of the
tree-level string scattering amplitude. An elegant rederivation [272–275] follows from considering
the quantization of one string in the Aichelburg–Sexl metric (see Section 2.3) produced by the
other string. The corresponding classical action takes the form of (4.100) with gµν now given

by (3.192). It is greatly simplified by choosing the gauge u =
√
α′τ which allows, thanks to the

δ(u) in (2.55), to carry out the integration over τ . This leaves just the σ integral of the profile
function f(x⊥(σ)) of the transverse string coordinates as in (3.192). Actually, the explicit form of
the eikonal operator, including α′ corrections, allows one to reconstruct [273] the generalization
of the AS metric produced by the profile (3.191).

At a qualitative level we can estimate the importance of the string corrections by noting that
the normal ordering in δ̂ produces, at the level of S, corrections to the eikonal phase of order
∂22δ0
(∂b)2 ℓ

2
s which are, naively, of relative order

ℓ2s
b2 with respect to 2δ0 itself. The crucial point,

however, is that some of these corrections are imaginary and thus cannot be neglected as soon

as ∂22δ0
(∂b)2 ℓ

2
s becomes O(1). A simple calculation, using 2δ0 in (2.25), shows that this happens at a

critical value of b –that we denote by bt– given by:

bD−2
t ∼ Gs

~
ℓ2s ≫ ℓD−2

s for
Gs

~
≫ ℓD−4

s (4.120)

with RD−3 ∼ G
√
s. The above result can also be guessed from the two following qualitative

physical arguments. One of them goes as follows. The Newton potential acting on two points of
a string at a transverse distance 2∆b from each other is given by

U(b±∆b) =

(
R

b±∆b

)D−3

=⇒ U(b+∆b)− U(b−∆b) = 2
RD−3

bD−2
∆b . (4.121)

Taking the distance 2∆b of the two points on the string to be of order ℓs, and assuming that the
two points move at the speed of light, we can compute the difference between the two forces acting
on them. The tidal forces start to be relevant when such a difference is equal to the string tension
times their distance ℓs:

2
RD−3

bD−2
t

√
sℓs ∼ T ℓs =⇒ bD−2

t ∼ 2

√
sRD−3

T
∼ 4πα′Gs ∼ 4πGs

~
ℓ2s (4.122)

where we have used that RD−3 ∼ G√s and T = 1
2πα′ .

Alternatively, (4.120) can be obtained by considering how the different bits of one string (say
the one of energy E1) suffer, as a result of the metric produced by the other string (of energy E2),
slightly different deflection angles. The spread ∆Θ1 of these deflection angles is roughly:

∆Θ1 ∼
GE2

bD−3

ℓs
b

= GE2ℓsb
2−D . (4.123)

87



Such a spread corresponds to an invariant excitation mass ∆M1 ∼ E1∆Θ1 ∼ GE1E2ℓsb
2−D.

Requiring ∆M1 ∼ Ms (the mass of the first excited level) leads to the same estimate (4.120) for
bt after using s ∼ E1E2 as in (2.60).

Quantitatively, the phenomenon is described by the same gravi-reggeon vertex operator defined
in (3.166), acting now on both external strings. After exponentiation of the tree-level amplitude
in b-space, the resulting S-matrix is explicitly unitary within a Hilbert space containing just two-
(massive or massless) strings. We just stress here that, although single gravi-reggeon exchange
can only excite a small number of string oscillators, the full S-matrix (4.119) will populate a
large number of excited states. Some details of this S-matrix have already been discussed in
Section 4.2.2. We just mention that the elastic amplitude gets suppressed as a result of the
opening of the inelastic channels. One finds:

|Ael| ∼ e−
Gs
~

ℓ2s
bD−2 ∼ e−(

bt
b
)D−2 ≪ 1 , (b≪ bt) . (4.124)

The exponential suppression of the elastic amplitude for b < bt implies, by unitarity, that
inelastic final states, consisting of two tidally excited strings, are copiously produced. The differ-
ential cross section dσ/(dM1 dM2) for producing two massive strings of massM1 andM2 (summed
over the degeneracy of each mass level) was studied in [10]. Interestingly enough, the cross section
starts growing like the (exponential) degeneracy of each mass level as if all states of a given mass
were democratically produced. However, such a growth stops when Mi ∼ Ms(bt/b)

D−2. The
distribution has a maximum around that value of M1,2 and then falls off as a Gaussian.

A much more detailed analysis of the tidal excitation spectrum was made in [232] for the case of
string-brane scattering. This shows how the apparently incoherent sum of different contributions
actually comes from a unitary evolution of the system. Indeed, each gravi-Reggeon exchange
induces elementary transitions obeying very simple selection rules while the final spectrum takes
its apparently statistical form as a consequence of the eikonal exponentiation.

In the above discussion we have not considered graviton (and other massless particle) emission,
a topic discussed in the following sections in the point particle limit. As one lowers b, radiation
phenomena become important and things get increasingly complicated. The parameter control-
ling the importance of radiative corrections, relative to the leading order deflection, is formally
(R2/b2)D−3 but, once again, they become relevant as soon as their contribution to the imaginary
part of the eikonal phase becomes O(1). A naive estimate of the critical impact parameter br at
which this happens is given by

Gs

~
b4−D
r

(
R

br

)2(D−3)

∼ 1 , i.e. br ≫ R for
Gs

~
b4−D
r ≫ 1 . (4.125)

This is a fair estimate of br for quantities that do not suffer from infrared divergences which
is generically the case for D > 4. For D = 4, instead, many quantities are infrared sensitive:
for instance, the elastic amplitude goes to zero together with the IR regulator. The estimate
(4.125), however, should still apply to infrared safe quantities, such as the total radiated energy.
Comparing now bt of (4.120) with br of (4.125) we see that which kind of corrections comes first
as one lowers b, depends on D and on the ratio R/ℓs: as shown in Fig. 12, radiative corrections
take the upper (lower) hand at small (large) D. In any case the above discussion would imply
that, in going towards b ∼ R, we cannot keep just the string-size corrections and neglect the
classical radiative corrections. Unfortunately, to this date, no calculation taking both corrections
simultaneously into account is available.

Fortunately, a big simplification occurs if we lower b as much as we want while keeping R < ℓs
(thus entering region II in fig. 12). In this case, string-size effects should replace the expansion
parameter R2/b2 by R2/(b2 + ℓ2s) < R2/ℓ2s < 1 justifying a perturbative (yet stringy) approach.36

36This is still a physically motivated guess leading, as we shall see, to very sensible consequences. It would be
interesting to have further explicit checks of its validity.
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This amounts to saying that string-size corrections shield the bad short-distance regime of local
quantum gravity.

Let us list now the most significative results in this string-gravity regime:

• The classical deflection angle reaches a maximal value ΘM given by

ΘM ∼ (R/ls(s))
D−3 ∼ G

√
s

lD−3
s (s)

, (4.126)

which is reached for b ∼ ls(s), i.e. when the two strings graze each other. This result simply
comes from the smooth behavior of the stringy eikonal at small b, Eq. (3.193). Indeed,
taking the derivative of Re 2δ with respect to b, one obtains (see (3.195)):

Θ =
8G
√
s b

(D − 2)π
D−4

2 lD−2
s (s)

+ · · · , b≪ ls(s) , (4.127)

which grows monotonically with b. It reaches the above-mentioned maximal value at b ∼
ls(s) before starting to decrease according to the second equation in (3.195).

• For Θ > ΘM there is no real saddle point in b and, as a result, the elastic amplitude is
exponentially suppressed. In order to find the actual damping of the elastic amplitude one
has to find the dominant complex saddle point. This was done in Ref. [13] of which we give
below a more streamlined version. Let us rewrite (3.186) in the form:

2δ0(s, b) =
Gs(b2)

4−D
2

π
D−4

2

[
Γ

(
D − 4

2

)
−
∫ ∞

b2

Yc

dt e−tt
D−4

2 −1

]
; Yc = l2s(s)− iπα′ . (4.128)

The first term is the field theory leading eikonal for the scattering of massless particles.
It is easy to show that, after adding to it the tidal corrections, such term cannot provide
a relevant complex saddle point. This can come, instead, from the second term, denoted

by 2δ
(s)
0 , which contains string-size (i.e. finite-beam, see (3.191)) effects. Indeed, at large

complex values of b (i.e. at |b|2 > l2s(s)), 2δ
(s)
0 can be exponentially enhanced. Its large |b|

behavior is easily obtained by integration by parts and reads

2δ
(s)
0 (s, b) = −Gs(b

2)
4−D

2

π
D−4

2

e−
b2

Yc

(
b2

Yc

)−3+D
2

= − Gs

π
D−4

2 b2Y
D
2 −3

c

e−
b2

Yc (4.129)

We can now go back to the amplitude in momentum/angle space by a standard Fourier
transform. Keeping Θ≪ 1 and fixed we get:

A(s,Θ) =

∫
dD−2b e−ib

√
sΘ
2 e−iGsπ−D−4

2 b−2Y
3−D

2
c e

− b2

Yc . (4.130)

Looking for a (complex) saddle point gives the equation:

√
s

2
Θ =

2Gs

π
D−4

2

Y
1
2
c e

− b2s
Yc

Y
D−3

2
c bs

=

√
s

2
ΘMe

− b2s
Yc

(
4Y

1
2
c

bsπ
D−4

2

)
, ΘM ≡

G
√
s

lD−3
s (s)

. (4.131)

It is now clear that for Θ ≫ ΘM the saddle point has to be predominantly imaginary and
with a negative imaginary part in order to produce damping. Writing bs = −iβs the previous
equation becomes:

−i Θ

ΘM
=

4

π
D−4

2

Y
1
2
c

βs
e

β2
s

Yc =⇒ log

(
−i Θ

ΘM

)
=
β2
s

Yc
+ log

(
4Y

1
2
c

βsπ
D−4

2

)
. (4.132)
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The last term is subleading for large values of βs√
Yc

and thus we get:

βs = Y
1
2
c

√
log

Θ

ΘM
− iπ

2
=⇒ bs = −iY

1
2
c

√
log

Θ

ΘM
− iπ

2
. (4.133)

Inserting this saddle point in (4.130) we find that the first exponential dominates over the
second one by a log Θ

ΘM
≫ 1 and arrive at the final expression [13]:

|A(s,Θ)| ≡ |AACV | ∼ e−
√

s

2 ΘY
1
2

c

√
log Θ

ΘM
− iπ

2 ∼ e−
√

s

2~ Θls(s)
√

log Θ
ΘM . (4.134)

Taking into account that ΘM

Θ ∼ g2s ≪ 1, we can also approximate (4.134) by

|AACV | ∼ e−
√

s

2~ Θ
√
2α′

√
log(α′s

4 ) log g−2
s . (4.135)

The parametric form of the suppression is consistent with the behavior found, using a com-
pletely different method, by Gross–Mende–Ooguri (GMO) [9, 11, 14] in the overlapping
kinematical regime in which Θ is small and kept fixed at small gs. We recall that the
Gross–Mende approach [9, 11] is based on the behavior at high-energy, fixed-angle, of the
elastic (closed) string-string scattering amplitude at each loop level, generalizing the original
tree-level (open string) result in [276]. This regime exhibits an exponential damping of the
amplitude:

A(s, t)tree ∼ g2se−
α′
2 sf(Θ) , f(Θ) = − sin2

Θ

2
log sin2

Θ

2
−cos2 Θ

2
log cos2

Θ

2
≥ 0 . (4.136)

This tree-level behavior is in tension, at least at small Θ, with expectations based on classi-
cal gravitational deflection which would suggest an unsuppressed amplitude at high energy.
Thus, at fixed angle, one is actually in the opposite situation with respect to the fixed-t
large-s behavior where, as already mentioned, the tree-level result is too large to be com-
patible with unitarity bounds. We have seen how the eikonal resummation of loops in that
kinematical regime is capable of restoring unitarity bounds. Similarly, loops also come to
the rescue at fixed angle. As shown in [9, 11], loop amplitudes, in spite of being of higher
order in the string coupling, are enhanced, relative to the tree:

A(s, t)h−loops ∼ g2(1+h)
s e−

α′sf(Θ)
2(1+h) , (4.137)

where the milder exponential overcompensates the extra powers of gs at sufficiently large s.
That means, of course, that the perturbative series diverges at high energy and that a non
perturbative resummation is needed.

In [14] it was shown that, in a finite high energy window, such a divergent series can be
Borel resummed. It is precisely in such an energy window that we can compare the result of
[14] to the one based on the leading eikonal in the stringy regime at small deflection angle.
One finds quite an amazing agreement between the two results:

|AACV | ∼ e−
√

α′s
2 Θ

√
log(α′s

4 ) log(g−2
s ) , |AGMO| ∼ e−

√
α′s
2 Θ

√
log( 4

Θ2 ) log(g−2
s )

, (4.138)

where the second equation follows from Eq. (3.31) of [14] (which uses units in which α′ = 1
2 )

for small Θ:

|AGMO| ∼ e−
√

2α′sf(Θ) log(g−2
s ) . (4.139)

The difference (a log(α
′s
4 ) replacing a log( 4

Θ2 )) is already apparent in the transition between

the fixed-t ((α
′s
4 )

α′t
2 with t = −s sin2 θ

2 ) and small fixed-Θ regime (e−
α′s
8 Θ2 log 4

Θ2 ) at tree
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level. Let us stress that the above damping in |AACV | is only reliable in the stringy regime
and has to be modified at higher energies when gravitational radiation further damps the
elastic channel. Such effects are also (presumably) neglected in the GMO approach. Fur-
thermore, the Borel resummation leading to |AGMO| could only be justified in a finite energy

range. In Eq. (3.31) of Ref. [14] is claimed to be valid in the window log g−2
s < s/M2

s < g
− 4

3
s .

• The impact parameters that can be actually probed at high energy at fixed Θ never go below
the string-length scale. Indeed, for Θ < ΘM one finds two real saddle points in b, one above
and one below ℓs, but the former is found to be the dominant one [13]. On the other hand,
as we have just seen, for Θ > ΘM the imaginary saddle point (4.133) too has an absolute
value larger than ℓs. All this suggests an effective generalized uncertainty principle (GUP)
holding true in string theory and reading [277], [13], [278], [279]:

∆X ≥ ~

∆P
+ α′∆P ≥ 2

√
α′~ = 2ℓs . (4.140)

• Let us now turn to the consequences of exponentiating the full tree-level string-string scat-
tering amplitude including its imaginary part given in (3.194) at b ≤ ls(s).

37 This problem
was already addressed in [10], was further analyzed in [280] (see also [281]), and was also
used more recently in [282].

The basic point is how to interpret the imaginary part of the exponentiated scattering am-
plitude at a fixed loop order in terms of its s-channel cuts through the exchanged Reggeized
gravitons. Fortunately, old work by Abramovsky, Gribov and Kancheli (AGK) [283] (see also
[284]) provides very simple “cutting rules” for the relative weights when cutting m out of the
total number n of exchanged gravitons at (n− 1) loop order38. These rules (when directly
applied in impact parameter space) tell us that the full imaginary part of the n-graviton
exchange graph is the result of a contribution

σn
m = (−1)n−m (4Imδ)n

m!(n−m)!
, n = 1, 2, . . . , m = 1, 2, . . . , n− 1, n (4.141)

due to cutting m out of n gravi-Reggeons, and a contribution

σn
0 = (−1)n (4Imδ)

n

n!
− 2ReS(n) , n = 1, 2, . . . , (4.142)

when no gravi-Reggeon is cut, where S(n) is the full n-gravi-Reggeon exchange contribution
to the S-matrix. As the symbol σm indicates, these are also to be interpreted as cross sections
into inelastic channels with m cut gravi-Reggeons (i.e. m closed strings). It is trivial to check
that, for any given n, the sum of all contributions from m = 0 to m = n gives back twice
the full imaginary part of T (n) ≡ i(1− S(n)), as it should.

In analogy with what was done for the description of tidal excitations, we shall again promote
the eikonal phase to an eikonal operator [280] acting on both the tidally-excited pairs of
strings and, at a more “coarse-grained” level, on a Hilbert space labeled by the number of
cut gravi-Reggeons. A new unitary S-matrix reproducing the AGK cutting rules takes the
form:

S = exp(iÎ) , (4.143)

37Interestingly, as b → ls(s), the imaginary part due to tidal excitations “saturates” and becomes of the same
order as the one due to formation of s-channel resonances.

38Given that the topology of the diagram is that of a sphere with (n − 1)-handles, any value of 0 ≤ m ≤ n is
allowed.
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where the Hermitian operator Î is given by:

Î = (δ̂ + δ̂†) +
√
−2i(δ̂ − δ̂†)(C + C†) = Î† , (4.144)

and the operators δ̂, δ̂†, C and C† satisfy the commutation relations

[C,C†] = 1 , [δ̂, δ̂†] = [C, δ̂] = [C, δ̂†] = 0 . (4.145)

Using well-known harmonic-oscillator formulae, Eqs. (4.143), (4.144) lead to the more con-
venient form:

S = e2iδ̂ei
√

−2i(δ̂−δ̂†) C†
ei
√

−2i(δ̂−δ̂†) C . (4.146)

Equations (4.144), (4.146) imply that, as long as δ is real (i.e. for b≫ ls(s)), δ̂ is essentially
Hermitian, the oscillators C, C† are turned off, and one recovers the unitary S-matrix (4.119)

with δ̂ given by the usual recipe (3.192). On the other hand, as one goes to values of b of
order ls(s) or lower, δ in (3.131) picks up an imaginary part and consequently (4.119) is
no longer unitary, signaling the opening up of new channels. These correspond to unitarity
cuts going through the gravi-reggeons themselves. In order to recover unitarity we should
further extend the Hilbert space by including, in the final state, whatever goes on shell after
cutting the gravi-reggeons. A detailed account of this “whatever” being unavailable, we
limit ourselves to counting the number of such gravi-reggeons through the number-counting
operator NC ≡ C†C.

Indeed, from (4.146) one can calculate the average number of heavy strings produced.
For Im2δ of equation (3.194) of O(1) or smaller, i.e. for

√
s < Msg

−1
s , a single closed

string carrying the whole center of mass energy is formed. Instead, in the energy interval
Msg

−1
s <

√
s < Msg

−2
s the average number of produced strings grows like Im2δ, i.e. like s.

Consequently, by energy conservation, the average energy of each produced string decreases
like 1/

√
s. More precisely:

〈E〉 ∼ M2
s g

−2
s√
s

. (4.147)

As one approaches the supposed threshold of black hole production s ∼ Msg
−2
s the most

probable final state will consist of g−2
s strings of energy Ms = ~

ℓs
which appears to be

consistent with a smooth transition to a Hawking-like behavior in which the Hawking tem-
perature matches the Hagedorn temperature of string theory and the string entropy matches
the Bekenstein-Hawking entropy of a black hole of radius ℓs. Unfortunately, the approxima-
tions made cease to be valid when the energy going across each cut Reggeon goes below the
string scale.

• Comparatively less work has been devoted to the study of heavy string scattering. An excep-
tion can be found in [285] where one considers the high-energy collision of a light/massless
string on a heavy one (with the energy of the light string smaller than the mass of the heavy
one). The idea is to take the heavy string mass to lie as close as possible to the so-called
correspondence point , M =Msg

−2
s , where fundamental strings and black holes share many

properties, including their entropy ∼ g−2
s ≫ 1 (see [286, 287] and references therein).

One then checks whether the probe string can be sensitive to properties of the heavy one
other than its mass or spin. One finds that, at least below the corresponding point (where
the heavy string’s Schwarzschild radius is smaller than ℓs), the light strings is also sensitive to
the quadrupole moment of the heavy string, which therefore acts as some kind of “quantum
hair”. If that feature would persist all the way till the correspondence point, and possibly
beyond, this would imply that some quantum hair can be detected for stringy black holes.
Unfortunately, this conclusion cannot be reached on firm grounds since the approximations
used become unjustified precisely as one approaches the correspondence point.
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5. Unitarity and Radiation-Reaction

Radiation reaction effects are contributions are due to the effective force acting on the system
as a result of the emission of gravitational waves (and of additional massless modes, in the super-
symmetric case). Intuitively, as the two colliding objects deflect due to the mutual “potential”
attraction, they emit energy and angular momentum due to Bremsstrahlung. This in turn further
bends their trajectories, giving rise to dissipative terms in the eikonal. This reflects in additional
contributions to the deflection angle, which appear to lowest order at two loops (3PM). This
chapter and the next are devoted to the calculation of these interesting new effects. While in the
next chapter we will derive them from a complete two-loop calculation of the elastic scattering
amplitude, in this chapter we follow very closely the approach of Refs. [106, 47] and obtain them
by combining the contribution to the unitarity relation of the three-particle cut, involving two
massive particles and a graviton, with the properties of real analyticity and crossing symmetry of
the elastic scattering amplitude. We apply this method to both GR and massiveN = 8 supergrav-
ity. In particular, to obtain the radiation-reaction we do not need the complete three-particle cut,
but only the part that is divergent as 1

ǫ that is obtained from the five-point amplitude involving
four massive particles and a graviton keeping only the leading term in the Weinberg limit of small
graviton momenta kµ → 0, which behaves as 1

ω with ω = k0.
The chapter is organized as follows. In the first section, starting from the unitarity relation,

we discuss the two-particle and three-particle cuts in momentum and impact-parameter space. In
the second section we explicitly compute Im2δ2 for both GR and massive N = 8 supergravity.
Finally, in the third section, we discuss the constraints of real analyticity that relate this imaginary
part to the radiation-reaction effects.

5.1. Unitarity in momentum space and in impact-parameter space

The unitarity of S = 1 + iT , i.e. S†S = 1 translates to

−iT + iT † = T †T , (5.1)

whose matrix elements between states |a〉, |b〉 yield

−i(2π)Dδ(Pa − Pb)
(
Ma→b −Mb→a

)
= 〈b|T †T |a〉 . (5.2)

Inserting a complete set of free states on the right-hand side and restricting to Pa = Pb, then gives

−i
(
Ma→b −Mb→a

)
=
∑

I

(2π)Dδ(Pa + PI)Ma→IMb→I , (5.3)

where the sum includes Lorentz-invariant phase-space integrals over all the intermediate states
j ∈ I and, in general, sums over their spins/helicities. Since we will focus on the case in which
a→ b is an elastic 2→ 2 process for (real) massive scalars, for which the amplitude is a function
A(s, t) of the two Mandelstam invariants (1.22), we have

2 ImMa→b =
∑

I

(2π)Dδ(Pa + PI)Ma→IMb→I . (5.4)

Let us write,
ImA(s, t) = Im2pcA(s, t) + Im3pcA(s, t) + · · · (5.5)

and discuss each cut separately (see below). Taking the Fourier transform of (5.5) according to
(1.32), and noting that FT[ImA](s, b) = ImFT[A](s, b) because A(s,−q2) is a symmetric function
of q, we get

ImFT[A](s, b) = Im2pc FT[A](s, b) + Im3pc FT[A](s, b) + · · · . (5.6)
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5.1.1. Elastic unitarity

The elastic contributions come from the two-particle cut

2 Im2pcA =

∫
d(LIPS)2AL.A∗

R. (5.7)

(where L. and R. stand for “left” and “right”) or in the pictorial form

2 Im2pc

p4

p3

p1

p2

q =

∫
d(LIPS)2

p1

p2

q1

p4

p3

q − q1 (5.8)

with d(LIPS)2 the Lorentz-invariant phase space measure for the intermediate two-particle states.
For simplicity, we do not consider inelastic 2→ 2 processes for the time being.

Let us now check that the impact-parameter Fourier transform diagonalizes this two-particle
phase space convolution. We can start from (5.8) and go to impact-parameter space via the Fourier
transform for the 2 → 2 process (1.32). When applying this Fourier transform to both sides of
(5.8), we obtain

2 Im2pc FT[A] =
∫

dDq1
(2π)D

2πδ(−2p1 · q1 + q21)2πδ(2p2 · q1 + q21)

p1

p2

q1

×
∫

dDq

(2π)D
2πδ(−2p1 · q + q2)2πδ(2p2 · q + q2)eib·q




p4

p3

q − q1




∗ (5.9)

Then we change integration variables according to q = q1 + q′1 and use

δ(−2p1 · q1 + q21)δ(−2p1 · q + q2) = δ(−2p1 · q1 + q21)δ(−2(p1 − q1) · q′1 + q′21 ) (5.10)

and similarly

δ(2p2 · q1 + q21)δ(2p2 · q + q2) = δ(2p2 · q1 + q21)δ(2(p2 + q1) · q′1 + q′21 ) (5.11)
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which hold thanks to the properties of the delta function. Then we get,

2 Im2pc FT[A] =
∫

dDq1
(2π)D

2πδ(−2p1 · q1 + q21)2πδ(2p2 · q1 + q21)e
ib·q1

q1 − p1

−q1 − p2

p1

p2

q1

×
∫

dDq′1
(2π)D

2πδ(−2(p1 − q1) · q′1 + q′21 )2πδ(2(p2 + q1) · q′1 + q′21 )eib·q
′
1




p4

p3

q′1




∗

(5.12)

As shown in Appendix A.3, the Fourier transform FT[A] differs from the linearized one Ã em-
ployed in the definition of the eikonal exponentiation (4.1) by G-independent corrections sup-
pressed by 1/b2 (more precisely, by powers of the dimensionless quantity 1/(pb)2), and thus we
arrive at

2 Im2pc Ã = |Ã(s, b)|2
(
1 +O

(
1

b2

))
. (5.13)

Using the eikonal exponentiation (4.1) on the right-hand side we find

2 Im2pc Ã =
∣∣∣[1 + 2i∆(s, b)]e2iδ(s,b) − 1

∣∣∣
2
(
1 +O

(
1

b2

))
. (5.14)

We can expand this in G to obtain various constraints. To leading order in G, of course we get
that the tree-level amplitude is real

2 Im2pc Ã0 = 0 (5.15)

and hence the leading eikonal is real,
Im 2δ0 = 0 . (5.16)

To first subleading order in G, i.e. O(G2), we get

2 Im2pc Ã1 = (2δ0)
2

(
1 +O

(
1

b2

))
. (5.17)

This is the first interesting constraint, since it reveals that the imaginary part of the one-loop
amplitude up to O(1/(b2)1−2ǫ) is exhausted by the eikonal exponentiation. In this way, this
constraint ensures that 2δ1 is real

Im 2δ1 = 0 , (5.18)

while in general 2∆1, being of the same order as the corrections in the right-hand side of (5.17)
can itself develop an imaginary part. Additionally, Im 2∆1 receives contributions from inelastic
2→ 2 processes, e.g. from intermediate two-gravitino states in supergravity.

To O(G3), we find instead

Im2pc Ã2 = (2δ0 2δ1 + 2δ0 Re 2∆1)

(
1 +O

(
1

b2

))
. (5.19)

Therefore, the imaginary part of the two-loop amplitude due to the two-particle cut up to
O(1/(b2)3/2−2ǫ) is exhausted by the exponentiation. On the other hand, the imaginary part
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of 2δ2 is not captured by the two-particle cut. By power counting in G, it must be due to the
three-particle cut,

Im 2δ2 = Im3pc Ã2 , (5.20)

which we shall illustrate in the next subsection.
Before proceeding, for illustrative purposes, let us explicitly calculate the b-space contribution

of the two-particle cuts to order G2. We start from Eq. (5.12) and consider the situation in which
the amplitudes appearing on its right-hand side are the tree-level ones, i.e. such that

A0(s,−q2) =
a0
q2
, Ã0(s, b) = 2δ0(s, b) =

1

4Ep

a0
4π

Γ(−ǫ)
(πb2)−ǫ

. (5.21)

We retain here a generic q-independent prefactor a0, for the sake of generality; for instance

a0 = 32πGm2
1m

2
2

(
σ2 − 1

2−2ǫ

)
(5.22)

for collisions of minimally coupled massive scalars in GR. We start by evaluating the Fourier
transform in the second line of (5.12). We can write rewrite it as follows

∫
dDq′1
(2π)D

2πδ(2p′1 · q′1 − q′21 )2πδ(2p′2 · q′1 + q′21 )eib·q
′
1A0(s,−q′21 )

=

∫
dDq′1
(2π)D

2πδ(2p′1 · q′1)2πδ(2p′2 · q′1)eib·q
′
1
a0
q′21

(5.23)

where we have introduced the notation p′1 = p1 − q1, p′2 = p2 + q1 and we have used the fact
that any correction involving positive integer powers of q′21 , such as those due to the application
of Eq. (A.40), can be neglected because they give rise to contact terms in b. At this point we may
use (A.44) and (A.45) in the familiar way, up to an important point: the result only depends on
the projection of bµ orthogonal to p′1 and p′2 (and not to p1, p2), so that

∫
dDq′1
(2π)D

2πδ(2p′1 · q′1)2πδ(2p′2 · q′1)eib·q
′
1
a0
q′21

=
1

4Ep

a0
4π

Γ(−ǫ)
(πb′2(q1))−ǫ

, (5.24)

where b′(q1)2 is the square of such projection,

b′2(q1) = b2 − 1

p2
(b · q1)2 . (5.25)

At this point we can substitute back into (5.12), taking again into account that any positive integer
power of q21 can be safely dropped, so that

2 ImFT[A1] =

∫
dDq1
(2π)D

2πδ(2p1 · q1)2πδ(2p2 · q1)eib·q1
[
a0
q21

] [
1

4Ep

a0
4π

Γ(−ǫ)
(πb′2(q1))−ǫ

]
. (5.26)

In this step, we need to expand (5.25) appearing in the second factor to subleading order for
large b. This term also depends on q1, which manifests the lack of complete factorization, if such
subleading terms are taken into account. In the end, using (A.45) and its derivatives with respect
to bµ, one arrives at

2 ImFT[A1] = [2δ0(s, b)]
2 − 2(1− 2ǫ)

p2(b2)1−2ǫ

[
1

4Ep

a0
4π

Γ(1− ǫ)
π−ǫ

]2
+O(b−4+4ǫ) . (5.27)

To summarize, the FT of the two-body convolution of the tree-level amplitude is the product of
the FT only to leading order in 1/b2, while this factorization receives corrections to first subleading
order. On the one hand, here we calculated it using the properties of the Fourier transform under
considerations to achieve the “almost factorized” form (5.26). On the other hand, in Eq. (6.111)
below we provide an expression for the two-particle convolution accurate to leading and subleading
order in q2. One can verify that, using (A.40), taking FT of (6.111) one indeed recovers (5.27).
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5.1.2. Inelastic unitarity

The first inelastic contributions come from the three-particle cut of the 2 → 2 amplitude A.
This is obtained by “gluing together” two copies of a 2→ 3 amplitude

A(5)(p1, p2, q1, q2, k) =

k1

k

k2

p1

p2

q1

q2
(5.28)

where blue and green lines represent classical states with masses m1 and m2, while massless lines
are drawn in black. The drawing inside the dashed bubbles does not represent a specific topology,
but just provides a visual help to recall the definition of the qi variables, such that

q1 + q2 + k = 0 . (5.29)

We will discuss momentarily on the precise form of the product of five point amplitudes appearing
in this gluing, which of course involve index contractions with appropriate projector insertions.
For the moment, let us write it schematically as

2 Im3pcA =

∫
d(LIPS)A(5)

L. A
(5)∗
R. (5.30)

(where L. and R. stand for “left” and “right”) or in the pictorial form

2 Im3pc

p4

p3

p1

p2

q =

∫
d(LIPS)

k1

k

k2

p1

p2

q1

q2

p4

p3

q4

q3

(5.31)

where

d(LIPS) =
dDk

(2π)D
2πθ(k0)δ(k2)

dDk1
(2π)D

2πθ(k01)δ(k
2
1 +m2

1)2πθ(k
0
2)δ(k

2
2 +m2

2) (5.32)

is the Lorentz-invariant phase-space measure for the intermediate states. Using momentum con-
servation we can retain only, say, k and k1 as independent integration variables in the measure.

We enforce the classical limit as follows. As by now familiar, we assume that the momentum
transfer q = p1 + p4 for the full 2 → 2 process be small compared to the momenta of particle 1
and 2, depicted by thick colored lines in (5.31), so that to leading order

p1 ∼ −m1u1 +O(q) ∼ −k1 , p2 ∼ −m2u2 +O(q) ∼ −k2 . (5.33)

By momentum conservation, this is tantamount to assuming the scaling

q1 ∼ q2 ∼ k ∼ O(q) . (5.34)

We thus take the momenta q1,2 and k to be simultaneously small, of the order of the elastic
momentum transfer q. Equivalently, reinstating momentarily ~, this can be regarded as a formal
~ → 0 limit in which the wavenumbers q1,2/~ and k/~ are held fixed. Eq. (5.34) expresses the
soft-region scaling that we discussed when evaluating loop integrals and is justified by the fact
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that it captures all non-analytic contributions in q2. It also allows us to simplify the integration in
a similar way as before. Using q1 = p1 + k1 and k as independent integration variables simplifies
the LIPS measure as follows to leading order in the scaling (5.34),

d(LIPS) ≃ dDk

(2π)D
2πθ(k0)δ(k2)

dDq1
(2π)D

2πδ(2p1 · q1)2πδ(2p2 · (q1 + k)) , (5.35)

and leads us to adopt the following routing

2 Im3pc

p4

p3

p1

p2

q =

∫
d(LIPS) k

p1

p2

q1

−q1 − k

p4

p3

q − q1

k − q + q1

(5.36)

for the integrated momenta. Since the massless momentum k will mostly remain as a spectator in
the following manipulations let us also introduce a shorthand notation for its on-shell phase space
integration, ∫

k

≡
∫

dDk

(2π)D
2πθ(k0)δ(k2) . (5.37)

Our basic ingredient (5.30) will be the 2→ 3 tree-level amplitude in Eq. (3.1) of [104], which
had been obtained from the low energy limit of a string amplitude in a toroidal compactification.
In this way it naturally includes the contributions of the dilaton, of vectors and scalars arising
in the Kaluza–Klein compactification, and of the graviton. To include all such contributions
simultaneously, we find it convenient to formally promote all spacetime indices µ, ν, . . . to 10-
dimensional ones M,N, . . . according to conventions specified below. The tree-level contribution
to A(5) in the classical limit reproduces the result of [123, 288, 127] and can be then written in
the following convenient form,39

A(5)MN
0 = (8πG)

3
2

{
β

[
−p

M
1 p

N
1 (k · q1)

(p1 · k)2q22
− pM2 p

N
2 (k · q2)

(p2 · k)2q21

+
pM1 (q1 − q2)N + pN1 (q1 − q2)M

2(p1 · k)q22
− pM2 (q1 − q2)N + pN2 (q1 − q2)M

2(p2 · k)q21

+
(q1 − q2)M (q1 − q2)N

2q21q
2
2

]
+ 8

(
(p1 · k)pM2 − (p2 · k)pM1

) (
(p1 · k)pN2 − (p2 · k)pN1

)

q21q
2
2

+ (2p1 · p2)
(
4pM1 p

N
1

k·p2

k·p1
− 2(pM1 p

N
2 + pN1 p

M
2 )

q22
+

4pM2 p
N
2

k·p1

k·p2
− 2(pM1 p

N
2 + pN1 p

M
2 )

q21

+
(q1 − q2)M

(
−2(p1 · k)pN2 + 2(p2 · k)pN1

)
+ (q1 − q2)N

(
−2(p1 · k)pM2 + 2(p2 · k)pM1

)

q21q
2
2

)}

(5.38)

the quantity β is defined in (5.41) below depending on the theory under consideration. The main

feature of (5.38) is that it satisfies kMA(5)MN
0 = kNA(5)MN

0 = 0 for arbitrary values of the free
index, which makes the calculations in general dimensions easier [48, 258]. Notice that the terms

39The full theory also allows for other 2 → 3 processes involving fermionic external states. However, these would
yield contributions that are subleading in the limit of small momentum transfer.
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proportional to β and the remaining terms are independently gauge invariant. It is also symmetric

in its two spacetime indices, A(5)MN
0 = A(5)NM

0 .
When focusing on N = 8 supergravity, we choose the following 10D kinematics [106]40

pM1 = (pµ1 ; 0, . . . , 0, 0,m1) , pM2 = (pµ2 ; 0, . . . , 0,m2, 0) , (5.39)

where pµ1,2 are (4−2ǫ)-dimensional momenta and the dots stand for 2+2ǫ zero entries. In contrast,
in the case of GR,

pM1 = (pµ1 ; 0, . . . , 0, 0, 0) , pM2 = (pµ2 ; 0, . . . , 0, 0, 0) . (5.40)

The momenta kM and qM1,2 are always non-trivial only in the 4 − 2ǫ non-compact directions so

that they effectively coincide with kµ and qµ1,2, e.g. q
M
1 = (qµ1 ; 0, . . . , 0, 0, 0). Another difference

between N = 8 and GR is related to the contribution of the dilaton as an internal state exchanged
between the massive objects. This exchange can only occur in N = 8 supergravity, while for GR
the contribution of the dilaton has to be subtracted. This can be taken into account by specifying
the parameter β as follows in the two theories,

βN=8 = 4m2
1m

2
2σ

2 , βGR = 4m2
1m

2
2

(
σ2 − 1

D−2

)
. (5.41)

Let us now describe more precisely how the N = 8 supergravity and GR amplitudes enter the
integrand (5.30). In both cases, the kinematics is dictated by the momentum flow depicted in
Eq. (5.31), so that

A(5)
L. = A(5)(p1, p2, k1, k2, k) , A(5)∗

R. = A(5)∗(p4, p3,−k1,−k2,−k) . (5.42)

Index contractions are instead theory dependent. In the maximally supersymmetric case, we
simply work in M,N, . . . indices and saturate the Lorentz indices with the Minkowski metric,
contracting the two amplutudes according to

A(5)
L. A

(5)∗
R. = A(5)MN

L. ηMR ηNS A(5)∗RS
R. , (5.43)

because in this case the amplitude A(5)MN is transverse and traceless. As already stressed,
the advantage of this trick is that it effectively encompasses graviton, dilaton and Kaluza–Klein
vectors/scalars at the same time. For GR we work with µ, ν, . . . indices and on the top of this we
need to subtract the contribution of the dilaton, and thus we employ the contraction

A(5)
L. A

(5)∗
R. = A(5)µν

L.

[
ηµρηνσ − 1

D−2ηµνηρσ

]
A(5)∗ρσ

R. . (5.44)

The structure within square brackets arises from the transverse-traceless projector over physical
degrees of freedom Πµν,ρσ(k). Explicitly, for any reference null vector rµ, letting λµ = −rµ/(r · k)
and Πµν = ηµν + λµkν + λνkµ, one can construct this projector according to

Πµν,ρσ(k) =
1

2

(
ΠµρΠνσ +ΠµσΠνρ − 2

D−2Π
µνΠρσ

)
. (5.45)

The transversality condition kµA(5)µν = 0 then turns (5.45) into the conbination within square
brackets in (5.44), which is the one appearing also in the de Donder propagator, simplified by using
A(5)µν = A(5)νµ. We will use (5.43) and (5.44) as a convenient shorthand notation to suppress
explicit index contractions between 2→ 3 amplitude also in Section 8.

40For sake of simplicity here we focus directly on the case φ = π
2

in the notations of that reference.
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We can now start from (5.36) go to impact-parameter space via the usual Fourier transform
for the 2→ 2 process (see Appendix A.3)

Ã =

∫
dDq

(2π)D
2πδ(2p1 · q)2πδ(2p2 · q) eib·q

p4

p3

p1

p2

q . (5.46)

In the remainder of this section, we need not worry about the difference between FT[A] (A.31)
and Ã (A.44), since we will be working to leading order in q ∼ 1/b. When applying this Fourier
transform to both sides of (5.36), we change integration variable by letting q = q1 + q4. After
doing this, an important step is to use

δ(p1 · q1)δ(2p1 · q) = δ(p1 · q1)δ(2p1 · (q1 + q4)) = δ(p1 · q1)δ(2p1 · q4) (5.47)

and similarly
δ(p2 · (q1 + k))δ(2p2 · q) = δ(p2 · (q1 + k))δ(2p2 · (q4 − k)) , (5.48)

which hold thanks to the properties of the delta function. Then we get,

2 Im3pc Ã =

∫

k

∫
dDq1
(2π)D

2πδ(2p1 · q1)2πδ(2p2 · (q1 + k))eib·q1
k

p1

p2

q1

−q1 − k

×
∫

dDq4
(2π)D

2πδ(2p1 · q4)2πδ(2p2 · (q4 − k))eib·q4




p4

p3

q4

k − q4−k




∗ (5.49)

We may reinterpret the 3→ 2 amplitude in the second line as a 2→ 3 one by flipping all external
momenta and relabel q4 = −q′1 in the integration. Since moreover to leading order p4 ≃ −p1,
p3 ≃ −p2 we can write

2 Im3pc Ã =

∫

k




∫
dDq1
(2π)D

2πδ(2p1 · q1)2πδ(2p2 · (q1 + k))eib·q1
k

p1

p2

q1

−k − q1




×




∫
dDq′1
(2π)D

2πδ(2p1 · q′1)2πδ(2p2 · (q′1 + k))eib·q
′
1

k

p1

p2

q′1

−k − q′1




∗ (5.50)

In this equation, the two quantities appearing within square brackets are equal to each other and
can be identified as the Fourier transform of the five-point amplitude, Ã(5). Of course, (5.50) only
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fixes the definition of Ã(5) up to an overall phase, which would of course cancel in the product
Ã(5)Ã(5)∗. In order to treat the two momenta q1 and q2 on the same footing, it is natural to define

Ã(5) =

∫
dDq1
(2π)D

2πδ(2p1 · q1)2πδ(2p2 · q2)eib1·q1+ib2·q2

k1

k

k2

p1

p2

q1

q2

(5.51)

with bα = bα1 − bα2 and of course q1 + q2 + k = 0 as indicated in the figure. We shall come back
to this Fourier transform in Section 8. As we shall see, this is indeed the appropriate Fourier
transform to leading order in the PM expansion. We have thus related the imaginary part of the
b-space 2→ 2 amplitude to the integral over the massless particle’s phase space of the product of
two b-space 2→ 3 amplitudes,

2 Im2δ2 = 2 Im3pc Ã =

∫

k

Ã(5) Ã(5)∗ . (5.52)

Let us recall that index contractions are left implicit and can be restored by using (5.43) for N = 8
supergravity and (5.44) for GR.

To conclude, we have discussed how the imaginary part of the amplitude in b-space arising
from the three-particle cut can be calculated in two different ways. The first is to calculate the
three-particle cut (5.30) in momentum space and then take its Fourier transform at the very end.
The second is to first take Fourier transforms of the five-point amplitudes via (5.51), contract them
as in (5.43), (5.44) and integrate over the graviton phase space, according to (5.52). The former
method is more powerful as far as loop integration techniques are concerned. The reason is that,
in momentum space, one can interpret the phase-space delta functions as “cut propagators” and
apply the full machinery of master integrals and differential equations for two-loop topologies. The
latter makes the interpretation of this imaginary part more transparent, since (5.51) is actually
the waveform, as we will discuss in Section 8, and as we shall see it is particularly useful when
studying the low-frequency limit.

5.2. Calculation of Im 2δ2

By the relation (5.52), it is easy to see that the divergent part of

Im 2δ2 = Im3pc Ã2 (5.53)

can be obtained by only considering the leading term in the soft limit kµ → 0 of the five-point
amplitude in (5.38) that diverges as 1

ω , with ω = k0, and that arises from the first two lines of
(5.38). Since in this limit q1 ≃ −q2, the Fourier transform (5.51) can be easily performed and one
obtains the results summarized in Section 4 of [106]. In this way, one obtains

(Im2δ2)N=8 (b) = −
G3(βN=8)2

πb2ǫ(σ2 − 1)2

[
σ2 +

σ(σ2 − 2)

(σ2 − 1)
1
2

arccoshσ

]
+O(ǫ0) (5.54)

for massive N = 8 supergravity, where βN=8 is given in (5.41), and [289]

(Im 2δ2)gr(b) ≃ −
1

2ǫ

G3(βGR)
2

πb2(σ2 − 1)2

[
8− 5σ2

3
− σ(3 − 2σ2)

(σ2 − 1)
1
2

arccoshσ

]
+O(ǫ0) (5.55)

for the graviton contribution in GR, where βGR is given in (5.41). We refer to Section 5.1 of [106]
for more details on these steps, while in this report we shall obtain Eqs. (5.55) and (5.54) as special
cases of a more general setup from Eqs. (7.92) and (7.106) below.
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The complete expression for (Im 2δ2), including not only the divergent contribution but also
the finite one, can be obtained from reverse unitarity. In GR one gets Eq. (6.28) of [47]

Im 2δ2 =
2m2

1m
2
2(2σ

2 − 1)2G3

πb2 (σ2 − 1)2
(πb2eγE )3ǫ

×
[(
−1

ǫ
+ log(4(σ2 − 1))

)(
σ
(
2σ2 − 3

)
arccoshσ√

σ2 − 1
+

8− 5σ2

3

)

− (arccoshσ)2

(
σ
(
2σ2 − 3

)
√
σ2 − 1

+
2(σ2 − 1)(4σ4 − 12σ2 − 3)

(1− 2σ2)
2

)

+ (arccoshσ)
σ
(
88σ6 − 240σ4 + 240σ2 − 97

)

3 (1− 2σ2)
2√

σ2 − 1

+ Li2(1− z2)
σ
(
3− 2σ2

)
√
σ2 − 1

+
−140σ6 + 220σ4 − 127σ2 + 56

9 (1− 2σ2)
2

]
.

(5.56)

while in massive N = 8 supergravity one gets Eq. (4.21) of [47]

Im 2δN=8
2 =− 16m2

1m
2
2G

3

πb2
σ4(πb2eγE )3ǫ

(σ2 − 1)2

{
1

ǫ

(
σ2 +

σ(σ2 − 2)

(σ2 − 1)
1
2

arccoshσ

)

− log(4(σ2 − 1))

[
σ2 +

σ(σ2 − 2)

(σ2 − 1)
1
2

arccoshσ

]

+ (σ2 − 1)

[
1 +

σ(σ2 − 2)

(σ2 − 1)
3
2

]
(arccoshσ)2

+
σ(σ2 − 2)

(σ2 − 1)
1
2

Li2(1 − z2) + 2σ2

}
,

(5.57)

Notice that the previous equations have both terms that, at high energy, behave as (log σ)2.
However these terms cancel each others and one is left with an high energy behavior as log σ in
agreement with the analysis of [104] based on analyticity and crossing symmetry.

5.3. Radiation reaction from Im 2δ2 by real analyticity

In this section we follow the approach of Ref. [106] and using unitarity and real analyticity,
we obtain a relation that connects two terms of Im 2δ2 to the radiation reaction contribution,

Re 2δ
(RR)
2 , of the two-loop eikonal. Such a relation is

− i

πǫ
Re 2δRR

2 7→
[
1 +

i

π

(
−1

ǫ
+ log(σ2 − 1)

)]
Re2δRR

2 . (5.58)

The part in the round bracket comes from the integral over the frequency of the graviton given
by41

(b2)−1+3ǫ

∫ ωb

0

dω

ω
(ωb)−2ǫ (5.59)

where the factor (b2)−1+3ǫ is precisely the one expected (also on dimensional ground) to appear
in 2δ2 and ωb is an appropriate upper limit on the classical dimensionless quantity ωb. On the

41We need to keep D = 4 − 2ǫ only for the integral over |~k| while the integration over the angular variables can

be done for ǫ = 0, so that effectively dD−1~k = |~k|2−2ǫd|~k| sin θ dθ dϕ.
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other hand, the integral over ω produces a 1
ǫ divergence in the particular combination:

∫ ωb

0

dω

ω
(ωb)−2ǫ = − 1

2ǫ
(ωb )−2ǫ = − 1

2ǫ
+ logωb+O(ǫ) (5.60)

To obtain an estimate of the cutoff ωb, one can use (1.47) for single-graviton exchanges, according
to which

|p01 q01 | ≈ |~p1 · ~q1| ≤ |~p1| |~q1| , |p02 q02 | ≈ |~p2 · ~q2| ≤ |~p2| |~q2| (5.61)

and therefore

ω = k0 = −q01 − q02 ≤ |q01 |+ |q02 | .
|~p1|
|p01|
|~q1|+

|~p2|
|p02|
|~q2| . (5.62)

In the classical limit, |~qi| ∼ 1/b and thus ωb is bounded by

ωb =
|~p1|
|p01|

+
|~p2|
|p02|

. (5.63)

Using the explicit expressions (1.13), (1.15), (1.16) in the CM frame, one finds

ωb =
√
σ2 − 1 (1 +O(σ − 1)) (5.64)

In this way we have obtained the term in the round bracket in (5.58). In order to obtain the last
term outside of the round bracket one must observe that, because of real analyticity, the amplitude
between the two branch points σ = ±1 must be real and therefore in this region the term in the
round bracket should be log(1 − σ2). When we go from this region to the physical region σ ≥ 1
then we get

log(1 − σ2 − i0) = log(σ2 − 1)− iπ (5.65)

obtaining Eq. (5.58) that allows us to determine the radiation reaction from the infrared divergent
term of Im2δ2. For GR we obtain:

Re 2δRR,GR(b) =
8G3m2

1m
2
2(σ

2 − 1
2 )

2

~b2(σ2 − 1)2

[
8− 5σ2

3
− σ(3 − 2σ2)

(σ2 − 1)
1
2

arccoshσ

]
, (5.66)

while in the case of massive N = 8 supergravity one gets:

Re 2δRR,N=8
2 (b) =

16G3m2
1m

2
2σ

4

~b2(σ2 − 1)2

[
σ2 +

σ(σ2 − 2)

(σ2 − 1)
1
2

arccoshσ

]
. (5.67)

In conclusion, we have derived the radiation reaction from Eq. (5.52) and from the properties
of unitarity and real analyticity, without needing to construct the full two-loop amplitude. The
arguments that brought us to the structure in the round bracket of (5.58) are confirmed by the
first two terms of the explicit results for Im 2δ2 given in (5.56) and (5.57).

6. The 2–body eikonal at 3PM

The exponentiation pattern of Eq. (4.4), which we explicitly illustrated in Section 4 up sub-
leading order, suffices to eliminate all super-classical redundancies arising from tree-level and
one-loop order. Thus, it allows one to extract from the amplitude genuine classical information
up to two loops, i.e. O(G3) or 3PM order. The purpose of this chapter is to perform this step
explicitly. We will start by sketching the calculation of the two-loop amplitude in the classical
limit, to then check that super-classical terms cancel out consistently with Eq. (4.4) and finally
obtain the 3PM correction to the eikonal, 2δ2.
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A novelty compared to lower loop-orders is the emergence of an imaginary part in the amplitude
that is due, via the unitarity relation, to the presence of nontrivial three-particle cuts, as we
discussed in Section 5. At one loop, the imaginary part of the amplitude is due to two-particle
cuts only and is effectively subtracted in the exponentiation (4.4) at classical level, so that 2δ1 is
real and only the quantum remainder 2∆1 can develop an imaginary part. By contrast, at two
loops, the three-particle inelastic channels leave behind a nonzero (in fact, infrared divergent!)
imaginary part of 2δ2, as in (5.20). In ensuing chapters we will discuss a more systematic way
to deal with such additional channels, restoring the expected Hermiticity of the eikonal 2δ, which
requires to promote it to an operator.

The focus of this chapter is instead on illustrating an interesting physical phenomenon that is
captured by 2δ2: radiation-reaction effects, which first occur at 3PM order and can be singled out
by their time-reversal odd expansion in the small-velocity limit. On the other hand, such radiation-
reaction contributions are crucial in order to ensure consistency, finiteness and universality of
the results at high energies (or high velocities). In particular they are instrumental in ensuring
agreement between the high-energy behavior of massive scattering and the universal result for the
deflection angle of massless objects.

As for the one-loop level, we shall first focus on the technically simpler N = 8 case, considering
the s-u symmetric scattering of massive states obtained via Kaluza–Klein compactification, and
then move to collisions of massive scalars minimally coupled to GR. We also provide more details
on the relation between the eikonal phase, the phase shifts and the radial action, which as we shall
see is also instrumental in performing the analytic continuation from the case of unbound orbits
to bound systems.

6.1. Partial wave decomposition: from b to bJ

In Section 2.2 we discussed how classical observables emerge in the leading eikonal approxima-
tion for the massless scattering. Starting from the resummed amplitude in the impact parameter
representation, in the classical regime we can perform the Fourier transform back to momentum
space (2.27) by using a saddle-point approximation (2.28). The resummed amplitude can then be
decomposed in partial waves, as in (1.63), and in the classical limit (2.40), as expected, the orbital
angular momentum of the system becomes large J/~ = j ≫ 1. The partial wave analysis of that
section is limited to the case of the leading eikonal in D = 4, while the derivation based on the
impact parameter representation seems more general and was already used in (4.59) to derive the
2PM deflection angle in GR. The purpose of this section is to show that the same results can be
obtained also by performing the partial wave decomposition in the classical regime starting from
the eikonal amplitude at an arbitrary PM order [290] (see also [169]).

We start by generalising (2.27) to the massive scattering in D = 4 by first defining

S̃(s, b) = 1 + iÃ(s, b) = eiRe 2δ(s,b) . (6.1)

Here we remove the 1/ǫ pole in 2δ0, associated to the Coulombic falloff of the field, and introduce
an appropriate cutoff scale in the leftover logarithm, as we did in (2.34), and we temporarily drop
the imaginary part of 2δ(s, b) that enters at 3PM, which will not enter the ensuing stationary-phase
arguments. In Q-space, Eq. (6.1) translates to

S(s,Q) = 4Ep

∫
d2b e−iQ·beiRe 2δ(s,b) = 8πEp

∫
db b J0

(
Qb

~

)
eiRe 2δ(s,b) , (6.2)

where we used the fact that 2δ depends only on b2 and the identity

J0(x) =

∫ +π

−π

dφ

2π
eix sinφ . (6.3)
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(together with the fact that the integrand is a periodic function of φ with period 2π). For large
arguments x = Qb/~≫ 1, one also has

J0(x) ∼
1√
2π

(
ei(x−

π
4 ) + e−i(x−π

4 )
)
. (6.4)

Using this relation and picking the first term, which corresponds to Qµ being anti-aligned to bµ,
as in our conventions for gravitational scattering, we obtain

S(s,Q) ∼ ( · · · )
∫
db b e

i
~
Qb+iRe 2δ(s,b) . (6.5)

Here and in the next few equations we need only worry about rapidly oscillating phase factors, and
accordingly omit irrelevant slowly-varying prefactors. We then go to angular momentum-space by
projecting on the jth Legendre polynomial as dictated by (1.63),

Sj(s) ∼ (· · · )
∫
db b

∫ +1

−1

d(cosΘ)Pj(cosΘ)e
i
~
2pb sin Θ

2 +iRe 2δ(s,b) , (6.6)

where we employed the relation between Q and Θ, which is again the same as the one encountered
in (2.31),

Q = 2p sin
Θ

2
. (6.7)

Using finally the large-j limit of the Legendre polynomial (2.48) we arrive at

Sj(s) ∼
∫ π

0

dΘ

∫
db (· · · ) e−ijΘ+ i

~
2pb sin Θ

2 +iRe 2δ(s,b) . (6.8)

Collecting the terms appearing in the exponent, we recover the phase shift in the classical limit
from (2.44) and

χ(s, J) =
1

~

(
−JΘ+ 2pb sin

Θ

2

)
+Re 2δ(s, b) , (6.9)

which must be extremized by a double saddle point in Θ and b at fixed

bJ =
J

p
. (6.10)

Taking derivatives of (6.9), the two saddle point conditions give

bJ = b cos
Θ

2
, 2p sin

Θ

2
= −~ ∂ Re 2δ(s, b)

∂b
. (6.11)

Eqs. (6.7), (6.10) and (6.11) identify the sought after relations among the properties of the tra-
jectory depicted in Fig. 18, linking them to the eikonal phase. In the classical limit, Sj(s) is itself
a rapidly oscillating phase factor, Sj(s) ∝ e2iδj(s) with 2δj(s) = χ(s, J) given by (6.9). Using the
saddle point conditions, one can also recast it as follows in terms of b and bJ ,

χ(s, J) =
2J

~

(
− arccos

bJ
b

+

√
b2

b2J
− 1

)
+Re 2δ(s, b) . (6.12)

The derivative of χ(s, J) in (6.9) with respect to j = J/~ then takes the following form

−~ ∂χ(s, J)
∂J

= Θ+ p

[
bJ − b cos

Θ

2

]
∂Θ

∂J
−
[
2p sin

Θ

2
+ ~

∂Re 2δ(s, b)

∂b

]
∂b

∂J
, (6.13)
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~p ′ = ~p4

−~p = −~p2 −~p ′ = ~p3

~p = −~p1

Θ~Q ~b ~bJ

Θ

2

Figure 18: Classical 2 → 2 scattering in the center-of-mass frame (1.33). ~Q denotes the impulse and Θ the deflection

angle. The impact parameter ~bJ is perpendicular to the spatial momentum of either particle in the far past, and
thus defines the angular momentum according to J = p bJ , with p = |~p | = |~p ′|. Its magnitude differs by that of

the eikonal impact parameter ~b by terms of order Θ2 as in (6.11).

so that, owing to the saddle point conditions (6.11), it gives back the saddle-point value of Θ,

Θ = −~ ∂χ(s, J)
∂J

. (6.14)

For this reason χ(s, J) is closely connected to the radial action I(s, J), which obeys [291, 292]

Θ + π = −∂I(s, J)
∂J

(6.15)

so that
I(s, J) = −πJ + ~χ(s, J) . (6.16)

The expression (6.9) then provides the connection with the eikonal phase.
Eqs. (6.9) and (6.12) provide this connection only implicitly, since one ought to solve the saddle

point conditions in order to express the right-hand side as a function J . In particular, in (6.12),
b should be eliminated using the first condition (6.11), which in turn involves the deflection angle
calculated using the second condition in (6.11). In order to illustrate how this works in practice
let us consider the case of the perturbative PM expansion:42

Re(2δ) = −d0 ln(b) +
∞∑

n=1

dn
nbn

, (6.17)

where dn captures the (n + 1)PM correction. It is straightforward to derive explicitly the first
few terms of the classical deflection angle expressed as a function of J perturbatively to any given
order. For instance up to order O(G5) we have

χ(s, J) =− d0 log J +
d1p

J
+
d2p

2 − d3
0

12

2J2

+
d3p

3 − 3
8d

2
0d1p

3J3
+
d4p

4 − d0p
2

2

(
d2d0 − d21

)
+ 1

80d
5
0

4J4
+O(G6)

(6.18)

42Although the relation (6.12) is non-perturbative in G it may actually break down at sufficiently small impact
parameter if the relation between b and bJ cannot be straightforwardly inverted.
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so that via (6.14),

Θ =
d0
J

+
d1p

J2
+
d2p

2 − d3
0

12

J3

+
d3p

3 − 3
8d

2
0d1p

J4
+
d4p

4 − d0p
2

2

(
d2d0 − d21

)
+ 1

80d
5
0

J5
+O(G6) .

(6.19)

Likewise, via (6.16), Eq. (6.18) also gives the corresponding expansion of the radial action I(s, J).
The derivation presented above linking χ(s, J) to the eikonal phase via saddle point condi-

tions generalizes straightforwardly to generic D, as one can check thanks to known properties of
Gegenbauer polynomials: [DLMF §18.15(i) using (18.7.1)] and [DLMF §10.17(i)].

6.2. Massive N = 8 Supergravity

We go back to the elastic 2 → 2 scattering in N = 8 supergravity where the external states
are massive thanks to non-trivial Kaluza–Klein momenta in the compact directions [211, 167]. We
focus on the s-u symmetric process already defined in Subsection 3.1.4, where the states labeled
by p1 and p4 are dilatons with KK momentum in one compact direction and those labeled by p2
and p3 are axions with KK momentum in another orthogonal compact direction [167, 106, 47]

As before, the starting ingredient for our analysis is the momentum-space amplitude in the
small-q expansion, where, as already emphasized, we can restrict to the terms that are non-
analytic in q2. We will also neglect terms of order O(q2) 1

2−2ǫ or smaller, which are irrelevant for
determining 2δ2 and would only enter the calculation of the quantum remainder 2∆2. In view of
this, the relevant part of the s− u symmetric two-loop scattering amplitude [117] is given by the
following sum of scalar Feynman integrals IT where T indicates the integral’s topology:

A2(s, q
2) = (8πG)3

1

2(4π)4−2ǫ

[
(s−m2

1 −m2
2)

4 + (u−m2
1 −m2

2)
4
]

(6.20)

×
[
(s−m2

1 −m2
2)

2 (IIII + 2IIX) + (u−m2
1 −m2

2)
2 (IIII + 2IIX) + t2(IH + IH)

]
.

Let us write down the integrals explicitly and sketch their evaluation as q → 0. We follow the
kinematic conventions of Section 1.2, in particular the variables introduced in (1.40), (1.29). In
terms of these variables, the planar double box integral reads

IIII =

∫
dDℓ1
iπD/2

dDℓ2
iπD/2

1

[2m̄1ℓ1 · u1 + (ℓ21 − ℓ1 · q)] [−2m̄2ℓ1 · u2 + (ℓ21 − ℓ1 · q)]
1

[−2m̄1ℓ2 · u1 + (ℓ22 − ℓ2 · q)] [2m̄2ℓ2 · u2 + (ℓ22 − ℓ2 · q)] ℓ21ℓ22 (ℓ1 + ℓ2 − q)2
,

(6.21)

the non-planar double box integral reads

IIX =

∫
dDℓ1
iπD/2

dDℓ2
iπD/2

1

[−2m̄1ℓ1 · u1 + (ℓ21 + ℓ1 · q)] [2m̄2ℓ1 · u2 + (ℓ21 + ℓ1 · q)]
1

[2m̄1ℓ2 · u1 + (ℓ22 + ℓ2 · q)] [2m̄2(ℓ1 + ℓ2) · u2 + ((ℓ1 + ℓ2)2 + (ℓ1 + ℓ2) · q)]
1

ℓ21ℓ
2
2 (ℓ1 + ℓ2 + q)

2 ,

(6.22)

and the H diagram reads

IH =

∫
dDℓ1
iπD/2

dDℓ2
iπD/2

1

[−m̄2ℓ1 · u2 + (ℓ21 − ℓ1 · q)][−2m̄1ℓ2 · u1 + (ℓ22 − ℓ2 · q)]
1

ℓ21ℓ
2
2(ℓ1 + ℓ2 − q)2(ℓ1 − q)2(ℓ2 − q)2

.

(6.23)
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The Feynman −i0 prescription is left implicit throughout. The remaining “barred” topologies are
obtained from the previous three by crossing symmetry, i.e. replacing u1 by −u1 (or equivalently
u2 by −u2).

The expansion of these integrals for small q can be simplified by resorting to the method of
regions. The relevant, non-analytic contributions emerge from the expansion in the soft region,
where ℓ1 ∼ ℓ2 ∼ O(q), while m̄1u1, m̄2u2 are formally held fixed.43 Conveniently, all dependence
on the masses factorizes in this step: for instance, to leading order,

IH ≃
1

m̄1m̄2

∫
dDℓ1
iπD/2

dDℓ2
iπD/2

1

(−ℓ1 · u2)(−2ℓ2 · u1)ℓ21ℓ22(ℓ1 + ℓ2 − q)2(ℓ1 − q)2(ℓ2 − q)2
. (6.24)

The overall dependence on q2 can be also easily factorized by rescaling the loop momenta. The
resulting integrals are thus functions of the single invariant y = −u1 · u2. Still, such integrals are
not elementary for generic ǫ, in contrast with the situation at one loop. Convenient strategies to
evaluate them are centered on the method of ordinary differential equations in canonical form in
the variable x = y −

√
y2 − 1. These equations afford simple iterative solutions order by order in

ǫ in terms of polylogarithms in the variable x. The boundary conditions for these equations can
be determined by performing yet another expansion by regions in the limit y → 1+, which luckily
does yield elementary integrals for generic ǫ. [47]

Performing the calculation according to this strategy, we get the following result:

A2(s, q
2) =

(8πG)3

(4π)4

(
4πe−γE

q2

)2ǫ
{
− 2π2m4

1m
4
2

ǫ2q2

[(
1 + z2

1− z2
)2(

1 + z2

z

)4
]

+
4πm3

1m
3
2

ǫ2
(1 + z2)5

(1− z2)4z3
[
π(1 − z2)2 + i

(
−1− 4z2 log z + z4

)]

− iπm
2
1m

2
2

3ǫ

[(
1 + z2

1− z2
)4

1

z3

][
6iπ(m2

1 +m2
2)z(1 + z2)2

+6m1m2

[
4(1 + z2)2(1− z2) + 2(iπ + 2 log z)(1 + z2)2

+

(
π2

6
− Li2(z

2)

)
(z2 + 1)(z4 − 6z2 + 1)− 2(1 + z2)2(1− z2) log(1 − z2)

+2(iπ log z + log2 z)
(
z2 + 4z4 − z6

) ]
]}

, (6.25)

where as in (4.7)

z = σ −
√
σ2 − 1 , σ =

1

2

(
z +

1

z

)
. (6.26)

The above result can be organized in the following convenient form (we recall that c(ǫ) was defined
in (4.9)):

A2 = (8πG)3
c(ǫ)2

(q2)2ǫ

[
A(2,2)

2

ǫ2q2
+
A(0,1)

2

q
+
A(2,0)

2

ǫ2
+
A(1,0)

2

ǫ
+ · · ·

]
(6.27)

up to terms that are further suppressed in q2, i.e. O((q2) 1
2−2ǫ) or smaller, or that are subleading

in ǫ. Note in particular that the coefficient of
(
(q2)1+2ǫǫ

)−1
vanishes identically. A term of

O(ǫ0(q2)−1−2ǫ) is also needed in order to fully reproduce the O(δ30) exponentiation and will not

be discussed further. Similarly, O((q2)− 1
2−2ǫ) terms start contributing to order O(ǫ0) via A(0,1)

2 .

43The asymptotic expansion of the H topology also has non-analytic contributions that emerge from the mixed
soft-hard region, where ℓ1 ∼ O(q), ℓ2 ∼ O(m). However, these only contribute to order O(q3−2ǫ) to the amplitude.
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Using the method described in [47], one can check that A(0,1)
2 is consistent with the iteration term

2δ0 2iδ1, to leading order in ǫ. The fact that the O((q2)− 1
2−2ǫ) contributions indeed reproduce

such iteration term for generic ǫ has been checked in Ref. [108].
Explicitly, in terms of the variable z and σ, the above coefficients read

A(2,2)
2 = −2π2m4

1m
4
2

(
z2 + 1

)
6

z4 (z2 − 1) 2
= −32π2m4

1m
4
2σ

6

(σ2 − 1)
, (6.28)

A(2,0)
2 =

4π2m3
1m

3
2

(
z2 + 1

)
5

z3 (z2 − 1) 2
+ i

4πm3
1m

3
2

(
z2 + 1

)
5
(
z4 − 4z2 log (z)− 1

)

z3 (z2 − 1) 4

=
32π2m3

1m
3
2σ

5

(σ2 − 1)
− i 32πm3

1m
3
2

(
σ6

(σ2 − 1)3/2
+

σ5

(σ2 − 1)2
log(z)

)
, (6.29)

and

ReA(1,0)
2 =

2π2m2
1m

2
2

(
z2 + 1

)
6
((
m2

1 +m2
2

)
z + 2m1m2

)

z3 (z2 − 1) 4

− 4π2m3
1m

3
2

(
z2 + 1

)
4
(
z4 − 4z2 − 1

)
log (z)

z (z2 − 1) 4
,

= 8π2m2
1m

2
2

[
(m2

1 +m2
2)

σ6

(σ2 − 1)2
+ 2m1m2

(
σ7

(σ2 − 1)2
+

σ6

(σ2 − 1)3/2

)]

+ 16π2m3
1m

3
2σ

4

(
1

(σ2 − 1)1/2
− σ(σ2 − 2)

(σ2 − 1)2

)
log(z) ,

(6.30)

together with

ImA(1,0)
2 =

2πm3
1m

3
2

(
z4 − 6z2 + 1

) (
z2 + 1

)
5 Li2

(
z2
)

z3 (z2 − 1) 4

− πm3
1m

3
2

(
−24(z4 − 1) + π2(z4 − 6z2 + 1)

) (
z2 + 1

)
5

3z3 (z2 − 1) 4

+
4πm3

1m
3
2

(
z4 − 4z2 − 1

) (
z2 + 1

)
4 log2 (z)

z (z2 − 1) 4
− 4πm3

1m
3
2

(
z2 + 1

)
6 log

(
1− z2

)

z3 (z2 − 1) 3

− 8πm3
1m

3
2

(
z2 + 1

)
6 log (z)

z3 (z2 − 1) 4
,

=
16πm3

1m
3
2σ

5(σ2 − 2)Li2
(
z2
)

(σ2 − 1)2
− 64πm3

1m
3
2

σ6

(σ2 − 1)3/2
− 8

3
π3m3

1m
3
2

σ5(σ2 − 2)

(σ2 − 1) 2

− 16πm3
1m

3
2σ

4

(
1

(σ2 − 1)1/2
− σ(σ2 − 2)

(σ2 − 1)2

)
log2 (z) +

32πm3
1m

3
2σ

6 log
(
1− z2

)

(σ2 − 1) 3/2

− 32πm3
1m

3
2σ

6

(
σ

(σ2 − 1)
2 +

1

(σ2 − 1)3/2

)
log (z) .

(6.31)

6.2.1. Eikonal and deflection angle to 3PM order

We have already computed 2δ0 in Subsection 3.1.4 and 2∆1 in Subsection 4.1.1. This infor-
mation can now be used to verify that the eikonal exponentiation takes place as expected up to
two loops and to extract 2δ2 from the previous amplitude through the following relations:

Re(2δ2) = Re Ã2 +
1

6
(2δ0)

3 + 2δ0 Im 2∆1 ,

Im(2δ2) = Im Ã2 − 2δ0 Re 2∆1 . (6.32)
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We obtain the following result, where we highlight in blue the terms associated to radiation-
reaction,

Re(2δ2) =
4m2

1m
2
2G

3(1 + z2)4

b2z2(1− z2)5

[
(1 + z2)2(1− z2) + 2z2(1 + 4z2 − z4) log z

]

=
16G3m2

1m
2
2

b2

{
σ6

(σ2 − 1)2
− arccoshσ

[
σ4

σ2 − 1
− σ5(σ2 − 2)

(σ2 − 1)
5
2

]} (6.33)

and

Im2δ2 =
4m2

1m
2
2G

3

πb2
(1 + z2)4(πb2eγE )3ǫ

(1− z2)5z2

{
1

ǫ
(1 + z2)

[(
1− 6z2 + z4

)
log z − 1 + z4

]

−
[
2z2

(
1 + 4z2 − z4

)
log2 z + (1 + z2)2(1− z2)

[
2− 2 log(1− z2) + 2 log z

]

+

(
π2

6
− Li2(z

2)

)
(z2 + 1)(z4 − 6z2 + 1)

]}
(6.34)

or equivalently

Im2δ2 = −
16m2

1m
2
2G

3

πb2
σ4(πb2eγE )3ǫ

(σ2 − 1)2

{
1

ǫ

(
σ2 +

σ(σ2 − 2)

(σ2 − 1)
1
2

arccoshσ

)

− log(4(σ2 − 1))

[
σ2 +

σ(σ2 − 2)

(σ2 − 1)
1
2

arccoshσ

]

+ (σ2 − 1)

[
1 +

σ(σ2 − 2)

(σ2 − 1)
3
2

]
(arccoshσ)2

+
σ(σ2 − 2)

(σ2 − 1)
1
2

Li2(1− z2) + 2σ2

}
,

(6.35)

where we made the branch-cut singularity for z > 1 more explicit via

Li2(z
2) = −Li2(1− z2) +

π2

6
− log(z2) log(1− z2) . (6.36)

and used

− log z = arccoshσ = log
(
σ +

√
σ2 − 1

)
= 2 arcsinh

√
σ − 1

2
, (6.37)

log(1 − z2) = 1

2
log(4(σ2 − 1))− arccoshσ . (6.38)

An important observation is that, in the ultrarelativistic limit σ ≫ 1 the terms proportional
to (σ log σ)2 present in the second and third last lines of Eq. (6.35) cancel out against each other,
yielding

Im2δ2 ∼
log(s)

s

(8Gs)3Γ(1− ǫ)3
32(πb2)1−3ǫ

[
− 1

4ǫ
+

1

2
+O(ǫ)

]
. (6.39)

This is crucial in order to ensure agreement between the present calculation and the universal
massless result [15] according to the general pattern discussed in [104].

For later convenience, let us also remark that the function defined by

f(ζ) =
arccosh ζ√
ζ2 − 1

(6.40)
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for ζ > 1 can be actually analytically continued to all complex ζ except for a branch cut at ζ < −1.
In particular, f(ζ) is analytic for −1 < ζ < 1 where it takes the form

f(ζ) =
arccos ζ√
1− ζ2

. (6.41)

More explicitly, the Taylor series for f(1 + z) around z = 0,

f(1 + z) =
∞∑

n=0

n! (−z)n
(2n+ 1)!!

, (6.42)

is absolutely convergent for |z| < 2, and convergent for z = 2, where it yields f(3) = 1√
2
log(1+

√
2),

while it diverges for |z| > 2 and for z = −2. These properties lie at the heart of the analytic
continuation from unbound to bound trajectories [291–293]. Indeed, ζ = σ > 1 for scattering
kinematics, such that the center-of-mass energy reads E =

√
m2

1 + 2m1m2σ +m2
2 > m1 + m2,

while −1 < ζ < 1 for bound states, such that E =
√
m2

1 + 2m1m2ζ +m2
2 < m1 +m2. The fact

that f(ζ) has a branch point at ζ = −1 will also provide useful information for the analysis of soft
spectra carried out in Section 7.

Let us finally turn to the deflection angle Θ, which follows straightforwardly from 2δ. Keeping
in mind the link between b and bJ derived in Section 6.1, we obtain

Θ = Θ1PM + Θ2PM +Θ3PM (6.43)

with, to leading non-vanishing order in ǫ at each PM order,

Θ1PM =
4Gm1m2σ

2

J(σ2 − 1)1/2
, (6.44)

Θ2PM = − 8πm2
1m

2
2(m1 +m2)G

2ǫσ4

J2
√
m2

1 +m2
2 + 2m1m2σ (σ2 − 1)

, (6.45)

Θ3PM = − 16m3
1m

3
2σ

6G3

3J3(σ2 − 1)3/2

+
32m4

1m
4
2G

3

J3(m2
1 +m2

2 + 2m1m2σ)

{
σ6

σ2 − 1
−
[
σ4 − σ5(σ2 − 2)

(σ2 − 1)
3
2

]
arccoshσ

}
.

(6.46)

The 1PM contribution corresponds to a tree diagram where both the graviton and the dilaton are
exchanged, the 2PM contribution is absent for ǫ = 0 in agreement with the results of Ref. [211]
at one loop. The first term in Θ3PM comes from the expansion of tan(Θ2 ) at small Θ while the
remaining terms are genuine new contributions from Re δ2.

In the ultra-relativistic limit σ ≫ 1 the leading term O(σ4 log σ) in the second line of (6.46)
cancels and only the first line survives reproducing the universal and finite ultra-relativistic result
of [15],

Re 2δ2 ∼
4G3s2

b2
. (6.47)

Thanks to analyticity and crossing arguments, as discussed in [104], this cancellation can be seen
as a consequence of the one occurring in the imaginary part as highlighted below Eq. (6.38).

It is also instructive to look at the opposite limit σ → 1 which is relevant to the PN regime.
In this respect, one should note that, as can be better appreciated looking at the second form
of equation (6.33), the first and last term (highlighted in blue color) contain only even powers
of p ∼

√
σ2 − 1, while the second term has only odd powers. This means that the first and last

term represent half-integer-PN corrections to the deflection angle, which are a consequence of
dissipative processes, i.e. the signature of radiation reaction. Instead, the second term in (6.33)
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corresponds to the more conventional integer-PN expansion due to the conservative dynamics.
More precisely, in the deflection angle (6.46), such dissipative effects appear starting at 1.5PN.
This seems in tension with the 2.5PN scaling of radiation reaction effects that is expected from
GR calculations. As we shall see, this apparent mismatch is due to the presence of additional
massless states propagating in the supersymmetric theory, while the same calculation in GR will
lead to 2.5PN radiation-reaction effects, as it should.

6.2.2. Real-analytic, crossing-symmetric reformulation at two loops

We will now extend to two loops the procedure followed in Subsection 4.1.2 to recast the
explicit results of the previous subsection in real-analytic and crossing-symmetric form. We first
combine the different contributions in the known form of Eq. (6.25), which suggests the ansatz:

A2(s, q
2) =

(8πG)3

(4π)4

(
4πe−γE

q2

)2ǫ

(σ4 + σ̄4)Â2(s, q
2) ,

Â2(s, q
2) =

Â
[2]
2 (s, q2)

ǫ2
+
Â

[1]
2 (s, q2)

ǫ
, (6.48)

where σ̄ has been introduced in (4.29). In order to reproduce Eqs. (6.28) and (6.29) we find:

Â
[2]
2 (s, q2) =

[
− 8π2m4

1m
4
2

q2

(
σ2

σ2 − 1
+

σ̄2

σ̄2 − 1

)

−8m3
1m

3
2

(
σ

(σ2 − 1)2
log2(−z) + σ̄

(σ̄2 − 1)2
log2(−z̄)

+2

[
σ2

(σ2 − 1)3/2
log(−z) + σ̄2

(σ̄2 − 1)3/2
log(−z̄)

])]
(6.49)

and for Eqs. (6.30) and (6.31):

Â
[1]
2 (s, q2)

m3
1m

3
2

= 4π2 (m
2
1 +m2

2)

m1m2

σ2

(σ2 − 1)2
(6.50a)

−32 σ2

(σ2 − 1)3/2
(log(−z)− log(z)) (6.50b)

+4
σ(σ2 − 2)

(σ2 − 1)2
(log(−z)− log(z))

(
Li2(z

2)− Li2

(
1

z2

))
(6.50c)

−8

3

1

(σ2 − 1)1/2
[(
log3(−z)− log3(z)

)
+ π2 (log(−z)− log(z))

]
(6.50d)

−8 σ3

(σ2 − 1)2
(log(−z)− log(z)) (log(−z) + log(z)) (6.50e)

+8
σ2

(σ2 − 1)3/2
(log(−z)− log(z))

[
log(1 − z2) + log

(
1− 1

z2

)]
(6.50f)

The two previous equations have been derived using log(−z) = iπ + log z and the following
identities and branch choices:

−Li2

(
1

z2

)
= Li2(z

2) +
π2

6
+

1

2
log2(−z2) = Li2(z

2)− π2

3
+ 2 log2 z + 2iπ log z;

log

(
1− 1

z2

)
= log(1− z2)− 2 log z − iπ. (6.51)
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Combining these with (6.36) we can also write the combination appearing in (6.50c) in a form:

Li2(z
2)− Li2

(
1

z2

)
= −2

(
Li2(1− z2) + log z2 log(1− z2)− log2 z − iπ log z

)
, (6.52)

that is useful to discuss the non relativistic (σ, z → 1) limit.
We can check that the expressions (6.49) and (6.50) satisfy crossing symmetry and real-

analyticity. The first property follows simply from the fact that, at this order in q2, we can
use the identification z̄ = − 1

z .
Checking real analyticity is a bit more subtle. For (6.49) one needs to take into account the

subleading (in q2) term origination from the first line. This (purely real) term exactly cancels a
similar term coming from the second line. Then one is left with a purely imaginary term from the
second line:

−16m3
1m

3
2πσ

(σ2 − 1)2
i log z , (6.53)

that can be written in real-analytic crossing-symmetric form as

−8m3
1m

3
2

σ

(σ2 − 1)2
1

2
(log(−z) + log(−z̄))(log(z2)− log(z̄2)) . (6.54)

At this point checking that the amplitude is real in the unphysical region σ2 < 1 is straight-
forward once one realizes that, in that region, |z|2 = 1, in other words z is a pure phase and thus
log z is purely imaginary. This implies that the term in Eq. (6.53) is real and the same is true for
the last term in (6.49) because of an extra factor i coming from

√
σ2 − 1.

Coming now to (6.50), real analyticity is easily checked along the same lines for (6.50a),
(6.50b), (6.50d) and (6.50e). Concerning instead (6.50c) and (6.50f) one has to remember that,
in the unphysical region, z−1 = z̄. Since both Li2(z

2) and log(1− z2) are real-analytic functions,
the combinations involving them, appearing in (6.50c) and (6.50f) give a purely imaginary and
purely real factor, respectively. Because of the different powers of (σ2 − 1) appearing in the two
contributions this is exactly as needed for real analyticity. In conclusion, we have shown that
Eq. (6.49) and Eqs. (6.50) are real analytic functions. Note that this would not have been the
case for the eikonal itself.

6.3. General Relativity

In this section we illustrate the calculation of the 3PM eikonal from the 2 → 2 amplitude for
the collision of two massive scalars in GR. This calculation was carried out for the first time in full
detail in [109]. The underlying principles of this calculation are the same as those presented in the
maximally supersymmetric case. One aims to reconstruct the amplitude A2 to its first few orders
in the small-q expansion, perform the Fourier transform to b-space, obtaining Ã2, and retrieve the
classical information from Re2δ2 by matching with the exponentiation. More explicitly, armed
with the q-expansion of A2 or equivalently with the 1/b-expansion of Ã2 and with the lower-loop
order data 2δ0, 2δ1, 2∆1, one checks that in the equation

iÃ2 =
(2iδ0)

3

3!
+ 2iδ0 2iδ1 + 2iδ2 + i2δ0 2i∆1 (6.55)

the first two terms on the right hand side cancel out against analogous superclassical terms of
the right-hand side, and obtains 2δ2 by subtracting i2δ0 2i∆1 from the rest. The main novelty
is the fact that the gravity integrand takes a much more involved form compared to the neat
expression (6.20), where only scalar integrals appeared. Still, one can reconstruct this integrand
in a convenient way using generalized unitarity techniques [38, 39, 118, 109, 111] and then perform
the integration using the same families of master integrals that were needed in the N = 8 case
[109].
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Instead of following this route, here we shall adopt a different strategy, which combines uni-
tarity, analyticity and crossing symmetry with the eikonal exponentiation itself. The idea is to
start from (6.55), which we may rewrite as

iÃ2 =
(2iδ0)

3

3!
+ 2iδ0 2iδ1 + i[Re 2δ2 + i Im2δ2 + i2δ0 2∆1] (6.56)

and regard Ã2 and Re 2δ2 as the unknown quantity. Indeed the tree-level and one-loop information
determines 2δ0, 2δ1, 2∆1, and Im2δ2 can be obtained by performing a relatively simpler integral
over three-particle phase space, as we have discussed in the Section 5. This data determines all
imaginary parts arising from the three-particle and two-particle cuts of the amplitude (plus a
portion of the real part arising from 2δ0 Im 2∆1). We can then make a real-analytic and cross-
symmetric ansatz for A2, up to the (q2)−2ǫ order relevant for the classical limit, complete of its
real and imaginary parts. As we shall see, the available data will be enough to fix this ansatz up
to a single unknown function fa(σ), which however appears with an extra power of s in front and
is thus dominant in the limit of small mass ratio. Therefore, using the results of Appendix B.1,
this last term can be fixed too by matching with the probe-limit calculation. This will lead us to
the complete result of A2 appropriate to then retrieve Re 2δ2 and the classical deflection angle.

Let us start by adopting a notation for the small-q and small-ǫ expansion of the amplitude:

A2 = A[2]
2 +A[1]

2 +A[0]
2 +O(q1−4ǫ)

=

(
4πe−γE

q2

)2ǫ
[
A(2,2)

2

ǫ2q2
+
A(1,1)

2

ǫ q
+
A(2,0)

2

ǫ2
+
A(1,0)

2

ǫ
+O(q)

]
,

(6.57)

where A[k]
2 ∼ q−k−4ǫ and in the second line we introduced a notation similar to the one employed

for the N = 8 in (6.27) for convenience. As is by now familiar, A[2]
2 and A[1]

2 are simply determined
by the iteration of classical terms, i.e. the first two terms on the right-hand side of (6.56). Therefore
they must be given by the inverse Fourier transform of − 1

3! (2δ0)
3 (see (3.10)),

A(2,2)
2 = −

64πG3m4
1m

4
2

(
σ2 − 1

2(1−ǫ)

)3
Γ(1− ǫ)3Γ(1 + 2ǫ)

(σ2 − 1)Γ(1− 3ǫ)
e2ǫγE , (6.58)

and by the inverse Fourier transform of 2δ0 2iδ1 (see (4.58)),

A(1,1)
2 =

6iπ2G3 (m1 +m2)m
3
1m

3
2

(
2σ2 − 1

) (
1− 5σ2

)
√
σ2 − 1

+O (ǫ) , (6.59)

where we expanded for simplicity to leading order in ǫ, although both 2δ0 and 2δ1 are of course
known in any dimension.

The new classical information is contained in A[0]
2 , which, comparing with (6.56), must take

the following form in b-space

Ã[0]
2 = Re2δ2 + 2δ0 2i∆1 + i Im 2δ2 . (6.60)

We may rewrite this in q-space as

A[0]
2 = Anew

2 +A2pc +A3pc . (6.61)

Our next task, following the above strategy, is to reconstruct the second and third term from
two-particle and tree-particle cuts.
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6.3.1. Two-particle and three-particle cuts

For the two-particle cut we can use

iA2pc = 4m1m2

√
σ2 − 1

∫
d2−2ǫb e−ib·q2iδ0 2i∆1 . (6.62)

The leading eikonal is (3.10)

2iδ0 =
2im1m2G

(
σ2 − 1

2−2ǫ

)
Γ(−ǫ)

√
σ2 − 1 (πb2)

−ǫ (6.63)

and the quantum remainder at one-loop order, 2∆1, is given by (4.61). At this stage, we can use
the inverse Fourier transform (A.49)

4m1m2

√
σ2 − 1

∫
d2−2ǫb

e−ibq

(b2)1−3ǫ
=

4m1m2

√
σ2 − 1

(q2)2ǫ
π1−ǫΓ(2ǫ)

2−4ǫΓ(1− 3ǫ)
(6.64)

to obtain iA2pc after multiplying 2iδ0 and 2i∆1. Since 2δ0 is O(ǫ−1) and in addition (6.64) involves
a singular factor Γ(ǫ), the first two nontrivial orders are captured by retaining up to O(ǫ−1), for
which we find

A2pc =
2G3πsm2

1m
2
2

(
2σ2 − 1

)3

ǫ(q2)2ǫ (σ2 − 1)
2

− i2G3m3
1m

3
2

(
2σ2 − 1

)

ǫ2
(

q2eγE
4π

)2ǫ
(σ2 − 1)

3
2

(
2σ(2σ2 − 1)(6σ2 − 7) arccoshσ√

σ2 − 1
− 1− 49σ2 + 18σ4

15

)

+
iG3m3

1m
3
2

ǫ(q2)2ǫ(σ2 − 1)
3
2

(4σ
(
2σ2 − 1

) (
8σ4 + 2σ2 − 11

)
arccoshσ√

σ2 − 1

− 18468σ6 − 30728σ4 + 13113σ2 − 1753

225

)
.

(6.65)

Then, we need to add the imaginary part coming from the three-particle cut. As we know
from Section 5, this is related to Im2δ2 by Fourier transform. In b-space, we have (5.56),

Im 2δ2 =
2m2

1m
2
2(2σ

2 − 1)2G3

πb2 (σ2 − 1)2
(πb2eγE )3ǫ

×
[(
−1

ǫ
+ log(4(σ2 − 1))

)(
σ
(
2σ2 − 3

)
arccoshσ√

σ2 − 1
+

8− 5σ2

3

)

− (arccoshσ)2

(
σ
(
2σ2 − 3

)
√
σ2 − 1

+
2(σ2 − 1)(4σ4 − 12σ2 − 3)

(1− 2σ2)
2

)

+ (arccoshσ)
σ
(
88σ6 − 240σ4 + 240σ2 − 97

)

3 (1− 2σ2)
2√

σ2 − 1

+ Li2(1− z2)
σ
(
3− 2σ2

)
√
σ2 − 1

+
−140σ6 + 220σ4 − 127σ2 + 56

9 (1− 2σ2)
2

]
.

(6.66)
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Since Ã3pc = i Im2δ2, we can again go to q-space using (6.64), finding

A3pc =
4im3

1m
3
2(2σ

2 − 1)2G3

ǫ (σ2 − 1)
3
2

(
4πe−γE

q2

)2ǫ

×
[(
−1

ǫ
+ log(4(σ2 − 1))

)(
σ
(
2σ2 − 3

)
arccoshσ√

σ2 − 1
+

8− 5σ2

3

)

− (arccoshσ)2

(
σ
(
2σ2 − 3

)
√
σ2 − 1

+
2(σ2 − 1)(4σ4 − 12σ2 − 3)

(1− 2σ2)
2

)

+ (arccoshσ)
σ
(
88σ6 − 240σ4 + 240σ2 − 97

)

3 (1− 2σ2)
2√

σ2 − 1

+ Li2(1− z2)
σ
(
3− 2σ2

)
√
σ2 − 1

+
−140σ6 + 220σ4 − 127σ2 + 56

9 (1− 2σ2)
2

]
.

(6.67)

Comparing the decomposition (6.57), (6.61) with the above explicit formulas for A2pc and

A3pc, we discover that A(2,0)
2 must be purely imaginary in order for Anew

2 not to have O(ǫ−2) real
contributions that would result in a divergent eikonal phase, and is given by

iA(2,0)
2 =

2G3m3
1m

3
2

(
2σ2 − 1

)

(σ2 − 1)
3
2

(
2σ(2σ2 − 1)(6σ2 − 7) arccoshσ√

σ2 − 1
− 1− 49σ2 + 18σ4

15

)

+
4G3m3

1m
3
2(2σ

2 − 1)2

(σ2 − 1)
3
2

(
σ
(
2σ2 − 3

)
arccoshσ√

σ2 − 1
+

8− 5σ2

3

)
.

(6.68)

Of course the imaginary part of A(1,0)
2 is also determined by the cuts, i.e. by the O(ǫ−1(q2)−2ǫ)

terms of (6.65), (6.67),

ImA(1,0)
2 =

G3m3
1m

3
2

(σ2 − 1)
3
2

(4σ
(
2σ2 − 1

) (
8σ4 + 2σ2 − 11

)
arccoshσ√

σ2 − 1

− 18468σ6 − 30728σ4 + 13113σ2 − 1753

225

)

+
4m3

1m
3
2(2σ

2 − 1)2G3

(σ2 − 1)
3
2

×
[
log(4(σ2 − 1))

(
σ
(
2σ2 − 3

)
arccoshσ√

σ2 − 1
+

8− 5σ2

3

)

− (arccoshσ)2

(
σ
(
2σ2 − 3

)
√
σ2 − 1

+
2(σ2 − 1)(4σ4 − 12σ2 − 3)

(1− 2σ2)
2

)

+ (arccoshσ)
σ
(
88σ6 − 240σ4 + 240σ2 − 97

)

3 (1− 2σ2)
2√

σ2 − 1

+ Li2(1− z2)
σ
(
3− 2σ2

)
√
σ2 − 1

+
−140σ6 + 220σ4 − 127σ2 + 56

9 (1− 2σ2)
2

]
.

(6.69)

For convenience, we may trade the unknown function Anew
2 in (6.61) for an equivalent one A(1,new)

2 ,

obtained by removing the contribution of the 2-particle cut (6.65) to the real part of A(1,0)
2 :

ReA(1,0)
2 =

2G3πsm2
1m

2
2

(
2σ2 − 1

)3

(σ2 − 1)2
+A(1,new)

2 . (6.70)
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6.3.2. Real-analytic, crossing-symmetric ansatz in GR

In this subsection we will follow a shortcut, based on analyticity and crossing symmetry, in
order to reconstruct the full two-loop scattering amplitude (at the relevant classical level) from its
imaginary part, the idea being that the latter is easier to compute from lower-loop-order on shell
amplitudes. As it turns out, the only missing information is contained in purely real terms that
can be easily computed from the probe limit.

In order to pursue this program we start with an ansatz using the analytic structures we have
already seen in the N = 8 case discussed in subsection 6.2.2. Let us first notice that (6.59) can
be written in the analytic crossing symmetric form:

A(1,1)
2 =

6πG3 (m1 +m2)m
3
1m

3
2

(
2σ2 − 1

) (
1− 5σ2

)
√
σ2 − 1

(log(−z) + log(−z̄)) +O (ǫ) . (6.71)

For the other terms we try, in analogy with (4.63), the following ansatz:

A2(s, q
2) =

(8πG)3

(4π)4

(
4πe−γE

q2

)2ǫ

Â2(s, q
2) ,

Â2(s, q
2) =

Â
[2]
2 (s, q2, ǫ)

ǫ2
+
Â

[1]
2 (s, q2)

ǫ
.

(6.72)

In order to reproduce Eqs. (6.58) and (6.68) we try the same analytic structures appearing in
(6.49). This uniquely determines:

Â
[2]
2 (s, q2)

m3
1m

3
2

= −8π2m1m2

q2

(
σ2 − 1

2(1−ǫ)

σ2 − 1
+
σ̄2 − 1

2(1−ǫ)

σ̄2 − 1

)[(
σ2 − 1

2−2ǫ

)2
+
(
σ̄2 − 1

2−2ǫ

)2]
cexp(ǫ)

+ 4
[(
σ2 − 1

2

)2
+
(
σ̄2 − 1

2

)2]
((

σ(4σ2 − 5)

(σ2 − 1)2
log2(−z) + σ̄(4σ̄2 − 5)

(σ̄2 − 1)2
log2(−z̄)

)

+

[
118σ4 − 259σ2 + 81

60(σ2 − 1
2 )(σ

2 − 1)3/2
log(−z) + 118σ̄4 − 259σ̄2 + 81

60(σ̄2 − 1
2 )(σ̄

2 − 1)3/2
log(−z̄)

])
,

(6.73)

with

cexp(ǫ) =
Γ(1− ǫ)3Γ(1 + 2ǫ)

Γ(1− 3ǫ)
e2ǫγE . (6.74)

Note that we have kept a more complete ǫ dependence in the first line of (6.73). In this way,
when we expand that line to lowest order in q2 (by setting σ̄ = −σ), it reproduces, at all ǫ, the
superclassical (iteration) term − i

6 (2iδ0)
3. At first order in σ̄ + σ we get corrections which, at

lowest order in ǫ, combine with the terms in the second and third line of (6.73) while at O(ǫ) they
contribute to Â

[1]
2 .

Concentrating on the former, note that the last line of (6.73) gives a purely imaginary contri-
bution (up to negligible corrections of higher order in q2). The second line, instead, is proportional
to log2(−z)− log2(−z̄) and therefore carries both a real and an imaginary part. Amusingly, the
former is exactly canceled by the subleading (and obviously real) contribution from the first line
and the final result reproduces exactly the purely imaginary result (6.68).

Turning now to Â
[1]
2 , we have to combine the above-mentioned leftover piece from the first line

of (6.73) with Eqs. (6.30) and (6.31) with an appropriate ansatz for the real-analytic, crossing
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symmetric Â
[1]
2 itself. Based on the analogy with the N = 8 case we try

Â
[1]
2 (s, q2)

m3
1m

3
2

= π2 (m
2
1 +m2

2)

m1m2

[
fa + (2σ2 − 1)3

]

(σ2 − 1)2
(6.75a)

+
fb

(σ2 − 1)3/2
(log(−z)− log(z)) (6.75b)

+
fc

(σ2 − 1)2
(log(−z)− log(z))

(
Li2(z

2)− Li2

(
1

z2

))
(6.75c)

+
fd

(σ2 − 1)1/2
[(
log3(−z)− log3(z)

)
+ π2 (log(−z)− log(z))

]
(6.75d)

+
fe

(σ2 − 1)2
(
log2(−z)− log2(z)

)
(6.75e)

+
ff

(σ2 − 1)3/2
(log(−z)− log(z))

[
log(1− z2) + log

(
1− 1

z2

)]
(6.75f)

where the unknown functions fa, . . . , ff are polynomials in σ. The first line of the ansatz (6.75a)
is motivated by the analogue equation for the N = 8 case, see (6.50a), but here we allow for an
extra contribution, fa, besides the one from the 2-particle cut in the first line in (6.65).

Matching onto the known terms in (6.69) fixes uniquely all the coefficients fi except for fa,
which is purely real. We thus obtain the following result consisting of six distinct real-analytic
crossing-symmetric structures paralleling exactly the ones we found in N = 8:

Â
[1]
2 (s, q2)

m3
1m

3
2

= π2 (m
2
1 +m2

2)

m1m2

[
fa + (2σ2 − 1)3

]

(σ2 − 1)2
(6.76a)

− 32468σ6 − 52728σ4 + 25813σ2 − 7353

450(σ2 − 1)3/2
(log(−z)− log(z)) (6.76b)

+
σ(2σ2 − 1)2(2σ2 − 3)

(σ2 − 1)2
(log(−z)− log(z))

(
Li2(z

2)− Li2

(
1

z2

))
(6.76c)

− 4

3

4σ4 − 12σ2 − 3

(σ2 − 1)1/2
[(
log3(−z)− log3(z)

)
+ π2 (log(−z)− log(z))

]
(6.76d)

− 4

3

σ(34σ6 − 63σ4 + 42σ2 − 16)

(σ2 − 1)2
(
log2(−z)− log2(z)

)
(6.76e)

+
2

3

(2σ2 − 1)2(8− 5σ2)

(σ2 − 1)3/2
(log(−z)− log(z))

[
log(1− z2) + log

(
1− 1

z2

)]
. (6.76f)

6.3.3. The 3PM eikonal 2δ2
Substituting (6.76), (6.73) into (6.72), and expanding for small q2 as instructed by (6.57), we

finally obtain

ReA(1,0)
2 =

2G3πsm2
1m

2
2

(
2σ2 − 1

)3

(σ2 − 1)
2

+ 2πG3m2
1m
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2
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(
14σ2 + 25

)

+
4m1m2

(
3 + 12σ2 − 4σ4

)
arccosh(σ)√

σ2 − 1

+
2m1m2

(
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)2
√
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(
8− 5σ2

3 (σ2 − 1)
+
σ
(
2σ2 − 3

)
arccosh(σ)

(σ2 − 1)
3/2

)]
,

(6.77)
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where the last three lines provide the sought after contribution A(1,new)
2 in (6.70).

Following the same steps as for N = 8, we can start from the complete expression (6.57), go to
b-space, subtract all iteration terms as dictated by (6.55), in particular those due to 2δ0 2∆1, and
drop the imaginary part Im 2δ2. However, since (6.77) is already the real part of the O(q−4ǫ) term,
this procedure is equivalent to starting from (6.77) and dropping the first term on the right-hand
side. This term is just the real part of (6.65), i.e. the one arising from 2δ0 2∆1. The final step is
to restore the appropriate overall factors appearing in (6.57) and go to b-space.

In other words Eq. (6.77), without the term in the first line, is the subtracted two-loop
amplitude that, when translated in impact parameter space, directly gives the 3PM eikonal. In
Subsection 6.3.4 we will instead show which subtractions are appropriate for obtaining the radial
action and we will see that they are different from the ones for obtaining the eikonal (though of
course closely related).

The result is the 3PM eikonal phase

Re 2δ
(gr)
2 =

4G3m2
1m

2
2

b2

{(
2σ2 − 1

)2 (
8− 5σ2

)

6 (σ2 − 1)2
− σ

(
14σ2 + 25

)

3
√
σ2 − 1

+
sfa(σ)

4m1m2 (σ2 − 1)
5
2

+ arccoshσ

[
σ
(
2σ2 − 1

)2 (
2σ2 − 3

)

2 (σ2 − 1)
5
2

+
−4σ4 + 12σ2 + 3

σ2 − 1

]}
,

(6.78)

with fa(σ) as in (6.86) below. Eq. (6.78), together with the imaginary part (6.66), completes our
discussion of the eikonal exponentiation up to 3PM. While in the approach presented here they
all appear on the same footing, the various terms in (6.78) have different physical interpretations
that we can now illustrate.

As already alluded to, the term in green in the second line will fixed by probe limit calculation
momentarily. The terms in black contain instead genuine 3PM dynamical information, associated
to the so-called “potential” interaction between the two objects. They are due to the fact that each
body perceives gravitational attraction towards the other one, but this occurs in a fully relativistic
manner as dictated by GR. Historically, they were the first 3PM effects to be calculated analytically
[38, 39], a result that was achieved by using amplitude techniques.

The terms highlighted in blue instead have a different meaning. They are due to the fact that a
system of two objects undergoing nontrivial deflections is not a conservative one. The two objects
can in general lose energy and angular momentum that can be stored in the gravitational field.
The effect of this phenomenon is that the two bodies feel an additional, non-conservative force
called radiation-reaction force [294, 295]. To 3PM order, this reaction force is captured by the
terms in blue and is actually due to a 2PM order loss of angular momentum that the two-body
system transmits to the gravitational field [296, 289].

The interplay between potential and radiation-reaction terms is crucial in order to ensure that
the high-energy limit of (6.78) matches onto the corresponding result for the massless 3PM eikonal
[15]. Taking σ →∞ with

s = E2 = m2
1 + 2m1m2σ +m2

2 ∼ 2m1m2σ , (6.79)

one finds again (6.47) in precise agreement with Ref. [15]. In particular, in this limit, a cancellation
occurring in the square brackets of (6.78) between potential and radiation-reaction terms is crucial

in order to ensure that terms of order G3s2

b2 log s
m1m2

drop out. The universality of the result
(6.47) for Re 2δ2 (and of the associated log(s) in the Im2δ2 (6.39)) is due to the fact that, in the
ultrarelativistic limit, graviton exchanges dominate the interactions because they couple with the
highest power of the energy, both in N = 8 and in GR.

We can now go from the eikonal to the deflection angle using the familiar saddle-point equation

2p sin
Θ

2
= −∂Re 2δ

∂b
. (6.80)
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To this order, it is important to include in the left hand side the full deflection angle up to 3PM
order, complete of its 1PM and 2PM terms, since the next-to-leading order term in the Taylor
expansion gives rise to a contribution of order (Θ1PM)3. Let us collect here the result for the
deflection angle complete up to 3PM:

Θ =
4GE
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2

)
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+
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]}
+
G3s

3
2

(
2σ2 − 1

)3

3b3 (σ2 − 1)
3 ,

(6.81)

with fa(σ) as in (6.86) below. To confirm the physical interpretation of the various contributions,
it is instructive to take the small-velocity limit, i.e.

σ =
1√

1− v2
, v → 0 . (6.82)

Then, the green term in (6.81), which is associated to the probe limit, scales like G3v−4. In the
PN counting where G ∼ v2, this corresponds to a 1PN effect. The potential interaction terms,
appearing in black in the last two lines of (6.81), are proportional to G3v−2, so they are 2PN
effects. Instead, the radiation-reaction terms in blue scale as G3v−1 indicating a 2.5PN effect.
This half-odd PN order and the odd power of the velocity is indeed the hallmark of a dissipative
effect. Comparing with the situation in N = 8, we note that in that case radiation-reaction effects
started showing up already to 1.5PN order. This is due to the presence of additional states in the
spectrum of classical fields, in particular the ones associated to Kaluza–Klein vectors that couple
to the dipole of the system, unlike the graviton, which couples to its quadrupole.

In order to express the final result in terms of the system’s angular momentum, it is important
to recall that b is not exactly orthogonal to the incoming particle velocities. It is instead related
to the orthogonal impact parameter bJ such that J = p bJ by the additional saddle-point equation
bJ = b cos(Θ/2) as in (6.11). This difference of order G2 is important in the factor of 1/b appearing
in 1PM term of (6.81), and leads to an additional contribution to the 3PM result when expressed
in these variables. The deflection angle complete up to 3PM order can be then cast in the form
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4Gm1m2
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(6.83)

Finally, in the probe limit m1 ≪ m2, we find the following 3PM contribution44

Θ3PM,probe =
2G3m3

1m
3
2fa(σ)

J3(σ2 − 1)3/2
− 2G3m3

1m
3
2

(
2σ2 − 1

)3

3J3 (σ2 − 1)
3/2

(6.84)

44The other terms in (6.83) are negligible because they are down by a factor m1m2
s

∼ m1
m2

.
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and we can compare this with (B.19) which requires (taking into account the prefactor in (B.13)
with Rs = 2Gm2 as in (B.2))

Θ3PM,probe =



2Gm2

√
E2

p −m2
p

J




3

−120E4
pm

2
p + 60E2

pm
4
p + 64E6

p − 5m6
p

12
(
E2

p −m2
p

)
3

(6.85)

with Ep = m1σ and mp = m1. As promised, equating (6.84) with (6.85) fixes the unknown
polynomial to be

fa(σ) = 2(12σ4 − 10σ2 + 1)(σ2 − 1) . (6.86)

6.3.4. Extracting the radial action from the amplitude

In this subsection we shall go back to the connection (6.9) between the eikonal phase, which
is the main focus of the present report, and the phase shift, which is more directly related to
the radial action as highlighted by (6.16). As reviewed in Subsection (1.3), the main property
of the states with well-defined angular momentum is that they diagonalize the 2 → 2 elastic S-
matrix, and the corresponding diagonal elements define the phase shift (see in particular (1.57)
and (1.59)). Correspondingly, such a basis also diagonalizes the sum over intermediate two-
particle states (1.66). On the other hand, the b-space Fourier transform at the basis of the eikonal
formalism does not achieve this diagonalization exactly, as displayed in particular by Eq. (5.13),
but only up to terms that are further suppressed by powers of 1/b2 or, equivalently, of q2.

In order to recover the phase shift from the amplitude one should subtract all super-classical
terms by matching to (1.59) and not the b-space expression (4.1). Following the notation in-
troduced in (2.44) for the phase shift in the classical limit, let us similarly define the symbol
F(s, J)

2fj(s) = F(s, J) (6.87)

for the partial-wave amplitude in the same limit, when J = ~j becomes classically sizable. In this
way, suppressing again ~ from now on, (1.59) becomes

1 + iF(s, J) = eiχ(s,J)(1 + iρ(s, J)) , (6.88)

where ρ(s, J) denotes the quantum remainder in the J-basis. The loop expansion for F(s, J),

F(s, J) = F0(s, J) + F1(s, J) + F2(s, J) + · · · , FL(s, J) ∼ O(GL+1) , (6.89)

translates into a PM expansion for χ(s, J),

χ(s, J) = χ0(s, J) + χ1(s, J) + χ2(s, J) + · · · , χL(s, J) ∼ O(GL+1) (6.90)

and similarly for the quantum remainder ρ(s, J). This in turn dictates the following relations,

iF0 = iχ0 , (6.91)

iF1 =
(iχ0)

2

2!
+ iχ0 + iρ1 , (6.92)

iF2 =
(iχ0)

3

3!
+ (iχ1)(iχ0) + [iχ2 + (iχ0)(iρ1)] . (6.93)

Despite the resemblance with (4.4), (4.5), (4.6), at loop level these equations dictate slightly
different subtractions, which do remove the superclassical terms, but in general can leave behind
different classical corrections, as we now turn to illustrate.

As we checked in (2.43) in the massless setup, the leading-order expressions for the eikonal
phase and the phase shift match,

χ0(s, J) = 2δ0(b)
∣∣
b→bJ

. (6.94)
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This is not surprising because corrections in the relation (6.11) between b and bJ = J/p are
suppressed by powers of G2 in the PM expansion. Similarly we can conclude that

χ1(s, J) = 2δ1(b)
∣∣
b→bJ

. (6.95)

We had already seen this in (6.18), whose first two terms on the right-hand side are equivalent
to (6.94), (6.95), as follows from the definition (6.17) of d1, d2. In fact, (6.94) and (6.95) can be
easily checked by noting that the characterizing property (6.14) is trivially equivalent to (6.11) to
this order:

2 sin
Θ1PM + Θ2PM

2
= Θ1PM +Θ2PM +O(G3) (6.96)

and correspondingly

−1

p

∂(2δ1(s, b) + 2δ(s, b))

∂b
= −∂(2δ1(s, bJ) + 2δ(s, bJ))

∂J
+O(G3) . (6.97)

To subleading order in the amplitude, however, we encounter the first novelty. Indeed, repeat-
ing the steps in Section 5 that lead to (5.13), but exploiting the exact diagonalization granted by
the J-projection, we obtain the following consequence of the unitarity relation:

2 Im2pc F(s, J) = |F(s, J)|2 (6.98)

without corrections (in contrast with (5.13)). In turn, this ensures that not only that

Imχ0(s, J) = Imχ1(s, J) = 0 (6.99)

(consistently with (6.94), (6.95) and with the fact that 2δ0, 2δ1 are real), but also that the quantum
remainder is real to this order

Im ρ1(s, J) = 0 . (6.100)

This reflects at two loop level (6.93) into the following link:

Reχ2 = ReF2 +
1

3!
(χ0)

3 , (6.101)

where, being purely real, ρ1 has dropped out. In other words, there is no need to know the
one-loop remainder in order to calculate Reχ2: one only needs to take into account the cubic
contribution involving the leading-order phase shift, χ0, in the above equation.

Rather than working in J-space, it is more convenient to calculate the subtraction appearing in
(6.101) in momentum space, where it translates to the (exact) triple convolution of the tree-level
amplitude. Letting the subscript M stand for “momentum space”, we have

(χ0)
3
M =

∫ ∫
p1

p2

q1 d(LIPS)2 q2 d(LIPS)2

p4

p3

q − q1 − q2 (6.102)

This expression is easy to calculate to any desired accuracy in q2, using the reverse unitarity
strategy, since clearly it corresponds to a double cut of the double-box integral IIII appearing in
the amplitude itself (6.20). Its leading-order contribution must cancel the super-classical terms
in the real part of the partial wave, while its subleading contribution will contribute to classical
order. More concretely, since all internal massive lines must be cut, one can obtain the result by
looking at the q-expansion in Eq. (3.22) of [47] and the sought-for subleading contribution is given
by (3.24g) of that reference.
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Let us consider, for the sake of generality, a tree-level amplitude of the form

A0(s,−q2) =
a0
q2
, (6.103)

so that

Ã0 = 2δ0 =
1

4Ep

a0
4π

Γ(−ǫ)
(πb2)−ǫ

, Θ1PM = −1

p

∂2δ0
∂b

=
1

4Ep2
a0

2π1−ǫ

Γ(1− ǫ)
b1−2ǫ

. (6.104)

In particular, for the case of minimally interacting massive scalars,

a0 = 32πGm2
1m

2
2

(
σ2 − 1

2−2ǫ

)
. (6.105)

Then using reverse unitarity as explained above (see Eq. (3.11) of [110]), one obtains

(χ0)
3
M =

[
1− ǫq2

3p2
+O(q4)

]
1

16E2p2
a30Γ(−ǫ)3

(4π)2−2ǫΓ(−3ǫ)
Γ(1 + 2ǫ)

(q2)1+2ǫ
. (6.106)

Taking into account the small-q expansion of the two-loop amplitude

A2 = A[2]
2 +A[1]

2 +A[0]
2 +O(q1−4ǫ) (6.107)

where A[k]
2 ∼ q−k−4ǫ as in (6.57), and going to b-space, we find

Re Ã2(s, b) +
1

3!
FT[(χ0)

3
M ] = Ã[2]

2 (s, b) + Re Ã[0]
2 (s, b)

+
(2δ0)

3

3!
− (Θ1PM)3

3!
bp+O(b−3−3ǫ).

(6.108)

In this way, the superclassical O(b3ǫ) terms cancel out between the first term of each line. Note
that the subleading corrections in the Fourier transform (A.40) do not play any role, precisely
thanks to this cancellation.

The remaining classical terms that are left behind determine the 3PM phase shift according
to

Reχ2(s, J) =

[
Re Ã[0]

2 (s, b)− bp

6
(Θ1PM)3

]

b→bJ

. (6.109)

Here, in the last step, we have used the fact that the Fourier transform to b-space and the J-
projection agree to leading order, and that after the subtraction the quantity we are after does
not receive any subleading contribution (neither in 1/J nor in G).

This subtraction is not identical to the analogous one dictated by the eikonal exponentiation
(4.5), (4.6). Indeed, as discussed in Section 5, provided that there are no available inelastic 2-
particle channels, the imaginary part of 2∆1 is also dictated by the tree-level amplitude (6.103)
via

2 ImA1(s,−q2) =
∫

p1

p2

q1 d(LIPS)2

p4

p3

q − q1 (6.110)

i.e using again reverse unitarity (see Eq. (A.19) of Ref. [110]),

2 Im 2A1(s,−q2) =
[
1− ǫq2

4p2
+O(q4)

]
1

4Ep

a20Γ(−ǫ)2
(4π)1−ǫΓ(−2ǫ)

Γ(1 + ǫ)

(q2)1+ǫ
. (6.111)
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As ensured by (5.13), going to b-space the leading term simply reproduces the contribution (2δ0)
2

dictated by the eikonal exponentiation, while the subleading term determines

2 Im2∆1(s, b) =
2ǫ

(4Ep2)2
a20Γ(1− ǫ)2

16π2−2ǫ(b2)1−2ǫ
. (6.112)

Therefore, using

Re 2δ2(s, b) = Re Ã[0]
2 (s, b) + 2δ0(s, b) Im 2∆1(s, b) , (6.113)

we obtain

Re 2δ2(s, b) = Re Ã[0]
2 (s, b)− bp

8
(Θ1PM)3 . (6.114)

We are now in a position to make a precise comparison between the 3PM eikonal phase and phase
shift. Subtracting (6.109) and (6.114),

Re 2δ2(s, b)
∣∣
b→J/p

− Reχ2(s, J) =
J

24
(Θ1PM)3 . (6.115)

We remark that Re 2δ2(s, b), which appears in (6.115), is the O(G3) of Re 2δ2(s, b) regarded as a
function of b. This should not be confused with the O(G3) of Re 2δ2(s, bJ/ cos

Θ
2 ), regarded as a

function of bJ . As discussed for instance above (6.83), the substitution b = bJ/ cos
Θ
2 (6.11) would

induce additional O(G3) terms, hence the need to pay attention to this distinction. These terms,
however, do not cancel out against the right-side of (6.115) so that the phase shift is not simply
obtained from the eikonal phase by taking b = bJ/ cos

Θ
2 into account,

Re 2δ
(
s, bJ/ cos

Θ
2

)
6= Reχ(s, J) . (6.116)

The difference (6.115) is precisely the one needed to reproduce the last term in the first line of
(6.18), which we had derived formally from the saddle-point conditions. In turn, this is crucial to
ensure that, while the eikonal phase is linked to the angle by (6.11), the phase shift obeys (6.14).
Indeed, in the notations of (6.17), (6.18), (6.19),

Θ1PM =
d0
J
p , Re2δ2 =

d2 p
2

2J2
, Reχ2 =

d2 p
2 − d3

0

12

2J2
. (6.117)

Hence the difference between eikonal phase and phase shift exactly matches the one derived in
(6.115).

To complete the spectrum of possible definitions for the subtractions, let us consider employing
the Fourier transform with the complete mass-shell delta functions. We begin by recalling that the
standard form of the exponentiation is dictated by (4.1), were the Ã(s, b) is the Fourier transform
with linearized delta functions as in (1.71) and (A.44). In contrast, suppose we were to define

1 + iFT[A](s, bJ ) = [1 + 2i∆̌(s, bJ)]e
2iδ̌(s,bJ ) , (6.118)

with FT[A] as in (1.32) and (A.31). Then, while of course

2δ̌0(s, bJ) = 2δ0(s, b)
∣∣
b→bJ

, 2δ̌1(s, bJ) = 2δ2(s, b)
∣∣
b→bJ

, (6.119)

one finds a nontrivial difference for 2∆̌1 and 2δ̌2 to the effect that

Re 2δ̌2(s, bJ) =

[
Re 2δ2(s, b) +

bp

8
(Θ1PM)3

]

b→bJ

=
[
Re Ã[0]

2 (s, b)
]
b→bJ

(6.120)

where we used (6.114) in the last step, and therefore

Re 2δ̌(s, bJ ) = Re 2δ̌(s, b cos Θ
2 ) = Re 2δ(s, b) (6.121)
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up to 3PM order.
Let us conclude this section by presenting the radial action up to 3PM in GR for the scattering

of minimally coupled massive scalars in terms of the coefficients defined in (6.17),

I(s, J) = −πJ − d0 log J +
d1p

J
+
d2p

2 − d3
0

12

2J2
, (6.122)

where

d0 =
2Gm1m2(2σ

2 − 1)√
σ2 − 1

, d1 =
3πG2m2

1m
2
2(m1 +m2)(5σ

2 − 1)

4Ep
, (6.123)

and

d2 = 8G3m2
1m

2
2

{(
2σ2 − 1

)2 (
8− 5σ2

)

6 (σ2 − 1)
2 − σ

(
14σ2 + 25

)

3
√
σ2 − 1

+
2s(12σ4 − 10σ2 + 1)

m1m2 (σ2 − 1)
3
2

+ arccoshσ

[
σ
(
2σ2 − 1

)2 (
2σ2 − 3

)

2 (σ2 − 1)
5
2

+
−4σ4 + 12σ2 + 3

σ2 − 1

]}
.

(6.124)

6.3.5. Radial action, effective potential, PN limit and bound orbits

In this subsection, we determine the deflection angle and the radial action in terms of a
potential present in the Hamiltonian describing the relative motion of two black holes. This serves
as a tool to re-sum the PM contributions in a controlled way and access the PN limit that also
applies to the case of bound orbits. We conclude by presenting the 2PN-accurate expressions for
the periastron advance, revolution period for generic bound orbits and for the binding energy of
circular orbits. The idea of matching to an effective potential has its roots in the EOB approach,
and here we will follow the particularly simple incarnation given in [297].

We start from the Hamiltonian describing the relative motion in a plane of two black holes:

H = p2r +
J2

r2
+ V (r) , V (r) = −

∞∑

n=1

Gn

rn
fn , (6.125)

where V (r) is the potential given as an expansion in the Newton constant. From the three
Hamilton equations

∂H

∂θ
= −ṗθ = 0 , ṙ =

∂H

∂pr
= 2pr , θ̇ =

∂H

∂pθ
=

2pθ
r2

(6.126)

we get that the angular momentum pθ = J is a constant of motion and the relation

∂θ

∂r
=

J

r2pr
, with pr =

√
p2 − J2

r2
− V (r) . (6.127)

Thus the deflection angle is

Θ = −π + 2J

∫ ∞

r∗

dr

r2
√
p2 − J2

r2 − V (r)
= −π − 2

∫ ∞

r∗

dr
∂

∂J

√
p2 − J2

r2
− V (r) , (6.128)

where p2 is the constant value of the Hamiltonian and, in our case, p is equal to the momentum
in the center of mass frame. The factor −π is there to ensure that Θ = 0 if the potential vanishes
and the factor 2 takes care of the motion from infinity to the point of minimal distance r∗ and
from r∗ back to infinity where r∗ is the largest positive root of the condition of turning point,
pr(r∗) = 0. As shown in [298] one can avoid to determine it by computing the deflection angle by
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using instead the following equivalent expression (in Appendix B.1 we review a similar approach
to calculate the deflection angle in the probe limit)

Θ =
∞∑

k=1

Θk(bJ ) ; Θk(bJ) =
2b

k!

∫ ∞

0

du

(
∂

∂b2J

)k

(
V (
√
u2 + b2J)

)k
(u2 + b2J)

k−1

p2k
, (6.129)

where as usual J = pbJ . From the deflection angle we can reconstruct the radial action I by
using (6.15)

I = −
∫
(Θ + π) dJ (6.130)

and “the +π” is so that I → −πJ when Θ→ 0; moreover the J-independent part of I is fixed so
as to agree with the 1PM expression for 2δ0 via (6.16) and (6.94). Then, the relation between the
radial action and the potential is given by

I = −πJ + 2

∫ ∞

r∗

√
p2 − J2

r2
− V (r) . (6.131)

It can also be written in a more convenient way as

I = −πJ −
∞∑

k=1

1

k!

∫ ∞

0

du

(
∂

∂b2J

)k−1

(
V (
√
u2 + b2J)

)k
(u2 + b2J)

k−1

p2k−1
(6.132)

The integral over u can be easily computed by changing variable to u = bJ sinhw and using

∫ ∞

0

dw

coshd−2 w
=

√
πΓ(d−2

2 )

2Γ(d−1
2 )

. (6.133)

In this way we get

I(J, σ) = −πJ +
f1GDb

2ǫ
J Γ(−ǫ)
2p

+
f2G

2π

2J
+
G3

J2

(
pf3 +

f1f2
2p
− f3

1

24p3

)
+O(G4) , (6.134)

where for the k = 1 contribution we reinstated the dimensional regularization parameter by using
−GDf1

rD−3 in place of −Gf1
r in the potential. Then, by using (6.15), we can derive the deflection angle

(in D = 4)

Θ =
f1G

pJ
+
f2G

2π

2J2
+

2G3

J3

(
pf3 +

f1f2
2p
− f3

1

24p3

)
+O(G4) . (6.135)

From the knowledge of the PM expanded deflection angle one can of course determine the coeffi-
cients fn. Comparing the equation above with (6.83), we obtain up to 3PM

f1 =
2m2

1m
2
2(2σ

2 − 1)

E
, f2 =

3m2
1m

2
2(m1 +m2)(5σ

2 − 1)

2E
(6.136)

and

f3 = m2
1m

2
2

{
2E(12σ4 − 10σ2 + 1)

(σ2 − 1)
− 3(2σ2 − 1)(5σ2 − 1)(m1 +m2)

2(σ2 − 1)

+
2m1m2

E

[
− 2σ(14σ2 + 25)

3
− 2

4σ4 − 12σ2 − 3√
σ2 − 1

cosh−1(σ)

+
(2σ2 − 1)2√
σ2 − 1

(
8− 5σ2

3(σ2 − 1)
+

(2σ2 − 3)σ

(σ2 − 1)
3
2

cosh−1(σ)

)]}
. (6.137)
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It is possible also to derive the parameters fn directly by matching the gravity scattering am-
plitudes against those of an effective theory encoding the potential (6.125) [37]. In this way
one can derive at each PM order an object, AnPM (σ, q), that satisfies the following impetus
formula [291, 298, 292, 260]:

Gn

rn
fn =

1

2E

∫
d3q

(2π)3
eiqrAnPM (σ, q) . (6.138)

At the tree level A1PM is the one in (3.4). At one loop A2PM is given in (4.47) for ǫ = 0. Finally
at two loops,

A3PM (σ, q2) = 4G3m2
1m

2
2π log q

2E

×
[
3(2σ2 − 1)(5σ2 − 1)(m1 +m2)

2(σ2 − 1)
− 2E(12σ4 − 10σ2 + 1)

(σ2 − 1)

+
2m1m2

E

(
2(−3− 12σ2 + 4σ4) cosh−1(σ)√

σ2 − 1
+

2σ(14σ2 + 25)

3

− (2σ2 − 1)2√
σ2 − 1

(
8− 5σ2

3(σ2 − 1)
+

(2σ2 − 3)σ

(σ2 − 1)
3
2

cosh−1(σ)

))]
(6.139)

which coincides with the part proportional to log q2 of Eq. (8) of [38], with the addition of the two
terms coming from radiation reaction. Once the parameters fn, and so the potential V (r) (6.125),
are determined, one can use this information in (6.128) to find an “improved” deflection angle
that resums a class of higher order corrections. A detailed analysis discussing also this approach
is found in [299–302, 297] showing excellent agreement with data from numerical relativity. The
idea of resumming is at the basis of the EOB approach [31, 32] that can be used to find accurate
waveforms for bound systems by using an analytic approach.

A particularly simple case is the one in which the potential contains only f1 and f2, which
effectively reduces the calculations to the textbook Coulomb/Newton case. In this case the de-
flection angle can be computed exactly as a function of G, J and σ. To show this it is convenient
to introduce the two dimensionless quantities:

f̂1 =
f1
p2M

; f̂2 =
f2

p2M2
; M = m1 +m2 . (6.140)

Then Eq. (6.128) becomes

Θ(J,E) + π =
2J

p

∫ ∞

r∗

dr

r2
√
1 + f̂1GM

r − Ĵ2

p2r2

(6.141)

where

Ĵ2 = J2 − f̂2(GMp)2 (6.142)

and r∗ is the positive root of the equation:

1 +
f̂1GM

r
− Ĵ2

p2r2
= 0 (6.143)

that has the two roots:

r± =
1

2


±

√
(f1GM)2 +

4Ĵ2

p2
− f1GM


 (6.144)
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and r∗ = r+. Rewriting the quantity in the square root in (6.141) in terms of the two roots and
changing the integration variable as

r+
r

= 1− az2 ; a =
r− − r+
r−

(6.145)

we get

Θ(J,E) + π

2
=

2J

p
√
r+(−r−)

∫ 1√
a

0

dz√
1− z2

=
2J

p
√
r+(−r−)

arcsin

(
1√
a

)
. (6.146)

By using (6.144) we get

2 sin2

[
Θ(J,E) + π

4

√

1− f̂2(GMp)2

J2

]
= 1 +

1√
1 + 4Ĵ2

(pf̂1GM)2

(6.147)

which, by using trigonometric identities and recalling that 0 ≤ Θ ≤ π, can be shown to agree with
Eq. (7.6) of [291] written below

Θ(J,E) + π

2
=

1√
1− f̂2y2

f̂2
1



π

2
+ tan−1

y
2√

1− f̂2y2

f̂2
1


 , (6.148)

where we introduced y = GMf̂1p
J .

An interesting feature of (6.148) is that its PN expansion captures the 1PN result to all
order in the Newton constant G. We can see this by first using the results (6.136) for GR to
rewrite (6.148) in terms of the parameters jPN and v∞ introduced in (3.13) and then by taking
the limit 1

jPN
∼ v∞ ≪ 1 up to the first subleading order with α−1 = jPNv∞ fixed. Using, in this

limit, the approximation y
2 ≃ α(1 + 2

α2j2PN
) and f̂2y

2

f̂2
1

≃ 6
j2PN

we obtain

Θ

2
= arctanα+

1

j2PN

(
3
(
arctanα+

π

2

)
+

3α2 + 2

α(α2 + 1)

)
+O

(
j−4
PN

)
. (6.149)

where we have used tan−1 α(1 + x) = tan−1 α+ αx
1+α2 + · · · with x = 3α2+2

α2j2
PN

. The first term above

is the 0PN scattering angle obtained in (3.14), while the second term is the 1PN correction at all
orders in the PM expansion, see for instance [189]. One can also obtain the result (6.149) from
the probe limit calculation, as reviewed in Appendix B.1. Integrating (6.149) as in (6.130), we
have

I ≃ Gm1m2

αv∞

[
2α− 2 arctanα− α

(
log
(
α2 + 1

)
+ 2 log

(
Gm1m2

α

)
− 4 log v∞

)

+αv2∞

(
−2 log

(
α2 + 1

)
+ 3πα+ 6α arctanα− 4 log

(
Gm1m2

α

)
+ 8 log v∞

)
− π

]
.

(6.150)

As discussed in [291–293], it is possible to extract information about bound binary systems
starting from the resummed PN results for the scattering process. The basic idea is to analytically
continue the unbound observables to the region where the angular momentum is kept fixed but
the center-of-mass energy is below m1+m2, due to the presence of a nontrivial binding energy. In
practice, we need to extend the Lorentz factor from the region σ > 1 to σ̃ < 1, which can be done
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in two ways because of the branch cut p ∼
√
σ2 − 1. The recipe for defining the radial action Ĩ

for the bound case is to take the linear combination of these two possibilities

Ĩ = I(
√
σ2 − 1→ i

√
1− σ̃2, J) + I(

√
σ2 − 1→ −i

√
1− σ̃2, J) . (6.151)

In the PN limit this analytic continuation is equivalent to sending v∞ → ±iv∞. Applying this
recipe to (6.150), at 1PN order we find

Ĩ = −2πJ + 2πGm1m2
2σ̃2 − 1√
1− σ̃2

+ 6π
G2m2

1m
2
2

J
+O

(
2PN

)
. (6.152)

This can be directly obtained from (6.149) by noting that all its terms are odd under v∞ ↔ −v∞
(or equivalently α → −α) except for 3π/(2j2PN) and therefore cancel out in (6.151). The J-
independent term on the right hand side of (6.152), which we can take from the PM expansion
(6.134), originates from the analytic continuation of b2ǫJ Γ(−ǫ) in the second term of (6.134): since
J is kept fixed in (6.151), we have to send bJ → ∓ibJ as

√
σ2 − 1 → ±i

√
1− σ̃2. The term

O(G2) in (6.152) follows from the only contribution in (6.149) that is even under v∞ ↔ −v∞.
We can rewrite (6.152) in the variables used by [30], introducing also the symmetric mass-ratio
ν = m1m2/(m1 +m2)

2,

σ̃ = 1− εB
(
1

2
− ν

8
εB

)
, J =

Gm1m2√
εB

√
jB , (6.153)

thus trading J , σ̃ for jB , εB, and obtain, in the small εB limit (at fixed jB),

Ĩ = −πGm1m2

[
2

√
jB − 1√
εB

−√εB
(
6

1√
jB

+
ν − 15

4

)]
+O

(
2PN

)
. (6.154)

It was pointed out in [291] that the radial action for the bound case vanishes in the case of circular
trajectories which is the most relevant one for describing the typical black hole binaries [30]. By
using (6.154) we obtain the following relation

Ĩ = 0 , ⇒ jB,circ = 1 + εB
ν + 9

4
+O

(
2PN

)
, (6.155)

in agreement with [30] and with the closely related derivation given in [303].
Of course, it is also possible to introduce the bound radial action in the PM expansion. Sub-

stituting Eq. (6.134) into Eq. (6.151) we obtain at the 2PM approximation

Ĩ = −2πJ + 2πGm1m2
2σ̃2 − 1√
1− σ̃2

+ π
G2m2

1m
2
2

J
(m1 +m2)

3(5σ̃2 − 1)

2E
+O

(
3PM

)
. (6.156)

By using the result above in the boundary-to-bound dictionary [291, 292], one can derive the
periastron advance K = ∆Θ

2π and the period Tb of the bound motion

∆Θ = −∂J Ĩ , Tb = ∂E Ĩ =
∂σ̃ Ĩ

∂σ̃
√
m2

1 + 2m1m2σ̃ +m2
2

. (6.157)

It is straightforward to check that, using (6.156) in (6.157) and rewriting the result in terms of
the variables (6.153), one obtains Eq. (347b) of [30] (at order 1/jB, but at all orders in εB) for
the periastron advance K and Eq. (347a) of the same reference (at order 1/

√
jB, but at all orders
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in εB) for the angular frequency n = 2π/Tb:
45

n =
ε
3/2
B c3

G(m1 +m2)

{
1 +

εB
8
(−15 + ν) +

ε2B
128

[
555 + 30ν + 11ν2 +

192

j
1/2
B

(−5 + 2ν)

]

+
ε3B
3072

[
−29385− 4995ν − 315ν2 + 135ν3 +

5760

j
1/2
B

(
17− 9ν + 2ν2

)

+
16

j
3/2
B

(
−10080 +

(
13952− 123π2

)
ν − 1440ν2

)
]
+O

(
1

c8

)}
,

K = 1 +
3εB
jB

+
ε2B
4

[
3

jB
(−5 + 2ν) +

15

j2B
(7 − 2ν)

]

+
ε3B
128

[
24

jB

(
5− 5ν + 4ν2

)
+

1

j2B

(
−10080 +

(
13952− 123π2

)
ν − 1440ν2

)

+
5

j3B

(
7392 +

(
−8000 + 123π2

)
ν + 336ν2

)]
+O

(
1

c8

)
.

(6.158)

7. The eikonal operator in the soft limit

The 3PM eikonal for the elastic 2→ 2 scattering presents a few interrelated puzzling features.
The most evident one is perhaps the appearance of an infrared-divergent (positive) imaginary
part e2iδ = e− Im 2δeiRe 2δ indicating that the probability for this process to take place is in fact
infinitely suppressed in the limit D → 4. The appearance of an imaginary part also makes
the eikonal manifestly non-unitary and this suggests a way out. It indicates that we neglected
channels that are actually important also in the classical limit. Indeed, by considering a strictly
2 → 2 process, we neglected the fact that the two-body system emits radiation. The aim of this
section is to take the first step in order to ameliorate this treatment by including the presence of
soft radiation in the final state. To this end, we will promote the eikonal phase to a Hermitian
operator [112] depending on the graviton creation/annihilation operators and on the Weinberg soft
factor [304, 1], taking inspiration from earlier approaches based on the Block-Nordsieck method
and more recently on dressed states [143, 305, 306].

As we will see, this will highlight how soft gravitons are responsible for the infrared divergent
imaginary part of 2δ. Moreover, another shortcoming of the elastic eikonal framework is that, by
its very nature, it does not provide formulas to calculate observables associated to the gravitational
field. Introducing soft radiation as well, via the soft eikonal operator, we will also gain access to
the properties of gravitational waves at low frequencies: the Zero-Frequency Limit (ZFL) of the
energy emission spectrum and the memory effect. In fact, thanks to the exact, nonperturbative
nature of the soft theorem, the resulting formulas will even allow us to take a peek beyond the
conventional PM approximation considered so far. As we shall discuss, this will be crucial in
resolving yet another apparent puzzle concerning the high-energy limit. In the näıve large-σ limit
the 3PM expression for the ZFL of the spectrum seems ill-behaved. However, this is not the signal
of an actual pathological behavior, bur rather of the breakdown of the PM approximation. The
exact expression derived thanks to the soft theorem instead provides the correct answer, even in
the true ultrarelativistic limit, allowing us to make contact with the massless setup.

A subtle point is related to the effects of static gravitational fields, whose Fourier transform is
localized exactly at zero frequency. Clearly these fields do not carry energy-momentum, so their
inclusion is not relevant for evaluating the corresponding spectra. Instead, they can in general
carry angular momentum and are therefore important for the angular momentum balance of the

45Let us recall that εB ∼ 1
c2

and jB ∼ c0 as in (344) of [30].
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particles+field system. As shown in [289], and as we will obtain below, their contribution to the
angular momentum of the full gravitational field is in fact the leading one in the PM expansion and
starts at O(G2). In order to accommodate for such effects, we will consider a different dressing of
the elastic process, which essentially encodes static gravitational modes via the −i0 prescription.

Being based on the leading graviton theorem, the formulas presented in this section hold for
generic deflections and are independent of the PM expansion. Moreover they apply not only to
the two-body scattering of spinless, point-like objects, but also to collisions involving spinning or
tidally-deformable bodies as well as to multi-body scatterings. This is due to the universality of
the soft factor, whose expression only depends on the momenta of the hard particles. Of course,
spin and tidal effects for instance do enter the explicit expression of the results, but only insofar
as they influence the relation between final and initial momenta, i.e. the impulses.

In the present section, since we are restricting to leading order in the soft approximation, it
is sufficient to work by using the momenta of energetic external particles in the elastic process
as given, as in [304, 1] and more recently in [307–309, 143, 310]. Taking into account radiation
back-reaction on the trajectories of the massive objects will be instead crucial when considering
the full gravitational-wave spectrum in the ensuing section.

7.1. Soft eikonal operator without static modes

We can include soft radiation by following the method of Bloch-Nordsieck [311, 312] and

Weinberg [304, 1] (see also [305, 306, 313]). Let us consider the S-matrix element S
(M)
s.r.,N for the

emission of N soft gravitons on top of a background hard process involving particles with momenta
pn, where n runs over the hard states. The subscript “s.r.” emphasizes that we are restricting
our attention to soft radiation. The total S-matrix element factorizes as the matrix element
S(M) (the superscript (M) stands for “momentum space”) for the hard process times N universal
factors fj(k) expressed in terms of the polarization j of the graviton and of its momentum k,
[311, 312, 304, 1]

S
(M)
s.r.,N =

N∏

r=1

wjr (kr)S
(M) , wj(k) = ε∗µνj (k)wµν (k) , wµν(k) =

∑

n

κ pµnp
ν
n

pn · k
, (7.1)

where κ =
√
8πG. Of course an analogous formula holds for soft absorption processes, with wj(k)

replaced by −w∗
j (k). We keep graviton momenta always future-directed. For simplicity, we omit

the pn from the arguments of wj(k). As emphasized by Weinberg (see e.g. [314]), the formula
(7.1) applies to the case in which the “bare” amplitude S(M) is connected, hence in our case to
the iT part of S = 1+ iT . Extending (7.1) to the disconnected part of the S-matrix will be crucial
for the inclusion of static effects and for the calculation of the angular momentum loss given in
the next section.

We introduce creation/annihilation operators for the gravitons, obeying canonical commuta-
tion relations

2πθ(k0)δ(k2)[ai (k), a
†
j(k

′)] = (2π)Dδ(D)(k − k′) δij , (7.2)

with i, j labeling physical polarizations, and we define

∫ ∗

k

=

∫
dDk

(2π)D
2πθ(k0)δ(k2)θ(ω∗ − k0) . (7.3)

Following Weinberg [1], we have introduced a frequency scale ω∗ below which the approximation
(7.1) is valid, and in practice this can be taken ω∗ ∼ v/b for eikonal scattering. On the other hand
we do not need an infrared frequency cutoff thanks to dimensional regularization. We can then
capture the factorization (7.1) for soft emissions by defining an exponential operator depending
on the oscillators, (the sum over repeated polarization indices is left implicit)

e2iδ̂s.r. = e
∫ ∗
k [wj (k) a

†
j(k)−w∗

j (k) aj (k)], (7.4)
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and dressing the matrix element for the underlying process according to (here |0〉 denotes the
oscillators’ vacuum)

S(M)
s.r. = e2iδ̂s.r.

S(M)

〈0|e2iδ̂s.r. |0〉
. (7.5)

Then, the matrix elements (7.1) are recovered using the commutation relations (7.2) in

S
(M)
s.r.,N = 〈0|aj1(k1) · · · ajN (kN )S(M)

s.r. |0〉 , (7.6)

and similarly, for absorption processes 〈0|S(M)
s.r. a

†
j1
· · ·a†jN |0〉.

Let us now focus on the case in which the background process is the elastic 2 → 2 scattering
which has been the main object of study in the previous sections of this Report. We consider the
Fourier transform to b-space of the two factors in (7.5) separately. By construction the second
factor, which describes the elastic process, gives the eikonal. However, thanks to the division by

〈0|e2iδ̂s.r. |0〉 in (7.5), one needs only the real part of 2δ, as the infrared divergent contribution to the
imaginary part is automatically encoded in the new operator part, as we shall see momentarily.46

The first factor in (7.5) is instead regular as Q → 0, so we can write it as a differential operator
acting on a delta-function δD−2(b) trading each Q with a derivative

Qµ → −i ∂
∂bµ

(7.7)

in the Fourier transform. Of course the product of these two factors in (7.5) becomes a convolution
in b space. However, since one factor is just a delta function, the integral of the convolution can
be performed straightforwardly, and one obtains

Ss.r. = e
∫ ∗
k [wj (k) a

†
j(k)−w∗

j (k) aj (k)] [1 + 2i∆(b)] eiRe 2δ(b) , (7.8)

where the external momenta pn in the first line contain derivatives acting on the b-dependent
functions in the second line.

Let us make a few general comments before using (7.8) in some concrete calculations. First,
the classical S-matrix obtained by neglecting the quantum remainder ∆ is explicitly unitary since
only the real part of 2δ enters this equation and the inelastic prefactor is the exponential of an
anti-Hermitian operator. Second, we obtain the dominant contribution in the classical limit when
the derivatives hidden in the external momenta pn due to (7.7) act on the rapidly oscillating
eikonal phase, so that effectively

Qµ → ∂ Re2δ(b)

∂bµ
. (7.9)

Since the soft factor wj(k) becomes proportional to Q in the small-Q limit (see for instance Eq.
(2.11) of [106]), we see explicitly how the disconnected term of the elastic S-matrix element drops
out under the action of the derivative (7.9) in (7.8). Lastly, let us discuss how the factors involving
graviton oscillators in (7.8) can be regarded as soft dressing of initial and final states. To this end,
it is sufficient to define

w
out/in
j (k) = ε∗jµν(k)

∑

n∈out/in

ηn
κ pµnp

ν
n

pn · k
(7.10)

with ηn = +1 (ηn = −1) if n is a final (initial) state of the background process, and to introduce
the dressed states

|out/in〉 = e
∫ ∗
k

(
w

out/in
j (k)a†

j(k)−w
out/in∗
j (k)aj(k)

)

|Ψout/in〉 , (7.11)

46In this section, we focus on the infrared divergent contribution to this imaginary part. The finite contributions
also involve non-soft modes and can be reproduced via a similar mechanism which will be discussed in Section 8.
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where |Ψout/in〉 only involve massive (hard) states. In this way, if |Ψout〉 = eiRe 2δ(b)|Ψin〉, then we
can rewrite this relation in terms of dressed states as follows,

|out〉 = e
∫ ∗
k (w

out
j (k)a†

j(k)−wout∗
j (k)aj(k))e

∫ ∗
k (−win

j (k)a†
j(k)+win∗

j (k)aj(k))eiRe 2δ(b)|in〉
= e

∫ ∗
k ((w

out
j (k)−win

j (k))a†
j(k)−(wout

j (k)−win
j (k))∗aj(k))eiRe 2δ(b)|in〉 , (7.12)

since one can check that the two dressings for initial and final states commute as operators, owing

to the reality of the combinations w
out/in
j (k) themselves, and one obtains a total dressed state

with wj(k) = wout
j (k)− win

j (k). Therefore, |out〉 = Ss.r.|in〉 with Ss.r. precisely taking the overall
dressing factor into account.

We can now apply the eikonal operator to discuss the contribution of low-energy gravitons to
observables, including the waveforms, memory, and the particle-energy emission spectrum. The
general procedure, given any quantum observable O, is to take its expectation value according to

〈O〉 = 〈Ψin|S†
s.r.O Ss.r.|Ψin〉 . (7.13)

Physically, this means to evaluate the mean value of O in the final state of the scattering event,
obtained by the action of Ss.r.. Thus we follow the same strategy as in the KMOC approach [116],
but here we take the classical limit as a first step approximating the full S-matrix with the eikonal
(operator) . Let us start from the classical field, which is obtained by inserting in the expectation
value (7.13) the free gravitational field [119]

Hµν(x) =

∫

k

[
εjµν(k)aj(k) e

ik·x + ε∗jµν (k)a
†
j(k) e

−ik·x
]
. (7.14)

This yields

hµν(x) = 〈Hµν(x)〉 =
∫ ∗

k

[
wµν

TT(k) e
ikx + w∗µν

TT (k) e−ikx
]
, (7.15)

where

wµν
TT(k) = Πµν

ρσ(k)w
ρσ(k) , wµν (k) =

∑

n

κ pµnp
ν
n

pn · k
, (7.16)

and Πµν
ρσ(k) is the standard transverse-traceless projector over physical degrees of freedom (5.45).

Of course the prediction (7.15) is only accurate for a detector placed at a large distance r from
the sources. Taking this limit (see Appendix F) at a fixed retarded time u, so that r ≫ |u|, b,
and moving along the null vector nµ, which characterizes the angular direction, (7.15) yields47

hµν(x) ∼ 1

4πr

∫ +∞

−∞

dω

2iπ
wµν

TT(ω n) e
−iωu , (7.17)

where we used that wµν(k) = −w∗
µν(−k). Adjusting the normalization by comparing

gµν = ηµν + 2Wµν = ηµν + 2κhµν , (7.18)

we define the waveform according to
Wµν = κhµν . (7.19)

Performing the Fourier transform in (7.17) requires in principle to specify how the 1/ω singularity
at ω = 0 is circumvented (see (7.65) below) [307–310, 144]. However, as stressed in [315, 316], the
key point is that the behavior of the waveform at large |u| is completely determined by this pole at
ω = 0, and possible ambiguities are in fact u-independent. Considering the invariant combination

∆Wµν (n) =Wµν(u > 0, n)−Wµν (u < 0, n) , (7.20)

47We can send ω∗ → ∞ as long as we focus on the value of the resulting integral for large |u| & b.
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and recalling that Πµν
ρσ(ωn) = Πµν

ρσ(n), we thus obtain the memory effect [317]

∆Wµν(n) =
2G

r
Πµν

ρσ(n)
∑

a

pρap
σ
a

(−pa · n)
, (7.21)

i.e. the leading result of [307–310] or the term indicated as Aµν in [310]. However, this approach
does not capture non-linear memory effects [318–320, 289].

Let us instead consider the projection of Ss.r.|Ψin〉 back onto the initial state |Ψin〉 with no
gravitons. Then one needs to normal order the inelastic exponential through the usual Baker–
Campbell-Hausdorff formula eA+B = eAeBe−

1
2 [A,B], so the amplitude for the elastic process is

given by

〈Ψin|Ss.r.|Ψin〉 = exp

[
−1

2

∫ ∗

k

w∗
µν(k)Π

µν,ρσ(k)wρσ(k)

]
eiRe 2δ(b) , (7.22)

where focused on the classical contribution (ignoring ∆). The transversality condition kµwµν = 0,
which holds for gravity by momentum conservation, grants

w∗
µν(k)Π

µν,ρσ(k)wρσ(k) = w∗
µν(k)

(
ηµρηνσ − 1

D−2 η
µνηρσ

)
wρσ(k) ≡ w∗(k)w(k) , (7.23)

where we introduced a useful condensed notation according to which explicit index contractions
are suppressed, as in (5.44). We will use this repeatedly in the following. Recasting (7.22) as

〈Ψin|Ss.r.|Ψin〉 = ei[Re 2δ(b)+ i
2

∫ ∗
k
w∗(k)w(k)] (7.24)

we see that the damping factor that emerged from the reordering of the exponential factors can
be interpreted as an imaginary contribution to the classical eikonal: the infrared-divergent one as
ǫ = (4−D)/2→ 0,

Im 2δ(b) =
1

2

∫ ∗

k

w∗(k)w(k) +O(ǫ0) = 1

2

∫

k

θ(ω∗ − k0)w∗(k)w(k) +O(ǫ0) . (7.25)

Note that this integral is scale-invariant in the limit ǫ→ 0, which means that its 1/ǫ term is in fact
independent of the cutoff ω∗. We thus see the origin of the infrared-divergent imaginary part we
had already encountered in the previous section. It emerges because the elastic amplitude neglects
the contributions of soft-graviton emissions [1]. The integral entering (7.25) can be evaluated as
follows to leading order in ǫ, retaining also the logarithmic dependence on the cutoff. Introducing
velocities analogous to (1.7) for each state according to

pµn = ηnmnv
µ
n (7.26)

so that v2n = −1 and vµn is future-directed, we can use the following identity,

∫ ∗

k

mnmm

(pn · k)(pm · k)
=

∫ ∗

k

ηnηm
(vn · k)(vm · k)

=

[
(ω∗)−2ǫ

−2ǫ

]
Fnm

(2π)2
+O(ǫ0) (7.27)

where

Fnm =
ηnηm arccoshσnm√

σ2
nm − 1

, σnm = −vn · vm = −ηnηm
pn · pm
mnmm

. (7.28)

To show (7.27), it is convenient to perform a decomposition of the integrated momentum kµ

analogous to (1.10) for each pair n, m, letting

kµ = ωn v̌
µ
n + ωm v̌µm + kµ⊥ , v̌µn,m =

σnmv
µ
m,n − vµn,m
σ2
nm − 1

. (7.29)
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Taking the Jacobian determinant 1/
√
σ2
nm − 1 into account (see also Appendix A.3) and focusing

on the rest frame of particle n where k0 = ωn, we obtain,

∫ ∗

k

1

(vn · k)(vm · k)
=

1√
σ2
nm − 1

∫ ω∗

0

dωn

ωn

∫
dωm

ωm

∫
d2−2ǫk⊥
(2π)3−2ǫ

δ

(
k2⊥ −

−ω2
n + 2ωnωmσnm − ω2

m

σ2
nm − 1

)
,

(7.30)
where we have used k ·vn,m = −ωn,m. Changing integration variables by letting ωn = ω, ωm = ωx
and kµ⊥ = ωxµ⊥, performing the integral over xµ⊥ and focusing on the leading term as ǫ → 0, we
find
∫ ∗

k

1

(vn · k)(vm · k)
=

1

(2π)2
√
σ2
nm − 1

∫ ω∗

0

dω

ω1+2ǫ

∫
dx

2x
θ
(
−x2 + 2σnmx− 1

)
+O(ǫ0) . (7.31)

Noting that the Heaviside θ function restricts the integration over x to lie between the two (posi-
tive) roots σnm ±

√
σ2
nm − 1 finally leads to

∫ ∗

k

1

(vn · k)(vm · k)
=

[
(ω∗)−2ǫ

−2ǫ

]
arccoshσnm

(2π)2
√
σ2
nm − 1

+O(ǫ0) (7.32)

where we used that arccoshσnm = ± log(σnm ±
√
σ2
nm − 1). This shows (7.27), and using this

equation in (7.25), one finds

Im2δ(b) =

[
(ω∗)−2ǫ

−2ǫ

]
G

π

∑

n,m

mnmm

(
σ2
nm − 1

2

)
Fnm +O(ǫ0) . (7.33)

A similar calculation concerns the insertion of the energy-momentum operator

Pα =

∫ ∗

k

kα a†j(k)aj(k) , P α = 〈Pα〉 (7.34)

as in Eq. (7.13), which leads to

P α =

∫ ∗

k

kαw∗(k)w(k) , (7.35)

thanks to (7.23). Since we employ the leading soft approximation, we can only resolve the ZFL
of the energy emission spectrum,

lim
ω→0

dE

dω
≡ ∂P 0

∂ω∗ , (7.36)

or, using (7.35),

lim
ω→0

dE

dω
=

∫

k

δ(ω∗ − k0)k0w∗(k)w(k) = ω∗
∫

k

δ(ω∗ − k0)w∗(k)w(k) (7.37)

(with
∫
k
as in (5.37)). Comparing with (7.25), we then see that

lim
ω→0

dE

dω
= lim

ǫ→0
2ω∗ ∂

∂ω∗ Im 2δ(b) +O(ǫ0) . (7.38)

Using (7.38) and the explicit result (7.33), we see that this derivative cancels the divergence and
extracts the coefficient of logω∗ in the ǫ→ 0 expansion, leading to

lim
ω→0

dE

dω
= lim

ǫ→0
[−4ǫ Im2δ(b)] (7.39)

or, more explicitly,

lim
ω→0

dE

dω
=

2G

π

∑

n,m

mnmm

(
σ2
nm − 1

2

)
Fnm . (7.40)
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As already mentioned, the scope of validity of the formulas (7.33), (7.40) is rather wide, since they
retain an exact dependence on the background hard kinematics, they generalize straightforwardly
to scatterings involving an arbitrary number of initial and finial states, and are also valid if the
colliding objects have spin or an internal structure, e.g. if they are subject to tidal deformations.
This highlights a general mechanism: the infrared divergences of the elastic amplitude determine
the ZFL of the energy emission spectrum via massless quanta [1, 106].

Focusing on the 2 → 2 case, in order to obtain a more explicit formula it is sufficient to use
σnn = 1 and Fnn = 1, while for n 6= m we have σnm = σmn and

σ12 = σ34 = σ , σ13 = σ24 = σQ , σ14 = 1 +
Q2

2m2
1

, σ23 = 1 +
Q2

2m2
2

, (7.41)

where we introduced the shorthand notation

σQ = σ − Q2

2m1m2
= −u−m

2
1 −m2

2

2m1m2
. (7.42)

Then, Eq. (7.40) becomes

lim
ω→0

dE

dω
=

4G

π

{
2m1m2

(
σ2 − 1

2

) arccoshσ√
σ2 − 1

− 2m1m2

(
σ2
Q − 1

2

) arccoshσQ√
σ2
Q − 1

+
∑

i=1,2

[
m2

i

2
−m2

j

((
1 + Q2

2m2
i

)2
− 1

2

)arccosh
(
1 + Q2

2m2
i

)

√(
1 + Q2

2m2
i

)2
− 1

]}
, (7.43)

where, as discussed, the transferred momentum Q should be interpreted by using (7.9), which

corresponds to the substitution Qµ → −b̂µ2p sin Θ
2 . As already emphasized, while later on we will

focus on certain interesting kinematic limits, the dependence of this formula on the dynamics of
the background elastic process, and in particular on Q/mi, is exact.

7.2. Eikonal operator including static modes

Let us now turn to the contribution of low-frequency gravitons to the waveform in position
space, in particular its value at early retarded times, and to the angular momentum [289, 321].
As we shall discuss, both quantities are sensitive to static-field effects, and therefore to how one
approach the ∼ 1/ω singularity at ω = 0 in the radiation spectrum.

As we emphasized, the soft eikonal operator (7.8) is based on the standard Weinberg soft
theorem, which includes soft gravitons with low but nonzero frequency. As such, it does not
include effects that arise due to exactly static fields, whose Fourier transform is localized at zero
frequency. To include them it is sufficient to replace the standard soft factor wj(k) in (7.8) by48

fj(k) = εjµν (k)
∗Fµν(k) , Fµν(k) =

∑

n

√
8πGpµnp

ν
n

pn · k − i0
. (7.44)

and to consider the following operator (neglecting the quantum remainder for brevity)

Ss.r. = e
∫ ∗
k [fj (k) a

†
j(k)−f∗

j (k) aj (k)]e2iδ̃(b) , (7.45)

where the definition of 2δ̃ will be specified momentarily. By including the −i0 prescription in
(7.44) even for real emissions of gravitons, we are now dressing the full S-matrix, including the

48Let us note that the symmetric Lorentz tensor Fµν in (7.44) should not be confused with the symmetric
coefficients Fmn introduced in (7.28) earlier on.

136



identity term, and thus include possible “emissions” localized at ω = 0 from disconnected pieces of
the hard matrix element. This construction is not a standard application of Weinberg’s theorem,
which only holds for connected amplitudes [314, 322], and in this way it also captures static effects.
In fact, the same static term in the asymptotic field also follows from the worldline approach in
which one solves for the particle trajectories and the field using retarded propagators [129, 134].

To see how this modification reflects the definition of dressed states, compared to the one
discussed in the previous subsection, let us now consider

f
out/in
j (k) = ε∗jµν(k)

∑

n∈out/in

ηn

√
8πGpµnp

ν
n

pn · k − i0
(7.46)

and

|OUT/IN〉 = e
∫ ∗
k

(
f
out/in
j (k)a†

j(k)−f
out/in∗
j (k)aj(k)

)

|Ψout/in〉 (7.47)

(the notation |OUT/IN〉 is meant to distinguish these states from |out/in〉 in (7.10)). In this way,
if we start again from |Ψout〉 = eiRe 2δ(b)|Ψin〉 and we rewrite it in terms of dressed states, we get

|OUT〉 = e
∫ ∗
k (f

out
j (k)a†

j(k)−fout∗
j (k)aj(k))e−

∫ ∗
k (f

in
j (k)a†

j (k)−f in∗
j (k)aj(k))eiRe 2δ(b)|IN〉 . (7.48)

In this new setup, the two dressings for initial and final states no longer commute, and using the
Baker–Campbell–Hausdorff formula eAeB = eA+Be+

1
2 [A,B] one obtains

|OUT〉 = e
∫ ∗
k (fj(k)a

†
j(k)−f∗

j (k)aj(k))e
1
2

∫ ∗
k (f

out∗
j (k)f in

j (k)−fout
j (k)f in∗

j (k))+iRe 2δ(b)|IN〉 , (7.49)

where
fj(k) = fout

j (k)− f in
j (k) (7.50)

and therefore, comparing with (7.45), we see that |OUT〉 = Ss.r|IN〉 provided the phase takes the
value

2iδ̃(b) = iRe2δ(b)− 2iδdr.(b) , 2iδdr.(b) = −1

2

∫ ∗

k

(
fout∗
j (k)f in

j (k)− fout
j (k)f in∗

j (k)
)
. (7.51)

The last equation, whose right-hand side is manifestly imaginary, identifies a contribution to the
phase due to the dressing (hence the superscript “dr.”). The integral that we need to calculate in
order to determine the resulting phase correction reads

2iδdr.(b) =
1

2

∑

n∈out
m∈in

∫ ∗

k

[
8πGm2

nm
2
m(σ2

nm − 1
2 )

(pn · k + i0)(pm · k − i0)
− 8πGm2

nm
2
m(σ2

nm − 1
2 )

(pn · k − i0)(pm · k + i0)

]
. (7.52)

Sending kµ → −kµ in the second term, we see that this expression recombines as follows,

2iδdr.(b) =
1

2

∑

n∈out
m∈in

8πGmnmm(σ2
nm − 1

2 )Inm (7.53)

where, introducing the velocities vµn according to (7.26)

Inm =

∫
d4−2ǫk

(2π)4−2ǫ

2πsgn(k0)δ(k2)θ(ω∗ − |k0|)
(ηnvn · k + i0)(ηmvm · k − i0)

. (7.54)

Here sgn(k0) = θ(k0)−θ(−k0) takes the value +1 (resp. −1) if k0 > 0 (k0 < 0). The integrals Inm
can be evaluated in a manner similar to (7.27), as we turn to illustrate. Sending ǫ = 4−D

2 → 0,
which as we shall see leads to a finite leading-order contribution, and focusing on the rest frame
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of particle n where k0 = ωn = −vn · k, we can decompose the integrated momentum according to
(7.29) to arrive at

Inm=
1√

σ2
nm − 1

∫ +ω∗

−ω∗

sgn(ωn) dωn

(−ηnωn + i0)

∫
dωmdk

2
⊥

(−ηmωm − i0)2(2π)2
δ

(
k2⊥ −

−ω2
n + 2ωnωmσnm − ω2

m

σ2
nm − 1

)

(7.55)
after taking the Jacobian determinant 1/

√
σ2
nm − 1 into account. Changing integration variables

by letting ωn = ω, ωm = ωx and k2⊥ = ω2x2⊥, so that

sgn(ωn) dωn dωm dk2⊥ = ω3 dω dx dx2⊥ , (7.56)

and performing the integral over x2⊥ by means of the delta function,

Inm =
1

(2π)2
√
σ2
nm − 1

∫ +ω∗

−ω∗

dω

(−ηnω + i0)

∫
ω dx

2(−ηmωx− i0)
θ
(
−x2 + 2σnmx− 1

)
. (7.57)

The Heaviside θ function restricts the integration over x to lie between the two positive roots
σnm ±

√
σ2
nm − 1, so that the integrals over ω and x factorize, leading to

Inm =
arccoshσnm

(2π)2
√
σ2
nm − 1

∫ ω∗

−ω∗

ω dω

(−ηnω + i0)(−ηmω − i0)
. (7.58)

The new ingredient that we need to evaluate is thus the integral over “positive and negative
frequencies” ∫ +ω∗

−ω∗

ω dω

(−ηnω + i0)(−ηmω − i0)
= − iπ

2
(ηn − ηm) . (7.59)

To see this, let us make the i0 prescription more manifest by introducing a small λ > 0. Clearly

the integral vanishes if ηn = ηm because
∫ ω∗

−ω∗ ωdω/(ω
2 + λ2) is zero by parity. If ηn = −ηm, the

integral reduces instead to

−
∫ +ω∗

−ω∗

ω dω

(ω − iληn)2
= −

[
log(ω − iληn)−

iληn
ω − iληn

]+ω∗

−ω∗

= −iπηn +
2iηnλω

∗

(ω∗) + λ2
−−−−→
λ→0+

−iπηn ,
(7.60)

which shows (7.59), and this leads to the final expression for Inm,

Inm = − iπ
2
(ηn − ηm)

arccoshσnm

(2π)2
√
σ2
nm − 1

. (7.61)

Note that the result no longer depends on the cutoff ω∗, so we may now send it to zero. What
we obtain is thus a contribution localized at the zero-frequency end of the spectrum, i.e. an effect
intrinsically due to field configurations that are static in time domain. Substituting (7.61) into
(7.53), we obtain

2iδdr.(b) = −iG
∑

n∈out
m∈in

mnmm(σ2
nm − 1

2 )
arccoshσnm√

σ2
nm − 1

(7.62)

so that, using (7.41) and expanding for small deflections Q = Q1PM +O(G2),

2iδdr.(b) =
iGQ2

1PM

2

[
8− 5σ2

3(σ2 − 1)
+
σ(2σ2 − 3) arccoshσ

(σ2 − 1)
3
2

]
+O(G4) = iRe2δRR

2 (b) +O(G4) ,

(7.63)
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where we have recognized the 3PM radiation-reaction phase Re 2δRR
2 (b). We also neglected a b-

independent O(G) contribution, which would be tantamount to a finite shift of the (IR-divergent)
Shapiro time delay. In this way, recalling that 2iδdr.(b) defines the subtraction defining 2iδ̃(b) in
(7.51), we see that the inclusion of static modes in the dressing leads to an eikonal operator in
which the overall phase 2iδ̃(b) is the conservative eikonal phase up to 3PM, i.e. it does not include
radiation-reaction effects. We shall see in later sections that the information about these effects
is not lost, but is actually encoded in the “soft factor” fj(k) rather than in the explicit phase.

Let us now turn to the prediction of this eikonal operator for two observables: the memory
waveform and the angular momentum of the field. Proceeding like for (7.17), but taking the
expectation on the Ss.r.|Ψin〉 state including static effects, we find the following asymptotic limit
for the gravitational field considering a large distance r at fixed retarded time u and angles given
by nµ (see also Appendix F)

hµν ∼ 1

4πr

∫ +∞

−∞

dω

2iπ
fµν
TT(ω n) e

−iωu , fµν
TT(k) = Πµν

ρσ(k)
∑

n

κ pρnp
σ
n

pn · k − i0
, (7.64)

and performing the integral over ω by means of the Fourier representation of the Heaviside θ
function, ∫ +∞

−∞

dω

i2π

e−iωu

−ηnω − i0
=

∫ +∞

−∞

dω

i2π

eiωηnu

ω − i0 = θ(ηnu) , (7.65)

this leads to

Wµν = κhµν ∼ 2G

r
Πµν

ρσ(n)
∑

a

pρap
σ
a θ(ηau)

(−ηapa · n)
. (7.66)

Note that for u > 0 (u < 0) only the out (in) contributions ηn > 0 (ηn < 0) survive, so that the
difference ∆Wµν yields the memory effect (7.21). Expanding (7.66) to leading order in the PM
regime, where the out states are equal to the in states up to O(G) deflections, one instead finds

Wµν ∼ 2G

r
Πµν

ρσ(n)
∑

a∈in

pρap
σ
a

pa · n
+O(G2) , (7.67)

i.e. the waveform has a u-independent O(G) contribution. This is the leading-order static field,
whose inclusion was possible precisely thanks to the −i0 prescription in (7.44). Before moving on
to computing different contributions to the angular momentum of the process let us make a few
remarks on the traditional GR perspective on this issue.

The issue of angular momentum and of its loss in GR is a subtle one and has a long history
(see e.g. [323]). The approach based on the use of Bondi–Sachs coordinates [324], [325], which
is very convenient for describing the energy loss by the system via gravitational-wave emission,
cannot be trivially extended to angular momentum. The problem is that the definition of Bondi’s
angular momentum, JB, suffers from a gauge ambiguity related to the possibility of performing
supertranslations, a subgroup of the BMS transformations [326, 327] that preserves the Bondi–
Sachs coordinate conditions.

As an example, the O(G) static term in (7.67) can always be removed completely by performing
a BMS supertranslation,

2κδThAB = 2κT (n) ∂uhAB − r(2DADB − γABD
CDC)T (n) , (7.68)

where A,B,C, . . . label angular directions and γAB = (∂An) · (∂Bn) is the metric on the sphere
with covariant derivative DA, by choosing [321]

T (n) = 2G
∑

a∈in

(pa · n) log(pa · n/ma) . (7.69)
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This raises the issue of whether such a static contribution has a physical meaning. In [321] it
was argued that the true radiated angular momentum is the one computed by using a particular
BMS gauge, called the canonical gauge in the GR literature, which amounts to setting the initial
shear of the Bondi–Sachs metric to zero. In the post-Minkowskian expansion this contribution
starts at O(G3) and is insensitive to exactly zero frequency gravitons. It was also proposed that
the additional static contribution to angular-momentum loss corresponds to choosing a different
Bondi gauge, dubbed “intrinsic”.

The issue has been further addressed in [328], [329] and, more recently, in [330] and [331].
The outcome of these investigations is that both the radiative and the static contributions to the
angular momentum loss by the two-body system can be defined in a BMS-invariant way. The
former contribution is indeed the one computed in the canonical gauge, while the latter can also
be given in gauge invariant form. In the approach of [321], [329] it corresponds to a different gauge
fixing of JB, while in [328], [330] and [331] the mechanical angular momentum loss is identified with
the difference between the final and initial Bondi angular momentum computed in two different
Bondi gauges. In formulae:

∆Jmech = J
(+)
B (u→ +∞)− J (−)

B (u→ −∞) , (7.70)

where the upper label (−) refer to the usual canonical gauge choice at u → −∞, while the label
(+) is defined by setting the final shear to zero (because of the memory effect this actually means
that at u → +∞ we are no longer in the canonical gauge). By adding and subtracting a term

J
(−)
B (u→ +∞) one ends up with:

∆Jmech =
(
J
(−)
B (u→ +∞)− J (−)

B (u→ −∞)
)
+
(
J
(+)
B (u→ +∞)− J (−)

B (u→ +∞)
)

≡ ∆J rad
mech +∆J stat

mech .
(7.71)

Eq. (7.71) makes it clear that the first term is insensitive to a u-independent (i.e. strictly zero-

frequency) contribution to J
(−)
B while the second term, being evaluated after radiation has stopped,

is the difference of two constants and is proportional to the final shear once the initial shear is
set to zero [331]. Such a difference is nothing but the well known memory and corresponds to the
zero-frequency limit of the News tensor’s Fourier transform. In [331] the two prescriptions have
been shown to agree at O(G2).

If the decomposition (7.71) can be confirmed at all orders in G, it would establish a clear and
strict connection between the above BMS-based approach and the amplitude-based one discussed
in this section where we distinguished strictly zero-frequency gravitons from those with any non-
vanishing frequency. In [331] it has been explicitly checked that the definition (7.71) of the static
contribution to the angular momentum loss is in full agreement with the one computed at O(G3)
in [332, 144] and discussed hereafter. Perhaps another interesting remark before turning to the
calculation is that the same technique to compute the static angular momentum loss applies also
in the case of a massless scalar field (see (7.110) below), for which no BMS ambiguities arise.

To discuss the angular momentum of the gravitational field, we take the expectation in the
Ss.r.|Ψin〉 state of the corresponding operator in De Donder gauge, which reads as follows

Jαβ = −i
∫

k

a†µν(k)
(
Dµν,ρσk[α

↔
∂

∂kβ]
+ 2ηµρδν[αδ

σ
β]

)
aρσ(k) , (7.72)

where

Dµν,ρσ =
1

2
(ηµρηνσ + ηµσηνρ − ηµνηρσ) (7.73)

is the tensor structure appearing in the gauge-fixed De Donder action (see Appendix A.2). At this
stage we face the problem of simplifying the intermediate state sum using the physical projector
(5.45). In particular, we would like to see how the dependence on the reference vector λα appearing
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in that projector eventually cancels out. Relying on the transversality property kµF
µν = 0, we

obtain the following result, expressed as a sum of orbital and spin contributions,

Jαβ = Lαβ + Sαβ . (7.74)

Here the orbital angular momentum reads (with the soft Fµν as in (7.44))

iLαβ =

∫ ∗

k


F ∗

µνk[α

↔
∂Fµν

∂kβ]
− F ′∗

D − 2
k[α

↔
∂F ′

∂kβ]
+ 2k[αF

∗
β]µλ · Fµ − 2λ · F ∗

µk[αF
µ
β]


 , (7.75)

with λ · Fα = λβF
αβ , F ′ = ηρσF

ρσ and

f

↔
∂

∂kβ
g ≡ 1

2

(
f
∂g

∂kβ
− ∂f

∂kβ
g

)
, (7.76)

while the spin angular momentum is given by

iSαβ =

∫ ∗

k

(
2F ∗

µ[αF
µ
β] + 2k[βF

∗
α]µλ · Fµ + 2λ · F ∗

µk[αF
µ
β]

)
. (7.77)

Therefore, the dependence on the reference vector λα drops out in the sum and we obtain the
simple expression [332, 144]

Jαβ = −i
∫ ∗

k

F ∗
µν



(
ηµρηνσ − 1

D−2 η
µνηρσ

)
k[α

↔
∂

∂kβ]
+ 2ηµρδν[αδ

σ
β]


Fρσ . (7.78)

The two terms within square brackets are reminiscent of the orbital and spin part of the gravita-
tional angular momentum, in particular the factor of 2 is associated to dealing with a spin-2 field.
However, the two terms are not separately gauge invariant, as one can easily check, pointing to
the fact that only their sum can be given a well defined physical meaning. Indeed, in order to
obtain (7.78) where the intermediate transverse-traceless projections have dropped out, one needs
to rely on nontrivial cancellations between the orbital and the spin term (we refer to [144] for
further details on this derivation). The integrals appearing in (7.78) can be reduced to (7.54) by
first combining pieces with “positive and negative frequencies” like we did for (7.51). In this way
we can write (7.78)

J αβ =
iκ2

2

∑

n,m

(
σ2
nm − 1

2

)
m2

nm
2
mK

[αpβ]m − iκ2
∑

n,m

(pnpm)p[αn p
β]
m(pm ·K) (7.79)

in terms of the integral

Kµ =

∫
d4k

(2π)4
sgn(k0)2πδ(k2)kµθ(ω∗ − |k0|)

(pnk + i0)(pmk − i0)2
= Apµn +Bpµm . (7.80)

The integral (pmK) can be expressed in terms of Inm in (7.61)

(pmK) =
Inm

mnmm
=
iπ

2

ηn − ηm
mnmm

ηnηm arccoshσnm

(2π)2
√
σ2
nm − 1

, (7.81)

while (pnK) can be easily computed

(pnK) =

∫
d4k

(2π)4
sgn(k0)2πδ(k2)θ(ω∗ − |k0|)

(pmk − i0)2
= − iπηm

(2π)2m2
m

(7.82)
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from the product of the two integrals
∫ ω∗

−ω∗

ωdω

(−ηmω − i0)2
= −iπηm ,

1

(2π)2

∫ π

0

sin θdθ

(Em − |~pn| cos θ)2
=

1

(2π)2m2
m

. (7.83)

As a result the coefficient A in (7.80) is given by

A =
m2

m(pnK) + (pnpm)pmK

(pnpm)2 −m2
nm

2
m

= − iπ
2

ηm + ηn + (ηn − ηm) (σnm∆nm − 1)

(2π)2m2
nm

2
m(σ2

nm − 1)
(7.84)

with ∆nm as in (7.86) below, B is not needed because it will not contribute when inserted in the
first term of (7.79), by antisymmetry. For the same reason, also the term with ηn + ηm in (7.84)
does not contribute, and we find the following expression for the angular momentum carried by
the static gravitational field in D = 4, after sending ω∗ → 0,

J αβ = −
∑

n∈in

∑

m∈out

cnm p[αn p
β]
m , (7.85)

with

cnm = 2G

[(
σ2
nm −

1

2

)
σnm∆nm − 1

σ2
nm − 1

− 2σnm∆nm

]
, ∆nm =

arccoshσnm√
σ2
nm − 1

. (7.86)

The expression (7.85) is Lorentz covariant, translation invariant and valid for arbitrary kinematics
pn of the background hard process, i.e. it holds regardless whether or not the outgoing momenta
can be regarded as small deflections of the incoming ones. In fact, just like Weinberg’s theorem,
the formula holds independently of the number and of the specific details of the hard particles
taking part in the background hard process, which may also carry spin or be subject to tidal
deformations: one need only assign their momenta. However, of course, it only captures the
contribution to the angular momentum due to static/zero-frequency fields.

For a 2→ 2 process, pµ4 = Qµ − pµ1 , pµ3 = −Qµ − pµ2 up to O(G3) corrections, and thus

J αβ = p
[α
1 Q

β] (c13 − c14)− p[α2 Qβ] (c24 − c23) +O(G4) . (7.87)

where we have used that σ13 = σ24. In the PM expansion, using c14 − c13 = G
2 I(σ) + O(G3),

c23 − c24 = G
2 I(σ) +O(G3) with

1

2
I(σ) = 8− 5σ2

3 (σ2 − 1)
+
σ
(
2σ2 − 3

)
arccoshσ

(σ2 − 1)
3/2

, (7.88)

we find

J αβ = −G
2
(p1 − p2)[αQβ]I(σ) +O(G4) . (7.89)

In particular, substituting (3.16) for the 1PM impulse and using

Qµ = −b
µ

b
Q1PM +O(G3) , (7.90)

we get

J αβ =
G2m1m2(2σ

2 − 1)

b2
√
σ2 − 1

1
2

I(σ)(p1 − p2)[αbβ] +O(G3) , (7.91)

which, in the center-of-mass frame where −p1 = (E1, p) and −p2 = (E2,−p), matches the O(G2)
results in Eq. (4.6) of [289] and in Eq. (12) of [332]. However, as already emphasized, thanks
to the universality of the soft theorem (7.89) is also valid when the particles carry classical spin
[81], provided one substitutes the appropriate 1PM deflection. Taking into account the 2PM
correction to the deflection (4.58) on top of that, eq. (7.89) also correctly accounts for the O(G3)
static angular momentum, as well tidal effects [57]. However, to that order, additional genuinely
radiative terms also appear and we shall see in the next sections how they can be calculated in
the eikonal framework.
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7.3. The ultrarelativistic and massless limits

It is very instructive to inspect the behavior of the spectrum (7.43) in several physically relevant
limits. The standard PM regime requires that Q2 ∼ (pΘ)2 ≪ 2m2

i . In this limit, one can extract
the leading (3PM) contribution by Taylor-expanding the first line of (7.43) in Q2, while the second
only give subleading contributions,

lim
ω→0

dE

dω
≃ 2G

π
Q2

[
8− 5σ2

3(σ2 − 1)
+

(2σ2 − 3)σ arccoshσ

(σ2 − 1)3/2

]
. (7.92)

When rewritten in terms of the divergent part of Im 2δ, using the simple link (7.39), the result
(7.92) then reproduces the divergent part of Im 2δ2 in (5.55) (and agrees with Eq. (5.14) of [106]),
once we use Q ≃ Q1PM (see (3.16) for the explicit expression). Moreover, to the leading 3PM
order, Eq. (7.92) has been explicitly shown to hold also if the colliding objects carry spin, for
generic spin alignments [81]. If we then consider in the formal ultra-relativistic limit σ → ∞,
Eq. (7.43) gives:

lim
ω→0

dE

dω
≃ 4G

π
Q2

(
log

s

m1m2
− 5

6

)
. (7.93)

However, the exact expression (7.43) shows that the PM approximation breaks down, even when
Θ is small, when one of the two particles becomes ultra-relativistic, p ≫ mi. Indeed, while in
this regime the first line in (7.43) can always be expanded to first order in Q2/s, the second one
presents instead a branch point at Q2 = −4m2

i , corresponding to the t-channel thresholds (outside
the physical region). This implies that the PM expansion starts to diverge whenever for at least
one index i, (see Eq. (6.42) and comments below it)

Q

2mi
> 1 . (7.94)

Since Q ≃ pΘ which is of order
√
m1m2σ/2Θ, we thus recover the bound first pointed out by

D’Eath [333] for the validity of the PM approximation,

max

{√
m1

m2
,

√
m2

m1

} √
σΘ

2
√
2

. 1 . (7.95)

In view of this bound one could say that the PM approximation holds for weakly gravitating
systems with “generic” but not entirely arbitrary speeds.

For the ZFL of the emitted energy spectrum, however, the ultrarelativistic regime, or equiva-
lently the massless limit, can be obtained from (7.43) by considering 2p→ √s and m1,m2 ≪ Q =√
s sin Θ

2 . The mass singularities appearing separately in each line of the formula neatly cancel
against each other and then (7.43) reduces to (see e.g. [143] where the result is extended to an
arbitrary number of external massless legs)

lim
ω→0

dE

dω
≃ 4G

π

[
s log

s

s−Q2
+Q2 log

s−Q2

Q2

]
(7.96)

or in terms of the deflection angle

lim
ω→0

dE

dω
≃ −4G

π
s

[
cos2

Θ

2
log cos2

Θ

2
+ sin2

Θ

2
log sin2

Θ

2

]
, (7.97)

which agrees with the leading soft limit of Eq. (5.12) of [310]. If we then consider the small Θ
limit of (7.97), after taking the ultrarelativistic limit, at leading order for Θ≪ 1 we have

lim
ω→0

dE

dω
≃ GsΘ2

π

[
1 + log

4

Θ2

]
, (7.98)
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which reproduces the result obtained in [334] (see also [333]) within a classical GR approach
and in [142] from a scattering amplitudes perspective. As anticipated, the true ultrarelativistic
behavior of the spectrum exhibits a non-analytic dependence on Θ and thus on the Newton
constant G, compatibly with the breakdown of the PM approximation. These features are in
fact shared by the leading-order angular momentum loss. For the component orthogonal to the
scattering plane, one finds in the ultrarelativistic limit

J xy ∼ 2Gs sinΘ log
cos Θ

2

sin Θ
2

, (7.99)

which when further expanded for small Θ yields

J xy ∼ GsΘ log
4

Θ2
, (7.100)

again exhibiting the characteristic non-analyticity in the Newton constant.

7.4. The N = 8 eikonal operator in the soft limit

To include the presence of other massless fields (scalars and vectors), which are needed to
discuss the case of N = 8 supergravity where the massive particles are described by KK modes,
we can use the fact that S-matrix elements for soft emissions factorize in a way analogous to (7.1),
with soft factors that instead of wj(k) are given by

wvec
j (k) =

∑

n

ηnen
ε∗µ,j(k)p

µ
n

pn · k
, wsc

j (k) =
∑

n

gn
pn · k

(7.101)

for vectors and scalars respectively. As above, ηn takes the value +1 for outgoing and −1 for
incoming states, while en and gn denote suitable couplings. These new soft particles are easily
accommodated in the eikonal operator by including in the exponent of (7.8) the relevant operators
ad for the dilaton (with coupling gn = −κm2

n/
√
D − 2) and avi,j for two vectors (en =

√
2κmi)

and asi for two scalars (gn = κm2
i ). The corresponding “memory waveforms” are also obtained

in a very similar way.
In analogy with (7.40), we find the following simple and general expressions for the energy

emission spectra,

lim
ω→0

dEvec

dω
=

1

4π2

∑

n,m

enem(−σnm)Fnm , (7.102)

lim
ω→0

dEsc

dω
=

1

4π2

∑

n,m

gngm
mnmm

Fnm . (7.103)

Combining scalars, vectors and the graviton, we obtain a remarkably simple result for the N = 8
spectrum,

lim
ω→0

dEN=8

dω
=

2G

π

∑

n,m

mnmm(σ′
nm)2Fnm , (7.104)

where σ′
nm = σnm − 1 if n and m have momenta compactified along the same KK direction (so

that mn = mm) and σ′
nm = σnm otherwise. Specializing (7.104) to the 2 → 2 kinematics as in

(7.41), we have

lim
ω→0

dEN=8

dω
=

4G

π

[
2m1m2σ

2 arccoshσ√
σ2 − 1

− 2m1m2σ
2
Q

arccoshσQ√
σ2
Q − 1

(7.105)

− (Q2)2

4m2
1

arccosh
(
1 + Q2

2m2
1

)

√(
1 + Q2

2m2
1

)2
− 1

− (Q2)2

4m2
2

arccosh
(
1 + Q2

2m2
2

)

√(
1 + Q2

2m2
2

)2
− 1

]
.
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The standard relativistic PM regime, where Q2 ≪ 2m2
i in the equation above, has an analytic

PM expansion whose leading term reads

lim
ω→0

dEN=8

dω
≃ 4GQ2

π

[
σ2

σ2 − 1
+

(σ2 − 2)σ arccoshσ

(σ2 − 1)3/2

]
. (7.106)

Approximating Q ≃ pΘ with Θ the leading deflection angle given in (6.44), and exploiting the
link (7.39), this reproduces the divergent part of Im 2δ2 in (5.54).

On the contrary, in the regime (7.94), the small-Θ expansion is non-analytic and interestingly,
in extreme ultrarelativistic kinematics where the masses can be neglected, one obtains again (7.96).
Indeed, the contributions related to the dilaton, and the Kaluza–Klein scalars and vectors become
negligible in this regime, as suggested by the fact that (7.102), (7.103) scale with lower powers of
σnm compared to (7.40), and the graviton provides the dominant behavior. At ultra-high energies,
in this way, only the contribution due to the emission of gravitons survives. This is a universal
expression for two-derivatives theories in accordance with the expectation that gravity dominates
the high-energy limit not just for the elastic scattering, as argued in [104], but also in the (soft)
radiation sector.

The inclusion of static modes for vector and scalar fields proceeds along similar lines as for the
graviton case discussed above by means of the −i0 prescription, i.e. by introducing the modified
soft factors

fvec
j (k) =

∑

n

ηnen
ε∗µ,j(k) p

µ
n

pn · k − i0
, f sc(k) =

∑

n

gn
pn · k − i0

(7.107)

using which one then finds the following vector and scalar waveforms,

〈Aµ(x)〉 ∼
1

4πr
Πµ

ν (x̂)
∑

n

en p
ν
n θ(ηnu)

En − ~kn · x̂
, 〈Φ(x)〉 ∼ 1

4πr

∑

n

gn θ(ηnu)

En − ~kn · x̂
(7.108)

where Πµν is the transverse projector. For the angular momenta one finds

J sc
αβ = − i

2

∫

~k

(
f∗k[α

∂f

∂kβ]
− k[α

∂f∗

∂kβ]
f

)
(7.109)

and

(J sc)µν =
1

16π

∑

n,m

gngm
m2

nm
2
m

σnm∆nm − 1

σ2
nm − 1

(ηn − ηm)p[µn p
ν]
m , (7.110)

for the scalar case, as well as

J vec
αβ = −i

∫

~k

F ∗
µ

(
ηµνk[α

↔
∂

∂kβ]
+ δµ[αδ

ν
β]

)
Fν (7.111)

which evaluates to

(J vec)αβ =
1

16π

∑

n,m

enem
mnmm

[
−σnm

σnm∆nm − 1

σ2
nm − 1

+ ∆nm

]
(ηn − ηm) p[αn p

β]
m (7.112)

for the vector. Combining this with the graviton result discussed above, one arrives at the following
simple formula for the static angular momentum loss in N = 8,

J αβ
N=8 =

G

2

∑

n,m

[
σ′ 2
nm

σnm∆nm − 1

σ2
nm − 1

− 2σ′
nm∆nm

]
(ηn − ηm)p[αn p

β]
m , (7.113)

where σ′
nm = σnm − 1 if n and m corresponds to states compactified along the same direction, so

that mn = mm, while it equals σ′
nm = σnm otherwise.
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8. The eikonal operator beyond the soft limit

In this section, we discuss a framework that allows us to combine the dynamical information
about graviton exchanges that is contained in the elastic eikonal, which, as we have seen, deter-
mines the deflection of the colliding black holes, with the information about graviton emissions that
is contained in the inelastic amplitudes. Building on the idea of introducing creation/annihilation
operators for gravitons already introduced in the previous section, we construct here an eikonal
operator that dictates the final state of the collision out of two ingredients: the eikonal phase
and coherent graviton emissions with generic, i.e. not necessarily soft, frequencies. As we shall
see, this provides a comprehensive strategy to calculate observable quantities associated to the
scattering up to O(G3): the waveforms themselves, the emitted linear and angular momentum,
and the changes in the linear and angular momentum of the colliding objects. In particular, this
will allow us to explicitly check the corresponding balance laws.

8.1. The elastic eikonal revisited

So far the external states involved in the scattering have been described simply in terms of
momentum eigenstates. Following [116], we now introduce wavepackets Φi to describe classical
particles, so the initial state for the 2→ 2 scattering reads

|ψ〉 =
∫

−p1

∫

−p2

Φ(−p1)Φ(−p2)eip1b1+ip2b2 | − p1,−p2〉 . (8.1)

The wavepackets are peaked around the classical value (that with an abuse of notation we will
still indicate with −pi) and we use the following notation for the on-shell integrals

∫

pi

=

∫
dDpi
(2π)D

2πθ(p0i )δ(p
2
i +m2

i ) . (8.2)

By following [120], we can formally write the final state Sc|ψ〉 = (1 + iT )|ψ〉 in the elastic case
(the subscript c stands for “conservative”) as

Sc|ψ〉 =
∫

−p1

∫

−p2

∫

p3

∫

p4

Φ(−p1)Φ(−p2)eip1b1+ip2b2 |p3, p4〉〈p3, p4|S| − p1,−p2〉 . (8.3)

Of course we are interested only in the classical contribution to the S-matrix element which, as
discussed in the previous sections, is more easily captured in an impact parameter representation,
see (4.1). Thus we write the momentum-space S-matrix element

〈p3, p4|iT |−p1,−p2〉 = (2π)D
∫
dDQδ(D)(p1+p4−Q)δ(D)(p2+p3+Q) iA(−(p1+p2)2, Q2) (8.4)

as the inverse Fourier transform of the eikonal result

2πδ(2p̄2Q) 2πδ(2p̄1Q) iA(−(p1 + p2)
2, Q2) =

∫
dDx

[
(1 + 2i∆(b))

(
e2iδ(b) − 1

)]
e−ixQ . (8.5)

In this subsection, for ease of notation, we simply drop the imaginary part of 2δ. Let us discuss
the quantities b and p̄i in this relation. The momenta are simply defined as in (1.28), with qµ

replaced by Qµ,

p1 = −p̄1 +
Q

2
, p2 = −p̄2 −

Q

2
, p4 = p̄1 +

Q

2
, p3 = p̄2 −

Q

2
, (8.6)

so the delta functions on the l.h.s. of (8.5) follow from the fact that the pi are on-shell. Then in
order to produce these delta functions from the r.h.s., the eikonal in the square parenthesis should
not depend on the components of x along p̄i, thus we introduced b to indicate the components of x
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orthogonal to p̄i recovering the property bp̄1,2 = 0 of the eikonal impact parameter. By using (8.4)
and (8.5) in (8.3) we get

Sc|ψ〉 =
∫

p3

∫

p4

|p3, p4〉e−ib1p4e−ib2p3

∫
dDQ

(2π)D

∫
dDx

×eiQ(b1−b2)e2iδ(b)e−ixQ(1 + 2i∆(b))Φ(p4 −Q)Φ(Q+ p3) . (8.7)

8.1.1. Saddle points

The key idea of the eikonal approach is to approximate the integrals with the stationary phase
contribution and this can be done in (8.7) both for x and Q [120]. From the condition on x we
obtain

Qµ =
∂2δ(b)

∂xµ
=
∂2δ(b)

∂b

bµ
b

(8.8)

where we used ∂b
∂xµ =

bµ
b . We thus recovered the second relation in Eq. (6.11). In this approach,

the relation between b and the initial angular momentum follows from the other stationary phase
condition

(b1 − b2)µ − xµ = −∂2δ(b)
∂b

bν
b

∂bν

∂Qµ
, (8.9)

where the r.h.s. follows from the implicit dependence of b on Q. In order to make this explicit,
we need to decompose x along b and the space spanned by p̄i

xµ = bµ + (p̄1 + p̄2)
µA1 + (p̄1 − p̄2)µA2 = bµ + (p4 + p3)

µA1 + (p4 − p3 −Q)µA2 , (8.10)

which implies
∂bν

∂Qµ
= −(p̄1 + p̄2)

ν ∂A1

∂Qµ
− (p̄1 − p̄2)ν

∂A2

∂Qµ
+ δνµA2 , (8.11)

since the derivatives involved in the stationary point conditions are calculated by keeping x, p3,4
fixed. By using (8.6), (8.10) and (8.11) in (8.9), and noting that only the last term in (8.11) gives
a nonvanishing contribution to it, we get

bµJ ≡ (b1 − b2)µ = bµ − (p1 + p2)
µA1 − (p1 − p2)µA2 . (8.12)

The classical values of A1,2 can be determined by imposing that bp̄1,2 = 0 and bJp1,2 = 0 and by
using (8.6) in (8.12). We obtain

A1 =
(m2

1 −m2
2)|Q|b

4m2
1m

2
2(σ

2 − 1)
, A2 = − s|Q|b

4m2
1m

2
2(σ

2 − 1)
. (8.13)

By contracting (8.12) with bJ , we obtain b2J = bJb. Contracting it instead with b, and recalling
that Q · b = −|Q|b, since the force is attractive for gravitational theories, we get

b2J = b2
(
1− sQ2

4m2
1m

2
2(σ

2 − 1)

)
= b2 cos2

Θ

2
, (8.14)

where in the final step we used the relation (2.31) between the value of Q at the stationary point
and the elastic scattering angle together with (1.13). We thus recover the first relation in Eq. (6.11)
as well.

8.1.2. Impulse and angular momentum

We now use the elastic eikonal operator (8.7) to calculate the impulse by taking expectations
of the momentum operator for particle 1,

Pα
1 =

∫

p

pαa†1(p)a1(p) . (8.15)
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Applying this operator to the initial state (8.1), we obtain

Pα
1 |ψ〉 =

∫

−p1

∫

−p2

Φ1(−p1)Φ2(−p2)| − p1,−p2〉 eib1·p1+ib2·p2(−pµ1 ) (8.16)

after using that | − p1〉 = a†1(−p1)|0〉 and therefore the expectation value,

〈ψ|Pα
1 |ψ〉 =

∫

−p1

|Φ1(−p1)|2 (−pµ1 ) . (8.17)

where we have used 〈p|p′〉2πθ(p0)δ(p2 +m2
1) = (2π)Dδ(D)(p− p′) that follows from the canonical

commutation relations. For the final state, using (8.7), we get

Pµ
1 Sc|ψ〉 =

∫

p3

∫

p4

e−ib1·p4 Φ1(p4 −Q)e−ib2·p3 Φ2(p3 +Q) pµ4 |p3, p4〉

×
∫

dDQ

(2π)D

∫
dDx ei(b−x)·Q+2iδ(s,b)

(8.18)

and for the expectation value calculated at the saddle point,

〈ψ|S†
cP

µ
1 Sc|ψ〉 =

∫

p3

∫

p4

pµ4 |Φ1(p4 −Q)|2 |Φ2(p3 +Q)|2 . (8.19)

Formally performing the shifts pµ4 = Qµ − pµ1 , pµ3 = −Qµ − pµ2 , we recover

〈ψ|S†
cP

µ
1 Sc|ψ〉 − 〈ψ|Pα

1 |ψ〉 =
∫

−p1

∫

−p2

Qµ |Φ1(−p1)|2 |Φ2(−p2)|2 → Qµ. (8.20)

Of course for particle 2 we find

〈ψ|S†
cP

µ
2 Sc|ψ〉 − 〈ψ|Pα

2 |ψ〉 = −Qµ. (8.21)

The Jacobian for the change of variables considered in the last step, as well as the integral over
the fluctuations around the saddle points, would require further study. We shall return to this
point in the outlook section 9.

We will provide the analogous derivation for the angular momentum in the more complete
eikonal framework discussed in the ensuing sections which will also include dissipative effects (see
Eq. (8.152) for the complete final result). However, let us isolate here the conservative portion of
the answer corresponding in particular to (8.156) for particle 1,

∆L(1c)αβ = b1[αQβ] + p4[α
∂2δ(b)

∂p
β]
4

, ∆L(2c)αβ = −b2[αQβ] + p3[α
∂2δ(b)

∂p
β]
3

. (8.22)

Focusing first on particle 1, we recall that 2δ depends on pµ4 both via σ = −p3 · p4/(m1m2) and
via the projection that relates bµJ to bµ as in (8.10). As a result, we find

∆L(1c)αβ = b1[αQβ] +
[
p1[α| p2|β] + (p1 + p2)[αQβ]

] ∂2δ(s, b)
∂p1 · p2

+ (A1 +A2)p1[αQβ] (8.23)

and similarly, for particle 2,

∆L(2c)αβ = −b2[αQβ] −
[
p1[α| p2|β] + (p1 + p2)[αQβ]

] ∂2δ(s, b)
∂p1 · p2

+ (A1 −A2)p2[αQβ] . (8.24)

As a result
∆L(1c)αβ +∆L(2c)αβ = (bJ +A1(p1 + p2) +A2(p1 − p2))[αQβ] . (8.25)
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Using (8.12), we see that the combination between round brackets is precisely bα. Since b
[αQβ] = 0

by (8.8), we get
∆L(1c)αβ +∆L(2c)αβ = 0 . (8.26)

Therefore, as expected, no mechanical angular momentum is lost by the two-body system in the
conservative approximation.

To study (8.23) on its own, let us choose a frame where the center-of-mass sits in the origin of
the transverse plane

E1b
α
1 + E2b

α
2 = 0 , (8.27)

i.e.

bα1 =
E2

E
bαJ , bα2 = −E1

E
bαJ . (8.28)

Let us also decompose the transferred momentum using pµ1 , p
µ
2 and bµJ as basis vectors,

Qµ =
2E2

E
sin2

Θ

2
pµ1 −

2E1

E
sin2

Θ

2
pµ2 −

p

b
sinΘbµJ . (8.29)

Using (8.29) we get

b
[α
1 Q

β]+(A1+A2)p
[α
1 Q

β] = −2 sin2 Θ

2

E1E2

E2
b[α(p1+p2)

β]+2 sin2
Θ

2
tan

Θ

2

E1E2

E2

b

p
p
[α
1 p

β]
2 . (8.30)

If we now go to the frame where the center-of-mass is also initially at rest,

−pα1 = (E1, p
I) , −pα2 = (E2,−pI) , (8.31)

we see that, if we restrict to spatial components, all terms in (8.23) vanish after using (8.30),

∆LIJ
(1c) = 0 . (8.32)

This tells us that indeed angular momentum is conserved separately for each particle, in this
special frame. The mixed components ∆L0I do not vanish, in general. However, they are actually
not well defined, since they depend on the Shapiro time delay ∂2δ0/∂E ∝ 1

4−D + log(b/b0), which
is infinite in D = 4 due to the long-range nature of the gravitational force. This requires a
subtraction which leaves behind an arbitrary cutoff scale b0 in the remaining logarithm.

8.2. Coherent state approximation beyond the soft limit

As discussed in the previous section, in order to include radiation in the eikonal framework we
need to introduce creation/annihilation operators describing the physical gravitons (or in general
massless particles) that can be produced/absorbed in the scattering process. So far we focused on
the soft limit which in our context means that the typical energy of the radiation quanta is much
smaller than that of the potential gravitons exchanged between the two energetic particles: ω ≪
~v/b. In the previous section we used the approach by Bloch-Nordsieck/Weinberg [311, 312, 1] to
describe soft radiation as an exponential dressing of the “hard” elastic scattering as done in several
papers [15, 335, 142, 307–309, 143, 310]. However, in the spirit of the eikonal exponentiation, we
expect that classical radiation exponentiates at all frequencies at least in a PM expansion. The
natural guess is that, to describe frequencies ω & v/b, the functions wj in (7.8) should be derived
from the classical limit of the whole 5-point function A(5). We will use Wj to indicate these more
general functions appearing in the operatorial part of the eikonal beyond the soft approximation.

We start by taking the most straightforward generalization of the approach followed in the
elastic case and introduce the impact parameter representation of A(5) by taking its Fourier
transform

Ã(5)µν(x1, x2, k) =

∫
dDq1

(2π)D−2
δ(2p1q1 − q21) δ(2p2q2 − q22)eix1·q1+ix2·q2A(5)µν(q1, q2, k) , (8.33)
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where q1 + q2 + k = 0 and the delta functions enforce the on-shell condition for the energetic
particles. As usual, in the classical limit we need to expand the full amplitude for small values
of qi and k with respect to hard momenta pi since the soft momenta are proportional to ~ in the
classical regime. We expect also in the inelastic case the same pattern discussed in Section 4 for the
elastic scattering: the leading tree-level contribution as ~ → 0 should exponentiate and account
for the leading term in the classical limit at each loop level. Of course perturbative amplitudes
at a fixed order in G will also have terms that scale as the leading tree-level contribution: by
comparing their form with the formal expansion in G of the eikonal operator δ̂ one should be
able to fix in principle the form of δ̂ order by order in the PM approximation. As a consistency
check, contributions of order O(Gn) that are more divergent than the classical terms should be
completely determined by lower order data. In our analysis we will focus on the leading PM
contribution to the operator part of the eikonal and discuss how the approaches of Sections 7.1
and 7.2 can be generalized beyond the soft approximation. In both cases, we take the following
generalization of the elastic eikonal (8.7)

S|ψ〉 =
∫

p3

∫

p4

e−ib1p4e−ib2p3

∫
dDQ1

(2π)D

∫
dDQ2

(2π)D
Φ(p4 −Q1)Φ(p3 −Q2)

×
∫
dDx1

∫
dDx2 e

i(b1−x1)Q1+i(b2−x2)Q2e2iδ̂(x1,x2)|p3, p4, 0〉 , (8.34)

where the operator e2iδ̂ is determined by the 4-point and 5-point function as sketched above.
Let us stress that the final state (8.34) contains a large number of gravitons as it has the same

coherent state structure of the soft eikonal operator (7.8). While this may not be surprising, since
we are describing the classical radiation produced during the scattering, it is not obvious that the

operator e2iδ̂ can be determined just by the classical limit of the 4 and the 5-point amplitudes
order by order in G. It is argued in [120] that this is a consistency requirement because it ensures
that the variance in the distribution of the emitted gravitons becomes negligible in the classical
limit. A first check is of course to verify that the tree-level 6-point function involving two gravitons
in the final state does not yield classical contributions that should be included in the eikonal. This
is discussed in [120] for the technically simpler case of QED and in [336] for gravity: in both cases
the assumption above holds. This supports the intuitive picture that the soft quanta are emitted
one at the time when the energetic particles bend in the scattering. However, as mentioned in the
outlook, this point deserves further investigation studying also the inelastic amplitudes at loop
level. We expect that the eikonal operator involves also corrections that are non-linear in the
creation/annihilation operators for the soft quanta. For instance, terms of this type are probably
needed to capture contributions related to the Compton-like 4-point amplitude with two gravitons
and two energetic particles.

8.2.1. Eikonal operator without static modes

In order to define explicitly the eikonal operator (8.34), we then need to combine the classical
information extracted from the 4 and the 5-point functions. A first approach is to define [120]

e2iδ̂(x1,x2) =

∫
dDQ

(2π)D

∫
dDx e−iQ(x−x1+x2)e2iδs(b)ei

∫
k[Wj(x1,x2,k)a

†
j(k)+W∗

j (x1,x2,k)aj(k)] , (8.35)

where δs(b) is related to the elastic eikonal discussed in Section 8.1, while Wj is derived from the
classical limit of the 5-point amplitude. Of course both objects will have a PM expansion and at
1PM and 2PM δs(b) is the same as the elastic eikonal discussed in Section 3 and 4. The leading
mixed term in this expansion, 2δ0W0,j in the one-loop 2→ 3 amplitude has been recently checked
to be consistent with the exponentiation (8.35) [146–148]. We know that at 3PM δ2 develops an
imaginary part, see Section 5, but here we do not need to include it as it will be automatically
generated by the operator part we are adding: it is the same mechanism that in Section 7 yielded
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the divergent imaginary part of δ2 from the normal ordering of the soft eikonal operator, see (7.25).
Thus we identified δs(b) with the real part of the elastic eikonal and, following [145], we take its
dependence on the external momenta as follows,

2δs(b) =
1

2
[Re 2δ(σ12, be) + Re 2δ(σ34, be)] , (8.36)

where we symmetrize between incoming σ12 = − p1·p2

m1m2
and outgoing σ34 = − p3·p4

m1m2
momenta.

This last step starts being relevant only at 4PM, so beyond the scope of this review, but we will
briefly comment in Section 9 on why the approach taken in (8.36) is useful.

In the radiative sector we have a similar PM expansion where Wj = W0j +W1j + . . . starts
at order G3/2. Since we will work at the first PM order for the operator part, we focus on W0j .
This is obtained simply by using the classical tree-level 5-point function (5.38) in (8.33) and then
contracting it with physical polarization tensors such as the ε×,+ introduced in (8.84). For our
analysis we need just the leading term and so we can use the linearized version of the delta
functions, δ(2p1q1) δ(2p2q2), since 2piqi ≫ q2i

Wµν
0 (x1, x2, k) =

∫
dDq1
(2π)D

eix1·q1+x2·q22πδ(2p1 · q1)2πδ(2p2 · q2)A(5)µν
0 (q1, q2, k) , (8.37)

where, as before, q1 + q2 + k = 0 and A(5)µν
0 (q1, q2, k) is given in (5.38). In the same spirit of

Eq. (8.36), we take Wµν to depend on p̃1 and p̃2,

p̃1 =
1

2
(p4 − p1) = p4 −

Q1

2
, p̃2 =

1

2
(p3 − p2) = p3 −

Q2

2
, (8.38)

rather than on p1 and p2. In order to clarify the meaning of the integrations in (8.34), it is
convenient to change variables as follows x1 = x+ + x−

2 , x2 = x+ − x−
2 , Q1 = Qe − P

2 and

Q2 = −Qe − P
2 . By rewriting (8.37) in terms of x± we see that W0 depends on x+ only through

an overall factor of e−ix+k. When using this fact in (8.34), one can see that the integration over
x+ simply implies that P is equal to the sum of the momenta of the emitted gravitons, as it
can be seen by expanding the last exponential with the creation modes. Therefore, at a generic
order (a†)M , we have P =

∑M
m=1 km. The factorized dependence on x+ implies also the following

transformation property under translations

xµ1,2 → xµ1,2 + aµ, Wµν
0 → e−ia·kWµν

0 . (8.39)

The same property will hold also at the subleading PM orders as long as we start from a definition
with the functional form of (8.37).

It is instructive to use the stationary phase approach to calculate the norm of the final state
〈ψ|S†S|ψ〉. Classical unitarity implies that it should be equal to the norm of the initial state
〈ψ|ψ〉 and here we would like to see that at least all large phases cancel at the stationary point.
By using (8.34) and (8.35) we have

〈ψ|S†S|ψ〉 =
∫

p3,p4

∫
dDQ′

i

(2π)D
dDx′i

∫
dDQ′

(2π)D
dDx′ e−i

∑
r(br−x′

r)·Q′
r+iQ′(x′−x′

1+x′
2)−i2δs(b

′)

×
∫
dDQi

(2π)D
dDxi

∫
dDQ

(2π)D
dDx ei

∑
r(br−xr)·Qr−iQ(x−x1+x2)+i2δs(b) (8.40)

× e− 1
2

∫
k
Wj

∗(x1,x2,k)Wj(x1,x2,k)− 1
2

∫
k
Wj

∗(x′
1,x

′
2,k)Wj(x

′
1,x

′
2,k)+

∫
k
Wj

∗(x′
1,x

′
2,k)Wj(x1,x2,k)

× Φ∗
1(p4 −Q′

1)Φ
∗
2(p3 −Q′

2)Φ1(p4 −Q1)Φ2(p3 −Q2) .
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The stationary conditions for Qi and Q
′
i yield

xiµ = biµ +
∂2δs(b)

∂Qµ
i

+

∫

k

[
i

2

∂(Wj
∗(x1, x2, k)Wj(x1, x2, k))

∂Qµ
i

− iWj
∗(x′1, x

′
2, k)

∂Wj(x1, x2, k)

∂Qµ
i

]

(8.41)

x′iµ = biµ +
∂2δs(b

′)
∂Q′µ

i

−
∫

k

[
i

2

∂(Wj
∗(x′1, x

′
2, k)Wj(x

′
1, x

′
2, k))

∂Q′µ
i

− i ∂Wj
∗(x′1, x

′
2, k)

∂Q′µ
i

Wj(x1, x2, k)

]
.

Similarly from the variation of xi and x
′
i, we have

Qiµ = (−1)i+1Qµ +

∫

k

[
i

2

∂(Wj
∗(x1, x2, k)Wj(x1, x2, k))

∂xµi
− iWj

∗(x′1, x
′
2, k)

∂Wj(x1, x2, k)

∂xµi

]

(8.42)

Q′
iµ = (−1)i+1Q′

µ −
∫

k

[
i

2

∂(Wj
∗(x′1, x

′
2, k)Wj(x

′
1, x

′
2, k))

∂x′µi
− i ∂Wj

∗(x′1, x
′
2, k)

∂x′µi
Wj(x1, x2, k)

]

and from the variations of x, x′, Q and Q′

xµ = (x1 − x2)µ +
∂2δs(b)

∂Qµ
, Qµ =

∂2δs(b)

∂xµ
, (8.43)

x′µ = (x′1 − x′2)µ +
∂2δs(b

′)
∂Q′µ , Q′

µ =
∂2δs(b

′)
∂x′µ

. (8.44)

We can satisfy these equations by requiring

x′µ = xµ = (x1 − x2)µ +
∂2δs(b)

∂Qµ
, Q′

µ = Qµ =
∂2δs(b)

∂xµ
,

Q′
iµ = Qiµ = (−1)i+1Qµ − i

∫

k

W∗
j (x1, x2, k)

↔
∂

∂xµi
Wj(x1, x2, k) ,

(x′i − bi)µ = (xi − bi)µ =
∂2δ(b)

∂Qµ
i

− i
∫

k

Wj
∗(x1, x2, k)

↔
∂

∂Qµ
i

Wj(x1, x2, k) ,

(8.45)

where f
↔
∂ g = (f∂g−g∂f)/2. When (8.45) are satisfied, all large phases cancel in the evaluation of

〈ψ|S†S|ψ〉, so they define the classical values of various quantities. For instance, we can use (8.45)
and the relations

p1 + p4 = Q1 , p2 + p3 = Q2 , (8.46)

which follow from the presence of the wavepackets Φi, to express Qi in terms of the initial data
b1,2 and p1,2.

As mentioned after (8.38), some of the integrals could have been performed exactly, but we
preferred to treat all the variables on the same footing. By summing the results for the Qi’s and
using the factorized dependence on x+ of W , we recover

Qµ
1 +Qµ

2 = −
∫

k

Wj
∗(x1, x2, k)k

µWj(x1, x2, k) = −Pµ (8.47)

ensuring momentum conservation.

8.2.2. Eikonal operator including static modes

As we saw in Section 7, for some applications it is convenient to include in the eikonal operator
also the static contribution arising from the zero-frequency modes and this can be easily done also
by following the formalism discussed in the previous section. To this end we introduce an auxiliary
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frequency scale ω∗ such that the full result is well approximated by the soft limit for frequencies
below ω∗. Then we can write the eikonal operator simply by splitting the operator part in two
terms, one for ω > ω∗, where it coincides with the formulation in (8.35), and the other for ω < ω∗

for which we follow the approach of Section 7. This splitting is useful only in the intermediate
steps so to implement the dressing with the zero-frequency modes discussed in Section 7.2, but
on the final results we will take the limit ω∗ → 0. Thus the differences between this approach
and that of the previous section are limited to the static contributions related to zero-frequency
contributions and the −i0 prescription, see the comments after Eq. (7.45). In formulae we have

e2iδ̂(x1,x2) =

∫
dDQ

(2π)D

∫
dDx e−iQ(x−x1+x2)ei2δs(b)

× e
∫
k
θ(ω∗−k0)[fout

j a†
j−fout∗

j aj]e−
∫
k
θ(ω∗−k0)[f in

j a†
j−f in∗

j aj]

× ei
∫
k
θ(k0−ω∗)[Wj(x1,x2,k)a

†
j (k)+W∗

j (x1,x2,k)aj(k)] .

(8.48)

We can follow the same steps of Section 7.2 and combine the oscillators in the second line of (8.48)
into a single exponential. This is equivalent to simply redefining the eikonal phase as in (7.51),
that is

2iδ̃(b) = 2iδs(b)− 2iδdr.(b) (8.49)

with

2iδdr.(b) = −1

2

∫ ω∗

k

(
fout∗
j (k)f in

j (k)− f in∗
j (k)fout

j (k)
)
=
i

4
GQ2

1PMI(σ) , (8.50)

where 2δdr.(b) was derived in Eqs. (7.51) and (7.63), and has been reported again here just for
convenience after using (7.88). Thus we can rewrite (8.48) as

e2iδ̂(x1,x2) =

∫
dDQ

(2π)D

∫
dDx e−iQ(x−x1+x2)ei2δ̃(b)

× e
∫
k
θ(ω∗−k0)[fjaj(k)

†−f∗
j (k)aj(k)]ei

∫
k
θ(k0−ω∗)[Wj(x1,x2,k)a

†
j(k)+W∗

j (x1,x2,k)aj(k)] ,

(8.51)

where fj(k) = fout
j (k) − f in

j (k). The operator (8.51) has to be used in (8.34) to obtain the full
eikonal operator. The discussion of classical unitarity for this eikonal operator follows the same
steps discussed from Eq. (8.40). One can check that the various integrals are dominated, in the
classical limit, by the following values

xµ = (x1 − x2)µ +
∂2δ̃(b)

∂Qµ
, Qµ =

∂2δ̃(b)

∂xµ
, (8.52a)

Qi µ = (−1)i+1Qµ − i
∫

k

Wj
∗(x1, x2, k)

↔
∂

∂xµi
Wj(x1, x2, k) , (8.52b)

(xi − bi)µ =
∂2δ̃(b)

∂Qi
− i
∫

k

θ(ω∗ − k0) f∗
j (k)

↔
∂

∂Qµ
i

fj(k)

− i
∫

k

θ(k0 − ω∗)Wj
∗(x1, x2, k)

↔
∂

∂Qµ
i

Wj(x1, x2, k) ,

(8.52c)

where one should use (8.36) and (8.38).

8.2.3. The N = 8 eikonal operator

It is straightforward to construct the eikonal operator (8.35) or (8.51) relevant to the classical
limit of N = 8 amplitudes for 2→ 2 processes involving massive scalars plus additional emissions
of gravitons, dilatons, and KK scalars and vectors. For the elastic eikonal phase, one should
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use the N = 8 result which we derived in the previous sections up to O(G3). For the inelastic
portion of the operator, instead, one can introduce new ladder operators associated to the new
emitted massless states, as discussed in Section 7.4, paired with appropriate 2→ 3 amplitudes for
the emission of such states. However, it is more convenient to adopt the approach of Section 5
and simply promote the appropriate Lorentz indices µ, ν, . . . to 10-dimensional ones M,N, . . .,
employing of course the N = 8 coupling in Eq. (E.22). This effectively captures all possible types
of emissions and exchanges relevant to the classical limit.

8.3. Computing observables from the eikonal operator

In this section we illustrate how the eikonal operator allows us to calculate in a systematic way
observable quantities that characterize gravitational collisions. The general strategy, as already
discussed in the soft limit based on Eq. (7.13), is to take expectation values of the appropriate
operators in the final state obtained by acting with the eikonal operator on the initial state.
Since in this way the final state now includes radiation, this will allow us to obtain not only the
deflection angle, but also the leading-order (L.O.) gravitational waveform as well as the 3PM linear
and angular momenta of the gravitational field generated by the collision. Moreover, since the
operator incorporates both field and the massive degrees of freedom in a dynamical fashion, it will
also provide expressions for the corresponding changes of mechanical linear and angular momenta
of each particle taking part in the collision that explicitly obey the corresponding balance laws.

8.3.1. Waveforms

As we discussed in order to obtain (7.17) in the zero-frequency limit, starting from the canoni-
cally normalized field operator Hµν(x) and taking its expectation value in the final state dictated
by the eikonal operator, we obtain the metric fluctuation Wµν (x),

gµν(x) = ηµν + 2Wµν(x) . (8.53)

Proceeding in the same way, but using this time the eikonal operator (8.35), we find the following
waveform in D = 4 that goes beyond the soft approximation

Wµν(x) =

∫ +∞

−∞

dω

2π
e−iωuŴµν (ω(1, x̂)) , Ŵµν(k) =

2G

r

Wµν

√
8πG

, (8.54)

where ω is the frequency measured by an asymptotic detector, u is the corresponding retarded
time and (1, x̂)µ a null vector characterizing its direction with respect to the source. To obtain
the L.O. waveform, we may employ Wµν

0 given in (8.37), which is the impact-parameter version
of the classical 2 → 3 amplitude, with the further approximation xα1,2 ≃ bα1,2 of the saddle-point
conditions (8.45). Using the kinematics conventions given in Subsection 1.2 (see in particular
Eq. (1.10), and Eqs. (1.43) and following), we may cast it in the form

Wµν
0 (k) =

1

4m1m2

∫
d4q1
(2π)4

eib1·q1+ib2·q22πδ(v1 · q1)2πδ(v2 · q2)A(5)µν
0 (q1, q2, k) (8.55)

where q1 + q2 + k = 0. In this way we will recover the frequency-domain expression Ŵµν(k) for
the waveform [129]. Performing the frequency Fourier transform (8.54) leads to the expression
Wµν for the metric fluctuation in (retarded) time domain [337, 338, 128], which however we will
not discuss explicitly here.

The starting point for computing the L.O. waveform is thus the five-point amplitude A(5)µν
0

in the classical limit given in Eq. (5.38). We find it convenient to rewrite the theory-dependent
coefficient β by factoring out the mass dependence according to

β = 2m2
1m

2
2c0 , (8.56)
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so that, in D = 4,
βGR = 4m2

1m
2
2

(
σ2 − 1

2

)
, βN=8 = 4m2

1m
2
2σ

2 . (8.57)

and
cGR
0 = 2σ2 − 1 , cN=8

0 = 2σ2 . (8.58)

We also recall that Eq. (5.38) is symmetric A(5)µν
0 = A(5)νµ

0 and encodes gauge invariance via the
important property

kµA(5)µν
0 = 0 . (8.59)

In order to perform the Fourier transform, it can be useful to isolate the terms in A(5)µν
0 that

have either 1/q21 or 1/q22 from those that have both factors, writing

A(5)µν
0 =

1

q21
A(5)µν

0,1 +
1

q22
A(5)µν

0,2 +
1

q21q
2
2

A(5)µν
0,irr (8.60)

where A(5)µν
0,1 , A(5)µν

0,2 , A(5)µν
0,irr only contain q1 and q2 in the numerators. For terms of the first kind,

we may solve q2 = −q1 − k in the integrand of (8.55), obtaining

Wµν
0,1(k) =

e−ib2·k

4m1m2

∫
d4q1
(2π)4

eib·q12πδ(v1 · q1)2πδ(v2 · q1 − ω2)
1

q21
A(5)µν

0,1

∣∣∣
q2=−q1−k

(8.61)

with bα = bα1 − bα2 . Performing the decomposition (1.10) of the integrated momentum qµ1 and
taking the Jacobian factor 1/

√
σ2 − 1 into account (see also Appendix A.3), we see that the delta

functions set q1‖1 = 0 and q1‖2 = −ω2 (as already noted in (1.48)) so that

Wµν
0,1(k) =

e−ib2·k

4m1m2

√
σ2 − 1

∫
d2q1⊥
(2π)2

eib·q1⊥
1

q21⊥ +
ω2

2

σ2−1

A(5)µν
0,1

∣∣∣q2 = −q1 − k
q1 = −ω2v̌2 + q1⊥

(8.62)

and this integral can be evaluated in terms of a modified Bessel function of the second kind K0(z),
∫
d2q1⊥
(2π)2

eib·q1⊥

q21⊥ +
ω2

2

σ2−1

=
1

2π
K0 (Ω2) , (8.63)

where we introduced the dimensionless combinations

Ω1 =
ω1b√
σ2 − 1

, Ω2 =
ω2b√
σ2 − 1

, (8.64)

so that

Wµν
0,1(k) =

e−ib2·k

8πm1m2

√
σ2 − 1

A(5)µν
0,1

∣∣∣q2 = −q1 − k
q1 = −ω2v̌2 + q1⊥

q1⊥ = −i∂b

K0 (Ω2) . (8.65)

In the last step we have used the identity qµ1⊥e
ib·q1⊥ = −i∂µb eib·q1⊥ to rewrite all instances of qµ1⊥

appearing in A(5)µν
0,1 as derivatives with respect to the impact parameter bµ. The discussion of the

second kind of terms in (8.60) is entirely analogous, with the only difference that for those it is
more convenient to solve the momentum conservation condition as qµ1 = −qµ2 − kµ, so that

Wµν
0,2(k) =

e−ib1·k

8πm1m2

√
σ2 − 1

A(5)µν
0,2

∣∣∣q1 = −q2 − k
q2 = −ω1v̌1 + q2⊥

q2⊥ = −i∂b

K0 (Ω1) . (8.66)

Finally, we turn to the calculation of the third kind of terms in (8.60), which, proceeding as above,
can be cast in the form

Wµν
0,irr(k) =

e−ib2·k

4m1m2

√
σ2 − 1

∫
d2q1⊥
(2π)2

eib·q1⊥

A(5)µν
0,irr

∣∣∣q2 = −q1 − k
q1 = −ω2v̌2 + q1⊥(

(q1⊥ + k⊥)2 +
ω2

1

σ2−1

)(
q21⊥ +

ω2
2

σ2−1

) (8.67)
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where P = −ω2
1 + 2ω1ω2σ − ω2

2 as in (1.45). The basic integral to be performed in this case is

∫
d2q1⊥
(2π)2

eib·q1⊥(
(q1⊥ + k⊥)2 +

ω2
1

σ2−1

)(
q21⊥ +

ω2
2

σ2−1

) ≡ 1

2π
H . (8.68)

Introducing Schwinger parameters, one finds

H =

∫

R2
+

dx1dx2
2(x1 + x2)

e
− 1

x1+x2

(
b2

4 +ib·kx1+
x2
1ω2

1+2σx1x2ω1ω2+x2
2ω2

2
σ2−1

)

. (8.69)

Letting x1 = b2x/(4λ), x2 = b2y/(4λ) with Feynman parameters x, y obeying x+y = 1, and using
the integral representation

K1(z)

z
=

∫ ∞

0

e−λ− z2

4λ
dλ

4λ2
, (8.70)

for the modified Bessel function of the second kind K1(z), one can express H as the following
parametric integral,

H =
b2

2

∫ 1

0

e−ixb·kK1(Ω(x))

Ω(x)
dx (8.71)

where, again letting x+ y = 1,

Ω(x) =
√
Ω2

1x
2 + 2Ω1Ω2σxy +Ω2

2y
2 . (8.72)

Therefore,

Wµν
0,irr(k) =

e−ib2·k

16πm1m2

√
σ2 − 1

A(5)µν
0,irr

∣∣∣q2 = −q1 − k
q1 = −ω2v̌2 + q1⊥

q1⊥ = −i∂b

[
b2
∫ 1

0

e−ixb·kK1(Ω(x))

Ω(x)
dx
]
. (8.73)

To perform the remaining b-derivatives in (8.65), (8.66) and (8.73), it can be useful to recall that

K ′
0(z) = −K1(z) , (zK1(z))

′ = −zK0(z) . (8.74)

Proceeding in this way, and collecting the three pieces according to (8.60), we obtain the
following result for the covariant frequency-domain waveform (8.54), letting

Ŵµν
0 (k) = Ŵµν

0,12(k) + Ŵµν
0,irr(k) . (8.75)

Then

Ŵµν
0,12(k) =

2G2m1m2

brω1ω2(σ2 − 1)

∑

j=1,2

[
Aµν

j e−ibj ·k bK0(Ωj)√
σ2 − 1

− 2ic0B
µν
j e−ibj ·kK1(Ωj)

]
(8.76)

with

Aµν
1 = c0

(
σ2 − 1

)
v1

(µkν)ω2 + v1
µv1

νω2

(
2σω2

(
c0 − 4(σ2 − 1)

)
+ 2c0ω1

)

+ 2σv1
(µv2

ν)ω1ω2

(
2(σ2 − 1)− c0

)
,

Bµν
1 = (b·k)v1µv1νω2 + v1

(µbν)ω1ω2 (8.77)

and Aµν
2 , Bµν

2 are obtained by interchanging particle labels (vµ1 ↔ vµ2 , b
µ
1 ↔ bµ2 and hence bµ ↔

−bµ). Here and in the following ξ(µξ′µ
′) = ξµξ′µ

′
+ ξµ

′
ξ′µ without additional factors. Moreover,

Ŵµν
0,irr(k) =

2G2m1m2

r(σ2 − 1)3/2

∫ 1

0

e−ib(x)·kdx
[
CµνK0(Ω(x)) +DµνK1(Ω(x))

Ω(x)

]
(8.78)
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where
bµ(x) = xbµ1 + ybµ2 (8.79)

(let us recall that y = 1− x) together with

Cµν = c0(σ
2 − 1)

[
2ηµν − i(x− y)b(µkν)

]
− 2c0

(
v1

µv1
ν − σv1(µv2ν) + v2

µv2
ν
)

(8.80)

−ib(µvν)1
(
2σω1

(
2
(
σ2− 1

)
− c0y

)
− 2c0xω2

)
−iv2(µbν)

(
2σω2

(
2
(
σ2− 1

)
− c0x

)
− 2c0yω1

)
,

and

Dµν = c0(σ
2 − 1)

(b2
2
(x − y)2kµkν − 2bµbν

b2
Ω(x)2

)
(8.81)

+ b2v1
(µkν)(x− y)

(
c0xω1 + σω2

(
c0y − 2(σ2 − 1)

))

+ b2v2
(µkν)(y − x)

(
c0yω2 + σω1

(
c0x− 2(σ2 − 1)

))

+
2b2v1

µv1
ν

σ2 − 1

(
c0 (xω1 + σyω2)

2 + 2
(
σ2 − 1

)
ω2

(
ω2

(
σ2(x− y)− 1

)
− 2σxω1

))

+
2b2v2

µv2
ν

σ2 − 1

(
c0 (yω2 + σxω1)

2 + 2
(
σ2 − 1

)
ω1

(
ω1

(
σ2(y − x)− 1

)
− 2σyω2

))

+
2b2v1

(µv2
ν)

σ2 − 1

(
σxω2

1

(
2
(
σ2 − 1

)
− c0x

)

+ ω1ω2

(
2
(
σ2 − 1

)
− c0

(
σ2 + 1

)
xy
)
+ σyω2

2

(
2
(
σ2 − 1

)
− c0y

))
.

As a cross check, one can verify that kµW
µν
0 (k) = 0 by integrating by parts with respect to x, using

b·keixb·k = −i∂xeixb·k. This causes the terms arising from integration by parts to cancel against
the remaining integrated terms, while the boundary terms cancel against the non-integrated ones.
The expressions we obtained in this way are valid for both GR and N = 8 provided one takes into
account the appropriate conventions discussed below Eq. (5.38).

In order to extract two gravitational physical degrees of freedom encoded in the waveform, we
construct a pair of orthogonal polarization tensors as follows. We keep c0 generic so as to capture
both gravitational-wave emissions in GR and in N = 8 supergravity. We first introduce reference
vectors ẽµθ and eµφ such that (more explicit expressions for such reference vectors are given below
in Eq. (8.91) and following)

ẽθ · ẽθ = 1 = eφ · eφ , ẽθ · eφ = 0 , ẽθ · k = eφ · k = 0 (8.82)

and

ẽθ · b = 0 , eφ · vi = 0 , − v1 · ẽθ
σω1 − ω2

=
v2 · ẽθ

σω2 − ω1
=

1√
P
. (8.83)

Let us recall that P had been introduced in (1.45) and is nonnegative. We then construct the
following transverse-traceless polarization tensors

εµν× =
1

2
(ẽµθ e

ν
φ + ẽνθe

µ
φ) , εµν+ =

1

2
(ẽµθ ẽ

µ
θ − e

µ
φe

ν
φ) (8.84)

and define
Ŵ×(k) = ε×µνŴ

µν
0 (k) , Ŵ+(k) = ε+µνŴ

µν
0 (k) . (8.85)

Isolating for convenience two contributions for each polarization according to

Ŵ×/+(k) = Ŵ12,×/+(k) + Ŵirr,×/+(k) , (8.86)

we find the following expressions. For the × polarization,

Ŵ12,×(k) = −
4iG2m1m2c0
br(σ2 − 1)

b·eφ
(
e−ib1·kK1 (Ω1) v1 ·ẽθ − e−ib2·kK1 (Ω2) v2 ·ẽθ

)
(8.87)
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and

Ŵirr,×(k) =
4iG2m1m2

r
√
σ2 − 1

(
c0ω1ω2√
P
− 2σ

√
P
)
b·eφ

∫ 1

0

e−ib(x)·kK0(Ω(x))dx (8.88)

with bµ(x), Ω(x) as in (8.72). For the + polarization, we find

Ŵ12,+(k)

=
2G2m1m2

rω1ω2 (σ2 − 1)

[
i
b·k
b
c0
(
e−ib2·kK1 (Ω2) (v2 ·ẽθ)2ω1 − e−ib1·kK1 (Ω1) (v1 ·ẽθ)2ω2

)
(8.89)

+
e−ib1·kK0(Ω1) v1 ·ẽθω2 − e−ib2·kK0(Ω2)v2 ·ẽθω1√

σ2 − 1
√
P

((
σ2 − 1

)
(4Pσ − c0ω1ω2)− c0Pσ

) ]

and finally

Ŵirr,+(k) =
2G2m1m2

r
√
σ2 − 1

∫ 1

0

dx e−ib(x)·k
[ (b·eφ)2

b2
c0K1(Ω(x))Ω(x) − c0K0(Ω(x))

+
b2K1(Ω(x))

Ω(x)P
(
c0ω

2
1ω

2
2 + 2P2 − 4σω1ω2P

) ]
.

(8.90)

Introducing an additional vector b̌µ satisfying b̌2 = b2 and b · ǔ1,2 = b · b̌ = 0, the explicit
decomposition of the reference vectors ẽµθ , e

µ
φ in terms of the basis vectors vµ1 , v

µ
2 , b

µ, b̌µ reads

ẽµθ =
ω1v

µ
2 − ω2v

µ
1√

P
, eµφ =

(b̌ · k)bµ − (b · k)b̌µ

b
√
(b · k)2 + (b̌ · k)2

. (8.91)

In the center-of-mass (CM) frame where

vµ1 =
1

m1
(E1, 0, 0, p) , vµ2 =

1

m2
(E2, 0, 0,−p) , bµ = (0, 0, b, 0) , b̌µ = (0, b, 0, 0) , (8.92)

we can introduce the explicit parametrization

kµ = ω(1, sin θ cosφ, sin θ sinφ, cos θ) (8.93)

and the polarization vectors

ẽµθ = − 1

sin θ
(cos θ, 0, 0, 1) , eµφ = (0,− sinφ, cosφ, 0), (8.94)

which satisfy (8.82), (8.83). In particular, P = ω2(σ2− 1) sin2 θ. We provide a more complete list
of kinematic relations in Appendix E, together with an expression for the × and + projections
in terms of reference vectors eµθ , e

µ
φ such that eµθ is not necessarily orthogonal to bµ.

Let us now explore the soft limit kµ → 0 of the full waveform Ŵµν(k) (8.75). To leading order
in this limit, we find

Ŵµν
L. (k) =

4G2im1m2c0

b2r
√
σ2 − 1ω2

1ω
2
2

×
(
v2

µv2
νω2

1(b·k)− (b·k)v1µv1νω2
2 − v1(µbν)ω2

2ω1 + v2
(µbν)ω2ω

2
1

) (8.95)

which is in agreement with the PM limit of Weinberg’s soft theorem (translated to b-space), using
the leading-order deflection Q1PM = 2Gm1m2c0/(b

√
σ2 − 1). Indicating by log(ωb) a generic log-

enhanced dependence on the graviton’s overall scale,49 we find to subleading order in the soft

49For instance log(Ω1) = log(ωb) + · · · , log(Ω2) = log(ωb) + · · · where the dots denote non-log-enhanced terms.
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limit

Ŵµν
S.L.(k) =

4G2m1m2

(
4(σ2 − 1)− c0

)
σ log(ωb)

r (σ2 − 1)3/2 ω1ω2

(
v1

µv1
νω2

2 − v1(µv2ν)ω1ω2 + ω2
1v

µ
2 v

ν
2

)

− 2G2m1m2c0 log(ωb)

r
√
σ2 − 1ω1ω2

(
k(µξν) − ηµνξ · k

)
(8.96)

with ξµ = ω2v
µ
1 + ω1v

ν
2 . Setting c0 = cGR

0 to discuss the case of particles interacting only
gravitationally, we can compare with the subleading log-theorem [309, 310], which predicts the

form of the trace-reversed metric perturbation eµν = Ŵµν − 1
2η

µνηαβŴ
αβ according to

eµνS.L.(k) =
4G2m1m2

(
2σ2 − 3

)
σ log(ωb)

r (σ2 − 1)3/2 ω1ω2

(
v1

µv1
νω2

2 − v1(µv2ν)ω1ω2 + ω2
1v

µ
2 v

ν
2

)
. (8.97)

We see that the first line of (8.96) agrees with (8.97), while the second line of (8.96) vanishes
when contracted with physical polarizations. Instead, we do not find agreement with the “sub-
subleading” O(ω logω) soft contribution to waveforms emitted during collisions of massless objects
[142], which lie above the bound (7.94). For instance, for the × polarization, we find

Ŵ×L. + Ŵ×,O(ω logω)

Ŵ×L.

∼ 1 +
1

4
(ωb)2 log(ωb)(sin θ)2 (8.98)

in any center-of-mass frame, where ~p1 + ~p2 = 0 (the above relation is instead independent of the
translation frame), as σ →∞, while the result of [142] gives rise to a similar relation but with the
factor of 1

4 replaced by 1
2 .

Finally, let us calculate the dilatonic waveform. For this case, we set c0 = cN=8
0 in order to

include not only dilaton emissions but also dilaton exchanges, and take the trace according to

Ŵ =
1√
2
ηµνŴ

µν . (8.99)

Contracting indices generates some terms proportional to b·k from Ŵµν
irr that we can integrate by

parts to obtain a more compact expression. The result is Ŵ = Ŵ12 + Ŵirr with

Ŵ12(k) =
4
√
2G2m1m2σ

2

r

{
i

b (σ2 − 1)

[
b·k
ω1

e−ib1·kK1(Ω1)−
b·k
ω2

e−ib2·kK1(Ω2)

]

+

(
σ2 − 2

)
ω2 + σω1

σω1(σ2 − 1)3/2
e−ib1·kK0(Ω1) +

(
σ2 − 2

)
ω1 + σω2

σω2(σ2 − 1)3/2
e−ib2·kK0(Ω2)

} (8.100)

and

Ŵirr(k) = −
4
√
2bG2m1m2

r
(ω2

1 + ω2
2)

∫ 1

0

e−ib(x)·kK1(Ω(x))

Ω(x)
. (8.101)

8.3.2. Linear momentum

Once the waveforms are given one can easily write down the corresponding formulas for the
spectrum of emitted energy and momentum for each polarization as a function of frequency or
retarded time. In frequency domain, which is more relevant for interferometers, one has

dP µ
×,+ = kµ |ωW×,+|2

dω dΩ(n)

2ω(2π)3
, (8.102)
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where, as discussed in Appendix F, the measured frequency and the detector’s angular positions
are characterized by kµ = ω nµ, while dΩ(n) is the angular measure. In particular, using (8.93),
the gravitational energy emitted in a given direction θ, φ takes the form (see e.g. [337, 338])

dP 0
×,+ = ω |ωW×,+|2 sin θ

dω dθ dφ

2ω(2π)3
. (8.103)

These differential spectra, which characterize the angular and frequency distribution of the
energy carried by gravitational waves, have been studied, for instance, in [337, 338] for massive
objects at finite σ, and in [333, 142] for the ultra-relativistic case. Leaving to future work a more
detailed study of the spectrum in different kinematical regimes, let us mention a few of its broad
features in the frequency domain after integration over the angular variables.

As we have already mentioned, in the limit ω → 0 the spectra tend to the well-known ZFL
[339]. The characteristic frequency range for which a soft expansion in powers of ωb is valid is of
order 1/b and in D = 4 contains logarithmically enhanced sub- and sub-sub-leading corrections.
Such a mild ω dependence also holds above 1/b as long as ωb does not exceed

√
σ. Above this

frequency the spectrum drops, first like a small power of ω, and then exponentially when ωb > σ
3
2 .

This qualitative feature of the spectrum is responsible for the σ dependence of the total radiated
energy to be discussed below. It would be interesting to compare this spectrum with the one of
the ultra-relativistic limit i.e. above the bound (7.94), Θ

√
σ & 1, but, so far, this has only been

done in the small-ω limit as already discussed in Section 7.
Here we shall focus on the calculation of the total emitted energy and momentum, which is

obtained by integrating (8.102) over the graviton phase space, to leading order in the coupling,

P µ =

∫

k

Ã(5)kµÃ(5)∗ . (8.104)

Following the steps discussed in Section 5, this can be conveniently rewritten in terms of the
Fourier transform of a three-particle cut, according to

P µ = FT

∫
d(LIPS) kµ

k1

k

k2

p1

p2

q1

q2

p4

p3

q4

q3

, (8.105)

where FT stands for the Fourier transform (5.46). The integral on the right-hand side can be
calculated using the reverse-unitarity method, i.e. by reinterpreting the delta functions involved
in the LIPS as cut propagators. The result in GR is [117, 118, 47]

Pµ
rad =

G3m2
1m

2
2

b3
(v̌µ1 + v̌µ2 ) E(σ) , (8.106)

with

E(σ)
π

= f1(σ) + f2(σ) log
σ + 1

2
+ f3(σ)

σ arccoshσ

2
√
σ2 − 1

,

f1(σ) =
210σ6 − 552σ5 + 339σ4 − 912σ3 + 3148σ2 − 3336σ + 1151

48(σ2 − 1)3/2
,

f2(σ) = −
35σ4 + 60σ3 − 150σ2 + 76σ − 5

8
√
σ2 − 1

,

f3(σ) =

(
2σ2 − 3

) (
35σ4 − 30σ2 + 11

)

8 (σ2 − 1)3/2
.

(8.107)
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Let us now check that this emission of energy and momentum is matched by corresponding
radiative losses of energy-momentum of the colliding objects, i.e. by the integrals in (8.52b), which
we denote as follows to leading order in the PM expansion using the further saddle point conditions
(8.52a),

Q1µ =
1

2

∫

k

[
−i∂Ã

(5)

∂bµ1
Ã(5)∗ + iÃ(5) ∂Ã(5)∗

∂bµ1

]
. (8.108)

Proceeding in the by now familiar way (see Section 5), we can recast this as the following three-
particle cut,

Q
µ
1 =

1

2
FT

∫
d(LIPS) (qµ1 − qµ4 )

k1

k

k2

p1

p2

q1

q2

p4

p3

q4

q3

. (8.109)

We can then use the same techniques employed to calculate Pµ
rad, based on reverse-unitarity,

obtaining the following result

Q
µ
1 = −G

3m2
1m

2
2

b3
v̌µ2 E(σ) , (8.110)

with E(σ) as in (8.107), and similarly for particle 2

Q
µ
2 = −G

3m2
1m

2
2

b3
v̌µ1 E(σ) . (8.111)

We see that (8.106), (8.110), (8.111) obey the energy-momentum conservation condition

P µ +Q
µ
1 +Q

µ
2 = 0 . (8.112)

This can be seen as a consequence at the level of integrals of the basic identity qµ1 + qµ2 + kµ = 0
among the integrated momenta. Taking into account that the additional Qµ contribution enters
the total impulse Qiµ (8.52b) with opposite sign for the two particles, we thus recover the complete
energy-momentum balance law,

Pµ +Qµ
1 +Qµ

2 = 0 . (8.113)

Here we used that the only contribution to the energy-momentum of the gravitational field is the
radiative one given in (8.104), Pµ = P µ.

Let us comment on the difference between (8.45) and (8.52) when it comes to the non-radiative
part of the impulse. In the former case, Qµ is determined by the derivative of the full eikonal
phase Re 2δ up to 3PM, which therefore includes both conservative and radiation-reaction effects,
as we discussed in Section 6,

Qµ
1 = −G

2
Q2

1PMI(σ)
bµ

b2
= −Qµ

2 . (8.114)

In the latter case, Qµ is determined by the derivative of the “reduced” phase 2δ̃, which does not
include such effects, due to the subtraction of (8.50). However, this difference is accompanied
by the appearance of a new static contribution in the relation (8.52c) linking xµ to bµ, which we
denote by

∆xµ ≡ (x1 − x2 − bJ)µ = −i
∫

k

θ(ω∗ − k0) F ∗(k)
( ↔

∂

∂Qµ
1

−
↔
∂

∂Qµ
2

)
F (k) +O(G3) . (8.115)
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To the order under consideration, using the on-shell conditions and the same integrals involved in
the evaluation of J αβ in Section 7, one obtains

∆xµ ≃ Qµ G , G =
1

2
(c14 + c23 − c13 − c24) . (8.116)

where Qµ in this case is the conservative part of the impulse.
This quantity contributes with an extra term to the relation between b and bJ in (8.12) and

this implies that, in computing Qµ in (8.52a), we can use the relation b = x+ GQ(b = x) getting

Qµ =
∂2δ̃(x+ GQ(b = x))

∂xµ
=
∂2δ̃(x)

∂xµ
+ GQ∂

22δ̃(x)

∂x∂xµ
+O(G4) . (8.117)

The second term gives the radiation reaction that can be written as

Qµ
1 =

GI(σ)
4b

bµ
∂Q2

∂b
=
GI(σ)

4

∂Q2

∂bµ
= −G

2
Q2

1PMI(σ)
bµ

b2
+O(G4) , (8.118)

where, at leading order, we have put x = b, and G = G
2 I(σ) by (8.114), as well as Q = Q1PM. In

this way, the predictions of the two formalisms for the full impulse agree.

8.3.3. Angular momentum

The angular momentum of the gravitational field sourced by the collision is given by the sum
of two pieces,

Jαβ = Jαβ + J αβ . (8.119)

The second one, J αβ , is the contribution due to static modes, which starts at 2PM order and
which we have already calculated in (7.85). The first one, Jαβ , is instead new. It starts at 3PM
order and arises due to genuine gravitational wave emissions. Its expression is the same as (7.78),
with the gravitational waveform Ã(5)µν replacing the “soft factor” Fµν . For convenience, let us
break it down as follows

Jαβ = J
(o)
αβ + J

(s)
αβ , J

(o)
αβ = −i

∫

k

k[α
∂Ã(5)

∂kβ]
Ã(5)∗ , J

(s)
αβ = i

∫

k

2Ã(5)µ
[α Ã

(5)∗
β]µ . (8.120)

As already mentioned, the two terms in the previous equations are formally reminiscent of the
orbital and spin terms of the gravitational angular momentum, but only their sum is physically
meaningful and gauge invariant. One of the main advantages of the expression (8.120) for the
angular momentum is that it is manifestly covariant under Lorentz transformation. To see how it
transforms under translations,

bµ1,2 7→ bµ1,2 + aµ , (8.121)

let us first remark that, under (8.121), Ã(5)µν(k) transforms according to

Ã(5)µν(k) 7→ e−ia·kÃ(5)µν(k) , (8.122)

as is clear from the explicit expression (5.51). Then, taking into account the differential operator
in (8.120), we see that

Jαβ 7→ Jαβ + a[αP β] , (8.123)

after comparing with the radiated energy-momentum (8.104). In this way, we see that (8.120) is
in fact Poincaré covariant.

Following the above strategy, we shall now recast these expression in a form which is amenable

to the application of reverse-unitarity. Let us start from J
(s)
αβ , for which this manipulation is
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straightforward:

J
(s)
αβ = 2iFT

∫
d(LIPS)




k

p1

p2

q1

−q1 − k




µ

[α




p4

p3

q − q1

q1 + k − q−k



β]µ

(8.124)

as follows by applying the same steps discussed in Section 5, carrying along the appropriate index

contractions. Let us now turn to J
(o)
αβ , for which the presence of a derivative with respect to kµ

makes the connection between the b-space and the q-space representation less straightforward,
unlike all quantities considered so far. We first rewrite the defining expression (8.120) in a frame
where bα2 = 0 and thus bα = bα1 , which can always be attained by performing an appropriate
translation according to Eqs. (8.121), (8.122), (8.123). In this way we find

iJ
(o)
αβ =

∫

k

k[α
∂

∂kβ]




∫
dDq1
(2π)D

2πδ(2p1 · q1)2πδ(2p2 · (q1 + k))eib·q1
k

p1

p2

q1

−q1 − k




×
∫

dDq4
(2π)D

2πδ(2p1 · q4)2πδ(2p2 · (q4 − k))eib·q4

p4

p3

q4

k − q4−k

(8.125)

where we have already appropriately “flipped” the 2→ 3 amplitude in the second line by rewriting
it as a 3 → 2 one. Shifting q4 = q − q1, and using δ(2p1 · q1)δ(2p1 · q4) = δ(2p1 · q1)δ(2p1 · q), we
have

iJ
(o)
αβ =

∫
dDq

(2π)D
2πδ(2p1 · q)eib·q

∫

k

∫
dDq1
(2π)D

2πδ(2p1 · q1)

× k[α
∂

∂kβ]



2πδ(2p2 · (q1 + k))

k

p1

p2

q1

−q1 − k



2πδ(2p2 · (q − q1 − k))

p4

p3

q − q1

q1 + k − q−k

When we let the differential operator act on the square bracket, we need to distinguish two types
of terms. For the terms where the derivative acts on the amplitude, we can use again

δ(2p2 · (q1 + k))δ(2p2 · (q − q1 − k)) = δ(2p2 · (q1 + k))δ(2p2 · q) . (8.126)

Instead, for those where the derivative acts on the delta function we can use the following property,

∂δ(2p2 · (q1 + k))

∂kβ
δ(2p2 · (q − q1 − k)) =

∂δ(2p2 · (q1 + k))

∂kβ
δ(2p2 · q)

+ δ(2p2 · (q1 + k))
∂δ(2p2 · q)

∂qβ
,

(8.127)
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which follows from the distributional identity δ′(x)δ(y−x) = δ′(x)δ(y)+δ(x)δ′(y). In total we get
three terms: the first one involves the standard Fourier transform in the usual transverse plane
δ(2p1 · q)δ(2p2 · q) and the derivative acts on the amplitude, the second one involves the standard
Fourier transform and the derivative acts on the phase-space delta function δ(2p2 · (q1+k)), while
in the last one the derivative acts on one of the delta functions appearing in the Fourier transform,
δ(2p2 · q). Grouping together the first two terms, we thus find

iJ
(o)
αβ = FT

∫
k[α

∂

∂kβ]



d(LIPS)

k

p1

p2

q1

−q1 − k




p4

p3

q − q1

q1 + k − q−k

− FT
(2)
[α

∫
d(LIPS)kβ] k

p1

p2

q1

−q1 − k

q − p1

q − q1

k − q + q1

(8.128)

with FT(2)
α given by

FT(2)
α [fµ(q)] ≡

∫
dDq

(2π)D
2πδ(2p1 · q) 2π

δ(2p2 · q)
∂qα

eib·q fµ(q) . (8.129)

This modified Fourier transform acts on a quantity that looks like the q-space expression of P α.
However, due to the derivative acting on δ(2p2 · q), we can no longer calculate this quantity
by assuming v2 · q = 0. To evaluate (8.129), let us start by introducing velocities as in (1.7),
pµ1 = −m1v

µ
1 and pµ2 = −m2v

µ
2 so that

FT(2)α [fµ(q)] =
uα2

4m1m2

∫
dDq

(2π)D
2πδ(v1 · q) 2πδ′(v2 · q) eib·q fµ(q) . (8.130)

Proceeding as in Appendix A.3, and in particular decomposing the integrated momentum qµ as
in (1.10), we find

FT(2)
α [fµ(q)] = −v2α

∫
dD−2q⊥
(2π)D−2

δ(q‖1)dq‖1 2πδ′(q‖2)dq‖2

4m1m2

√
σ2 − 1

eib·q⊥ fµ(q) . (8.131)

Integrating by parts (i.e. using the definition of the δ′ distribution) we can recast this as the
ordinary Fourier transform of a derivative, obtaining

FT(2)
α [fµ(q)] = v2α FT

[
∂

∂q‖2
fµ(q)

]
. (8.132)
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The second line of (8.128) can be simplified using (8.132) so that

iJ
(o)
αβ = FT

∫

k

k[α
∂

∂kβ]



d(LIPS′)

k

p1

p2

q1

−q1 − k




p4

p3

q − q1

q1 + k − q−k

− v2[α FT
∂

∂q‖2

∫
d(LIPS)kβ] k

p1

p2

q1

−q1 − k

q − p1

q − q1

k − q + q1

.

(8.133)

The dependence on q‖2 in the integrand appearing in the second line comes from v2 · q and from
the invariants that involve q‖2 and a loop momentum, or in q2 itself: I(v2 ·q, q · ℓ1, q · ℓ2, q2). Then,
since

v2 · q = −q‖2 ,
ℓ1 · q = ℓ1 · q⊥ + ℓ1 · v̌2 q‖2 ,
ℓ2 · q = ℓ2 · q⊥ + ℓ2 · v̌2 q‖2 ,
q2 = q2⊥ + q2‖2

(8.134)

we find
∂I

∂q‖2
= − ∂I

∂v2 · q
+ ℓ1 · v̌2

∂I

∂(q · ℓ1)
+ ℓ2 · v̌2

∂I

∂(q · ℓ2)
, (8.135)

because q2 is quadratic in q‖2 so its derivative vanishes at q‖2 = 0.
Let us comment as to why there are no ambiguities associated to derivatives of delta functions.

As is clear from (5.51), one is allowed to choose different expressions for the five-point amplitude
provided that they only differ by terms that vanish when

v1 · ℓ1 = 0 or v2 · ℓ1 + v2 · ℓ2 = 0 , (8.136)

thanks to the delta functions. Different choices for these modifications will change each line in
(8.133) separately, but will not change the total sum, provided of course that the same choice
is made consistently in both lines. The easiest option is to just treat q1 and k as completely
independent integration variables, and let the derivative of the delta functions automatically take
care of their interdependence on-shell due to the longitudinal components.

Although we discussed the above steps for bα2 = 0, we present the final results in a frame where
bα1 + bα2 = 0, related to the previous one by a translation by −bα/2 (see Eqs. (8.121), (8.123)),
where particle-interchange symmetry is manifest. Defining E± and F in terms of the functions E
in (8.107) and C given by

C
π
= g1 + g2 log

σ + 1

2
+ g3

σ arccoshσ

2
√
σ2 − 1

,

g1 =
105σ7 − 411σ6 + 240σ5 + 537σ4 − 683σ3 + 111σ2 + 386σ − 237

24(σ2 − 1)2
,

g2 =
35σ5 − 90σ4 − 70σ3 + 16σ2 + 155σ − 62

4(σ2 − 1)
,

g3 = − (2σ2 − 3)
(
35σ5 − 60σ4 − 70σ3 + 72σ2 + 19σ − 12

)

4 (σ2 − 1)2

(8.137)
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[117, 118, 332] by letting

C
√
σ2 − 1 = −E+ + σE− , F = E+ − 1

2 E = −E− + 1
2E , (8.138)

we find

Jαβ ≃ G3m2
1m

2
2

b3
F(σ)

(
b[αv̌

β]
1 − b[αv̌

β]
2

)
, F(σ) = (σ − 1)E − 2

√
σ2 − 1C

2(σ + 1)
. (8.139)

After a translation

aµ =
E2 − E1

2(E1 + E2)
bµ , (8.140)

which places the center of mass (or rather “center of energy”) in the origin of the transverse plane,
Eq. (8.139) becomes

Jαβ ≃ G3m1m2

b3

[
b[α(m1p2 −m2p1)

β] C(σ)√
σ2 − 1

+
m1m2

E2
E(σ) σ − 1

σ2 − 1

(
b[αp

β]
1 (m1 +m2σ)− b[αpβ]2 (m2 +m1σ)

)] (8.141)

that, in the center of mass system where −p1 = (E1, p) and −p2 = (E2,−p), reproduces Eq. (15)
of Ref. [332] except for the static (zero-frequency) modes. Adding (8.141) with such contribution
as given by (7.89) expanded up to O(G3), one reproduces the full result of Ref. [332],

Let us now provide the analogous formulas expressing the angular momentum that is lost by
each particle, which we derive in full detail. Acting with the angular momentum operator

L(1)αβ = −i
∫

k1

a†1(k1)k1[α
∂a1(k1)

∂k
β]
1

(8.142)

on the initial state (8.1) and using the commutation relations, one finds

Lαβ
(1)|ψ〉 =

∫

−p1

∫

−p2

(
−ip[α1 ∂β]p1

Φ1(−p1)
)
Φ2(−p2) eib1·p1+ib2·p2 | − p1,−p2〉

+

∫

−p1

∫

−p2

b
[α
1 (−pβ]1 )Φ1(−p1)Φ2(−p2) eib1·p1+ib2·p2 | − p1,−p2〉 .

(8.143)

The corresponding expectation value is therefore

〈ψ|Lαβ
(1)|ψ〉 =

∫

−p1

Φ∗
1(−p1)

(
−ip[α1 ∂β]p1

Φ1(−p1)
)
+

∫

−p1

b
[α
1 (−pβ]1 )|Φ1(−p1)|2 . (8.144)

Let us now act on the final state dictated by the eikonal operator. For notational simplicity,
we discuss the action of the eikonal operator (8.35) which does not include the static-mode
contributions involving Fµν . They can be easily reinstated by replacing Wj(x1, x2, k) with

θ(k0 − ω∗)W(x1, x2, k) + θ(ω∗ − k0)fj(x1, x2, k). Doing this and replacing Re 2δ with 2δ̃, one
obtains the result for (8.51). For simplicity, we also suppress the additional integrals over x and
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Q, which do not play a role in the derivation. With this proviso, we start by calculating

L(1)αβS|ψ〉 =
∫

p3

∫

p4

e−ib1·p4−ib2·p3 |p3, p4〉

×
∫

dDQ1

(2π)D

∫
dDQ2

(2π)D

∫
dDx1

∫
dDx2 e

i(b1−x1)·Q1+i(b2−x2)·Q2+2iδ(b)

×
(
b1[α|p4|β] + p4[α

∂2δ(b)

∂p
β]
4

+

∫

k

p4[α
∂

∂p
β]
4

W(x1, x2, k) a
†(k)

)

× ei
∫
k
W(x1,x2,k) a

†(k)|0〉Φ1(p4 −Q1)Φ2(p3 −Q2)

+

∫

p3

∫

p4

e−ib1·p4−ib2·p3 |p3, p4〉

×
∫

dDQ1

(2π)D

∫
dDQ2

(2π)D

∫
dDx1

∫
dDx2 e

i(b1−x1)·Q1+i(b2−x2)·Q2+2iδ(b)

×
(
−ip4[α

∂

∂p
β]
4

Φ1(p4 −Q1)

)
ei

∫
k
W(x1,x2,k) a

†(k)|0〉 Φ2(p3 −Q2)

(8.145)

In order to make the expression slightly more compact, we used (5.52) in the exponents to reabsorb
the imaginary part of 2δ arising from the reordering of the exponential factors. In the last line we
can use

p4[α
∂

∂p
β]
4

Φ1(p4 −Q1) = (p4 −Q1)[α
∂

∂p
β]
4

Φ1(p4 −Q1)−Q1[α
∂

∂Q
β]
1

Φ1(p4 −Q1) (8.146)

and integrate by parts the second term. Doing this and defining the operator

O(1)αβ = p4[α
∂

∂p
β]
4

+Q1[α
∂

∂Q
β]
1

(8.147)

we can write

L(1)αβS|ψ〉 =
∫

p3

∫

p4

e−ib1·p4−ib2·p3 |p3, p4〉

×
∫

dDQ1

(2π)D

∫
dDQ2

(2π)D

∫
dDx1

∫
dDx2 e

i(b1−x1)·Q1+i(b2−x2)·Q2+2iδ(b)

×
(
x1[α|Q1|β] +O(1)αβ2δ(b) +

∫

k

O(1)αβW(x1, x2, k) a
†(k)

)

× ei
∫
k
W(x1,x2,k) a

†(k)|0〉Φ1(p4 −Q1)Φ2(p3 −Q2)

+

∫

p3

∫

p4

e−ib1·p4−ib2·p3 |p3, p4〉

×
∫

dDQ1

(2π)D

∫
dDQ2

(2π)D

∫
dDx1

∫
dDx2 e

i(b1−x1)·Q1+i(b2−x2)·Q2+2iδ(b)

×
(
b1[α|(p4 −Q1)|β] − i(p4 −Q1)[α

∂

∂p
β]
4

Φ1(p4 −Q1)

)
ei

∫
k
W(x1,x2,k) a

†(k)|0〉 Φ2(p3 −Q2) .

(8.148)
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For the expectation value, we find

〈ψ|S†L(1)αβS|ψ〉

=

∫

p3,p4

∫
dDQ′

1

(2π)D

∫
dDQ′

2

(2π)D

∫
dDx′1

∫
dDx′2 e

−i(b1−x′
1)·Q′

1−i(b2−x′
2)·Q′

2−iRe 2δ(b′)

×
∫

dDQ1

(2π)D

∫
dDQ2

(2π)D

∫
dDx1

∫
dDx2 e

i(b1−x1)·Q1+i(b2−x2)·Q2+iRe 2δ(b)

×
(
x1[α|Q1|β] +O(1)αβ2δ(b)− i

∫

k

W∗(x′1, x
′
2, k)O(1)αβW(x1, x2, k)

)
|0〉

× e− Im2δ(b′)−Im 2δ(b)+
∫
k
W∗(x′

1,x
′
2,k)W(x1,x2,k)

× Φ∗
1(p4 −Q′

1)Φ
∗
2(p3 −Q′

2)Φ1(p4 −Q1)Φ2(p3 −Q2)

+

∫

p3,p4

∫
dDQ′

1

(2π)D

∫
dDQ′

2

(2π)D

∫
dDx′1

∫
dDx′2 e

−i(b1−x′
1)·Q′

1−i(b2−x′
2)·Q′

2−iRe 2δ(b′)

×
∫

dDQ1

(2π)D

∫
dDQ2

(2π)D

∫
dDx1

∫
dDx2 e

i(b1−x1)·Q1+i(b2−x2)·Q2+iRe 2δ(b)

×
(
b1[β|(p4 −Q1)|α]Φ1(p4 −Q1)− i(p4 −Q1)[α

∂

∂p
β]
4

Φ1(p4 −Q1)

)

× e− Im2δ(b′)−Im 2δ(b)+
∫
k
W(x′

1,x
′
2,k)W(x1,x2,k)

× Φ∗
1(p4 −Q′

1)Φ
∗
2(p3 −Q′

2)Φ2(p3 −Q2) .

(8.149)

At the saddle point,

〈ψ|S†L(1)αβS|ψ〉

=

∫

p3,p4

|Φ1(p4 −Q1)|2 |Φ2(p3 −Q2)|2

×
(
x1[α|Q1|β] + O(1)αβ Re2δ(b)− i

∫

k

W∗(x1, x2, k)
↔
O(1)αβW(x1, x2, k)

)

+

∫

p3,p4

Φ1(p4 −Q1)
∗ |Φ2(p3 −Q2)|2

×
(
b1[β|(p4 −Q1)|α]Φ1(p4 −Q1)− i(p4 −Q1)[α

∂

∂p
β]
4

Φ1(p4 −Q1)

)

(8.150)

and shifting the integration like in Section 8.1.2, p4 = Q1 − p1, p3 = Q2 − p2 and recognizing the
last line as the angular momentum of the initial state (8.144), we finally obtain

〈ψ|S†L(1)αβS|ψ〉 − 〈ψ|L(1)αβ |ψ〉

=

∫

−p1,−p2

|Φ1(−p1)|2 |Φ2(−p2)|2

×
(
x1[α|Q1|β] + O(1)αβ Re2δ(b)− i

∫

k

W∗(x1, x2, k)
↔
O(1)αβW(x1, x2, k)

)
(8.151)

with O(1)αβ the operator (8.147).
Performing the appropriate replacements discussed below (8.144), if we are interested in the

angular momentum up to G3 including the static modes, we thus have

∆Lαβ
(1) = x1[α|Q1|β] + p4[α]

∂2δ̃(b)

∂p
β]
4

− i
∫

k

Ã(5)p4[α
∂

p
β]
4

Ã(5) − i
∫

k

F ∗O(1)αβF +O(G4) , (8.152)
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where we have neglected the second term in the operator (8.147) in O(1)αβ2δ̃ and similarly in

Ã(5)∗O(1)αβÃ(5), because it would give O(G4) effects since Ã(5)∗Ã(5) is already O(G3). Instead,
as we shall see, it is important to keep it in F ∗O(1)αβF because it grants the identity

O(1)αβF
µν = p4[α

∂Gµν

∂p
β]
4

+ p1[α
∂Gµν

∂p
β]
1

, (8.153)

where Gµν(p4, p3, p1, p2) is the “soft factor” seen as a function of four independent hard momenta,
i.e.

Fµν(p4, p3, Q1, Q2) = Gµν(p4, p3, Q1 − p4, Q2 − p3) . (8.154)

In the following, we will calculate (8.152), breaking it down into the following terms

∆Lαβ
1 = ∆Lαβ

(1c) +∆L
αβ
1 +∆Lαβ1 (8.155)

and similarly for particle 2. The conservative term reads as follows, using that the difference
between xµ1 and bµ1 is aligned with Qµ as can be seen from the saddle point condition (8.52a) and
from Eqs. (8.8), (8.9) ,

∆Lαβ
(1c) = x1[α|Q|β] + p4[α]

∂Re 2δ̃(b)

∂p
β]
4

= b1[α|Q|β] + p4[α]
∂ Re2δ̃(b)

∂p
β]
4

. (8.156)

We already calculated (8.156) in Eq. (8.23) and following. The radiative terms is given by

∆L
αβ
i = ImJ

αβ
i + b

[α
i Q

β]
i (8.157)

where Qα
i is the radiative contribution to the impulse as in (8.108) and we defined the shorthand

J iαβ =

∫

k

pi[α
∂Ã(5)

∂p
β]
i

Ã(5)∗ . (8.158)

Focusing for definiteness on particle 2 in a frame where bα2 = 0, and proceeding in a manner
entirely analogous to what we did for Jαβ , one arrives at the following expression in terms of
three-particle cuts,

J2αβ = FT

∫
v2[α

∂

∂v
β]
2



d(LIPS)

k

p1

p2

q1




q − q1

+ v2[α FT
∂

∂q‖2

∫
d(LIPS)(q1 + k)β] k

p1

p2

q1 q − q1

(8.159)

and employing reverse-unitarity we obtain the result

∆L
αβ
1 ≃

G3m2
1m

2
2

b3

[
+
E+b[αvβ]1

σ − 1
− 1

2
E b[αv̌β]2

]
,

∆L
αβ
2 ≃

G3m2
1m

2
2

b3

[
−E+b

[αv
β]
2

σ − 1
+

1

2
E b[αv̌β]1

]
.

(8.160)
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Of course the expression for particle 1 is obtained by interchanging particle labels everywhere.
The radiative quantities (8.139) and (8.160) obey the balance law

Jαβ +∆L
αβ
1 +∆L

αβ
2 = 0 . (8.161)

Finally, the static-mode contributions to the changes in the angular momenta are given by the
following formula valid up to O(G3),

∆Lαβ1 =

∫

k

F ∗


p4[α

↔
∂

∂p
β]
4

+Q1[α

↔
∂

∂Q
β]
1


F + b

[α
1 Q

β]
1 , (8.162)

where Qβ
1 is the static contribution to the impulse, (8.114). Under a translation (8.121), ∆Lαβi →

∆Lαβi + a
[αQβ]

i . Making use of the identity (8.153), we see that

−i
∫

k

F ∗


p4[α

↔
∂

∂p
β]
4

+Q1[α
∂

∂Q
β]
1


F = −i

∫

k

G∗p1[α

↔
∂

∂p
β]
1

G− i
∫

k

G∗p4[α

↔
∂

∂p
β]
4

G = J(1)αβ +J(4)αβ ,

(8.163)
where we have defined

J(n)αβ = −i
∫

k

G∗pn[α

↔
∂

∂p
β]
n

G . (8.164)

Of course, a similar manipulation works for particle 2. The integrals appearing in these combina-
tions can be evaluated in the same way as those we discussed in the previous section and give the
following result for m = 1, 2, 3, 4,

2ηmJ
αβ
(m) =

∑

ηn=−ηm

cnm p[αn p
β]
m −

∑

ηn=ηm

n6=m

dnm p[αn p
β]
m , (8.165)

For instance,

2Jαβ
4 = c14p

[α
1 p

β]
4 + c24p

[α
2 p

β]
4 − d12p

[α
3 p

β]
4 . (8.166)

with cnm as defined in (7.86) and

dnm = 2G
σ2
nm − 1

2

σ2
nm − 1

. (8.167)

In conclusion, we find the following result for (8.162) and for the analogous expression for particle
2

∆Lαβ1 = Jαβ
1 + Jαβ

4 + b
[α
1 Q

β]
1 , ∆Lαβ2 = Jαβ

2 + Jαβ
3 + b

[α
2 Q

β]
2 . (8.168)

Here, Qα
1 = −Qα

2 is the 3PM radiation-reaction contribution to the impulse,

Qα
1 = −GQ

2
1PMb

α

2b2
I(σ), Q1PM =

2Gm1m2(2σ
2 − 1)

b
√
σ2 − 1

(8.169)

with I(σ) as in (7.88). One can easily check that

Jαβ
1 + Jαβ

2 + Jαβ
3 + Jαβ

4 = −J αβ . (8.170)

Moreover, b
[α
1 Q

β]
1 + b

[α
2 Q

β]
2 = (b1 − b2)[αQβ]

1 = b
[α
J Q

β]
1 = 0 (up to O(G4) corrections as follows

from (8.12)) which vanishes by antisymmetry. As a result, these static contributions obey the
“separate” balance law

J αβ +∆Lαβ1 +∆Lαβ2 = 0 (8.171)

so that, in conclusion,
Jαβ +∆Lαβ

1 +∆Lαβ
2 = 0 . (8.172)
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9. Summary and Outlook

Conventional perturbation theory provides, in the common practice, the main tool to approach
scattering-amplitude calculations. It is based on the assumption that, in the regime of interest,
the relevant coupling constant can be regarded as sufficiently small. A textbook example is
Quantum Electrodynamics, in which elementary charges couple via the fine-structure constant,
e2/~ ≈ 1/137. The situation is dramatically different when it comes to gravitational interactions
of classically sizable objects, such as black holes with masses (and, thus, energies) much larger
than the Planck mass, whose effective coupling GE2/~ is extremely large. This seemingly renders
our most effective techniques to calculate scattering amplitudes useless to study the classical limit
of gravity.

In this report, we illustrated how the eikonal exponentiation serves as a convenient, flexible and
conceptually transparent tool to attack this problem in a variety of different theories and setups.
This mechanism “builds” classical gravitational interactions by resumming the exchanges of many
gravitons, in accordance with the intuition that their number, like any quantum number, should
become large in the classical limit. Their contributions to the 2 → 2 amplitude A exponentiate,
so that in the classical limit 1 + iÃ ≃ e2iδ0 with 2δ0(s, b) the leading eikonal phase, which is
simply dictated by the single-graviton exchange and indeed proportional to GE2/~. In this way,
perturbation theory comes back into the game since, by matching to the eikonal exponentiation,
the calculation of higher-loop amplitudes allows one to obtain successively more refined approxi-
mations for this exponent, 2δ0+2δ1+ · · · , weighted by the classical small PM parameter GE/b. In
turn, the rapidly oscillating nature of the exponentiated amplitude fixes the values of the classical
exchanged momentum, the impulse, via a saddle point condition.

After reviewing the combinatoric proof of the leading eikonal exponentiation, and illustrating
its connection with the impulse and classical deflection angle, as well as the close relation with
the phase shifts perhaps more familiar from elementary treatments of the angular momentum in
quantum mechanics, we went on to discuss the single-exchange O(G) eikonal phase 2δ0 and its
manifold applications: minimally coupled massive particles in GR, both spinless and carrying a
classical spin, massive particles in maximal supergravity, and string collisions. In many situations,
proving the exponentiation to all orders is impractical, and one can resort to a more pragmatic
approach of checking the constraints it imposes at each loop level. In this spirit, we presented
the discussion of one-loop amplitudes in the classical limit both in order to retrieve the next-
to-leading O(G2) phase 2δ1 and as a means of checking the i(2δ0)

2/2! term dictated by the
two-graviton exchanges. A similar pattern holds for high-energy string scattering, and in the
string setup new interesting phenomena arise. In particular, already the leading string eikonal is
promoted to an operator: for instance, excitations in the s-channel have to be included at short
distances, while tidal deformations can become important also at large distance. We showed that
the leading energy contribution of the one-loop elastic amplitude in string theory is consistent with
the exponentiation of the leading eikonal operator, but currently a similar analysis for massive
string states is lacking.

After a detour into the interconnections between unitarity and the b-space exponentiation,
we reviewed the two-loop, O(G3), calculation focusing on maximal supergravity and GR. The
O(G3) eikonal 2δ2 is the lowest-order contribution to the classical exponent at which imprints of
the dissipative nature of the scattering problem manifest themselves. It possesses both so-called
radiation-reaction terms in its real part, which reflect into time-reversal-odd contributions to the
deflection angle, and an infrared-divergent imaginary part. The latter is due to the fact that
the 2 → 2 amplitude by its very nature neglects the emitted radiation, and, via unitarity, this
corresponds to nontrivial three-particle cuts that the standard exponentiation does not account for.
We therefore took a first step to amend this shortcoming by combining the eikonal exponentiation
with the Weinberg exponentiation of soft quanta, which ought to be included in the description
of any physical scattering event in order to obtain infrared-safe final quantities and to restore
manifest unitarity. The general nature of soft theorems also allowed us to take a peek beyond
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the conventional PM regime, by relaxing the assumption that the impulse be parametrically small
compared to the masses. The resulting exponential structure combining elastic collisions with
inelastic emission processes takes the form of an operator, and in the last section we provided a
self-contained discussion of this eikonal operator to O(G3) beyond the soft approximation, where
it neatly disentangles conservative and dissipative effects, and allows one to calculate a variety of
different observables such as the emitted energy and angular momentum during the collision.

Together with the emergence of these new theoretical structures, which we illustrated in detail
in this report, the classical limit also presents simplifying features, mainly when it comes to
evaluating loop integrals. In this limit, as long as the colliding objects stay far apart, one can focus
on those contributions to loop integrals that are non-analytic in q-space and therefore relevant
to the long-range behavior in b-space [340, 341]. A key simplification in this respect is due to
the method of region [253, 342], which permits to focus on such contributions directly, without
the need to first evaluate the full integrals and then take their asymptotic expansions. We have
briefly presented a few simple applications of this method, while dedicating more space to the
physical lessons that can be extracted from the results of its application. Similarly, we have
extensively applied, but only sketched, the powerful method of reverse-unitarity [343–346, 118,
117], which allows one to calculate phase-space integrals from discontinuities of more conventional
loop integrals. In summary, we hope to have been able to convey the main physical ideas behind
the eikonal exponentiation of gravity amplitude up to O(G3), and to have stimulated the reader’s
interest and curiosity towards this angle of approach to the problem of gravitational scattering,
which not only led to the discovery of new patterns and to an improved theoretical understanding
of gravity, but also to very concrete new predictions for gravitational observables.

At this stage, several open challenges lie ahead, both from a conceptual and from a technical
standpoint. Remaining at “low” PM orders, all observables including the deflection angle and
the emitted energy and angular momentum can be determined up to 3PM from the knowledge of
the 2 → 2 amplitude up to two loops and of the tree-level 2 → 3 amplitude in the classical limit
[118, 47, 117, 332, 145]. However, as we have reviewed in the respective chapters, these observables
behave very differently when one considers collisions with increasing center-of-mass energies. The
deflection angle up to 3PM turns out to be perfectly smooth in the limit in which this energy E
(equivalently, the Lorentz factor σ) is taken to be large by keeping the leading deflection angle
GE/b small and fixed, i.e. in the ultrarelativistic limit. This is actually crucial in order to ensure
agreement with an early calculation of this quantity for collisions of massless objects [15], and
in order to clarify its universality. In this limit, the massless particle with the highest spin, the
graviton, dominates, since it couples to the highest power of the energy, and the deflection angle
becomes the same for any theory where this condition is satisfied. In contrast, the 3PM emitted
energy and angular momentum only make sense below the bound given by (7.94), i.e. provided√
σ(GE/b) is at most of order one [333, 337, 338]. Trusting their 3PM expressions beyond this

threshold leads to nonsensical conclusions, as the systems seems to be able to radiate much more
energy and angular momentum than it possessed to begin with! A veritable “energy crisis”.

Guided by the example of the Zero-Frequency Limit of the energy emission spectrum, which is
governed by soft theorems and can thus be calculated independently of the PM approximation [144,
112], it is highly likely that this singularity arises due to the fact that we are attempting to calculate
the coefficient of a power series, the “expansion in powers of G” (or PM expansion), of a quantity
which is actually not analytic in G. This issue emerged very clearly in the ZFL of the spectrum
[112], where the full expression starts exhibiting a branch singularity precisely at the bound (7.94).
In that case, the correct high-energy limit for the fraction of energy radiated at frequencies between
0 and 1/b does not behave, unphysically, like (GE/b)3 log σ, which is unbounded as σ → ∞, but
rather exhibits (bounded) non-analytic terms of the type (GE/b)3 log(GE/b). It is tempting to
speculate that a similar mechanism may apply to the full emitted energy and angular momentum
as well, in order to produce a possibly non-analytic but still physically sensible answer for their
ultrarelativistic limits. This task is made challenging by the fact that soft theorems no longer apply
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to such integrated quantities, but it is also of great interest since it would provide a connection
with the results obtained for the scattering of massless objects in Refs. [335, 142, 143].

Scatterings of massless states have been the subject of intense studies up to two loops in string
theory, already in the early days of the gravity eikonal [15] and, hopefully, the progress within
a QFT approach discussed in this report will motivate new further studies in this string theory
context. It would be interesting to derive the 2PM string eikonal operator (2δ̂1 in our notation)
and use the new results on higher-loop string amplitudes obtained over the past 20 years (see for
instance [347] and references therein) to investigate systematically the eikonal exponentiation in
string theory beyond the one-loop level, which is what has been included in this report. More-
over, little is known as far as the exponentiation of string amplitudes involving massive states
is concerned, see however [228]. Borrowing from the mileage and intuition gained in the field
theory context, where the corresponding studies have reached three loops [40, 41], in particular
the focus on the non analytic terms that dominate the long range dynamics, will certainly provide
a pivotal simplification, compared to the study of the full amplitude. Moreover, it could prove
useful to introduce masses via Kaluza–Klein compactification rather than by considering excited
string states.

Moving on to a broader perspective, outstanding efforts have been recently devoted to the
endeavor of bringing amplitude-based techniques for gravitational-wave physics closer to timely
phenomenological applications, along two main directions: analytically continuing the results
obtained from scattering amplitudes to the bound-system kinematics, and including all relevant
effects beyond the point-particle approximation. Moving forward, it will of course be interesting
to undertake similar analysis by means of the eikonal exponentiation as well.

In the present report we have discussed a few basic steps towards making the information
extracted from the amplitude more directly available for applications to bound systems, of which
binary mergers represent the key relevant example for observational purposes, in the spirit of the
so-called Boundary-to-Bound dictionary [291–293, 348]. This connection is essentially based on
an analytic continuation, one could say, from “positive” to “negative” energy (after subtracting
the rest mass in the CM frame). In addition, since most binary systems revolve along on quasi-
circular trajectories, the resulting information also needs to be matched from a regime of large
eccentricities, more directly accessible from the PM expansion, to small or vanishing eccentricities.
We have illustrated how this can be done in practice, starting from 1PM and 2PM data in order
to retrieve all PN data up to 2PN, while we leave the investigation of how 3PM and 4PM eikonal
data may eventually combine to yield the 3PN and 4PN information for future work.

String scattering represents a prototypical example where the colliding objects possess an in-
ternal structure, which manifests itself as a dependence of the eikonal operator on the string’s
excitation modes (see Section 3.2.4). For phenomenological applications, one can similarly intro-
duce such deformations, encoding in particular tidal Love numbers and higher-multiple modes in
the amplitude approach [50–54] in an EFT spirit [113] by means of suitable additional parameters.
This is particularly relevant for neutron stars, whose tidal deformability properties are expected to
provide insights into their Quantum Chromodynamical origin, internal structure and on the result-
ing equation of state. Including classical spin effects is also important and this poses a challenge as
far as the amplitude approach is concerned. Indeed, while masses and tidal deformabilities can be
simply encoded in a Lagrangian formulation via suitable continuous parameters, the intrinsically
quantized nature of spin s in the quantum world poses an obstacle to taking the classical limit,
in which ~s should become classically sizable and s attain very large values. In this report we
have presented a self-contained account of a simple strategy to include classical spin effects in
the leading eikonal, i.e. to first order in GM/b but formally to all orders in the spin parameter.
At present, the inclusion of spin from one-loop order onward relies on a strategy to break down
the calculation into an expansion in spin multipoles. The missing ingredient to upgrade this to
an all-order-in-spin calculation, the Compton-like amplitude with classical spin, remains partly
elusive, despite encouraging recent developments [58–82, 349, 83, 84, 350–352] including possible
ties with states built out of the string spectrum [353]. The only exception is the calculation of
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the radiation reaction at two-loop order [81] that, as in the spinless case discussed in [106], is only
based on the soft limit of the five-point amplitude. The result obtained with this approach agrees
in the small spin limit with the complete two-loop calculation for the spin one case fully described
by an extended N = 2 world-line supersymmetry [136].

Coming to the frontier in the G-expansion [38, 39, 104, 289, 131, 41, 118, 47, 40, 135, 332,
138, 354], a potentially loose end concerns the integrals over fluctuations around the saddle points
characterizing the classical limit. Following the literature, we have presented the derivation of
classical observables associated to the scattering by taking appropriate expectations of the relevant
operators on the final state dictated by the action of the eikonal operator (minus their expectation
on the initial state), and evaluated the integrals by means of the saddle point conditions. In
principle, one should be able to check that the Gaussian integrals for the fluctuations about such
classical values eventually produce suppressed contributions, either weighted by powers of ~ or,
perhaps more plausibly, of GE/b. In the latter case, it will be of course important to take them
into account in the appropriate way when moving to higher orders in this parameter. Put another
way, it should be possible to explicitly check the normalization condition for the final state, which,
in a novel fashion, brings us back to the original issue of unitarity restoration in the classical limit.

In this connection let us mention, for completeness, a partially successful attempt [355] at
constructing a semiclassical unitary S-matrix in the case of ultrarelativistic (massless) collisions.
In Subsections 3.2.6, 4.2.5 we have discussed what has been achieved in the two regimes labeled
as I and II in Fig. 12. Unfortunately, the most interesting regime, the one leading classically to
gravitational collapse, is also the most difficult one to analyze. So far, it has only been approached
in the point-particle limit and in D = 4 (although going to D > 4 one would avoid having to deal
with some infrared divergences). The problem at hand is that the PM expansion is an expansion
in powers of R/b and, precisely because of gravitational collapse, it is expected to break down at
some critical value ofO(1) for that ratio (see Fig. 12). The only simplification that looks to be fully
justified is that, order by order in the above expansion, the dominant diagrams contributing to
the semiclassical eikonal phase consist of connected tree-diagrams involving the gravitons emitted
by the two energetic particles as external lines (see Fig. 19). Adding disconnected diagrams

· · ·

· · ·

Figure 19: Dominant diagrams contributing to the semiclassical eikonal phase. The shaded blob stands for a generic
connected tree-level topology.

with the same external legs should exponentiate the eikonal phase in a standard way (much like
the two-particle reducible contributions of Ref. [111]). Summing tree-diagrams is supposed to
be equivalent to solving a classical field theory. Using work by Lipatov [356] one can make a
reasonable guess about the form of such field theory in the high-energy limit. After simplifying
further Lipatov’s action a two-dimensional field theory was proposed and studied in [355] with
reasonable success in view of the rough approximations made. We refer to the literature concerning
those developments and only mention here that critical values for R/b in good agreement with the
classical expectations discussed in Section 2.4 were indeed found [357–359]. On the other hand,
in spite of considerable effort [360, 361], control of unitarity could not be achieved in any simple
way above the critical value. At the same time, no strong claim of unitarity loss below bc can be
made in view of the many unjustified approximations made along the way.

Coming back to the PM expansion, there still are aspects of the full 4PM result [138] that

174



need to be investigated including a more detailed comparison with the PN approaches [261, 362].
It will certainly be interesting to continue the analysis of the classical dynamics at three loops
beyond the case of scalar particles, along the lines of [354], and also to calculate the angular
momenta at 4PM. Recently the conservative classical dynamics at four loops was studied for the
relativistic scattering in electrodynamics [363], paving the way for the analysis of the GR case
at 5PM. From the 4PM order, new exciting physical phenomena manifest themselves: tail and
recoil effects. The tail effect is caused by an interaction between the two-body system and the
gravitational energy that is first emitted and then reabsorbed by the system itself [30, 364, 365].
For this reason, it can be regarded as a “globally conservative” type of interaction which is however
nonlocal in time, and thus very different from the typical “potential” interactions, whereby each
objects feels the gravitational pull of the other one. Recoil is caused by the net emission of linear
momentum and represents a novel dissipative effect that combines with the more familiar back-
reaction of radiation emissions on the relative motion to that order. Notably, recoil implies that,
even if the system is observed from the initial center-of-mass frame, the two bodies will in general
experience different deflection angles compared to their original direction of motion. It will be
important to investigate how such phenomena fit together in an improved version of the eikonal
operator, yet to be formulated, in order to clarify the classical limit of the amplitude(s) up to 4PM
order. A first step in this direction has been taken in [145] where the linear reaction [296] at 4PM
was derived from an expansion of the stationary phase conditions (8.52), using in particular the
prescription (8.36), finding perfect agreement with the result of [332]. In addition the high-energy
behavior of the 4PM deflection angle(s) currently available in the literature points to a breakdown
of the smoothness property enjoyed by it up to 3PM. Whether or not this is to be regarded as a
manifestation of the bound (7.94) certainly deserves further investigation.

This also relates to another open puzzle in massless N = 8 supergravity amplitudes, where
it was observed that the exponentiation of the elastic 2 → 2 amplitude fails precisely starting to
order O(G4) due to a superclassical mismatch proportional to Im2δ2 [44, 45]. Armed with the
appropriate eikonal operator, whose phase is by construction manifestly real, it will hopefully be
possible to move past this obstacle by appropriately including all relevant inelastic channels as
well.

As we have discussed in the last two sections of this report, the first step in this direction, which
up to 3PM completely clarifies the structure of the exponentiation and allows for a systematic
calculation of the observables, is to combine eikonalized (virtual) graviton exchanges with coherent
(real) graviton emissions, effectively producing an operator that links elastic 2→ 2 with inelastic
2 → 3 amplitude. One cannot help but wonder whether the ingredients entering the next order
will eventually turn out to be essentially the same, or if instead new ones are to be included.
For instance it is possible that new amplitudes will need to be exponentiated, in particular the
Compton-like graviton scattering in Fig. 6, as suggested by the fact that they appear as possible
sub-diagrams or cuts of higher loop 2 → 3 and 2 → 2 amplitudes [146, 147, 257, 148] (while of
course analogous 1 → 3 processes with two final gravitons in the final states are kinematically
forbidden). A closely related issue concerns the possible emergence of correlations among graviton
emissions, in particular due to the constraint of total energy conservation. Such effects, which
ought to be encoded to leading order in the 2 → 4 amplitude with two graviton emissions, have
been shown to be absent at tree level, and the picture of a coherent, uncorrelated emission has not
received corrections so far [120, 336]. Further research and careful scrutiny will hopefully help to
clarify these points. Here we would like to mention some of the most recent developments which
confirm the usefulness of the eikonal approach in the analysis of subleading PM corrections.

Extending the logic presented in this report, it is natural to generalize the eikonal operator
in (8.35) or (8.48) including in Wj also the subleading PM contributions that can be extracted
from the classical limit of the 2 → 3 amplitude at 1-loop. It would then be possible to derive
the NLO PM scattering waveform by following the same steps of Section 8.3.1. Starting from the
result for the classical 1-loop 5-point amplitude [146, 147, 257, 148], this problem is being under
intense investigation. First, the relation between the classical amplitude and the gravitational
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waveform becomes more subtle at NLO. As discussed in [255], the gravitational waveform is one
of the asymptotic observables requiring a non-standard time-ordering from the S-matrix point of
view, which, in the KMOC approach, is implemented by taking into account carefully some cut
contributions. At NLO, these contributions implement a change of frame for the waveform [366],
thus making the result very natural from the point of view of the eikonal exponentiation mentioned
after (8.35) and explaining the need of such a rotation to match the PM waveform against known
PN [367] or soft data [368]. Beside this, it was realised that the choice of BMS frame affects the
NLO waveform also beyond its delta-function contribution at zero-frequency [366]. A detailed
comparison between the NLO PM waveform and the PN results, including several non-linear
effects, is discussed in [369, 370] finding perfect agreement. It is certainly interesting to extend
this comparison to higher order to see whether the intuition based on the eikonal exponentiation
can again provide useful guidance.

Besides the applications mentioned above, the key idea underlying the gravitational eikonal
(resummation of leading contributions leading to an exponentiation) is likely to provide new
insights also in other contexts. For instance, the AdS/CFT duality is the perfect setup to study
some of the fundamental questions that motivated the early analysis of the gravitational eikonal
as mentioned in the introduction. Advances in the analytic calculation of holographic correlators
through a bootstrap approach [371, 372] can provide new tools to improve our understanding
of the gravitational eikonal in this context and possibly use it to study the nature of black-hole
microstates. The eikonal approach can be useful also to analyse the gravitational scattering in
more general curved backgrounds, see for instance [373, 374], which again can encode interesting
information about the nature of black holes as for instance pointed out in [375].
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Appendix A. Field Theory details and conventions

Appendix A.1. Permutation Identities

Let us first show by induction that

F (a1, . . . , an) ≡
∑

σ∈Sn

1

aσ1

· · · 1

aσ1 + · · ·+ aσn

=
1

a1 · · · an
. (A.1)

For n = 2, we find

F (a1, a2) =
1

a1(a1 + a2)
+

1

a2(a2 + a1)
=

1

a1a2
. (A.2)
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Moreover, denoting by Sn(j) the permutations such that σn = j, we can write

F (a1, . . . , an) =
1

a1 + · · ·+ an

n∑

j=1

[ ∑

σ∈Sn(j)

1

aσ1

· · · 1

aσ1 + · · ·+ aσn−1

]
. (A.3)

The quantity within brackets is equal to F (a1, . . . , âj , . . . , an), where âj means that aj is omitted.
Using the induction hypothesis we then find

n∑

j=1

F (a1, . . . , âj , . . . , an) =

n∑

j=1

1

a1 · · · âj · · · an
=
a1 + · · ·+ an
a1 · · · an

, (A.4)

so that (A.3) leads to (A.1). The quantity f in (2.16) is related to F by

f(a1, . . . , an) = (a1 + · · ·+ an)F (a1, . . . , an) , (A.5)

and therefore it is given by

f(a1, . . . , an) =

n∑

j=1

1

a1 · · · âj · · · an
. (A.6)

We shall now use (A.6) together with

2πδ(ω) =

∫
eiωtdt ,

1

ωk − i0
=

∫
e−i(ωk−i0)tkθ(tk) i dtk (A.7)

to simplify
T (ω1, . . . , ωn) ≡ 2πδ(ω1 + · · ·+ ωn)f(ω1 − i0, . . . , ωn − i0), . (A.8)

Let us again start from the n = 2 case, for simplicity. We have

T (ω1, ω2) =

∫
dt1dt2iθ(t1)e

iω1(t2−t1)eiω2t2 +

∫
dt1dt2iθ(t2)e

iω2(t1−t2)eiω1t1 (A.9)

so that shifting t1 → t2 − t1 in the first term and t2 → t1 − t2 in the second leads to

T (ω1, ω2) =

∫
dt1dt2 i [θ(t2 − t1) + θ(t1 − t2)] eiω1t1eiω2t2 (A.10)

and thus
1

2π
T (ω1, ω2) = 2iπ δ(ω1)δ(ω2) . (A.11)

A similar manipulation goes through for generic n, where

T (ω1, . . . , ωn) =

∫
dt1 · · · dtn

n∑

j=1

eiωjtj
∏

k 6=j

iθ(tk)e
iωk(tj−tk) . (A.12)

In each term of the sum over j, we can send tk → tj − tk for all k 6= j, to obtain

T (ω1, . . . , ωn) = in−1

∫
dt1 · · · dtn ei(ω1t1+···+ωntn)

n∑

j=1

∏

k 6=j

θ(tj − tk) . (A.13)

Noting that the factor involving the theta functions is 1 for any ordering of t1, . . . , tn finally yields

1

2π
T (ω1, . . . , ωn) = (2iπ)n−1δ(ω1) · · · δ(ωn) . (A.14)
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Appendix A.2. Feynman rules

In this appendix we collect useful Feynman rules. We start from the classical action describing
a massless scalar φ minimally coupled to gravity,

S =

∫
R

2κ2
√−g dDx− 1

2

∫
∂µφ g

µν ∂νφ
√−g dDx , (A.15)

with κ =
√
8πG. Defining gµν = ηµν + 2κhµν and retaining quadratic terms only, one finds

S(2) =
1

2

∫
hµν

[
2hµν − ∂µ∂αhαν − ∂ν∂αhαµ + ∂µ∂νh

α
α − ηµν

(
2hαα − ∂α∂βhαβ

)]
dDx

+
1

2

∫
φ2φdDx , (A.16)

where indices are raised and lowered using the Minkowski metric. To quantize the theory we go
to De Donder gauge,

∂αhµα =
1

2
∂µh

α
α . (A.17)

This requires adding to the action a gauge-fixing term plus suitable ghost contributions, which
however do not play any role in our classical analysis. The net effect is to replace S(2) with

S
(2)
DD =

1

2

∫
hµν

(
2hµν −

1

2
ηµν2h

α
α

)
dDx+

1

2

∫
φ2φdDx . (A.18)

Rewriting the graviton part in terms of

Dµν,ρσ =
1

2
(ηµρηνσ + ηµσηνρ − ηµνηρσ) , (A.19)

we find

S
(2)
DD =

1

2

∫
hµνDµν,ρσ 2h

ρσdDx+
1

2

∫
φ2φdDx . (A.20)

The inverse of Dµν,ρσ is

Pµν,ρσ =
1

2

(
ηµρηνσ + ηµσηνρ −

2

D − 2
ηµνηρσ

)
, (A.21)

which satisfies

Dµν,ρσPρσ,αβ =
1

2

(
δµαδ

ν
β + δναδ

µ
β

)
, (A.22)

and this fixes the propagators to be

Gµν,ρσ(k) =
−iPµν,ρσ

k2 − i0 , G(k) =
−i

k2 − i0 . (A.23)

The leading scalar-graviton interaction term

SI = −κ
∫
hµν

[
−∂µφ∂νφ+

1

2
ηµν(∂φ)

2

]
dDx , (A.24)

which translates to the vertex

τµν(p, p′) = −iκ
[
pµp′ν + pνp′µ − ηµν(p · p′)

]
, (A.25)

where the scalar lines are regarded as both outgoing.
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In case the scalar has mass m,

S =

∫
R

2κ2
√−g dDx− 1

2

∫ (
∂µφ g

µν ∂νφ+m2φ2
)√−g dDx , (A.26)

can be discussed along similar lines. The massive scalar propagator is given by

Gm(k) =
−i

k2 +m2
(A.27)

while the leading scalar-graviton vertex in De Donder gauge reads

τµν(p, p′) = −iκ
[
pµp′ν + pνp′µ − ηµν(p · p′ −m2)

]
. (A.28)

Note that this vertex is transverse with respect to the graviton momentum,

τµν (p, p′)(pν + p′ν) = 0 , (A.29)

whenever the scalar lines are on-shell p2 = p′2 = −m2. Moreover, its trace reads

ηµντ
µν(p, p′) = −iκ

[
2−D

2
(p+ p′)2 + 2m2

]
, (A.30)

which is zero in the massless case, up to terms that vanish on the graviton’s mass shell.

Appendix A.3. Useful Fourier transforms to impact parameter space

In this appendix we collect a few useful properties of the Fourier transform into impact pa-
rameter space. Taking the D-dimensional Fourier transform of the S-matrix element one obtains
the invariant expression (1.32) and this leads us to consider Fourier transforms of the following
type,

FT[f ](b) =

∫
dDq

(2π)D
2πδ(2p1 · q − q2)2πδ(2p2 · q + q2) eib·qf(q2) . (A.31)

with f(q2) playing the role of the invariant amplitude A(s,−q2). In order to recast this in a
more explicit way, let us start from the case in which p1 and p2 are massive momenta, rewriting
pµ1 = −m1v

µ
1 and pµ2 = −m2v

µ
2 as in (1.7) so that

FT[f ](b) =
1

4m1m2

∫
dDq

(2π)D
2πδ

(
v1 · q +

q2

2m1

)
2πδ

(
v2 · q −

q2

2m2

)
eib·q f(q2) . (A.32)

It is convenient to change integration variables by decomposing the integrated momentum accord-
ing to (1.10) so that

qµ = v̌µ1 q‖1 + v̌µ2 q‖2 + qµ⊥ (A.33)

where by definition q⊥ · p1,2 ≡ 0. Therefore

(dq)2 = v̌21 (dq‖1)
2 + 2v̌1 · v̌2 dq‖1dq‖2 + v̌22 (dq‖2)

2 + (dq⊥)
2 (A.34)

and the determinant of this metric is given by

− det g = (v̌1 · v̌2)2 − v̌21 v̌21 =
1

σ2 − 1
. (A.35)

Therefore,

dDq =
dq‖1 dq‖1√
σ2 − 1

dD−2q⊥ , (A.36)
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and we find

FT[f ](b) =
1

4m1m2

∫
dq‖1 dq‖1√
σ2 − 1

dD−2q⊥
(2π)D−2

δ

(
q‖1 −

q2

2m1

)
δ

(
q‖2 +

q2

2m2

)
eib·q f(q2) . (A.37)

We are only interested in evaluating this Fourier transform for very large b, orthogonal to p1 and
p2 (up to O(G2) corrections), and therefore we can expand the integrand for small q ∼ 1/b. Using
the Taylor expansion of the delta functions and noting that (cf. (1.45))

q2 =
q2‖1 − 2σq‖1q‖2 + q2‖2

σ2 − 1
+ q2⊥ , (A.38)

we obtain

FT[f ](b) =
1

4m1m2

√
σ2 − 1

∫
dD−2q⊥
(2π)D−2

eib·q⊥
(
f(q2⊥) +

s

4m2
1m

2
2(σ

2 − 1)

[
x2f(x)

]′
x=q2⊥

+ · · ·
)

(A.39)
(the superscript ′ stands for a total derivative with respect to the argument x) or equivalently,
using the identity (1.13),

FT[f ](b) =
1

4Ep

∫
dD−2q⊥
(2π)D−2

eib·q⊥
(
f(q2⊥) +

1

4p2
[
x2f(x)

]′
x=q2⊥

+ · · ·
)
. (A.40)

In the massless case, p21 = p22 = 0, we can instead adopt the decomposition

qµ =
1

s
(pµ1x1 + pµ2x2) + qµ⊥ , (A.41)

where again q⊥ · p1,2 = 0. Since x1,2 = −2p2,1 · q, we then find

(dq)2 = −dx1dx2
s

+ (dq⊥)
2 ,

√
− det g =

1

2s
(A.42)

and in this way (A.31) evaluates to

FT[f ](b) =
1

2s

∫
dD−2q⊥
(2π)D−2

eib·q⊥
(
f(q2⊥) +

1

s

[
x2f(x)

]′
x=q2⊥

+ · · ·
)
. (A.43)

Recalling that in the massless case E = 2p =
√
s, we see that the expression (A.40) is thus valid

for both massive and massless setups. It is easy to see that the first term on the right-hand side of
(A.40) corresponds to simply dropping the q2 in the arguments of the delta functions appearing
in (A.31), for which we adopt the notation

f̃(b) =

∫
dDq

(2π)D
2πδ(2p1 · q)2πδ(2p2 · q) eib·qf(q2) =

1

4Ep

∫
dD−2q⊥
(2π)D−2

eib·q⊥ f(q2⊥) . (A.44)

Since in most applications f(q2) has a power-law dependence on q2, the basic type of integrals
that we need to calculate is:

ID(ν) =

∫
dD−2q

(2π)D−2
eib·q

(
q2
)ν

=
22ν

π1−ǫ

Γ(1 + ν − ǫ)
Γ(−ν)(b2)ν+1−ǫ

, D = 4− 2ǫ . (A.45)

A quick way to see this is to introduce Schwinger parameters, so that

ID(ν) =

∫ ∞

0

dt
t−1−ν

Γ(−ν)

∫
dD−2q

(2π)D−2
eib·q−tq2 (A.46)
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and performing the Gaussian integral and letting t = 1/x leads to

ID(ν) =
1

(4π)
D−2

2 Γ(−ν)

∫ ∞

0

dxx−1+ν+D−2
2 e−

b2

4 x . (A.47)

Recognizing the Γ-function in the last equation then yields Eq. (A.45).
Expanding the identity (A.45) around ν = 0 on both sides, one can also deduce the Fourier

transform of any power of the logarithm
[
log(q2)

]n
. For instance expanding to linear order, we

obtain ∫
dD−2q

(2π)D−2
eib·q log

(
q2
)
= − Γ(1− ǫ)

π(b2)1−ǫ
. (A.48)

In the main text we also use the inverse Fourier transform (from b to q-space) which can be
easily obtained from (A.45) by appropriately interchanging the roles of q and b,

∫
dD−2b e−ib·q(b2)−ν =

π
D−2

2

22ν+2−D

Γ
(
D
2 − 1− ν

)

Γ(ν)

(
q2
)1+ν−D

2 . (A.49)

Appendix B. The deflection angle in the probe limit

The deflection angle is a key classical observable in the 2 → 2 gravitational scattering which
can be derived from scattering amplitudes thanks to the eikonal exponentiation. In the limit
where the mass of one particle is much larger than any other energy scale in the problem, the
result obtained from the eikonal approach should agree with a classical calculation describing the
propagation of the other particle in the curved geometry produced by the heavy one. In order
to carry out explicitly such a calculation, we need to know how the two particles couple to the
massless fields in the theory under consideration. These couplings determine the classical solution
for the massless fields produced by the heavy object, and this solution in turn determines the
classical trajectory of the light probe in such background, neglecting its backreaction. In this
appendix we will discuss some explicit examples of such probe-limit calculations for GR, brane
scattering and N = 8 supergravity.

Appendix B.1. Geodesic motion in Schwarzschild

The simplest case is of course that of a scalar particle with a large mass. While it is possible to
describe its gravitational field by following a diagrammatic approach [376] (see also [48, 377, 378]),
deriving the D-dimensional Schwarzschild metric order by order in the large distance expansions
Rs/r ≪ 1, here we will use directly the exact (Schwarzschild-Tangherlini) black-hole solution in
D spacetime dimensions,

ds2 = −
(
1−

(
Rs

r

)D−3
)
dt2 +

(
1−

(
Rs

r

)D−3
)−1

dr2 + r2dΩ2
D−2 . (B.1)

The precise relation between the Schwarzschild radius Rs and the mass of the heavy scalar M is

RD−3
s =

16πGM

(D − 2)ΩD−2
=

8Γ(D−1
2 )GM

π
D−3

2 (D − 2)
, (B.2)

where in the last step we used the area of the n-dimensional sphere of unit radius Ωn = 2π
n+1
2

Γ(n+1
2 )

.

One can write the action for a minimally coupled probe of mass mp as

S =
1

2

∫
dτ

(
e(τ)−1 dx

µ

dτ

dxν

dτ
gµν −m2

pe(τ)

)
, (B.3)

181



where τ parametrizes the trajectory and e(τ) is an auxiliary variable defining the world-line metric.
The action is invariant under reparametrization τ → τ ′(τ) if xµ is a scalar (x′µ(τ ′) = xµ(τ)) and
e′(τ ′) dτ ′ = e(τ) dτ . Then we can choose a parametrization (a “‘gauge”) in which e(τ) is constant
and the equation of motions for e(τ) become a constraint. We shall also take into account that the
motion takes place in the plane determined by the initial velocity and by the impact parameter,
indicating with φ the angle in this plane. For later convenience, we write the constraint coming
from the variation of e(τ) for a metric of the form (B.1) but with generic functions of the radial
coordinate r: ds2 = gttdt

2 + grrdr
2 + r2gφφdφ

2,

|gtt|
(
dt

dτ

)2

− grr
(
dr

dτ

)2

− r2gφφ
(
dφ

dτ

)2

= e2m2
p . (B.4)

Since we work with metrics that do not depend explicitly on the time and are spherically sym-
metric, we obtain the following conservation laws for the energy E and the angular momentum J
of the probe

eEp = |gtt|
dt

dτ
, eJ = r2gφφ

dφ

dτ
. (B.5)

By using these results in (B.4) we obtain

dr

dτ
= ±

[
e2E2

p

|gtt|grr
− e2

grr

(
J2

r2gφφ
+m2

p

)] 1
2

, (B.6)

and

dφ

dr
= ± 1

r2

[
g2φφ
|gtt|grr

E2
p

J2
− gφφ
grr

(
1

r2
+ gφφ

m2
p

J2

)]− 1
2

. (B.7)

Here± refer to the incoming/outgoing portion of the trajectory, since a scattering process r(±τ)→
∞ and there is an inversion point r∗ corresponding to the largest root of dr

dτ

[
E2

p

|gtt|grr
− 1

grr

(
J2

r2gφφ
+m2

p

)]

r∗

= 0 . (B.8)

Thus the scattering angle reads

Θ = 2

∫ ∞

r∗

dr

(
dφ

dτ

) (
dr

dτ

)−1

− π (B.9)

= 2J

∫ ∞

r∗

dr

r2

[
g2φφE

2
p

|gtt|grr
− gφφ
grr

(
J2

r2
+ gφφm

2
p

)]− 1
2

− π .

For the Schwarzschild metric we have |gtt| = g−1
rr = 1−

(
Rs

r

)D−3
and gφφ = 1, so (B.9) reduces to

an incomplete elliptic integral.
For our purposes it is useful to write an explicit perturbative solution in the PM expansion.

We first start from (B.8) which for Schwarzschild’s case reads

E2
p −

(
1−

(
Rs

r∗

)D−3
)(

J2

r2∗
+m2

p

)
= 0 . (B.10)

For general D we can solve this constraint perturbatively: the leading contribution is obtained by
ignoring the term proportional to (Rs/r∗)D−3 and then it is straightforward to find the corrections
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in an expansion for large J

r∗ =
J√

E2
p −m2

p

[
1 +

∞∑

n=1

E2
p cn

(E2
p −m2

p)

(√
E2

p −m2
p

Rs

J

)n(D−3)
]
,

c1 = −1

2
, c2 =

(5 − 2D)E2
p + 4m2

p

8(E2
p −m2

p)
,

c3 = − (D − 3)(3D − 8)E4
p − 4(3D − 8)E2

pm
2
p + 8m4

p

16(E2
p −m2

p)
2

, . . .

(B.11)

Then we can write (B.9) in the Schwarzschild case after introducing the variable u = r∗/r

Θ =
2J

r∗

∫ 1

0

du

[
E2

p −
(
1−

(
Rsu

r∗

)D−3
)(

J2u2

r2∗
+m2

p

)]− 1
2

− π . (B.12)

We can then use (B.11) in the equation above to rewrite the integrand in term of J instead of

r∗ and then expand it for small values
√
E2

p −m2
pRs/J . The integral in u can be performed in

terms of Euler’s Beta and we obtain

Θ =
∞∑

n=1

Θn




√
E2

p −m2
pRs

J




n(D−3)

(B.13)

whose explicit terms up to 3PM are

Θ1 =

√
πΓ
(
D
2 − 1

) [
(D − 2)E2

p −m2
p

]

2Γ
(
D−1
2

)
(E2

p −m2
p)

, (B.14)

Θ2 =

√
πΓ
(
D − 5

2

)

8Γ(D − 2)

(2D − 5)(2D − 3)E4
p − 6(2D − 5)E2

pm
2
p + 3m4

p

(E2
p −m2

p)
2

, (B.15)

Θ3 =

√
πΓ
(
3D
2 − 4

)

48Γ
(
3D
2 − 7

2

) (E2
p −m2

p)
−3

×
[
(3D − 8)(3D − 6)(3D − 4)E6

p − 15(3D− 8)(3D − 6)E4
pm

2
p

+ 45(3D − 8)E2
pm

4
p − 15m6

p

]
.

(B.16)

For convenience, let us write out the D = 4 expressions as well:

Θ1 =
2E2

p −m2
p

E2
p −m2

p

, (B.17)

Θ2 =
3π
(
5E2

p −m2
p

)

16
(
E2

p −m2
p

) , (B.18)

Θ3 =
−120E4

pm
2
p + 60E2

pm
4
p + 64E6

p − 5m6
p

12
(
E2

p −m2
p

)
3

. (B.19)

It is also instructive to study the result for the deflection angle in the PN (as opposed to PM)
expansion, restricting for simplicity to D = 4. For this purpose, it is convenient to introduce the
variables v∞, jPN (as in (3.13)) and α according to,

Ep = mp

√
1 + v2∞ , v∞ =

1

jPNα
, J = GMmpjPN . (B.20)
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In these variables, Eq. (B.10) for the inversion point takes the following form

1 +
1

(jPNα)2
−
(
1 +

G2M2j2PN

r2∗

)(
1− 2GM

r∗

)
= 0 . (B.21)

The PN limit can be then introduced by considering the scaling limit

jPN ∼ O(c) , G ∼ O(c−2) , α ∼ O(1) as c→∞ , (B.22)

which reflects the fact that the angular momentum becomes large and the velocity small, while
keeping α = GMmp/(Jv∞) of order one. It is straightforward to solve (B.21) perturbatively in
the limit (B.22), obtaining

r∗ = GM

[
j2PNα(

√
1 + α2 − α)−

(
1 +

α√
1 + α2

)]
+O(c−4) (B.23)

for the 0PN and 1PN contributions. Substituting into (B.12), expanding in the same limit and per-
forming the resulting elementary integrals, one then obtains the following PN-expanded deflection
angle

Θ = 2 arctanα+
2

j2PN

[
3
(
arctanα+

π

2

)
+

3α2 + 2

α(1 + α2)

]
+O(c−4) . (B.24)

This calculation actually reproduces the deflection angle up to 1PN independently of the probe-
limit approximation, i.e. the first two lines of Eq. (45) of [189].

Appendix B.2. Geodesic motion in D-brane metric

For the analysis of the string-brane scattering it is useful to discuss the geodetic motion in the
gravitational backreaction of a stack of Dp-branes. It is straightforward to adapt the analysis of
the previous section to the case where the metric is given by (4.98). By writing the transverse
space in polar coordinate this metric takes the following form

ds2 = [H(r)]
− 1

2 ηαβdx
αdxβ + [H(r)]

1
2
(
dr2 + r2dφ2dΩ2

d−p−3

)
, (B.25)

where H(r) is the harmonic function given in (4.99). We can then read the components of the
metric involved in the geodesic equations (B.4) and (B.5)

|gtt|−1 = grr = gφφ =
√
H , (B.26)

Since we are focusing on the motion of light string state with a large kinetic energy, we can neglect
the terms involving the probe mass and from (B.7) we obtain

dφ

dr
=

±bJ

r2

√
1−

(
bj
r

)2
+
(

Rp

r

)d−p−3
= ± bJ

r2F
, ⇔ dφ

dρ
=

±b̂J√
1− b̂2Jρ2 + ρd−p−3

, (B.27)

where F = ±
√
H(r) − bJ

r2 , ρ = Rp/r and b̂J = bJ/Rp. One can follow the same steps as in the

previous section to find the scattering angle by integrating (B.9), where the turning point r∗ (or
ρ∗) is defined as in (B.8). At the leading PM order we get

Θ1 =
√
π
Γ
(

d−p−2
2

)

Γ
(

d−p−3
2

)
(
Rp

r

)d−p−3

. (B.28)
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For completeness let us quote also some exact result when the integral in (B.9) can be expressed
in terms of elementary functions

p = d− 4 ⇒ Θ = 2 arctan

(
1

2b̂J

)
, p = d− 5 ⇒ Θ =

πb̂J√
b̂2J − 1

− π (B.29)

and when (B.9) reduces to a complete elliptic integral such as the case of a stack of D3-branes in
type II theories

p = d− 7⇒ Θ = 2
√
1 + k23 ,K(k3)− π , k3 =

b̂J
2

(
b̂J −

√
b̂2J − 4

)
− 1 . (B.30)

Here K is the complete elliptic integral of the first kind

K(k3) =

∫ 1

0

dx√
(1− x2)(1− k23x2)

. (B.31)

Notice that when we have 3 transverse directions (i.e. p = d − 4) the full deflection angle in the
probe limit is determined by the leading eikonal as a consequence of supersymmetry as pointed
out in [211].

We conclude this appendix by providing some details on the integrals in (4.112) relevant for
the semiclassical dynamics of a string probe (rather than just a point-like object) in the D-brane
metric. Starting from (4.112b), it is convenient to proceed as done for (4.112a): we can neglect
the second term in the square parenthesis since it scales as (Rp/b)

2(d−p−3) and rewrite the first
term as a total derivative with respect to the radial coordinate. Then we have

1

2

∫ ∞

−∞
du Gŷ ≃

∫ ∞

0

dr̄ ∂r̄

[
F√
H
∂r̄ ln

(
r̄ sin φ̄H

1
4

)]
= − bJ cos φ̄

r̄2
√
H sin φ̄

∣∣∣∣
r̄=r∗

≃ −Θ1

b
. (B.32)

The only non-trivial contribution arises when the derivative inside the square parenthesis acts on

ln sin φ̄, since this produces a factor of dφ̄
dr which, thanks to (B.27), cancel the overall factor of

F and yields a finite contribution as r → r∗. In the final step we used bJ ≃ b, φ̄(r∗) = Θ+π
2

and (B.28). Then one can check that the result in (B.32) agrees with the one in (4.112b) with
µ2
ŷ defined in (4.88). When evaluating (4.112c), it is more convenient to evaluate explicitly the

derivatives for both terms in the square parenthesis obtaining

1

2

∫ ∞

−∞
du G0 =

∫ ∞

0

du



∂2u

(
r̄FH− 1

4

)

r̄FH− 1
4


 =

∫ ∞

r∗

dr̄

r̄FH− 1
4

∂r̄

[
F

H
1
2

∂r̄

(
r̄FH− 1

4

)]
. (B.33)

Then it is straightforward to evaluate the expression above to 1PM order obtaining

1

2

∫ ∞

−∞
du G0 ≃

∫ ∞

b

dr̄
d− p− 3

4r̄
√
r̄2 − b2

[
(d− p− 4)− (d− p− 1)

b2

r̄2

](
Rp

r̄

)d−p−3

, (B.34)

where we used again r∗ ≃ b at 1PM. Thanks to the relation

∫ ∞

b

dr
r1−2x

r2 − b2 =

√
πb1−2xΓ

(
x− 1

2

)

2Γ(x)
, (B.35)

one can check that, after performing the integral, (B.34) reproduces (4.112c) with µ2
0 defined

in (4.88).
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Appendix B.3. Probe limit of the N = 8 case

In order to perform the classical calculation for the massive N = 8 case it is easier to start
from the setup discussed in Section 3.1.4 and dualize it to a frame where all the massive objects
are Dp-branes. This can be done by the following chain of dualities:

• lift the setup to M-theory and then go back to type IIA by compactifying along the 9th

direction; in this way we the first particle is transformed into a bound state of n1 D0-branes,
while the second particle is unchanged;

• perform T-dualities along the directions 7, 8, 9 so that the external states become a bound
state of n1 D3-branes and a F1-string wrapped n2 times along the direction 8;

• since we are now in type IIB string theory we can perform a S-duality and obtain bound
states of n1 D3-branes and n2 D1-branes;

• for convenience we can T-dualize back to type IIA along the 8th direction to get n1 D2-branes
and n2 D0-branes.

All objects in each step are point-like in the noncompact directions and the string frame metric
produced by the bound state of D2-branes is

ds2 =

(
1 +

4GM

r

)− 1
2

(−dt2 + dx27 + dx28) +

(
1 +

4GM

r

) 1
2

dx2⊥ . (B.36)

The classical solution includes also a non-trivial RR 2-form, which does not play any role in this
problem, and a dilaton50

eφ =

(
1 +

4GM

r

) 1
4

, (B.38)

where M is the mass of the D2-brane bound state. The action for the D0-brane probes involves
both the fields above and read

S = −mp=0

∫
dτe−φ

√∣∣∣∣gµν
dxµ

dτ

dxν

dτ

∣∣∣∣ , (B.39)

where of course we restrict the motion in the noncompact space. This action is equivalent to (B.3)
with an effective metric geffµν = e−2φgµν . We can then calculate the deflection angle by using (B.9)
with

geff00 =

(
1 +

4GM

r

)−1

, geffrr = geffφφ = 1 . (B.40)

Then in this case the deflection angle is given by a circular integral

Θ = 2J

∫ ∞

r∗

dr

r2

[(
1 +

4GM

r

)
E2

p −
(
J2

r2
+m2

p

)]− 1
2

− π

= 2 arctan

(
2GM

bJ

σ2

σ2 − 1

)
, (B.41)

where used Ep = mpσ and J = mpb
√
σ2 − 1.

50If the number of noncompact direction is D we have

Γ
(

D−3
2

)

π
D−1

2

κDT2n1

2
=

Γ
(

D−3
2

)

π
D−3

2

4GDM , (B.37)

and the harmonic function is 1 +
Γ
(

D−3
2

)
4GDM

π
D−3

2 rD−3
.
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Appendix C. Some relations satisfied by the Levi-Civita tensor in D = 4

In this Appendix we provide some relations satisfied by the product of two the four-dimensional
Levi-Civita tensors. We list them here

ǫµνρσǫµνρσ = −4! (C.1)

ǫµνρσǫµνρδ = −6δσδ (C.2)

ǫµνρσǫµνγδ = −2δρσγδ (C.3)

ǫµνρσǫµβγδ = −δνρσβγδ (C.4)

and
ǫµνρσǫαβγδ = −δµαδνρσβγδ + δµβδ

νρσ
αγδ − δµγ δ

νρσ
αβδ + δµδ δ

νρσ
αβγ (C.5)

where
δρσγδ = δργδ

σ
δ − δρδ δσγ (C.6)

and
δνρσβγδ = δνβ

(
δργδ

σ
δ − δρδ δσγ

)
− δνγ

(
δρβδ

σ
δ − δρδ δσβ

)
+ δνδ

(
δρβδ

σ
γ − δργδσβ

)
. (C.7)

We use the convention where ǫ0123 = 1.

Appendix D. String theory background

In this appendix we provide some details on how to derive the relevant amplitudes in the context
of the bosonic theory which is technically simpler than the superstring case while capturing all
the main features.

Appendix D.1. String theory conventions

Here we collect our string conventions and a short discussion about the boundary state that
is needed to describe the stack of Dp-branes used in the main text.

Appendix D.1.1. Scales and coupling constants

Free string theory in flat spacetime is described by the Nambu-Goto action:

Sstring = −T
∫
dτ

∫ π

0

dσ

√
(ẋ · x′)2 − ẋ2x′2 ,

ẋ ≡ ∂τx(σ, τ) , x′ ≡ ∂σx(σ, τ) , ẋ · x′ ≡ ηµν ẋµx′ν , (D.1)

where the double integral is nothing but the area swept by the string and T is the classical string
tension with dimensions of an energy per unit length (in units in which c = 1). At the classical level
(e.g. in the context of cosmic strings) T is the only free parameter and the classical equations of
motion are obviously independent of it.51 The inverse of T has the same dimensions as an angular
momentum per squared mass (recall that we have set c = 1) and has been denoted traditionally
by 2πα′ since it first made its appearance in hadronic physics as the slope of the linear Regge
trajectories: α(t) = α(0) + α′t.

In a quantum context what matters is the action in Planck units, a dimensionless quantity, and
this necessarily introduces a fundamental area ℓ2s as the natural replacement of Planck’s constant in
string theory [277]. In this review we adopt the following relation between these various quantities:

Sstring

~
=
T

~
(Area Swept) =

Area Swept

2πℓ2s
, ℓs =

√
α′~ =

√
~

2πT
, (D.2)

51When moving in a non trivial geometry the size of the string relative to the characteristic scale of the geometry
does instead matter at the classical level.
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where we should note the analogy with the definition of the Planck length in four dimensions,
ℓP =

√
G~, with G replacing the role of α′. The similarity goes even further: classical GR has

no intrinsic length (or mass) scale while quantum gravity does. Physically, ℓs plays the role of a
minimal length scale, a minimal size for fundamental quantum strings, and a short-distance cutoff
regularizing quantum corrections. Its inverse, Ms ≡ ~

ℓs
is the energy/mass scale associated with

string excitations and with the cutoff in momentum space. In string theory it is thus natural to take
ℓs as the basic unit of length and to express any other quantity, according to its dimensionality, in
terms of ℓs, c, ~, and of dimensionless numbers. The latter, when not directly fixed, are associated
with the value of dimensionless scalar fields, called moduli.

In the rest of this Appendix, and elsewhere in this review, we will follow the common practice of
using interchangeably α′ and ℓ2s (i.e. set ~ = 1) except when the distinction is physically relevant.
As an example, α(t) is dimensionless (being an exponent characterizing power-like Regge behavior)
and therefore α′ cannot be just the inverse of T . What appears in the above expression for α(t)

is actually α′t
~

= t
M2

s
, but we shall omit the ~

−1 factor throughout.

In perturbative string theory the strength of the gravitational interaction depends on α′ and
on the moduli of the theory as follows:

2κ2d~ = 16πGd~ = 16πℓd−2
d = 2−

d−10
2 (2π)d−3g2s (α

′
~)

d−2
2 = 2−

d−10
2 (2π)d−3g2s ℓ

d−2
s , (D.3)

where ℓd is the d-dimensional Planck length, gs, the string coupling, is related to the expectation
value of the dilaton and of course we have d = 10 for critical superstring theory and d = 26 for
the bosonic theory. Note that at very weak string coupling ℓd/ℓs ≪ 1. This physically means that
string-size corrections intervene well before quantum gravity loops get out of control. That does
not mean, however, that straight perturbation theory is always reliable at g2s ≪ 1: although there
is a formal loop expansion in powers of g2s , these can be enhanced by large kinematical factors
such as powers of the energy or infrared singularities as discussed in the main body of this report.

When some of the directions are compactified on a manifold of volume Vc and only D directions
are non-compact, it is useful to introduce the Newton constant κ2D = 8πGD for the D-dimensional
theory appropriate for describing physics at distances much larger than the size of the compact
dimensions:

κ2D =
κ2d
Vc

= 8πℓD−2
D . (D.4)

It follows that the ratio ℓD/ℓs is further reduced if Vc ≫ ℓd−D
s , the case of “large extra dimensions”.

In this report only the case of string-size extra dimensions will be considered.
The spectrum of type II and bosonic string theories also contains Dp-branes, non-perturbative

objects which can support the end-points of open strings [248]. In its simplest configuration a
Dp-brane enforces Neumann boundary conditions on the string fields along p spatial directions
and time, and Dirichlet boundary conditions along the remaining d− (p+ 1) directions. In other
words, the end-points of an open string move on a (p+1)-dimensional Minkowskian submanifold.
The tension (i.e. energy per unit p-dimensional surface) of these objects is

τp =
Tp
κd

, with Tp = 2−
d−10

4
√
π(2π

√
α′)

d−2p−4
2 , (D.5)

which of course fixes its coupling to gravity. In the superstring case the Dp-branes are minimally
coupled to the (p+1) Ramond–Ramond potential with a RR charge density µp given by µp =

√
2Tp

(i.e. charge per unit p-volume).
In Section 3.2, we use a stack of N Dp-branes as a target in a (thought) scattering experiment

with fundamental strings. It is then convenient to introduce the scale Rp of the geometry sourced
by the Dp-branes

Rd−p−3
p =

Γ
(

d−p−3
2

)

π
d−p−1

2

gsN

4

(2π
√
α′)d−p−3

2
d−10

2

. (D.6)
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In terms of the tension Tp we have

κdTpN

2
=
π

d−p−1
2 Rd−p−3

p

Γ
(

d−p−3
2

) . (D.7)

Appendix D.1.2. String mode expansion

Our conventions on the string coordinates and their mode expansion in the closed string case
are

XM (z, z̄) = XM
L (z) +XM

R (z̄) ,

XM
L (z) = qL − i

α′

2
pML ln z + i

√
α′

2

∑

n6=0

αM
n

n
z−n ,

XM
R (z̄) = qR − i

α′

2
pMR ln z̄ + i

√
α′

2

∑

n6=0

ᾱM
n

n
z̄−n .

(D.8)

In the closed string sector the modes αn and ᾱn are independent and, after canonical quantization,
satisfy the commutation relations

[αM
n , α

N
m] = ηMNn δn+m , [ᾱM

n , ᾱ
N
m] = ηMNn δn+m , [αM

n , ᾱ
N
m] = 0 . (D.9)

It is convenient to take also the left/right center of mass and momentum operators to be indepen-
dent

[qML , pNL ] =
i

2
ηMN , [qMR , pNR ] =

i

2
ηMN ; [qML , pNR ] = [qMR , pNL ] = 0 (D.10)

and impose, for the non-compact directions, an identification on their eigenvalues of the physical
states pML = pMR = pM , where pM is the total momentum. It is also convenient to introduce√

α′

2 p
M
L = αM

0 and
√

α′

2 p
M
R = ᾱM

0 , so we have

∂XM = −i
√
α′

2

∑

n

αM
n z

−n−1 , ∂̄XM = −i
√
α′

2

∑

n

ᾱM
n z̄

−n−1 . (D.11)

Then we have the following Operator Product Expansions (OPE)

∂XM(z1)∂X
N (z2) ∼ −

α′

2

ηMN

(z1 − z2)2
+ . . .

eik1XL(z1)eik2XL(z2) ∼ (z1 − z2)
α′
2 k1k2ei(k1+k2)XL(z2) + . . .

(D.12)

and similarly for the anti-holomorphic part.

Appendix D.1.3. Normalizations for string amplitudes

We associate a factor of κd

2π to each string vertex operator and indicate with CS2 the nor-
malization of the closed string tree-level amplitudes where the worldsheet has the topology of a
sphere. Imposing perturbative unitarity on the factorization of a 4-point function into two 3-point
amplitudes one obtains

CS2

(κd
2π

)2 α′

8π
= 1 . (D.13)

The factor of α′/(8π) is related to the closed string propagator

P (a) =
α′

2
(L0 + L̃0 − 2a)−1 =

α′

8π

∫

|z|≤1

d2z

|z|2 z
L0−az̄L̃0−a , (D.14)
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where a = 1 in the bosonic theory and a = 1
2 in the NS-NS sector of type II theories. The overall

normalization of the left-hand side is chosen so to have residue one at various mass poles (for
instance, close to the tachyon pole, behaves as 1/(p2 + m2

T ), with m2
T = −4/α′), while on the

right-hand side we use the definition of the measure d2z = i dz ∧ dz̄ = 2 dRe(z)dIm(z) as in [265].

Appendix D.1.4. The boundary state

In this subsection we give a short introduction to the boundary state that describes the Dp-
branes. For more details see for instance [229]. Dp-branes are extended p dimensional objects
characterized by the fact that open strings have their endpoints attached to them. The open string
with the endpoints at σ = 0, π attached to two parallel Dp-branes satisfies the usual Neumann
boundary conditions along the directions longitudinal to the world volume of the branes

∂σX
α|σ=0,π = 0 α = 0, 1, . . . , p (D.15)

and Dirichlet boundary conditions along the directions transverse to the brane

X i|σ=0 = yi ; X i|σ=π = wi i = p+ 1, . . . , d− 1 (D.16)

where yi and wi are the coordinates of the two Dp-branes and we take σ and τ in the two intervals
0 ≤ σ ≤ π and 0 ≤ τ ≤ T .

The previous are the conditions in the so-called open string channel, but those characterizing
the boundary state are instead those in the so-called closed string channel. This nomenclature
follows from the fact that the annulus diagram can be constructed in two ways: as one-loop
of open strings or as a tree diagram with a closed string propagators connecting two boundary
states. These two descriptions are connected by a conformal transformation in terms of the variable
ζ ≡ σ + iτ :

ζ = σ + iτ → −iζ = τ − iσ . (D.17)

After the inversion σ → −σ the previous conformal transformation simply amounts to exchange
σ with τ and viceversa

(σ, τ)→ (τ, σ) . (D.18)

Finally in order to have the closed string variables σ and τ to vary in the intervals σ ∈ [0, π]
and τ ∈ [0, T̂ ] corresponding to a closed string propagating between the two D branes one must
perform the following conformal rescaling

σ → π

T
σ τ → π

T
τ , (D.19)

with T̂ = π2/T.
The equations characterizing the boundary state are obtained by applying the conformal trans-

formation previously constructed to the boundary conditions for the open string given in (D.15)
and (D.16). At τ = 0 we get the following conditions:

∂τX
α|τ=0|BX〉 = 0 α = 0, ..., p , (D.20)

X i|τ=0|BX〉 = yi i = p+ 1, ..., d− 1 . (D.21)

Analogous conditions can be obtained for the Dp-branes at τ = T̂ .
The previous equations can be easily written in terms of the closed string oscillators by making

use of the expansion in eq.(D.8), obtaining

(αα
n + α̃α

−n)|BX〉 = 0 , (αi
n − α̃i

−n)|BX〉 = 0 ∀n 6= 0 ,

p̂α|BX〉 = 0 (q̂i − yi)|BX〉 = 0 , (D.22)
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where q̂ = qL + qR and p̂ = pL = pR. Introducing the reflection matrix

Rµν
p = (ηαβ ,−δij) , (D.23)

the equations for the non-zero modes can be rewritten as

(αµ
n +R µ

p ν α̃
ν
−n)|BX〉 = 0 ∀ n 6= 0 . (D.24)

The state satisfying the previous equations can easily be determined to be

|BX〉 =
Tp
2
δd−p−1(q̂i − yi)

( ∞∏

n=1

e−
1
n
α−nRpα̃−n

)
|0〉α|0〉α̃|p = 0〉 , (D.25)

where the normalization
Tp

2 is fixed by imposing that the computation of the annulus diagram in
the open and in the closed string channel gives the same result.

Appendix D.2. String-brane scattering: the bosonic theory at tree-level

The simplest possible setup where we can study the string theory leading eikonal is the scat-
tering of two closed string tachyons of momenta p1 and p2 off a stack of N Dp-branes in bosonic
string theory. The tree-level string amplitude capturing the scattering process mentioned above
is

AT
0 =

κdNTp
2

Γ(−α′E2
s − 1)Γ

(
−α′

4 t− 1
)

Γ
(
−α′E2

s − α′

4 t− 2
) , (D.26)

where the kinematics is identical to the one discussed in the superstring case after (3.117). It is
useful to provide some detail on the derivation of Eq. (D.26) as this will help in clarifying the key
physics novelty of the string eikonal with respect to the field theory setup.

As standard we start from the vertex operators describing the emission of the external states.
For the closed string tachyon we have

VT (zi, z̄i) =
κd
2π
V̂T (zi, z̄i) =

κd
2π
eipiX(zi,z̄i) , (D.27)

where XM (zi, z̄i) are the string embedding coordinates given in (D.8), the momenta are on-shell
p2i = 4

α′ (see Appendix D.1 for our string theory conventions) and the exponentials are understood
to be normal ordered. The tree-level amplitude corresponds to world-sheet with the topology of
the disk with the two closed string insertions at two points (z1, z2) in its interior

AT
0 = CS2

α′κd
8π

N

∫
d2z1d

2z2
dVSL(2,R)

〈0|VT (z1, z̄1)VT (z2, z̄2)|B〉 . (D.28)

Here |B〉 is the boundary state describing the stack of Dp-branes, see Eq. (D.25), |0〉 is the
SL(2, C) invariant vacuum and our conventions on the string normalizations are summarized
in Appendix D.1.3. The effect of |B〉 on the world-sheet fields is to identify the holomorphic
and the anti-holomorphic parts through the reflection matrix Rp which is the identity along the
Dp-branes and minus the identity in the transverse directions. After the identification, the anti-
holomorphic fields are placed at 1/z̄2 and 1/z̄1, while the holomorphic ones are inside the disk of
unit radius at z1 and z2 and |z| = 1 represents the world-sheet boundary. Finally the measure
can be easily obtained by fixing three punctures, say 1/z̄2, 1/z̄1 and z2 and by integrating over
the remaining one inserting the contribution of the c-ghost

d2z1d
2z2

dVSL(2,R)
= dz1〈c

(
1

z̄2

)
c

(
1

z̄1

)
c (z2)〉 (D.29)

= dz1

(
1

z̄2
− 1

z̄1

)(
1

z̄1
− z2

)(
1

z̄2
− z2

)
=

(
1

z̄2
− z1

)2(
1

z̄1
− z2

)2

dx
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where in the last step we introduced the SL(2, R) invariant cross-ratio

x =
(z1 − z2)

(
1
z̄2
− 1

z̄1

)

(
1
z̄1
− z2

)(
1
z̄2
− z1

) . (D.30)

The cross-ratio x is manifestly real and, since the zi’s are inside the disk of unit radius, it lies
between zero and one. In particular, the limit x → 0 corresponds to |z1 − z2| → 0 describing
a world-sheet where the two external states interact first via a 3-point closed string vertex with
one leg glued to the disk. Then by using the on-shell conditions, momentum conservation (1 +
Rp)p1 + (1 +Rp)p2 = 0 and the ordering 1

|z2| >
1

|z1| > |z1| > |z2| we have

AT
0 =

κdTp
2

N

∫ 1

0

dx

(
1

z̄1
− z2

)2(
1

z̄2
− z1

)2


(

1

z̄1
− z1

)α′
2 p1Rpp1

(
1

z̄1
− z2

)α′
2 p1Rpp2

(
1

z̄2
− 1

z̄1

)α′
2 p1p2

(z1 − z2)
α′
2 p1p2

(
1

z̄2
− z1

)α′
2 p1Rpp2

(
1

z̄2
− z2

)α′
2 p2Rpp2


 (D.31)

=
κdTp
2

N

∫ 1

0

dx (1 − x)−α′E2
s−2x−

α′
4 t−2 ,

where we used (D.13) the normalization factor
Tp

2 of the boundary state (see Eq. (D.25)) to
simplify the overall normalization and

p1p2 =
−t+m2

1 +m2
2

2
, prRppr = −2E2

s +m2
r , p1Rp2 = 2E2

s +
t−m2

1 −m2
2

2
, (D.32)

where m2
i = − 4

α′ . Thanks to the integral representation of the Euler Beta function one ob-
tains (D.26).

Exactly as in the field theory setup the eikonal is captured by the limit E2
s ≫ |t| and by

using (3.119)

AT
0 ≃

κdNTp
2

(−α′E2
s )

1+α′t
4 Γ

(
−1− α′t

4

)
=
κdNTp

2
(α′E2

s )
1+α′t

4
e−iπ α′t

4

−α′t
4

Γ
(
1− α′t

4

)

1 + α′t
4

. (D.33)

Notice that this result can be directly derived directly from the last line (D.31). When α′E2
s ≫ 1

then the x-integral can be performed by focusing on the region x → 0 with α′E2
sx finite: by

expanding the integrand in this regime and finally extending the region of integration to infinity,
we have

AT
0 ≃

κdTp
2

N

∫ ∞

0

dx eα
′E2

sxx−
α′t
4 −2 =

κdTp
2

N(−α′E2
s )

1+α′t
4 Γ

(
−α

′t
4
− 1

)
, (D.34)

which agrees with (D.33). This shows explicitly that the result is entirely captured by the limit dis-
cussed before (D.31). We can now follow the same approach used in Sect. 3.2.1 for the superstring
and perform the Fourier Transform (3.123) of the bosonic result. Then we obtain

2δ0 =
κdNTpEs

4π

Γ
(
1 +

α′∇2
b

4

)

1− α′∇2
b

4

[
(πb2)−

d−4−p
2 γ

(
d− 4− p

2
,
b2

Y

)]
, (D.35)

which is very similar to (3.129) except for the tachyonic pole and the fact that the critical dimension
is d = 26. We recall that γ(z, a) denotes the incomplete Γ-function.
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Appendix D.2.1. The Reggeon vertex formalism for bosonic strings

In this section we follow [225, 226, 149] and show that the t-channel pole in (D.33) is related to
a particular class of closed string states in the leading Regge trajectory. Actually it is not difficult
to present the argument for the scattering of general closed string states instead of focusing on
tachyons (D.27), so we consider directly the case where we have generic physical vertex operators
V1 and V2 in (D.28) at the place of two VT . Notice that our discussion does not require the two
vertex operators to be equal and this will be exploited later in Section 3.2.4.

As suggested by the discussion after Eq. (D.33), the eikonal result can be obtained by focusing
on the degeneration channel where the world-sheet looks like a vertex involving the three closed
string states with one of them being off-shell and propagating until it interacts with the stack of
Dp-branes. By inserting a complete set of states between the 3-point interaction and the boundary
state we have

A(12)
0 = CS2

α′κd
8π

N

[∑

Qℓ

∫
d2z

2π
(zz̄)ℓ−2−α′t

4 〈V1V2Qℓ〉〈Qℓ|B〉
]
, (D.36)

where Qℓ is a generic state of momentum q = (p1 + p2) at level ℓ and the sum, of course, covers
all possible levels ℓ = 0, 1, . . .; the integral over the phase of z is trivial, as the level matching
condition has already been implemented, and the factor involving zz̄ ≡ x follows from the closed
string propagator (D.14). We now need to see how the contributions of different statesQℓ in (D.36)
scale with the energy of the incident string and, in the eikonal limit, we would like to focus on the
leading terms. In order to do so it is convenient to decompose the polarizations of the states Qℓ

by using the vectors (e±) defined in (3.161) and the directions orthogonal to them. Factors of Es

can arise from the contractions between ∂rX+ = e+M ∂rXM in Qℓ and the universal exponential
factors eip1,2X in V1,2. Thus, in the high-energy regime, the decomposition (D.36) is dominated
by the states

Qℓ =
1

ℓ!

(
i

√
2

α′ ∂X
+

)ℓ(
i

√
2

α′ ∂̄X
+

)ℓ

eiqX . (D.37)

Below we summarize the contractions between the world-sheet coordinates in Qℓ and V1,2 that
are relevant for evaluating (D.36)

i

√
2

α′ ∂
rX+(z)eip1X(w) ∼ (

√
α′Es) ∂

r−1

(
1

z − w

)
eip1X(w) (D.38)

i

√
2

α′ ∂
rX+(z)eip2X(w) ∼ −(

√
α′Es) ∂

r−1

(
1

z − w

)
eip2X(w) .

Another source of factors of Es is the contraction of ∂rX+(z) with the tensor part of the external
vertex operator when this describe a massive state. In this case we have

i

√
2

α′ ∂
rX+(z) i∂sXM (w) ∼ (

√
α′Es)

vMi
m
∂r−1
z ∂s−1

w

1

(z − w)2 , (D.39)

where vMi indicates the longitudinal polarization for a massive state of spatial momentum ~pi. It is
then clear that the leading contributions to (D.36) come from the states Qℓ that have the highest
number of factors of X+, so, at level ℓ, it is convenient to have (∂X+)ℓ rather then structures
with higher derivatives such as ∂rX+. Thus in summary, in the high-energy regime, the relevant
states exchanged between the incident string and the stack of Dp-branes are52

QR
ℓ =

1

ℓ!

(
i

√
2

α′ ∂X
+

)ℓ(
i

√
2

α′ ∂̄X
+

)ℓ

eiqX(z,z̄) . (D.40)

52The overall factor of 1/ℓ! ensures that the two point function is normalized to one.
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Beside being off-shell these states do not satisfy exactly the BRST constraint also because e+q ∼
1/E, but in the high-energy regime this violation becomes irrelevant so it does not affect our
calculation. Notice that at level ℓ such state yields a contribution proportional to (

√
α′Es)

2ℓ, so
only the graviton (ℓ = 1) yields a result compatible with a classical eikonal contribution, while
all contributions of higher spin states (ℓ ≥ 2) grow too quickly with the energy. It is only after
resumming the contributions of the whole tower of states in the leading Regge trajectory that one
finds the eikonal result (D.34).

The basic idea of the Reggeon vertex approach is to perform the sum over the states (D.40)
formally at the operator level. We first notice that the scalar product 〈QR

ℓ |B〉 is independent of ℓ
thanks to the normalization in (D.40) and one is left with only the normalization of the boundary
state in (D.25). Thus, when focusing on the contributions of the states (D.40), Eq. (D.36) reads

A ≃ NTpκd
2
〈V̂1V̂2

∫ ∞

0

dx

∞∑

ℓ=0

1

ℓ!

[
x

(
i

√
2

α′ ∂X
+i

√
2

α′ ∂̄X
+

)]ℓ
x−2−α′t

4 eiqX〉

=
NTpκd

2
〈V̂1V̂2

∫ ∞

0

dx ex
2
α′ i∂X

+i∂̄X+

x−2−α′t
4 eiqX〉 (D.41)

=
NTpκd

2
〈V̂1V̂2

[
i

√
2

α′ ∂X
+ i

√
2

α′ ∂̄X
+

]1+α′t
4

eiqX〉Γ
(
−1− α′t

4

)

=
NTpκd

2
e−iα

′t
4 Γ

(
−1− α′t

4

)
〈V̂1V̂2VR〉 = Π

Dp

R 〈V̂1V̂2VR〉 .

where the hat on the vertices means that they are stripped of their normalization as in (D.27).
As already mentioned, x = zz̄ and, at high energy, we can extend the integral over x from the
interval (0, 1) to (0,∞). In the manipulations above we treated the combination appearing the
square parenthesis as a positive quantity as its leading contribution when inserted in a correlator
is αE2

s as follows from (D.38). Then the integral over x has to be evaluated via an analytic

continuation on E2
s and this is the origin of the phase in the final step. The symbols Π

Dp

R and VR
indicate the Reggeon propagator glued to the boundary state and the Reggeon vertex

Π
Dp

R =
NTp
2

e−iα
′t
4 Γ

(
−1− α′t

4

)
, (D.42)

VR = κd

[√
2

α′ i∂X
+

√
2

α′ i∂̄X
+

]1+α′t
4

eiqX . (D.43)

It is convenient to separate a Reggeon propagator and its coupling to the Dp-branes Π
Dp

R =
ΠR〈VR|B〉 as follows

ΠR =
1

2π
e−iα

′t
4

Γ
(
−1− α′t

4

)

Γ
(
2 + α′t

4

) , 〈VR|B〉 = 2π
NTp
2

Γ

(
2 +

α′t
4

)
. (D.44)

The motivation for doing so is that the Reggeon vertex V̂R and propagator ΠR can be used to derive
the high-energy limit of pure closed string amplitudes, as done in Section 3.2.6. At this stage the
split in (D.44) is somewhat arbitrary, but it can be justified by sketching how to adapt the steps
in (D.41) to the tree-level amplitudes with four external closed strings. In this case, the integrand

in (D.36) takes the schematic form (zz̄)ℓ−2−α′t
4 〈V1V2Qℓ〉〈QℓV3V4〉 and the holomorphic and the

anti-holomorphic sectors are independent. It is then convenient to factorize the calculation by
summing independently over the number of the holomorphic and the anti-holomorphic insertions
since the level matching condition is imposed at the end by the integral over the phase of z. By
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focusing on the operator part, we need to consider the integral

∫
d2z

∞∑

ℓ,ℓ̄=0


 1√

ℓ!

(
z i

√
2

α′ ∂X
+

)ℓ
1√
ℓ̄!

(
z̄ i

√
2

α′ ∂̄X
+

)ℓ̄

 (zz̄)−2−α′t

4


 1√

ℓ!

(
i

√
2

α′ ∂X
+

)ℓ
1√
ℓ̄!

(
i

√
2

α′ ∂̄X
+

)ℓ̄

 . (D.45)

A standard approach is to rewrite the factor of (zz̄)−2−α′t
4 as an exponential by introducing a

Schwinger parameter

(zz̄)−2−α′t
4 =

∫ ∞

0

dτ e−|z|2τ τ1+
α′t
4

Γ
(
2 + α′t

4

) . (D.46)

Then the 2D integral over z in (D.45) is Gaussian and the final integral over τ ′ = 1/τ yields a
Γ-function. Then one can see that the tree-level amplitude with four closed strings is captured, at
high energy, by the correlator 〈V̂1V̂2V̂R〉ΠR〈V̂RV̂3V̂4〉 involving the same Reggeon vertex (D.43)
as before and the propagator ΠR in (D.44).

It is straightforward to follow the steps discussed in Section 3.2.4 and obtain the bosonic
eikonal operator from the Reggeon vertex (D.43). The final result has the same structure as in
the superstring case (3.175), just with the overall factor which follows from (D.44)

Â0 ≃
NTpκd

2
e−iα

′t
4 Γ

(
−1− α′t

4

)
(α′E2

s )
1+α′t

4

∫ 2π

0

dσ

2π
: eiqX̂ : . (D.47)

Appendix D.3. String-brane scattering: the bosonic theory at one-loop

In the closed string channel the annulus amplitudes can be evaluated using two boundary
states. For instance the one-loop correction to the amplitude in (D.28) is

AT
1 = CS2

(
α′κd
8π

N

)2 (κd
2π

)2 1

4π

∫
d2q

|q|2 d
2z1d

2z2〈B|V̂T (z1)V̂T (z2)qL0−1q̄L̄0−1|B〉 , (D.48)

where, as in (D.28), we inserted a factor of α′κd

8π N for each closed string propagator P (D.14), a
factor of κd

2π for each vertex and a symmetry factor 1
4π related to the residual symmetries of the

annulus.
The contribution of the zero modes qµ and pµ to (D.48) is

(2π)p+1δ(p+1)(p1 + p2)(2π
2α′λ)−

d−p−1
2 e

α′
2πλ

[
(E2

s+
4
α′ )

(
log

|z1|
|z2|

)2
−t log |z1| log |z2|

]

, (D.49)

where we introduced λ via log |q| = −πλ and used the on-shell conditions for the external tachyons
m2

1 = m2
2 = −4/α′. The contribution of the non-zero modes has two effects. First it yields the

usual annulus measure

dµ1 = 2πdλ
1

|q|2
∞∏

n=1

1

(1− |q|2n)d−2
. (D.50)

Then it transforms the disk Green function log(zi−zj) into the annulus one, which can be expressed
in terms of the prime form logE(zi, zj), where

E(zi, zj) = (zi − zj)
∞∏

n=1

(
1− |q|2n zi

zj

)(
1− |q|2n zj

zi

)

(1 − |q|2n)2 , (D.51)
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or in terms of the Jacobi θ-function (4.77)

E(zi, zj) = 2πi eiπ(νi+νj)
θ1(νi − νj |iλ)
θ′1(0|iλ)

. (D.52)

Then we can generalize the disk integrand derived in Appendix D.2 to the annulus topology. As
done in Section 4.2 we introduce the variables

zi = e2πiνi ≡ e2πi(iλρ1−ω1) , zj = e2πiνj ≡ e2πi(iλρ2−ω2) (D.53)

and obtain the following result for the one-loop amplitude

AT
1 =

(
κdTpN

2

)2
α′

16π
(2π2α′)−

d−p−1
2 (2π)4

∫ ∞

0

dλ

λ
d−p−5

2

1

|q|2
∞∏

n=1

1

(1− |q|2n)d−2
(D.54)

×4
∫ 1

2

0

dρ1

∫ 1
2

0

dρ2

∫ 1

0

dω1

∫ 1

0

dω2 e−(α′E2
s+2)Vs−α′t

4 Vt
(θ′1(0|iλ))4 e4πλρ

2

(2π)4θ21(iλρ− ω|iλ)θ21(−iλρ− ω|iλ)
,

where the factor 4 in the second line comes from the normalization of d2z1 and d2z2 discussed
after (D.14), we switched to the variables introduced in (4.78) and the functions Vs, Vt are exactly
those appearing in the superstring amplitude defined in (4.76). As in the superstring case, the
kinematic configuration we are interested in (large Es and small Rp/b) implies that the integral
is dominated by the region of small ρ and large λ. In this limit we have

AT
1 ∼

(
κdTpN

2

)2
α′

16π
(2π2α′)−

d−p−1
2 (2π)4

∫ ∞

0

dλ

λ
d−p−5

2

e2πλ
∫ 1

0

dζ

∫ 1

0

dω

×2
∫

R(ζ)

dρ e2πα
′E2

sλρ
2

e2πλζ(1−ζ)α′t
4 (4 sin2 πω)−

α′t
4 (D.55)

× exp
[
4α′E2

s sin
2(πω)

(
e−2πλζ + e−2πλ(1−ζ)

)] (
4 sin2(πω)

)−2
,

where the region of integration R(ζ) is defined after (4.79). The final factor in the last line comes
from the last fraction in Eq. (D.54) and is not present in the superstring case as one can see by
comparing (D.54) and (4.79). As we will soon see, this difference is related to the presence of a
tachyonic state in the bosonic theory. The integral over ρ ∼ 0 is Gaussian (after a Wick rotation
Es → iEe). By writing the exponential in the last line as a double series of terms proportional to
e−2πnλζ and e−2πmλ(1−ζ) we obtain an expression very similar to the integrand I1 in Appendix A
of [22]. Then the integral over ω can also be performed and one obtains

AT
1 ∼

(
κdTpN

2

)2
α′

8π
(2π2α′)−

d−p−1
2 (2π)4

∫ 1

0

dζ
i√
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24−
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, n+m− 2− α′t
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1

2

)
(D.56)

× Γ

(
−d− p− 6

2

)
π

d−p−6
2

[
−2ζ(1− ζ)α

′t
4

+ 2(n− 1)ζ + 2(m− 1)(1− ζ)
] d−p−6

2

.

where the last line comes from the integral over λ. This expression is very similar to the superstring
case, except that n, m are shifted to n− 1, m− 1, due to the presence of the tachyon pole (e2πλ)
in the first line of (D.55) and of the last factor (sin−4(πω)) in the final line of the same equation.
We can trade the integral over ζ for a momentum integral in D = d− p− 2 dimensional space by
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using the identity

∫ 1

0

dζ Γ

(
−d− p− 6

2

)[
−2ζ(1− ζ)α

′t

4
+ 2(n− 1)ζ + 2(m− 1)(1− ζ)
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2
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2
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, (D.57)

where we used bold symbols to indicate the transverse (d − 2) vectors following the convention
introduced in (1.37). We can rewrite the sums as integrals by using

∞∑

m=0

1

m!

f(m)sm

m+ t
= −

∫

C

dm

2πi
e−iπmΓ(−m)

f(m)sm

m+ t
, (D.58)

where the contour includes all the poles in the Γ(−m) and not the other ones. We can then deform
the contour and focus on the poles of the propagators in (D.57), which are the only ones that
contribute to the leading term in the energy. We find
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+ . . . , (D.59)

where the dots stand for the contributions of the other poles that involve also the Euler Beta-
function in the second line of (D.56). These contributions are needed to cancel spurious singulari-
ties in (D.59). For instance the last line has a pole when α′(k2−kq) ≃ 1 which does not correspond

to the propagation of a physical state. However, this region is suppressed by a factor of (α′E2
s )

− 1
2

with respect to the α′k2, α′q2 ≪ 1 since we have
(
4α′E2

s

)−α′
4 k2−α′

4 (q−k)2 ∼
(
4α′E2

s

)−α′
4 q2− 1

2 ,
thus it is not reliably captured by (D.56). In particular at this subleading order one should add
the contribution neglected in (D.56). Selecting a pole from the Euler Beta-function and the other
from (D.57), one obtains a structure that exactly cancels the spurious pole in (D.56) mentioned
above. We thus focus on the leading contribution written in (D.56) and recast the Euler Beta-
function as the correlator introduced (4.83). By using Eq. (D.33) we can rewrite (D.59) in the
following factorized form

AT
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[
α′

8π
(2π2α′)−

d−p−1
2 (2π)4

iπ
d−p−6

2√
2α′E2
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1

4
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] ∫
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(2π)d−p−2
(D.60)

× AT
0 (Es,k)AT

0 (Es,q− k)〈0|
2∏

i=1

2π∫

0

dσi
2π

: eikX̂(σ1) : : ei(q−k)X̂(σ2) : |0〉 .

Since the square parenthesis on the first line is just i/(4Es), we indeed obtain (4.84) for h = 2 for
the case of external tachyon states in bosonic string theory.

Appendix E. More on the 2 → 3 kinematics and on the ×, + waveforms

In this appendix we provide a list of relations that apply to the 2 → 3 kinematics discussed
at the end of Subsection 1.2 and which can be useful, in particular, to manipulate the waveforms
presented in Subsection 8.3.1. We also present alternative expressions for the ×, + projections of
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the b-space amplitude Ã(5)µν
0 , i.e. the leading-order gravitational waveform, that are equivalent to

those presented in Subsection 8.3.1.
Let us begin by recalling that the incoming momentum vectors p1 and p2 define to the incoming

particle’s velocities vµ1 and vµ2 by (1.7), which satisfy v21 = −1, v22 = −1, and are related to the
Lorenz factor σ by σ = −v1 · v2 as in (1.8). The projector onto the plane spanned by vµ1 and vµ2
can be read off from (1.10),

Pµ
ν = −v̌µ1 v1ν − v̌µ2 v2ν =

1

σ2 − 1
[vµ1 v1ν − σ(vµ1 v2ν + vµ2 v1ν) + vµ2 v2ν ] , (E.1)

where v̌µ1 , v̌
µ
2 are the dual velocities defined by (1.9). This projector of course satisfies

Pµ
ν v

ν
1 = vµ1 , Pµ

ν v
ν
2 = vµ2 , Pµ

ρP
ρ
ν = Pµ

ν . (E.2)

For any vector ξµ, we may then rewrite its decomposition (1.10) into longitudinal and transverse
projections as follows,

ξµ = ξµ‖ + ξµ⊥ , ξµ‖ = Pµ
ν ξ

ν , ξ‖ · ξ⊥ = 0 . (E.3)

In terms of the invariant products σ = −v1 · v2 ≥ 1, ω1 = −v1 · k ≥ 0 and ω2 = −v2 · k introduced
in (1.43), one can explicitly compute the longitudinal projections of various vectors. Since we
always work in a regime in which the momentum transfers q1, q2 are small, and thus (1.47) hold
to leading order, we recover (1.48),

qµ1‖ ≈ −ω2v̌
µ
2 =

ω2(v
µ
2 − σvµ1 )
σ2 − 1

, qµ2‖ ≈ −ω1v̌
µ
1 =

ω1(v
µ
1 − σvµ2 )
σ2 − 1

(E.4)

and define

∆µ
‖ ≡

1

2(σ2 − 1)
[−vµ1 (ω1 + σω2) + vµ2 (ω2 + σω1)] ≈

1

2
(q1 − q2)µ‖ (E.5)

for later convenience. From now on we shall not distinguish between ≈ and = signs, for simplicity,
since we always work to leading order in the approximation (1.47). Then from the following
relations we find

b2q21‖ =
b2ω2

2

σ2 − 1
≡ Ω2

2 , b2q22‖ =
b2ω2

1

σ2 − 1
≡ Ω2

1 (E.6)

and

k · q1‖ =
ω2(−ω2 + σω1)

σ2 − 1
, k · q2‖ =

ω1(−ω1 + σω2)

σ2 − 1
. (E.7)

When saturating (E.5) with the polarization vector ẽµθ defined in (8.91), that is

ẽµθ =
ω1v

µ
2 − ω2v

µ
1√

P
, (E.8)

with P = −ω2
1 + 2ω1ω2σ − ω2

2 as in (1.45), we find

1

2
(q1 − q2)‖ · ẽθ =

ω1ω2√
P

. (E.9)

Let us now give the explicit expressions of the previously introduced quantities in terms of
σ, in the center-of-mass frame, choosing the following explicit parametrization for the graviton
momentum kµ defined in (8.93),

kµ = ωnµ , nµ = (1, sin θ cosφ, sin θ sinφ, cos θ) . (E.10)
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We get

ω1 =
ω
(
m1 +m2σ − cos θm2

√
σ2 − 1

)
√
s

, ω2 =
ω
(
m2 +m1σ + cos θm1

√
σ2 − 1

)
√
s

(E.11)

and53

√
q21‖ =

ω√
s

m2 +m1σ +m1

√
σ2 − 1 cos θ√

σ2 − 1
=

ω2√
σ2 − 1

,

√
q22‖ =

ω√
s

m1 +m2σ −m2

√
σ2 − 1 cos θ√

σ2 − 1
=

ω1√
σ2 − 1

(E.12)

together with

k · q1‖ = ω2

(
m2 +m1σ +m1 cos θ

√
σ2 − 1

) (
m2

√
σ2 − 1− (m1 +m2σ) cos θ

)

s
√
σ2 − 1

,

k · q2‖ = ω2 (m1 +m2σ −m2 cos θ
√
σ2 − 1)(m1

√
σ2 − 1 + (m2 +m1σ) cos θ)

s
√
σ2 − 1

.

(E.13)

Adopting the notation
kµ = kµ⊥ , (E.14)

we also find
P = −ω2

1 + 2ω1ω2σ − ω2
2 = (σ2 − 1)k2 , k2 = ω2 sin2 θ (E.15)

In particular, the last two relations make it obvious that P ≥ 0, consistently with (1.45).
We conclude this appendix by presenting expressions for the ×, + projections of the impact-

parameter space 2→ 3 amplitude in terms of polarization vectors eµθ , e
µ
φ such that

eθ · k = 0 , eφ · k = 0 , eφ · vi = 0 , (E.16)

but such that eµθ is not necessarily orthogonal to bµ (in contrast with the vector ẽµθ employed in
Subsection 8.3.1, see Eq. (8.83)). We thus start from the five-point amplitude given in Eq. (5.38)
(using M = µ, N = ν and β = βGR as in (5.41) as appropriate for GR), perform the Fourier
transform (8.55), thus obtaining Wµν

0 = Ãµν
0 by following the steps detailed in Subsection 8.3.1,

and project it along the two polarizations according to

Ã(5)
× = Ã(5)µν

0 eφµeθν , Ã(5)
+ = Ã(5)µν

0

1

2
(eθµeθν − eφµeφν) . (E.17)

Explicitly, in the center-of-mass defined by (8.92) and (8.93), where the longitudinal directions
are 0 and 3, the velocities have vanishing components along the 1, 2 axis, while

v01 =
m1 +m2σ√

s
, v31 =

m2

√
σ2 − 1√
s

,

v02 =
m2 +m1σ√

s
, v32 = −m1

√
σ2 − 1√
s

.

(E.18)

Then, we choose

eµθ = (0, cos θ cosφ, cos θ sinφ,− sin θ) , eµφ = (0,− sinφ, cosφ, 0) , (E.19)

53In order to compare with the formalism used in Section 6 of Ref. [47] we need to use the following identities
c21,2k

2 = q2
1,2‖

, d1,2k2 = (kq1.2‖) and b2k2f(x) = Ω2(1− x) where Ω(x) is given in (E.24).
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so that (E.16) hold and
e2θ = 1 , eθ · eφ = 0 , e2φ = 1 . (E.20)

For the × polarization, we get

Ã(5)
× =

(8πG)
3
2

4Ep(2π)
i(b̂eφ)

{
β

[(
(p1eθ)Ω1

(p1k)b
e−ibk/2K1(Ω1)−

(p2eθ)Ω2

(p2k)b
eibk/2K1(Ω2)

)

+ i

∫ 1

0

dx e−i kb
2 (2x−1)

(
(b̂eθ)Ω(x)K1(Ω(x)) + i(x− 1

2
)(keθ)bK0(Ω(x))

)

+ (eθ∆‖)b
∫ 1

0

dx e−i kb
2 (2x−1)K0(Ω(x))

]

− 4p1p2((p1k)(p2eθ)− (p2k)(p1eθ))

∫ 1

0

dx e−i kb
2 (2x−1)bK0(Ω(x))

}
, (E.21)

where for GR we have (see Eq. (5.41))

β = βGR = 2m2
1m

2
2(2σ

2 − 1) , (E.22)
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while, for the polarization + we get

Ã(5)
+ =

(8πG)
3
2

4Ep(4π)

{
β

[
(p1eθ)

2

(p1k)2
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2
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b
K1(Ω1)

)
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p2k

eibk/2
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((eθk) + 2(eθ∆‖))K0(Ω2) + 2i(eθ b̂)
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b
K1(Ω2)

)

+ 2(eθ∆‖)
2
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)
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×
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2
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)
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)

+
1

2
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0
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[
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2Ω(x)K1(Ω(x))

+ (eθk)
2(1− 2x)2

(
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2

K1(Ω(x))
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)
+ 2i(eθk)(eθ b̂)(1 − 2x)bK0(Ω(x))

]

+

∫ 1

0

dx e−i kb
2 (2x−1)

[
−(eφeφ)K0(Ω(x)) + (eφb̂)

2Ω(x)K1(Ω(x))
] ]

+ 8 ((p1k)(p2eθ)− (p2k)(p1eθ))
2
∫ 1

0

dx e−i kb
2 (2x−1)

(
b2

2

K1(Ω(x))

Ω(x)

)

+ (8p1p2)

[(
(p1eθ)

2 kp2
kp1
− (p1eθ)(p2eθ)

)
e−ibk/2K0(Ω1)

+

(
(p2eθ)

2 kp1
kp2
− (p1eθ)(p2eθ)

)
eibk/2K0(Ω2)

+ ((p1k)(p2eθ)− (p2k)(p1eθ))

∫ 1

0

dx e−i kb
2 (2x−1)

(
−i(eθb̂)bK0(Ω(x))

− (eθk)(
1

2
− x)b

2K1(Ω(x))

Ω(x)
−2(eθ∆‖)

(
b2

2

K1(Ω(x))

Ω(x)

))]}
, (E.23)

where

Ω(x) =
√
Ω2

1x
2 +Ω2

2(1 − x)2 + 2Ω1Ω2σx(1 − x) . (E.24)

Note that the vector ẽµθ employed in Subsection 8.3.1 and the vector eµθ employed here differ by a
vector proportional to kµ = ω nµ

ẽµθ = (− cot θ, 0, 0,−1/ sin θ) = eµθ − cot θ nµ . (E.25)

Therefore, by gauge invariance, either choice must actually yield the same projected waveforms.
We have verified explicitly, as a check of the correctness of our the expressions, that the sum of
Eqs. (8.87), (8.88) for the × polarization agrees with Eq. (E.21) and the sum of Eqs. (8.89), (8.90)
for the + polarization agrees with Eq. (E.23), as a consequence of kµÃµν

0 = 0 (taking into account
the overall factor in (8.54)).
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Appendix F. From the field to the asymptotic waveform

From the eikonal operator (8.35), or from its soft versions (7.8) or (7.45), we obtain expressions
for the expectation of the canonically normalized field (7.14) in the final state of the form

hµν(x) =

∫

k

[
eik·xiT̃ µν(k)− e−ik·xiT̃ µν(k)∗

]
(F.1)

with T̃ µν(k) =Wµν
TT(k) or T̃ µν(k) = −iwµν

TT(k) or T̃ µν(k) = −iFµν
TT(k) respectively in those three

cases. An important property that can be seen to hold in all three applications considered in the
text is

T̃ µν(−k) = T̃ ∗µν(k) . (F.2)

The prediction (F.1) in only reliable for the gravitational field sourced by the collision far away
from the sources, and one thus faces the issue of taking the asymptotic limit of (F.1) in a null
direction. This amounts to considering a detector placed, spatially, very far away for retarded
times comparable to the one at which the scattering event takes place. To this end, we introduce
the decomposition

xµ = u tµ + r nµ , (F.3)

where tµ is the detector’s four-velocity, t2 = −1, and nµ is a future-directed null vector, such
n2 = 0 and −t · n = 1, characterizing its direction. In this way, u describes the retarded time of
the asymptotic detector and r > 0 represents its distance from the source, so we want to take the
limit

r→∞ , u, nµ fixed. (F.4)

It is convenient to change integration variable in (F.1) in a similar way, letting kµ = ρ tµ+ωmµ

with ω > 0, and such that m2 = 0 and −t ·m = 1. Taking into account that the corresponding
metric reads

(dk)2 = −dρ2 + 2dρ dω + ω2(dm)2 , (F.5)

we find that Eq. (F.1) takes the following form

hµν(x) = i

∫ ∞

0

dω

2ω
ωD−2

∫
dD−2m

(2π)D−1
T̃ µν(ωm) e−iωu+iωr n·m + (c.c.) , (F.6)

(where c.c. stands for “complex conjugate”). The fact that r →∞ in the last term in the exponent
can be compensated by letting m = n+z, where the new integration variable z must obey t ·z = 0
and z · n = −z2/2, and focusing on the region z ∼ O(1/√r). Then, to leading order we can
approximate m ∼ n everywhere else, obtaining

hµν(x) ∼ i
∫ ∞

0

dω

2ω
ωD−2T̃ µν(ωn) e−iωu

∫
dD−2z

(2π)D−1
e−

i
2ωrz2

+ (c.c.) . (F.7)

Performing the Gaussian integral over z, we thus obtain the desired asymptotic limit,

hµν(x) ∼ i

2(2iπr)
D−2

2

∫ ∞

0

dω

2π
ω

D−4
2 T̃ µν(ωn)e−iωu + (c.c.) . (F.8)

Although the previous expression holds in arbitrary dimensions, we can focus on D = 4,

hµν(x) ∼ 1

4πr

∫ ∞

0

dω

2π
T̃ µν(ω n)e−iωu + (c.c.) (F.9)

and finally, using (F.2), we note that the two terms combine to yield a single integral over “positive
and negative frequencies”,

hµν(x) ∼ 1

4πr

∫ ∞

−∞

dω

2π
T̃ µν(ωn)e−iuω . (F.10)
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