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1 Introduction

To date, Einstein’s gravity has reached numerous successes, ranging from perturbative
confirmations such as the precession of the perihelia of Mercury and deflection of the starlight
to non-perturbative ones, such as the Big Bang Nucleosynthesis. Yet, from the field theory
perspective, it is incomplete. Although at one loop it is shown to be renormalizable [1],
this property is lost as soon as one considers the higher order corrections [2].

Higher-derivative theories of gravity [3–13], on the other hand, are advocated to be
power-counting renormalizable1 and asymptotically free [3, 15, 16]. As such, these theories
could play a role in the UV completion of gravity [10, 17].

Conformal Gravity (CG) [18–20] — model whose action is made out of the square of
the Weyl tensor — takes a predominant role among these theories. Its action is characterized
by the invariance under the conformal transformations — local (or space-time dependent)
re-scalings of the metric — making it dependent only on angles and not distances.

Over the years, the interest in this theory has been vast. Formulated as a gauge theory,
it has been an important ingredient in the construction of supergravity theories [21–30, 32],
and non-commutative geometry [33–35]. It also emerges from the twistor string theory [36],
and appears in different renormalization prescriptions of the gravitational theories, such

1However, see also [14], where an argument against renormalizability was given.
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as holographic, Kounterterm, and conformal renormalization [37–41]. In addition, CG has
also been applied in Cosmology and Black-Hole (BH) physics. It has been advocated to
explain the flat galaxy rotation curves without the need for dark matter [42] (although
recently there have been tensions with these claims — see eg. [43]), and may also provide
for astrophysical BH candidates [44, 45].

Regardless of its intriguing properties and applications, CG suffers from a pathology.
It describes two vector degrees of freedom (dof), and four tensor ones [46]. However, due
to the presence of higher derivatives, two tensor modes among these are the Ostrogradsky
ghosts [47] — they cause the energy to be unbounded from below [5]. Due to these modes,
classically, the system exhibits a linear instability, while upon quantization, they lead to
the violation of unitarity.

Notably, in [48], Maldacena has conjectured that the key to resolving this problem
lies in the boundary conditions, with which CG would reduce to Einstein gravity with a
cosmological constant (EΛ) in Euclidean AdS and dS space (see also [49, 50]). By introducing
the Neumann Boundary Condition, in which the first derivative of the metric vanishes at
the boundary, together with the Positive Frequency Condition — the requirement that at
very early times only the positive frequency modes are present — the four tensor modes
would recombine in such way that only two would remain, which would agree with the
two tensor modes of the de Sitter space. While such a procedure removes the ghosts and
indicates the equivalence of EΛ and CG, it nevertheless leaves subtleties that have yet to
be answered.

Maldacena’s boundary conditions are peculiar. In contrast to the full general solution
that one would find for the tensor modes in the de Sitter background, by applying them to
the perturbations, one obtains just a particular solution. This leads to a natural question —
Is it possible to find boundary conditions that would keep the solution of the tensor modes
in their full generality?

Moreover, CG is a curious theory of gravity. Due to its invariance under conformal
transformations, it is unable to distinguish between various conformally flat spacetimes.
Thus, even if one would find perturbations that match those of the dS space in flat
coordinates, one would not be able to determine if the resulting theory is the Minkowski
spacetime with the dS perturbations or any other background that is connected to it via
conformal transformations. In other words, at this point, it is unclear — What are the
conditions that determine if the background is de Sitter or Minkowski, and what are their
consequences for the perturbations?

In this paper, we will address these questions, by studying the interplay of different
conditions that match the perturbation theory of Einstein and Conformal gravities for dS
and Minkowski backgrounds.

First, we will study the basics of CG, reviewing its degrees of freedom, and Maldacena’s
argument for its equivalence with ordinary gravity. Then, we will find the conditions that
set the background equal to the de Sitter Universe. Along the lines of Maldacena, we will
assume the Neumann Boundary Condition, and derive an additional one. In contrast to the
condition of positive-frequency modes, we will find that this set of boundary conditions
recovers the general solution for the perturbations which matches the perturbations around
dS in EΛ.
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This analysis will be followed by the study of perturbations of CG in the Minkowski
spacetime. Surprisingly, we will find that if one wishes to recover a general solution for the
tensor modes in this case, one has to abandon the Neumann boundary conditions entirely.
Instead, we will derive the alternative boundary conditions, which will remove the ghost
from the flat background and recover a general solution that matches with perturbations of
Einstein’s gravity. With this, we will remove the ghost of CG in de Sitter and Minkowski
backgrounds on a classical level, recovering fully general solutions for the surviving modes.

2 Conformal gravity — A first look

In this section, we will review the main properties of conformal gravity (CG), necessary for
the remainder of the paper. The action of conformal gravity is given by2

SCG = αCG

∫
d4x

√
−gWλµνρW

λµνρ

= αCG

∫
d4x

√
−g

(
RλµνρR

λµνρ − 2RµνR
µν + 1

3R
2
)
.

(2.1)

Here, aCG is a dimensionless coupling, and Wλµνρ is the Weyl tensor, given by

Wµνρσ = Rµνρσ + 1
6R(gµρgνσ − gµσgνρ)

− 1
2(gµρRνσ − gµσRνρ − gνρRµσ + gνσRµρ).

(2.2)

Using the Gauss-Bonnet (GB) term,

SGB =
∫
d4x

√
−g(RµνρσR

µνρσ − 4RµνR
µν +R2), (2.3)

the above action can be written as

SCG = 2αCG

∫
d4x

√
−g

(
RµνR

µν − 1
3R

2
)

+ αCGSGB. (2.4)

The GB term is a total derivative, and thus does not contribute to the equations
of motion:

Bµν = 0, (2.5)

where Bµν the Bach tensor :

Bµν = ∇α∇µR
α
ν + ∇α∇νR

α
µ −2Rµν + 1

6gµν2R− 1
3 (∇µ∇νR+ ∇µ∇νR)

− 2RαµR
α
ν + 2

3RRµν + 1
2gµν

(
RαβR

αβ − 1
3R

2
)
,

(2.6)

and 2 = ∇α∇α. However, its presence is nevertheless important — without it, the
action (2.4) would not be invariant under conformal transformations:

gµν → g̃µν = Ω2(x)gµν

xµ → x̃µ = xµ.
(2.7)

2We use the signature (−, +, +, +).
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In particular, one can find that upon this transformation the GB action becomes:

SGB → S̃GB = SGB + Srem, (2.8)

where

Srem = −8
∫
d4x

√
−g

Ω2

[
Rµν∇µΩ∇νΩ −2Ω2Ω + ∇µ∇νΩ∇µ∇νΩ

+ 2
Ω (∇νΩ∇νΩ2Ω −∇µ∇νΩ∇µΩ∇νΩ)

]
.

(2.9)

Here, to simplify the expression, we have used the contracted Bianchi identity. The
remaining contribution of (2.4) precisely cancels this contribution so that the overall action
is invariant.

CG has numerous classical solutions [31, 51–57]. A particularly interesting class of
these are Einstein spaces — solutions for which the Ricci tensor is proportional to the
metric. At the same time, these solutions are solutions of both EΛ and CG. It has been
shown that when evaluated on these spaces, the action of the CG equals the renormalized
Einstein-AdS gravity [49]. In this paper, we will consider Minkowski and dS solutions in
CG, focusing on the perturbation theory around these backgrounds.

2.1 The degrees of freedom

Let us now examine the degrees of freedom (dof) of CG. Due to the invariance under confor-
mal transformations, CG cannot distinguish between different conformally flat spacetimes.
Thus, even at the level of the linearised theory, the actions for de Sitter Universe and
Minkowski spacetime will not differ. In order to see this, let us expand the metric as

gµν = a2(η) (ηµν + hµν) , (2.10)

where a(η) is the scale factor, which is for dS Universe given by

a(η) = − 1
HΛη

, (2.11)

where HΛ is the Hubble constant. For the Minkowski spacetime, a(η) equals unity. Then,
to the lowest order in metric perturbations, the action becomes:

SCG = 2αCG

∫
d4x

(1
6∂µ∂νh

µν∂α∂βh
αβ − 1

2∂ν∂αh
αβ∂µ∂νhµβ

+1
42hαβ2hαβ + 1

6∂
µ∂νhµν2h− 1

122h2h
)
.

(2.12)

Here, we are raising and lowering the indices with the Minkowski metric, h = hµ
µ denotes

the trace of the perturbations, and the partial derivatives are denoted by ∂µ = ∂
∂xµ .

We can notice that the scale factor has entirely dropped out from the action. As a
result, on the level of action, CG does not distinguish between the Minkowski and dS

– 4 –
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spacetime. In order to find the dof, let us now decompose the perturbations according to
the irreducible representations of the SO(2) group:

h00 = 2ϕ
h0i = B,i + Si, Si,i = 0
hij = 2ψδij + 2E,ij + Fi,j + Fj,i + hT

ij , Fi,i = 0, hT
ij,i = 0, hT

ii = 0,

where , i = ∂
∂xi . Then, the Lagrangian density becomes

L = LS + LV + LT , (2.13)

where:

LS = 4
3αCG

(
ϕ∆2ϕ+ 2ϕ∆2ψ + ψ∆2ψ −B∆2B̈ + Ë∆2Ë

−2ϕ∆2Ḃ + 2ϕ∆2Ë + 2ψ∆2Ë − 2ψ∆2Ḃ − 2Ë∆2Ḃ
)

LV = αCG
(
−F̈i∆F̈i + F̈i∆2Fi + S̈i∆Si − Si∆2Si − 2S̈i∆Ḟi − 2Ṡi∆2Fi

)

LT = αCG
2 2hT

ij2h
T
ij

(2.14)

Here, the dot denotes a derivative with respect to the (conformal) time η. Let us now
analyze the perturbations separately.

⋄ Scalar perturbations. We can notice that the scalars ϕ and ψ are not propagating —
the second time derivatives in these fields are missing. By varying the action with respect
to ϕ, we obtain the following constraint:

ϕ = Ḃ − Ë − ψ. (2.15)

Substituting it back into the action, we can see that the Lagrangian density corresponding
to the scalar perturbations vanishes entirely. This leads us to the conclusion that there are
no scalar dof in CG.

⋄ Vector perturbations. In order to study the vector perturbations, we will define

Vi = Si − Ḟi. (2.16)

Then, the Lagrangian density becomes only a function of one vector mode

LV = αCG∆Vi2Vi. (2.17)

Its equation of motion is given by
2Vi = 0, (2.18)

leading us to two dof that arise from the vector perturbations.

– 5 –
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⋄ Tensor perturbations. Finally, the tensor perturbations satisfy:

22hT
ij = 0 (2.19)

This equation of motion gives us an additional four dof, two of which are the ghost dof.
Thus, in total, CG has 6 dof — 2 vector and four tensor ones.

One should notice that the above finding are independent of the choice of the coordinate
system. Under infinitesimal coordinate transformations

xµ → x̃µ = xµ + ξµ (2.20)

the metric perturbation transforms as

hµν → h̃µν = hµν − ξµ,ν − ξν,µ (2.21)

Decomposing
ξµ = (ξ0, ξi), ξi = ξT

i + ζ,i, ξT
i,i = 0 (2.22)

we then find

ϕ→ ϕ̃ = ϕ− ξ̇0 ψ → ψ̃ = ψ B → B̃ = B − ξ0 − ζ̇ E → Ẽ = E − ζ

Si → S̃i = Si − ξ̇T
i Fi → F̃i = Fi − ξT

i

hT
ij → h̃T

ij = hT
ij

(2.23)

Thus, the tensor perturbations hT
ij , vector perturbations Vi and the scalar one ψ are all gauge

invariant quantities [58]. In addition, upon the infinitesimal coordinate transformation, the
constraint that is obeyed by the scalars (2.15) will not change its form. As a result, the
above findings for the dof of CG will be independent of the choice of the reference frame.

2.2 Maldacena’s boundary conditions

Clearly, the presence of ghosts is not ideal to make the case for Conformal Gravity. However,
in [48] it was argued that they could be avoided by choosing the Neumann Boundary and
Positive Frequency Mode conditions. In this subsection, we will summarize Maldacena’s
argument and demonstrate how the solutions of the tensor modes recombine to form a
particular solution of the de Sitter tensor mode, while the same choice sets the vector modes
to zero.

Following [48], as a first step let us choose the synchronous gauge:

h0α = 0 (2.24)

that sets Si = 0. In Fourier space, the vector modes can be expressed as

Vi =
∫

d3k

(2π)3/2 vkε
T
i e

ik⃗x⃗ (2.25)

– 6 –
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where εi is the polarisation tensor. Then, the solution of (2.18) is given by

vk = AV e
ikη +BV e

−ikη (2.26)

where AV and BV are constants of integration.
Similarly, writing the tensor modes also in the Fourier space,

hT
ij =

∫
d3k

(2π)3/2hkε
T
ije

ik⃗x⃗, (2.27)

where εT
ij are the polarisation tensors, we find that the general solution of (2.19) is given by

hk = AT e
ikη +BT e

−ikη + η
[
CT e

ikη +DT e
−ikη

]
(2.28)

where AT , BT , CT and DT are constants of integration. Here, we see that the first two
terms correspond to the healthy tensor mode. The second two are linear in time, and as
such are the source of the linear instability [5] — they are known as the ghosts.

The Neumann Boundary Condition is a statement that

ġij |η=0 = 0 (2.29)

For the tensor modes, this implies that

ḣT
ij

∣∣∣
η=0

= 0 (2.30)

and, for vector modes:
Ḟi

∣∣∣
η=0

= 0. (2.31)

Thus, for the gauge-invariant vector modes, this becomes the Dirichlet condition:

Vi|η=0 = 0. (2.32)

The Positive Frequency Mode Condition is the requirement that at very early times
only the positive-frequency modes are present. In other words, we have

lim
η→−∞

hk ∼ e−ikη and lim
η→−∞

vk ∼ e−ikη. (2.33)

When applied to the vector modes, the two conditions make them vanish entirely.
The solutions of the tensor modes, on the other hand, recombine such that only one

particular solution remains:
hk = BT (1 + ikt) e−ikt. (2.34)

This is precisely the form of one of the tensor mode solutions of Einstein gravity with the
de Sitter background in flat coordinates, that satisfy [58]:

h
T (dS)
ij =

∫
d3k

(2π)3/2h
(dS)
k εT

ije
ik⃗x⃗ h

(dS)
k = C± (1 ± ikη) e∓ikη, (2.35)

where C± are constants of integration.

– 7 –
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Thus, it seems we have simply recovered the perturbation theory in the de Sitter
space. Nevertheless, as we have pointed out in the introduction, this result hides subtleties
that are yet to be answered. Due to the invariance under conformal transformations,
conformal gravity cannot distinguish between two spacetimes, that are related by a conformal
transformation. Thus, one possibility to write the final result would be

ds2 = ηµνdx
µdxν + hT

ijdx
idxj , (2.36)

while another would be

ds2 = 1
H2

Λη
2

(
ηµνdx

µdxν + hT
ijdx

idxj
)
. (2.37)

At this point, the background is not apriori-determined. As a result, one could end up with
the metric whose background is Minkowski spacetime, while the perturbations behave as if
they were around the de Sitter background — a result that does not seem to be realistic but
within this framework could be possible. Furthermore, the solution that we have obtained
is only a particular one, leading us to the natural question if is it possible to obtain a
more general solution, just like one can obtain in the case of de Sitter Universe. In the
next section, we will study these questions, finding the conditions that select the de Sitter
background and leading to the general solution for the tensor perturbations.

3 de Sitter selection

Previously, we have seen that imposing Maldacena’s boundary conditions leads us to an
ambiguity — Which condition determines the background space-time to be de Sitter? To
answer it, let’s consider how can one obtain Einstein’s gravity with a cosmological constant
(EΛ), starting from the CG action.

In terms of the traceless part of the Ricci tensor,

Rµν = Hµν − gµν

4 R, (3.1)

the action of conformal gravity can be written as

SCG = αCG

∫
d4x

√
−g

[
2HµνH

µν − 4
3Λ (R− 2Λ) − 24

(
R

12 − Λ
3

)2]
+ αCGSGB, (3.2)

where Λ = 3H2
Λ is the cosmological constant. We can notice that the middle term looks

like EΛ, while the remaining terms set the solutions of CG apart from the ordinary gravity.
(Up to the GB term that we will comment on later on.) Thus, to recover EΛ, we should set

Hµν = 0 and R = 12H2
Λ. (3.3)

3.1 The Starobinsky expansion

By studying the inhomogeneous asymptotic structure of an expanding Universe filled with an
effective cosmological constant, Starobinsky in [59] has introduced an asymptotic expansion
of the metric at t→ ∞, known as the Starobinsky expansion, which is given by:

ds2 = −dt2 + γij(x⃗)dxidxj , γij = e2HΛtaij + bij + e−HΛtcij + . . . (3.4)

– 8 –
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In terms of the conformal time,

a(η)dη = dt where a(η) = − 1
HΛη

, and 3H2
Λ = Λ, (3.5)

the above expansion can be written as

ds2 = 1
H2

Λη
2

[
−dη2 +

∞∑
n=0

(−1)n

n! (ηHΛ)ng
(n)
ij (x⃗)dxidxj

]
(3.6)

with
g

(1)
ij = 0. (3.7)

Here, g(n)
ij (x⃗) are coefficients that depend only on space. As we have seen, in CG, one can

equivalently remove the overall scale factor in (3.6) with which this expansion would become
an expansion of the metric at η = 0. As a result, the above coefficient would simply become
the derivatives of the metric, and thus, the Neumann Boundary Condition (NBC) would
simply become the statement given in the equation (3.7).

In this subsection, we will use the Starobinsky expansion and the conditions (3.3) in
order to find relations satisfied by metric coefficients g(n)

ij . This procedure will be similar
to that of [50] where the relation between metric coefficients was found by using the
Fefferman-Graham expansion [60, 61] in AdS. Knowing the relation between different
metric coefficients will then help us to determine the boundary conditions that the metric
should satisfy such that its perturbations recover the full general solution of the dS space.
By working with the expansion that contains a general scale factor

ds2 = a2(η)
[
−dη2 +

∞∑
n=0

(−1)n

n! (ηHΛ)ng
(n)
ij (x⃗)dxidxj

]
, g

(1)
ij = 0 (3.8)

we will show that the only possible background that fulfills the conditions (3.3) is the de
Sitter Universe.

By substituting (3.8) into the Ricci scalar and the traceless part of the Ricci tensor,
we find:

R = 1
a2

[
6 ä
a

+R(0) +H2
Λg

(2)
(

3η ȧ
a

+ 1
)
−H3

Λg
(3)
(
η + 3

2η
2 ȧ

a

)
+ O(η2)

]

H00 = 3(ȧ)2

a2 − 3
2
ä

a
+ 1

4R
(0) + H2

Λ
4 g(2)

(
η
ȧ

a
− 1

)
+H3

Ληg
(3)
(1

4 − ȧ

8aη
)

+ O(η2)

H0i = H2
Λ

2 η
(
Djg

j(2)
i −Dig

(2)
)

+ O(η2)

(3.9)

and

Hij = R
(0)
ij − 1

4R
(0)g

(0)
ij + g

(0)
ij

(
(ȧ)2

a2 − ä

2a

)

+H2
Λ

1
2g

(2)
ij + 1

2
(ȧ)2

a2 η2g
(2)
ij + ȧ

a
ηg

(2)
ij − 1

4
ä

a
η2g

(2)
ij −

g
(0)
ij

4 g(2)
(

1 + ȧ

a
η

)
−H3

Λ

[
g

(3)
ij

(
η

2 − äη3

12a + (ȧ)2η3

6a2 + ȧη2

2a

)
− g

(0)
ij g

(3) η

4

(
1 + aη

2a

)]
(3.10)
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Here, the curvature terms R(0)
ij , R(0) and covariant derivatives Di correspond to the three-

dimensional metric g(0)
ij . Furthermore, in these expressions, we raise and lower the indices

with g
(0)
ij , while g(n) = g(0)ijg

(n)
ij denotes the trace of the metric.

The above equations should be identified with the conditions (3.3), and solved at each
power of the conformal time. The Ricci scalar, and the H00 component imply that

(ȧ)2

a2 − ä

2a = 0 ä

a3 = 2H2
Λ (3.11)

The only solution to these equations is the scale factor of the de Sitter Universe:

a = − 1
HΛη

. (3.12)

This means that the background is now determined. Imposing the conditions (3.3), we
break the conformal invariance and select the particular space-time background.

We have seen that the NBC is implemented in the Starobinsky expansion and plays
a role in selecting the solutions of the metric perturbations. Let us now derive another
boundary condition that will replace the requirement of the positive frequency modes, and
recover the general solution of the perturbations.

Considering the higher-order terms, the Ricci scalar and the H00 component imply:

g(2) = R(0)

2H2
Λ

(3.13)

and
g(3) = 0 (3.14)

Substituting this into Hij = 0, we then find

g
(2)
ij = 2

H2
Λ

(
R

(0)
ij − 1

4g
(0)
ij R

(0)
)
. (3.15)

Finally, the H0i component gives us

Djg
j(2)
i = Dig

(2). (3.16)

These conditions together with (3.11) and NBC guarantee us that we will obtain the
de Sitter Universe together with appropriate perturbations. To see this, let us apply them
to the metric perturbations that we have previously discussed.

3.2 CG and the dS perturbations

In the previous part, we have derived the conditions that metric coefficients should satisfy
such that the traceless part of the Ricci tensor vanishes, while the Ricci scalar takes the
values as if it would in the de Sitter space. The key to making these requirement lies in
the action of CG — with such values, the pure contribution of CG would vanish, and one
would only obtain a term resembling the EΛ, together with the GB term.

– 10 –
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By assuming the general value of the scale factor, we have shown that then, the only
possible background is the de Sitter space. However, the question of the perturbations
around this space still remains. In this subsection, we will show that the equivalence of CG
and EΛ extends even further — on the level of perturbations.

By decomposing the metric as

gµν = a2(η) (ηµν + hµν) , (3.17)

we can identify the metric coefficients of the Starobinsky expansion g
(n)
µν and the metric

perturbations hµν as

g(0)
µν = hµν |η=0 − g(1)

µν = ḣµν

∣∣∣
η=0

H2
Λg

(2)
µν = ḧµν

∣∣∣
η=0

(3.18)

With this connection, NBC implies:

ḣij

∣∣∣
η=0

= 0 (3.19)

We can notice that the condition on the second-order coefficients (3.15) involves the 3-
curvatures. In order to find how this expression translates to the metric perturbations, we
linearize the Ricci tensor and scalar and find:

R
(0)
ij = 1

2
[
∂k∂ih

k
j + ∂k∂jh

k
i − ∆hij − ∂j∂ih

k
k

]∣∣∣∣
η=0

, (3.20)

and
R(0) = ∂i∂jh

ij − ∆hi
i

∣∣∣
η=0

. (3.21)

Here, the indices are raised and lowered with the Minkowski metric. With this, (3.15)
becomes:

ḧij

∣∣∣
η=0

= 2
(
R

(0)
ij − 1

4g
(0)
ij R

(0)
)
. (3.22)

Lastly, the conditions (3.14) and (3.16) become respectively

∂3hi
i

∂η3

∣∣∣∣∣
η=0

= 0 and ∂j ḧ
j
i

∣∣∣
η=0

= ∂iḧ
j
j

∣∣∣
η=0

. (3.23)

Let us now consider the vector and tensor modes separately.

⋄ Tensor perturbations. Previously, we have found the following solutions for the
tensor modes:

hT
ij =

∫
d3k

(2π)3/2hkε
T
ije

ik⃗x⃗, (3.24)

where
hk = AT e

ikη +BT e
−ikη + η

[
CT e

ikη +DT e
−ikη

]
. (3.25)

Applying the NBC, we find

ik(AT −BT ) + CT +DT = 0 (3.26)
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In Fourier space, the second condition (3.22) becomes

ḧk

∣∣∣
η=0

= k2hk

∣∣∣
η=0

(3.27)

from which we obtain
ik(AT +BT ) + CT −DT = 0 (3.28)

Solving the two equations for the constants, we find

C = −ikA and D = ikB (3.29)

and thus we find a general solution:

hk(η) = A(1 − ikη)eikη +B(1 + ikη)e−ikη, (3.30)

which agrees with the de Sitter solution in Einstein’s gravity for the tensor modes. As
these modes are traceless and transverse, the remaining two conditions (3.23) will be
identically satisfied.

The above values of the tensor modes were found for the re-scaled perturbations, hµν ,
the true perturbations around the de Sitter background

gµν = g(0)
µν + δgµν , where g(0)

µν = a2(η)ηµν , (3.31)

are then given by:

δgT
ij(η) = a2(η)hT

ij =
∫

d3k

(2π)3/2
1

H2
Λη

2

[
A(1 − ikη)eikη +B(1 + ikη)e−ikη

]
εT

ije
ik⃗x⃗ (3.32)

⋄ Vector perturbations. In contrast to the tensor modes, the gauge-invariant vector
mode vanishes under the derived conditions. For them, the NBC becomes the Dirichlet
condition:

Vi|η=0 = 0, (3.33)

while the second condition (3.22) gives us Neumann condition:

V̇i

∣∣∣
η=0

= 0 (3.34)

Thus, for a general solution that we have previously found:

vk = AV e
ikη +BV e

−ikη (3.35)

these two imply
A = B = 0. (3.36)

Thus, in this section, we have seen that the ghost dof completely disappears from
the CG, aligning its perturbations with those of EΛ in the de Sitter case. Moreover, by
performing the analysis with a general factor, we have seen that the de Sitter Universe is
the only possible background under the conditions given by (3.3). One might wonder how
out of all possible conformally flat space-times, we have ended up with this particular one.
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The reason is that the conditions (3.3) break conformal invariance. For example, under
conformal transformations, the Ricci scalar transforms as

R → R̃ = R

Ω2 − 6∇
µ∇µΩ
Ω3 . (3.37)

Due to this, the arbitrariness of the scale factor is lost, and the only possibility that remains
is the de Sitter Universe.

3.3 Can we ignore the Bauss-Bonnet term?

Up to this point, we were aiming to set the first and last term of the action (3.2) to zero, in
order to recover EΛ. The GB term, which is also present in the action is a total derivative,
and will thus not affect the equations of motion. Nevertheless, due to the following argument,
we will see that in the dS case, the CG will not only reduce to EΛ, but the GB term should
also remain in the final action.

Let us consider the action (3.2) and substitute the values of the curvatures for the de
Sitter space. In this case, the following two terms vanish:

HµνH
µν = 0

(
R

12 − Λ
3

)2
= 0 (3.38)

The Gauss-Bonnet term, on the other hand, gives a non-vanishing contribution:

αCGSGB = 8
3αCGΛ2

∫
d4x

√
−g (3.39)

and the second term, which corresponds to the Einstein action with the cosmological
constant gives an opposite contribution:

−αCG
4
3Λ (R− 2Λ) = −αCG

8
3Λ2 (3.40)

which cancels the Gauss-Bonnet term. It is not surprising that the overall action is zero
— dS space is conformally flat, so the corresponding Weyl tensor is zero. The action of
Einstein’s gravity with a cosmological term gives however a non-vanishing contribution:

SEH =
M2

pl

2

∫
d4x

√
−g(R− 2Λ) = M2

plΛ
∫
d4x

√
−g (3.41)

Therefore, the only possible way to obtain Einstein’s gravity from CG is to keep the
Gauss-Bonnet term intact in the action in order to cancel the overall contribution of
Einstein’s Gravity.

One should also note that the connection of the two theories relates the Planck mass
with the cosmological constant and the CG coupling in the following way:

M2
pl = −8

3αCGΛ. (3.42)

For αCG of the order of unity, the cosmological constant (and therefore the curvature) is of
the same order as the Planck mass. At this point, we enter the regime of quantum gravity.
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Thus, in order to avoid it, we should require that the value of αCG is much larger than one.
We can roughly see that this corresponds to the weakly-coupled regime of conformal gravity.
Expanding the metric, the action for the perturbations can be written as

SCG = αCG

∫
d4x

(
h2

L4 + h3

L4 + . . .

)
, (3.43)

where 1
L denotes a derivative, and h denotes the perturbations. Canonically normalizing

the tensor field with:
hn = √

αCGh (3.44)

the quadratic term becomes
αCGh

2 = h2
n (3.45)

while for the cubic we have:

αCGh
3 = h3

n√
αCG

(3.46)

As a result, we can see that the self-interacting term is smaller than the leading, kinetic
term if

√
αCG ≫ 1 (3.47)

which corresponds to the weakly coupled regime.

4 The ABC of the Minkowski space

In the previous section, we have found the conditions in which CG reduces to ordinary
gravity with a cosmological constant and a GB term for the de Sitter space. These conditions
break the conformal invariance, distinguishing between the Minkowski and de Sitter space —
property that was initially absent in the CG. As a result, the ghosts that were present in the
CG recombine with the healthy modes and ultimately form the two healthy tensor modes.

Here, we will in turn investigate the conditions that will recover the Minkowski space.
Following the previous procedure, let us first consider the CG action, which we will now
write in the following way:

SCG =
∫
d4x

√
−g

[
2αCGHµνH

µν − αCG
2 R

(
R

3 +
M2

pl

αCG

)
+
M2

pl

2 R

]
+ αCGSGB (4.1)

We can see that the third term now corresponds to Einstein’s gravity, while the
remaining ones are the contributions that arise from CG. Clearly, to recover the Minkowski
space we have to set:

Hµν = 0 and R = 0. (4.2)

In the following, we will derive what boundary conditions are implied with these requirements,
with a procedure similar to the previous section, and apply them to the metric perturbations.

– 14 –



J
H
E
P
0
8
(
2
0
2
3
)
1
6
8

4.1 Minkowski selection and the Neumann boundary conditions

Following the line of the previous section, we will apply the Starobinsky expansion:

ds2 = a2(η)
[
−dη2 +

∞∑
n=0

(−1)n

n! ηng
(n)
ij (x⃗)dxidxj

]
(4.3)

with
g

(1)
ij = 0, (4.4)

to the conditions (4.2), and derive the resulting relations between the metric coefficients.
As before, we will work with the general scale factor and show that (4.2) imply that the
spacetime should now be flat.

From the conditions
R = 0 and H00 = 0, (4.5)

we find
a′′ = 0 and a′ = 0. (4.6)

Clearly, the scale factor is a constant which we can set to unity without the loss of generality.
In addition, the same conditions imply:

g(2) +R(0) = 0 and g(2) −R(0) = 0. (4.7)

From here, it follows that

g(2) = 0 and R(0) = 0. (4.8)

Then, from
Hij = 0 (4.9)

we find:
g

(2)
ij = −2R(0)

ij . (4.10)

Finally, at O(η) we find:
g

(3)
ij = 0. (4.11)

Let us now apply these conditions to the perturbations. For vector perturbations, these
conditions imply:

Vi|η=0 = 0 and V̇i

∣∣∣
η=0

= 0. (4.12)

Thus, we find no vector modes — both constants of integration are zero due to these
boundary conditions.

For the tensor modes, (4.10) becomes:

ḧk

∣∣∣
η=0

= −k2hk

∣∣∣
η=0

(4.13)

in the Fourier space. This condition relates two of the constants of the general solu-
tion (3.24) as

C = D. (4.14)
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In addition, the condition
ḣk

∣∣∣
η=0

= 0 (4.15)

implies
ik(A−B) + 2C = 0, (4.16)

while with
∂3hk

∂η3

∣∣∣∣∣
η=0

= 0, (4.17)

we obtain:
ik3(A−B) + 6k2C = 0. (4.18)

Combining the two equations, we find

C = D = 0 and A = B. (4.19)

As a result, our solution for the perturbations becomes:

hk = AT

(
eikη + e−ikη

)
. (4.20)

Therefore, we have obtained only a particular solution for the Minkowski space. Inter-
estingly, comparing the boundary conditions of this case with the dS one, we can notice two
crucial differences. First, conditions (4.13) and (3.27) come with an opposite sign. Second,
in the Minkowski case, the third derivative of the metric is vanishing. The reason for both of
these results lies in the scale factor. In the dS case, it contributes to the metric coefficients,
ultimately changing the overall signature of second-order coefficients, and canceling the
third-order coefficient.

One might wonder if the particular solution could nevertheless be cancelled if one
considers higher time derivatives of the metric. Let us consider the n-th time-derivative of
the metric perturbation at the boundary:

∂nhk

∂ηn

∣∣∣∣
η=0

(4.21)

We can easily see that if n is odd, and the above expression vanishes in this case, this will
not be enough to remove the remaining constant of integration — AT . Only possibility that
AT is zero is if even number of derivatives of the metric vanishes at the boundary. We have
checked this up to O(η2) in Hµν . In particular, at this order we find:

g(4) = 0 + O
(
η3, η2g

(2)
ij g

(2)ij , η2g(2)ijR
(0)
ij

)
(4.22)

arising from the H00 = 0 condition.From the Hij = 0 condition we obtain:

g
(4)
ij = −DkDig

(2)k
j −DkDjg

(2)k
i +DkD

kg
(2)
ij + O

(
η3, η2g

(2)
ij g

(2)ij , η2g(2)ijR
(0)
ij

)
(4.23)

In terms of the tensor perturbations in the Fourier space, this condition translates to:

∂4hk

∂η4

∣∣∣∣∣
η=0

= −k2 ∂
2hk

∂η2

∣∣∣∣∣
η=0

(4.24)
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Thus, it is equivalent to the second time derivative of the boundary condition (4.13), that we
have previously obtained. As a result, it will not be able to remove the remaining constant
of integration, and with this vanish the tensor modes.

Nevertheless, the particular solution (4.20) is not natural. It would be far more
favourable to have a general one, which would describe the classical plane waves at the
linearised level. In the next section, we will investigate how to obtain this general solution.

4.2 The alternative boundary conditions

In the previous section, we found only a particular solution for the tensor modes in the
Minkowski case. However, it would be desirable to rather have a general one, where the
constants C and D are eliminated. A hint for this lies in the boundary conditions (4.15)
and (4.17). We can notice that if we write

−k2ḣk

∣∣∣
η=0

= ∂3hk

∂η3

∣∣∣∣∣
η=0

, (4.25)

implies C = 0, so that our solution becomes:

hk = AT e
ikη +BT e

−ikη (4.26)

However, the price we have to pay is the non-vanishing first derivative. In other words, we
would need to give up on Maldacena’s NBC.

In this subsection, we will show that the alternative boundary conditions (ABC) —
(4.25) and (4.13) — can be consistently derived from the theory. As before, we will use the
following expansion

ds2 = −dη2 +
∞∑

n=0

(−1)n

n! ηng
(n)
ij (x⃗)dxidxj . (4.27)

However, in contrast to the previous analysis, we will require:

g
(1)
ij ̸= 0, (4.28)

to ensure that the first derivative of metric is non-vanishing at the boundary. The possibility
of having (4.28) with the Starobinski expansion in the (A)dS case was for the first time
introduced in [38], in the context of the CG holography.

By substituting this expansion into the conditions

Hµν = 0 and R = 0, (4.29)

we find up to the leading order:

R=R(0)+g(2)+ 1
4g

(1)g(1)− 3
4g

(1)
ij g

(1)ij +η
(
g

(1)
ij R

(0)ij +DiD
ig(1)−DiDjg

(1)ij
)

+η
(
−g(3)− 1

2g
(2)g(1)+ 5

2g
(1)ijg

(2)
ij + 1

2g
(1)ijg

(1)
ij g

(1)− 3
2g

(1)ijg
(1)k
i g(1)jk

)
H00 = 1

4R
(0)− 1

4g
(2)+ 1

16

(
g(1)ijg

(1)
ij +g(1)g(1)

)
+ η

4

(
g(1)ijR

(0)
ij −DiDjg

(1)ij +DiD
ig(1)

)
+ η

8

(
2g(3)−g(2)g(1)−3g(1)ijg

(2)
ij +g(1)ijg

(1)k
i g

(1)
jk +g(1)ijg

(1)
ij g

(1)
)
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H0i = 1
2

(
Dig

(1)−Djg
(1)j
i

)
+ η

2

(3
2g

(1)klDig
(1)
kl + 1

2g
(1)
ij D

jg(1)−g(1)
ij Dkg

(1)jk−g(1)jkDjg
(1)
ik +Djg

(2)
ij −Dig

(2)
)

Hij =R
(0)
ij − 1

4g
(0)
ij R

(0)+ 1
2

[
g

(2)
ij −g(1)

jk g
(1)k
i − 1

2g
(0)
ij g

(2)+ 1
2g

(1)g
(1)
ij +

g
(0)
ij

8

(
3g(1)

kl g
(1)kl−g(1)g(1)

)]

− η

4

[
g

(0)
ij g

(1)klR
(0)
kl −g(1)

ij R
(0)+2DkDjg

(1)k
i +2DkDig

(1)k
j −2DkD

kg
(1)
ij −2DiDjg

(1)

+g(0)
ij

(
DkD

kg(1)−DkDlg
(1)kl

)]
+ η

16

[
−8g(3)

ij +4g(0)
ij g

(3)−4g(1)g
(2)
ij +8g(1)

ik g
(2)k
j

+8g(1)
jk g

(2)k
i +2g(0)

ij

(
g(1)g(2)−5g(1)klg

(2)
kl

)
+g(1)

ij

(
g(1)g(1)+g(1)klg

(1)
kl

)
−8g(1)klg

(1)
jk g

(1)
il

+2g(0)
ij

(
3g(1)klg

(1)
ks g

(1)s
l −g(1)klg

(1)
kl g

(1)
)]

Let us now study the relations between the metric coefficients arising from (4.2), starting
with O(η0). The

H0i = 0 (4.30)

condition implies
Dig

(1) = Djg
(1)j
i . (4.31)

Then, from the conditions
R = 0 and H00 = 0, (4.32)

we obtain:

g(2) =
g

(1)
ij g

(1)ij

2 and R(0) = 1
4
(
g(1)ijg

(1)
ij − g(1)g(1)

)
. (4.33)

Applying these relations to the
Hij = 0, (4.34)

we find:
g

(2)
ij = −2R(0)

ij + g
(1)
ik g

(1)k
j − 1

2g
(1)g

(1)
ij (4.35)

At the linearised level, we can notice that this condition is equivalent to the one that we
have obtained with the NBC, (4.10). The last two terms will give us a contribution that is
quadratic in curvature so when we apply this condition to the perturbation theory, we will
be able to neglect these terms.

Let us now consider the next order in the conformal time — O(η). The

R = 0 and H00 = 0, (4.36)

conditions imply:
g(3) = 2g(1)ijg

(2)
ij − g(1)ijg

(1)
jk g

(1)k
i (4.37)

and
g(1)ijR

(0)
ij = −1

2
(
g(1)g(2) + g(1)ijg

(2)
ij − g(1)ijg

(1)
jk g

(1)k
i

)
. (4.38)

Substituting these two relations into

Hij = 0, (4.39)
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we find:

g
(3)
ij = −DkDjg

(1)k
i −DkDig

(1)k
j +DkD

kg
(1)
ij +DiDjg

(1)

+ g
(1)
ik g

(2)k
j + g

(1)
jk g

(2)k
i + 1

2
(
g

(1)
ij g

(2) − g(1)g
(2)
ij

)
− g(1)klg

(1)
jk g

(1)
il

(4.40)

These relations determine the boundary conditions on the original metric gµν evaluated
at η = 0. Altogether, the relations between the metric at the boundary and the coefficients
are given by:

g(0)
µν = gµν |η=0 g(1)

µν = − g′µν

∣∣∣
η=0

g(2)
µν = g′′µν

∣∣∣
η=0

g(3)
µν = − g′′′µν

∣∣∣
η=0

. (4.41)

Let us now apply them to the perturbations of the metric:

gµν = ηµν + hµν (4.42)

By linearising the above relations in hµν , the previous conditions significantly simplify. In
particular, we find:

∂iḣ
∣∣∣
η=0

= ∂j ḣ
j
i

∣∣∣
η=0

ḧi
i

∣∣∣
η=0

= 0 R(0) = 0 (4.43)

and

ḧij

∣∣∣
η=0

= −2R(0)
ij

∂3hij

∂η3

∣∣∣∣∣
η=0

=
(
∂i∂j ḣ

k
k + ∆ḣij − ∂k∂iḣ

k
j − ∂k∂j ḣ

k
i

)
η=0

(4.44)

where ∆ = ∂k∂k.
Let us now apply these results to the perturbations.

⋄ Vector perturbations. In the synchronous gauge, the gauge-invariant vector pertur-
bations are given by:

Vi = −Ḟi. (4.45)

In this case, the above relations become:

Vi|η=0 = 0 V̇i

∣∣∣
η=0

= 0 V̈i

∣∣∣
η=0

= 0 (4.46)

By applying them to the general solution (2.26), we find that the vector modes vanish in
the Minkowski spacetime.

⋄ Tensor perturbations. In terms of the tensor perturbations

hij = hT
ij (4.47)

the above conditions become

−k2ḣk

∣∣∣
η=0

= ∂3hk

∂η3

∣∣∣∣∣
η=0

, (4.48)
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and
ḧk

∣∣∣
η=0

= −k2hk

∣∣∣
η=0

. (4.49)

These boundary conditions are precisely the ones that we have intuitively found at the
beginning of this section. With them, the general solution for the tensor modes becomes

hk = AT e
ikη +BT e

−ikη, (4.50)

which is in agreement with the perturbations around the Minkowski space in
Einstein’s gravity.

5 Summary

In this work, we have studied the perturbations of conformal gravity. This theory has six
degrees of freedom, out of which two are healthy vector modes, and four tensor ones, among
which two are pathological, ghost degrees of freedom. Due to the conformal invariance, CG
cannot distinguish between different conformally flat spacetimes so the presence of ghosts
will appear in all of them. Here, we have considered two examples of these spaces — the de
Sitter Universe and Minkowski spacetime.

As it was pointed out in [48], the ghosts in dS could be removed by a suitable choice
of boundary conditions. In particular, the boundary conditions that were chosen have
recovered one particular solution of the tensor modes in CG, which was in agreement with
perturbations of EΛ in the dS space.

In this paper, we have built on this work by studying the interplay of the boundary
conditions that recover general solutions for the perturbations of Einstein’s gravity, thus
removing the ghost degrees of freedom.

First, we have considered the de Sitter case. We have found the conditions that reduce
the CG to EΛ with the GB term. In addition to the previous work [48], we have shown
that these conditions break the conformal invariance and, as a result, select only one of the
conformally flat space-times that were allowed by the CG — the de Sitter Universe. One
could wonder if these conditions, imposed on the traceless part of the Ricci tensor and the
Ricci scalar could be supplemented with additional requirements, such that the Riemann
tensor also takes the appropriate values. We have explored this question in the appendix
and found that this is not a possibility.

Applying the Starobinsky expansion to the conditions, along with the Neumann Bound-
ary Condition, we have derived the boundary condition that should be imposed on the
metric. This condition replaces Maldacena’s positive frequency mode condition which
was selecting only one particular solution for the perturbations. As a result, we find that
ghost-like and healthy tensor modes recombine and provide us a fully general solution
of the tensor perturbations that agrees with that of the dS space and thus removes the
pathological behavior of the conformal gravity.

Investigating further the case of the Minkowski space-time, we have found that in order
to obtain a fully general solution, one has to give up on the Neumann Boundary conditions
entirely. In turn, we have derived alternative boundary conditions, with which CG reduces
to Einstein’s gravity, linearised around the Minkowski space.
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With this approach, we have found that the problematic ghost degrees of freedom can
be removed from the conformal gravity, and recover agreement with Einstein’s gravity. In
future work, we aim to extend this procedure also to other higher-derivative gravity theories
and include additional matter sources.
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A The Riemann tensor and Starobinski expansion

Up to this point, we have considered conditions that specify only the values of the traceless
Ricci tensor and the Ricci scalar. Here, we will investigate if setting the Riemann tensor to
have an appropriate value could affect these conditions.

For the de Sitter Universe, the Riemann tensor is given by:

Rµνρσ = Λ
3 (gµρgνσ − gµσgνρ) (A.1)

By substituting the value of the scale factor for the de Sitter Universe, together with
the Starobinsky expansion, we find the following values for the Riemann tensor:

R0000 = 0 R000i = 0 R00ij = 0 (A.2)

R0i0j = − 1
H2

Λη
4 g

(0)
ij − 1

2η2 g
(2)
ij + 5HΛ

12η g
(3)
ij − 5H2

Λ
24 g

(4)
ij + 1

4H
2
Λg

(2)
ik g

(2)k
j (A.3)

R0ijk = 1
2η
(
Dkg

(2)
ij −Djg

(2)
ik

)
− HΛ

4
(
Dkg

(3)
ij −Djg

(3)
ik

)
(A.4)

and

Rijkl = 1
H2

Λη
2R

(0)
ijkl −

1
H2

Λη
4 (g(0)

il g
(0)
jk − g

(0)
ik g

(0)
jl ) + 1

2g
(2)n
l R

(0)
ijkn

+ 1
4
(
−DiDjg

(2)
kl −DiDkg

(2)
jl +DiDlg

(2)
jk +DjDig

(2)
kl −DjDkg

(2)
il +DiDjg

(2)
kl

)
− HΛ

12η
(
−g(0)

jl g
(3)
ik + g

(0)
jk g

(3)
il + g

(0)
il g

(3)
jk − g

(0)
ik g

(3)
jl

)
(A.5)
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This should be equated with the r.h.s. of (A.1). Among all possibilities, only two are
non-vanishing. Expanding them, we find:

H2
Λ (g00gij − g0ig0j) = − 1

H2
Λη

4 g
(0)
ij − 1

2η2 g
(2)
ij + HΛ

6η g
(3)
ij − H2

Λ
24 g

(4)
ij (A.6)

and

(gikgjl − gilgkj) = 1
H2

Λη
4 (g(0)

ik g
(0)
jl − g

(0)
il g

(0)
jk )

+ 1
2η
(
g

(0)
jl g

(2)
ik − g

(0)
il g

(2)
jk − g

(0)
jk g

(2)
il + g

(0)
ki g

(2)
lj

)
− HΛ

6η
(
g

(0)
jl g

(3)
ik − g

(0)
il g

(3)
jk − g

(0)
jk g

(3)
il + g

(0)
ki g

(3)
lj

) (A.7)

Let us now look at the conditions. From (A.4), we find:

Dkg
(2)
ij −Djg

(2)
ik = 0 (A.8)

Taking the trace of this relation, we find

Dkg
(2)
ij = Djg

(2)
ij (A.9)

which is the relation that comes from the request that H0i = 0. From the purely spatial
part of (A.1), we find

2
H2

Λ
R

(0)
ijkl = g

(0)
jl g

(2)
ik − g

(0)
il g

(2)
jk − g

(0)
jk g

(2)
il + g

(0)
ki g

(2)
lj (A.10)

and
g

(0)
jl g

(3)
ik − g

(0)
il g

(3)
jk − g

(0)
jk g

(3)
il + g

(0)
ki g

(3)
lj = 0 (A.11)

Taking the trace of these equations leads us precisely to the conditions that we have
derived before (3.13) and (3.15). However, one component brings us to a problem — the
R0i0j component leads us to two additional conditions:

g
(3)
ij = 0 and g

(4)
ij = 0 (A.12)

which set all perturbations, including the tensor ones, to zero. Thus, we can conclude
that one cannot set the Riemann tensor to the value analogous to the condition of the
Ricci scalar.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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