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ABSTRACT

Context. The future Euclid space satellite mission will offer an invaluable opportunity to constrain modifications to Einstein’s general relativity at
cosmic scales. In this paper, we focus on modified gravity models characterised, at linear scales, by a scale-independent growth of perturbations
while featuring different testable types of derivative screening mechanisms at smaller non-linear scales.
Aims. We considered three specific models, namely Jordan-Brans-Dicke (JBD), a scalar-tensor theory with a flat potential, the normal branch of
Dvali-Gabadadze-Porrati (nDGP) gravity, a braneworld model in which our Universe is a four-dimensional brane embedded in a five-dimensional
Minkowski space-time, and k-mouflage (KM) gravity, an extension of k-essence scenarios with a universal coupling of the scalar field to matter.
In preparation for real data, we provide forecasts from spectroscopic and photometric primary probes by Euclid on the cosmological parameters
and the additional parameters of the models, respectively, ωBD, Ωrc and ϵ2,0, which quantify the deviations from general relativity. This analysis
will improve our knowledge of the cosmology of these modified gravity models.
Methods. The forecast analysis employs the Fisher matrix method applied to weak lensing (WL); photometric galaxy clustering (GCph), spec-
troscopic galaxy clustering (GCsp) and the cross-correlation (XC) between GCph and WL. For the Euclid survey specifications, we define three
scenarios that are characterised by different cuts in the maximum multipole and wave number, to assess the constraining power of non-linear
scales. For each model we considered two fiducial values for the corresponding model parameter.
Results. In an optimistic setting at 68.3% confidence interval, we find the following percentage relative errors with Euclid alone: for log10 ωBD,
with a fiducial value of ωBD = 800, 27.1% using GCsp alone, 3.6% using GCph+WL+XC and 3.2% using GCph+WL+XC+GCsp; for log10Ωrc,
with a fiducial value of Ωrc = 0.25, we find 93.4%, 20% and 15% respectively; and finally, for ϵ2,0 = −0.04, we find 3.4%, 0.15%, and 0.14%.
From the relative errors for fiducial values closer to their ΛCDM limits, we find that most of the constraining power is lost. Our results highlight
the importance of the constraining power from non-linear scales.

Key words. Gravitational lensing: weak – large-scale structure of Universe – cosmological parameters

1. Introduction

We have entered a new era in gravitational physics in which it is
now possible to test and exploit general relativity (GR) on a wide
range of scales. The successes of Solar System constraints, and

⋆ This paper is published on behalf of the Euclid Consortium.
⋆⋆ e-mail: noemi.frusciante@unina.it

the precision measurements arising from observations of mil-
lisecond pulsars can now be combined with detections of grav-
itational waves and images of black hole shadows (Berti et al.
2015). To this battery of techniques must be added cosmological
constraints using the large-scale structure of the Universe (Fer-
reira 2019).
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There have been multiple attempts at constraining GR with
cosmological surveys (see, for example Aghanim et al. 2020;
Mueller et al. 2018; Joudaki et al. 2018; Lee et al. 2021; Raveri
et al. 2021; Nguyen et al. 2023). With spectroscopic and imaging
surveys of galaxies, combined with measurements of the cosmic
microwave background (CMB), it has been possible to map out
gravitational potentials over an appreciable part of the Universe
as well as determine the growth rate of the structure and its mor-
phology out to redshift z ∼ 2. The resulting constraints have
been an important first step in understanding gravity in an alto-
gether untested regime, but they have been underwhelming. For
example, the constraints on the simplest scalar-tensor modifica-
tion to GR, Jordan-Brans-Dicke (JBD) gravity, are more than
order of magnitude weaker (Joudaki et al. 2022; Ballardini et al.
2022) than those obtained from millisecond pulsar observations
(Voisin et al. 2020), but on very different scales.

The relevance of cosmological measurements for gravita-
tional physics is about to change with the upcoming generation
of large-scale structure surveys (Ferreira 2019). By mapping out
vast swathes of the Universe with exquisite precision, it is hoped
that it will be possible to substantially tighten the constraints on
gravitational physics on the largest observable scales. Of partic-
ular importance in this new vanguard is the Euclid mission. The
Euclid satellite will undertake two key complementary surveys:
a spectroscopic survey of galaxies and an imaging survey (tar-
geting weak lensing; it can also be used to reconstruct galaxy
clustering using photometric redshifts). The primary goal is to
determine the nature of dark energy and it is ideally suited for
cosmological constraints on gravity (Euclid Collaboration: Blan-
chard et al. 2020, EC19 hereafter).

Given the potential of the Euclid mission it is imperative
to assess its ability to constrain GR. One way of doing this is
by assessing how well it will be able to constrain specific ex-
tensions of GR, in particular, modified gravity models (MG).
MG models are particularly constrained by small-scale experi-
ments such as those in the Solar System where fifth-force ef-
fects (Bertotti et al. 2003) and a violation of the equivalence
principle (Williams et al. 2012; Touboul et al. 2017) have been
thoroughly investigated. As a result, extensions of GR that pre-
serve the equivalence principle in the Earth’s environment and
exclude large fifth-force effects on Solar System scales must
shield small-scales from potential deviations from GR on large
cosmological distances. New physical effects would only re-
veal themselves on large scales where the Euclid mission would
have the potential to unravel them. Screenings of GR extensions
have been broadly classified into three families: the chameleon
(Khoury & Weltman 2004), k-mouflage (Babichev et al. 2009)
and Vainshtein (Vainshtein 1972) mechanisms (see, for a recent
review, Brax et al. 2021). For chameleons, screening occurs in
regions of space where Newton’s potential is large enough whilst
for k-mouflage and Vainshtein, this takes place where the first or
second spatial derivatives of Newton’s potential are also large
enough. One particular example of an extensively studied theory
with the chameleon screening property is f (R) gravity (Carroll
et al. 2004; Hu & Sawicki 2007b). It has been shown that the Eu-
clid mission, using the combination of spectroscopic and photo-
metric probes, will be able to distinguish this model fromΛCDM
at more than 3σ confidence level, for realistic fiducial values
of its free model parameter, fR0 (Casas et al. 2023). Derivative
screening mechanisms, that is, k-mouflage and Vainshtein, have
not been investigated within the context of the Euclid mission,
and this will be one of the outcomes of the present work.

In this paper, we forecast how well the surveys from the Eu-
clid mission can be used to constrain a family of theories that

modify the theory of GR, but retain one of its properties: a scale-
independent linear growth rate. The three theories we consider
are: JBD gravity (Brans & Dicke 1961), which is the simplest
scalar-tensor theory and involves a non-minimal coupling be-
tween a scalar field and the metric; Dvali-Gabadadze-Porrati
gravity (DGP, see Dvali et al. 2000), which is a braneworld
model that introduces modifications on cosmological scales and
screens with the Vainshtein mechanism; and a k-mouflage model
(KM, see Babichev et al. 2009; Brax & Valageas 2014, 2016),
that is a scalar-tensor theory with a non-canonical kinetic energy
and the k-mouflage screening property. The JBD theory is not
screened, and to be consistent with current astrophysical con-
straints on fifth forces, it requires that the Brans-Dicke (BD) pa-
rameter ωBD > 4 × 104 (Bertotti et al. 2003). This is larger than
the range of parameters that can cosmologically be tested, as we
show below. It implies that the JBD model investigated here must
be taken as a template for large-scale deviations against which
we compare the DGP and k-mouflage models. All these modi-
fications of GR affect in one way or another the expansion rate
and growth of structure and they are therefore prime candidates
to be constrained by data from the Euclid mission.

We structure this paper as follows. In Sect. 2 we recapitulate
the essential facts about linear cosmological perturbations in the
context of extensions to GR, identifying the phenomenological
time-dependent parameters, (µ, η, and Σ), that are fed into the
linear evolution equations. We then describe the three candidate
theories we explored by laying out their corresponding actions,
background evolution, functional forms of {µ, η, and Σ}, and
how all this is implemented numerically. In Sect. 3 we explain
in detail how we calculated all aspects of the theoretical model
predictions that go into the forecasting procedure. In Sect. 4 we
describe the survey specifications and how they are integrated in
the analysis method; in this paper, we use a Fisher forecasting
approach. In Sect. 5 we present the results of our methods, and
we conclude in Sect. 6.

2. Linearly scale-independent modified gravity

We followed the Bardeen formalism (Bardeen 1980; Ma &
Bertschinger 1995) and defined the infinitesimal line element of
the flat Friedmann-Lemaître-Robertson-Walker (FLRW) metric
by

ds2 = −(1 + 2Ψ) c2 dt2 + a2(t) (1 − 2Φ) δi j dxi dx j , (1)

where a(t) is the scale factor as a function of the cosmic time
t, Ψ and Φ are the two scalar potentials and c is the speed of
light. We work in Fourier space, where modes are functions of
t and the comoving wave number ki. At linear order, the matter
energy-momentum tensor can be decomposed as

T 0
0 = −ρ̄(1+δ)c2 , T 0

i = (ρ̄+ p̄/c2)cvi , T i
j = ( p̄+δp)δi

j+Σ
i
j , (2)

where δ = ρ/ρ̄ − 1 is the energy density contrast with ρ be-
ing the matter density and ρ̄ its background value, p = p̄ + δp
is the pressure with p̄ the background value, vi is the peculiar
velocity and Σi

j is the (traceless) anisotropic stress, Σi
i = 0. In

the following we work with the scalar component of the mat-
ter anisotropic stress and the comoving density perturbation, de-
fined as (ρ̄c2 + p̄)

(
k̂i · k̂ j − 1/3δi

j

)
σ = Σi

j with k̂i = ki/k and
ρ̄∆ ≡ ρ̄δ+ 3(aH/k/c2)(ρ̄+ p̄/c2)v, where v is the velocity poten-
tial defined through vi = −ıkiv/k. Here H ≡ ȧ/a is the Hubble
function and a dot stands for the derivative with respect to the co-
ordinate time. In analogy to the ΛCDM model where curvature
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is found to be compatible with zero, we assumed a flat spatial
geometry.

In models in which gravity is modified by a scalar field, the
relations between the gravitational potentials and the matter per-
turbations are modified. These deviations from GR can be en-
coded into two functions, defined as follows:

−k2Ψ =
4πGN

c2 a2µ(a, k)
[
ρ̄∆ + 3

(
ρ̄ + p̄/c2

)
σ
]
, (3)

−k2 (Φ + Ψ) =
8πGN

c2 a2
{
Σ(a, k)

[
ρ̄∆ + 3

(
ρ̄ + p̄/c2

)
σ
]

−
3
2
µ(a, k)

(
ρ̄ + p̄/c2

)
σ
}
, (4)

where GN is Newton’s gravitational constant. Eqs. (3) and (4)
can be obtained using the quasi-static approximation, which con-
siders scales smaller than the horizon and the sound-horizon of
the scalar field, where time derivatives become negligible with
respect to spatial derivatives. In a given model, it allows us to
determine the functional form of µ and Σ analytically (see, e.g.
Silvestri et al. 2013; Bellini & Sawicki 2014; Gleyzes et al. 2015;
Zucca et al. 2019; Pace et al. 2021a). A further function that can
be introduced is therefore the function that defines the ratio of
the two potentials, η = Φ/Ψ. In the absence of anisotropic stress
the three phenomenological functions are related by the follow-
ing expression:

Σ =
1
2
µ(1 + η) . (5)

The phenomenological functions µ, η and Σ are identically
equal to 1 in the GR limit. In general, they are functions of time
and scale. The models that we consider in this paper preserve
the scale-independent (linear) growth pattern, that is, they have
µ = µ(a), Σ = Σ(a) and η = η(a).

For a given theory, µ and Σ can be determined numerically
after solving for the full dynamics of linear perturbations via an
Einstein-Boltzmann solver. This can be achieved with hi_class
(Zumalacárregui et al. 2017; Bellini et al. 2020) or EFTCAMB (Hu
et al. 2014; Raveri et al. 2014), which implement the effective
field theory formalism for dark energy into the standard CLASS
(Blas et al. 2011; Lesgourgues 2011) and CAMB (Lewis et al.
2000) codes, respectively. These codes have been validated as
part of an extended code comparison effort (Bellini et al. 2018).
Alternatively, one can opt for the quasi-static (QS) limit, that is,
scales sufficiently small to be well within the horizon and the
sound-horizon of the scalar field, and derive the phenomenolog-
ical functions analytically. In this case, one can use the MGCAMB
patch to CAMB (Zhao et al. 2009; Hojjati et al. 2011; Zucca et al.
2019).

In the following, we introduce the three models under con-
sideration, that is, JBD, DGP, and KM. We provide the back-
ground evolution equations and the expressions for µ, η, and Σ
for each of these models.

2.1. Jordan-Brans-Dicke gravity

The JBD theory of gravity (Brans & Dicke 1961) is described by
the following action,

S BD =

∫
d4x
√
−g

[
c4

16π

(
ϕR −

ωBD

ϕ
gµν∂µϕ∂νϕ − 2Λ

)
+Lm

]
,

(6)

where gµν is the metric and R its associated Ricci scalar, ϕ is
the JBD scalar field (which has the dimensions of the inverse

of Newton’s constant), ωBD is the dimensionless BD parameter,
and Lm is the matter Lagrangian which is minimally coupled to
the metric. We have included a cosmological constant, Λ. The
model has only one free parameter, ωBD; in the limit in which
ωBD → ∞, the scalar field is frozen and we recover Einstein
gravity.

The JBD theory of gravity is remarkably simple in that it de-
pends on so few parameters. However, cosmological constraints
on JBD gravity can have wider implications when we take the
view that it is the long-wavelength, low-energy limit of more
general scalar-tensor theories (see Joudaki et al. 2022, for ex-
ample). Furthermore, more general scalar theories may be en-
dowed with gravitational screening, which appears on smaller
scales, or alternatively, regions of high density, for example. As
a consequence, local constraints will to some extent decouple
from more global, or large scale, constraints. Thus, constraints
on cosmological scales on JBD theory may cover a broad class
of scalar-tensor theories, and furthermore, be independent from
model-specific constraints on small-scales. Thus, while simple,
JBD gravity is a powerful tool for constraining general classes
of scalar-tensor theories using cosmological data.

The modified Einstein field equations are (Clifton et al.
2012)

Gµν =
8π
c4

1
ϕ

Tµν+
ωBD

ϕ2

(
∇µϕ∇νϕ −

1
2

gµν∇αϕ∇αϕ
)

+
1
ϕ

[
∇µ∇νϕ − gµν (□ϕ + Λ)

]
. (7)

Here, Tµν is the total matter stress-energy tensor, while □ denotes
the d’Alembertian. On the background, these equations give

3H2 =
8π
c4

ρ̄

ϕ
− 3H

ϕ̇

ϕ
+
ωBD

2
ϕ̇2

ϕ2 +
Λ

ϕ
, (8)

2Ḣ + 3H2 = −
8π
c4

p̄
ϕ
−
ωBD

2
ϕ̇2

ϕ2 − 2H
ϕ̇

ϕ
−
ϕ̈

ϕ
+
Λ

ϕ
, (9)

and the scalar field equation of motion reads

□ϕ =
8π
c4

(
T

3 + 2ωBD

)
−

4Λ
3 + 2ωBD

, (10)

where T ≡ gµνTµν is the trace of the stress-energy tensor on the
background.

The phenomenological QS functions in this theory read

Σ =
1

GNϕ
,

µ =
4 + 2ωBD

3 + 2ωBD
Σ , (11)

η ≡
Φ

Ψ
=

1 + ωBD

2 + ωBD
.

Constraints on JBD gravity have been obtained by using
a combination of different cosmological data sets and sam-
pling over a different parameterisation of the BD parameter
ωBD. For example, Avilez & Skordis (2014) imposed a flat
prior on − log10 (ωBD) to obtain a lower bound of ωBD >
1900 at 95% CL with CMB information from Planck 2013
data. Ballardini et al. (2016) obtained log10 (1 + 1/ωBD) <
0.0030 at 95% CL combining Planck 2015 and BOSS DR10-
11 data; this upper bound was subsequently updated in Bal-
lardini et al. (2020) with a combination of Planck 2018 and
Baryon Oscillation Spectroscopic Survey (BOSS) DR12 data to
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log10 (1 + 1/ωBD) < 0.0022 at 95% CL. Joudaki et al. (2022)
used a combination of the Planck 2018 CMB data, the 3 × 2pt
combination of the Kilo-Degree Survey (KiDS) and the 2 de-
gree Field gravitational Lens survey (2dFLens) data, the Pan-
theon supernovae data and BOSS measurements of the BAO,
to find the coupling constant ωBD > {1540, 160, 160, 350} at
95% CL for the different choices of parametrization (or pri-
ors):

{
log10 (1/ωBD) , log10 (1 + 1/ωBD) , 1/ωBD, 1/ log10 ωBD

}
.

These constraints were obtained by fixing the value of the scalar
field today to

GNϕ (a = 1) =
2ωBD + 4
2ωBD + 3

, (12)

in order to guarantee that the effective gravitational constant at
present corresponds to the one measured in a Cavendish-like
experiment (Boisseau et al. 2000) (see also Avilez & Skordis
(2014); Joudaki et al. (2022); Ballardini et al. (2022) for studies
of the JBD model without imposing this condition and Ballardini
et al. (2016); Ooba et al. (2017); Rossi et al. (2019); Braglia et al.
(2020, 2021); Cheng et al. (2021) for a simple generalisation of
these constraints extending the JBD action (6) with different po-
tentials and couplings to the Ricci scalar).

The JBD model is implemented in CLASSig (Umiltà et al.
2015) and hi_class (Zumalacárregui et al. 2017; Bellini et al.
2020). For these codes, the agreement and validation of the
background and linear perturbations was thoroughly studied in
Bellini et al. (2018). In this paper, we use the results produced
with hi_class.

2.2. Dvali-Gabadadze-Porrati braneworld gravity

The DGP model (Dvali et al. 2000) is a five-dimensional
braneworld model defined by the action

S =
c4

16πG5

∫
M

d5x
√
−γR5 +

∫
∂M

d4x
√
−g

[
c4

16πGN
R +Lm

]
,

(13)

where γ is the five-dimensional metric and R5 its Ricci cur-
vature scalar. G5 and GN are the five- and four-dimensional
Newton constants, respectively. The matter Lagrangian is de-
noted with Lm and is confined to a four-dimensional brane in
a five-dimensional Minkowski spacetime. The induced gravity
described by the usual four-dimensional Einstein-Hilbert action
is responsible for the recovery of the four-dimensional gravity
on the brane. The cross-over scale rc = G5/(2GN) is the only pa-
rameter of the model and GR is recovered in the limit rc → ∞.

The Friedmann equation on the brane is given by (Deffayet
2001)

H2 = ± c
H
rc
+

8πG
3

ρ̄ . (14)

Two branches of solutions depend on the embedding of the
brane: the self-accelerating branch (sDGP, Bowcock et al. 2000;
Deffayet 2001) and the normal branch (nDGP, Bowcock et al.
2000; Deffayet 2001), corresponding to the + and − sign for the
contribution from the five-dimensional gravity, respectively. The
self-accelerating branch admits the late-time acceleration with-
out dark energy but the solution is plagued by ghost instabilities
(Luty et al. 2003; Gorbunov et al. 2006; Charmousis et al. 2006).
We therefore focus on the normal branch. In order to separate
the effect of MG on structure formation from that on the expan-
sion history, it is often assumed that the background expansion

is identical to that of ΛCDM. This can be achieved by introduc-
ing an additional dark energy contribution with an appropriate
equation of state (Schmidt 2009; Bag et al. 2018). We adopted
this approach.

The evolution of density and metric perturbations on the
brane require solutions of the bulk metric equations. These bulk
effects can be encapsulated in an effective 3 + 1 description that
uses the combination of any two of the functions µ, η, and Σ.
Using the results of Koyama & Maartens (2006); Hu & Sawicki
(2007a); Song (2008); Cardoso et al. (2008); Lombriser et al.
(2009); Seahra & Hu (2010), we have

η =
1 + g
1 − g

, (15)

where, using the quasi-static (QS) approximation, we have
(Lombriser et al. 2013)

g(a) = gQS = −
1
3

[
1 ∓

2Hrc

c

(
1 +

Ḣ
3H2

)]−1

, (16)

so that the effective modification introduced with η can be treated
as scale-independent.

The effective 3+ 1 Poisson equation for the lensing potential
in the QS approximation is

−k2(Φ + Ψ) =
8πGN

c2 a2 ρ̄∆ , (17)

therefore (Lombriser et al. 2013)

Σ = 1 , (18)

and hence

µ(a) = 1 +
1

3β
, β(a) ≡ 1 +

H
H0

1
√
Ωrc

(
1 +

Ḣ
3H2

)
. (19)

We chose to parametrise the modification to gravity byΩrc ≡

c2/(4r2
c H2

0).
Not many studies have constrained nDGP with an exact

ΛCDM background. However, Raccanelli et al. (2013), us-
ing measurements of the zeroth- and second-order moments of
the correlation function from SDSS DR7 data up to rmax =
120 Mpc h−1, and marginalised bias, found an Ωrc upper limit
at 95% of ∼ 40 (from rc > 340 Mpc with fixed H0 =
70 km s−1 Mpc−1). In addition, Barreira et al. (2016) used the
clustering wedges statistic of the galaxy correlation function and
the growth rate values estimated from more recent BOSS DR12
data to set [rcH0/c]−1 < 0.97 at 95% C.L., corresponding to an
upper bound of Ωrc < 0.27.

There have also been recent attempts to forecast constraints
onΩrc. Liu et al. (2021), using the galaxy cluster abundance from
the Simons Observatory and galaxy correlation functions from a
Dark Energy Spectroscopic Instrument (DESI)-like experiment
and found δ(Ωrc) ∼ 0.038 around a fiducial value of 0.25. Cata-
neo et al. (2022) forecast for Euclid-like future constraints on a
fiducial Ωrc ∼ 0.0625 a 1σ accuracy of 0.0125 from combining
the 3D matter power spectrum and the probability distribution
function of the smoothed three-dimensional matter density field
probes. Bose et al. (2020) also forecast for a Large Synoptic Sur-
vey Telescope (LSST)-like survey a 1σ accuracy of 0.08 using
cosmic shear alone on a fiducial Ωrc ∼ 0.

Constraints have also been inferred for an nDGP model with
a cosmological constant rather than a constructed dark energy
field, thus with an approximate ΛCDM background. For this
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model, Lombriser et al. (2009) and Xu (2014) inferred somewhat
stronger constraints of Ωrc < 0.020 (95% C.L.) and Ωrc < 0.002
(68% C.L.) from the combination of CMB and large-scale struc-
ture data, where the constraints were mainly driven by the CMB
data. Thus, high-precision CMB measurements such as by the
Planck satellite constrain Ωrc tightly. In this work, we focus on
the model with an exact ΛCDM background.

nDGP has been implemented in MGCAMB and in QSA_CLASS
(Pace et al. 2021b). These codes solve for a ΛCDM-background
evolution and Eqs. (18) and (19). The overall agreement in the
linear matter power spectrum is never worse than 0.5%. In this
paper, we use the results produced with MGCAMB.

2.3. k-mouflage gravity

KM theories are built complementing simple k-essence scenarios
with a universal coupling of the scalar field φ to matter. They are
defined by the action (Babichev et al. 2009; Brax & Valageas
2014, 2016)

S =
∫

d4x
√
−g̃

[
c4

16πG̃N
R̃ + c2M4K(χ̃)

]
+ S m(ψi, gµν) , (20)

where G̃N is the bare Newton constant, R̃ is the Ricci scalar in
the Einstein frame,M4 is the energy density scale of the scalar
field, gµν is the Jordan frame metric, g̃µν is the Einstein frame
metric with gµν = A2(φ)g̃µν, S m is the Lagrangian of the matter
fields ψ(i)

m , χ̃ is defined as

χ̃ = −
g̃µν∂µφ∂νφ

2M4 , (21)

andM4K is the non-standard kinetic term of the scalar field.
In these theories, the evolution of both the background and

perturbations is affected by the universal coupling and by the
scalar field dynamics. The degree of deviation from ΛCDM at
the background level and in perturbation theory can be expressed
in terms of two time-dependent functions, related to the coupling
A and the kinetic function K, that is,

ϵ2 ≡
d ln Ā
d ln a

, ϵ1 ≡
2
K̄′

ϵ2
c√

8πG̃N

(
dφ̄

d ln a

)−12

, (22)

where over-bars denote background quantities and a prime indi-
cates derivatives with respect to ¯̃χ. The KM Friedmann equation
therefore reads

H2 =
8πG̃N

3
Ā2

(1 − ϵ2)2

[
ρ̄ +
M4

Ā4

(
2 ¯̃χ

dK̄
d ¯̃χ
− K̄

)]
. (23)

Considering linear scalar perturbations around an FLRW
background, the phenomenological functions µ and Σ read (Ben-
evento et al. 2019)

µ(a) = (1 + ϵ1)Ā2 , Σ(a) = Ā2 . (24)

We recover GR when ϵ1 → 0, ϵ2 → 0, and A and K are constants,
with M4K playing the role of the cosmological constant, see
Eq. (20).

In addition to the six standard ΛCDM parameters, the KM
model requires the specification of the kinetic function K(χ̃) and
of the coupling A(φ). Following Brax & Valageas (2016), this
can also be expressed in terms of the time-dependent background
values K̄(a) and Ā(a). Brax & Valageas (2016) proposed a sim-
ple parameterisation that satisfies self-consistency constraints. It

involves five parameters, {ϵ2,0, γA,m, αU , γU}, where ϵ2,0 is the
value of ϵ2 at redshift z = 0 and must be negative to ensure that
there are no ghosts in the theory. For the coupling function Ā(a),
this reads

Ā(a) = 1 + αA − αA

[
(γA + 1) a
γA + a

]νA

, (25)

with

νA =
3(m − 1)
2m − 1

, αA = −
ϵ2,0 (1 + γA)

γAνA
. (26)

Here, m is the exponent of the kinetic function for a large argu-
ment, K ∼ χ̃m, which also specifies the high-redshift dependence
of Ā(a), while γA sets the redshift at which Ā changes from the
current unit value to the high-redshift value 1 + αA, which is
parameterised by ϵ2,0. The background kinetic function K̄(a) is
conveniently parameterised in terms of a function U(a), with

dK̄′

dχ̃
=

U(a)
a3
√
χ̃
,

√
χ̃ = −

ρ̄0

M4

ϵ2Ā4

2U
(
−3ϵ2 +

d ln U
d ln a

) , (27)

which we took to be of the form

U(a) ∝
a2 ln(γU + a)

(√aeq +
√

a) ln(γU + a) + αUa2
. (28)

The various terms in this expression allowed us to follow the ra-
diation, matter, and dark-energy eras. The parameters αU and γU ,
of order unity, set the shape of the transition to the dark-energy
era. The main parameter is ϵ2,0, which measures the amplitude
of the deviation from GR and ΛCDM at z = 0. Other parame-
ters, of order unity, mostly describe the shapes of the transitions
between different cosmological regimes.

The KM model has been tested against a set of complemen-
tary cosmological data sets, including CMB temperature, polar-
isation and lensing, type Ia supernovae, baryon acoustic oscil-
lations (BAO) and local measurements of H0 (Benevento et al.
2019). This gives the 95% C.L. bounds −0.04 ≤ ϵ2,0 ≤ 0, while
the other parameters are unconstrained (as long as they do not
become very large). These results are consistent with earlier
more qualitative CMB studies (Barreira et al. 2015). The X-ray
cluster multiplicity function could provide bounds of the same
order (Brax et al. 2015), but more detailed analyses are needed
to derive robust constraints.

The fact that ϵ2,0 is the main parameter constrained by the
data can be understood from Eqs. (22) and (24) and the prop-
erty that at leading order over ϵ2, we have ϵ1 ≃ −ϵ2. This shows
that the running of Newton’s constant and the impact on the lin-
ear metric and matter density fluctuations are set by ϵ2. Because
most of the deviations from ΛCDM occur at low redshift, this
is mostly determined by the value ϵ2,0 at z = 0. Therefore, we
here focused on the dependence on ϵ2,0, which was left free to
vary, while we fixed the other parameters to γA = 0.2, m = 3,
αU = 0.2, and γU = 1, as some representative values for the
other parameters. Thus, this gives one additional parameter, ϵ2,0,
in addition to the six standard ΛCDM parameters. The ΛCDM
model is recovered when ϵ2,0 = 0, independently of the value of
the other parameters; for ϵ2,0 → 0, we have:

Ā(a)→ 1 , ϵ2(a)→ 0 , ϵ1(a)→ 0 , ∀ a , (29)

and the kinetic function in Eq. (20) reduces to a cosmological
constant.

To produce linear predictions for this theory we used its im-
plementation in the EFTCAMB code that is described in Benevento
et al. (2019).
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3. Theoretical predictions for Euclid observables

Both the forecasting method and the tools used in this paper are
the same as those in EC19 except for the changes needed to ac-
count for the use of MG rather than GR in the predictions of
Euclid observables. The motivations and the relevant changes in
the recipe have been described in a previous paper on forecasts
for f (R) theories. We therefore refer to Casas et al. (2023), while
here we only recall the main steps.

3.1. Photometric survey

The observables we considered for the Euclid photometric sur-
vey are the angular power spectra CXY

i j (ℓ) between the probe X
in the i - th redshift bin, and the probe Y in the j - th bin, where
X refers to weak lensing (WL), photometric galaxy clustering
(GCph), or their cross correlation, XC. These are still calculated
as in EC19 relying on the Limber approximation and setting to
unity the ℓ - dependent factor in the flat-sky limit. The spectra are
then given by

CXY
i j (ℓ) = c

∫ zmax

zmin

dz
WX

i (z)WY
j (z)

H(z)r2(z)
Pδδ(kℓ, z) , (30)

with kℓ = (ℓ + 1/2)/r(z), r(z) the comoving distance to redshift
z = 1/a − 1, and Pδδ(kℓ, z) the non-linear power spectrum of
matter density fluctuations, δ, at wave number kℓ and redshift z.
We set (zmin, zmax) = (0.001, 4), which spans the full range within
which the source redshift distributions ni(z) are non-vanishing.
The GCph and WL window functions read (Spurio Mancini et al.
2019)

WG
i (k, z) = bi(k, z)

ni(z)
n̄i

H(z)
c

, (31)

WL
i (k, z) =

3
2
Ωm,0

H2
0

c2 (1 + z) r(z)Σ(z)
∫ zmax

z
dz′

ni(z′)
n̄i

r(z′ − z)
r(z′)

+W IA
i (k, z) , (32)

where ni(z)/n̄i and bi(k, z) are the normalised galaxy distribu-
tion and the galaxy bias in the i-th redshift bin, respectively, and
W IA

i (k, z) encodes the contribution of intrinsic alignments (IA)
to the WL power spectrum. The function Σ(z) in the WL win-
dow function explicitly accounts for the changes in the lensing
potential due to the particular MG theory of interest. Its explicit
form for the cases under consideration can be found in Section
2. The impact on the background quantities H(z), r(z) and the
matter power spectrum Pδδ(k, z), in contrast, are already taken
into account by the dedicated Boltzmann solver so that the GCph
window function remains unchanged.

The IA contribution was computed following the eNLA
model adopted in EC19 so that the corresponding window func-
tion is

W IA
i (k, z) = −

AIA CIAΩm,0 FIA(z)
δ(k, z)/δ(k, z = 0)

ni(z)
n̄i(z)

H(z)
c

, (33)

where

FIA(z) = (1 + z)ηIA

[
⟨L⟩(z)
L⋆(z)

]βIA

, (34)

with ⟨L⟩(z) and L⋆(z) redshift-dependent mean and the charac-
teristic luminosity of source galaxies as computed from the lu-
minosity function,AIA, βIA and ηIA are the nuisance parameters
of the model, and CIA is a constant accounting for dimensional

units. This model is the same as was used in EC19 since IA takes
place on astrophysical scales that are unaffected by modifica-
tions to gravity. However, MG has an impact on the growth fac-
tor, introducing a possible scale dependence. This is explicitly
taken into account in Eq. (33) through the matter perturbation
δ(k, z), which is considered to be scale dependent in this case.
This allows us to also consider the scale dependence introduced
by massive neutrinos, which was assumed to be negligible in
EC19. We nevertheless stress that for the models we considered,
the scale dependence is quite small so that the IA is essentially
the same as in the GR case.

3.2. Spectroscopic survey

We now discuss the modelling of the power spectrum to analyse
the data from the Euclid spectroscopic survey.

For the models considered in this paper, the Compton wave-
length of the scalar field is much larger than the scales probed
by Euclid. Moreover, it is assumed that the speed of propagation
of the scalar fluctuations is of the order of the speed of light, so
that the sound horizon is of the order of the Hubble scale. Under
these assumptions, we can apply the quasi-static approximation
and relate the scalar field perturbation to the gravitational po-
tential. Since in all these models the weak equivalence principle
holds, the modelling of the bias as an expansion in the derivatives
of the gravitational potential remains unchanged with respect to
the ΛCDM one. To be consistent with the official forecast, we
used the same modelling for galaxy clustering as in EC19.

The observed galaxy power spectrum is given by

Pobs(k, µθ; z) =
1

q2
⊥(z) q∥(z)


[
bσ8(z) + fσ8(z)µ2

θ

]2

1 +
[
f (z)kµθσp(z)

]2


×

Pdw(k, µθ; z)
σ2

8(z)
Fz(k, µθ; z) + Ps(z) , (35)

where Pdw(k, µθ; z), the de-wiggled power spectrum, includes
the correction that accounts for the smearing of the BAO fea-
tures,

Pdw(k, µθ; z) = Plin
δδ (k; z) e−gµk2

+ Pnw(k; z)
(
1 − e−gµk2)

, (36)

and Plin
δδ (k; z) stands for the linear matter power spectrum.

Pnw(k; z) is a no-wiggle power spectrum with the same broad-
band shape as Plin

δδ (k; z) but without BAO features (see the dis-
cussion below). The function

gµ(k, µθ, z) = σ2
v(z)

{
1 − µ2

θ + µ
2
θ[1 + f (z)]2

}
, (37)

is the non-linear damping factor of the BAO signal derived by
Eisenstein et al. (2007), with

σ2
v(z) =

1
6π2

∫
dkPlin

δδ (k, z) . (38)

The curly bracket in Eq. (35) is the redshift-space-distortion
(RSD) contribution correcting for the non-linear finger-of-God
(FoG) effect, where we defined bσ8(z) as the product of the ef-
fective scale-independent bias of galaxy samples and the r.m.s.
matter density fluctuation σ8(z) (we marginalized over bσ8(z)),
while µθ is the cosine of the angle θ between the wave vector
k and the line-of-sight direction r̂ and σ2

p(z) = σ2
v(z). Although

these parameters were assumed to be the same, they come from
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two different physical effects, namely large-scale bulk flow for
the former and virial motion for the latter.

The factor Fz accounts for the smearing of the galaxy density
field along the line of sight due to redshift uncertainties. It is
given by

Fz(k, µθ; z) = e−k2µ2
θσ

2
r (z) , (39)

where σr(z) = c (1 + z)σ0,z/H(z) and σ0,z is the error on the
measured redshifts.

The factor in front of the curly bracket in Eq. (35) describes
the Alcock-Paczynski effect, which is parametrised in terms of
the angular diameter distance DA(z) and the Hubble parameter
H(z) as

q⊥(z) =
DA(z)

DA, ref(z)
, (40)

q∥(z) =
Href(z)
H(z)

. (41)

Due to the Alcock-Paczynski effect, µθ and k were rescaled in a
cosmology-dependent way as a function of the projection along
and perpendicular to the line of sight. In the previous Eq. (35),
the arguments µ and k are themselves functions of the true µθ,ref
and kref at the reference cosmology. This relation, which for each
argument, is a function of q∥ and q⊥, can be found in Sect. 3.2.1
of EC19. Finally, the Ps(z) is a scale-independent shot-noise term
that enters as a nuisance parameter (see EC19).

Due to the scale independence of σv(= σp), we evaluated it
at each redshift bin but we kept it fixed in the Fisher matrix anal-
ysis. This method corresponds to the optimistic settings in EC19.
We would like to highlight that we directly took the derivatives
of the observed galaxy power spectrum with respect to the final
parameters, in contrast to EC19 where first a Fisher matrix anal-
ysis was performed for the redshift-dependent parameters H(z),
DA(z), and fσ8(z) and then projected to the final cosmologi-
cal parameters of interest. However, we verified that both ap-
proaches lead to consistent results when considering the ΛCDM
and w0waCDM models. The other term appearing in Eq. (36) is
the non-wiggle matter power spectrum, and this was obtained
applying a Savitzky-Golay filter to the matter power spectrum
Plin
δδ (k; z). For more details on this implementation, we refer to

EC19.

3.3. non-linear modelling for weak lensing

The galaxy power spectrum on mildly non-linear scales can be
modelled by a modified version of the implementation in EC19.
This is no longer the case when we move to the deeply non-linear
regime in which no an analytical description of the matter power
spectrum is available for the models of our interest.

The wide window functions (in particular, the WL function)
entering the prediction of the photometric observables CXY

i j (ℓ) re-
quire an accurate description of non-linear scales. In particular,
the impact of baryons needs to be explicitely accounted for and
nuisance parameters must be included, which control the bary-
onic feedback in order to avoid biasing the parameter estima-
tion (see e.g. Schneider et al. 2020b,a). However, we currently
do not have accurate Euclid-like simulations including baryonic
effects, especially for MG cosmologies. Therefore, we ignored
these effects in our analysis, and left their inclusion for a future
work. We note that our scale cuts, in particular for the pessimistic
scenario (ℓ < 1500), partially mitigate the fact of neglecting
baryonic effects and are in agreement with recent studies on the

impact of baryonic effects on constraints for modified gravity
(see, for instance Spurio Mancini & Bose 2023). In the follow-
ing subsections, we comment on the individual prescriptions for
each MG model, wthat is used to compute the non-linear matter
power spectrum. While having a common prescription at non-
linear scales for all models would be desirable, given the differ-
ent behaviours of each model at non-linear scales, this remains
an ambitious goal. Currently, we have at our disposal codes im-
plementing the specific features of each model that have already
been tested and used in the literature. This reinforces the validity
of our procedure.

3.3.1. Jordan-Brans-Dicke gravity

For the non-linear prescription, we used a modified version of
HMCODE (Mead et al. 2015, 2016). HMCODE is an augmented halo
model that can be used to accurately predict the non-linear mat-
ter power spectrum over a wide range of cosmologies. A brief
summary of how this works is given below.

In the halo model (Cooray & Sheth 2002), the non-linear
matter power spectrum can be written as a sum PNL(k, z) =
P1H(k, z) + P2H(k, z) where

P2H(k, z) = Plin(k, z)
[∫ ∞

0
b(M, z)W(M, k, z) n(M, z) dM

]2

,

(42)

is the so-called two-halo term (correlation between different
haloes), and

P1H(k, z) =
∫ ∞

0
W2(M, k, z) n(M, z) dM , (43)

is the so-called one-halo term (correlations between mass-
elements within each halo). Above M is the halo mass, Plin(k, z)
is the linear matter power spectrum, n(M, z) is the halo mass
function and b(M, z) is the linear halo bias.

The window function W is the Fourier transform of the halo
matter density profiles:

W(M, k, z) =
1
ρ̄

∫ rv

0
4πr2 sin(kr)

kr
ρ(M, r, z) dr , (44)

where ρ(M, r, z) is the radial matter density profile in a host halo
with a mass M, and ρ̄ is the mean matter density. The halo mass
is related to the virial radius, rv, via M = 4πr3

v∆v(z)ρ̄/3, where
∆v(z) is the virial halo overdensity. The halo profiles, the halo
definition, and the halo mass function can either be computed
from excursion set models, extracted from numerical simulations
and/or parametrised as functions with free parameters that are
then fit to data. HMCODE combines this, and the resulting fitting
function has for ΛCDMbeen shown to be accurate to 2.5% for
scales k < 10 h Mpc−1 and redshifts z < 2 (Mead et al. 2021).

Joudaki et al. (2022) modifed the HMCODE, whcih is able to
include the effects of JBD. This was done using a suite of N-
body simulations obtained with modified versions of both the
COmoving Lagrangian Acceleration (COLA, Tassev et al. 2013;
Winther et al. 2017) and RAMSES (Teyssier 2002) codes. COLA
solves for the perturbations around paths predicted from second-
order Lagrangian perturbation theory (2LPT), and it has proven
to be fast and accurate on large scales. This was used for scales
k < 0.5 h Mpc−1 to generate a large enough ensemble of simula-
tions and to reduce sample variance. On very small-scales, up to
k < 10 h Mpc−1, the RAMSES grid-based hydrodynamical solver
with adaptive mesh refinement was used.
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The spectra generated by these simulations were then used
to calibrate HMCODE. While we did not consider the effects of
baryons here, the advantage of HMCODE, over Halofit is that
the former is able to capture baryonic feedback at an accuracy
level of ∼ 5% up to k ≃ 10 h Mpc−1 (Mead et al. 2021). This will
become an important consideration (Schneider et al. 2020b,a)
in future more detailed analyses. To take JBD into account in
addition to modifying the expansion history and growth of per-
turbations, the virialised halo overdensity was modified as

∆v =Ωm(z)−0.352 (45)

×

{
d0 + (418.0 − d0) arctan

[
(0.001|ωBD − 50.0|)0.2

] 2
π

}
,

where d0 = 320.0 + 40.0z0.26. This modification has the feature
that it reduces to the original ΛCDM HMCODE as ωBD → ∞.
We stress that this modification is not a physical claim about
JBD causing this particular change in the virialised halo over-
density, but rather that this change in the virialised halo overden-
sity within the HMCODEmachinery is able to accurately reproduce
the JBD power spectrum to the given accuracy. The resulting
power spectrum with this modification was found to be accurate
to 10% for the fitted range 104 ≳ ωBD ≥ 50 and on scales up
to k ≃ 10 h Mpc−1. This non-linear prescription was made with
past weak-lensing surveys in mind and fitted to a range of ωBD
and scales that we can realistically constrain at the present time.
For a parameter inference with actual Euclid data the accuracy
here might not be good enough.

We show in Fig. 1 the matter power spectrum and the lensing
angular power spectrum of JBD with ωBD = 800, which we refer
to as JBD1, and their comparison to ΛCDM. In the top left panel
we plot the linear (dashed) and non-linear (solid) matter power
spectrum as a function of scale for z = 0. In the top right panel
we show the ratio of these power spectra with respect to their
corresponding ΛCDM cases, using the same σ8 normalisation
today.

As was shown in detail in Joudaki et al. (2022), the lin-
ear growth rate will undergo a scale-independent enhancement
(without altering the shape of the linear power spectrum) while
the non-linear growth will be mildly suppressed on smaller
scales due to the presence of the scalar field. This is clear for
JBD1, where the linear power spectrum is almost identical to
its standard model counterpart, while the non-linear power spec-
trum shows a small suppression on small-scales that sets in at
about k = 0.3 h Mpc−1. It is important to note that, unlike nDGP,
the JBD theory is not endowed with gravitational screening, so
that any modification on small-scales in the non-linear power
spectrum is inherited from the change in the primordial ampli-
tude, As, in the linear power spectrum. In order for σ8 to be the
same in ΛCDM as in JBD we need a higher primordial ampli-
tude As. A higher As in ΛCDM means that non-linear structures
form faster and become more massive, which in the matter power
spectrum then translates into an even higher amplitude on non-
linear scales (i.e. it increases more than linear theory predicts)
which gives rise to the small-scale suppression seen in Fig. 1.
This effect can also be found in pure ΛCDM when we consider
the ratio of the matter power spectrum for two different values
of As. The result is then constant on large scales, but shows an
enhancement or suppression on small-scales. When we instead
show results with the same primordial amplitude in JBD as in
ΛCDM then the JBD power spectrum would show a certain en-
hancement to ΛCDM on linear scales and an ever stronger en-
hancement on non-linear scales, which is more in line with naive

expectations of a larger gravitational constant leading to an en-
hancement in the matter power spectrum. The signature in the
matter power spectrum naturally impacts the lensing spectrum,
which shows a similar suppression at small scales because for
a given multipole and redshift bin, it is just proportional to the
matter power spectrum as defined in Eq. (30).

3.3.2. Dvali-Gabadadze-Porrati gravity

We modelled the non-linear power spectrum using the halo
model reaction (Cataneo et al. 2019) which has been shown
to agree with N-body simulations at the 2% level down to
k = 3h Mpc−1 with small variation depending on redshift, de-
gree of modification to GR and mass of neutrinos (Bose et al.
2021). The approach attempts to model non-linear corrections to
the power spectrum from modified gravity through the so-called
reaction R(k, z), which employs both one-loop perturbation the-
ory and the halo model. The non-linear power spectrum in nDGP
is given by the product

PNL(k, z) = R(k, z)Ppseudo
NL (k, z) , (46)

where the pseudo-power spectrum is a spectrum in which all
non-linear physics are modelled using GR but the initial condi-
tions are tuned in such a way as to replicate the modified linear
clustering at the target redshift. We used the halofit formula of
Takahashi et al. (2012) to model Ppseudo

NL (k, z) by providing the
halofit formula a linear matter power spectrum modelled within
nDGP gravity as input. This ensures that we have the correct
modified linear clustering at z while keeping a non-linear cluster-
ing as described by GR, in line with our definition of the pseudo-
power spectrum.

The halo model reaction, R(k, z), is given by a corrected ratio
of target to pseudo-halo model spectra,

R(k, z) =
{[1 − E(z)]e−k/k⋆(z) + E(z)}P2H(k, z) + P1H(k, z)

Ppseudo
hm (k, z)

. (47)

The components are given explicitly as

Ppseudo
hm (k, z) =P2H(k, z) + Ppseudo

1H (k, z) , (48)

E(z) = lim
k→0

P1H(k, z)

Ppseudo
1H (k, z)

, (49)

k⋆(z) = − k̄
{

ln
[

A(k̄, z)
P2H(k̄, z)

− E(z)
]
− ln [1 − E(z)]

}−1

,

(50)

where

A(k, z) =
P1−loop(k, z) + P1H(k, z)

Ppseudo
1−loop(k, z) + Ppseudo

1H (k, z)
Ppseudo

hm (k, z) − P1H(k, z) .

(51)

P2H(k, z) is the two-halo contribution, which we can approxi-
mate with the (nDGP) linear power spectrum, PL(k, z) (see for a
review on the halo model Cooray & Sheth 2002). P1H(k, z) and
Ppseudo

1H (k, z) are the one-halo contributions to the power spectrum
as predicted by the halo model, with and without modifications
to the standard ΛCDM spherical collapse equations, respec-
tively. We recall that by definition, the pseudo-cosmology has no
non-linear beyond-ΛCDM modifications. Similarly, P1−loop(k, z)
and Ppseudo

1−loop(k, z) are the one-loop predictions with and without
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non-linear modifications to ΛCDM, respectively. As in previous
works, the limit in Eq. (49) was taken to be at k = 0.01 h Mpc−1,
and we computed k⋆ using k̄ = 0.06 h Mpc−1. This scale was
chosen such that the one-loop predictions are sufficiently accu-
rate at all the redshifts considered.

We note that the correction to the halo-model ratio in Eq. (47)
has been shown to improve this ratio when there are modifica-
tions to gravity that invoke some sort of screening mechanism
(Cataneo et al. 2019).

As in previous works, in our halo-model calculations, we
used a Sheth-Tormen mass function (Sheth & Tormen 1999,
2002), a power-law concentration-mass relation (see for example
Bullock et al. 2001) and an NFW halo-density profile (Navarro
et al. 1997). These calculations were performed using the pub-
licly available ReACT code (Bose et al. 2020). We refer to this
reference for further computational and theoretical details.

Finally, as previously discussed in the JBD case, we show
in Fig. (1) the comparison of the matter power spectrum and
the lensing angular power spectrum of nDGP versus ΛCDM
as a function of scale for z = 0. We chose for Ωrc the value
Ωrc = 0.25, which is the largest nDGP modification to ΛCDM
used in this work. We refer to this choice as the nDGP1 model.
The ratio of these power spectra with respect to their correspond-
ing ΛCDM cases was determined using the same σ8 normali-
sation today. For nDGP1, the linear matter power spectrum is
identical to that of the ΛCDM. However, the non-linear mat-
ter power spectrum shows a suppression starting from scales
k = 0.1 h Mpc−1, which reaches about 10% at scales of about
k = 1.0 h Mpc−1. This impacts the lensing spectrum, which
shows a similar suppression at small angular scales because for
a given multipole and redshift bin, it is just proportional to the
matter power spectrum, as defined in Eq. (30).

As the σ8 normalisation is the same for theΛCDM reference
spectrum, it is essentially the Ppseudo

NL by definition. This means
the quantity associated with the solid green curve in the top right
panel of Fig. 1 is approximately R(k, z = 0). This quantity is
largely governed by the ratio of the nDGP to pseudo one-halo
terms at k > 0.1 h Mpc−1 (Cataneo et al. 2019). In a nDGP cos-
mology, there will be more high-mass halos when compared to
its GR counterpart due to the supplemental fifth force sourced
by the additional degree of freedom. High-mass contributions to
the one-halo term are relatively more suppressed by the NFW
density profile (see for example Fig. 9 of Cooray & Sheth 2002,
and Eq. 52). This will cause the 1-halo GR power spectrum to be
larger than the DGP one-halo spectrum if the linear clustering in
the two cosmologies is the same at the target redshift.

We note that when we instead fix the same primordial am-
plitude of perturbations, we obtain the reverse: More halos will
have formed by the target redshift in the nDGP cosmology,
which means an enhancement of the one-halo term over GR. We
refer to Figs. 6 and 8 in Cataneo et al. (2019), which highlight
these two scenarios, GR and nDGP, with the same late-time am-
plitude of linear perturbations and one with the same early-time
amplitude, respectively.

3.3.3. k-mouflage gravity

For the KM non-linear matter power spectrum, we used a simi-
lar analytical approach that combined one-loop perturbation the-
ory with a halo-model. This method was introduced in Valageas
et al. (2013) for the standard ΛCDM cosmology. As in usual
halo models, it splits the matter power spectrum over two-halo
and one-halo contributions, as in Eq. (48), but it uses a La-

grangian framework to evaluate these two contributions in terms
of the pair-separation probability distribution. This provides a
Lagrangian-space regularisation of perturbation theory, which
matches standard perturbation theory up to one-loop order and
includes a partial resummation of higher-order terms, such that
the pair-separation probability distribution is positive and nor-
malised to unity at all scales. Thus, the two-halo term goes
beyond the Zeldovich approximation by including a non-zero
skewness, which enables the consistency with standard pertur-
bation theory up to one-loop order, as well as a simple Ansatz
for higher-order cumulants inspired by the adhesion model. The
one-halo term includes a counter-term that ensures its falloff at
low k, in agreement with the conservation of matter and momen-
tum,

P1H(k) =
∫ ∞

0

dν
ν

f (ν)
M

ρ̄(2π)3

[
ũM(k) − W̃(kqM)

]2
, (52)

where ũM(k) is the normalised Fourier transform of the halo ra-
dial profile, W̃(kqM) is the normalised Fourier transform of the
top-hat of Lagrangian radius qM , and f (ν) is the normalised halo
mass function. This counter-term is not introduced by hand, as
it arises directly from the splitting of the matter power spectrum
over two-halo and one-halo contributions within a Lagrangian
framework, which by construction satisfies the conservation of
matter. Additionally, ν is defined as δc/σ(M), where δc is the
linear density contrast associated with a non-linear density con-
trast of 200, and σ(M) is the root mean square of the linear den-
sity contrast at mass scale M. The threshold δc is sensitive to the
modification of gravity. In principle, it also depends on M, as
the shells in the spherical collapse are coupled and evolve dif-
ferently depending on their masses due to non-linear screening.
However, for the models that we considered here, screening is
negligible beyond 1 h−1 Mpc (clusters are not screened), so that
δc is independent of M.

This non-linear modelling was extended in Brax & Valageas
(2013) to several modified-gravity scenarios [ f (R) theories, dila-
ton, and symmetron models], and in Brax & Valageas (2014);
Brax et al. (2015) to KM models. This involved the computa-
tion of the impact of modified gravity on both the linear and
one-loop contributions to the matter power spectrum, which en-
ter the two-halo term, and on the spherical collapse dynamics,
which enter the one-halo term through the halo mass function.
Therefore, this non-linear modelling exactly captures the modifi-
cation of gravity both up to one-loop order and at the level of the
fully non-linear spherical collapse. The Ansatz for the partial re-
summation of higher-order terms is the same as for the standard
ΛCDM cosmology (this implies that their values are also mod-
ified as they depend on the lower orders to ensure the positiv-
ity and the normalisation of the underlying pair distribution). A
comparison with numerical simulations (Brax & Valageas 2013)
for f (R) theories (with | fR0 | = 10−4, 10−5 and 10−6), shows that
this approach captures the relative deviation from the ΛCDM
power spectrum at z = 0 up to k = 3 h Mpc−1. We have not
yet compared this recipe with numerical simulations of the KM
theories, which have only recently been performed (Hernández-
Aguayo et al. 2022). However, we expect at least the same level
of agreement because the KM models are simpler and closer to
the ΛCDM cosmology than the f (R) models (as in ΛCDM, the
linear growth rate is scale independent).

Fig. 1 shows the comparison between the KM1 model de-
fined with ϵ2,0 = −0.04 and itsΛCDM counterpart, normalised to
the same σ8 and cosmological parameters at z = 0, for the mat-
ter and cosmic shear power spectra. The ratio of the linear mat-
ter power spectra increases on intermediate scales (10−2 < k <
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Fig. 1. Large-scale structure observables for the different MG models evaluated at the fiducial values of the model parameters used for the Fisher
matrix analysis. Top left: Linear (dashed) and non-linear (solid lines) matter power spectrum Pδδ(z, k) entering Eqs. (36) and (30), respectively,
evaluated at redshift z = 0, for KM1 (ϵ2,0 = −0.04, blue), JBD1 (ωBD = 800, red) and nDGP1 (Ωrc = 0.25, green). Top right: Ratio of the matter
power spectra for the above mentioned models with respect to their ΛCDM counterpart with the same value of σ8 today, for the linear (dashed)
and non-linear (solid) cases. Bottom left: Cosmic shear (WL) angular power spectra for the auto-correlation of the first photometric bin CWL

1,1 (ℓ)
(solid line) and the cross-correlation of the first and last bin CWL

1,10(ℓ) (dotted line), defined in Eq. (30) for the three models considered above, with
the same colour labelling. Bottom right: Ratio of the cosmic shear Ci, j(ℓ) to their ΛCDM counterpart, for the bin combination i = j = 1 and
i = 1; j = 10.

1 h Mpc−1): This is due to the change of the background evolu-
tion, which slightly affects the scales at matter-radiation equality.
H(z) is indeed greater for KM1 at high redshift (Benevento et al.
2019), which implies a smaller Hubble radius at matter-radiation
equality. This in turns means that the change in the slope of the
linear power spectrum, from PL(k) ∼ kns to PL(k) ∝ kns−4, is
shifted to smaller scales, and hence to higher k. This implies that
the ratio Pmm

KM1/P
mm
ΛCDM grows on these intermediate scales, where

the linear power spectrum changes slope, because of this delay
to higher k of the transition. Because the two spectra have the
same σ8 and the ratio Pmm

KM1/P
mm
ΛCDM grows with k, the ratio is be-

low unity at low k and above unity at high k. Moreover the linear
growth rates are scale independent for both KM andΛCDM, and
therefore the ratio Pmm

KM1/P
mm
ΛCDM reaches a constant at very low k

and at very high k, where the slopes of both linear power spectra
are equal to ns or ns − 4 (i.e. outside of the intermediate scales
where the slope of the linear power spectrum slowly runs with
k). This flat ratio is clearly shown in Fig. 1 at low k. The ampli-
tude of Pmm

KM1/P
mm
ΛCDM is set by the parameter ϵ2,0, and it deviates

substantially from 1, by about 30%, for a value of ϵ2,0 = −0.04.
The increase in Pmm

KM1/P
mm
ΛCDM with k is partly due to non-linear

effects in the scalar field sector, both in the background and in
the linear growth rate, which are not completely irrelevant. At
z = 0, even though ϵ2 = −0.04 we have ϵ1 ≃ 0.12, whereas at

linear order in the scalar field dynamics we would have expected
that ϵ1 = −ϵ2. As the growth of structures is sensitive to ϵ1, this
leads to a stronger effect than could be expected from the value
of ϵ2 itself. Then, the power spectrum being a quadratic func-
tional of the density field gives an additional amplification factor
of 2 for relative perturbations.

Beyond this global behaviour of the ratio Pmm
KM1/P

mm
ΛCDM, an-

other impact of the slight modification of the background is that
the baryon acoustic oscillations are shifted. This leads to the os-
cillations seen at BAO scales, k ∼ 0.01 h Mpc−1. Non-linear ef-
fects lead to a decrease in the ratio Pmm

KM1/P
mm
ΛCDM as compared

with the linear prediction of mildly non-linear scales. This is due
to the loss of information in the power spectrum in the non-linear
regime, which can be related to the universal NFW profile of
virialised haloes within the halo model. Then, the shape of the
non-linear power spectrum at those scales is mostly set by the
scale where the non-linear transition takes place, and this occurs
to occur at somewhat larger scales for the ΛCDM counterpart
(i.e. the higher linear power at higher k in the KM1 scenario is
mostly erased by the non-linear dynamics).

As usual, the integration along the line of sight leads to a
much smoother curve for the cosmic shear angular power spec-
trum. Even though the 3D non-linear matter power spectrum is
reduced at z = 0 for KM1 as compared withΛCDM, as shown in
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the upper right panel, the lensing power is increased, as shown in
the lower right panel. This is due to the coupling function A(φ),
which is greater than unity at z > 0 and leads to a higher value
of the phenomenological function Σ, see Eq. (24), or in other
words, to a greater Newton constant at high redshift.

4. Survey specifications and analysis method

We varied as base cosmological parameters:

Θ = {Ωm,0, Ωb,0, h, ns, σ8} , (53)

for which we chose the following fiducial values:

Ωm,0 = 0.315 , Ωb,0 = 0.049 ,
h = 0.6737 , ns = 0.966 , (54)

where Ωm,0 = Ωc,0 + Ωb,0 + Ων,0. To fix the fiducial value for
σ8, we used the same initial amplitude of primordial perturba-
tions for all models, namely As = 2.09681 × 10−9. The fidu-
cial cosmology includes massive neutrinos with a total mass of
Σmν = 0.06 eV, but we kept Σmν fixed in the following Fisher
matrix analysis. In the following, we specify the σ8 value for
each model along with the fiducial values of the model parame-
ters,

1. JBD

Θfid,1 = {σ8 = 0.816, log10 ωBD = 2.90309} (JBD1);
Θfid,2 = {σ8 = 0.812, log10 ωBD = 3.39794} (JBD2). (55)

These values correspond to ωBD = 800 and ωBD = 2500
respectively. In these cases the initial value of the scalar field
was fixed to ϕini = 1/GN.

2. nDGP

Θfid,1 = {σ8 = 0.8690, log10Ωrc = −0.60206} (nDGP1);
Θfid,2 = {σ8 = 0.8105, log10Ωrc = −6} (nDGP2). (56)

These values correspond to Ωrc = 0.25 and Ωrc = 10−6, for
nDGP1 and nDGP2, respectively.

3. KM

Θfid,1 = {σ8 = 0.994, ϵ2 = −0.04} (KM1);
Θfid,2 = {σ8 = 0.813, ϵ2 = −0.0001} (KM2). (57)

We followed EC19 to set up the specifics of the photomet-
ric probes as we briefly summarise here. The sources were split
into ten equi-populated redshift bins whose limits were obtained
from the redshift distribution

n(z) ∝
(

z
z0

)2

exp

− (
z
z0

)3/2 , (58)

with z0 = 0.9/
√

2 and the normalisation set by the requirement
that the surface density of galaxies is n̄g = 30 arcmin−2. This
was then convolved with the sum of two Gaussians to account
for the effect of photometric redshift. Galaxy bias was assumed
to be constant within each redshfit bin, with fiducial values bi =√

1 + z̄i, and z̄i the bin centre. Any possible scale dependence of
the bias introduced by GR was taken to be negligible.

As in EC19, we considered a Gaussian-only covariance,
whose elements are given by

Cov
[
CAB

i j (ℓ),CCD
kl (ℓ′)

]
=

δK
ℓℓ′

(2ℓ + 1) fsky∆ℓ

×
{[

CAC
ik (ℓ) + NAC

ik (ℓ)
] [

CBD
jl (ℓ′) + NBD

jl (ℓ′)
]

+
[
CAD

il (ℓ) + NAD
il (ℓ)

] [
CBC

jk (ℓ′) + NBC
jk (ℓ′)

]}
, (59)

where the upper-case (lower-case) Latin indexes run over WL,
GCph (all tomographic bins), δK

ℓℓ′ is the Kronecker delta symbol
coming from the lack of correlation between different multipoles
(ℓ, ℓ′), fsky ≃ 0.36 is the survey sky fraction, and ∆ℓ denotes the
width of the 100 logarithmic equi-spaced multipole bins. For the
observables of interest here, we assumed a white noise, so that it
is

NLL
i j (ℓ) =

δK
i j

n̄i
σ2
ϵ , (60)

NGG
i j (ℓ) =

δK
i j

n̄i
, (61)

NGL
i j (ℓ) = 0 , (62)

where σ2
ϵ = 0.32 is the variance of the observed ellipticities.

We continued to follow EC19 to evaluate the Fisher matrix
Fαβ(zi) for the observed galaxy power spectrum. Here, α and β
run over the cosmological parameters of the setΘ, and the index
i labels the redshift bin, each centred in zi = {1.0, 1.2, 1.4, 1.65},
whose widths were ∆z = 0.2 for the first three bins and ∆z = 0.3
for the last bin. As a difference with respect to EC19, we adopted
the direct derivative approach and directly varied the observed
galaxy power spectrum with respect to the cosmological param-
eters. We included two additional redshift-dependent parameters
ln bσ8(zi) and Ps(zi) over which we marginalised. the spectro-
scopic galaxy bias, b(z), and the expected number density of Hα
emitters, n(z), are as reported in Table 3 of EC19.

For all probes, we considered an optimistic and a pessimistic
scenario defined according to the specifications for WL, GCph
and GCsp in Table 1. For GCsp, we added a third scenario,
referred to as quasi-linear, for which we fixed the maximum
wavenumber to kmax = 0.15 h Mpc−1. We explored this more
conservative case since the underlying matter power spectrum
of Eq. (36) that we used in our observed galaxy power spectrum
recipe is a linear one. Non-linear corrections begin to play a role
for wave numbers larger than k = 0.1 h Mpc−1 for the redshifts
we considered (see Taruya et al. 2010). Cutting at a lower kmax
should avoid any bias induced by neglecting non-linear correc-
tions below this scale. However, this severe cut also removes part
of the information encoded in GCsp so that we wished to quan-
tify how this affects the constraints. In all scenarios, we fixed the
σv = σp nuisance parameter for GCsp to the values directly cal-
culated from Eq. (38) for the fiducial cosmological parameters.

We considered both GCsp alone and the combination of all
photometric probes: GCph, WL, and their XC. Moreover, we also
considered the full combination of all Euclid main probes: GCsp,
GCph, WL, and the XC between GCph and WL. It is important
to mention that we accounted for all the mixed terms in the co-
variance matrix for the photometric probes such as, for instance,
Cov

[
CLL

i j (ℓ),CGL
kl (ℓ)

]
. However, we followed EC19 in neglecting

any correlation between GCsp and the photometric probes. In the
pessimistic scenario, we further imposed a cut z < 0.9 to GCph
and XC to remove any overlap between these probes and GCsp.
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Table 1. Euclid survey specifications for WL, GCph and GCsp.

Survey area Asurvey 15 000 deg2

WL
Number of photo-z bins Nz 10
Galaxy number density n̄gal 30 arcmin−2

Intrinsic ellipticity disper-
sion

σϵ 0.30

Minimum multipole ℓmin 10
Maximum multipole ℓmax

– Pessimistic 1500
– Optimistic 5000

GCph
Number of photo-z bins Nz 10
Galaxy number density n̄gal 30 arcmin−2

Minimum multipole ℓmin 10
Maximum multipole ℓmax

– Pessimistic 750
– Optimistic 3000

GCsp
Number of spectro-z bins nz 4
Centres of the bins zi {1.0, 1.2, 1.4, 1.65}
Error on redshift σ0,z 0.001
Minimum scale kmin 0.001 h Mpc−1

Maximum scale kmax
– Quasi-linear 0.15 h Mpc−1

– Pessimistic 0.25 h Mpc−1

– Optimistic 0.30 h Mpc−1

This cut was applied only when we added GCsp to the photomet-
ric probes, while was not applied when we used the photometric
probes alone in the pessimistic case. No cut was ever applied in
the optimistic case.

5. Results

In this section, we discuss the results of the Fisher matrix anal-
ysis for the three models under investigation, JBD, nDGP, and
KM, and for each of them we considered the two fiducial cases
presented in Sect. 4. Additionally, for each case we considered a
quasi-linear, pessimistic, and optimistic scenario as discussed in
Sect. 4. In the following we present the 68.3% and 95.4% joint
marginal error contours on the cosmological and model parame-
ters for the optimistic setting, and for completeness, we include
the contour plots for the pessimistic scenario in Appendix A. We
stress that we are interested in detecting a non-zero value for
the model parameters, and therefore we present the relative er-
rors on the corresponding fiducial values. In the specific cases of
JBD and nDGP, we performed the Fisher analysis on the loga-
rithm of the additionalparameter, namely log10 X with X = ωBD
and X = Ωrc for JBD and nDGP, respectively. This choice was
dictated by the fact that we cannot perform a Fisher analysis on
a parameter that varies by some orders of magnitude. Addition-
ally, we need to use as parameter a quantity that is of order one in
the analysis in order to avoid large differences between the high-
est and lowest eigenvalues of the Fisher matrix. For the specific
case of nDGP, the use of the logarithm of the model parame-
ter allowed us to consider only its positive viable range, which
would not be possible if we performed a Fisher analysis directly
on Ωrc. We note indeed that a prior such as Ωrc > 0 cannot be
imposed a priori in the Fisher analysis. In addition to discussing
the results on log10 X we also report on the uncertainties on the

parameter itself, X. We note that we cannot use a Jacobian trans-
formation to convert between the Fisher matrices because the
transformation between the two parametrisations is non-linear
and the assumption of Gaussianity is only valid for the loga-
rithmic parametrisation. In order to obtain the constraints on the
parameter X, we used

X(±) = Xfid × 10±σlog10 X . (63)

As a consequence, the uncertainties on X are asymmetrical. We
now proceed to discuss each model in detail.

In order to have a global view on the results for the three MG
models analysed, we summarise in Fig. 2 the 68.3% marginal er-
rors on the model parameters, log10 ωBD for JBD, log10Ωrc for
nDGP, and ϵ2,0 for KM in all the scenarios and combinations of
probes we used. We note that we did not consider WL probe
alone because we verified that WL provides constraints of about
the same order as the GCsp ones. When we combined this with
GCph and XC, the constraints were significantly boosted. Ad-
ditionally, we note that the constraining power of the spectro-
scopic sample is very weak because we did not go deep enough
(k ≳ 1 h Mpc−1) in the non-linear regime and also because when
we used GC probes, we introduced degeneracies among the
MG parameters, amplitudes, and bias parameters. These features
characterise all the models.

5.1. Jordan-Brans-Dicke gravity

There are remarkably strong non-cosmological constraints on
JBD gravity, with current bounds of about ωBD > 105. As
pointed out above, however, it is useful to consider JBD grav-
ity as a long-wavelength limit of more general scalar-tensor the-
ories with a wide range of small-scale limits that may be en-
dowed with gravitational screening. It then makes sense to fo-
cus on what we already know from cosmology, where the con-
straints are about ωBD > 103, independent of what we know
from non-cosmological systems. Two further practical reasons
led us to choose ωBD ∼ 103 as a fiducial value. First of all,
this value is at the limits of the range for which we calibrated
the non-linear prescription we used. Second, the likelihood is
very flat for high values of ωBD which can lead to numerical
errors in the finite differences of the Fisher matrix evaluation
for some of the observables. We thus considered two cases for
JBD. The first fiducial case with ωBD = 800 (JBD1), and the
second case with ωBD = 2500 (JBD2). Whereas the first case
is nearly compatible with the most recent constraints from pub-
licly available CMB and LSS data, the second case is well within
the current bounds (Ballardini et al. 2020; Joudaki et al. 2022;
Ballardini et al. 2022). Table 2 summarises the relative (with re-
spect to the fiducial values) uncertainties for the cosmological
and model parameters in the quasi-linear, pessimistic and op-
timistic Euclid cases. Fig. 3 shows the 68.3% and 95.4% joint
marginal error contours on the cosmological model parameters
for the optimistic settings for both JBD1 (left panel) and JBD2
(right panel). As in Casas et al. (2023) for f (R), we performed
the Fisher matrix analysis on the parameter log10 ωBD, and not
directly on ωBD, because for large numbers and differences in
the order of magnitude, the Fisher matrix derivatives might be-
come unstable.

In the optimistic setting, we find that Euclid will be able to
constrain log10 ωBD as follows:

– JBD1:
– at 27% for the GCsp alone;
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Fig. 2. Marginalised 1σ errors on the model parameters relative to their
corresponding fiducial values, for JBD (case 1 in blue and case 2 in
cyan), nDGP (case 1 in green and case 2 in light green), and KM (case
1 in red and case 2 in light red). We show the marginalised 1σ er-
rors for GCsp in the optimistic (dotted area), pessimistic (dashed area)
and quasi-linear (filled area) scenarios (top panel), for WL+XC+GCph
in the optimistic and pessimistic cases (central panel) and for the
GCsp+WL+XC+GCph in the the optimistic and pessimistic cases.

– at 3.6% when considering the combination
WL+XC+GCph;

– at 3.2% for GCsp+WL+XC+GCph.
– JBD2:

– at 72.2% for the GCsp alone;

– at 5.1% when considering the combination
WL+XC+GCph;

– at 4.6% for GCsp+WL+XC+GCph.

For JBD1 the parameter log10 ωBD can be measured at high
statistical significance even in the pessimistic case, but this does
not hold for JBD2.

We now discuss the forecast errors on the parameter ωBD
propagating the uncertainties according to Eq. (63). For JBD1
we obtain ωBD = 800+4100

−670 for GCsp, ωBD = 800+210
−170 for

WL+XC+GCph and ωBD = 800+200
−160 for GCsp+WL+XC+GCph;

these results correspond to relative errors of 513%, 27% and
24%, respectively. For JBD2, always in the case of optimistic
settings, we obtain ωBD = 2500+1200

−820 for WL+XC+GCph and
ωBD = 2500+1070

−750 for GCsp+WL+XC+GCph. This corresponds
to relative errors of 49% and 43%, respectively (JBD2 is uncon-
strained by GC alone).

These results for the optimistic settings demonstrate that Eu-
clid alone could potentially detect at statistically significant level
values of ωBD which are compatible with current publicly avail-
able CMB and LSS data (Ballardini et al. 2020; Joudaki et al.
2022; Ballardini et al. 2022), but not those that are compatible
with Solar System constraints. Although the Euclid specifica-
tions we used here are different from those used in Ballardini
et al. (2019), the results we find are consistent with theirs.

5.2. Dvali-Gabadadze-Porrati gravity

The two cases considered for the nDGP model are log10Ωrc =
−0.60206 (nDGP1) and log10Ωrc = −6 (nDGP2). We summarise
the 68.3% marginalised errors (relative to the fiducial values) in
Table 3 on the cosmological and model parameters in the opti-
mistic, pessimistic and quasi-linear case. We show in Fig. 4 the
68.3% and 95.4% joint marginal error contours on cosmolog-
ical and model parameters for the optimistic scenario for both
nDGP1 (left panel) and nDGP2 (right panel). In Fig. A.2 we
show the same but for the pessimistic setting.

In the optimistic setting, we find that Euclid will be able to
constrain log10Ωrc as follows:

– nDGP1:
– at 93.4% for GCsp alone;
– at 20% when considering WL+XC+GCph;
– at 15% for GCsp+WL+XC+GCph.

– nDGP2:
– GCsp has no power in constraining the parameter.
– at 81% for both WL+XC+GCph and

GCsp+WL+XC+GCph.

Regardless of the specific case considered (nDGP1 or
nDGP2), the power in constraining Ωm,0 and Ωb,0 is the same,
while ns and σ8 are better constrained in the nDGP2 case and h
in the nDGP1 case. For example, in the optimistic setting, ns for
WL+XC+GCph is constrained at 0.52% for nDGP1 and 0.37%
for nDGP2 and they further improve when considering the full
combination of probes, when they are 0.27% and 0.19%, respec-
tively. In Fig. 4 we note in the log10Ωrc–ns panel that the two
parameters are anti-correlated in the nDGP1 case. This makes
the forecast errors on ns larger than the nDGP2 case where the
anti-correlation disappears. A similar discussion can be made for
the σ8 parameter. In the optimistic setting, for nDGP1, we have
0.37% for WL+XC+GCph and 0.21% for the full combination
of probes, while for the nDGP2 model we obtain 0.25% and
0.14%, respectively. Instead h is better constrained in nDGP1
being 1.25% and 1.35% for nDGP2 using GCsp.
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Fig. 3. 68.3% and 95.4% joint marginal error contours on the cosmological parameters for JBD1 (left panel) and JBD2 (right panel) in the
optimistic case. In red, we plot GCsp, in blue, we plot WL+XC+GCph and in green we plot GCsp+WL+XC+GCph.

Table 2. Forecast 1σ marginal errors on the cosmological and model parameters relative to their corresponding fiducial value for JBD1 and JBD2
in the pessimistic, quasi-linear and optimistic cases, using Euclid observations GCsp, WL+XC+GCph and GCsp+WL+XC+GCph.

JBD1 ωBD = 800
Ωm,0 Ωb,0 log10 ωBD h ns σ8

Pessimistic setting
GCsp (kmax = 0.15 h Mpc−1) (quasi-linear) 2.13% 4.49% 43.04% 1.72% 2.62% 1.11%
GCsp (kmax = 0.25 h Mpc−1) 1.55% 2.48% 29.62% 1.72% 1.53% 0.83%
WL+XC+GCph 0.37% 5.10% 10.89% 3.20% 1.25% 0.34%
GCsp+WL+XC+GCph 0.36% 1.72% 9.21% 0.91% 0.66% 0.28%
Optimistic setting
GCsp (kmax = 0.3 h Mpc−1) 1.49% 1.21% 27.13% 1.41% 1.33% 0.77%
WL+XC+GCph 0.27% 3.43% 3.55% 1.69% 0.52% 0.11%
GCsp+WL+XC+GCph 0.24% 1.43% 3.21% 0.51% 0.28% 0.10%

JBD2 ωBD = 2500
Pessimistic setting
GCsp (kmax = 0.15 h Mpc−1) (quasi-linear) 2.14% 4.52% 114.54% 3.80% 2.64% 1.11%
GCsp (kmax = 0.25 h Mpc−1) 1.55% 2.49% 78.82% 1.74% 1.53% 0.83%
WL+XC+GCph 0.34% 5.09% 17.32% 3.21% 1.24% 0.27%
GCsp+WL+XC+GCph 0.33% 1.68% 15.51% 0.78% 0.54% 0.24%
Optimistic setting
GCsp (kmax = 0.3 h Mpc−1) 1.50% 2.24% 72.20% 1.42% 1.34% 0.77%
WL+XC+GCph 0.25% 3.40% 5.12% 1.70% 0.56% 0.10%
GCsp+WL+XC+GCph 0.22% 1.42% 4.56% 0.50% 0.28% 0.09%

As previously done for the JBD model, we translated the
forecast errors on the parameter log10Ωrc into the parameter Ωrc
[see Eq. (63)]. For the optimistic scenario, we obtain for nDGP1
Ωrc = 0.25+0.66

−0.18 for GCsp,Ωrc = 0.25+0.08
−0.06 for WL+XC+GCph and

Ωrc = 0.25+0.06
−0.05 for GCsp+WL+XC+GCph. These correspond to

relative errors that can reach 264%, 32%, and 24%, respectively.
For nDGP2, we obtain an upper bound that is Ωrc < 0.07 in the
optimistic setting, while for the pessimistic case, Ωrc is uncon-
strained regardless of the probe we consider because the fiducial
parameter is very close to ΛCDM and we do not have enough

non-linear information. To examine this, we considered the lin-
ear power spectrum: We find that the derivative with respect to
log10Ωrc approaches 0 in the ΛCDM limit, and P′L|10−6 ≈ 0.0002
compared to P′L|0.25 ≈ 0.08, where a prime here denotes a deriva-
tive with respect to log10Ωrc. This leads us to conclude that the
pessimistic case is still too dominated by linear structure infor-
mation to constrain Ωrc when we are close to the ΛCDM limit. It
should also be noted that Bose et al. (2020) reported meaningful
constraints using cosmic shear with the same scale cuts we em-
ployed in our pessimistic case, but they used a full Markov chain
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Monte Carlo (MCMC) approach to a ΛCDM fiducial data vec-
tor, sampling in Ωrc, as well as employing a different covariance
and binning scheme. Additionally, it is known that the results ob-
tained with a Fisher approach can be different from those com-
puted with the MCMC method even though the sampled param-
eter is the same (Perotto et al. 2006; Wolz et al. 2012). Therefore
a direct comparison of the results is not straightforward. Lastly,
our loss in sensitivity in the ΛCDM limit justifies the tight upper
limit in nDGP1 when compared to nDGP2.

Moreover, a cut in the maximum multipole and scale at lower
values, as for the pessimistic (or quasi-linear) scenario, leads
to larger uncertainties on the model parameter (log10Ωrc) com-
pared to the optimistic setting, as shown in Table 3 and in Fig. 2,
where the impact of the different scales is highlighted. Con-
versely, the relative errors on the cosmological parameters dete-
riorate only slightly. This means that most of the power of Euclid
in constraining this model comes from the non-linear scales.

Finally, in this analysis we forecast the logarithm of Ωrc fol-
lowing the motivation discussed in Sect. 5, but we tested that a
similar constraining power can be directly obtained by sampling
Ωrc. For the 3x2pt in the optimistic setting we obtain for nDGP1
a 24% constraint with respect to the 32% obtained on Ωrc indi-
rectly from the log sampling.

5.3. k-mouflage

We present our results for the KM model with the two fidu-
cial choices of the ϵ2,0 parameter (KM1 ϵ2,0 = −0.04 and KM2
ϵ2,0 = −0.0001). The KM1 model represents an extreme case
that is allowed within the 95.4% confidence interval by current
cosmological data, while KM2 is practically indistinguishable
from ΛCDM. We show in Fig. 5 the forecast 68.3% and 95.4%
joint marginal error contours on cosmological and model param-
eters for the optimistic scenario. Fig. A.3 shows forecast results
for the same models in the pessimistic scenario. The 68.3% er-
rors for both the optimistic and pessimistic configurations are
reported in Table 4.

In the optimistic setting, we find that Euclid will be able to
constrain the modified-gravity parameter ϵ2,0 as follows:

– KM1 :
– at 3.4% for the GCsp alone;
– at 0.15% when considering the combination

WL+XC+GCph;
– at 0.14% for GCsp+WL+XC+GCph.

– KM2:
– none of the combinations of probes we consider are able

to constrain KM2;
– upper bound at 10−3 for the GCsp alone;
– upper bound at 7 × 10−4 when considering the combina-

tion WL+XC+GCph;
– upper bound at 4 × 10−4 for GCsp+WL+XC+GCph.

For the KM1 fiducial model, the optimistic configuration will
allow us to constrain ϵ2,0 to ∼ 3.4% accuracy using GCsp alone.
In the worst-case scenario of cutting the observed galaxy power
spectrum at kmax = 0.15 h Mpc−1, the error on ϵ2,0 increases to
∼ 5.5%. The constraining power greatly improves for the com-
bination WL+XC+GCph, and the percentage error on ϵ2,0 de-
creases to 0.15% in the optimistic case, without a substantial
worsening in the pessimistic scenario. Of the cosmological pa-
rameters we varied for the KM1 model, ϵ2,0 is most tightly con-
strained by the combination WL+XC+GCph. This shows that

this combination of data is well suited to capturing the modi-
fication induced by k-mouflage to the Poisson and lensing equa-
tions, probing µ and Σ independently. Moreover, the Euclid sur-
vey will probe the redshift range z ≳ 1, where the largest effect
determined by the running of Newton’s constant is expected to
manifest (see, e.g., Benevento et al. 2019). The fact that with the
photometric probes we obtain the tightest relative constraints for
the KM1 model, compared to the other two models studied in
this work, is consistent with the observation of the lower panels
of Figure 1, which show that the lensing angular power spec-
trum is more distant to its ΛCDM counterpart than in the other
two models. We note that the addition of GCsp to WL+XC+GCph
does not improve the constraints on ϵ2,0 in either the pessimistic
and optimistic scenarios.

The percentage error on ϵ2,0 in the ΛCDM-proximate
KM2 fiducial model decreases from 1120% using GCsp
alone to a value of 397% with the full combination of
GCsp+WL+XC+GCphin the best-case scenario. In the optimistic
case, the Euclid survey will therefore be able to detect a devia-
tion from ΛCDM only when |ϵ2,0| ≳ 4 × 10−4, which improves
over the constraining power of present CMB and LSS data by
somewhat more than one order of magnitude.

Fig. 5 shows that ϵ2,0 is anti-correlated with the h parame-
ter. This correlation can be exploited to reduce the Hubble ten-
sion, as noted in Benevento et al. (2019). This effect determines
a lower forecast error for the h parameter in the KM1 fiducial
model, for which ϵ2,0 is tightly constrained by Euclid probes, es-
pecially when the full data combination is considered. A similar
argument applies to theΩm,0 parameter, which is also better con-
strained for KM1. The uncertainties for the other parameters do
not vary much with the fiducial choice of ϵ2,0.

6. Conclusions

We have explored the constraining power of the future Euclid
mission for linearly scale-independent extensions of the concor-
dance cosmological model, that is, models that induce modifica-
tions to the linear growth of perturbations that are solely time-
dependent while featuring different testable types of screening
mechanisms at smaller non-linear scales. We considered three
specific models, namely JBD, a scalar-tensor theory with a stan-
dard kinetic term and a flat potential (Sect. 2.1); the nDGP
gravity, a braneworld model in which our Universe is a four-
dimensional brane embedded in a five-dimensional Minkowski
space-time (Sect. 2.2); and KM gravity, an extension of k-
essence scenarios with a universal coupling of the scalar field
to matter (Sect. 2.3).

We derived forecasts from Euclid spectroscopic and pho-
tometric primary probes on the cosmological parameters and
the additional parameters of the models, log10 ωBD for JBD,
log10Ωrc for nDGP, and ϵ2 for KM. In order to do this, we ap-
plied the Fisher matrix method to weak lensing (WL), photo-
metric galaxy clustering (GCph), spectroscopic galaxy clustering
(GCsp), and the cross-correlation (XC) between GCph and WL.
For each MG model, we considered two fiducial values for the
corresponding model parameter, following the rationale of a case
that is representative of the ΛCDM limit and another that differs
more significantly while still being (nearly) compatible with cur-
rent bounds. We modelled the non-linear matter power spectrum
using different prescriptions for each MG model: The HMCODE
(Mead et al. 2015, 2016) calibrated on a suite of N-body sim-
ulations from modified versions of COLA (Tassev et al. 2013;
Winther et al. 2017) and RAMSES (Teyssier 2002) for JBD; the
halo model reaction (Cataneo et al. 2019) for nDGP; and an
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Fig. 4. 68.3% and 95.4% joint marginal error contours on the cosmological parameters for nDGP1 (left panel) and nDGP2 (right panel) in the
optimistic case. In red, we plot GCsp, in blue, we plot WL+XC+GCph and in green we plot GCsp+WL+XC+GCph.

Table 3. Forecast 1σ marginal errors on the cosmological and model parameters relative to their corresponding fiducial value for nDGP1 and
nDGP2 in the pessimistic, quasi-linear and optimistic cases, using Euclid observations of GCsp, WL+XC+GCph and GCsp+WL+XC+GCph.

nDGP1 Ωrc = 0.25
Ωm,0 Ωb,0 log10Ωrc h ns σ8

Pessimistic setting
GCsp (kmax = 0.15 h Mpc−1) (quasi-linear) 2.14% 4.59% 145.65% 3.23% 1.82% 1.21%
GCsp (kmax = 0.25 h Mpc−1) 1.54% 2.51% 101.27% 1.51% 0.99% 0.89%
WL+XC+GCph 1.13% 5.64% 49.59% 2.65% 0.92% 1.08%
GCsp+WL+XC+GCph 0.66% 2.18% 33.98% 1.26% 0.49% 0.42%
Optimistic setting
GCsp (kmax = 0.3 h Mpc−1) 1.46% 2.24% 93.39% 1.25% 0.87% 0.83%
WL+XC+GCph 0.30% 5.08% 19.59% 2.33% 0.52% 0.37%
GCsp+WL+XC+GCph 0.26% 1.62% 14.78% 0.59% 0.27% 0.21%

nDGP2 Ωrc = 10−6

Pessimistic setting
GCsp (kmax = 0.15 h Mpc−1) (quasi-linear) 2.19% 5.01% 3053.42% 3.53% 1.94% 2.53%
GCsp (kmax = 0.25 h Mpc−1) 1.56% 2.65% 1969.23% 1.65% 1.01% 1.68%
WL+XC+GCph 0.86% 5.61% 398.64% 2.65% 0.81% 0.58%
GCsp+WL+XC+GCph 0.77% 1.89% 379.52% 1.13% 0.77% 0.39%
Optimistic setting
GCsp (kmax = 0.3 h Mpc−1) 1.49% 2.24% 1842.43% 1.35% 0.89% 1.54%
WL+XC+GCph 0.29% 5.08% 81.02% 2.32% 0.37% 0.25%
GCsp+WL+XC+GCph 0.26% 1.39% 80.77% 0.56% 0.19% 0.14%

analytical approach that combined one-loop perturbation theory
with a halo model for KM following Brax & Valageas (2014);
Brax et al. (2015).

When setting the Euclid survey specifications, we defined
three scenarios that were characterized by different cuts in the
maximum multipole and wavenumber to assess the constrain-
ing power of non-linear scales: the quasi-linear scenario with
kmax = 0.15 h Mpc−1 for GCsp; the pessimistic scenario with
kmax = 0.25 h Mpc−1 for GCsp, ℓmax = 1500 for WL, and
ℓmax = 750 for GCph; and the optimistic scenario with kmax =

0.3 h Mpc−1 for GCsp, ℓmax = 5000 for WL, and ℓmax = 3000
for GCph. In Sect. 5 we discussed and reported in great detail
the results corresponding to these different scenarios. For each
case, we considered three different combinations of data: GCsp
alone, WL+XC+GCph and the full GCsp+WL+XC+GCph. For
each of these combinations we presented the relative errors on
the fiducial values of the three models as they can provide in-
dications about possible future detections of non-zero modified-
gravity parameters.
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Fig. 5. 68.3% and 95.4% joint marginal error contours on the cosmological parameters for KM1 (left panel) and KM2 (right panel) in the optimistic
case. In red, we plot GCsp, in blue, we plot WL+XC+GCph and in green, we plot GCsp+WL+XC+GCph.

Table 4. Forecast 1σ marginal errors on the cosmological and model parameters, relative to their corresponding fiducial value, for KM1 and KM2
in the pessimistic, quasi-linear and optimistic cases, using Euclid observations of GCsp, WL+XC+GCph and GCsp+WL+XC+GCph.

KM1 ϵ2,0 = −0.04
Ωm,0 Ωb,0 ϵ2,0 h ns σ8

Pessimistic setting
GCsp (kmax = 0.15 h Mpc−1) (quasi-linear) 6.53% 10.43% 5.48% 3.88% 1.95% 2.39%
GCsp (kmax = 0.25 h Mpc−1) 2.23% 4.02% 3.75% 1.52% 1.10% 1.31%
WL+XC+GCph 0.36% 7.36% 0.22% 1.40% 1.93% 1.10%
GCsp+WL+XC+GCph 0.31% 1.77% 0.22% 0.44% 0.63% 0.46%
Optimistic setting
GCsp (kmax = 0.3 h Mpc−1) 1.82% 3.50% 3.40% 1.23% 0.89% 1.19%
WL+XC+GCph 0.20% 4.30% 0.15% 0.59% 0.98% 0.84%
GCsp+WL+XC+GCph 0.17% 1.57% 0.14% 0.32% 0.43% 0.37%

KM2 ϵ2,0 = −0.0001
Pessimistic setting
GCsp (kmax = 0.15 h Mpc−1) (quasi-linear) 7.85% 12.28% 1720.00% 4.48% 2.24% 2.84%
GCsp (kmax = 0.25 h Mpc−1) 3.19% 5.41% 1190.00% 1.99% 1.13% 1.47%
WL+XC+GCph 1.18% 5.22% 939.23% 1.03% 1.51% 1.17%
GCsp+WL+XC+GCph 0.73% 2.23% 642.65% 0.79% 0.82% 0.80%
Optimistic setting
GCsp (kmax = 0.3 h Mpc−1) 2.57% 4.41% 1120.00% 0.62% 1.00% 1.34%
WL+XC+GCph 0.40% 3.43% 658.67% 0.66% 0.87% 0.75%
GCsp+WL+XC+GCph 0.33% 1.73% 396.60% 0.43% 0.55% 0.42%

With the full set of probes, we found that in the optimistic
scenario, Euclid alone will be able to constrain the JBD param-
eter ωBD = 800+200

−160 in the fiducial case JBD1 for the full com-
bination of probes, and in the JBD2 case ωBD = 2500+1070

−750 . This
indicates that Euclid alone will be capable of detecting at a sta-
tistically significant level only values of ωBD that are compatible
with the current bounds from CMB and LSS.

For the nDGP model, we obtain for the optimistic scenario
that Ωrc = 0.25+0.06

−0.05 with the full combination in the nDGP1
fiducial case, while for the nDGP2 fiducial (Ωrc = 10−6) we find

that Ωrc < 0.07. Furthermore, the nDGP2 case is closer to the
ΛCDM model than the KM2 model. The constraints of nDGP2
are therefore worse than those of KM2.

For the KM scenario, we obtain constraints for the full com-
bination of probes in the fiducial KM1 case of ϵ2,0 = −0.04 ±
5.6 × 10−5. Out of the full set of cosmological plus model pa-
rameters, ϵ2,0 is the most tightly constrained parameter for KM1
by the full combination because of the independent constraints
on clustering and lensing, which probe the running of Newton’s
constant in the range z ≳ 1 where the strongest effect is expected.
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The KM2 fiducial model (with ϵ2,0 = −0.0001) is unconstrained
for all the different combinations of probes.

Although it has been shown that for values close to the
ΛCDM limit, the nDGP2 and KM2 models remain uncon-
strained in the pessimistic setting, it is remarkable that Euclid
alone can significantly reduce the allowed space for these mod-
els. For the full probe combination (GCsp+WL+XC+GCph) the
nDGP2 upper bound at Ωrc < 0.07 for the optimistic scenario
significantly improves the current constraints derived with the
same approach and similar type of data. This is consistent with
the results found in Bose et al. (2020).

The forecasts for KM2 give ϵ2,0| < 4 × 10−4 in the optimistic
case and |ϵ2,0| < 2 × 10−3 in the pessimistic case. This improves
the current constraints by more than one order of magnitude,
even in the pessimistic case, by combining different cosmolog-
ical datasets (Benevento et al. 2019). In addition, Euclid alone
will provide constraints on ωBD that will be tighter than those
obtained by a combination of current CMB and low-redshift data
Joudaki et al. (2022).

Finally, our analysis clearly showed that most of the con-
straining power of Euclid comes from the non-linear scales. We
conclude that Euclid will be able to provide outstanding con-
straints on extensions beyond the concordance model given a
good modelling of our theoretical observables at these scales,
such as we used in this analysis, seen from the substantial dif-
ferences in constraining power between the optimistic and pes-
simistic case. The current dedicated modelling of non-linearities
for spectroscopic galaxy clustering, developed and tested for
ΛCDM and applied to BOSS data by D’Amico et al. (2020);
Ivanov et al. (2020); Chen et al. (2022), for instance, can be
straightforwardly extended to the class of scale-independent
models considered in this paper, as was already shown, in the
nDGP model in Piga et al. (2023), for example. Additionally we
would like to stress that the combination and cross-correlation
of future Euclid data with CMB measurements will be of crucial
importance for the cosmological constraints of extended models.
As already shown within the Euclid Collaboration (Euclid Col-
laboration: Ilić et al. 2022), the improvements in the constraints
when Euclid is cross-correlated with CMB data can be of the
order of two to three and in some cases even larger. A large ef-
fort is currently ongoing to extend this analysis to other extended
models, including those in this work.
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Appendix A: Further results

In this appendix we show additional results to complement what
we discussed in Sect. 5. In Figs. A.1, A.2, and A.3 we provide the
68.3% and 95.4% joint marginal error contours in the pessimistic
case on the cosmological parameters for JBD, nDGP, and KM
respectively.
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Fig. A.1. 68.3% and 95.4% joint marginal error contours on the cosmological parameters for JBD1 (left panel) and JBD2 (right panel) in the
pessimistic case. In red, we plot GCsp, in blue, we plot WL+XC+GCph and in green, we plot GCsp+WL+XC+GCph.
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Fig. A.2. 68.3% and 95.4% joint marginal error contours on the cosmological parameters for nDGP1 (left panel) and nDGP2 (right panel) in the
pessimistic case. In red, we plot GCsp, in blue, we plot WL+XC+GCph and in green, we plot GCsp+WL+XC+GCph.
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Fig. A.3. 68.3% and 95.4% joint marginal error contours on the cosmological parameters for KM1 (left panel) and KM2 (right panel) in the
pessimistic case. In red, we plot GCsp, in blue, we plot WL+XC+GCph and in green, we plot GCsp+WL+XC+GCph.
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