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1 Introduction

The amplitude-based approach to the Post-Minkowskian expansion of general relativity
has proven to be remarkably efficient, and in a rapid sequence of steps it has led to a
complete solution up to third Post-Minkowskian order [1–15]. At fourth Post-Minkowskian
order [16–20] the amplitude method has so far provided most contributions, although not
all terms associated with gravitational back-reaction from radiation have been computed yet
using that framework. In the probe limit (where radiative effects can be ignored), results
have already been presented up to fifth Post-Minkowskian order [21].

A number of new amplitude approaches have been suggested as the calculations have
entered new and unexplored territory. This includes an effective Hamiltonian prescription
for the conservative parts [4, 22–25] and, most notably, the KMOC-formalism for the
computation of classical observables from quantum field theory [26–31]. Inspired by the
fourth-order subtraction scheme explored in ref. [16] an amplitude formalism based on an
exponential representation of the scattering matrix S was suggested in ref. [32]. It is covariant
and has the advantage that it by construction starts with the classical contribution to the
phase, followed by quantum corrections. It thus seems perfectly suited for a semiclassical
expansion and the appearance of superclassical terms due to a rewriting in terms of the
conventional T -matrix as in

Ŝ = 1 + i

ℏ
T̂ (1.1)
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are guaranteed to cancel. One can thus exclusively work with those parts that contain the
classical pieces, ignoring all other terms. An alternative formulation based on the large-mass
expansion field theory amplitudes [33, 34] has also been advocated [35–38] alternatively, by
performing a multi-graviton soft expansion [21].

Amplitude-based methods have likewise proven to be very efficient in the context of
the eikonal expansion [8, 10–13, 19, 20, 23, 39–44]. This formalism relies on the remarkable
exponentiation of scattering amplitudes in impact parameter space, and it also provides the
classical scattering angle from the loop expansion of amplitudes. Unitarity lies underneath
the phenomenon of exponentiation and at lowest orders this is the same mechanism that
removes superclassical terms from the classical potential by means of Born subtractions.

There are thus numerous ways to extract classical general relativity from the quantum
mechanical scattering amplitudes. To the lowest orders the various methods are in direct
correspondence with each other but as the order of perturbation theory grows they become
quite different in details. Efficiency of computation thus becomes a crucial criterion, but
there are also conceptual issues related to how gravitational radiation is taken into account.

Parallel to these developments based on scattering amplitudes in a quantum field
theoretic formulation of gravity, there has also been impressive progress based on a Post-
Minkowksian formulation of gravity using worldline formulations [45–47, 49–67]. In fact, at
present the only full computation to fourth Post-Minkowskian order has been presented
using this formalism [65, 68]. These worldline formulations manifestly bypass the need to
consider cancellations of superclassical terms. Computations using worldlines resemble the
integration techniques for loop calculations of scattering amplitudes (a perhaps inevitable
situation since both boil down to Green function methods for classical gravity), and there are
indeed clear links between worldline diagrams and scattering amplitude Feynman diagrams
after localizing the loops on velocity cuts [13].

One particularly important aspect of the Post-Minkowskian worldline formulation is
its adaptability to scattering in a dissipative setting such as it appears when gravitational
radiation (and back-reaction) is taken into account [63, 64]. This requires the doubling of
variables in a formulation that has its roots in the Keldysh-Schwinger closed-time path
integral, making it unavoidable to work with either retarded or advanced propagators. This
makes the link to conventional Feynman diagrams and scattering matrices less obvious and
concerns have indeed been raised whether conventional scattering matrices can capture
all features of gravitational radiation and the associated radiation reaction. However, the
KMOC formalism expresses the change of any physical observable during a scattering
process. Although it manifestly rewrites this in terms of conventional scattering matrices
and ordinary Feynman propagators, it should also capture all effects due to radiation. In
addition, when taking the classical limit of the KMOC formalism one essentially restricts the
incoming massive states to lie on classical paths at t = −∞. This seems to closely parallel
the starting point of worldline calculations. One would therefore expect that these two
apparently different approaches should be closely related. We shall here show that the two
are indeed equivalent in the classical limit. The fact that the Keldysh-Schwinger closed time
paths are used in the worldline calculations while the KMOC formalism rewrites the same
observable in terms of standard Feynman diagrams with ordinary Feynman propagators is
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just a convenient choice of representation. As expected, it turns out to be advantageous
to not employ the conventional Born expansion of the S-matrix in terms of the scattering
matrix T but rather make use of the fact that the full S-matrix serves as the time evolution
operator. The KMOC expectation values can then be re-expressed in a path integral form
that encapsulates both forward and backward evolution in time. This is the origin of the
Keldysh-Schwinger doubling of degrees of freedom and the associated closed time paths,
as expected from other contexts [69, 70]. Once the equivalence has been established, it
is also of interest to look at how the diagrammatic equivalence works out in detail. We
illustrate the correspondence up to second Post-Minkowskian order where complications
from iterations (in worldline language) and loops (in KMOC language) are already present,
and from which we therefore can learn how the diagrammatic match occurs.

Specifically, in section 2 we show to all orders in perturbation theory that classical
observables computed in the KMOC framework are identical to those obtained from the
in-in worldline theory. We conclude that the specification of initial conditions in KMOC,
which are formally implemented in terms of suitable wave functions, leads to the intuitively
obvious initial conditions imposed in the worldline language (and when solving the classical
equations of motion). The momentum kick will serve as the default example of interest. In
classical mechanics or, alternatively, the worldline theory, the momentum is traditionally
defined in terms of the canonical momentum conjugate to a worldline position coordinate.
In contrast, in the amplitude framework the momentum operator is ultimately defined as
the generator of translation of a quantum field. Thus, these constitute two quite different
starting points for computing what is supposedly the same quantity. Nevertheless, we
conclude that the former definition indeed emerges out of the latter in the ℏ → 0-limit.

Our work is related to a broad and rich literature on the formulation of various aspects of
quantum field theory in terms of first-quantized worldlines (see, e.g., [71–75]). Additionally,
similarities exist with analogous discussions on the emergence of the Schwinger-Keldysh
contour in other contexts [69, 70, 76].

2 From KMOC to worldline observables

As alluded to in the introduction, we shall in this section show that the closed time-paths
of the dissipative worldline formulation [63, 64] can be derived from the classical limit of
the KMOC-formalism [26] without additional assumptions.

Before delving into the technicalities we will explain the origin of the equivalence in a
more heuristic manner. Starting from KMOC [26], we consider the change in an observable
⟨∆Ô⟩ and insert a complete set of states |out⟩,1 to get successively,

⟨∆Ô⟩ = ⟨in|Ŝ†ÔŜ|in⟩ − ⟨in|Ô|in⟩
= ⟨in|Ŝ†[Ô, Ŝ]|in⟩ (2.1)

=
∑
out

⟨out|Ŝ|in⟩∗
(
⟨out|ÔŜ|in⟩ − ⟨out|ŜÔ|in⟩

)
=
∑
out

⟨out|Ŝ|in⟩∗ (Oout − Oin) ⟨out|Ŝ|in⟩ ,

1This complete set of states is denoted by |out⟩ in order to facilitate the interpretation of it spanning a
generic final state at t = +∞.
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where for illustration we have taken the in and out states to be eigenstates of the operator
Ô with eigenvalues O. It is thus natural to interpret the change ⟨∆Ô⟩ as the average over
two S-matrix elements where the states |out⟩ can be viewed as final states of a scattering
process. The average is composed of one two-particle state propagating forward in time
from t = −∞ to a general out-state |out⟩ with (or without) radiation followed by the
scattering process backwards in time (the conjugate matrix element). If we write these
two scattering processes in terms of path integral representations there will thus be two
actions of opposite signs, those opposite signs being due to the complex conjugation. Initial
conditions are specified at t = −∞ and the “final state” (which will also contain all the
radiation) appears as an intermediate state before returning to t = −∞, and thus arises
entirely from the insertion of a complete set of states. This is the intuitive understanding of
how the closed-time paths of dissipative dynamics are contained in the KMOC-formalism
even though, at the stage above, both scattering matrix elements can be computed from
standard Feynman diagrams and Feynman propagators.

In the following, we shall go through these arguments in greater detail. This will also
shed light on the details of how the initial conditions are inherited from KMOC in the
worldline formalism.

Our starting point is two massive scalars in an in-state without radiation,

|in⟩ =
∏

j=1,2

∫
dΠpj Φ̃j(p⃗j)e

i
ℏ bjpj |p1p2; 0⟩ (2.2)

where
dΠpj ≡ d3pj

(2π)32Ej(pj) (2.3)

and Φ̃j(p⃗j)e
i
ℏ bjpj is the wavefunction of particle j and Ej(pj) =

√
m2

j + p2
j . We refer to

ref. [26] for further details. We restrict our observable Ô so that it can be written in the
single-excitation momentum basis of the scalar fields and some basis |K⟩ for the gravitational
field as follows

Ô = Ô† =
∑
K

∫
dΠp1dΠp2 |p1p2; K⟩O(p⃗, iℏ∂p⃗; K)⟨p1p2; K| . (2.4)

We use a compact notation that suppresses scalar particle labels in the argument of O

because indices will soon proliferate. The symbolic sum over K is a short-hand for the full
on-shell phase space integrations and polarization sums of an arbitrarily large number of
gravitons, or, alternatively, the functional integral over metric configurations, depending on
which basis is most convenient. Eventually we will be most interested in the special case
where O is taken to be the momentum of one of the scalar particles O(p⃗, iℏ∂p⃗; K) = pµ

1 , but
initially we will be more general. Other interesting observables which also depend on iℏ∂p⃗

could for example be the angular momentum operator.
Let us now express the complete set of states |out⟩ in eq. (2.1) as a sum over single

particle excitations of the scalar fields and any number of gravitons

1 =
∑
K

∫
dΠl1dΠl2 |l1l2; K⟩⟨l1l2; K| . (2.5)
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Using eqs. (2.2) and (2.4), we can then write (2.1) as

⟨∆Ô⟩ =
∑
K

∏
j=1,2

∫
dΠpj dΠp′j

dΠlj Φ̃j(p⃗j
′)∗Φ̃j(p⃗j)e

i
ℏ bj(pj−p′j)⟨l1l2; K|Ŝ|p′1p′2; 0⟩∗ (2.6)

×
[
O(⃗l, iℏ∂

l⃗
; K) − O(p⃗,−iℏ∂p⃗; 0)

]
⟨l1l2; K|Ŝ|p1p2; 0⟩.

The minus sign on the argument, −iℏ∂p⃗, in the second term arises due to conjugation and
the assumed Hermiticity of the observable in (2.4), i.e.,

⟨l1l2; K|ŜÔ|p1p2; 0⟩ = ⟨p1p2; 0|ÔŜ†|l1l2; K⟩∗

= O(p⃗, iℏ∂p⃗)∗⟨p1p2; 0|Ŝ†|l1l2; K⟩∗

= O(p⃗,−iℏ∂p⃗)⟨l1l2; K|Ŝ|p1p2; 0⟩.

Our aim is to write the S-matrix elements in terms of path integrals. First we introduce
the scalar field operator

ϕ̂j(t, x⃗) = 1
ℏ3/2

∫
d3p

(2π)3
√

2Ej(p)

{
âjp(t)e−

i
ℏ [Ej(p)(t−tin)−p⃗·x⃗] + h.c.

}
, (2.7)

where tin is the initial time, which we will push to −∞. The phase containing tin says
that we have defined the creation and annihilation operators such that at time t = tin the
interaction-picture operator âjp(tin) coincides with the Heisenberg-picture operator. The
scalar field momentum eigenstates can be written in terms of the ajp-operators appearing
on the right-hand side of (2.7) in the usual way

|p1p2⟩ ≡
√

2E1(p1)2E2(p2)â†
1p1(tin)â†

2p2(tin)|0⟩ (2.8)

We now define the initial eigenstates |ϕj⟩ of the field operator (2.7),

ϕ̂j(tin, x⃗) |ϕj⟩ = ϕj(x⃗) |ϕj⟩ (2.9)

and likewise for the gravitational analog of (2.7)

ĥµν(tin, x⃗) |h⟩ = hµν(x⃗) |h⟩ (2.10)

We can write the S-matrix in the basis of (2.10) as follows

Ŝ = Ŝ(tin, tf) =
∫

Dhe
i
ℏSh[h] |hf⟩ Ŝϕ(h) ⟨hin| (2.11)

where
Dh ≡ N

∏
x⃗ ρλ

∏
tin≤t≤tf

dhρλ(t, x⃗) (2.12)

and
Sh[h] ≡

∫ tf

tin
dt

∫
d3x

√
−gLEH + SGF [h] (2.13)

is the gauge-fixed Einstein-Hilbert action and |hf⟩ is the eigenstate of ĥµν(tin, x⃗) correspond-
ing to the eigenvalue hµν(tf, x⃗) while |hin⟩ is the eigenstate corresponding to the eigenvalue
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hµν(tin, x⃗). We will deal with the normalization N in the very end when everything is put
together. The operator Ŝϕ(h) in (2.11) is defined as

Ŝϕ(h) = Ŝϕ1(h)Ŝϕ2(h) =
∏

j=1,2

∫
Dϕje

i
ℏSϕj [h,ϕj ] |ϕj,f⟩ ⟨ϕj,in| (2.14)

where the notation in (2.14) is analogous to (2.11). The Sϕj [h, ϕj ] of eq. (2.14) is the action
of a scalar field in curved space-time (see e.g., the last term in eq. (3.5) below).

We can now rewrite the S-matrix elements appearing in (2.6) using eq. (2.11)

⟨l1l2; K|Ŝ|p1p2; 0⟩ =
∫

Dhe
i
ℏSh[h]⟨K|hf⟩⟨hin|0⟩⟨l1l2|Ŝϕ(h)|p1p2⟩ (2.15)

This allows us to focus on the Ŝϕ(h)-matrix elements with hµν playing the role of external
sources. We can rewrite the Ŝϕ(h)-matrix elements in terms of the field operators defined
in (2.7) acting on the vacuum as follows

⟨l1l2|Ŝϕ(h)|p1p2⟩ =
∏

j=1,2

2Ej(lj)
ℏ3/2

2Ej(pj)
ℏ3/2

∫
d3yjd3xje−

i
ℏ l⃗j ·y⃗j+ i

ℏ p⃗j ·x⃗j (2.16)

× ⟨0|ϕ̂j(tin, y⃗j)Ŝϕj(h)ϕ̂j(tin, x⃗j)|0⟩

We next consider the quantity

⟨0|ϕ̂j(tin, y⃗j)Ŝϕj(h)ϕ̂j(tin, x⃗j)|0⟩

in eq. (2.16). With the aim to make a transition to a worldline formulation we include a
source J for the scalar field ϕ in the action,

Sϕj [ϕj , h] → Sϕj [ϕj , h, J ] ≡ Sϕj [ϕj , h] +
∫

d4x
√
−gJ(x)ϕj(x) (2.17)

so that the eigenvalues of the scalar field operators can be represented by variations with
respect to the source at the temporal end points. The generating functional is defined as

Zj [J ; h] ≡
∫

Dϕe
i
ℏSϕj [ϕj ,h,J ]⟨0|ϕf,j⟩⟨ϕin,j |0⟩

= Zj [0; h] e−
i

2ℏ

∫
d4xd4y

√
−g(y)J(y)∆j(x,y;h)

√
−g(x)J(x) (2.18)

where the Green function ∆j (x, y; h) is defined as the solution to

−
(

1√
−g

∂µ
(√

−ggµν∂ν
)

+
m2

j

ℏ2 − iϵ

)
∆j (x, y; h) = δ4 (x − y)√

−g
. (2.19)

The shown iϵ-prescription is a consequence of the presence of the factor

⟨0|ϕf,j⟩⟨ϕin,j |0⟩ ∼ lim
ϵ→0+

exp
(
−1

2ϵ

∫
d4xϕ2

j

)
(2.20)
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in eq. (2.18) (see, e.g., ref. [77] for details). If we insert Ŝϕj(h) given in (2.14) into
⟨0|ϕ̂j(tin, y⃗j)Ŝϕj(h)ϕ̂j(tin, x⃗j)|0⟩ and write the result in terms of variations of (2.18), we
obtain:

⟨0|ϕ̂j(tin, y⃗j)Ŝϕj(h)ϕ̂j(tin, x⃗j)|0⟩ = iℏ∆j ((tin, x⃗j) , (tf , y⃗j) ; h) Zj [0; h] (2.21)
= iℏ∆j ((tin, x⃗j) , (tf , y⃗j) ; h) ⟨0|Ŝϕj(h)|0⟩ .

Combining terms, we find:

⟨l1l2; K|Ŝ|p1p2; 0⟩ =
∏

j=1,2
4Ej(pj)Ej(lj)

∫
d3yjd3xje

i
ℏ (p⃗j ·x⃗j−l⃗j ·y⃗j)Gj(x⃗j , y⃗j ; 0, K), (2.22)

where

Gj(x⃗j , y⃗j ; K0, K) ≡ i

ℏ2

∫
Dhe

i
ℏSh[h]⟨K|hf⟩⟨hin|K0⟩⟨0|Ŝϕj(h)|0⟩∆j((tin, x⃗j), (tf, y⃗j); h)

(2.23)
In this expression, the factor

⟨0|Ŝϕj(h)|0⟩ =
∫

Dϕje
i
ℏSϕj [ϕj ,h]⟨0|ϕf,j⟩⟨ϕin,j |0⟩ (2.24)

represents fluctuations of the scalar fields, which can be ignored in the classical limit
(the number of scalar matter particles is assumed to be fixed at all times). Up to a
proportionality factor, one may interpret Gj(x⃗j , y⃗j ; K0, K) in the classical limit as the
scalar Green function ∆j((tin, x⃗j), (tf, y⃗j); hcl) in a classical gravitational background hcl
determined by the boundary conditions K and K0.

These definitions allow us to write the original observable ⟨∆Ô⟩ back in (2.6) in the
following form. Note that the various factors of 2Ej(p) in (2.3) and (2.22) cancel, except
for one case

⟨∆Ô⟩ =
∑
K

2∏
j=1

∫
d3yjd3xjd3y′jd3x′

jGj(x⃗j , y⃗j ; 0, K)Gj(x⃗j
′, y⃗j

′; 0, K)∗ (2.25)

×
∫ d3pjd3p′jd3lj

(2π)9 Φ̃j(p⃗j)Φ̃j(p⃗j
′)∗e−

i
ℏ b⃗j ·(p⃗j−p⃗j

′)e
i
ℏ (⃗lj ·y⃗j

′−p⃗j
′·x⃗j

′)

×
[
O(⃗l, iℏ∂

l⃗
; K) − O(p⃗,−iℏ∂p⃗; 0)

]
2Ej(lj)e−

i
ℏ (⃗lj ·y⃗−p⃗j ·x⃗j)

We have here chosen a frame where b0
j = 0 for simplicity. To move further towards a

resemblance with the worldline formalism, we will take a closer look at the momentum
integrals. We first consider the last line of eq. (2.25). The derivative iℏ∂lj in the operator
O(⃗l, iℏ∂

l⃗
; K) acts as follows

iℏ∂
l⃗j

[
Ej(lj)e−

i
ℏ (⃗lj ·y⃗−p⃗j ·x⃗)

]
=
[
y⃗ + iℏ∂lj logEj(lj)

]
Ej(lj)e−

i
ℏ (⃗lj ·y⃗−p⃗j ·x⃗) (2.26)

= [y⃗ + O(ℏ)] Ej(lj)e−
i
ℏ (⃗lj ·y⃗−p⃗j ·x⃗)

As long as we are only interested in the classical limit, we can therefore replace iℏ∂
l⃗j
→ y⃗j

in (2.25). Additionally, we can replace −iℏ∂p⃗j
→ x⃗j and also p⃗j → −iℏ∂x⃗j

and l⃗j → iℏ∂y⃗j
.

– 7 –
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This allows us to write eq. (2.25) as follows

⟨∆Ô⟩ =
∑
K

2∏
j=1

∫
d3yjd3xjd3y′jd3x′

jGj(x⃗j , y⃗j ; 0, K) (2.27)

×
{
O[iℏ∂y⃗, y⃗; K] − O[−iℏ∂x⃗, x⃗; 0]

}
× Ej(y⃗j − y⃗j

′)Φj(x⃗j)Φj(x⃗j
′)∗Gj(x⃗j

′, y⃗j
′; 0, K)∗

where
Ej(y⃗j − y⃗j

′) ≡
∫

d3lj
(2π)3 2Ej(lj)e

i
ℏ l⃗j(y⃗j−y⃗j

′) = 2ℏ3Ej(iℏ∂y⃗j
)δ3(y⃗j − y⃗j

′), (2.28)

and where
Φj(x⃗j) ≡

∫
d3p

(2π)3 Φ̃j(p⃗)e
i
ℏ p⃗·(x⃗j−b⃗j), (2.29)

are the Fourier transform of the wave functions.
We now focus on the integrals over the primed variables x⃗j

′, y⃗j
′ in eq. (2.27). The

y⃗j
′-integral is readily done by exploiting the δ-function in (2.28). We deal with the x⃗j

′-
integral by moving it to the last couple of factors in (2.27) that depend on xj

′ (which we
will temporarily denote I) and undo the Fourier transform of the wave functions to get

I ≡
∫

d3x′
jΦj(x⃗j)Φj(x⃗j

′)∗Gj(x⃗j
′, y⃗j

′; 0, K)∗ (2.30)

= ℏ3
∫

d3x′
j

∫
d3pd3q

(2π)6 Φ̃j(p⃗)∗Φ̃j(p⃗ + ℏq⃗)e−
i
ℏ p⃗·(x⃗j

′−b⃗j)+ i
ℏ (p⃗+ℏq⃗)·(x⃗j−b⃗j)Gj(x⃗j

′, y⃗j
′; 0, K)∗.

In the last line, we have made the change of variables p⃗ ′ = p⃗ + ℏq⃗, where the factor of ℏ is
a question of convenience at present. Using the same line of reasoning as in ref. [26] we
now replace Φ̃j(p⃗)∗Φ̃j(p⃗ + ℏq⃗) = |Φ̃j(p⃗)|2 + O(ℏ). If we further make a change of variables
x⃗j

′ = x⃗j + ∆x⃗j , we get, successively,

I = ℏ3δ3(x⃗j − b⃗j)
∫

d3p

(2π)3 |Φ̃j(p⃗)|2
∫

d3∆xje−
i
ℏ p⃗·∆x⃗j Gj(x⃗j + ∆x⃗j , y⃗j

′; 0, K)∗ (2.31)

= ℏ3δ3(x⃗j − b⃗j)
∫

d3p

(2π)3 |Φ̃j(p⃗)|2
∫

d3∆xje
− i

ℏ∆x⃗j ·(p⃗+iℏ∂x⃗j
)
Gj(x⃗j , y⃗j

′; 0, K)∗

= ℏ6δ3(x⃗j − b⃗j)
∫

d3p|Φ̃j(p⃗)|2δ3(p⃗ + iℏ∂x⃗j
)Gj(x⃗j , y⃗j

′; 0, K)∗

= ℏ6δ3(x⃗j − b⃗j)|Φ̃j(−iℏ∂x⃗j
)|2Gj(x⃗j , y⃗j

′; 0, K)∗

When we next insert this into eq. (2.27), we can immediately perform the xj-integral using
the δ-function δ3(x⃗j − b⃗j). Furthermore, we can also perform the yj

′ using the δ-function in
the second equality of eq. (2.28). This leaves us with only the yj-integral

⟨∆Ô⟩ = 2ℏ9∑
K

2∏
j=1

∫
d3yjGj (⃗bj , y⃗j ; 0, K) (2.32)

×
[
O(iℏ∂y⃗, y⃗; K) − O(−iℏ∂⃗

b
, b⃗; 0)

]
× Ej(iℏ∂y⃗j

)|Φ̃j(−iℏ∂⃗
bj

)|2Gj (⃗bj , y⃗j ; 0, K)∗
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Having obtained the result in (2.32), we now go back and unpack the expression for Gj

given in eq. (2.23); in particular, we want to write the Green function ∆j((tin, b⃗j), (tf , y⃗j); h)
defined by eq. (2.23) in terms of its worldline-representation [78, 79]

∆j (x, y; h) = N
∫ ∞

0
dT

∫ z(T )=y

z(0)=x
Dze

− i
ℏ

mj
2

∫ T

0 ds

{
gµν(z)żµżν− ℏ2

4m2
j

R(z)+1
}

, (2.33)

where Dz ≡
∏

0<τ<T d4z(τ)
√
−g(z(τ)), N is a constant, and R is the Ricci scalar. Equa-

tion (2.33) includes all quantum effects; this is overkill for our purpose, so we first make
some approximations that hold exactly in the classical limit. First, we note that the
T -integral in (2.33) can be done in the classical limit using the principle of stationary phase
(see appendix B). It is interesting to note that the same result was reached in ref. [52]
without invoking the principle of stationary phase, but instead by using the on-shell initial
conditions. With a few more simplifications that are also shown in detail in the appendix
and which only consist in removing quantum mechanical corrections, we can effectively
replace (2.33), as evaluated with the relevant boundaries, by

∆j((tin, b⃗j), (tf , y⃗j); h) = N
∫ zj(τf,j)=(tf ,y⃗j)

zj(τin,j)=(tin ,⃗bj)
Dzje

i
ℏ

∫ τf,j
τin,j

dτLj [zj ,żj ,h]
(2.34)

which is valid in the classical limit (here, some factors have been absorbed into N ). The
Lagrangian appearing in (2.34) is the Polyakov form of the classical Lagrangian for a point
particle on curved space-time:

Lj [zj , żj , h] = −mj

2

[
gµν (zj)

dzµ
j

dτ

dzν
j

dτ
+ 1

]
. (2.35)

The derivation of (2.34) in appendix B also shows that we should identify the length of
the parameter interval τf,j − τin,j with the classical proper time difference between the
space-time points (tin, b⃗j) and (tf , y⃗j) that get pushed to infinity when we push tf − tin
to infinity.

We now insert (2.34) into eq. (2.23). Although straightforward, the expression we
obtained in eq. (2.32), also contains derivatives such as

iℏ∂y⃗j
Gj (⃗bj , y⃗j ; 0, K)∗

which we need to consider carefully. These derivatives will act on ∆j((tin, b⃗j), (tf , y⃗j); h)∗ so
we have to evaluate derivatives of the boundaries of the worldline path-integral in (2.34)
which is slightly non-trivial. The full evaluation of these relations is provided in appendix C.
The result is

(−iℏ∂y)n∆j (x, y; h)∗ = N
∫ z(τf,j)=y

z(τin,j)=x
Dz

{(
− ∂Lj

∂ż

∣∣∣∣
τ=τf,j

)n

+ O(ℏ)
}

e
− i

ℏ

∫ τf,j
τin,j

dτLj

(−iℏ∂x)n∆j (x, y; h)∗ = N
∫ z(τf,j)=y

z(τin,j)=x
Dz

{(
∂Lj

∂ż

∣∣∣∣
τ=τin,j

)n

+ O(ℏ)
}

e
− i

ℏ

∫ τf,j
τin,j

dτLj
. (2.36)
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It is convenient to introduce

Pµ
j (τ) ≡ −ηµν ∂Lj [zj , żj ; h]

∂żν
j

= (P0
j (τ), P⃗j(τ)) (2.37)

Based on the Lagrangian (2.35), this quantity may also be written as Pjµ = mjgµν(zj)żν
j .

Substituting (2.34) into eq. (2.23) and using eqs. (2.36) and (2.37), we obtain

⟨∆Ô⟩ = N
∑
K

∫
Dh(1)Dh(2)⟨K|h(1)

f ⟩⟨h(1)
in |0⟩⟨K|h(2)

f ⟩∗⟨h(2)
in |0⟩∗ (2.38)

×
2∏

j=1

∫
d3yj

∫ z
(i)
j (τf,j)=(tf ,y⃗j)

z
(i)
j (τin,j)=(tin ,⃗bj)

Dz
(1)
j Dz

(2)
j Ej(P⃗(2)

j (τf,j))|Φ̃j(P⃗(2)
j (τin,j))|2

×
{

O[P⃗(2)(τf), z⃗(2)(τf); K] − O[P⃗(2)(τin), z⃗(2)(τin); 0]
}

e
i
ℏ (S[z(1)

j ,h(1)]−S[z(2)
j ,h(2)])

The prefactor N in (2.38) is a new accumulation of constants. We have also introduced the
full action S[zj , h] as the combination

S[zj , h] ≡ Sh [h] +
∫ τf,j

τin,j

dτLj [zj , żj , h] + O(ℏ) (2.39)

where, as anticipated earlier, we have ignored the extra terms of quantum origin. These
terms, in particular, can create scalar particles.

We note that −iℏ∂⃗
bj

in (2.32) has how become replaced by P⃗(2)
j (τin,j), and iℏ∂y⃗j

has

become replaced by P⃗(2)
j (τf,j). Having both Gj and its complex conjugate in eq. (2.32), we

have been forced to double the degrees of freedom by using two sets of fields (z(i), h(i)),
i = 1, 2. Here we see the emergence of the Keldysh-Schwinger path integral prescription.
This is as expected since the analysis is fully general and can include dissipation in the
form of gravitational radiation.

2.1 Restriction to single-particle observables

The result (2.38) is unwieldy and it may be difficult to see the forest for the trees. It can
be made more clear if we give up a bit of generality and assume that the observable is
restricted to one of the two scalar particles, say particle 1. That is, we now make the
following replacement

O[P⃗(2)(τ), z⃗(2)(τ); K] → O1[P⃗(2)
1 (τ1), z⃗

(2)
1 (τ1)] (2.40)

and O1 can be regarded as a function of the proper time of particle 1. This allows us to
write the difference between the final and initial value in eq. (2.38) as an integral over the
proper time of particle 1

O1[P⃗(2)
1 (τf,1), z⃗

(2)
1 (τf,1)] − O1[P⃗(2)

1 (τin,1), z⃗
(2)
1 (τin,1)] =

∫ τf,1

τin,1
dτ1

d

dτ1
O1 (2.41)

Having assumed that O1 is independent of K we can remove it from (2.38) by evaluating
the sum ∑

K

⟨K|h(1)
f ⟩⟨K|h(2)

f ⟩∗ = ⟨h(2)
f |h(1)

f ⟩ =
∏

µν,x⃗′

δ(h(1)
µν (tf, x⃗′) − h(2)

µν (tf, x⃗′)) (2.42)
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We next introduce the following short-hand notation for the path integral over these “closed
time paths”∫

in-in

Dh(i)(. . .) ≡
∫

Dh(1)Dh(2)⟨0|h(2)
in ⟩⟨h(1)

in |0⟩
∏

µν,x⃗′

δ
(
h(1)

µν (tf, x⃗′) − h(2)
µν (tf, x⃗′)

)
(. . .) (2.43)

With this notation and with the stated restriction of the observable in (2.40), we can now
write eq. (2.38) more compactly as

⟨∆Ô⟩ = N
∫

in-in

Dh(i)
∫

d3yj

∫ z
(i)
j (τf,j)=(tf ,y⃗j)

z
(i)
j (τin,j)=(tin ,⃗bj)

Dz
(i)
j |Φ̃j(P⃗(2)

j,in)|2 (2.44)

×
(

Ej(P⃗(2)
j,f )

∫ τf,1

τin,1
dτ1

d

dτ1
O1[P⃗(2)

1 , z⃗
(2)
1 ]
)

e
i
ℏ (S[z(1)

j ,h(1)]−S[z(2)
j ,h(2)])

which implicitly includes the obvious product over particle labels j = 1, 2 and over the two
copies of variables i = 1, 2. The KMOC difference in observables from t = −∞ to t = +∞
has thus been expressed as (the time integral of) a one-point function over paths as in the
Keldysh-Schwinger prescription.

2.1.1 Interpretation of boundary/initial conditions

Having obtained (2.44), we would like to understand the consequences of having the
(squared) wave function |Φ̃j(P⃗(2)

j,in)|2 = |Φ̃j(P⃗(2)
j (τin,j))|2 inside the path integral. In line

with KMOC [26], we assume that for widely separated scalar particles, the function |Φ̃j(p⃗)|2

will be strongly centered around the classical momentum p⃗ ∼ mj u⃗j ; i.e.

|Φ̃(P⃗(2)
j,in)|2 ≈ 2Ej(mj u⃗j)δ3(mj u⃗j − P⃗(2)

j,in) (2.45)

The interpretation of the presence of |Φ̃(P⃗(2)
j,in)|2 in the path integral (2.44) is then clear if

we view the time-discretized version of the path integral, and replace

P(2)
jµ,in = mjηµν ż

(2)ν
j (τin,j) (2.46)

≈ mjηµν(z(2)ν
j (τin,j + δτ) − bν

j )/δτ

where we again have assumed that there is no gravitational field initially, i.e.

gµν(z(τin,j)) = ηµν . (2.47)

Using eq. (2.45), we may then write the part of the expression in (2.44) that we are focused
on, in the time-discretized fashion∫ (tf,y⃗j)

(tin ,⃗bj)
Dz

(2)
j |Φ̃(P⃗(2)

j,in)|2 ∝ lim
N→∞

∫ N∏
n=1

{d4z
(2)
j (τin,j + nδτ)}δ3(mj u⃗j − P⃗(2)

j,in) (2.48)

with δτ ∼ (τf,j − τin,j)/N . Thus, when we replace P⃗(2)
j,in in eq. (2.48) according to (2.46),

we can regard the δ-function in (2.48) as fixing the spatial part of the n = 1 integration
variable to be

z⃗
(2)
j (τin,j + δτ) = b⃗j + δτ u⃗j (2.49)
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Another way of phrasing this is that the presence of |Φ̃(P⃗(2)
j,in)|2 in (2.44) ensures that we

only integrate over paths for which

˙⃗z(2)
j (τin,j) = u⃗j , (2.50)

as expected intuitively.

2.1.2 Do we have enough boundary/initial conditions?

We have just uncovered how the initial conditions on z⃗
(2)
j (τ) are inherited directly from the

KMOC wave functions in eq. (2.2). The specific appearance of the copy “2” variables was
in fact arbitrary and due to the order in which we performed the integrations. Still, are we
guaranteed that this apparent asymmetry cures itself in the final answer? There are other
issues. For example, why is the time component of z

(2)µ
j (τin,j + δτ) not restricted by any

δ-function constraint in (2.48) in a similar fashion as the spatial components?
These considerations raise the question whether we have enough boundary conditions

to specify a classical path. In other words, if we were to solve for the classical trajectory for
both z

(1)µ
j and z

(2)µ
j by applying the principle of stationary phase to (2.44), what information

should we supply as initial/boundary conditions for the equations of motion? The answer
is the following: First the trajectory for z⃗

(2)
j (τ) is specified by the initial conditions from

the KMOC wave functions as just discussed, i.e., z⃗
(2)
j (τin,j) = b⃗j and ˙⃗z(2)

j (τin,j) = u⃗j . We
then note that this also determines a unique classical the spatial end-point y⃗j,cl = z⃗

(2)
j,cl(τf,j),

which according to eq. (2.44) is required to be the same for z⃗
(1)
j,cl(τf,j). So z⃗

(1)
j (τ) is now

uniquely determined by the boundary conditions z⃗
(1)
j (τin,j) = b⃗j and z⃗

(1)
j (τf,j) = y⃗j,cl. This

implies that the entire classical paths for the (2) and (1) variables are indeed the same
because specifying the start-point and end-point determines a unique classical path. Of
course, the fact that the trajectories are identical now also has the consequence that the
initial classical velocity is the same ˙⃗z(1)

j (τin,j) = u⃗j , even though this was never explicitly
specified for the “1”-variables in (2.44). Finally, the classical zeroth components z

(i),0
j (τ)

are uniquely specified by the boundary-conditions: z
(i),0
j (τin,j) = tin and z

(i),0
j (τf,j) = tf

for i = 1, 2.
In summary, we conclude that eq. (2.44) does contain all the information we need to

calculate the classical paths for all variables z
(i)µ
j (τ). Specifically

z⃗
(2)
j (τin,j) = b⃗j , ˙⃗z(2)

j (τin,j) = u⃗j , z
(2),0
j (τin,j) = tin , z

(2),0
j (τf,j) = tf

z⃗
(1)
j (τin,j) = b⃗j , z⃗

(1)
j (τf,j) = z⃗

(2)
j (τf,j) , z

(1),0
j (τin,j) = tin , z

(1),0
j (τf,j) = tf (2.51)

which is equivalent to

z⃗
(i)
j (τin,j) = b⃗j , ˙⃗z(i)

j (τin,j) = u⃗j

z
(i),0
j (τin,j) = tin , z

(i),0
j (τf,j) = tf (2.52)

for i = 1, 2.
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2.1.3 Fixing the normalization
Finally, we will fix the accumulation of overall constants in N more explicitly. We first
note that factors such as Ej(P⃗(2)

j,f ) in the path integral (2.44) will have no influence on the
classical solution for the trajectories since it is a smooth function of the worldline points
and without oscillatory phases. This means that we can replace it by its classical value and
move it outside the path integral where it can be absorbed into the overall constant. This
kind of manipulation has already been done in other instances where we have discarded
quantum effects from the path integral measure.

Following the discussion of boundary conditions above, let us introduce a simplified
notation for the worldline path integral that expresses more clearly the fact that we are
only integrating over paths consistent with the initial conditions from KMOC∫

in-in

Dz
(i)
j (. . .)

∣∣∣∣∣∣ ˙⃗z(i)
j,in=u⃗j

z⃗
(i)
j,in=b⃗j

≡
∫

d3yj

∫ z
(i)
j (τf,j)=(tf ,y⃗j)

z
(i)
j (τin,j)=(tin ,⃗bj)

Dz
(i)
j |Φ̃j(P⃗(2)

j,in)|2(. . .). (2.53)

With the help of this notation we can write (2.44) as

⟨∆Ô⟩ = N
∫

in-in

Dh(i)Dz
(i)
j

(∫
dτ1

d

dτ1
O1

)
e

i
ℏ (S[z(1)

j ,h(1)]−S[z(2)
j ,h(2)])

∣∣∣∣∣∣ ˙⃗z(i)
j,in=u⃗j

z⃗
(i)
j,in=b⃗j

(2.54)

We now fix N by unitarity,

1 = ⟨in|Ŝ†Ŝ|in⟩ = N
∫

in-in

Dh(i)Dz
(i)
j e

i
ℏ (S[z(1)

j ,h(1)]−S[z(2)
j ,h(2)])

∣∣∣∣∣∣ ˙⃗z(i)
j,in=u⃗j

z⃗
(i)
j,in=b⃗j

, (2.55)

which gives our final result

⟨∆Ô⟩ =

∫
in-in

Dh(i)Dz
(i)
j

(∫
dτ1

d
dτ1

O1[P⃗1, z⃗1]
)

e
i
ℏ (S[z(1)

j ,h(1)]−S[z(2)
j ,h(2)])

∫
in-in

Dh(i)Dz
(i)
j e

i
ℏ (S[z(1)

j ,h(1)]−S[z(2)
j ,h(2)])

∣∣∣∣∣∣∣∣ ˙⃗z(i)
j,in=u⃗j

z⃗
(i)
j,in=b⃗j

(2.56)

Starting from the KMOC-expression for a general observable (2.1), and restricting ourselves
to the classical limit, we have thus explicitly mapped it to an in-in worldline expression
with boundary conditions inherited from the KMOC wave functions. As stressed, we have
demonstrated this equivalence only in the classical limit, given the numerous times terms of
O(ℏ) have been neglected in the analysis.

2.2 Momentum kick

After this general prescription we now look specifically at the classical momentum kick
which is related to the scattering angle. Picking one of the scalar particles, we therefore
choose the vector operator

Ôµ
1 = Pµ

1 =
∑
K

∫
dΠp1dΠp2 |p1p2; K⟩ pµ

1 ⟨p1p2; K| . (2.57)

– 13 –



J
H
E
P
0
9
(
2
0
2
3
)
0
5
9

Because the on-shell δ-functions were integrated out early on in the above analysis, the
zeroth component of the momentum is identified as p0

1 = E1(p1) =
√

m2
1 + p⃗2

1 everywhere.
In order to see that this is equivalent to the worldline formalism, we need to identify E1(P⃗1)
with

P0
1 ≡ −η0ν ∂L1

∂żν
1

. (2.58)

This identification follows from the fact that initial scalar particles are free particles plus
the fact that the path integrals in (2.56) can be solved classically using the principle of
stationary phase which replaces the variables with solutions to the classical equations of
motion. We note that for a free particle the classical equations of motion together with the
result in eq. (B.13) indeed imply that we can identify the zeroth component of the canonical
momentum with P0

1 = E1(P⃗1). Since only the end-points appear in (2.56) we have∫
dτ

d

dτ
O1[P⃗1, z⃗1]µ =

∫
dτ

d

dτ
Pµ

1 = −ηµν
∫

dτ
d

dτ

∂L1[z1, ż1; 0]
∂żν

1
(2.59)

Inserting this into eq. (2.56) we then obtain

⟨∆Pµ
1 ⟩ = −ηµν

∫
in-in

Dh(i)Dz
(i)
j

∫
dτ d

dτ
∂L1[z1,ż1;0]

∂żν
1

e
i
ℏ (S[z(1)

j ,h(1)]−S[z(2)
j ,h(2)])

∫
in-in

Dh(i)Dz
(i)
j e

i
ℏ (S[z(1)

j ,h(1)]−S[z(2)
j ,h(2)])

∣∣∣∣∣∣∣∣ ˙⃗z(i)
j,in=u⃗j

z⃗
(i)
j,in=b⃗j

(2.60)

which is the starting point for calculating the momentum kick from worldlines when
dissipation is taken into account [63, 64].

For definiteness we will henceforth follow the effective field theory approach [64] for the
practical calculations, although one could just as well have chosen the Worldline Quantum
Field Theory formulation [63] to evaluate (2.60). Let us first write (2.60) as,

⟨∆Pµ
1 ⟩ = −ηµν

∫
in-in

Dz
(i)
j

(∫
dτ d

dτ
∂L1[z1,ż1;0]

∂żν
1

)
e

i
ℏSeff[z(1)

j ,z
(2)
j ]

∫
in-in

Dz
(i)
j e

i
ℏSeff[z(1)

j ,z
(2)
j ]

∣∣∣∣∣∣∣∣ ˙⃗z(i)
j,in=u⃗j

z⃗
(i)
j,in=b⃗j

(2.61)

where the effective action Seff is defined by

e
i
ℏSeff[z(1)

j ,z
(2)
j ] ≡

∫
in-in

Dh(i)e
i
ℏ (S[z(1)

j ,h(1)]−S[z(2)
j ,h(2)]) (2.62)

= exp
[

i

ℏ

[∫
dτ(L[z(1), ż(1); 0] − L[z(2), ż(2); 0]) + S

(int)
eff [z(1), z(2)]

]]
We have separated out the two copies of the free part of the worldline Lagrangian
L[z(i), ż(i); 0] =

∑
j Lj [z(i)

j , ż
(i)
j ; hµν(z(i)

j ) = 0]. We now choose to evaluate the remain-
ing path integral in (2.61) by the principle of stationary phase, again ignoring quantum
corrections. This replaces the worldline parameters z

(i)
j (τ) with their classical values, which

we will denote rj(τ). The expression thus becomes

⟨∆Pµ
1 ⟩ = −ηµν

∫
dτ

d

dτ

∂L1[r1, ṙ1; 0]
∂ṙν

1
(2.63)
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The equations of motion providing rj(τ) subject to the initial/boundary conditions stated
above, can be written as

0 = δSeff[z(1), z(2)]
δz

(1)µ
j

∣∣∣∣∣∣
z

(i)
j =rj

= ∂Lj [rj , ṙj ; 0]
∂rµ

j︸ ︷︷ ︸
=0 (cf. eq. (2.35))

− d

dτ

∂Lj [rj , ṙj ; 0]
∂ṙµ

j

+ δS
(int)
eff [z(1), z(2)]

δz
(1)µ
j

∣∣∣∣∣∣
z

(i)
j =rj

(2.64)
Integrating this and using eq. (2.63), we obtain

⟨∆Pµ
1 ⟩ = −ηµν

∫
dτ

δS
(int)
eff [z(1), z(2)]

δz
(1)ν
1

∣∣∣∣∣
z

(i)
j =rj(τ)

(2.65)

We now expand the (variation of the) effective action perturbatively. Using the notation
defined in appendix A (which is very similar to that of ref. [58]), equation (2.65) may be
written as

⟨∆Pµ
1 ⟩ =

∫ ∞

−∞
dτ

G


µ

+

µ
+ G2


µ

(2.66)

+

µ

+

µ + O(G3)


The vertex factors contain additional factors of G since they depend on the classical
trajectories. The classical trajectories can also be written in the same notation

rµ
1 (τ) = 1

m1

∫ τ

−∞
dτ ′

∫ τ ′

−∞
dτ ′′

G


µ

+

µ
+ O(G2)

 (2.67)

rµ
2 (τ) = 1

m2

∫ τ

−∞
dτ ′

∫ τ ′

−∞
dτ ′′

G


µ

+

µ

+ O(G2)

 (2.68)

These equations may be solved iteratively by writing

rµ
j (τ) =

∞∑
n=0

Gnrµ
j,n(τ) (2.69)

where the first order trajectory is determined by the initial conditions

rµ
j,0(τ) = bµ

j + uµ
j τ (2.70)
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We can then expand the vertices

=
∑
n=0

Gn
n

(2.71)

=
∑
n=0

Gn
n

(2.72)

As an example the first order solutions may be written as (the self-force terms happen
to be zero at this order)

rµ
1,1(τ) = 1

m1

∫ τ

−∞
dτ ′

∫ τ ′

−∞
dτ ′′

0
µ

0

(2.73)

rµ
2,1(τ) = 1

m2

∫ τ

−∞
dτ ′

∫ τ ′

−∞
dτ ′′

0
µ

0

(2.74)

and substituting the expansion (2.69) into the expression for the momentum change, gives
the expansion of the momentum change to the given consistent order in G

⟨∆Pµ
1 ⟩ =

∫ ∞

−∞
dτ

G
0
µ

0

+ G2

 1
µ

0

+
0
µ

1

+
0
µ

0 0

(2.75)

+
0

0 0
µ + O(G3)


3 The diagrammatic comparison to one-loop order

Having just derived the equivalence between the KMOC and worldline formalisms it is
of interest to see in detail how it manifests itself in detailed calculations. Given that we
had to make the formal rewritings at the level of the Ŝ-matrix itself, rather than specific
representations of it, it should not be surprising that the equivalence arises in a quite
non-trivial manner order by order. We have already noted the cancellation of superclassical
terms in the KMOC formalism, cancellations that are completely avoided in the wordline
formalisms since their starting points are manifestly classical to leading order in ℏ. As
above, the particular observable we will be focusing on is the momentum transfer ⟨∆Pµ

1 ⟩
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for one of the two matter particles. The KMOC expression can be written in terms of
scattering amplitudes [26],

⟨∆Pµ
1 ⟩ = i

ℏ
⟨in|[Pµ

1 , T̂ ]|in⟩ + 1
ℏ2 ⟨in|T̂

†[Pµ
1 , T̂ ]|in⟩ = Iµ

(1) + Iµ
(2) (3.1)

where the first term is given by

Iµ
(1) =

∫
d4q

(2π)2

 θ(p0
1 + ℏq)θ(p0

2 − ℏq)δ(2p1 · q + ℏq2) (3.2)

× δ(2p2 · q − ℏq2)e−ib·qiqµ

p1 p1 + ℏq

p2 p2 − ℏq

A
ll

D
ia

gr
am

s


expanded

to order ℏ0

and the second term in (3.1) is given by

Iµ
(2) =

∑
K

∫
d4qd4w1d4w2

(2π)4


θ(p0

1+ℏq0)θ(p0
2−ℏq0)δ(2p1 ·q+ℏq2) (3.3)

×δ(2p2 ·q−ℏq2)θ(p0
1+ℏw0

1)θ(p0
2+ℏw0

2)δ(2p1 ·w1+ℏw2
1)δ(2p2 ·w2+ℏw2

2)

×e−ib·qδ4(w1+w2+ΣK)wµ
1ℏ

−1 ...

p1 p1+ℏw1

p2 p2+ℏw2

{K}

A
ll

D
ia

gr
am

s

...

p1+ℏw1 p1+ℏq

p2+ℏw2 p2−ℏq

{K}

A
ll

D
ia

gr
am

s


expanded

to order ℏ0

where the amplitudes are defined as T -matrix elements,

⟨p′
1p

′
2; {k}|T̂ |p1p2; 0⟩ = (2π)4δ4(p1 + p2 − p′1 − p′2 − ℏΣjkj) ...

p1 p′1

p2 p′2

{ℏk}

A
ll

D
ia

gr
am

s

(3.4)

Here the scalar momenta are p1 = m1u1, p2 = m2u2 and the impact parameter is
b ≡ b1 − b2. The symbolic sum over K is again a short-hand for the combined sum and
integrations over any number of graviton degrees of freedom. In general, the extraction
of the classical contribution requires us to expand both the amplitudes and all other
factors contained in the expressions (3.2) and (3.3). As is well-known, there will also be
superclassical terms, which only cancel once all contributions are considered.
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For illustration, we consider here the Einstein-Hilbert action fixed to harmonic gauge
and coupled to the two scalars in standard fashion,

S =
∫

d4x

[√
−gR

16πG
+
(

∂γhγµ − 1
2∂µh

)2
(3.5)

+
2∑

j=1

1
2
√
−g

(
gµν∂µϕj∂νϕj −

m2
j

ℏ2 ϕ2
j

) ,

where gµν = ηµν +
√

32πGhµν , R is the Ricci scalar, and ηµν is the Minkowski metric with
(+ −−−) signature. A brief note on our ℏ-power-counting: Feynman rules with the present
conventions assign to each graviton-scalar vertex a factor of 1/ℏ3, each scalar propagator
comes with a factor of ℏ3, each graviton three-vertex comes with a factor of 1/ℏ, and each
graviton propagator carries a factor of ℏ (if external gravitons were considered, they would
each carry a factor of

√
ℏ). Every diagram is multiplied by an overall factor of ℏ5.

3.1 Leading order comparison

Interestingly, already at tree level the Feynman diagram approach leads to the result in
a way that is quite distinct from the worldline perspective. The only contribution to the
KMOC expression at order G is

⟨∆Pµ
1 ⟩1PM =

∫
d4q

(2π)2
δ(p1 · q)δ(p2 · q)

4 e−ib·qiqµ



p1 p1 + ℏq

p2 p2 − ℏq


O(ℏ0)

(3.6)

= (8πGm1m2)
[1

2(2γ2 − 1)
] ∫

d4q

(2π)2 δ(u1 · q)δ(u2 · q)eib·q (−iqµ)
q2

= −(4πGm1m2)
[ 1

βγ
(2γ2 − 1)

]
δµ

j

∫
d2q⊥
(2π)2 eib⊥·q iqj

⊥
q2
⊥

= −2Gm1m2
2γ2 − 1√

γ2 − 1
δµ

j bj
⊥

b2
⊥

after inserting βγ =
√

γ2 − 1, where γ ≡ u1 ·u2. In the third line we evaluated the expression
in the rest frame of particle 1. The two δ-function constraints in the above integral arise
from the on-shell Lorentz-invariant phase space integrations in the KMOC-formula, ignoring
quantum terms. To this leading 1PM order this is intuitively understandable and should
correspond to treating the two scalars as classical objects moving on-shell. We can already
anticipate that this interpretation becomes more subtle once we start to include loops in
the Feynman diagram expansion.
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Let us compare the tree-level computation with the corresponding leading-order world-
line calculation

∫ ∞

−∞
dτG

0
µ

0

= 8πGm1m2

[1
2(2γ2 − 1)

] ∫
d4k

(2π)4

∫
dτdτ ′e−iu1·kτ eiu2·kτ ′

e−ib·k ikµ

k2 (3.7)

= 8πGm1m2

[1
2(2γ2 − 1)

] ∫
d4k

(2π)2 δ(u1 · k)δ(u2 · k)eib·k−ikµ

k2

= ⟨∆Pµ
1 ⟩1PM

The first observation is that the on-shell δ-function constraints arise in a completely different
manner, now from the Fourier transform of the (leading-order) straight-line trajectories.
Apart from this, the Feynman rule for the worldline-worldline-graviton vertex matches
closely that of the second quantized field theory to this order. The different iϵ-prescriptions
clearly play no role at this order.

3.2 Next-to-leading order comparison

Already at one-loop order the correspondence gets more intricate. We first draw the different
Feynman diagrams that contribute to this order in the KMOC-formalism. The calculation is
quite standard and can be found in many places in the literature but, we find it illuminating
to write out all terms in order to explore the relationship to the corresponding worldline
calculation. We list the Feynman diagrams here

⟨∆Pµ
1 ⟩2PM,V =

∫
d4q

(2π)2
δ(p1 · q)δ(p2 · q)

4 e−ib·qiqµ



p1 p1 + ℏq

p2 p2 − ℏq


O(ℏ0)

(3.8)

⟨∆Pµ
1 ⟩2PM,Λ =

∫
d4q

(2π)2
δ(p1 · q)δ(p2 · q)

4 e−ib·qiqµ

 p2 p2 − ℏq

p1 p1 + ℏq


O(ℏ0)

(3.9)

⟨∆Pµ
1 ⟩2PM,Y =

∫
d4q

(2π)2
δ(p1 · q)δ(p2 · q)

4 e−ib·qiqµ



p1 p1 + ℏq

p2 p2 − ℏq


O(ℏ0)

(3.10)

⟨∆Pµ
1 ⟩2PM,Y ’ =

∫
d4q

(2π)2
δ(p1 · q)δ(p2 · q)

4 e−ib·qiqµ

 p2 p2 − ℏq

p1 p1 + ℏq


O(ℏ0)

(3.11)
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⟨∆Pµ
1 ⟩2PM,B.1 =

∫
d4q

(2π)2
δ′(p1 · q)δ(p2 · q)

8 q2e−ib·qiqµ (3.12)

× ℏ

 p2 p2 − ℏq

p1 p1 + ℏq

+
p2 p2 − ℏq

p1 p1 + ℏq


O(ℏ−1)

⟨∆Pµ
1 ⟩2PM,B.2 = −

∫
d4q

(2π)2
δ(p1 · q)δ′(p2 · q)

8 q2e−ib·qiqµ (3.13)

× ℏ

 p2 p2 − ℏq

p1 p1 + ℏq

+
p2 p2 − ℏq

p1 p1 + ℏq


O(ℏ−1)

We note that the only non-vanishing classical contribution from the box plus crossed box
diagrams in equations (3.12) and (3.13) arise from expanding the on-shell delta functions in
eq. (3.2) to first order in ℏ. When multiplied by the superclassical part of the amplitude of
order (ℏ−1) this provides at term of order (ℏ0). All other contributions than those listed
above vanish. However, and as is well-known, there are also non-vanishing superclassical
terms produced by these diagrams,

⟨∆Pµ
1 ⟩2PM,B, ℏ−1 =

∫
d4q

(2π)2
δ(p1 · q)δ(p2 · q)

4 e−ib·qiqµ (3.14)

×

 p2 p2 − ℏq

p1 p1 + ℏq

+
p2 p2 − ℏq

p1 p1 + ℏq


O(ℏ−1)

These should be cancelled by the subtractions due to the second term in eq. (3.1),

⟨∆Pµ
1 ⟩2PM,A, ℏ−1 =

∫
d4qd4w

(2π)4
δ(p1 · q)δ(p2 · q)δ(p1 · w)δ(p2 · w)

16 e−ib·qwµ (3.15)

× 1
ℏ

 ×

p1 p1 + ℏw

p2 p2 − ℏw

p1 + ℏw p1 + ℏq

p2 − ℏw p2 − ℏq


O(ℏ0)

and an explicit evaluation indeed gives

⟨∆Pµ
1 ⟩2PM,A, ℏ−1 + ⟨∆Pµ

1 ⟩2PM,B, ℏ−1 = 0 (3.16)

We now compare these Feynman diagrams from the KMOC-prescription with the 2PM
evaluations using worldlines as in eq. (2.75) to find the following correspondence. First, for
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the contributions ⟨Pµ
1 ⟩2PM,Y and ⟨Pµ

1 ⟩2PM,Y ′ in eqs. (3.10) and (3.11) we find2

⟨Pµ
1 ⟩2PM,Y = πG2m2m2

1
4

γ2 + 3√
γ2 − 1

δµ
i bi

⊥
(⃗b2

⊥)3/2
(3.17)

= G2
∫ ∞

−∞
dτ

0

0 0
µ

⟨Pµ
1 ⟩2PM,Y ′ = πG2m2

2m1
4

γ2 + 3√
γ2 − 1

δµ
i bi

⊥
(⃗b2

⊥)3/2
(3.18)

= G2
∫ ∞

−∞
dτ

0
µ

0 0

These relations are diagrammatically very intuitive, and they match the correspondence
with velocity cuts [13]. However, for the remaining contributions the correspondence may
appear less obvious. We discover that we need to sum the contributions to ⟨Pµ

1 ⟩ in eqs. (3.9)
and (3.12) to get the first iterated worldline diagram in eq. (2.75),

⟨Pµ
1 ⟩2PM,Λ + ⟨Pµ

1 ⟩2PM,B.1 = −4πG2m2
2m1γ2√

γ2 − 1
δµ

i bi
⊥

(⃗b2
⊥)3/2

+ 2G2m1m2
2(2γ2 − 1)2

b⃗2
⊥(γ2 − 1)2

[γuµ
2 − uµ

1 ]

(3.19)

= G2
∫ ∞

−∞
dτ

1
µ

0

and likewise, the sum of eqs. (3.8) and (3.13) gives the other first iterated worldline diagram
in eq. (2.75)

⟨Pµ
1 ⟩2PM,V + ⟨Pµ

1 ⟩2PM,B.2 = −4πG2m2m2
1γ2√

γ2 − 1
δµ

i bi
⊥

(⃗b2
⊥)3/2

+ 2G2m2
1m2(2γ2 − 1)2

b⃗2
⊥(γ2 − 1)2

[uµ
2 − γuµ

1 ]

(3.20)

= G2
∫ ∞

−∞
dτ

0
µ

1

Looking at the diagrams, we observe that the worldline iterations can be viewed as producing,
to this order, two contributions: one is the analog of higher order scalar-gravition vertices
in Feynman diagrams, the other is the classical contributions from derivatives acting on

2Note that these two worldline diagrams both have a symmetry factor of 1/2.
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the δ-function constraints (and additional power of q2). We are not used to thinking of
such terms as being iterations in a conventional Feynman diagram analysis but it hints at
the possibility of a re-organization (or merging) of the two formalisms where one chooses
the most convenient representation to enumerate contributions. It should also be noted
that the split in the box and crossed box diagrams is easily identified by which δ-function
constraint the derivative acts upon in the KMOC formulation. This is what gives rise
to the asymmetric powers of m1m2

2 and m2m2
1, respectively. We have not explored the

diagrammatic correspondence in the alternative Worldline Quantum Field Theory [52, 63]
but one might expect that the correspondence could be even simpler in that framework.
Indeed, such simplifications have been noticed [75] in the context of off-shell currents.

4 Conclusion

The KMOC and worldline formulations of classical general relativity are both used to
compute observables based on the in-in formalism of quantum field theory. It is thus
natural to ask: what is the relationship between the two? This issue becomes particularly
relevant when one considers dissipation in terms of gravitational radiation. The worldline
formalism leads naturally to retarded (or advanced) propagators in this context, while the
KMOC formalism evaluates matrix elements with the standard iϵ-prescription of Feynman
propagators. In this paper we have shown that there is no contradiction, and we have
provided a formal derivation of the worldline formulation from the classical limit of the
KMOC formalism. One of the features of the derivation is that the initial conditions that
need to be imposed on the trajectories in the worldline formulation, can be viewed as
originating directly from the initial-state wave-functions that specify the initial conditions
of the system in KMOC.

One of the advantages of the worldline formulations is that they can work with the
ℏ → 0 limit from the outset. The formal equivalence to the classical limit of the KMOC
formalism demonstrates implicitly the exact cancellation of all superclassical terms if the
KMOC matrix elements are evaluated by means of the standard Born expansion of the
S-matrix. The interesting question of what happens to the equivalence at the quantum
level remains unanswered by the present analysis where we repeatedly discarded quantum
corrections. Both formalisms should remain valid (and hence equivalent) also when including
quantum corrections. Although it is far from obvious how, all discarded quantum terms
must thus conspire to keep the equivalence to all orders in ℏ.

Once this equivalence has been established, it is of interest to see in detail how
computations in the two different approaches compare. We have illustrated this by comparing
both tree-level and one-loop results for the momentum kick of two massive scalars scattering
off each other. Interestingly, and this is apparent already at tree level, the contributions come
from entirely different directions, eventually leading to identical results. At one-loop level
one can clearly identify which parts of the calculations are in one-to-one correspondence with
each other. The link between the two is most transparent if one organizes the quantum field
theory calculation in terms of velocity cuts on the massive lines. It would be interesting to
generalize this to any loop order and see if simplifications can be introduced in the worldline
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calculations based on what we know from the classical limit of amplitude calculations in
the KMOC setting.
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A Worldline Feynman rules

The derivation of the Feynman rules for the variation of the effective action in eq. (2.65)
in the in-in formalism has been treated previously in, e.g., [64, 76]. We will here briefly
repeat the main steps and define the notation we are using this paper.

The explicit equation for the interacting part of the effective action is given by

e
i
ℏS

(int)
eff [z(1)

j ,z
(2)
j ] =

∫
in-in

Dh(i)e
i
ℏ (Sh[h(1),J(1)]+S

(int)
p [z(1);h(1)]−Sh[h(2),J(2)]−S

(int)
p [z(2);h(2)]) (A.1)

where we have introduced the following notation for the interacting part of the point-particle
action,

S(int)
p [z; h] = −

√
8πG

∑
j

mj

∫
dτjhαβ(zj)żα

j żβ
j (A.2)

Next, we write the purely gravitational part of the action as a sum of the kinetic and
interacting parts, and we include a source Jµν for the gravitational field,

Sh[h, J ] = −1
2Mαβµν

∫
d4xhαβ□hµν + S

(int)
h [h] +

∫
d4xJµνhµν (A.3)

where Mρλ,αβ = ηρ(αηβ)λ− 1
2ηρληβα. Then we do a variable change to the Keldysh-variables

for the gravitational field [76]. They are related to the {1, 2}-variables used above by[
h(1)

h(2)

]
=
[

1
2 1
−1

2 1

] [
h(−)

h(+)

]
(A.4)

We define the interacting part of the action in the Keldysh-basis for the gravitational field as
(we have kept the worldline variables in the non-Keldysh basis, since we are not integrating
over them)

S(int)[z(1), z(2), h(±)] ≡ S
(int)
p+h [z(1); h(+) + 1

2h(−)] − S
(int)
p+h [z(2); h(+) − 1

2h(−)], (A.5)
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where S
(int)
p+h [z; h] = S

(int)
p [z; h]+S

(int)
h [h]. Also switching to the Keldysh-basis for the sources

J
(±)
µν , the effective action can be evaluated as follows

e
i
ℏS

(int)
eff [z(1)

j ,z
(2)
j ] = N exp

{
i

ℏ
S(int)

[
z

(1)
j , z

(2)
j ,−iℏ

δ

δJ (∓)

]}
e

i
ℏW [J(±)]

∣∣∣∣
J

(±)
µν =0

(A.6)

where

W [J (±)] ≡ Mρλ,αβ

2

∫
d4k

(2π)4

 J
(−)
ρλ (−k)

J
(+)
ρλ (−k)

T  iπδ(k2) 1
(k0+iϵ)2−k⃗2

1
(k0−iϵ)2−k⃗2 0

 J
(−)
αβ (k)

J
(+)
αβ (k)

 (A.7)

The non-zero diagonal element can be shown not to contribute to classical observables [63, 64]
since it cannot occur in diagrams without loops or, alternatively, multiple sinks. So effectively
we only need to worry about the retarded propagator

W [J (±)] = Mρλ,αβ
∫

d4k

(2π)4
J

(−)
ρλ (−k)J (+)

αβ (k)
(k0 + iϵ)2 − k⃗2

(A.8)

after we have discarded all quantum effects in W [J (±)].
The explicit expression for the momentum change can now be obtained by inserting

the effective action calculated according to (A.6) into equation (2.65). The diagrammatic
rules for evaluating the momentum change can be worked out from (A.6). Apart from
gravity-self-interactions, we get from (A.5) two types of interaction terms. After Fourier
transforming the graviton field (ignoring convergence subtleties), they read

−mj

√
8πG

∫
dτ

∫
d4k

(2π)4 h
(+)
αβ (k)(e−ik·z(1)

j ż
α(1)
j ż

β(1)
j − e−ik·z(2)

j ż
α(2)
j ż

β(2)
j ) (A.9)

−1
2mj

√
8πG

∫
dτ

∫
d4k

(2π)4 h
(−)
αβ (k)(e−ik·z(1)

j ż
α(1)
j ż

β(1)
j + e−ik·z(2)

j ż
α(2)
j ż

β(2)
j ) (A.10)

It is customary to think of the latter of these terms as a ‘source’ and the former as a
‘sink’ for the following reason: we only care about classical diagrams that contribute after
we take the variation of the effective action with respect to z

α(1)
j and subsequently set the

two sets of variables equal z
α(1)
j = z

α(2)
j = rα

j . Only diagrams with exactly one sink-vertex
will survive this operation, and only when we take the variation of only that sink-vertex.
Thus, when calculating diagrams contributing to (2.65), we may operate with

−(−iℏ)ηµν δ

δz
ν(1)
j (τ)

∣∣∣∣∣∣
z

ν(i)
j =rν

j

on the sink-term in advance and set zν(i) = rν on the source term to obtain the vertex
factors given below. Here, the factor of −iℏ comes from the left-hand side of (A.6). As
usual we define the diagrams such that sinks/sources corresponding to particle 1 are written
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on top of vertices corresponding to particle 2

αβ

≡ − i
√

8πm2
ℏ

∫∞
−∞ dτ ′e−ik·r2(τ ′)ṙα

2 (τ ′)ṙβ
2 (τ ′)

ℏk (A.11)

αβ

µ
≡

√
8πm2

[
ikµe−ik·r2(τ)ṙα

2 (τ)ṙβ
2 (τ) + 2 d

dτ [e−ik·r2(τ)ηµ(αṙ
β)
2 (τ)]

]ℏk

αβ

≡ − i
√

8πm1
ℏ

∫∞
−∞ dτ ′e−ik·r1(τ ′)ṙα

1 (τ ′)ṙβ
1 (τ ′)

ℏk (A.12)

αβ

µ
≡

√
8πm1

[
ikµe−ik·r1(τ)ṙα

1 (τ)ṙβ
1 (τ) + 2 d

dτ [e−ik·r1(τ)ηµ(αṙ
β)
1 (τ)]

]
ℏk

and the propagator is given by

αβ µν ≡ iℏMαβµν

(k0+iϵ)2−k⃗2

ℏk
(A.13)

Momentum is conserved at each vertex and in the end all momentum variables are integrated
over. Notice that we have factored out an appropriate power of the coupling constant G;
however, the vertex factors contain additional factors of G, through their dependence on
the classical trajectories as illustrated in the main text.

B Classical limit of the worldline

In the derivation presented above we used the worldline representation for the solution to

−
(

1√
−g

∂µ
(√

−ggµν∂ν
)

+
m2

j

ℏ2 − iϵ

)
∆j (x, y; h) = δ4 (x − y)√

−g
. (B.1)

We stated in the main text that the result may be written as follows [52, 78, 79]3

∆j (x, y; h) = N
∫ ∞

0
dT

∫ z(T )=y

z(0)=x
Dze

− i
ℏ

mj
2

∫ T

0 ds

{
gµν(z)żµżν− ℏ2

4m2
j

R(z)+1
}

(B.2)

where
Dz ≡

∏
0<s<T

d4z(s)
√
−g(z(s)) . (B.3)

3Up to regularization-dependent non-covariant counter-terms, see ref. [79] for a discussion of this issue.
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We wish to simplify this as much as possible by discarding effects that will only become of
importance at the quantum level. Analogous considerations have already been described in
ref. [52] but we provide a slightly different approach.

Clearly, the − ℏ2

4m2 R(z)-term in the exponent will not contribute in the classical limit
and we hence omit it. Similarly, the factor of

√
−g(z(s)) in the measure exponentiates to

a term that is manifestly of quantum origin on account of the additional factor of ℏ and
we can therefore ignore it if we focus on the classical limit. Next, we make the change of
variables s → u = s/T . This allows us to simplify (B.2) to

∆j (x, y; h) = N
∫ z(1)=y

z(0)=x
Dz

∫ ∞

0
dTe

i
ℏSp[z;h;T ] (B.4)

where
Sp[z; h; T ] ≡ −mj

2

∫ 1

0
du

{ 1
T

gµν (z) dz

du

µ dz

du

ν

+ T

}
. (B.5)

In the classical limit we can evaluate the T -integral by the principle of stationary phase,

∂

∂T
Sp[z; h; T ]

∣∣∣∣
T =Tcl[z,h]

= 0 (B.6)

which leads to the condition

Tcl[z, h] =
{∫ 1

0
dugµν(z) dz

du

µ dz

du

ν}1/2
(B.7)

Because the saddle-point condition on T implies that the equations of motion for z and h

are independent of the functional dependence of Tcl[z, h] on z and h, we can treat Tcl as
evaluated at the solutions to classical equations of motion for z and h, which we denote
with subscript cl for the present purposes. When analysing the equations of motion for z,
one finds that

d

du

(
gµν(zcl(u))dzµ

cl
du

dzν
cl

du

)
= 0 , (B.8)

so Tcl[zcl, h] is (the square root of) an integral of a constant. The integral is thus trivial.
From (B.7) we can then identify Tcl[zcl, hcl] as

Tcl ≡ Tcl[zcl, hcl] =
{

gµν(zcl)
dzµ

cl
du

dzν
cl

du

}1/2

(B.9)

We now change variables back to from u to τ = uTcl and write the action as

Sp [z; h] ≡ Sp [z; h; Tcl] = −mj

2

∫ Tcl

0
dτ

{
gµν(z)dzµ

dτ

dzν

dτ
+ 1

}
(B.10)

which gives us the classical part of the Green function

∆j(x, y; h) = N
∫ z(τf)=y

z(τin)=x
Dze

i
ℏ

∫ τf
τin

dτLj [z,ż,h] (B.11)
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where τf − τin = Tcl is still the classical proper time as defined in (B.9). We have absorbed
the normalization factor from the saddle-point integration over T into the overall constant
N and

Lj [z, ż, h] ≡ −mj

2

[
gµν (z) dzµ

dτ

dzν

dτ
+ 1

]
, (B.12)

is the Polyakov form of the classical Lagrangian for a scalar particle on curved spacetime.
As a side-note, (B.9) also implies that the classical path satisfies the useful relation

1 = gµν(zcl)
dzµ

cl
dτ

dzν
cl

dτ
, (B.13)

which implies that the action evaluated along the classical path is proportional to the
proper-time difference

Sp [zcl; h] = −mj

∫ τf

τin
dτ (B.14)

in agreement with what we would expect from classical mechanics.

C Derivatives with respect to worldline end-points

In this appendix we go through the technical details on how to take derivatives with respect
to the end-points of the worldline action in the classical limit. We begin by considering one
derivative with respect to the upper end-point of (2.34)

(−iℏ∂yµ) ∆(x, y; h) (C.1)

Here we have dropped the particle label. We define zcl[x, y; τ ] to be solution to the classical
equation of motion, i.e., it satisfies[

∂L [z, ż, h]
∂zµ

− d

dτ

∂L [z, ż, h]
∂żµ

]
z=zcl

= 0, (C.2)

subject to the boundary condition zµ
cl[x, y; τin] = x and zµ

cl[x, y; τf ] = y. We next shift
variables in the path integral (2.34) as follows

zµ(τ) = zµ
cl[x, y; τ ] + ζµ(τ) (C.3)

It follows that the boundary conditions on the new variable are ζµ(τf) = ζµ(τin) = 0. Now
we can write the derivative as

(−iℏ∂yµ)∆(x, y; h) =
∫ ζ(τf)=0

ζ(τin)=0
Dζ(−iℏ∂yµ)e

i
ℏ

∫ τf
τin

dτL[zcl[x,y;τ ]+ζ,żcl[x,y;τ ]+ζ̇,h]

=
∫ ζ(τf)=0

ζ(τin)=0
Dζ

∫ τf

τin
dτ

[
∂L [z, ż, h]

∂zν
∂yµzν

cl + ∂L [z, ż, h]
∂żν

∂yµ żν
cl

]
e

i
ℏ

∫ τf
τin

dτL

=
∫ ζ(τf)=0

ζ(τin)=0
Dζ

{[
∂L

∂żν
∂yµzν

cl

]τ=τf

τ=τin

+
∫ τf

τin
dτ∂yµzν

cl

[
∂L

∂zν
− d

dτ

∂L

∂żν

]
z=zcl+ζ

}
e

i
ℏ

∫ τf
τin

dτL

=
∫ ζ(τf)=0

ζ(τin)=0
Dζ

{[
∂L

∂żν
∂yµzν

cl

]τ=τf

τ=τin

+ O(ℏ)
}

e
i
ℏ

∫ τf
τin

dτL (C.4)
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We have here used the fact that the last term in the third line is manifestly proportional
to ℏ (and higher orders). This follows from an exact Schwinger-Dyson equation since the
integrand is proportional to the equations of motion.

Using ∂yµzν
cl[x, y; τin] = ∂yµxν = 0 and ∂yµzν

cl[x, y; τf ] = ∂yµyν = δν
µ we get from the last

line in equation (C.4)

(−iℏ∂yµ) ∆(x, y; h) =
∫ ζ(τf)=0

ζ(τin)=0
Dζ

∂L

∂żµ

∣∣∣∣
τ=τf

e
i
ℏ

∫ τf
τin

dτL (C.5)

Had we instead differentiated with respect to x, only the lower boundary would survive,
∂xµzν

cl[x, y; τin] = ∂xµxν = δν
µ, so we would have

(−iℏ∂xµ) ∆(x, y; h) =
∫ ζ(τf)=0

ζ(τin)=0
Dζ

(
− ∂L

∂żµ

∣∣∣∣
τ=τin

)
e

i
ℏ

∫ τf
τin

dτL (C.6)

Now let us explore what happens when we take one more derivative of (C.5)

(−iℏ∂yµ)(−iℏ∂yν )∆(x, y; h)

=
∫ ζ(τf)=0

ζ(τin)=0
Dζ

{
∂L

∂żµ

∣∣∣∣
τ=τf

∂L

∂żν

∣∣∣∣
τ=τf

− iℏ∂yν
∂L

∂żµ

∣∣∣∣
τ=τf

}
e

i
ℏ

∫ τf
τin

dτL (C.7)

The second term is seen to be subleading in ℏ. In general, when we take any number of
derivatives (−iℏ∂yµ) is replaced by ∂L

∂żµ

∣∣∣
τ=τf

to leading order in ℏ and (−iℏ∂xµ) is replaced

by − ∂L
∂żµ

∣∣∣
τ=τin

to leading order in ℏ. Undoing the change of variables in (C.3), we can write
the result as

(−iℏ∂y)n∆(x, y; h) =
∫ z(τf)=y

z(τin)=x
Dz

{(
∂L

∂ż

∣∣∣∣
τ=τf

)n

+ O(ℏ)
}

e
i
ℏ

∫ τf
τin

dτL (C.8)

and by exactly the same arguments

(−iℏ∂x)n∆(x, y; h) =
∫ z(τf)=y

z(τin)=x
Dz

{(
− ∂L

∂ż

∣∣∣∣
τ=τin

)n

+ O(ℏ)
}

e
i
ℏ

∫ τf
τin

dτL (C.9)

which were the results quoted in the main text.
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