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agators. The relationship between the two approaches is illustrated in detail for the

momentum kick at second Post-Minkowskian order.

Keywords: Scattering Amplitudes, General Relativity

http://arxiv.org/abs/2306.11454v2


Contents

1 Introduction 2

2 From KMOC to worldline observables 4

2.1 Restriction to single-particle observables 12

2.2 Momentum kick 16

3 The diagrammatic comparison to one-loop order 19

3.1 Leading order comparison 21

3.2 Next-to-leading order comparison 22

4 Conclusion 25

A Worldline Feynman rules 27

B Classical limit of the worldline 29

C Derivatives with respect to worldline end-points 31

– 1 –



1 Introduction

The amplitude-based approach to the Post-Minkowskian expansion of general rel-

ativity has proven to be remarkably efficient, and in a rapid sequence of steps it

has led to a complete solution up to third Post-Minkowskian order [1–15]. At fourth

Post-Minkowskian order [16–20] the amplitude method has so far provided most con-

tributions, although not all terms associated with gravitational back-reaction from

radiation have been computed yet using that framework. In the probe limit (where

radiative effects can be ignored), results have already been presented up to fifth

Post-Minkowskian order [21].

A number of new amplitude approaches have been suggested as the calculations

have entered new and unexplored territory. This includes an effective Hamiltonian

prescription for the conservative parts [4, 22–25] and, most notably, the KMOC-

formalism for the computation of classical observables from quantum field theory

[26–31]. Inspired by the fourth-order subtraction scheme explored in ref. [16] an

amplitude formalism based on an exponential representation of the scattering ma-

trix S was suggested in ref. [32]. It is covariant and has the advantage that it by

construction starts with the classical contribution to the phase, followed by quan-

tum corrections. It thus seems perfectly suited for a semiclassical expansion and the

appearance of superclassical terms due to a rewriting in terms of the conventional

T -matrix as in

Ŝ = 1 +
i

~
T̂ (1.1)

are guaranteed to cancel. One can thus exclusively work with those parts that contain

the classical pieces, ignoring all other terms. An alternative formulation based on the

large-mass expansion field theory amplitudes [33, 34] has also been advocated [35–38]

alternatively, by performing a multi-graviton soft expansion [21].

Amplitude-based methods have likewise proven to be very efficient in the context

of the eikonal expansion [8, 10–13, 19, 20, 23, 39–44]. This formalism relies on the

remarkable exponentiation of scattering amplitudes in impact parameter space, and

it also provides the classical scattering angle from the loop expansion of amplitudes.

Unitarity lies underneath the phenomenon of exponentiation and at lowest orders this

is the same mechanism that removes superclassical terms from the classical potential

by means of Born subtractions.

There are thus numerous ways to extract classical general relativity from the

quantum mechanical scattering amplitudes. To the lowest orders the various methods

are in direct correspondence with each other but as the order of perturbation theory

grows they become quite different in details. Efficiency of computation thus becomes

a crucial criterion, but there are also conceptual issues related to how gravitational

radiation is taken into account.

Parallel to these developments based on scattering amplitudes in a quantum field

theoretic formulation of gravity, there has also been impressive progress based on a
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Post-Minkowksian formulation of gravity using worldline formulations [45–47, 49–67].

In fact, at present the only full computation to fourth Post-Minkowskian order has

been presented using this formalism [65, 68]. These worldline formulations manifestly

bypass the need to consider cancellations of superclassical terms. Computations

using worldlines resemble the integration techniques for loop calculations of scattering

amplitudes (a perhaps inevitable situation since both boil down to Green function

methods for classical gravity), and there are indeed clear links between worldline

diagrams and scattering amplitude Feynman diagrams after localizing the loops on

velocity cuts [13].

One particularly important aspect of the Post-Minkowskian worldline formu-

lation is its adaptability to scattering in a dissipative setting such as it appears

when gravitational radiation (and back-reaction) is taken into account [63, 64]. This

requires the doubling of variables in a formulation that has its roots in the Keldysh-

Schwinger closed-time path integral, making it unavoidable to work with either re-

tarded or advanced propagators. This makes the link to conventional Feynman di-

agrams and scattering matrices less obvious and concerns have indeed been raised

whether conventional scattering matrices can capture all features of gravitational

radiation and the associated radiation reaction. However, the KMOC formalism ex-

presses the change of any physical observable during a scattering process. Although

it manifestly rewrites this in terms of conventional scattering matrices and ordinary

Feynman propagators, it should also capture all effects due to radiation. In addition,

when taking the classical limit of the KMOC formalism one essentially restricts the

incoming massive states to lie on classical paths at t = −∞. This seems to closely

parallel the starting point of worldline calculations. One would therefore expect that

these two apparently different approaches should be closely related. We shall here

show that the two are indeed equivalent in the classical limit. The fact that the

Keldysh-Schwinger closed time paths are used in the worldline calculations while

the KMOC formalism rewrites the same observable in terms of standard Feynman

diagrams with ordinary Feynman propagators is just a convenient choice of represen-

tation. As expected, it turns out to be advantageous to not employ the conventional

Born expansion of the S-matrix in terms of the scattering matrix T but rather make

use of the fact that the full S-matrix serves as the time evolution operator. The

KMOC expectation values can then be re-expressed in a path integral form that

encapsulates both forward and backward evolution in time. This is the origin of the

Keldysh-Schwinger doubling of degrees of freedom and the associated closed time

paths, as expected from other contexts [69, 70]. Once the equivalence has been es-

tablished, it is also of interest to look at how the diagrammatic equivalence works

out in detail. We illustrate the correspondence up to second Post-Minkowskian or-

der where complications from iterations (in worldline language) and loops (in KMOC

language) are already present, and from which we therefore can learn how the dia-

grammatic match occurs.
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Specifically, in section 2 we show to all orders in perturbation theory that classical

observables computed in the KMOC framework are identical to those obtained from

the in-in worldline theory. We conclude that the specification of initial conditions in

KMOC, which are formally implemented in terms of suitable wave functions, leads

to the intuitively obvious initial conditions imposed in the worldline language (and

when solving the classical equations of motion). The momentum kick will serve as

the default example of interest. In classical mechanics or, alternatively, the worldline

theory, the momentum is traditionally defined in terms of the canonical momentum

conjugate to a worldline position coordinate. In contrast, in the amplitude frame-

work the momentum operator is ultimately defined as the generator of translation

of a quantum field. Thus, these constitute two quite different starting points for

computing what is supposedly the same quantity. Nevertheless, we conclude that

the former definition indeed emerges out of the latter in the ~ → 0-limit.

Our work is related to a broad and rich literature on the formulation of various

aspects of quantum field theory in terms of first-quantized worldlines (see, e.g., [71–

75]). Additionally, similarities exist with analogous discussions on the emergence of

the Schwinger-Keldysh contour in other contexts [69, 70, 76].

2 From KMOC to worldline observables

As alluded to in the introduction, we shall in this section show that the closed

time-paths of the dissipative worldline formulation [63, 64] can be derived from the

classical limit of the KMOC-formalism [26] without additional assumptions.

Before delving into the technicalities we will explain the origin of the equivalence

in a more heuristic manner. Starting from KMOC [26], we consider the change in an

observable 〈∆Ô〉 and insert a complete set of states |out〉1 to get successively,

〈∆Ô〉 = 〈in|Ŝ†ÔŜ|in〉 − 〈in|Ô|in〉
= 〈in|Ŝ†[Ô, Ŝ]|in〉 (2.1)

=
∑

out

〈out|Ŝ|in〉∗
(

〈out|ÔŜ|in〉 − 〈out|ŜÔ|in〉
)

=
∑

out

〈out|Ŝ|in〉∗ (Oout −Oin) 〈out|Ŝ|in〉 ,

where for illustration we have taken the in and out states to be eigenstates of the

operator Ô with eigenvalues O. It is thus natural to interpret the change 〈∆Ô〉 as

the average over two S-matrix elements where the states |out〉 can be viewed as final

states of a scattering process. The average is composed of one two-particle state

1This complete set of states is denoted by |out〉 in order to facilitate the interpretation of it

spanning a generic final state at t = +∞.
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propagating forward in time from t = −∞ to a general out-state |out〉 with (or with-

out) radiation followed by the scattering process backwards in time (the conjugate

matrix element). If we write these two scattering processes in terms of path integral

representations there will thus be two actions of opposite signs, those opposite signs

being due to the complex conjugation. Initial conditions are specified at t = −∞ and

the “final state” (which will also contain all the radiation) appears as an intermediate

state before returning to t = −∞, and thus arises entirely from the insertion of a

complete set of states. This is the intuitive understanding of how the closed-time

paths of dissipative dynamics are contained in the KMOC-formalism even though,

at the stage above, both scattering matrix elements can be computed from standard

Feynman diagrams and Feynman propagators.

In the following, we shall go through these arguments in greater detail. This will

also shed light on the details of how the initial conditions are inherited from KMOC

in the worldline formalism.

Our starting point is two massive scalars in an in-state without radiation,

|in〉 =
∏

j=1,2

∫

dΠpjΦ̃j(~pj)e
i
~
bjpj |p1p2; 0〉 (2.2)

where

dΠpj ≡ d3pj
(2π)32Ej(pj)

(2.3)

and Φ̃j(~pj)e
i
~
bjpj is the wavefunction of particle j and Ej(pj) =

√

m2
j + p2j . We refer

to ref. [26] for further details. We restrict our observable Ô so that it can be written

in the single-excitation momentum basis of the scalar fields and some basis |K〉 for

the gravitational field as follows

Ô = Ô† =
∑

K

∫

dΠp1dΠp2|p1p2;K〉O(~p, i~∂~p;K)〈p1p2;K| . (2.4)

We use a compact notation that suppresses scalar particle labels in the argument of

O because indices will soon proliferate. The symbolic sum over K is a short-hand

for the full on-shell phase space integrations and polarization sums of an arbitrar-

ily large number of gravitons, or, alternatively, the functional integral over metric

configurations, depending on which basis is most convenient. Eventually we will be

most interested in the special case where O is taken to be the momentum of one of

the scalar particles O(~p, i~∂~p;K) = pµ1 , but initially we will be more general. Other

interesting observables which also depend on i~∂~p could for example be the angular

momentum operator.
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Let us now express the complete set of states |out〉 in eq. (2.1) as a sum over

single particle excitations of the scalar fields and any number of gravitons

1 =
∑

K

∫

dΠl1dΠl2|l1l2;K〉〈l1l2;K| . (2.5)

Using eqs. (2.2) and (2.4), we can then write (2.1) as

〈∆Ô〉 =
∑

K

∏

j=1,2

∫

dΠpjdΠp′j
dΠljΦ̃j(~pj

′)
∗
Φ̃j(~pj)e

i
~
bj(pj−p′j)〈l1l2;K|Ŝ|p′1p′2; 0〉∗ (2.6)

×
[

O(~l, i~∂~l;K)− O(~p,−i~∂~p; 0)
]

〈l1l2;K|Ŝ|p1p2; 0〉.

The minus sign on the argument, −i~∂~p, in the second term arises due to conjugation

and the assumed Hermiticity of the observable in (2.4), i.e.,

〈l1l2;K|ŜÔ|p1p2; 0〉 = 〈p1p2; 0|ÔŜ†|l1l2;K〉∗

= O(~p, i~∂~p)
∗〈p1p2; 0|Ŝ†|l1l2;K〉∗

= O(~p,−i~∂~p)〈l1l2;K|Ŝ|p1p2; 0〉.

Our aim is to write the S-matrix elements in terms of path integrals. First we

introduce the scalar field operator

φ̂j(t, ~x) =
1

~3/2

∫
d3p

(2π)3
√

2Ej(p)

{

âjp(t)e
− i

~
[Ej(p)(t−tin)−~p·~x] + h.c.

}

, (2.7)

where tin is the initial time, which we will push to −∞. The phase containing tin
says that we have defined the creation and annihilation operators such that at time

t = tin the interaction-picture operator âjp(tin) coincides with the Heisenberg-picture

operator. The scalar field momentum eigenstates can be written in terms of the

ajp-operators appearing on the right-hand side of (2.7) in the usual way

|p1p2〉 ≡
√

2E1(p1)2E2(p2)â
†
1p1

(tin)â
†
2p2

(tin)|0〉 (2.8)

We now define the initial eigenstates |φj〉 of the field operator (2.7),

φ̂j(tin, ~x) |φj〉 = φj(~x) |φj〉 (2.9)

and likewise for the gravitational analog of (2.7)

ĥµν(tin, ~x) |h〉 = hµν(~x) |h〉 (2.10)

We can write the S-matrix in the basis of (2.10) as follows

Ŝ = Ŝ(tin, tf) =

∫

Dhe
i
~
Sh[h] |hf〉 Ŝφ(h) 〈hin| (2.11)
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where

Dh ≡ N
∏

~x ρλ

∏

tin≤t≤tf

dhρλ(t, ~x) (2.12)

and

Sh[h] ≡
∫ tf

tin

dt

∫

d3x
√−gLEH + SGF [h] (2.13)

is the gauge-fixed Einstein-Hilbert action and |hf〉 is the eigenstate of ĥµν(tin, ~x)

corresponding to the eigenvalue hµν(tf, ~x) while |hin〉 is the eigenstate corresponding

to the eigenvalue hµν(tin, ~x). We will deal with the normalization N in the very end

when everything is put together. The operator Ŝφ(h) in (2.11) is defined as

Ŝφ(h) = Ŝφ1(h)Ŝφ2(h) =
∏

j=1,2

∫

Dφje
i
~
Sφj [h,φj ] |φj,f〉 〈φj,in| (2.14)

where the notation in (2.14) is analogous to (2.11). The Sφj[h, φj ] of eq. (2.14) is the

action of a scalar field in curved space-time (see e.g., the last term in eq. (3.5) below).

We can now rewrite the S-matrix elements appearing in (2.6) using eq. (2.11)

〈l1l2;K|Ŝ|p1p2; 0〉 =
∫

Dhe
i
~
Sh[h]〈K|hf〉〈hin|0〉〈l1l2|Ŝφ(h)|p1p2〉 (2.15)

This allows us to focus on the Ŝφ(h)-matrix elements with hµν playing the role of

external sources. We can rewrite the Ŝφ(h)-matrix elements in terms of the field

operators defined in (2.7) acting on the vacuum as follows

〈l1l2|Ŝφ(h)|p1p2〉 =
∏

j=1,2

2Ej(lj)

~3/2

2Ej(pj)

~3/2

∫

d3yjd
3xje

− i
~

~lj ·~yj+ i
~
~pj ·~xj (2.16)

× 〈0|φ̂j(tin, ~yj)Ŝφj(h)φ̂j(tin, ~xj)|0〉

We next consider the quantity

〈0|φ̂j(tin, ~yj)Ŝφj(h)φ̂j(tin, ~xj)|0〉

in eq. (2.16). With the aim to make a transition to a worldline formulation we include

a source J for the scalar field φ in the action,

Sφj [φj, h] → Sφj [φj, h, J ] ≡ Sφj[φj, h] +

∫

d4x
√−gJ(x)φj(x) (2.17)

so that the eigenvalues of the scalar field operators can be represented by variations

with respect to the source at the temporal end points. The generating functional is

defined as

Zj [J ; h] ≡
∫

Dφe
i
~
Sφj [φj ,h,J ]〈0|φf,j〉〈φin,j|0〉
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= Zj [0; h] e
− i

2~

∫

d4xd4y
√

−g(y)J(y)∆j(x,y;h)
√

−g(x)J(x) (2.18)

where the Green function ∆j (x, y; h) is defined as the solution to

−
(

1√−g
∂µ(

√−ggµν∂ν) +
m2

j

~2
− iǫ

)

∆j (x, y; h) =
δ4 (x− y)√−g

. (2.19)

The shown iǫ-prescription is a consequence of the presence of the factor

〈0|φf,j〉〈φin,j|0〉 ∼ lim
ǫ→0+

exp

(

−1

2
ǫ

∫

d4xφ2
j

)

(2.20)

in eq. (2.18) (see, e.g., ref. [77] for details). If we insert Ŝφj(h) given in (2.14) into

〈0|φ̂j(tin, ~yj)Ŝφj(h)φ̂j(tin, ~xj)|0〉 and write the result in terms of variations of (2.18),

we obtain:

〈0|φ̂j(tin, ~yj)Ŝφj(h)φ̂j(tin, ~xj)|0〉 = i~∆j ((tin, ~xj) , (tf , ~yj) ; h)Zj [0; h] (2.21)

= i~∆j ((tin, ~xj) , (tf , ~yj) ; h) 〈0|Ŝφj(h)|0〉 .

Combining terms, we find:

〈l1l2;K|Ŝ|p1p2; 0〉 =
∏

j=1,2

4Ej(pj)Ej(lj)

∫

d3yjd
3xje

i
~
(~pj ·~xj−~lj ·~yj)Gj(~xj , ~yj; 0, K),

(2.22)

where

Gj(~xj , ~yj;K0, K) ≡ i

~2

∫

Dhe
i
~
Sh[h]〈K|hf〉〈hin|K0〉〈0|Ŝφj(h)|0〉∆j((tin, ~xj), (tf, ~yj); h)

(2.23)

In this expression, the factor

〈0|Ŝφj(h)|0〉 =
∫

Dφje
i
~
Sφj [φj ,h]〈0|φf,j〉〈φin,j|0〉 (2.24)

represents fluctuations of the scalar fields, which can be ignored in the classical limit

(the number of scalar matter particles is assumed to be fixed at all times). Up to a

proportionality factor, one may interpret Gj(~xj , ~yj;K0, K) in the classical limit as the

scalar Green function ∆j((tin, ~xj), (tf, ~yj); hcl) in a classical gravitational background

hcl determined by the boundary conditions K and K0.

These definitions allow us to write the original observable 〈∆Ô〉 back in (2.6) in

the following form. Note that the various factors of 2Ej(p) in (2.3) and (2.22) cancel,

except for one case

– 8 –



〈∆Ô〉 =
∑

K

2∏

j=1

∫

d3yjd
3xjd

3y′jd
3x′

jGj(~xj , ~yj; 0, K)Gj(~xj
′, ~yj

′; 0, K)∗ (2.25)

×
∫

d3pjd
3p′jd

3lj

(2π)9
Φ̃j(~pj)Φ̃j(~pj

′)∗e−
i
~

~bj ·(~pj−~pj
′)e

i
~
(~lj ·~yj ′−~pj

′·~xj
′)

×
[

O(~l, i~∂~l;K)−O(~p,−i~∂~p; 0)
]

2Ej(lj)e
− i

~
(~lj ·~y−~pj ·~xj)

We have here chosen a frame where b0j = 0 for simplicity. To move further towards a

resemblance with the worldline formalism, we will take a closer look at the momentum

integrals. We first consider the last line of eq. (2.25). The derivative i~∂lj in the

operator O(~l, i~∂~l;K) acts as follows

i~∂~lj

[

Ej(lj)e
− i

~
(~lj ·~y−~pj ·~x)

]

=
[
~y + i~∂lj logEj(lj)

]
Ej(lj)e

− i
~
(~lj ·~y−~pj ·~x) (2.26)

= [~y +O(~)]Ej(lj)e
− i

~
(~lj ·~y−~pj ·~x)

As long as we are only interested in the classical limit, we can therefore replace

i~∂~lj → ~yj in (2.25). Additionally, we can replace −i~∂~pj → ~xj and also ~pj → −i~∂~xj

and ~lj → i~∂~yj . This allows us to write eq. (2.25) as follows

〈∆Ô〉 =
∑

K

2∏

j=1

∫

d3yjd
3xjd

3y′jd
3x′

jGj(~xj , ~yj; 0, K) (2.27)

× {O[i~∂~y, ~y;K]− O[−i~∂~x, ~x; 0]}
× Ej(~yj − ~yj

′)Φj(~xj)Φj(~xj
′)∗Gj(~xj

′, ~yj
′; 0, K)∗

where

Ej(~yj − ~yj
′) ≡

∫
d3lj
(2π)3

2Ej(lj)e
i
~

~lj(~yj−~yj
′) = 2~3Ej(i~∂~yj )δ

3(~yj − ~yj
′), (2.28)

and where

Φj(~xj) ≡
∫

d3p

(2π)3
Φ̃j(~p)e

i
~
~p·(~xj−~bj). (2.29)

are the Fourier transform of the wave functions.

We now focus on the integrals over the primed variables ~xj
′, ~yj

′ in eq. (2.27).

The ~yj
′-integral is readily done by exploiting the δ-function in (2.28). We deal with

the ~xj
′-integral by moving it to the last couple of factors in (2.27) that depend on

xj
′ (which we will temporarily denote I) and undo the Fourier transform of the wave
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functions to get

I ≡
∫

d3x′
jΦj(~xj)Φj(~xj

′)∗Gj(~xj
′, ~yj

′; 0, K)∗ (2.30)

= ~
3

∫

d3x′
j

∫
d3pd3q

(2π)6
Φ̃j(~p)

∗Φ̃j(~p+ ~~q)e−
i
~
~p·(~xj

′−~bj)+ i
~
(~p+~~q)·(~xj−~bj)Gj(~xj

′, ~yj
′; 0, K)∗.

In the last line, we have made the change of variables ~p ′ = ~p+ ~~q, where the factor

of ~ is a question of convenience at present. Using the same line of reasoning as in

ref. [26] we now replace Φ̃j(~p)
∗Φ̃j(~p + ~~q) = |Φ̃j(~p)|2 + O(~). If we further make a

change of variables ~xj
′ = ~xj +∆~xj , we get, successively,

I = ~
3δ3(~xj −~bj)

∫
d3p

(2π)3
|Φ̃j(~p)|2

∫

d3∆xje
− i

~
~p·∆~xjGj(~xj +∆~xj , ~yj

′; 0, K)∗ (2.31)

= ~
3δ3(~xj −~bj)

∫
d3p

(2π)3
|Φ̃j(~p)|2

∫

d3∆xje
− i

~
∆~xj ·(~p+i~∂~xj )Gj(~xj, ~yj

′; 0, K)∗

= ~
6δ3(~xj −~bj)

∫

d3p|Φ̃j(~p)|2δ3(~p+ i~∂~xj
)Gj(~xj , ~yj

′; 0, K)∗

= ~
6δ3(~xj −~bj)|Φ̃j(−i~∂~xj

)|2Gj(~xj , ~yj
′; 0, K)∗

When we next insert this into eq. (2.27), we can immediately perform the xj-integral

using the δ-function δ3(~xj −~bj). Furthermore, we can also perform the yj
′ using the

δ-function in the second equality of eq. (2.28). This leaves us with only the yj-integral

〈∆Ô〉 = 2~9
∑

K

2∏

j=1

∫

d3yjGj(~bj , ~yj; 0, K) (2.32)

×
[

O(i~∂~y, ~y;K)− O(−i~∂~b,
~b; 0)

]

× Ej(i~∂~yj )|Φ̃j(−i~∂~bj )|
2Gj(~bj , ~yj; 0, K)∗

Having obtained the result in (2.32), we now go back and unpack the expression

for Gj given in eq. (2.23); in particular, we want to write the Green function

∆j((tin,~bj), (tf , ~yj); h) defined by eq. (2.23) in terms of its worldline-representation [78,

79]

∆j (x, y; h) = N
∫ ∞

0

dT

∫ z(T )=y

z(0)=x

Dze
− i

~

mj
2

∫ T
0 ds

{

gµν(z)żµżν− ~
2

4m2
j

R(z)+1

}

, (2.33)

where Dz ≡ ∏

0<τ<T d4z(τ)
√

−g(z(τ)), N is a constant, and R is the Ricci scalar.

Equation (2.33) includes all quantum effects; this is overkill for our purpose, so

we first make some approximations that hold exactly in the classical limit. First,

we note that the T -integral in (2.33) can be done in the classical limit using the

principle of stationary phase (see appendix B). It is interesting to note that the same
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result was reached in ref. [52] without invoking the principle of stationary phase,

but instead by using the on-shell initial conditions. With a few more simplifications

that are also shown in detail in the appendix and which only consist in removing

quantum mechanical corrections, we can effectively replace (2.33), as evaluated with

the relevant boundaries, by

∆j((tin,~bj), (tf , ~yj); h) = N
∫ zj(τf,j)=(tf ,~yj)

zj(τin,j)=(tin,~bj)
Dzje

i
~

∫ τf,j
τin,j

dτLj [zj ,żj ,h] (2.34)

which is valid in the classical limit (here, some factors have been absorbed into N ).

The Lagrangian appearing in (2.34) is the Polyakov form of the classical Lagrangian

for a point particle on curved space-time:

Lj [zj , żj, h] = −mj

2

[

gµν (zj)
dzµj
dτ

dzνj
dτ

+ 1

]

, (2.35)

The derivation of (2.34) in appendix B also shows that we should identify the length

of the parameter interval τf,j − τin,j with the classical proper time difference between

the space-time points (tin,~bj) and (tf , ~yj) that get pushed to infinity when we push

tf − tin to infinity.

We now insert (2.34) into eq. (2.23). Although straightforward, the expression

we obtained in eq. (2.32), also contains derivatives such as

i~∂~yjGj(~bj , ~yj; 0, K)∗

which we need to consider carefully. These derivatives will act on ∆j((tin,~bj), (tf , ~yj); h)
∗

so we have to evaluate derivatives of the boundaries of the worldline path-integral

in (2.34) which is slightly non-trivial. The full evaluation of these relations is pro-

vided in appendix C. The result is

(−i~∂y)
n∆j (x, y; h)

∗ = N
∫ z(τf,j)=y

z(τin,j)=x

Dz

{(

− ∂Lj

∂ż

∣
∣
∣
∣
τ=τf,j

)n

+O(~)

}

e−
i
~

∫ τf,j
τin,j

dτLj

(−i~∂x)
n∆j (x, y; h)

∗ = N
∫ z(τf,j)=y

z(τin,j)=x

Dz

{(

∂Lj

∂ż

∣
∣
∣
∣
τ=τin,j

)n

+O(~)

}

e−
i
~

∫ τf,j
τin,j

dτLj .

(2.36)

It is convenient to introduce

Pµ
j (τ) ≡ −ηµν

∂Lj [zj , żj; h]

∂żνj
= (P0

j (τ),
~Pj(τ)) (2.37)
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Based on the Lagrangian (2.35), this quantity may also be written as Pjµ = mjgµν(zj)ż
ν
j .

Substituting (2.34) into eq. (2.23) and using eqs. (2.36) and (2.37), we obtain

〈∆Ô〉 =N
∑

K

∫

Dh(1)Dh(2)〈K|h(1)
f 〉〈h(1)

in |0〉〈K|h(2)
f 〉∗〈h(2)

in |0〉∗ (2.38)

×
2∏

j=1

∫

d3yj

∫ z
(i)
j (τf,j )=(tf ,~yj)

z
(i)
j (τin,j)=(tin,~bj)

Dz
(1)
j Dz

(2)
j Ej( ~P(2)

j (τf,j))|Φ̃j( ~P(2)
j (τin,j))|2

×
{

O[ ~P(2)(τf), ~z
(2)(τf);K]− O[ ~P(2)(τin), ~z

(2)(τin); 0]
}

e
i
~
(S[z

(1)
j ,h(1)]−S[z

(2)
j ,h(2)])

The prefactor N in (2.38) is a new accumulation of constants. We have also intro-

duced the full action S[zj , h] as the combination

S[zj , h] ≡ Sh [h] +

∫ τf,j

τin,j

dτLj [zj , żj, h] +O(~) (2.39)

where, as anticipated earlier, we have ignored the extra terms of quantum origin.

These terms, in particular, can create scalar particles.

We note that −i~∂~bj in (2.32) has how become replaced by ~P(2)
j (τin,j), and i~∂~yj

has become replaced by ~P(2)
j (τf,j). Having both Gj and its complex conjugate in

eq. (2.32), we have been forced to double the degrees of freedom by using two sets of

fields (z(i), h(i)), i = 1, 2. Here we see the emergence of the Keldysh-Schwinger path

integral prescription. This is as expected since the analysis is fully general and can

include dissipation in the form of gravitational radiation.

2.1 Restriction to single-particle observables

The result (2.38) is unwieldy and it may be difficult to see the forest for the trees.

It can be made more clear if we give up a bit of generality and assume that the

observable is restricted to one of the two scalar particles, say particle 1. That is, we

now make the following replacement

O[ ~P(2)(τ), ~z(2)(τ);K] → O1[ ~P(2)
1 (τ1), ~z

(2)
1 (τ1)] (2.40)

and O1 can be regarded as a function of the proper time of particle 1. This allows us

to write the difference between the final and initial value in eq. (2.38) as an integral

over the proper time of particle 1

O1[ ~P(2)
1 (τf,1), ~z

(2)
1 (τf,1)]− O1[ ~P(2)

1 (τin,1), ~z
(2)
1 (τin,1)] =

∫ τf,1

τin,1

dτ1
d

dτ1
O1 (2.41)

Having assumed that O1 is independent of K we can remove it from (2.38) by

evaluating the sum
∑

K

〈K|h(1)
f 〉〈K|h(2)

f 〉∗ = 〈h(2)
f |h(1)

f 〉 =
∏

µν,~x′

δ(h(1)
µν (tf, ~x

′)− h(2)
µν (tf, ~x

′)) (2.42)
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We next introduce the following short-hand notation for the path integral over these

“closed time paths”
∫

in-in

Dh(i)(...) ≡
∫

Dh(1)Dh(2)〈0|h(2)
in 〉〈h(1)

in |0〉
∏

µν,~x′

δ
(
h(1)
µν (tf, ~x

′)− h(2)
µν (tf, ~x

′)
)
(...)

(2.43)

With this notation and with the stated restriction of the observable in (2.40), we can

now write eq. (2.38) more compactly as

〈∆Ô〉 =N
∫

in-in

Dh(i)

∫

d3yj

∫ z
(i)
j (τf,j)=(tf ,~yj)

z
(i)
j (τin,j)=(tin,~bj)

Dz
(i)
j |Φ̃j( ~P(2)

j,in)|2 (2.44)

×
(

Ej( ~P(2)
j,f )

∫ τf,1

τin,1

dτ1
d

dτ1
O1[ ~P(2)

1 , ~z
(2)
1 ]

)

e
i
~
(S[z

(1)
j ,h(1)]−S[z

(2)
j ,h(2)])

which implicitly includes the obvious product over particle labels j = 1, 2 and over

the two copies of variables i = 1, 2. The KMOC difference in observables from

t = −∞ to t = +∞ has thus been expressed as (the time integral of) a one-point

function over paths as in the Keldysh-Schwinger prescription.

2.1.1 Interpretation of boundary/initial conditions

Having obtained (2.44), we would like to understand the consequences of having

the (squared) wave function |Φ̃j( ~P(2)
j,in)|2 = |Φ̃j( ~P(2)

j (τin,j))|2 inside the path integral.

In line with KMOC [26], we assume that for widely separated scalar particles, the

function |Φ̃j(~p)|2 will be strongly centered around the classical momentum ~p ∼ mj~uj;

i.e.

|Φ̃( ~P(2)
j,in)|2 ≈ 2Ej(mj~uj)δ

3(mj~uj − ~P(2)
j,in) (2.45)

The interpretation of the presence of |Φ̃( ~P(2)
j,in)|2 in the path integral (2.44) is then

clear if we view the time-discretized version of the path integral, and replace

P(2)
jµ,in = mjηµν ż

(2)ν
j (τin,j) (2.46)

≈ mjηµν(z
(2)ν
j (τin,j + δτ)− bνj )/δτ

where we again have assumed that there is no gravitational field initially, i.e.

gµν(z(τin,j)) = ηµν . (2.47)

Using eq. (2.45), we may then write the part of the expression in (2.44) that we are

focused on, in the time-discretized fashion

∫ (tf,~yj)

(tin,~bj)

Dz
(2)
j |Φ̃( ~P(2)

j,in)|2 ∝ lim
N→∞

∫ N∏

n=1

{d4z(2)j (τin,j + nδτ)}δ3(mj~uj − ~P(2)
j,in) (2.48)
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with δτ ∼ (τf,j − τin,j)/N . Thus, when we replace ~P(2)
j,in in eq. (2.48) according

to (2.46), we can regard the δ-function in (2.48) as fixing the spatial part of the

n = 1 integration variable to be

~z
(2)
j (τin,j + δτ) = ~bj + δτ~uj (2.49)

Another way of phrasing this is that the presence of |Φ̃( ~P(2)
j,in)|2 in (2.44) ensures that

we only integrate over paths for which

~̇z
(2)
j (τin,j) = ~uj , (2.50)

as expected intuitively.

2.1.2 Do we have enough boundary/initial conditions?

We have just uncovered how the initial conditions on ~z
(2)
j (τ) are inherited directly

from the KMOC wave functions in eq. (2.2). The specific appearance of the copy

"2" variables was in fact arbitrary and due to the order in which we performed the

integrations. Still, are we guaranteed that this apparent asymmetry cures itself in

the final answer? There are other issues. For example, why is the time component

of z
(2)µ
j (τin,j + δτ) not restricted by any δ-function constraint in (2.48) in a similar

fashion as the spatial components?

These considerations raise the question whether we have enough boundary con-

ditions to specify a classical path. In other words, if we were to solve for the classical

trajectory for both z
(1)µ
j and z

(2)µ
j by applying the principle of stationary phase

to (2.44), what information should we supply as initial/boundary conditions for the

equations of motion? The answer is the following: First the trajectory for ~z
(2)
j (τ) is

specified by the initial conditions from the KMOC wave functions as just discussed,

i.e., ~z
(2)
j (τin,j) = ~bj and ~̇z

(2)
j (τin,j) = ~uj. We then note that this also determines a

unique classical the spatial end-point ~yj,cl = ~z
(2)
j,cl(τf,j), which according to eq. (2.44)

is required to be the same for ~z
(1)
j,cl(τf,j). So ~z

(1)
j (τ) is now uniquely determined by the

boundary conditions ~z
(1)
j (τin,j) = ~bj and ~z

(1)
j (τf,j) = ~yj,cl. This implies that the entire

classical paths for the (2) and (1) variables are indeed the same because specifying

the start-point and end-point determines a unique classical path. Of course, the fact

that the trajectories are identical now also has the consequence that the initial classi-

cal velocity is the same ~̇z
(1)
j (τin,j) = ~uj , even though this was never explicitly specified

for the "1"-variables in (2.44). Finally, the classical zeroth components z
(i),0
j (τ) are

uniquely specified by the boundary-conditions: z
(i),0
j (τin,j) = tin and z

(i),0
j (τf,j) = tf

for i = 1, 2.

In summary, we conclude that eq. (2.44) does contain all the information we

need to calculate the classical paths for all variables z
(i)µ
j (τ). Specifically

~z
(2)
j (τin,j) = ~bj , ~̇z

(2)
j (τin,j) = ~uj , z

(2),0
j (τin,j) = tin , z

(2),0
j (τf,j) = tf
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~z
(1)
j (τin,j) = ~bj , ~z

(1)
j (τf,j) = ~z

(2)
j (τf,j) , z

(1),0
j (τin,j) = tin , z

(1),0
j (τf,j) = tf (2.51)

which is equivalent to

~z
(i)
j (τin,j) = ~bj , ~̇z

(i)
j (τin,j) = ~uj

z
(i),0
j (τin,j) = tin , z

(i),0
j (τf,j) = tf (2.52)

for i = 1, 2.

2.1.3 Fixing the normalization

Finally, we will fix the accumulation of overall constants in N more explicitly. We first

note that factors such as Ej( ~P(2)
j,f ) in the path integral (2.44) will have no influence

on the classical solution for the trajectories since it is a smooth function of the

worldline points and without oscillatory phases. This means that we can replace it

by its classical value and move it outside the path integral where it can be absorbed

into the overall constant. This kind of manipulation has already been done in other

instances where we have discarded quantum effects from the path integral measure.

Following the discussion of boundary conditions above, let us introduce a sim-

plified notation for the worldline path integral that expresses more clearly the fact

that we are only integrating over paths consistent with the initial conditions from

KMOC

∫

in-in

Dz
(i)
j (...)

∣
∣
∣
∣
∣
∣~̇z

(i)
j,in=~uj

~z
(i)
j,in=

~bj

≡
∫

d3yj

∫ z
(i)
j (τf,j)=(tf ,~yj)

z
(i)
j (τin,j)=(tin,~bj)

Dz
(i)
j |Φ̃j( ~P(2)

j,in)|2(...). (2.53)

With the help of this notation we can write (2.44) as

〈∆Ô〉 = N
∫

in-in

Dh(i)Dz
(i)
j

(∫

dτ1
d

dτ1
O1

)

e
i
~
(S[z

(1)
j ,h(1)]−S[z

(2)
j ,h(2)])

∣
∣
∣
∣
∣
∣~̇z

(i)
j,in=~uj

~z
(i)
j,in=

~bj

(2.54)

We now fix N by unitarity,

1 = 〈in|Ŝ†Ŝ|in〉 = N
∫

in-in

Dh(i)Dz
(i)
j e

i
~
(S[z

(1)
j ,h(1)]−S[z

(2)
j ,h(2)])

∣
∣
∣
∣
∣
∣~̇z

(i)
j,in=~uj

~z
(i)
j,in=

~bj

, (2.55)

which gives our final result

〈∆Ô〉 =

∫

in-in

Dh(i)Dz
(i)
j

(∫
dτ1

d
dτ1

O1[ ~P1, ~z1]
)

e
i
~
(S[z

(1)
j ,h(1)]−S[z

(2)
j ,h(2)])

∫

in-in

Dh(i)Dz
(i)
j e

i
~
(S[z

(1)
j ,h(1)]−S[z

(2)
j ,h(2)])

∣
∣
∣
∣
∣
∣
∣
∣~̇z

(i)
j,in=~uj

~z
(i)
j,in=

~bj

(2.56)
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Starting from the KMOC-expression for a general observable (2.1), and restricting

ourselves to the classical limit, we have thus explicitly mapped it to an in-in worldline

expression with boundary conditions inherited from the KMOC wave functions. As

stressed, we have demonstrated this equivalence only in the classical limit, given the

numerous times terms of O(~) have been neglected in the analysis.

2.2 Momentum kick

After this general prescription we now look specifically at the classical momentum

kick which is related to the scattering angle. Picking one of the scalar particles, we

therefore choose the vector operator

Ôµ
1 = P

µ
1 =

∑

K

∫

dΠp1dΠp2 |p1p2;K〉 pµ1 〈p1p2;K| . (2.57)

Because the on-shell δ-functions were integrated out early on in the above analysis,

the zeroth component of the momentum is identified as p01 = E1(p1) =
√

m2
1 + ~p21

everywhere. In order to see that this is equivalent to the worldline formalism, we

need to identify E1( ~P1) with

P0
1 ≡ − η0ν

∂L1

∂żν1
. (2.58)

This identification follows from the fact that initial scalar particles are free parti-

cles plus the fact that the path integrals in (2.56) can be solved classically using

the principle of stationary phase which replaces the variables with solutions to the

classical equations of motion. We note that for a free particle the classical equations

of motion together with the result in eq. (B.13) indeed imply that we can identify

the zeroth component of the canonical momentum with P0
1 = E1( ~P1). Since only the

end-points appear in (2.56) we have

∫

dτ
d

dτ
O1[ ~P1, ~z1]

µ =

∫

dτ
d

dτ
Pµ

1 = −ηµν
∫

dτ
d

dτ

∂L1[z1, ż1; 0]

∂żν1
(2.59)

Inserting this into eq. (2.56) we then obtain

〈∆P
µ
1 〉 = −ηµν

∫

in-in

Dh(i)Dz
(i)
j

∫
dτ d

dτ
∂L1[z1,ż1;0]

∂żν1
e

i
~
(S[z

(1)
j ,h(1)]−S[z

(2)
j ,h(2)])

∫

in-in

Dh(i)Dz
(i)
j e

i
~
(S[z

(1)
j ,h(1)]−S[z

(2)
j ,h(2)])

∣
∣
∣
∣
∣
∣
∣
∣~̇z

(i)
j,in=~uj

~z
(i)
j,in=

~bj

(2.60)

which is the starting point for calculating the momentum kick from worldlines when

dissipation is taken into account [63, 64].
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For definiteness we will henceforth follow the effective field theory approach [64]

for the practical calculations, although one could just as well have chosen the World-

line Quantum Field Theory formulation [63] to evaluate (2.60). Let us first write

(2.60) as,

〈∆P
µ
1 〉 = −ηµν

∫

in-in

Dz
(i)
j

(∫
dτ d

dτ
∂L1[z1,ż1;0]

∂żν1

)

e
i
~
Seff[z

(1)
j ,z

(2)
j ]

∫

in-in

Dz
(i)
j e

i
~
Seff[z

(1)
j ,z

(2)
j ]

∣
∣
∣
∣
∣
∣
∣
∣~̇z

(i)
j,in=~uj

~z
(i)
j,in=

~bj

(2.61)

where the effective action Seff is defined by

e
i
~
Seff[z

(1)
j ,z

(2)
j ] ≡

∫

in-in

Dh(i)e
i
~
(S[z

(1)
j ,h(1)]−S[z

(2)
j ,h(2)]) (2.62)

= exp

[
i

~

[∫

dτ(L[z(1), ż(1); 0]− L[z(2), ż(2); 0]) + S
(int)
eff [z(1), z(2)]

]]

We have separated out the two copies of the free part of the worldline Lagrangian

L[z(i), ż(i); 0] =
∑

j Lj [z
(i)
j , ż

(i)
j ; hµν(z

(i)
j ) = 0]. We now choose to evaluate the re-

maining path integral in (2.61) by the principle of stationary phase, again ignoring

quantum corrections. This replaces the worldline parameters z
(i)
j (τ) with their clas-

sical values, which we will denote rj(τ). The expression thus becomes

〈∆P
µ
1〉 = −ηµν

∫

dτ
d

dτ

∂L1[r1, ṙ1; 0]

∂ṙν1
(2.63)

The equations of motion providing rj(τ) subject to the initial/boundary conditions

stated above, can be written as

0 =
δSeff[z

(1), z(2)]

δz
(1)µ
j

∣
∣
∣
∣
∣
z
(i)
j =rj

=
∂Lj [rj , ṙj; 0]

∂rµj
︸ ︷︷ ︸

=0 (cf. eq. (2.35))

− d

dτ

∂Lj [rj, ṙj; 0]

∂ṙµj
+

δS
(int)
eff [z(1), z(2)]

δz
(1)µ
j

∣
∣
∣
∣
∣
z
(i)
j =rj

(2.64)

Integrating this and using eq. (2.63), we obtain

〈∆P
µ
1 〉 = −ηµν

∫

dτ
δS

(int)
eff [z(1), z(2)]

δz
(1)ν
1

∣
∣
∣
∣
∣
z
(i)
j =rj(τ)

(2.65)

We now expand the (variation of the) effective action perturbatively. Using the nota-

tion defined in appendix A (which is very similar to that of ref. [58]), equation (2.65)

may be written as
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〈∆P
µ
1 〉 =

∫ ∞

−∞
dτ







G






µ

+

µ 


+G2






µ

(2.66)

+

µ

+

µ



+O(G3)







The vertex factors contain additional factors of G since they depend on the classical

trajectories. The classical trajectories can also be written in the same notation

rµ1 (τ) =
1

m1

∫ τ

−∞
dτ ′
∫ τ ′

−∞
dτ ′′







G






µ

+

µ 


+O(G2)







(2.67)

rµ2 (τ) =
1

m2

∫ τ

−∞
dτ ′
∫ τ ′

−∞
dτ ′′







G






µ

+

µ




+O(G2)







(2.68)

These equations may be solved iteratively by writing

rµj (τ) =
∞∑

n=0

Gnrµj,n(τ) (2.69)

where the first order trajectory is determined by the initial conditions

rµj,0(τ) = bµj + uµ
j τ (2.70)

We can then expand the vertices

=
∑

n=0

Gn
n

(2.71)

=
∑

n=0

Gn
n

(2.72)
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As an example the first order solutions may be written as (the self-force terms

happen to be zero at this order)

rµ1,1(τ) =
1

m1

∫ τ

−∞
dτ ′
∫ τ ′

−∞
dτ ′′

0
µ

0

(2.73)

rµ2,1(τ) =
1

m2

∫ τ

−∞
dτ ′
∫ τ ′

−∞
dτ ′′

0
µ

0

(2.74)

and substituting the expansion (2.69) into the expression for the momentum change,

gives the expansion of the momentum change to the given consistent order in G

〈∆P
µ
1 〉 =

∫ ∞

−∞
dτ







G
0
µ

0

+G2






1
µ

0

+
0
µ

1

+
0
µ

0 0

(2.75)

+

0

0 0
µ 


+O(G3)







3 The diagrammatic comparison to one-loop order

Having just derived the equivalence between the KMOC and worldline formalisms it

is of interest to see in detail how it manifests itself in detailed calculations. Given that

we had to make the formal rewritings at the level of the Ŝ-matrix itself, rather than

specific representations of it, it should not be surprising that the equivalence arises

in a quite non-trivial manner order by order. We have already noted the cancellation

of superclassical terms in the KMOC formalism, cancellations that are completely

avoided in the wordline formalisms since their starting points are manifestly classical

to leading order in ~. As above, the particular observable we will be focusing on

is the momentum transfer 〈∆P
µ
1 〉 for one of the two matter particles. The KMOC

expression can be written in terms of scattering amplitudes [26],

〈∆P
µ
1 〉 =

i

~
〈in|[Pµ

1 , T̂ ]|in〉+
1

~2
〈in|T̂ †[Pµ

1 , T̂ ]|in〉 = Iµ(1) + Iµ(2) (3.1)
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where the first term is given by

Iµ(1) =

∫
d4q

(2π)2







θ(p01 + ~q)θ(p02 − ~q)δ(2p1 · q + ~q2) (3.2)

× δ(2p2 · q − ~q2)e−ib·qiqµ

p1 p1 + ~q

p2 p2 − ~q

A
ll

D
ia

g
ra

m
s






expanded

to order ~
0

and the second term in (3.1) is given by

Iµ(2) =
∑

K

∫
d4qd4w1d

4w2

(2π)4







θ(p01 + ~q0)θ(p02 − ~q0)δ(2p1 · q + ~q2) (3.3)

× δ(2p2 · q − ~q2)θ(p01 + ~w0
1)θ(p

0
2 + ~w0

2)δ(2p1 · w1 + ~w2
1)δ(2p2 · w2 + ~w2

2)

× e−ib·qδ4(w1 + w2 + ΣK)wµ
1~

−1 ...

p1 p1 + ~w1

p2 p2 + ~w2

{K}

A
ll

D
ia

g
ra

m
s

...

p1 + ~w1 p1 + ~q

p2 + ~w2 p2 − ~q

{K}

A
ll

D
ia

g
ra

m
s






expanded

to order ~
0

where the amplitudes are defined as T -matrix elements,

〈p′

1p
′

2; {k}|T̂ |p1p2; 0〉 = (2π)4δ4(p1+p2−p′1−p′2−~Σjkj) ...

p1 p′1

p2 p′2

{~k}

A
ll

D
ia

g
ra

m
s

(3.4)

Here the scalar momenta are p1 = m1u1, p2 = m2u2 and the impact parameter

is b ≡ b1− b2. The symbolic sum over K is again a short-hand for the combined sum

and integrations over any number of graviton degrees of freedom. In general, the

extraction of the classical contribution requires us to expand both the amplitudes

and all other factors contained in the expressions (3.2) and (3.3). As is well-known,

there will also be superclassical terms, which only cancel once all contributions are

considered.
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For illustration, we consider here the Einstein-Hilbert action fixed to harmonic

gauge and coupled to the two scalars in standard fashion,

S =

∫

d4x

[√−gR

16πG
+

(

∂γh
γµ − 1

2
∂µh

)2

(3.5)

+

2∑

j=1

1

2

√−g

(

gµν∂µφj∂νφj −
m2

j

~2
φ2
j

)]

,

where gµν = ηµν +
√
32πGhµν , R is the Ricci scalar, and ηµν is the Minkowski metric

with (+ − −−) signature. A brief note on our ~-power-counting: Feynman rules

with the present conventions assign to each graviton-scalar vertex a factor of 1/~3,

each scalar propagator comes with a factor of ~3, each graviton three-vertex comes

with a factor of 1/~, and each graviton propagator carries a factor of ~ (if external

gravitons were considered, they would each carry a factor of
√
~). Every diagram is

multiplied by an overall factor of ~5.

3.1 Leading order comparison

Interestingly, already at tree level the Feynman diagram approach leads to the result

in a way that is quite distinct from the worldline perspective. The only contribution

to the KMOC expression at order G is

〈∆P
µ
1 〉1PM =

∫
d4q

(2π)2
δ(p1 · q)δ(p2 · q)

4
e−ib·qiqµ







p1 p1 + ~q

p2 p2 − ~q







O(~0)

(3.6)

= (8πGm1m2)

[
1

2
(2γ2 − 1)

] ∫
d4q

(2π)2
δ(u1 · q)δ(u2 · q)eib·q

(−iqµ)

q2

= −(4πGm1m2)

[
1

βγ
(2γ2 − 1)

]

δµj

∫
d2q⊥
(2π)2

eib⊥·q iq
j
⊥

q2⊥

= −2Gm1m2
2γ2 − 1
√

γ2 − 1

δµj b
j
⊥

b2⊥

after inserting βγ =
√

γ2 − 1, where γ ≡ u1 · u2. In the third line we evaluated

the expression in the rest frame of particle 1. The two δ-function constraints in the

above integral arise from the on-shell Lorentz-invariant phase space integrations in

the KMOC-formula, ignoring quantum terms. To this leading 1PM order this is intu-

itively understandable and should correspond to treating the two scalars as classical

objects moving on-shell. We can already anticipate that this interpretation becomes

more subtle once we start to include loops in the Feynman diagram expansion.
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Let us compare the tree-level computation with the corresponding leading-order

worldline calculation

∫ ∞

−∞
dτG

0
µ

0

= 8πGm1m2

[
1

2
(2γ2 − 1)

] ∫
d4k

(2π)4

∫

dτdτ ′e−iu1·kτeiu2·kτ ′e−ib·k ik
µ

k2

(3.7)

= 8πGm1m2

[
1

2
(2γ2 − 1)

] ∫
d4k

(2π)2
δ(u1 · k)δ(u2 · k)eib·k

−ikµ

k2

= 〈∆P
µ
1 〉1PM

The first observation is that the on-shell δ-function constraints arise in a completely

different manner, now from the Fourier transform of the (leading-order) straight-line

trajectories. Apart from this, the Feynman rule for the worldline-worldline-graviton

vertex matches closely that of the second quantized field theory to this order. The

different iǫ-prescriptions clearly play no role at this order.

3.2 Next-to-leading order comparison

Already at one-loop order the correspondence gets more intricate. We first draw the

different Feynman diagrams that contribute to this order in the KMOC-formalism.

The calculation is quite standard and can be found in many places in the literature

but, we find it illuminating to write out all terms in order to explore the relationship

to the corresponding worldline calculation. We list the Feynman diagrams here

〈∆P
µ
1〉2PM,V =

∫
d4q

(2π)2
δ(p1 · q)δ(p2 · q)

4
e−ib·qiqµ







p1 p1 + ~q

p2 p2 − ~q







O(~0)

(3.8)

〈∆P
µ
1 〉2PM,Λ =

∫
d4q

(2π)2
δ(p1 · q)δ(p2 · q)

4
e−ib·qiqµ







p2 p2 − ~q

p1 p1 + ~q






O(~0)

(3.9)
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〈∆P
µ
1〉2PM,Y =

∫
d4q

(2π)2
δ(p1 · q)δ(p2 · q)

4
e−ib·qiqµ







p1 p1 + ~q

p2 p2 − ~q







O(~0)

(3.10)

〈∆P
µ
1〉2PM,Y ’ =

∫
d4q

(2π)2
δ(p1 · q)δ(p2 · q)

4
e−ib·qiqµ







p2 p2 − ~q

p1 p1 + ~q






O(~0)

(3.11)

〈∆P
µ
1 〉2PM,B.1 =

∫
d4q

(2π)2
δ′(p1 · q)δ(p2 · q)

8
q2e−ib·qiqµ (3.12)

× ~







p2 p2 − ~q

p1 p1 + ~q

+
p2 p2 − ~q

p1 p1 + ~q






O(~−1)

〈∆P
µ
1 〉2PM,B.2 = −

∫
d4q

(2π)2
δ(p1 · q)δ′(p2 · q)

8
q2e−ib·qiqµ (3.13)

× ~







p2 p2 − ~q

p1 p1 + ~q

+
p2 p2 − ~q

p1 p1 + ~q






O(~−1)

We note that the only non-vanishing classical contribution from the box plus crossed

box diagrams in equations (3.12) and (3.13) arise from expanding the on-shell delta

functions in eq. (3.2) to first order in ~. When multiplied by the superclassical

part of the amplitude of order (~−1) this provides at term of order (~0). All other

contributions than those listed above vanish. However, and as is well-known, there

are also non-vanishing superclassical terms produced by these diagrams,
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〈∆P
µ
1 〉2PM,B, ~−1 =

∫
d4q

(2π)2
δ(p1 · q)δ(p2 · q)

4
e−ib·qiqµ (3.14)

×







p2 p2 − ~q

p1 p1 + ~q

+
p2 p2 − ~q

p1 p1 + ~q






O(~−1)

These should be cancelled by the subtractions due to the second term in eq. (3.1),

〈∆P
µ
1 〉2PM,A, ~−1 =

∫
d4qd4w

(2π)4
δ(p1 · q)δ(p2 · q)δ(p1 · w)δ(p2 · w)

16
e−ib·qwµ (3.15)

× 1

~







×

p1 p1 + ~w

p2 p2 − ~w

p1 + ~w p1 + ~q

p2 − ~w p2 − ~q







O(~0)

and an explicit evaluation indeed gives

〈∆P
µ
1 〉2PM,A, ~−1 + 〈∆P

µ
1 〉2PM,B, ~−1 = 0 (3.16)

We now compare these Feynman diagrams from the KMOC-prescription with the

2PM evaluations using worldlines as in eq. (2.75) to find the following correspondence.

First, for the contributions 〈Pµ
1 〉2PM,Y and 〈Pµ

1〉2PM,Y ′ in eqs. (3.10) and (3.11) we find2

〈Pµ
1〉2PM,Y =

πG2m2m
2
1

4

γ2 + 3
√

γ2 − 1

δµi b
i
⊥

(~b2⊥)
3/2

(3.17)

= G2

∫ ∞

−∞
dτ

0

0 0
µ

〈Pµ
1〉2PM,Y ′ =

πG2m2
2m1

4

γ2 + 3
√

γ2 − 1

δµi b
i
⊥

(~b2⊥)
3/2

(3.18)

= G2

∫ ∞

−∞
dτ

0
µ

0 0

2Note that these two worldline diagrams both have a symmetry factor of 1/2.
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These relations are diagrammatically very intuitive, and they match the cor-

respondence with velocity cuts [13]. However, for the remaining contributions the

correspondence may appear less obvious. We discover that we need to sum the con-

tributions to 〈Pµ
1〉 in eqs. (3.9) and (3.12) to get the first iterated worldline diagram

in eq. (2.75),

〈Pµ
1〉2PM,Λ + 〈Pµ

1 〉2PM,B.1 = −4πG2m2
2m1γ

2

√

γ2 − 1

δµi b
i
⊥

(~b2⊥)
3/2

+ 2
G2m1m

2
2(2γ

2 − 1)2

~b2⊥(γ
2 − 1)2

[γuµ
2 − uµ

1 ]

(3.19)

= G2

∫ ∞

−∞
dτ

1
µ

0

and likewise, the sum of eqs. (3.8) and (3.13) gives the other first iterated worldline

diagram in eq. (2.75)

〈Pµ
1〉2PM,V + 〈Pµ

1〉2PM,B.2 = −4πG2m2m
2
1γ

2

√

γ2 − 1

δµi b
i
⊥

(~b2⊥)
3/2

+ 2
G2m2

1m2(2γ
2 − 1)2

~b2⊥(γ
2 − 1)2

[uµ
2 − γuµ

1 ]

(3.20)

= G2

∫ ∞

−∞
dτ

0
µ

1

Looking at the diagrams, we observe that the worldline iterations can be viewed as

producing, to this order, two contributions: one is the analog of higher order scalar-

gravition vertices in Feynman diagrams, the other is the classical contributions from

derivatives acting on the δ-function constraints (and additional power of q2). We are

not used to thinking of such terms as being iterations in a conventional Feynman

diagram analysis but it hints at the possibility of a re-organization (or merging) of the

two formalisms where one chooses the most convenient representation to enumerate

contributions. It should also be noted that the split in the box and crossed box

diagrams is easily identified by which δ-function constraint the derivative acts upon

in the KMOC formulation. This is what gives rise to the asymmetric powers of m1m
2
2

and m2m
2
1, respectively. We have not explored the diagrammatic correspondence

in the alternative Worldline Quantum Field Theory [52, 63] but one might expect

that the correspondence could be even simpler in that framework. Indeed, such

simplifications have been noticed [75] in the context of off-shell currents.

4 Conclusion

The KMOC and worldline formulations of classical general relativity are both used

to compute observables based on the in-in formalism of quantum field theory. It is
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thus natural to ask: what is the relationship between the two? This issue becomes

particularly relevant when one considers dissipation in terms of gravitational radia-

tion. The worldline formalism leads naturally to retarded (or advanced) propagators

in this context, while the KMOC formalism evaluates matrix elements with the stan-

dard iǫ-prescription of Feynman propagators. In this paper we have shown that

there is no contradiction, and we have provided a formal derivation of the worldline

formulation from the classical limit of the KMOC formalism. One of the features of

the derivation is that the initial conditions that need to be imposed on the trajec-

tories in the worldline formulation, can be viewed as originating directly from the

initial-state wave-functions that specify the initial conditions of the system in KMOC.

One of the advantages of the worldline formulations is that they can work with

the ~ → 0 limit from the outset. The formal equivalence to the classical limit of the

KMOC formalism demonstrates implicitly the exact cancellation of all superclassi-

cal terms if the KMOC matrix elements are evaluated by means of the standard

Born expansion of the S-matrix. The interesting question of what happens to the

equivalence at the quantum level remains unanswered by the present analysis where

we repeatedly discarded quantum corrections. Both formalisms should remain valid

(and hence equivalent) also when including quantum corrections. Although it is

far from obvious how, all discarded quantum terms must thus conspire to keep the

equivalence to all orders in ~.

Once this equivalence has been established, it is of interest to see in detail how

computations in the two different approaches compare. We have illustrated this by

comparing both tree-level and one-loop results for the momentum kick of two massive

scalars scattering off each other. Interestingly, and this is apparent already at tree

level, the contributions come from entirely different directions, eventually leading

to identical results. At one-loop level one can clearly identify which parts of the

calculations are in one-to-one correspondence with each other. The link between

the two is most transparent if one organizes the quantum field theory calculation

in terms of velocity cuts on the massive lines. It would be interesting to generalize

this to any loop order and see if simplifications can be introduced in the worldline

calculations based on what we know from the classical limit of amplitude calculations

in the KMOC setting.
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A Worldline Feynman rules

The derivation of the Feynman rules for the variation of the effective action in

eq. (2.65) in the in-in formalism has been treated previously in, e.g., [64, 76]. We will

here briefly repeat the main steps and define the notation we are using this paper.

The explicit equation for the interacting part of the effective action is given by

e
i
~
S
(int)
eff

[z
(1)
j ,z

(2)
j ] =

∫

in-in

Dh(i)e
i
~
(Sh[h

(1),J(1)]+S
(int)
p [z(1);h(1)]−Sh[h

(2),J(2)]−S
(int)
p [z(2);h(2)]) (A.1)

where we have introduced the following notation for the interacting part of the point-

particle action,

S(int)
p [z; h] = −

√
8πG

∑

j

mj

∫

dτjhαβ(zj)ż
α
j ż

β
j (A.2)

Next, we write the purely gravitational part of the action as a sum of the kinetic and

interacting parts, and we include a source Jµν for the gravitational field,

Sh[h, J ] = −1

2
Mαβµν

∫

d4xhαβ�hµν + S
(int)
h [h] +

∫

d4xJµνhµν (A.3)

where Mρλ,αβ = ηρ(αηβ)λ − 1
2
ηρληβα. Then we do a variable change to the Keldysh-

variables for the gravitational field [76]. They are related to the {1, 2}-variables used

above by
[
h(1)

h(2)

]

=

[
1
2

1

−1
2

1

] [
h(−)

h(+)

]

(A.4)

We define the interacting part of the action in the Keldysh-basis for the gravitational

field as (we have kept the worldline variables in the non-Keldysh basis, since we are

not integrating over them)

S(int)[z(1), z(2), h(±)] ≡S
(int)
p+h [z

(1); h(+) +
1

2
h(−)]− S

(int)
p+h [z

(2); h(+) − 1

2
h(−)], (A.5)

where S
(int)
p+h [z; h] = S

(int)
p [z; h] + S

(int)
h [h]. Also switching to the Keldysh-basis for the

sources J
(±)
µν , the effective action can be evaluated as follows

e
i
~
S
(int)
eff

[z
(1)
j ,z

(2)
j ] =N exp

{
i

~
S(int)

[

z
(1)
j , z

(2)
j ,−i~

δ

δJ (∓)

]}

e
i
~
W [J(±)]

∣
∣
∣
∣
J
(±)
µν =0

(A.6)
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where

W [J (±)] ≡ Mρλ,αβ

2

∫
d4k

(2π)4

[

J
(−)
ρλ (−k)

J
(+)
ρλ (−k)

]T [
iπδ(k2) 1

(k0+iǫ)2−~k2

1

(k0−iǫ)2−~k2
0

][

J
(−)
αβ (k)

J
(+)
αβ (k)

]

(A.7)

The non-zero diagonal element can be shown not to contribute to classical observ-

ables [63, 64] since it cannot occur in diagrams without loops or, alternatively, mul-

tiple sinks. So effectively we only need to worry about the retarded propagator

W [J (±)] = Mρλ,αβ

∫
d4k

(2π)4
J
(−)
ρλ (−k)J

(+)
αβ (k)

(k0 + iǫ)2 − ~k2
(A.8)

after we have discarded all quantum effects in W [J (±)].

The explicit expression for the momentum change can now be obtained by insert-

ing the effective action calculated according to (A.6) into equation (2.65). The dia-

grammatic rules for evaluating the momentum change can be worked out from (A.6).

Apart from gravity-self-interactions, we get from (A.5) two types of interaction terms.

After Fourier transforming the graviton field (ignoring convergence subtleties), they

read

−mj

√
8πG

∫

dτ

∫
d4k

(2π)4
h
(+)
αβ (k)(e

−ik·z(1)j ż
α(1)
j ż

β(1)
j − e−ik·z(2)j ż

α(2)
j ż

β(2)
j ) (A.9)

−1

2
mj

√
8πG

∫

dτ

∫
d4k

(2π)4
h
(−)
αβ (k)(e

−ik·z(1)j ż
α(1)
j ż

β(1)
j + e−ik·z(2)j ż

α(2)
j ż

β(2)
j ) (A.10)

It is customary to think of the latter of these terms as a ’source’ and the former

as a ’sink’ for the following reason: we only care about classical diagrams that

contribute after we take the variation of the effective action with respect to z
α(1)
j and

subsequently set the two sets of variables equal z
α(1)
j = z

α(2)
j = rαj . Only diagrams

with exactly one sink-vertex will survive this operation, and only when we take the

variation of only that sink-vertex. Thus, when calculating diagrams contributing

to (2.65), we may operate with

−(−i~)ηµν
δ

δz
ν(1)
j (τ)

∣
∣
∣
∣
∣
z
ν(i)
j =rνj

on the sink-term in advance and set zν(i) = rν on the source term to obtain the vertex

factors given below. Here, the factor of −i~ comes from the left-hand side of (A.6).

As usual we define the diagrams such that sinks/sources corresponding to particle 1

are written on top of vertices corresponding to particle 2
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αβ

≡ − i
√
8πm2

~

∫∞
−∞ dτ ′e−ik·r2(τ ′)ṙα2 (τ

′)ṙβ2 (τ
′)

~k (A.11)

αβ

µ
≡

√
8πm2

[

ikµe−ik·r2(τ)ṙα2 (τ)ṙ
β
2 (τ) + 2 d

dτ
[e−ik·r2(τ)ηµ(αṙ

β)
2 (τ)]

]~k

αβ

≡ − i
√
8πm1

~

∫∞
−∞ dτ ′e−ik·r1(τ ′)ṙα1 (τ

′)ṙβ1 (τ
′)

~k (A.12)

αβ

µ
≡

√
8πm1

[

ikµe−ik·r1(τ)ṙα1 (τ)ṙ
β
1 (τ) + 2 d

dτ
[e−ik·r1(τ)ηµ(αṙ

β)
1 (τ)]

]

~k

and the propagator is given by

αβ µν ≡ i~Mαβµν

(k0+iǫ)2−~k2

~k
(A.13)

Momentum is conserved at each vertex and in the end all momentum variables are

integrated over. Notice that we have factored out an appropriate power of the cou-

pling constant G; however, the vertex factors contain additional factors of G, through

their dependence on the classical trajectories as illustrated in the main text.

B Classical limit of the worldline

In the derivation presented above we used the worldline representation for the solu-

tion to

−
(

1√−g
∂µ(

√−ggµν∂ν) +
m2

j

~2
− iǫ

)

∆j (x, y; h) =
δ4 (x− y)√−g

. (B.1)

We stated in the main text that the result may be written as follows [52, 78, 79]3

∆j (x, y; h) = N
∫ ∞

0

dT

∫ z(T )=y

z(0)=x

Dze
− i

~

mj
2

∫ T
0 ds

{

gµν(z)żµżν− ~
2

4m2
j

R(z)+1

}

(B.2)

3Up to regularization-dependent non-covariant counter-terms, see ref. [79] for a discussion of this

issue.
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where

Dz ≡
∏

0<s<T

d4z(s)
√

−g(z(s)) . (B.3)

We wish to simplify this as much as possible by discarding effects that will only

become of importance at the quantum level. Analogous considerations have already

been described in ref. [52] but we provide a slightly different approach.

Clearly, the − ~2

4m2R(z)-term in the exponent will not contribute in the classical

limit and we hence omit it. Similarly, the factor of
√

−g(z(s)) in the measure

exponentiates to a term that is manifestly of quantum origin on account of the

additional factor of ~ and we can therefore ignore it if we focus on the classical limit.

Next, we make the change of variables s → u = s/T . This allows us to simplify (B.2)

to

∆j (x, y; h) = N
∫ z(1)=y

z(0)=x

Dz

∫ ∞

0

dTe
i
~
Sp[z;h;T ] (B.4)

where

Sp[z; h;T ] ≡ −mj

2

∫ 1

0

du

{
1

T
gµν (z)

dz

du

µ dz

du

ν

+ T

}

. (B.5)

In the classical limit we can evaluate the T -integral by the principle of stationary

phase,
∂

∂T
Sp[z; h;T ]

∣
∣
∣
∣
T=Tcl[z,h]

= 0 (B.6)

which leads to the condition

Tcl[z, h] =

{∫ 1

0

dugµν(z)
dz

du

µ dz

du

ν}1/2

(B.7)

Because the saddle-point condition on T implies that the equations of motion for

z and h are independent of the functional dependence of Tcl[z, h] on z and h, we

can treat Tcl as evaluated at the solutions to classical equations of motion for z and

h, which we denote with subscript cl for the present purposes. When analysing the

equations of motion for z, one finds that

d

du

(

gµν(zcl(u))
dzµcl
du

dzνcl
du

)

= 0 , (B.8)

so Tcl[zcl, h] is (the square root of) an integral of a constant. The integral is thus

trivial. From (B.7) we can then identify Tcl[zcl, hcl] as

Tcl ≡ Tcl[zcl, hcl] =

{

gµν(zcl)
dzµcl
du

dzνcl
du

}1/2

(B.9)

We now change variables back to from u to τ = uTcl and write the action as

Sp [z; h] ≡ Sp [z; h;Tcl] = −mj

2

∫ Tcl

0

dτ

{

gµν(z)
dzµ

dτ

dzν

dτ
+ 1

}

(B.10)
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which gives us the classical part of the Green function

∆j(x, y; h) = N
∫ z(τf)=y

z(τin)=x

Dze
i
~

∫ τf
τin

dτLj [z,ż,h] (B.11)

where τf − τin = Tcl is still the classical proper time as defined in (B.9). We have

absorbed the normalization factor from the saddle-point integration over T into the

overall constant N and

Lj [z, ż, h] ≡ −mj

2

[

gµν (z)
dzµ

dτ

dzν

dτ
+ 1

]

, (B.12)

is the Polyakov form of the classical Lagrangian for a scalar particle on curved space-

time.

As a side-note, (B.9) also implies that the classical path satisfies the useful relation

1 = gµν(zcl)
dzµcl
dτ

dzνcl
dτ

, (B.13)

which implies that the action evaluated along the classical path is proportional to

the proper-time difference

Sp [zcl; h] = −mj

∫ τf

τin

dτ (B.14)

in agreement with what we would expect from classical mechanics.

C Derivatives with respect to worldline end-points

In this appendix we go through the technical details on how to take derivatives with

respect to the end-points of the worldline action in the classical limit. We begin by

considering one derivative with respect to the upper end-point of (2.34)

(−i~∂yµ)∆(x, y; h) (C.1)

Here we have dropped the particle label. We define zcl[x, y; τ ] to be solution to the

classical equation of motion, i.e., it satisfies

[
∂L [z, ż, h]

∂zµ
− d

dτ

∂L [z, ż, h]

∂żµ

]

z=zcl

= 0, (C.2)

subject to the boundary condition zµcl[x, y; τin] = x and zµcl[x, y; τf ] = y. We next shift

variables in the path integral (2.34) as follows

zµ(τ) = zµcl[x, y; τ ] + ζµ(τ) (C.3)
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It follows that the boundary conditions on the new variable are ζµ(τf) = ζµ(τin) = 0.

Now we can write the derivative as

(−i~∂yµ)∆(x, y; h) =

∫ ζ(τf )=0

ζ(τin)=0

Dζ(−i~∂yµ)e
i
~

∫ τf
τin

dτL[zcl[x,y;τ ]+ζ,żcl[x,y;τ ]+ζ̇,h]

=

∫ ζ(τf )=0

ζ(τin)=0

Dζ

∫ τf

τin

dτ

[
∂L [z, ż, h]

∂zν
∂yµz

ν
cl +

∂L [z, ż, h]

∂żν
∂yµ ż

ν
cl

]

e
i
~

∫ τf
τin

dτL

=

∫ ζ(τf )=0

ζ(τin)=0

Dζ

{[
∂L

∂żν
∂yµz

ν
cl

]τ=τf

τ=τin

+

∫ τf

τin

dτ∂yµz
ν
cl

[
∂L

∂zν
− d

dτ

∂L

∂żν

]

z=zcl+ζ

}

e
i
~

∫ τf
τin

dτL

=

∫ ζ(τf )=0

ζ(τin)=0

Dζ

{[
∂L

∂żν
∂yµz

ν
cl

]τ=τf

τ=τin

+O(~)

}

e
i
~

∫ τf
τin

dτL
(C.4)

We have here used the fact that the last term in the third line is manifestly pro-

portional to ~ (and higher orders). This follows from an exact Schwinger-Dyson

equation since the integrand is proportional to the equations of motion.

Using ∂yµz
ν
cl[x, y; τin] = ∂yµx

ν = 0 and ∂yµz
ν
cl[x, y; τf ] = ∂yµy

ν = δνµ we get from

the last line in equation (C.4)

(−i~∂yµ)∆(x, y; h) =

∫ ζ(τf )=0

ζ(τin)=0

Dζ
∂L

∂żµ

∣
∣
∣
∣
τ=τf

e
i
~

∫ τf
τin

dτL
(C.5)

Had we instead differentiated with respect to x, only the lower boundary would

survive, ∂xµzνcl[x, y; τin] = ∂xµxν = δνµ, so we would have

(−i~∂xµ)∆(x, y; h) =

∫ ζ(τf )=0

ζ(τin)=0

Dζ

(

− ∂L

∂żµ

∣
∣
∣
∣
τ=τin

)

e
i
~

∫ τf
τin

dτL
(C.6)

Now let us explore what happens when we take one more derivative of (C.5)

(−i~∂yµ)(−i~∂yν )∆(x, y; h)

=

∫ ζ(τf)=0

ζ(τin)=0

Dζ

{

∂L

∂żµ

∣
∣
∣
∣
τ=τf

∂L

∂żν

∣
∣
∣
∣
τ=τf

− i~∂yν
∂L

∂żµ

∣
∣
∣
∣
τ=τf

}

e
i
~

∫ τf
τin

dτL
(C.7)

The second term is seen to be subleading in ~. In general, when we take any number

of derivatives (−i~∂yµ) is replaced by ∂L
∂żµ

∣
∣
τ=τf

to leading order in ~ and (−i~∂xµ)

is replaced by − ∂L
∂żµ

∣
∣
τ=τin

to leading order in ~. Undoing the change of variables

in (C.3), we can write the result as

(−i~∂y)
n∆(x, y; h) =

∫ z(τf )=y

z(τin)=x

Dz

{(

∂L

∂ż

∣
∣
∣
∣
τ=τf

)n

+O(~)

}

e
i
~

∫ τf
τin

dτL
(C.8)

and by exactly the same arguments

(−i~∂x)
n∆(x, y; h) =

∫ z(τf )=y

z(τin)=x

Dz

{(

− ∂L

∂ż

∣
∣
∣
∣
τ=τin

)n

+O(~)

}

e
i
~

∫ τf
τin

dτL
(C.9)

which were the results quoted in the main text.
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