

Lepton Universality and cLFV at LHCb

Giulia Frau on behalf of the LHCb Collaboration

> 4th International conference on cLFV 20-22.06.2023 Heidelberg, DE

Lepton flavour universality

- Standard Model (SM) predicts same electroweak coupling for all three lepton flavours
 - → Lepton Flavour Universality (LFU)
- validated experimentally in W and Z bosons decays, quarkonia, lepton decays
- Contribution from New Physics (NP) can affect
 - > relative decay rates ($b \rightarrow sll$ and $b \rightarrow clv_l$ transitions)
 - very well predicted (deviation from unity → hint of LFU violation)
 - cancellation of uncertainties (form factors, cc loop)

- > At LHCb, tension with SM observed in precise analyses of $b \rightarrow s\mu\mu$ decays
 - differential BF measurement of $B_s^0 \rightarrow \phi \mu^+ \mu^-$ [PRL 127, 151801]
 - angular observables in $B_s^0 \to \phi \mu^+ \mu^-$ and $B^{(+)} \to K^{*(+)} \mu^+ \mu^-$ [JHEP11(2021)043, PRL 125, 011802, PRL 126, 161802]

LFU and cLFV searches at LHCb

HCh

Lepton flavour violation

- LFU violation generally implies Lepton Flavour Violation (LFV) [PRL 114 (2015) 091801]
- > Tensions with SM observed in LFU tests motivate search for cLFV in *b*-hadron (or purely leptonic) decays
- > cLFV strongly suppressed in the SM with neutrino oscillations (< $O(10^{-40})$)
 - > Observation of cLFV → sign of new physics
 - Limit setting on BF → constrain theories of NP [Phys. Rev. D 92, 054013, Phys. Rev. D 94, 115021]
 - including Z' or leptoquarks, heavy neutrinos...
 - that predict BF~ $O(10^{-10} 10^{-7})$

[A. Seuthe, Moriond 2023]

 μ^+

 μ^-

In this talk

Latest results on LFU tests and LFV searches by LHCb including:

- ▶ LFU tests with $b \rightarrow sl^+l^-$ decays (R_K, R_{K^*})
- ► LFU tests with $b \rightarrow c l^+ v_l$ decays (R_{D^*}, R_{D^0})
- > cLFV semileptonic *B* decays
 - $\succ B^0 \rightarrow K^{*0} \mu^{\pm} e^{\mp}$ and $B^0_s \rightarrow \phi \mu^{\pm} e^{\mp}$
 - $\succ B^0 \rightarrow K^{*0} \tau^{\pm} \mu^{\mp}$
- \succ The $\tau^+ \rightarrow \mu^+ \mu^- \mu^+$ decay

The LHCb detector in Run 1 and Run 2

- > Single arm forward spectrometer ($2 < \eta < 5$) located at the LHC
- Excellent particle identification (PID) from

RICH(1,2), ECAL and Muon Stations

- $\epsilon(e \rightarrow e) \sim 90\%$ and $\epsilon(e \rightarrow h) \sim 5\%$
- $\epsilon(K \to K) \sim 95 97\%$ and $\epsilon(\pi \to K) \sim 5\%$
- $\epsilon(\mu \rightarrow \mu) \sim 97\%$ and $\epsilon(\pi \rightarrow \mu) \sim 1 3\%$

Good tracking system

- $\Delta p/p = 0.5\%$ at low momentum
- IP resolution $(15 + 29 / p_T [GeV]) \mu m$

	Run 1 (2011,2012)		Run 2 (2015-2018)
\sqrt{s}	7 TeV	8 TeV	13 TeV
<i>L</i> _{int}	1.0 fb-1	2.0 fb-1	~6 fb ⁻¹

[2008 JINST 3 S08005], [arXiv:1306.0249]

LFU tests with $b \rightarrow sl^+l^-$ decays

LFU tests with $b \rightarrow s l^+ l^-$ decays

> FCNC processes only allowed at loop level (BF $\sim 10^{-6}$)

 \rightarrow clean probe for NP

LFU test performed via the measurement of the ratio

$$R_{H_{s}}(q_{min}^{2}, q_{max}^{2}) = \frac{\int_{q_{min}}^{q_{max}^{2}} \frac{d\Gamma(H_{b} \to H_{s}\mu^{+}\mu^{-})}{dq^{2}} dq^{2}}{\int_{q_{min}}^{q_{max}^{2}} \frac{d\Gamma(H_{b} \to H_{s}e^{+}e^{-})}{dq^{2}} dq^{2}}$$

- \blacktriangleright with $H_b = B$, Λ_b and $H_s = K$, K^* , K_s^0 , ϕ , pK
- > Advantage: cancellation of hadronic uncertainties in theory predictions
- Expected to be unity except for different Yukawa couplings and kinematic effects
- ➢ Any deviation from unity → clear sign of NP
- Effective Hamiltonian

$$\mathcal{H}_{eff} \sim -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i (C_i^{\text{SM}} + \Delta_i^{\text{NP}}) \mathcal{O}_i \qquad \text{Local operator}$$

$$\text{NP contribution}$$
Wilson coefficient operator

LHCb

LFU tests with $b \rightarrow s l^+ l^-$ decays

- Electrons
 - Energy loss due to Bremsstrahlung photon emission
 - High occupancy in ECAL
- Recovery procedure to improve energy resolution
 - look for photon cluster in the ECAL compatible with *e* direction before the magnet
- Higher background contamination and sensitivity to background modelling
- Measurement of double ratio to reduce experimental systematics

$$R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)}\mu^+\mu^-)}{\mathcal{B}(B \to K^{(*)}J/\psi(\mu^+\mu^-))} / \frac{\mathcal{B}(B \to K^{(*)}e^+e^-)}{\mathcal{B}(B \to K^{(*)}J/\psi(e^+e^-))}$$

Simultaneous fit to resonant and non-resonant channels

• Cross-check with
$$r_{J/\psi} = \frac{\mathcal{B}(B \to KJ/\psi(\mu^+\mu^-))}{\mathcal{B}(B \to KJ/\psi(e^+e^-))} \equiv 1 [arXiv:1307.1189]$$

R_K and R_{K^*}

- Simultaneous measurement of R_K and R_{K^*} with Run 1 + Run 2 data in two q^2 regions
 - $\log -q^2 \in [0.1, 1.1] \, \text{GeV}^2/c^4$
 - central- $q^2 \in [1.1, 6.0] \text{ GeV}^2/c^4$
- > K^* reconstructed via its $K^+\pi^-$ decay

Background suppression

- In both modes, multivariate classifiers trained to suppress combinatorial bkg
- In electron mode, second multivariate classifier trained against partially reconstructed bkg based on vertex and track quality information
- Vetoes for specific decays
- Lepton and hadron PID selection to reduce mis-ID bkg
- Residual background from mis-ID modelled with data-driven approach

BF compatible with published results [JHEP 06 (2014) 133, JHEP 11 (2016) 047]

Brems. tail from J/ψ entering rare mode constrained in simultaneous fit
 Partially reconstructed bkg from K^{*0}e⁺e⁻ constrained in K⁺e⁺e⁻

R_K and R_{K^*}

> Most precise LFU test with $b \rightarrow sl^+l^-$ decays

- ▶ First measurement of R_K in low q^2 ($\in [0.1, 1.1]$ GeV²/ c^4)
- > Results in **agreement with SM** predictions within 0.2σ
- Dominated by statistical uncertainties
- Leading systematic from mis-ID backgrounds

- > Shift to higher values in R_K central- q^2 wrt [Nat. Phys. 18, 277–282 (2022)]
 - +0.064 due to contamination at looser working point
 - +0.038 due to not inclusion of background in mass fit

LFU tests with $b \rightarrow c l^+ v_l$ decays

LFU tests with $b \rightarrow c l^+ v_l$ decays

- > FCCC semileptonic tree level processes mediated by a W boson in the SM
- > Measurement of the ratio $R(X_c) = \frac{\mathcal{B}(X_b \to X_c \tau \nu_{\tau})}{\mathcal{B}(X_b \to X_c l \nu_l)}$
 - \blacktriangleright with $X_b = B^0$, $B^+_{(c)}$, B^0_s , Λ_b , ... and $X_c = D$, D^* , D_s , Λ_c , J/ψ
- Sensitive to NP couplings of third lepton generation (LQ, charged Higgs, W')
- > Advantages
 - reduction of theoretical and systematic uncertainties
- Challenges
 - missing neutrinos: τ reconstructed via its muonic $\tau^- \rightarrow \mu^- \bar{\nu}_{\mu} \nu_{\tau}$ or hadronic $\tau^- \rightarrow \pi^- \pi^+ \pi^- (\pi^0) \nu_{\tau}$ decay
 - Several background sources
 - Relative contributions extracted by means of template fits from control sample or simulations

NP contributions

Simultaneous measurement of $\mathcal{R}(D^*)$ and $\mathcal{R}(D^0)$

- Longstanding ~ 3σ deviation from SM in $\mathcal{R}(D^*)$ and $\mathcal{R}(D^0)$ [Eur.Phys.J.C 77 (2017) 12, 895]
- **Before**: measurement of $\mathcal{R}(D^*)$ with Run 1 $D^{*+}\mu^-$ data [PRL 115, 111803]
 - $\geq 2.1\sigma$ deviation from SM expectation
- **Now**: first joint measurement of $\mathcal{R}(D^*)$ and $\mathcal{R}(D^0)$ using Run 1 data

$$\mathcal{R}(D^{(*)}) = \frac{\mathcal{B}(\overline{B} \to D^{(*)}\tau^- \overline{\nu}_{\tau})}{\mathcal{B}(\overline{B} \to D^{(*)}\mu^- \overline{\nu}_{\mu})} \text{ with } \tau^- \to \mu^- \overline{\nu}_{\mu} \nu_{\tau} \text{ and } D^* \to D^0(\to \pi K)\pi$$

- Selected using $D^0\mu^-$ sample ~ 5 times bigger than $D^{*+}\mu^-$ sample
 - Higher branching fractions and higher efficiency
- Simultaneous analysis of the two samples
 - constrain common parameters of the fit models applied to data
 - reduce correlation
- **Background sources**: partially reconstructed *B* decays, combinatorics, mis-ID of charged tracks

ΡV

First measurement at a hadron collider

 $\overline{B}{}^0 \rightarrow D^{*+} \mu^- \overline{\nu}_{\mu}$

[LHC seminar talk]

Simultaneous measurement of $\mathcal{R}(D^*)$ and $\mathcal{R}(D^0)$

• E_{μ}^* , $m_{miss}^2 = (p_B - p_{D^{(*)}} - p_{\mu})^2$, $q^2 = (p_B - p_{D^{(*)}})^2$

Results

- $\mathcal{R}(D^*) = 0.281 \pm 0.018 \pm 0.024$
- $\mathcal{R}(D^0) = 0.441 \pm 0.060 \pm 0.066$
- correlation $\rho = -0.43$
- 1.9σ agreement with SM expectation
- New preliminary average
 - slightly lower $\mathcal{R}(D^*)$ and slightly higher $\mathcal{R}(D^0)$
 - Reduced correlation
 - $3.3\sigma \rightarrow 3.5\sigma$ deviation from the SM observed in the combination of $\mathcal{R}(D^*)$ and $\mathcal{R}(D^0)$

$\mathcal{R}(D^*)$ with hadronic au channels

[arXiv:2305.01463, submitted to PRD]

- > Measurement of $\mathcal{R}(D^*)$ with $\tau^- \to \pi^- \pi^+ \pi^- (\pi^0) \nu_\tau$ on Run 2 data (2 fb⁻¹)
- > Lower statistics wrt muonic decay but more control over background
- $\blacktriangleright B^0 \rightarrow D^{*-}\pi^+\pi^-\pi^+$ as normalisation channel

$$\mathcal{K}(D^{*-}) \equiv \frac{\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-}\pi^+\pi^-\pi^+)}$$
External inputs
$$\mathcal{R}(D^{*-}) = \mathcal{K}(D^{*-}) \frac{\mathcal{B}(B^0 \to D^{*-}3\pi)}{\mathcal{B}(B^0 \to D^{*-}\mu^+\nu_{\mu})}$$

> **3D template fit**: $q^2 \equiv (p_{B^0} - p_{D^*})^2$, τ^+ decay time, τ vs. D_s^+ BDT output

Results

 $\mathcal{K}(D^{*-}) = 1.70 \pm 0.10(\text{stat})^{+0.11}_{-0.10}(\text{syst})$

 $\mathcal{R}(D^{*-}) = 0.247 \pm 0.015(\text{stat}) \pm 0.015(\text{syst}) \pm 0.012(\text{ext})$

> Limited by the size of the simulation sample used to extract PDF

$\mathcal{R}(D^*)$ with hadronic au channels

Combined results with Run 1 data

 $\mathcal{R}(D^*)_{\text{comb}} = 0.257 \pm 0.012(\text{stat}) \pm 0.014(\text{syst}) \pm 0.012(\text{ext})$

- > In agreement with the SM within $1\sigma (R(D^*)_{SM} = 0.254 \pm 0.005 [HFLAV])$
- > One of the most precise measurements of $\mathcal{R}(D^*)$

> New preliminary world average

 $\mathcal{R}(D^*) = 0.284 \pm 0.013$ $\mathcal{R}(D) = 0.356 \pm 0.029$

- > 3.2 σ deviation from SM expectation for the combination $\mathcal{R}(D^*)$ - $\mathcal{R}(D)$
- Recent results: $\mathcal{R}(J/\psi)$ [Phys. Rev. Lett. 120, 121801], $\mathcal{R}(\Lambda_c)$ [PRL 128, 191803]...
- > Other ongoing measurements of $\mathcal{R}(D_s), \mathcal{R}(D)$

cLFV searches

$B^0 \to K^{*0} \mu^{\pm} e^{\mp}$ and $B^0_s \to \phi \mu^{\pm} e^{\mp}$

NP predictions can reach 10⁻⁷ [Phys. Rev. D 92, 054013]

- Different NP effects on $b \rightarrow s\mu^+e^-$ and $b \rightarrow s\mu^-e^+$
- Separate BF limit evaluation for $B^0 \to K^{*0}\mu^+e^-$ and $B^0 \to K^{*0}\mu^-e^+$ also provided
- Search on **Run 1 + Run 2** data
- → $K^{*0}(892)$ and $\phi(1020)$ reconstructed via $K^{*0} \rightarrow K^+\pi^-$ and $\phi \rightarrow K^+K^-$
- ► $B^0 \rightarrow J/\psi(\mu^+\mu^-)K^{*0}$ and $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\phi$ used as control and normalisation channels
- Background rejection
 - dedicated vetoes to reject background from mis-ID in b-hadron decays
 - BDT trained against combinatorial background
- Modelling of the remaining background contamination
 - ▶ Precise description of $B \rightarrow Dlv_l$ decays needed

 $B^0 \to K^{*0} \mu^{\pm} e^{\mp}$ and $B^0_s \to \phi \mu^{\pm} e^{\mp}$

- > No significant signal is observed
- > Improved upper limits at 90%(95%) CL $\mathcal{B}(B^{0} \to K^{*0}\mu^{+}e^{-}) < 5.7(6.9) \times 10^{-9}$ $\mathcal{B}(B^{0} \to K^{*0}\mu^{-}e^{+}) < 6.8(7.9) \times 10^{-9}$ $\mathcal{B}(B^{0} \to K^{*0}\mu^{\pm}e^{\mp}) < 10.1(11.7) \times 10^{-9}$

wrt Belle's result ($\mathcal{O}(10^{-7})$) [PRD 98, 071101(R) (2018)]

> World's first limit at 90%(95%) CL $\mathcal{B}(B_s^0 \to \phi \mu^{\pm} e^{\mp}) < 16.0(19.8) \times 10^{-9}$

> (Re-)intepretation in terms of scalar and left-handed LF violating NP models also provided

[JHEP 06 (2023) 073]

LHCb

$$B^0 \to K^{*0} \tau^{\pm} \mu^{\mp}$$

- \succ First search for the $B^0 \to K^{*0} \tau^{\pm} \mu^{\mp}$ decay on **Run 1 + Run 2** data
- > Analysis strategy
 - K^{*0} reconstructed via $K^{*0} \rightarrow K^+ \pi^-$
 - τ reconstructed via $\tau^- \rightarrow \pi^- \pi^+ \pi^- (\pi^0) \nu_{\tau}$
 - Independent analysis on $B^0 \to K^{*0}\tau^+\mu^-$ and $B^0 \to K^{*0}\tau^-\mu^+$
 - > Affected by different backgrounds
 - Different theoretical interpretation
 - $B^0 \rightarrow D^-(K^+\pi^-\pi^-)D^+_s(K^+K^-\pi^+)$ as normalisation channel
 - Multivariate classifiers trained againts combinatorial and mis-ID background + PID cuts

$$B^0 \to K^{*0} \tau^{\pm} \mu^{\mp}$$

 $\succ p_{\perp}$ missing momentum perpendicular to B^0 direction

- > No significant signal is observed
- Most stringent limits on $b \rightarrow s\tau\mu$ transitions set at 90%(95%) CL

 $\mathcal{B}(B^0 \to K^{*0}\tau^+\mu^-) < 1.0(1.2) \times 10^{-5}$ $\mathcal{B}(B^0 \to K^{*0}\tau^-\mu^+) < 8.2(9.8) \times 10^{-6}$

The $\tau^+ \to \mu^+ \mu^- \mu^+$ decay

- Current best experimental limit from Belle [arXiv:1001.3221]
 - 2.1×10^{-8} at 90% CL
- LHCb analysis on Run 1 data [JHEP02(2015)121]
 - $D_s^+ \rightarrow \phi(\mu^+\mu^-)\pi^+$ used as a normalisation channel
 - Challenges: identify and reject background sources
 - Combinatorial and mis-ID background $(D^+_{(s)} \to 3\pi, D^+ \to K^-\pi^+\pi^+)$
 - Background suppression achieved by means of multivariate classifiers
 - Upper limit: 4.6(5.6)×10⁻⁸ at 90%(95%) CL
- Ongoing analysis with Run 2 data (coming out soon!)
- Extrapolated limit from Run 1 to Run 1 + Run 2 (higher luminosity and cross section)
 - 2.5(3.1)×10⁻⁸ at 90%(95%) CL
- Development of a more efficient selection

A lot more...

- LFU tests: many analyses and updates are ongoing
 - \succ b → sll decays: R_{ϕ} , R_{Λ} , R_{pK} , $R_{K\pi\pi}$
 - > b → $cl\nu_l$ decays: R_{D_s} , R_{D^+} , R_{D^*} with μ/e , $R_{D^{**}}$
- > Previous cLFV searches
 - \succ B⁺ → K⁺µ[±]e[∓] [arXiv:1909.01010]
 - $\succ B^+ \rightarrow K^+ \mu^- \tau^+$ using B_{s2}^{*0} decays [JHEP06(2020)129]
 - \succ B⁰_(s) → τ[±]μ[∓] [<u>PRL 123, 211801 (2019)</u>]
 - > Charm sector: $D_{(s)}^+ \rightarrow h^{\pm} l^{\pm} {l'}^{\mp}$ [JHEP06(2021)044]
- Ongoing cLFV searches with Run 1 and Run 2 data

$$\succ B_s^0 \to \phi \ \mu^{\pm} \tau^{\mp}, B_{(s)}^0 \to e^{\pm} \mu^{\mp}, \Lambda_b \to \Lambda e^{\mp} \mu^{\pm}, \Lambda_b \to p K \tau^{\mp} \mu^{\pm} \dots$$

Summary and conclusions

- > LHCb has a very rich program in LFU tests and cLFV searches in *b* and *c*-hadron decays
 - > powerful way to search for NP
- \succ No cLFV observed so far \rightarrow More stringent limits on the BFs to constrain BSM theories
- Many other analyses with the whole Run 1 + Run 2 dataset in the pipeline
- Run 3 has started!
 - upgraded detector and trigger system will enhance signal acceptance
 - 5 times larger instantaneous luminosity than in Run 2 (50 fb⁻¹)

LHCb

Backup

 $B^0 \to K^{*0} \mu^{\pm} e^{\mp}$ and $B^0_s \to \phi \mu^{\pm} e^{\mp}$

 2×10^{-3}

CERNY LHCD THCD

[JHEP 06 (2023) 073]