CERN Accelerating science

002862500 001__ 2862500
002862500 005__ 20250107041102.0
002862500 0248_ $$aoai:cds.cern.ch:2862500$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002862500 0247_ $$2DOI$$9Springer$$a10.1140/epja/s10050-024-01282-x
002862500 037__ $$9arXiv$$aarXiv:2306.09360$$cnucl-ex
002862500 037__ $$9arXiv:reportnumber$$aJLAB-PHY-23-3840
002862500 037__ $$9arXiv:reportnumber$$aJLAB-THY-23-3848
002862500 035__ $$9arXiv$$aoai:arXiv.org:2306.09360
002862500 035__ $$9Inspire$$aoai:inspirehep.net:2669410$$d2025-01-06T17:22:52Z$$h2025-01-07T03:00:14Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d
002862500 035__ $$9Inspire$$a2669410
002862500 041__ $$aeng
002862500 100__ $$aAccardi, A.$$tGRID:grid.256774.5$$uHampton U.$$vHampton University, 23669 Hampton, VA, USA
002862500 245__ $$9Springer$$aStrong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab
002862500 269__ $$c2023-06-13
002862500 260__ $$c2024-09-04
002862500 300__ $$a139 p
002862500 500__ $$9arXiv$$aUpdates to the list of authors; Preprint number changed from theory
 to experiment; Updates to sections 4 and 6, including additional figures
002862500 520__ $$9arXiv$$aThis document presents the initial scientific case for upgrading the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab) to 22 GeV. It is the result of a community effort, incorporating insights from a series of workshops conducted between March 2022 and April 2023. With a track record of over 25 years in delivering the world's most intense and precise multi-GeV electron beams, CEBAF's potential for a higher energy upgrade presents a unique opportunity for an innovative nuclear physics program, which seamlessly integrates a rich historical background with a promising future. The proposed physics program encompass a diverse range of investigations centered around the nonperturbative dynamics inherent in hadron structure and the exploration of strongly interacting systems. It builds upon the exceptional capabilities of CEBAF in high-luminosity operations, the availability of existing or planned Hall equipment, and recent advancements in accelerator technology. The proposed program cover various scientific topics, including Hadron Spectroscopy, Partonic Structure and Spin, Hadronization and Transverse Momentum, Spatial Structure, Mechanical Properties, Form Factors and Emergent Hadron Mass, Hadron-Quark Transition, and Nuclear Dynamics at Extreme Conditions, as well as QCD Confinement and Fundamental Symmetries. Each topic highlights the key measurements achievable at a 22 GeV CEBAF accelerator. Furthermore, this document outlines the significant physics outcomes and unique aspects of these programs that distinguish them from other existing or planned facilities. In summary, this document provides an exciting rationale for the energy upgrade of CEBAF to 22 GeV, outlining the transformative scientific potential that lies within reach, and the remarkable opportunities it offers for advancing our understanding of hadron physics and related fundamental phenomena.
002862500 540__ $$3preprint$$aarXiv nonexclusive-distrib 1.0$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/
002862500 540__ $$3publication$$aexclusive licence to Springer-Verlag GmbH
002862500 542__ $$3publication$$dJefferson Science Associate$$g2024
002862500 65017 $$2arXiv$$anucl-th
002862500 65017 $$2SzGeCERN$$aNuclear Physics - Theory
002862500 65017 $$2arXiv$$ahep-ph
002862500 65017 $$2SzGeCERN$$aParticle Physics - Phenomenology
002862500 65017 $$2arXiv$$ahep-ex
002862500 65017 $$2SzGeCERN$$aParticle Physics - Experiment
002862500 65017 $$2arXiv$$anucl-ex
002862500 65017 $$2SzGeCERN$$aNuclear Physics - Experiment
002862500 690C_ $$aCERN
002862500 690C_ $$aARTICLE
002862500 700__ $$aAchenbach, P.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aAdhikari, D.$$tGRID:grid.438526.e$$uVirginia Tech.$$vVirginia Tech, 24061 Blacksburg, VA, USA
002862500 700__ $$aAfanasev, A.$$tGRID:grid.253615.6$$uGeorge Washington U.$$vThe George Washington University, 20052 Washington, D.C, USA
002862500 700__ $$aAkondi, C.S.$$tGRID:grid.255986.5$$uFlorida State U.$$vFlorida State University, 32306 Tallahassee, FL, USA
002862500 700__ $$aAkopov, N.$$tGRID:grid.48507.3e$$uYerevan Phys. Inst.$$vA.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), 0036 Yerevan, Armenia
002862500 700__ $$aAlbaladejo, M.$$tGRID:grid.470047.0$$uValencia U., IFIC$$vInstituto de Fisica Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia, 46071 Valencia, Spain
002862500 700__ $$aAlbataineh, H.$$tGRID:grid.264760.1$$uTexas A-M$$uHARC, Woodlands$$vTexas A &M University-Kingsville, 78363 Kingsville, TX, USA
002862500 700__ $$aAlbrecht, M.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aAlmeida-Zamora, B.$$tGRID:grid.11893.32$$uSonora U.$$vDepartamento de Investigación en Física, Universidad de Sonora, Boulevard Luis Encinas J. y Rosales, Colonia Centro, 83000 Hermosillo, Sonora, Mexico
002862500 700__ $$aAmaryan, M.$$tGRID:grid.261368.8$$uOld Dominion U. (main)$$vOld Dominion University, 23529 Norfolk, VA, USA
002862500 700__ $$aAndroić, D.$$tGRID:grid.4808.4$$uZagreb U., Phys. Dept.$$vUniversity of Zagreb, 10000 Zagreb, Croatia
002862500 700__ $$aArmstrong, W.$$tGRID:grid.187073.a$$uArgonne, PHY$$vArgonne National Laboratory, 60439 Lemont, IL, USA
002862500 700__ $$aArmstrong, D.S.$$tGRID:grid.264889.9$$uWilliam-Mary Coll.$$vCollege of William and Mary, 23187 Williamsburg, VA, USA
002862500 700__ $$aArratia, M.$$tGRID:grid.266097.c$$uUC, Riverside$$vUniversity of California Riverside, 92521 Riverside, CA, USA
002862500 700__ $$aArrington, J.$$tGRID:grid.184769.5$$uLBL, Berkeley$$vLawrence Berkeley National Laboratory, 94720 Berkeley, CA, USA
002862500 700__ $$aAsaturyan, A.$$tGRID:grid.217197.b$$uNorth Carolina U., Wilmington$$vUniversity of North Carolina Wilmington, 28403 Wilmington, NC, USA
002862500 700__ $$aAustregesilo, A.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aAvagyan, H.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility,Newport News,VA 23606,USA
002862500 700__ $$aAverett, T.$$tGRID:grid.264889.9$$uWilliam-Mary Coll.$$vCollege of William and Mary, 23187 Williamsburg, VA, USA
002862500 700__ $$aAyerbe Gayoso, C.$$tGRID:grid.264889.9$$uWilliam-Mary Coll.$$vCollege of William and Mary, 23187 Williamsburg, VA, USA
002862500 700__ $$aBacchetta, A.$$tGRID:grid.8982.b$$uINFN, Pavia$$vUniversitá di Pavia and INFN, 27100 Pavia, Italy
002862500 700__ $$aBalantekin, A.B.$$tGRID:grid.14003.36$$uWisconsin U., Madison$$vUniversity of Wisconsin, 53706 Madison, WI, USA
002862500 700__ $$aBaltzell, N.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aBarion, L.$$tGRID:grid.470200.1$$uINFN, Ferrara$$vINFN, Sezione di Ferrara, 44122 Ferrara, Italy
002862500 700__ $$aBarry, P.C.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aBashir, A.$$tGRID:grid.450315.6$$tGRID:grid.412205.0$$uIFM-UMSNH, Michoacan$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA$$vUniversidad Michoacana de San Nicolás de Hidalgo, 58040 Morelia, Michoacán, Mexico
002862500 700__ $$aBattaglieri, M.$$tGRID:grid.470205.4$$uINFN, Genoa$$vINFN, Sezione di Genova, 16146 Genova, Italy
002862500 700__ $$aBellini, V.$$tGRID:grid.470198.3$$uINFN, Catania$$vINFN, Sezione di Catania, 95123 Catania, Italy
002862500 700__ $$aBelov, I.$$tGRID:grid.470205.4$$uINFN, Genoa$$vINFN, Sezione di Genova, 16146 Genova, Italy
002862500 700__ $$aBenhar, O.$$tGRID:grid.470218.8$$uINFN, Rome$$vINFN, Sezione di Roma, 00161 Rome, Italy
002862500 700__ $$aBenkel, B.$$tGRID:grid.12148.3e$$uSanta Maria U., Valparaiso$$vUniversidad Técnica Federico Santa María, 2930213 Valparaíso, Chile
002862500 700__ $$aBenmokhtar, F.$$tGRID:grid.255272.5$$uDuquesne U.$$vDuquesne University, 15282 Pittsburgh, PA, USA
002862500 700__ $$aBentz, W.$$tGRID:grid.265061.6$$uTokai U., Hiratsuka$$vDepartment of Physics, School of Science, Tokai University, 259-1292 Hiratsuka-shi, Kanagawa, Japan
002862500 700__ $$aBertone, V.$$tGRID:grid.460789.4$$uIRFU, Saclay$$vIRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
002862500 700__ $$aBhatt, H.$$tGRID:grid.260120.7$$uMississippi State U.$$vMississippi State University, 39762 Mississippi State, MS, USA
002862500 700__ $$aBianconi, A.$$tGRID:grid.7637.5$$uBrescia U.$$vUniversità degli Studi di Brescia, 25123 Brecia, Italy
002862500 700__ $$aBibrzycki, L.$$tGRID:grid.9922.0$$uAGH-UST, Cracow$$vAGH University of Krakow, al. Adama Mickiewicza 30, 30-059 Kraków, Poland
002862500 700__ $$aBijker, R.$$tGRID:grid.9486.3$$uMexico U., ICN$$vInstituto de Ciencias Nucleares, UNAM, A.P. 70-543, 04510 Ciudad de México, Mexico
002862500 700__ $$aBinosi, D.$$tGRID:grid.11469.3b$$uECT, Trento$$vECT* and Fondazione Bruno Kessler, 38123 Trento, Italy
002862500 700__ $$aBiswas, D.$$tGRID:grid.438526.e$$uVirginia Tech.$$vVirginia Tech, 24061 Blacksburg, VA, USA
002862500 700__ $$aBoër, M.$$tGRID:grid.438526.e$$uVirginia Tech.$$vVirginia Tech, 24061 Blacksburg, VA, USA
002862500 700__ $$aBoeglin, W.$$tGRID:grid.65456.34$$uFlorida Intl. U.$$vFlorida International University, 33199 Miami, FL, USA
002862500 700__ $$aBogacz, S.A.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aBoglione, M.$$tGRID:grid.7605.4$$uINFN, Turin$$vUniversitá di Turin and INFN-Torino, 10125 Torino, Italy
002862500 700__ $$aBondí, M.$$tGRID:grid.470198.3$$uINFN, Catania$$vINFN, Sezione di Catania, 95123 Catania, Italy
002862500 700__ $$aBoos, E.E.$$tGRID:grid.14476.30$$uSINP, Moscow$$vSkobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
002862500 700__ $$aBosted, P.$$tGRID:grid.264889.9$$uWilliam-Mary Coll.$$vCollege of William and Mary, 23187 Williamsburg, VA, USA
002862500 700__ $$aBozzi, G.$$tGRID:grid.7763.5$$uINFN, Cagliari$$vUniversitá di Cagliari e INFN Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato, CA, Italy
002862500 700__ $$aBrash, E.J.$$tGRID:grid.254213.3$$uJefferson Lab$$vChristopher Newport University, 23606 Newport News, VA, USA
002862500 700__ $$aBriceño, R.A.$$tGRID:grid.47840.3f$$uUC, Berkeley$$vUniversity of California, 94720 Berkeley, CA, USA
002862500 700__ $$aBrindza, P.D.$$tGRID:grid.261368.8$$uOld Dominion U. (main)$$vOld Dominion University, 23529 Norfolk, VA, USA
002862500 700__ $$aBriscoe, W.J.$$tGRID:grid.253615.6$$uGeorge Washington U.$$vThe George Washington University, 20052 Washington, D.C, USA
002862500 700__ $$aBrodsky, S.J.$$tGRID:grid.445003.6$$uSLAC$$vSLAC National Accelerator Laboratory, 94025 Menlo Park, CA, USA
002862500 700__ $$aBrooks, W.K.$$tGRID:grid.12148.3e$$tGRID:grid.518195.1$$uSanta Maria U., Valparaiso$$uValparaiso U.$$uMillenium Inst. Astro., Santiago$$vUniversidad Técnica Federico Santa María, 2930213 Valparaíso, Chile$$vCenter for Science and Technology of Valparaíso 699, Valparaíso, Chile$$vSAPHIR Millennium Science Institute, Santiago, Chile
002862500 700__ $$aBurkert, V.D.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aCamsonne, A.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aCao, T.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aCardman, L.S.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aCarman, D.S.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aCarpinelli, M.$$tGRID:grid.7563.7$$uMilan Bicocca U.$$vUniversitá di Milano Bicocca, 20126 Milano, Italy
002862500 700__ $$aCates, G.D.$$tGRID:grid.27755.32$$uVirginia U.$$vUniversity of Virginia, 22904 Charlottesville, VA, USA
002862500 700__ $$aCaylor, J.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aCelentano, A.$$tGRID:grid.470205.4$$uINFN, Genoa$$vINFN, Sezione di Genova, 16146 Genova, Italy
002862500 700__ $$aCeliberto, F.G.$$tGRID:grid.7159.a$$uAlcala de Henares U.$$vDepartamento de Física y Matemáticas, Universidad de Alcalá (UAH), Campus Universitario, Alcalá de Henares, 28805 Madrid, Spain
002862500 700__ $$aCerutti, M.$$tGRID:grid.8982.b$$uINFN, Pavia$$vUniversitá di Pavia and INFN, 27100 Pavia, Italy
002862500 700__ $$aChang, Lei$$tGRID:grid.216938.7$$uNankai U.$$vNankai University, 300071 Tianjin, China
002862500 700__ $$aChatagnon, P.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aChen, C.$$tGRID:grid.511315.2$$tGRID:grid.59053.3a$$uPCFT, Hefei$$uHefei, CUST$$vPeng Huanwu Center for Fundamental Theory, 230026 Hefei, Anhui, China$$vUniversity of Science and Technology of China, 230026 Hefei, Anhui, China
002862500 700__ $$aChen, J.P.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aChetry, T.$$tGRID:grid.65456.34$$uFlorida Intl. U.$$vFlorida International University, 33199 Miami, FL, USA
002862500 700__ $$aChristopher, A.$$tGRID:grid.256774.5$$uHampton U.$$vHampton University, 23669 Hampton, VA, USA
002862500 700__ $$aChristy, E.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aChudakov, E.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aCisbani, E.$$tGRID:grid.470218.8$$uINFN, Rome$$vINFN, Sezione di Roma, 00161 Rome, Italy
002862500 700__ $$aCloët, I.C.$$tGRID:grid.187073.a$$uArgonne, PHY$$vArgonne National Laboratory, 60439 Lemont, IL, USA
002862500 700__ $$aCobos-Martinez, J.J.$$tGRID:grid.11893.32$$uSonora U.$$vDepartamento de Física, Universidad de Sonora, Boulevard Luis Encinas J. y Rosales, Colonia Centro, 83000 Hermosillo, Sonora, Mexico
002862500 700__ $$aCohen, E.O.$$tGRID:grid.12136.37$$uTel Aviv U.$$uNegev Nucl. Res. Ctr.$$vTel Aviv University, 6927845 Tel Aviv, Israel$$vNuclear Research Center - Negev, 84190 Beer-Sheva, Israel
002862500 700__ $$aColangelo, P.$$tGRID:grid.470190.b$$uBari U.$$uINFN, Bari$$vINFN, Sezione di Bari, 70125 Bari, Italy
002862500 700__ $$aCole, P.L.$$tGRID:grid.258921.5$$uLamar U.$$vLamar University, 77710 Beaumont, TX, USA
002862500 700__ $$aConstantinou, M.$$tGRID:grid.264727.2$$uTemple U.$$vTemple University, 19122 Philadelphia, PA, USA
002862500 700__ $$aContalbrigo, M.$$tGRID:grid.470200.1$$uINFN, Ferrara$$vINFN, Sezione di Ferrara, 44122 Ferrara, Italy
002862500 700__ $$aCostantini, G.$$tGRID:grid.8982.b$$tGRID:grid.7637.5$$uBrescia U.$$vUniversitá di Pavia and INFN, 27100 Pavia, Italy$$vUniversità degli Studi di Brescia, 25123 Brecia, Italy
002862500 700__ $$aCosyn, W.$$tGRID:grid.65456.34$$uFlorida Intl. U.$$vFlorida International University, 33199 Miami, FL, USA
002862500 700__ $$aCotton, C.$$tGRID:grid.27755.32$$uVirginia U.$$vUniversity of Virginia, 22904 Charlottesville, VA, USA
002862500 700__ $$aCourtoy, A.$$tGRID:grid.9486.3$$uMexico U.$$vInstituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, 01000 Ciudad de Mexico, Mexico
002862500 700__ $$aDusa, S. Covrig$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aCrede, V.$$tGRID:grid.255986.5$$uFlorida State U.$$vFlorida State University, 32306 Tallahassee, FL, USA
002862500 700__ $$aCui, Z.-F.$$tGRID:grid.41156.37$$uNanjing U.$$vNanjing University, 210093 Nanjing, Jiangsu, China
002862500 700__ $$aD'Angelo, A.$$tGRID:grid.6045.7$$uINFN, Rome2$$uRome U., Tor Vergata$$vUniversitá di Rome Tor Vergata and INFN, 00133 Rome, Italy
002862500 700__ $$aDöring, M.$$tGRID:grid.253615.6$$uGeorge Washington U.$$vThe George Washington University, 20052 Washington, D.C, USA
002862500 700__ $$aDalton, M.M.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aDanilkin, I.$$tGRID:grid.5802.f$$uHelmholtz Inst., Mainz$$vJohannes Gutenberg Universität, 55099 Mainz, Germany
002862500 700__ $$aDavydov, M.$$tGRID:grid.14476.30$$uSINP, Moscow$$vSkobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
002862500 700__ $$aDay, D.$$tGRID:grid.27755.32$$uVirginia U.$$vUniversity of Virginia, 22904 Charlottesville, VA, USA
002862500 700__ $$aDe Fazio, F.$$tGRID:grid.470190.b$$uINFN, Bari$$vINFN Sezione di Bari, 70126 Bari, Italy
002862500 700__ $$aDe Napoli, M.$$tGRID:grid.470198.3$$uINFN, Catania$$vINFN, Sezione di Catania, 95123 Catania, Italy
002862500 700__ $$aDe Vita, R.$$tGRID:grid.470205.4$$uINFN, Genoa$$vINFN, Sezione di Genova, 16146 Genova, Italy
002862500 700__ $$aDean, D.J.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aDefurne, M.$$tGRID:grid.460789.4$$uIRFU, Saclay$$vIRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
002862500 700__ $$ade Paula, W.$$tGRID:grid.419270.9$$uSao Paulo, Inst. Tech. Aeronautics$$vInstituto Tecnológico de Aeronáutica, 12228-900 São José dos Campos, Brazil
002862500 700__ $$ade Téramond, G.F.$$tGRID:grid.412889.e$$uCosta Rica U.$$vLaboratorio de Física Teórica y Computacional, Universidad de Costa Rica, 11501 San José, Costa Rica
002862500 700__ $$aDeur, A.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aDevkota, B.$$tGRID:grid.260120.7$$uMississippi State U.$$vMississippi State University, 39762 Mississippi State, MS, USA
002862500 700__ $$aDhital, S.$$tGRID:grid.256774.5$$uHampton U.$$vHampton University, 23669 Hampton, VA, USA
002862500 700__ $$aDi Nezza, P.$$tGRID:grid.463190.9$$uFrascati$$vINFN, Laboratori Nazionali di Frascati, C.P. 13, 00044 Frascati, Italy
002862500 700__ $$aDiefenthaler, M.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aDiehl, S.$$tGRID:grid.8664.c$$tGRID:grid.63054.34$$uU. Giessen, II. Phys. Inst.$$uConnecticut U.$$vII Physikalisches Institut der Universitaet Giessen, 35392 Giessen, Germany$$vUniversity of Connecticut, 06269 Storrs, CT, USA
002862500 700__ $$aDilks, C.$$tGRID:grid.26009.3d$$uDuke U.$$vDuke University, 27708 Durham, NC, USA
002862500 700__ $$aDing, M.$$tGRID:grid.40602.30$$uHZDR, Dresden$$vHelmholtz-Zentrum Dresden - Rossendorf, Bautzener Landstraße 400, 01328 Dresden, Germany
002862500 700__ $$aDjalali, C.$$tGRID:grid.20627.31$$uOhio U., Athens$$vOhio University, 45701 Athens, OH, USA
002862500 700__ $$aDobbs, S.$$tGRID:grid.255986.5$$uFlorida State U.$$vFlorida State University, 32306 Tallahassee, FL, USA
002862500 700__ $$aDupré, R.$$tGRID:grid.508754.b$$uIJCLab, Orsay$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
002862500 700__ $$aDutta, D.$$tGRID:grid.260120.7$$uMississippi State U.$$vMississippi State University, 39762 Mississippi State, MS, USA
002862500 700__ $$aEdwards, R.G.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aEgiyan, H.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aEhinger, L.$$tGRID:grid.116068.8$$uMIT, LNS$$vMassachusetts Institute of Technology, 02139 Cambridge, MA, USA
002862500 700__ $$aEichmann, G.$$tGRID:grid.5110.5$$uGraz U.$$vInstitute of Physics, University of Graz, NAWI Graz, 8010 Graz, Austria
002862500 700__ $$aElaasar, M.$$tGRID:grid.263883.4$$uLoyola U., New Orleans$$vSouthern University at New Orleans, 70126 New Orleans, LA, USA
002862500 700__ $$aElouadrhiri, L.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aEl Alaoui, A.$$tGRID:grid.12148.3e$$uSanta Maria U., Valparaiso$$vUniversidad Técnica Federico Santa María, 2930213 Valparaíso, Chile
002862500 700__ $$aEl Fassi, L.$$tGRID:grid.260120.7$$uMississippi State U.$$vMississippi State University, 39762 Mississippi State, MS, USA
002862500 700__ $$aEmmert, A.$$tGRID:grid.27755.32$$uVirginia U.$$vUniversity of Virginia, 22904 Charlottesville, VA, USA
002862500 700__ $$aEngelhardt, M.$$tGRID:grid.24805.3b$$uNew Mexico State U.$$vNew Mexico State University, 88003 Las Cruces, NM, USA
002862500 700__ $$aEnt, R.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aErnst, D.J.$$tGRID:grid.152326.1$$uVanderbilt U.$$vVanderbilt University, 37230 Nashville, TN, USA
002862500 700__ $$aEugenio, P.$$tGRID:grid.255986.5$$uFlorida State U.$$vFlorida State University, 32306 Tallahassee, FL, USA
002862500 700__ $$aEvans, G.$$tGRID:grid.253294.b$$uBrigham Young U.$$vBrigham Young University, 84602 Provo, UT, USA
002862500 700__ $$aFanelli, C.$$tGRID:grid.264889.9$$uWilliam-Mary Coll.$$vCollege of William and Mary, 23187 Williamsburg, VA, USA
002862500 700__ $$aFegan, S.$$tGRID:grid.5685.e$$uYork U., England$$vUniversity of York, YO10 5DD York, UK
002862500 700__ $$aFernández-Ramírez, C.$$tGRID:grid.9486.3$$tGRID:grid.10702.34$$uMadrid, Natl. U. Distance Educ.$$uMexico U., ICN$$vInstituto de Ciencias Nucleares, UNAM, A.P. 70-543, 04510 Ciudad de México, Mexico$$vDepartamento de Física Interdisciplinar, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
002862500 700__ $$aFernandez, L.A.$$tGRID:grid.412205.0$$uIFM-UMSNH, Michoacan$$vUniversidad Michoacana de San Nicolás de Hidalgo, 58040 Morelia, Michoacán, Mexico
002862500 700__ $$aFernando, I.P.$$tGRID:grid.27755.32$$uVirginia U.$$vUniversity of Virginia, 22904 Charlottesville, VA, USA
002862500 700__ $$aFilippi, A.$$tGRID:grid.470222.1$$uINFN, Turin$$vINFN, Sezione di Torino, 10125 Torino, Italy
002862500 700__ $$aFischer, C.S.$$tGRID:grid.8664.c$$uU. Giessen, II. Phys. Inst.$$vII Physikalisches Institut der Universitaet Giessen, 35392 Giessen, Germany
002862500 700__ $$aFogler, C.$$tGRID:grid.261368.8$$uOld Dominion U. (main)$$vOld Dominion University, 23529 Norfolk, VA, USA
002862500 700__ $$aFomin, N.$$tGRID:grid.411461.7$$uTennessee U.$$vUniversity of Tennesse, 37996 Knoxville, TN, USA
002862500 700__ $$aFrankfurt, L.$$tGRID:grid.12136.37$$uTel Aviv U.$$vTel Aviv University, 6927845 Tel Aviv, Israel
002862500 700__ $$aFrederico, T.$$tGRID:grid.419270.9$$uSao Paulo, Inst. Tech. Aeronautics$$vInstituto Tecnológico de Aeronáutica, 12228-900 São José dos Campos, Brazil
002862500 700__ $$aFreese, A.$$tGRID:grid.34477.33$$uWashington U., Seattle$$vUniversity of Washington, 98195 Seattle, WA, USA
002862500 700__ $$aFu, Y.$$tGRID:grid.17088.36$$uMichigan State U.$$vMichigan State University, 48824 East Lansing, MI, USA
002862500 700__ $$aGamberg, L.$$tGRID:grid.29857.31$$uPenn State U., Berks-Lehigh Valley$$vPenn State University Berks, 19610 Reading, PA, USA
002862500 700__ $$aGan, L.$$tGRID:grid.217197.b$$uNorth Carolina U., Wilmington$$vUniversity of North Carolina Wilmington, 28403 Wilmington, NC, USA
002862500 700__ $$aGao, F.$$tGRID:grid.43555.32$$uBeijing, Inst. Tech.$$vBeijing Institute of Technology, 100081 Beijing, China
002862500 700__ $$aGarcia-Tecocoatzi, H.$$tGRID:grid.470205.4$$uINFN, Genoa$$vINFN, Sezione di Genova, 16146 Genova, Italy
002862500 700__ $$aGaskell, D.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aGasparian, A.$$tGRID:grid.261037.1$$uNorth Carolina A-T State U.$$vNorth Carolina A &T State University, 27411 Greensboro, NC, USA
002862500 700__ $$aGates, K.$$tGRID:grid.8756.c$$uGlasgow U.$$vUniversity of Glasgow, G12 8QQ Glasgow, UK
002862500 700__ $$aGavalian, G.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aGhoshal, P.K.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aGiachino, A.$$tGRID:grid.413454.3$$uCracow, INP$$vInstitute of Nuclear Physics, Polish Academy of Science, Walerego Eljasza-Radzikowskiego 152, 31-342 Krakøw, Poland
002862500 700__ $$aGiacosa, F.$$tGRID:grid.411821.f$$uJan Kochanowski U.$$vInstitute of Physics, Jan Kochanowski University, ul. Uniwersytecka 7, 25-406 Kielce, Poland
002862500 700__ $$aGiannuzzi, F.$$tGRID:grid.470190.b$$uBari U.$$uINFN, Bari$$vINFN, Sezione di Bari, 70125 Bari, Italy
002862500 700__ $$aGilfoyle, G.-P.$$tGRID:grid.267065.0$$uRichmond U.$$vUniversity of Richmond, VA, 23173 Richmond, USA
002862500 700__ $$aGirod, F.X.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aGlazier, D.I.$$tGRID:grid.8756.c$$uGlasgow U.$$vUniversity of Glasgow, G12 8QQ Glasgow, UK
002862500 700__ $$aGleason, C.$$tGRID:grid.265438.e$$uUnion Coll.$$vUnion College, 12308 Schenectady, NY, USA
002862500 700__ $$aGodfrey, S.$$tGRID:grid.34428.39$$uCarleton U.$$vCarleton University, K2G 5V3 Ottawa, ON, Canada
002862500 700__ $$aGoity, J.L.$$tGRID:grid.256774.5$$tGRID:grid.450315.6$$uJefferson Lab$$uHampton U.$$vHampton University, 23669 Hampton, VA, USA$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aGolubenko, A.A.$$tGRID:grid.14476.30$$uSINP, Moscow$$vSkobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
002862500 700__ $$aGonzàlez-Solís, S.$$tGRID:grid.148313.c$$uLos Alamos$$vLos Alamos National Laboratory, 87545 Los Alamos, NM, USA
002862500 700__ $$aGothe, R.W.$$tGRID:grid.254567.7$$uSouth Carolina U.$$vUniversity of South Carolina, 29208 Columbia, SC, USA
002862500 700__ $$aGotra, Y.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aGriffioen, K.$$tGRID:grid.264889.9$$uWilliam-Mary Coll.$$vCollege of William and Mary, 23187 Williamsburg, VA, USA
002862500 700__ $$aGrocholski, O.$$tGRID:grid.7683.a$$uDESY$$vDeutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
002862500 700__ $$aGrube, B.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aGuèye, P.$$tGRID:grid.17088.36$$uMichigan State U.$$vMichigan State University, 48824 East Lansing, MI, USA
002862500 700__ $$aGuo, F.-K.$$tGRID:grid.9227.e$$tGRID:grid.410726.6$$uBeijing, Inst. Theor. Phys.$$uUCAS, Beijing$$vChinese Academy of Sciences, 100190 Beijing, China$$vUniversity of Chinese Academy of Sciences, 100049 Beijing, China
002862500 700__ $$aGuo, Y.$$tGRID:grid.164295.d$$uMaryland U.$$vUniversity of Maryland, 20742 College Park, MD, USA
002862500 700__ $$aGuo, L.$$tGRID:grid.65456.34$$uFlorida Intl. U.$$vFlorida International University, 33199 Miami, FL, USA
002862500 700__ $$aHague, T.J.$$tGRID:grid.184769.5$$uLBL, Berkeley$$vLawrence Berkeley National Laboratory, 94720 Berkeley, CA, USA
002862500 700__ $$aHammoud, N.$$tGRID:grid.413454.3$$uCracow, INP$$vInstitute of Nuclear Physics, Polish Academy of Science, Walerego Eljasza-Radzikowskiego 152, 31-342 Krakøw, Poland
002862500 700__ $$aHansen, J.-O.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aHattawy, M.$$tGRID:grid.261368.8$$uOld Dominion U. (main)$$vOld Dominion University, 23529 Norfolk, VA, USA
002862500 700__ $$aHauenstein, F.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aHayward, T.$$tGRID:grid.63054.34$$uConnecticut U.$$vUniversity of Connecticut, 06269 Storrs, CT, USA
002862500 700__ $$aHeddle, D.$$tGRID:grid.254213.3$$uJefferson Lab$$vChristopher Newport University, 23606 Newport News, VA, USA
002862500 700__ $$aHeinrich, N.$$tGRID:grid.57926.3f$$uRegina U.$$vUniversity of Regina, S4S 0A2 Regina, Saskatchewan, Canada
002862500 700__ $$aHen, O.$$tGRID:grid.116068.8$$uMIT, LNS$$vMassachusetts Institute of Technology, 02139 Cambridge, MA, USA
002862500 700__ $$aHiginbotham, D.W.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aHiguera-Angulo, I.M.$$tGRID:grid.412205.0$$uIFM-UMSNH, Michoacan$$vInstituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, 58040 Morelia, Michoacán, Mexico
002862500 700__ $$aHiller Blin, A.N.$$tGRID:grid.10392.39$$uTubingen U.$$vInstitute for Theoretical Physics, Tübingen University, 72076 Tübingen, Germany
002862500 700__ $$aHobart, A.$$tGRID:grid.508754.b$$uIJCLab, Orsay$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
002862500 700__ $$aHobbs, T.$$tGRID:grid.187073.a$$uArgonne, PHY$$vArgonne National Laboratory, 60439 Lemont, IL, USA
002862500 700__ $$aHolmberg, D.E.$$tGRID:grid.264889.9$$uWilliam-Mary Coll.$$vCollege of William and Mary, 23187 Williamsburg, VA, USA
002862500 700__ $$aHorn, T.$$tGRID:grid.450315.6$$tGRID:grid.39936.36$$uJefferson Lab$$uCatholic U.$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA$$vCatholic University of America, 20064 Washington, D.C., USA
002862500 700__ $$aHoyer, P.$$tGRID:grid.7737.4$$uHelsinki U.$$uHelsinki Inst. of Phys.$$vUniversity of Helsinki, 00014 Helsinki, Finland
002862500 700__ $$aHuber, G.M.$$tGRID:grid.57926.3f$$uRegina U.$$vUniversity of Regina, S4S 0A2 Regina, Saskatchewan, Canada
002862500 700__ $$aHurck, P.$$tGRID:grid.8756.c$$uGlasgow U.$$vUniversity of Glasgow, G12 8QQ Glasgow, UK
002862500 700__ $$aHutauruk, P.T. P.$$tGRID:grid.412576.3$$uPukyong Nat. U.$$vDepartment of Physics, Pukyong National University (PKNU), 48513 Busan, Korea
002862500 700__ $$aIlieva, Y.$$tGRID:grid.254567.7$$uSouth Carolina U.$$vUniversity of South Carolina, 29208 Columbia, SC, USA
002862500 700__ $$aIllari, I.$$tGRID:grid.253615.6$$uGeorge Washington U.$$vThe George Washington University, 20052 Washington, D.C, USA
002862500 700__ $$aIreland, D.G.$$tGRID:grid.8756.c$$uGlasgow U.$$vUniversity of Glasgow, G12 8QQ Glasgow, UK
002862500 700__ $$aIsupov, E.L.$$tGRID:grid.14476.30$$uSINP, Moscow$$vSkobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
002862500 700__ $$aItaliano, A.$$tGRID:grid.470198.3$$uINFN, Catania$$vINFN, Sezione di Catania, 95123 Catania, Italy
002862500 700__ $$aJaegle, I.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aJarvis, N.S.$$tGRID:grid.147455.6$$uCarnegie Mellon U.$$vCarnegie Mellon University, 15213 Pittsburgh, PA, USA
002862500 700__ $$aJenkins, D.J.$$tGRID:grid.438526.e$$uVirginia Tech.$$vVirginia Tech, 24061 Blacksburg, VA, USA
002862500 700__ $$aJeschonnek, S.$$tGRID:grid.447251.1$$uOhio State U., Newark$$vThe Ohio State University at Lima, 45804 Lima, OH, USA
002862500 700__ $$aJi, C-R.$$tGRID:grid.40803.3f$$uNorth Carolina State U.$$vNorth Carolina State University, 27607 Raleigh, NC, USA
002862500 700__ $$aJo, H.S.$$tGRID:grid.258803.4$$uKyungpook Natl. U.$$vKyungpook National University, 41566 Daegu, Korea
002862500 700__ $$aJones, M.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aJones, R.T.$$tGRID:grid.63054.34$$uConnecticut U.$$vUniversity of Connecticut, 06269 Storrs, CT, USA
002862500 700__ $$aJones, D.C.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aJoo, K.$$tGRID:grid.63054.34$$uConnecticut U.$$vUniversity of Connecticut, 06269 Storrs, CT, USA
002862500 700__ $$aJunaid, M.$$tGRID:grid.57926.3f$$uRegina U.$$vUniversity of Regina, S4S 0A2 Regina, Saskatchewan, Canada
002862500 700__ $$aKageya, T.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aKalantarians, N.$$tGRID:grid.267902.8$$uVirginia Commonwealth U.$$vVirginia Union University, 23220 Richmond, VA, USA
002862500 700__ $$aKarki, A.$$tGRID:grid.260120.7$$uMississippi State U.$$vMississippi State University, 39762 Mississippi State, MS, USA
002862500 700__ $$aKaryan, G.$$tGRID:grid.48507.3e$$uYerevan Phys. Inst.$$vA.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), 0036 Yerevan, Armenia
002862500 700__ $$aKatramatou, A.T.$$tGRID:grid.258518.3$$uKent State U.$$vKent State University, 44236 Kent, OH, USA
002862500 700__ $$aKay, S.J. D.$$tGRID:grid.5685.e$$uYork U., England$$vUniversity of York, YO10 5DD York, UK
002862500 700__ $$aKazimi, R.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aKeith, C.D.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aKeppel, C.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aKerbizi, A.$$tGRID:grid.470223.0$$uINFN, Trieste$$vINFN, Sezione di Trieste, 34127 Trieste, Italy
002862500 700__ $$aKhachatryan, V.$$tGRID:grid.411377.7$$uIndiana U.$$vIndiana University, 47405 Bloomington, IN, USA
002862500 700__ $$aKhanal, A.$$tGRID:grid.65456.34$$uFlorida Intl. U.$$vFlorida International University, 33199 Miami, FL, USA
002862500 700__ $$aKhandaker, M.$$tGRID:grid.469134.d$$uCal State, Sacramento$$vSacramento City College, 95818 Sacramento, CA, USA
002862500 700__ $$aKim, A.$$tGRID:grid.63054.34$$uConnecticut U.$$vUniversity of Connecticut, 06269 Storrs, CT, USA
002862500 700__ $$aKinney, E.R.$$tGRID:grid.266190.a$$uColorado U.$$vUniversity of Colorado, 80309 Boulder, CO, USA
002862500 700__ $$aKohl, M.$$tGRID:grid.256774.5$$uHampton U.$$vHampton University, 23669 Hampton, VA, USA
002862500 700__ $$aKotzinian, A.$$tGRID:grid.48507.3e$$tGRID:grid.9132.9$$uYerevan Phys. Inst.$$uCERN$$vA.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), 0036 Yerevan, Armenia$$vCERN, 1211 Meyrin, Switzerland
002862500 700__ $$aKriesten, B.T.$$tGRID:grid.450315.6$$tGRID:grid.410489.0$$uMURA$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA$$vSoutheastern Universities Research Association, 20005 Washington, D.C., USA
002862500 700__ $$aKubarovsky, V.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aKubis, B.$$tGRID:grid.10388.32$$uBonn U.$$uRuhr U., Bochum$$uBeijing, Inst. Phys.$$vUniversity of Bonn, 53115 Bonn, Germany
002862500 700__ $$aKuhn, S.E.$$tGRID:grid.261368.8$$uOld Dominion U. (main)$$vOld Dominion University, 23529 Norfolk, VA, USA
002862500 700__ $$aKumar, V.$$tGRID:grid.57926.3f$$uRegina U.$$vUniversity of Regina, S4S 0A2 Regina, Saskatchewan, Canada
002862500 700__ $$aKutz, T.$$tGRID:grid.116068.8$$uMIT, LNS$$vMassachusetts Institute of Technology, 02139 Cambridge, MA, USA
002862500 700__ $$aLeali, M.$$tGRID:grid.7637.5$$tGRID:grid.470213.3$$uBrescia U.$$uINFN, Pavia$$vUniversità degli Studi di Brescia, 25123 Brescia, Italy$$vINFN, Sezione di Pavia, 27100 Pavia, Italy
002862500 700__ $$aLebed, R.F.$$tGRID:grid.215654.1$$uArizona State U.$$vArizona State University, 85281 Tempe, AZ, USA
002862500 700__ $$aLenisa, P.$$tGRID:grid.8484.0$$uFerrara U.$$uINFN, Ferrara$$vUniversitá di Ferrara, 44122 Ferrara, Italy
002862500 700__ $$aLeskovec, L.$$tGRID:grid.8954.0$$uLjubljana U.$$vUniversity of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
002862500 700__ $$aLi, S.$$tGRID:grid.184769.5$$uLBL, Berkeley$$vLawrence Berkeley National Laboratory, 94720 Berkeley, CA, USA
002862500 700__ $$aLi, X.$$tGRID:grid.116068.8$$uMIT, LNS$$vMassachusetts Institute of Technology, 02139 Cambridge, MA, USA
002862500 700__ $$aLiao, J.$$tGRID:grid.411377.7$$uIndiana U.$$vIndiana University, 47405 Bloomington, IN, USA
002862500 700__ $$aLin, H.-W.$$tGRID:grid.17088.36$$uMichigan State U.$$vMichigan State University, 48824 East Lansing, MI, USA
002862500 700__ $$aLiu, L.$$tGRID:grid.8664.c$$uU. Giessen, II. Phys. Inst.$$vII Physikalisches Institut der Universitaet Giessen, 35392 Giessen, Germany
002862500 700__ $$aLiuti, S.$$tGRID:grid.27755.32$$uVirginia U.$$vUniversity of Virginia, 22904 Charlottesville, VA, USA
002862500 700__ $$aLiyanage, N.$$tGRID:grid.27755.32$$uVirginia U.$$vUniversity of Virginia, 22904 Charlottesville, VA, USA
002862500 700__ $$aLu, Y.$$tGRID:grid.412022.7$$uNanjing U.$$vNanjing Tech University, 211816 Nanjing, China
002862500 700__ $$aMacGregor, I.J. D.$$tGRID:grid.8756.c$$uGlasgow U.$$vUniversity of Glasgow, G12 8QQ Glasgow, UK
002862500 700__ $$aMack, D.J.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aMaiani, L.$$tGRID:grid.7841.a$$uRome U.$$vSapienza University of Rome, 00185 Rome, Italy
002862500 700__ $$aMamo, K.A.$$tGRID:grid.187073.a$$uArgonne, PHY$$vArgonne National Laboratory, 60439 Lemont, IL, USA
002862500 700__ $$aMandaglio, G.$$tGRID:grid.10438.3e$$uMessina U.$$vUniversitá di Messina, 98166 Messina, Italy
002862500 700__ $$aMariani, C.$$tGRID:grid.438526.e$$uVirginia Tech.$$vVirginia Tech, 24061 Blacksburg, VA, USA
002862500 700__ $$aMarkowitz, P.$$tGRID:grid.65456.34$$uFlorida Intl. U.$$vFlorida International University, 33199 Miami, FL, USA
002862500 700__ $$aMarukyan, H.$$tGRID:grid.48507.3e$$uYerevan Phys. Inst.$$vA.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), 0036 Yerevan, Armenia
002862500 700__ $$aMascagna, V.$$tGRID:grid.7637.5$$tGRID:grid.470213.3$$uBrescia U.$$uINFN, Pavia$$vUniversità degli Studi di Brescia, 25123 Brecia, Italy$$vINFN, Sezione di Pavia, 27100 Pavia, Italy
002862500 700__ $$aMathieu, V.$$tGRID:grid.5841.8$$uBarcelona U.$$uICC, Barcelona U.$$vDepartament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos, Universitat de Barcelona, 08028 Barcelona, Spain
002862500 700__ $$aMaxwell, J.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aMazouz, M.$$tGRID:grid.411838.7$$uMonastir U.$$vFaculté des Sciences de Monastir, 5019 Monastir, Tunisia
002862500 700__ $$aMcCaughan, M.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aMcKeown, R.D.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aMcKinnon, B.$$tGRID:grid.8756.c$$uGlasgow U.$$vUniversity of Glasgow, G12 8QQ Glasgow, UK
002862500 700__ $$aMeekins, D.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aMelnitchouk, W.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aMetz, A.$$tGRID:grid.264727.2$$uTemple U.$$vTemple University, 19122 Philadelphia, PA, USA
002862500 700__ $$aMeyer, C.A.$$tGRID:grid.147455.6$$uCarnegie Mellon U.$$vCarnegie Mellon University, 15213 Pittsburgh, PA, USA
002862500 700__ $$aMeziani, Z.-E.$$tGRID:grid.187073.a$$uArgonne, PHY$$vArgonne National Laboratory, 60439 Lemont, IL, USA
002862500 700__ $$aMezrag, C.$$tGRID:grid.187073.a$$uJames Madison U.$$vArgonne National Laboratory, 60439 Lemont, IL, USA
002862500 700__ $$aMichaels, R.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aMiller, G.A.$$tGRID:grid.34477.33$$uWashington U., Seattle$$vUniversity of Washington, 98195 Seattle, WA, USA
002862500 700__ $$aMineeva, T.$$tGRID:grid.12148.3e$$uSanta Maria U., Valparaiso$$vUniversidad Técnica Federico Santa María, 2930213 Valparaíso, Chile
002862500 700__ $$aMiramontes, A.S.$$tGRID:grid.412205.0$$uIFM-UMSNH, Michoacan$$vInstituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, 58040 Morelia, Michoacán, Mexico
002862500 700__ $$aMirazita, M.$$tGRID:grid.463190.9$$uFrascati$$vINFN, Laboratori Nazionali di Frascati, C.P. 13, 00044 Frascati, Italy
002862500 700__ $$aMizutani, K.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aMkrtchyan, A.$$tGRID:grid.48507.3e$$uYerevan Phys. Inst.$$vA.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), 0036 Yerevan, Armenia
002862500 700__ $$aMkrtchyan, H.$$tGRID:grid.48507.3e$$uYerevan Phys. Inst.$$vA.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), 0036 Yerevan, Armenia
002862500 700__ $$aMoffit, B.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aMohanmurthy, P.$$tGRID:grid.116068.8$$uMIT, LNS$$vMassachusetts Institute of Technology, 02139 Cambridge, MA, USA
002862500 700__ $$aMokeev, V.I.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aMonaghan, P.$$tGRID:grid.254213.3$$uJefferson Lab$$vChristopher Newport University, 23606 Newport News, VA, USA
002862500 700__ $$aMontaña, G.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aMontgomery, R.$$tGRID:grid.8756.c$$uGlasgow U.$$vUniversity of Glasgow, G12 8QQ Glasgow, UK
002862500 700__ $$aMoretti, A.$$tGRID:grid.5133.4$$uINFN, Trieste$$uTrieste U.$$vUniversitá di Trieste and INFN, 34127 Trieste, Italy
002862500 700__ $$aChàvez, J.M. Morgado$$tGRID:grid.460789.4$$uJames Madison U.$$vIRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
002862500 700__ $$aMosel, U.$$tGRID:grid.8664.c$$uU. Giessen, II. Phys. Inst.$$vII Physikalisches Institut der Universitaet Giessen, 35392 Giessen, Germany
002862500 700__ $$aMovsisyan, A.$$tGRID:grid.48507.3e$$uYerevan Phys. Inst.$$vA.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), 0036 Yerevan, Armenia
002862500 700__ $$aMusico, P.$$tGRID:grid.470205.4$$uINFN, Genoa$$vINFN, Sezione di Genova, 16146 Genova, Italy
002862500 700__ $$aNadeeshani, S.A.$$tGRID:grid.260120.7$$uMississippi State U.$$vMississippi State University, 39762 Mississippi State, MS, USA
002862500 700__ $$aNadolsky, P.M.$$tGRID:grid.263864.d$$uSouthern Methodist U.$$vSouthern Methodist University, 75205 Dallas, TX, USA
002862500 700__ $$aNakamura, S.X.$$tGRID:grid.27255.37$$uShandong U.$$vShandong University, 266237 Qingdao, Shandong, China
002862500 700__ $$aNazeer, J.$$tGRID:grid.256774.5$$uHampton U.$$vHampton University, 23669 Hampton, VA, USA
002862500 700__ $$aNefediev, A.V.$$tGRID:grid.445211.7$$uStefan Inst., Ljubljana$$vJozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
002862500 700__ $$aNeupane, K.$$tGRID:grid.254567.7$$uSouth Carolina U.$$vUniversity of South Carolina, 29208 Columbia, SC, USA
002862500 700__ $$aNguyen, D.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aNiccolai, S.$$tGRID:grid.508754.b$$uIJCLab, Orsay$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
002862500 700__ $$aNiculescu, I.$$tGRID:grid.258041.a$$uJames Madison U.$$vJames Madison University, 22806 Harrisonburg, VA, USA
002862500 700__ $$aNiculescu, G.$$tGRID:grid.258041.a$$uJames Madison U.$$vJames Madison University, 22806 Harrisonburg, VA, USA
002862500 700__ $$aNocera, E.R.$$tGRID:grid.7605.4$$uINFN, Turin$$vUniversitá di Turin and INFN-Torino, 10125 Torino, Italy
002862500 700__ $$aNycz, M.$$tGRID:grid.27755.32$$uVirginia U.$$vUniversity of Virginia, 22904 Charlottesville, VA, USA
002862500 700__ $$aOlness, F.I.$$tGRID:grid.263864.d$$uSouthern Methodist U.$$vSouthern Methodist University, 75205 Dallas, TX, USA
002862500 700__ $$aOrtega, P.G.$$tGRID:grid.11762.33$$uSalamanca U.$$vUniversidad de Salamanca, 37008 Salamanca, Spain
002862500 700__ $$aOsipenko, M.$$tGRID:grid.470205.4$$uINFN, Genoa$$vINFN, Sezione di Genova, 16146 Genova, Italy
002862500 700__ $$aPace, E.$$tGRID:grid.6045.7$$uINFN, Rome2$$uRome U., Tor Vergata$$vUniversitá di Rome Tor Vergata and INFN, 00133 Rome, Italy
002862500 700__ $$aPandey, B.$$tGRID:grid.267893.1$$uKentucky U.$$vVirginia Military Institute, 24450 Lexington, VA, USA
002862500 700__ $$aPandey, P.$$tGRID:grid.261368.8$$uOld Dominion U. (main)$$vOld Dominion University, 23529 Norfolk, VA, USA
002862500 700__ $$aPapandreou, Z.$$tGRID:grid.57926.3f$$uRegina U.$$vUniversity of Regina, S4S 0A2 Regina, Saskatchewan, Canada
002862500 700__ $$aPapavassiliou, J.$$tGRID:grid.5338.d$$uValencia U.$$uValencia U., IFIC$$vDepartment of Theoretical Physics and IFIC, University of Valencia and CSIC, 46100 Valencia, Spain
002862500 700__ $$aPappalardo, L.L.$$tGRID:grid.8484.0$$uFerrara U.$$uINFN, Ferrara$$vUniversitá di Ferrara, 44122 Ferrara, Italy
002862500 700__ $$aParedes-Torres, G.$$tGRID:grid.412205.0$$uIFM-UMSNH, Michoacan$$vInstituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, 58040 Morelia, Michoacán, Mexico
002862500 700__ $$aParemuzyan, R.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aPark, S.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aParsamyan, B.$$tGRID:grid.470222.1$$tGRID:grid.9132.9$$uINFN, Turin$$uCERN$$vINFN, Sezione di Torino, 10125 Torino, Italy$$vCERN, 1211 Meyrin, Switzerland
002862500 700__ $$aPaschke, K.D.$$tGRID:grid.27755.32$$uVirginia U.$$vUniversity of Virginia, 22904 Charlottesville, VA, USA
002862500 700__ $$aPasquini, B.$$tGRID:grid.8982.b$$uINFN, Pavia$$vUniversitá di Pavia and INFN, 27100 Pavia, Italy
002862500 700__ $$aPassemar, E.$$tGRID:grid.450315.6$$tGRID:grid.411377.7$$tGRID:grid.5338.d$$uIndiana U.$$uValencia U.$$uValencia U., IFIC$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA$$vIndiana University, 47405 Bloomington, IN, USA$$vDepartment of Theoretical Physics and IFIC, University of Valencia and CSIC, 46100 Valencia, Spain
002862500 700__ $$aPasyuk, E.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aPatel, T.$$tGRID:grid.256774.5$$uHampton U.$$vHampton University, 23669 Hampton, VA, USA
002862500 700__ $$aPaudel, C.$$tGRID:grid.65456.34$$uFlorida Intl. U.$$vFlorida International University, 33199 Miami, FL, USA
002862500 700__ $$aPaul, S.J.$$tGRID:grid.266097.c$$uUC, Riverside$$vUniversity of California Riverside, 92521 Riverside, CA, USA
002862500 700__ $$aPeng, J-C.$$tGRID:grid.35403.31$$uIllinois U., Urbana$$vUniversity of Illinois at Urbana-Champaign, 61820 Urbana, IL, USA
002862500 700__ $$aPentchev, L.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aPerrino, R.$$tGRID:grid.470190.b$$uBari U.$$uINFN, Bari$$vINFN, Sezione di Bari, 70125 Bari, Italy
002862500 700__ $$aPerry, R.J.$$tGRID:grid.5841.8$$uBarcelona U.$$uICC, Barcelona U.$$vDepartament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos, Universitat de Barcelona, 08028 Barcelona, Spain
002862500 700__ $$aPeters, K.$$tGRID:grid.159791.2$$uDarmstadt, GSI$$vGSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
002862500 700__ $$aPetratos, G.G.$$tGRID:grid.258518.3$$uKent State U.$$vKent State University, 44242 Kent, OH, USA
002862500 700__ $$aPhelps, W.$$tGRID:grid.253615.6$$tGRID:grid.254213.3$$uGeorge Washington U.$$uJefferson Lab$$vThe George Washington University, 20052 Washington, D.C, USA$$vChristopher Newport University, 23606 Newport News, VA, USA
002862500 700__ $$aPiasetzky, E.$$tGRID:grid.12136.37$$uTel Aviv U.$$vTel Aviv University, 6927845 Tel Aviv, Israel
002862500 700__ $$aPilloni, A.$$tGRID:grid.470198.3$$tGRID:grid.10438.3e$$uINFN, Catania$$uMessina U.$$vINFN, Sezione di Catania, 95123 Catania, Italy$$vUniversitá di Messina, 98166 Messina, Italy
002862500 700__ $$aPire, B.$$tGRID:grid.508893.f$$uEcole Polytechnique, CPHT$$vCPHT, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91120 Palaiseau, France
002862500 700__ $$aPitonyak, D.$$tGRID:grid.259009.7$$uUnlisted$$vLebanon Valley College, 17003 Annville, PA, USA
002862500 700__ $$aPitt, M.L.$$tGRID:grid.438526.e$$uVirginia Tech.$$vVirginia Tech, 24061 Blacksburg, VA, USA
002862500 700__ $$aPolosa, A.D.$$tGRID:grid.7841.a$$uRome U.$$vSapienza University of Rome, 00185 Rome, Italy
002862500 700__ $$aPospelov, M.$$tGRID:grid.17635.36$$uMinnesota U.$$vUniversity of Minnesota, 55455 Minneapolis, MN, USA
002862500 700__ $$aPostuma, A.C.$$tGRID:grid.57926.3f$$uRegina U.$$vUniversity of Regina, S4S 0A2 Regina, Saskatchewan, Canada
002862500 700__ $$aPoudel, J.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aPreet, L.$$tGRID:grid.57926.3f$$uRegina U.$$vUniversity of Regina, S4S 0A2 Regina, Saskatchewan, Canada
002862500 700__ $$aPrelovsek, S.$$tGRID:grid.8954.0$$uLjubljana U.$$vUniversity of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
002862500 700__ $$aPrice, J.W.$$tGRID:grid.253555.1$$uCal State, Dominguez Hills$$vCalifornia State University, Dominguez Hills, 90747 Carson, CA, USA
002862500 700__ $$aProkudin, A.$$tGRID:grid.450315.6$$tGRID:grid.29857.31$$uPenn State U., Berks-Lehigh Valley$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA$$vPenn State University Berks, 19610 Reading, PA, USA
002862500 700__ $$aPuckett, A.J. R.$$tGRID:grid.63054.34$$uConnecticut U.$$vUniversity of Connecticut, 06269 Storrs, CT, USA
002862500 700__ $$aPybus, J.R.$$tGRID:grid.116068.8$$uMIT, LNS$$vMassachusetts Institute of Technology, 02139 Cambridge, MA, USA
002862500 700__ $$aQin, S.-X.$$tGRID:grid.190737.b$$uChongqing U.$$vChongqing University, 401331 Chongqing, China
002862500 700__ $$aQiu, J.-W.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aRadici, M.$$tGRID:grid.470213.3$$uINFN, Pavia$$vINFN, Sezione di Pavia, 27100 Pavia, Italy
002862500 700__ $$aRashidi, H.$$tGRID:grid.411807.b$$uBou Ali Sina U.$$vBu-Ali Sina University, 65175 Hamedan, Iran
002862500 700__ $$aRathnayake, A.D.$$tGRID:grid.27755.32$$uVirginia U.$$vUniversity of Virginia, 22904 Charlottesville, VA, USA
002862500 700__ $$aRaue, B.A.$$tGRID:grid.65456.34$$uFlorida Intl. U.$$vFlorida International University, 33199 Miami, FL, USA
002862500 700__ $$aReed, T.$$tGRID:grid.65456.34$$uFlorida Intl. U.$$vFlorida International University, 33199 Miami, FL, USA
002862500 700__ $$aReimer, P.E.$$tGRID:grid.187073.a$$uArgonne, PHY$$vArgonne National Laboratory, 60439 Lemont, IL, USA
002862500 700__ $$aReinhold, J.$$tGRID:grid.65456.34$$uFlorida Intl. U.$$vFlorida International University, 33199 Miami, FL, USA
002862500 700__ $$aRichard, J.-M.$$tGRID:grid.462474.7$$uIP2I, Lyon$$vInstitut de Physique des 2 Infinis de Lyon, Université Claude Bernard (Lyon 1), CNRS-IN2P3, 69622 Villeurbanne, France
002862500 700__ $$aRinaldi, M.$$tGRID:grid.470215.5$$uINFN, Perugia$$vINFN, Sezione di Perugia, 06123 Perugia, Italy
002862500 700__ $$aRinger, F.$$tGRID:grid.450315.6$$tGRID:grid.261368.8$$uOld Dominion U. (main)$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA$$vOld Dominion University, 23529 Norfolk, VA, USA
002862500 700__ $$aRipani, M.$$tGRID:grid.470205.4$$uINFN, Genoa$$vINFN, Sezione di Genova, 16146 Genova, Italy
002862500 700__ $$aRitman, J.$$tGRID:grid.159791.2$$uDarmstadt, GSI$$vGSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
002862500 700__ $$aRittenhouse West, J.$$tGRID:grid.184769.5$$uLBL, Berkeley$$vLawrence Berkeley National Laboratory, 94720 Berkeley, CA, USA
002862500 700__ $$aRivero-Acosta, A.$$tGRID:grid.412891.7$$uGuanajuato U.$$vDepartamento de Física, DCI, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre, León, C.P. 37150 Guanajuato, Mexico
002862500 700__ $$aRoberts, C.D.$$tGRID:grid.41156.37$$uNanjing U.$$vNanjing University, 210093 Nanjing, Jiangsu, China
002862500 700__ $$aRodas, A.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aRodini, S.$$tGRID:grid.508893.f$$uEcole Polytechnique, CPHT$$vCPHT, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91120 Palaiseau, France
002862500 700__ $$aRodríguez-Quintero, J.$$tGRID:grid.18803.32$$uEscuela Poli. Sup. U., Huelva$$vDepartment of Integrated Sciences and CEAFM, University of Huelva, 21071 Huelva, Spain
002862500 700__ $$aRogers, T.C.$$tGRID:grid.261368.8$$uOld Dominion U. (main)$$vOld Dominion University, 23529 Norfolk, VA, USA
002862500 700__ $$aRojo, J.$$tGRID:grid.420012.5$$tGRID:grid.12380.38$$uNIKHEF, Amsterdam$$uVrije U., Amsterdam$$vNikhef, 1098 XG Amsterdam, The Netherlands$$vDepartment of Physics and Astronomy, VU, 1081 Amsterdam, HV, The Netherlands
002862500 700__ $$aRossi, [email protected]$$tGRID:grid.450315.6$$tGRID:grid.463190.9$$uJefferson Lab$$uFrascati$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA$$vINFN, Laboratori Nazionali di Frascati, C.P. 13, 00044 Frascati, Italy
002862500 700__ $$aRossi, G.C.$$tGRID:grid.6045.7$$uINFN, Rome2$$uRome U., Tor Vergata$$vUniversitá di Rome Tor Vergata and INFN, 00133 Rome, Italy
002862500 700__ $$aSalmè, G.$$tGRID:grid.470218.8$$uINFN, Rome$$vINFN, Sezione di Roma, 00161 Rome, Italy
002862500 700__ $$aSantiesteban, S.N.$$tGRID:grid.447291.d$$uDurham U.$$vUniversity of New Hampshire, 03824 Durham, NH, USA
002862500 700__ $$aSantopinto, E.$$tGRID:grid.470205.4$$uINFN, Genoa$$vINFN, Sezione di Genova, 16146 Genova, Italy
002862500 700__ $$aSargsian, M.$$tGRID:grid.65456.34$$uFlorida Intl. U.$$vFlorida International University, 33199 Miami, FL, USA
002862500 700__ $$aSato, N.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aSchadmand, S.$$tGRID:grid.159791.2$$uDarmstadt, GSI$$vGSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
002862500 700__ $$aSchmidt, A.$$tGRID:grid.253615.6$$uGeorge Washington U.$$vThe George Washington University, 20052 Washington, D.C, USA
002862500 700__ $$aSchmidt, S.M.$$tGRID:grid.40602.30$$uHZDR, Dresden$$vHelmholtz-Zentrum Dresden - Rossendorf, Bautzener Landstraße 400, 01328 Dresden, Germany
002862500 700__ $$aSchnell, G.$$tGRID:grid.11480.3c$$tGRID:grid.424810.b$$uBasque U., Bilbao$$vUniversity of the Basque Country UPV/EHU, 48080 Bilbao, Spain$$vIKERBASQUE, 48009 Bilbao, Spain
002862500 700__ $$aSchumacher, R.A.$$tGRID:grid.147455.6$$uCarnegie Mellon U.$$vCarnegie Mellon University, 15213 Pittsburgh, PA, USA
002862500 700__ $$aSchweitzer, P.$$tGRID:grid.63054.34$$uConnecticut U.$$vUniversity of Connecticut, 06269 Storrs, CT, USA
002862500 700__ $$aScimemi, I.$$tGRID:grid.4795.f$$uMadrid U.$$vUniversidad Complutense de Madrid, Facultad de Fisica and IPARCOS, Plaza de ciencias 1, 28040 Madrid, Spain
002862500 700__ $$aScott, K.C.$$tGRID:grid.256774.5$$uHampton U.$$vHampton University, 23669 Hampton, VA, USA
002862500 700__ $$aSeay, D.A.$$tGRID:grid.27755.32$$uVirginia U.$$vUniversity of Virginia, 22904 Charlottesville, VA, USA
002862500 700__ $$aSegovia, J.$$tGRID:grid.15449.3d$$uPablo de Olavide U., Seville$$vDepartamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
002862500 700__ $$aSemenov-Tian-Shansky, K.$$tGRID:grid.258803.4$$uKyungpook Natl. U.$$vKyungpook National University, 41566 Daegu, Korea
002862500 700__ $$aSeryi, A.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aSharda, A.S.$$tGRID:grid.411461.7$$uTennessee U.$$vUniversity of Tennesse, 37996 Knoxville, TN, USA
002862500 700__ $$aShepherd, M.R.$$tGRID:grid.411377.7$$uIndiana U.$$vIndiana University, 47405 Bloomington, IN, USA
002862500 700__ $$aShirokov, E.V.$$tGRID:grid.14476.30$$uSINP, Moscow$$vSkobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
002862500 700__ $$aShrestha, S.$$tGRID:grid.264727.2$$uTemple U.$$vTemple University, 19122 Philadelphia, PA, USA
002862500 700__ $$aShrestha, U.$$tGRID:grid.63054.34$$uConnecticut U.$$vUniversity of Connecticut, 06269 Storrs, CT, USA
002862500 700__ $$aShvedunov, V.I.$$tGRID:grid.14476.30$$uSINP, Moscow$$vSkobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
002862500 700__ $$aSignori, A.$$tGRID:grid.7605.4$$uINFN, Turin$$vUniversitá di Turin and INFN-Torino, 10125 Torino, Italy
002862500 700__ $$aSlifer, K.J.$$tGRID:grid.447291.d$$uDurham U.$$vUniversity of New Hampshire, 03824 Durham, NH, USA
002862500 700__ $$aSmith, W.A.$$tGRID:grid.411377.7$$uIndiana U.$$vIndiana University, 47405 Bloomington, IN, USA
002862500 700__ $$aSomov, A.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aSouder, P.$$tGRID:grid.264484.8$$uSyracuse U. (main)$$vSyracuse University, 13244 Syracuse, NY, USA
002862500 700__ $$aSparveris, N.$$tGRID:grid.264727.2$$uTemple U.$$vTemple University, 19122 Philadelphia, PA, USA
002862500 700__ $$aSpizzo, F.$$tGRID:grid.8484.0$$uFerrara U.$$uINFN, Ferrara$$vUniversitá di Ferrara, 44122 Ferrara, Italy
002862500 700__ $$aSpreafico, M.$$tGRID:grid.470205.4$$tGRID:grid.5606.5$$uINFN, Genoa$$uGenoa U.$$vINFN, Sezione di Genova, 16146 Genova, Italy$$vUniversitá degli Studi di Genova, 16126 Genova, Italy
002862500 700__ $$aStepanyan, S.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aStevens, J.R.$$tGRID:grid.264889.9$$uWilliam-Mary Coll.$$vCollege of William and Mary, 23187 Williamsburg, VA, USA
002862500 700__ $$aStrakovsky, I.I.$$tGRID:grid.253615.6$$uGeorge Washington U.$$vThe George Washington University, 20052 Washington, D.C, USA
002862500 700__ $$aStrauch, S.$$tGRID:grid.254567.7$$uSouth Carolina U.$$vUniversity of South Carolina, 29208 Columbia, SC, USA
002862500 700__ $$aStrikman, M.$$tGRID:grid.29857.31$$uPenn State U.$$vPennsylvania State University, 16802 University Park, PA, USA
002862500 700__ $$aSu, S.$$tGRID:grid.134563.6$$uOrsay, IPN$$uArizona U.$$vUniversity of Arizona, 85721 Tucson, AZ, USA
002862500 700__ $$aSumner, B.C. L.$$tGRID:grid.215654.1$$uArizona State U.$$vArizona State University, 85281 Tempe, AZ, USA
002862500 700__ $$aSun, E.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aSuresh, M.$$tGRID:grid.256774.5$$uHampton U.$$vHampton University, 23669 Hampton, VA, USA
002862500 700__ $$aSutera, C.$$tGRID:grid.470198.3$$uINFN, Catania$$vINFN, Sezione di Catania, 95123 Catania, Italy
002862500 700__ $$aSwanson, E.S.$$tGRID:grid.21925.3d$$uPittsburgh U.$$vUniversity of Pittsburgh, 15206 Pittsburgh, PA, USA
002862500 700__ $$aSzczepaniak, A.P.$$tGRID:grid.411377.7$$uIndiana U.$$vIndiana University, 47405 Bloomington, IN, USA
002862500 700__ $$aSznajder, P.$$tGRID:grid.450295.f$$uNCBJ, Warsaw$$vNational Centre for Nuclear Research, NCBJ, 02-093 Warsaw, Poland
002862500 700__ $$aSzumila-Vance, H.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aSzymanowski, L.$$tGRID:grid.450295.f$$uNCBJ, Warsaw$$vNational Centre for Nuclear Research, NCBJ, 02-093 Warsaw, Poland
002862500 700__ $$aTadepalli, A.-S.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aTadevosyan, V.$$tGRID:grid.48507.3e$$uYerevan Phys. Inst.$$vA.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), 0036 Yerevan, Armenia
002862500 700__ $$aTamang, B.$$tGRID:grid.260120.7$$uMississippi State U.$$vMississippi State University, 39762 Mississippi State, MS, USA
002862500 700__ $$aTarasov, V.V.$$tGRID:grid.18919.38$$uKurchatov Inst., Moscow$$vNational Research Centre Kurchatov Institute, 123182 Moscow, Russia
002862500 700__ $$aThiel, A.$$tGRID:grid.10388.32$$uBonn U.$$uRuhr U., Bochum$$uBeijing, Inst. Phys.$$vUniversity of Bonn, 53115 Bonn, Germany
002862500 700__ $$aTong, X.-B.$$tGRID:grid.10784.3a$$uHong Kong, Chinese U.$$vThe Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, People’s Republic of China
002862500 700__ $$aTyson, R.$$tGRID:grid.8756.c$$uGlasgow U.$$vUniversity of Glasgow, G12 8QQ Glasgow, UK
002862500 700__ $$aUngaro, M.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aUrciuoli, G.M.$$tGRID:grid.470218.8$$uINFN, Rome$$vINFN Sezione di Roma, 00185 Rome, Italy
002862500 700__ $$aUsman, A.$$tGRID:grid.57926.3f$$uRegina U.$$vUniversity of Regina, S4S 0A2 Regina, Saskatchewan, Canada
002862500 700__ $$aValcarce, A.$$tGRID:grid.11762.33$$uSalamanca U.$$vUniversidad de Salamanca, 37008 Salamanca, Spain
002862500 700__ $$aVallarino, S.$$tGRID:grid.8484.0$$uFerrara U.$$uINFN, Ferrara$$vUniversitá di Ferrara, 44122 Ferrara, Italy
002862500 700__ $$aVaquera-Araujo, C.A.$$tGRID:grid.412891.7$$tGRID:grid.418270.8$$uConacyt, Mexico$$uGuanajuato U.$$uDual C-P Inst. High Energy Phys.$$vDepartamento de Física, DCI, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre, León, C.P. 37150 Guanajuato, Mexico$$vConsejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582. Colonia Crédito Constructor, Del. Benito Juárez, C.P. 03940 Ciudad de México, Mexico$$vDual CP Institute of High Energy Physics, C.P. 28045 Colima, Mexico
002862500 700__ $$aVenturelli, L.$$tGRID:grid.7637.5$$tGRID:grid.470213.3$$uBrescia U.$$uINFN, Pavia$$vUniversità degli Studi di Brescia, 25123 Brecia, Italy$$vINFN, Sezione di Pavia, 27100 Pavia, Italy
002862500 700__ $$aVera, F.$$tGRID:grid.65456.34$$uFlorida Intl. U.$$vFlorida International University, 33199 Miami, FL, USA
002862500 700__ $$aVladimirov, A.$$tGRID:grid.4795.f$$uMadrid U.$$vUniversidad Complutense de Madrid, Facultad de Fisica and IPARCOS, Plaza de ciencias 1, 28040 Madrid, Spain
002862500 700__ $$aVossen, A.$$tGRID:grid.450315.6$$tGRID:grid.26009.3d$$uJefferson Lab$$uDuke U.$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA$$vDuke University, 27708 Durham, NC, USA
002862500 700__ $$aWagner, J.$$tGRID:grid.450295.f$$uNCBJ, Warsaw$$vNational Centre for Nuclear Research, NCBJ, 02-093 Warsaw, Poland
002862500 700__ $$aWei, X.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aWeinstein, L.B.$$tGRID:grid.261368.8$$uOld Dominion U. (main)$$vOld Dominion University, 23529 Norfolk, VA, USA
002862500 700__ $$aWeiss, C.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aWilliams, R.$$tGRID:grid.5685.e$$uYork U., England$$vUniversity of York, YO10 5DD York, UK
002862500 700__ $$aWinney, D.$$tGRID:grid.263785.d$$uSouth China Normal U.$$vSouth China Normal University, 510006 Guangzhou, China
002862500 700__ $$aWojtsekhowski, B.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aWood, M.H.$$tGRID:grid.253641.7$$uCanisius Coll., Buffalo$$vCanisius College, 14208 Buffalo, NY, USA
002862500 700__ $$aXiao, T.$$tGRID:grid.266869.5$$uNorth Texas State U.$$vUniversity of North Texas, 76201 Denton, TX, USA
002862500 700__ $$aXu, S.-S.$$tGRID:grid.453246.2$$uNanjing U. Posts Telecom$$vNanjing University of Posts and Telecommunications, 210023 Nanjing, China
002862500 700__ $$aYe, Z.$$tGRID:grid.12527.33$$uTsinghua U., Beijing$$vTsinghua University, 100084 Beijing, China
002862500 700__ $$aYero, C.$$tGRID:grid.261368.8$$uOld Dominion U. (main)$$vOld Dominion University, 23529 Norfolk, VA, USA
002862500 700__ $$aYuan, C.-P.$$tGRID:grid.17088.36$$uMichigan State U.$$vMichigan State University, 48824 East Lansing, MI, USA
002862500 700__ $$aYurov, M.$$tGRID:grid.260120.7$$uMississippi State U.$$vMississippi State University, 39762 Mississippi State, MS, USA
002862500 700__ $$aZachariou, N.$$tGRID:grid.5685.e$$uYork U., England$$vUniversity of York, YO10 5DD York, UK
002862500 700__ $$aZhang, Z.$$tGRID:grid.49470.3e$$uWuhan U.$$vWuhan University, 430072 Wuhan, Hubei, China
002862500 700__ $$aZhao, Y.$$tGRID:grid.187073.a$$uArgonne, PHY$$vArgonne National Laboratory, 60439 Lemont, IL, USA
002862500 700__ $$aZhao, Z.W.$$tGRID:grid.26009.3d$$uDuke U.$$vDuke University, 27708 Durham, NC, USA
002862500 700__ $$aZheng, X.$$tGRID:grid.27755.32$$uVirginia U.$$vUniversity of Virginia, 22904 Charlottesville, VA, USA
002862500 700__ $$aZhou, X.$$tGRID:grid.49470.3e$$uWuhan U.$$vWuhan University, 430072 Wuhan, Hubei, China
002862500 700__ $$aZiegler, V.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 700__ $$aZihlmann, B.$$tGRID:grid.450315.6$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 23606 Newport News, VA, USA
002862500 773__ $$c173$$n9$$pEur. Phys. J. A$$v60$$y2024
002862500 8564_ $$uhttps://misportal.jlab.org/ul/publications/view_pub.cfm?pub_id=18847$$yJLab Document Server
002862500 8564_ $$82459259$$s45570$$uhttps://cds.cern.ch/record/2862500/files/tagged_sidis.png$$y00020 Schematic diagram of tagged SIDIS processes where we illustrate the interaction between the target and the virtual photon.  a) Detection of a hadron in both the current fragmentation region (top line) and target fragmentation region (bottom line) gives access to partonic interactions and correlations.  b) Tagged measurements on light nuclei with tagged nuclear fragments constrain the initial nuclear configuration.
002862500 8564_ $$82459260$$s39454$$uhttps://cds.cern.ch/record/2862500/files/epx-all-q2dep.png$$y00013 The double spin asymmetry as a function of $P_T$ in $ep\rightarrow e^\prime\pi^+X$ in a given bin in $x$ (left) and the $Q^2$-dependence of the double spin asymmetry in a given bin in $x$ for $ep\rightarrow e^\prime pX$ (right). The projections for 100 days, use the existing simulation and reconstruction chain, and the luminosity currently used for the CLAS12 detector (see Fig.~\ref{fig:JLAB4D}). The curves correspond to different widths in $k_T$ of $g_1(x,k_T)$ compared to $f_1(x,k_T)$.
002862500 8564_ $$82459261$$s27858$$uhttps://cds.cern.ch/record/2862500/files/0BH_DiagApp.png$$y00043 The lowest order hard amplitude for the photoproduction of a large mass diphoton (complementary diagrams with $k_1 \leftrightarrow k_2$ are not shown).
002862500 8564_ $$82459262$$s202332$$uhttps://cds.cern.ch/record/2862500/files/AKpainted.png$$y00031 The gluonic form factors $A(k^2=-t)$ (left) and $D(k^2)=4C(k^2)$ (right) extracted from the two-dimensional cross section data of $J/\psi-007$ Collaboration \cite{Duran:2022xag} using the holographic QCD approach \cite{Mamo:2019mka,Mamo:2022eui} (dash-dot curve) and the GPD approach \cite{Guo:2021ibg} (green solid curve), compared to the recent lattice calculation \cite{Pefkou:2021fni} (blue dotted curve).
002862500 8564_ $$82459263$$s10564$$uhttps://cds.cern.ch/record/2862500/files/CS_pi0.png$$y00051 An estimate of $\frac{d^2 \sigma}{d \Omega}$ cross sections for (left) backward electroproduction of a $\pi^0$ meson, (right) or of a photon, as a function of $x_B$ for $Q^2=3$, $5$ GeV$^2$. The $x_B$ range is representative of the kinematics that may be accessed by a JLab22 experiment.
002862500 8564_ $$82459264$$s34627$$uhttps://cds.cern.ch/record/2862500/files/projections_22GeV_bin2_values_pT2broad.png$$y00083 Three-fold $z$ ($z_2$)-binned projections of $R^A_h$ (left column), $\Delta\langle p_T^2\rangle$ (middle column), and $R_{2h}$ (right column) for various hadrons production off carbon target represented with different colors and for a combination of $x$ and $Q^2$ bins that are outside the 11~GeV coverage on both rows. Error bars represent the statistical precision of the simulated sample from GiBUU assuming a per-nucleon luminosity of $10^{35}$~cm$^{-2}$s$^{-1}$ and 15~PAC days.
002862500 8564_ $$82459265$$s129609$$uhttps://cds.cern.ch/record/2862500/files/alpha_22_cwd.png$$y00010 \small{Expected accuracy on $\alpha_s(M^2_{z^0})$ from JLab at 22 GeV (blue), compared the EIC expectation (green) and the three most precise world data~\cite{ParticleDataGroup:2020ssz}.}
002862500 8564_ $$82459266$$s1215668$$uhttps://cds.cern.ch/record/2862500/files/DR-sub-term.png$$y00033 Left: $D_q(t)$ vs. $-t$ from 6 GeV DVCS data compared to theoretical predictions. Right: Black line is the pressure distribution versus distance from the proton center employing a Fourier transform of $D_q(t)$ in $t$. The light-green band shows the estimated systematic uncertainty of the fit.
002862500 8564_ $$82459267$$s69507$$uhttps://cds.cern.ch/record/2862500/files/Muon_spectra.png$$y00101 Muon energy distribution produced by interactions of a 10~GeV (20~GeV) electron beam  with the beam dump in Hall A.
002862500 8564_ $$82459268$$s17455$$uhttps://cds.cern.ch/record/2862500/files/EICvsJLabvsLQCD_CS.png$$y00025 Comparison of uncertainty bands for the Collins-Soper (CS) kernel versus $b_\perp$ ($b=b\perp$), directly extracted from the data using the method proposed in \cite{BermudezMartinez:2022ctj}, for both EIC and JLab22. The extractions consider only a single ratio of two bins in $Q$, integrated over $x$ and $z$. In the left figure, the CS kernels are normalized to the SV19 value \cite{Scimemi:2019cmh} for better visibility of the uncertainty bands. The right figure shows a more realistic picture of the extracted CS kernel, including the effects of power corrections.
002862500 8564_ $$82459269$$s219965$$uhttps://cds.cern.ch/record/2862500/files/Ncore.png$$y00061 Internucleon force reach at 22~GeV (at distances $\ge 1.2$~fm, $NN$ potentials contribute to the mean field Hartree-Fock potentials, resulting in nuclear shell structure).
002862500 8564_ $$82459270$$s21328$$uhttps://cds.cern.ch/record/2862500/files/projections_22GeV_bin1_values_R2h.png$$y00087 Three-fold $z$ ($z_2$)-binned projections of $R^A_h$ (left column), $\Delta\langle p_T^2\rangle$ (middle column), and $R_{2h}$ (right column) for various hadrons production off carbon target represented with different colors and for a combination of $x$ and $Q^2$ bins that are outside the 11~GeV coverage on both rows. Error bars represent the statistical precision of the simulated sample from GiBUU assuming a per-nucleon luminosity of $10^{35}$~cm$^{-2}$s$^{-1}$ and 15~PAC days.
002862500 8564_ $$82459271$$s223844$$uhttps://cds.cern.ch/record/2862500/files/Injector.png$$y00106 Schematic view of $650$~MeV recirculating injector (3-pass) based on LERF.
002862500 8564_ $$82459272$$s594879$$uhttps://cds.cern.ch/record/2862500/files/pressure1-6gev.png$$y00034 Left: $D_q(t)$ vs. $-t$ from 6 GeV DVCS data compared to theoretical predictions. Right: Black line is the pressure distribution versus distance from the proton center employing a Fourier transform of $D_q(t)$ in $t$. The light-green band shows the estimated systematic uncertainty of the fit.
002862500 8564_ $$82459273$$s7550$$uhttps://cds.cern.ch/record/2862500/files/3Nsrc_grams.png$$y00069 (a) Type-I 3N~SRCs in which the fast probed nucleon is balanced by two recoil nucleons.~(b) Type-II 3N~SRCs in which all tree nucleons have equal momenta with relative angles of $\sim 120^\circ$.
002862500 8564_ $$82459274$$s54064$$uhttps://cds.cern.ch/record/2862500/files/jlab_22gev_lt_v4.png$$y00016 Projections for measurements of $R_{\rm SIDIS} = \sigma_{L,{\rm SIDIS}}/\sigma_{T,{\rm SIDIS}}$ with electron beam energies up to 22~GeV. The left panel shows the available kinematic space in Hall C using the existing HMS and SHMS spectrometers. The right three panels demonstrate the accuracy achievable with 3~months of nominal 40~$\mu$A current on LH2 and LD2 targets, collecting both $\pi^+$ and $\pi^-$ SIDIS data for a measurement of the $Q^2$ dependence, the $x$ dependence, and the $P_{hT}$ dependence. The black curves indicate the measured value of $R_{DIS}$.
002862500 8564_ $$82459275$$s9600$$uhttps://cds.cern.ch/record/2862500/files/CS_bDVCS.png$$y00052 An estimate of $\frac{d^2 \sigma}{d \Omega}$ cross sections for (left) backward electroproduction of a $\pi^0$ meson, (right) or of a photon, as a function of $x_B$ for $Q^2=3$, $5$ GeV$^2$. The $x_B$ range is representative of the kinematics that may be accessed by a JLab22 experiment.
002862500 8564_ $$82459276$$s285232$$uhttps://cds.cern.ch/record/2862500/files/a2_eta_pi.png$$y00001 A sketch of the polarized photoproduction of $a_2^-(1320)$ via $t$-channel interaction with the target. Preliminary data from GlueX indicates that the dominant production mechanism of the spin-2 ($D-$wave) peak consistent with the $a_2$ in the $\eta\pi^-$ spectrum is by exchange of an unnatural parity particle ($\epsilon=-$).
002862500 8564_ $$82459277$$s28031$$uhttps://cds.cern.ch/record/2862500/files/Peng_fig3.png$$y00008 Comparison of the HERMES $x(s+\bar s)$ data with the calculations based on the BHPS model. The solid black and dashed red curves are obtained by evolving the BHPS result to $Q^2 = 2.5$ GeV$^2$ using the initial scale $\mu$ at 0.5 GeV and 0.3 GeV, respectively. Different panels correspond to four different inputs for the kaon fragmentation functions. Data at $x>0.1$ are denoted by solid circles.
002862500 8564_ $$82459278$$s27558$$uhttps://cds.cern.ch/record/2862500/files/projections_22GeV_bin2_values_RAh.png$$y00082 Three-fold $z$ ($z_2$)-binned projections of $R^A_h$ (left column), $\Delta\langle p_T^2\rangle$ (middle column), and $R_{2h}$ (right column) for various hadrons production off carbon target represented with different colors and for a combination of $x$ and $Q^2$ bins that are outside the 11~GeV coverage on both rows. Error bars represent the statistical precision of the simulated sample from GiBUU assuming a per-nucleon luminosity of $10^{35}$~cm$^{-2}$s$^{-1}$ and 15~PAC days.
002862500 8564_ $$82459279$$s38197$$uhttps://cds.cern.ch/record/2862500/files/dvcseps_vq2_xbjp2tp2.png$$y00038 Longitudinal to transverse virtual photon polarization parameter for the DVCS process, $\epsilon_{DVCS}$. The L/T separation of the DVCS term can be accomplished at the kinematic points shown on (left) $E_{e} = 6,\, 11,\, 18,\, 24$~GeV and fixed $x_{B} = 0.2$, $t = -0.2$~GeV$^2$; (right) EIC configurations are given as $\sqrt{s} = 74$ GeV corresponds to $E_{e} = 5$~GeV, $E_p = 275$~GeV; and $\sqrt{s} = 104$~GeV corresponds to $E_{e} = 10$~GeV, $E_{p} = 275$~GeV at kinematics $x_{B} = 0.01$, $t = -0.2$~GeV$^2$ (work in progress with Brandon Kriesten)
002862500 8564_ $$82459280$$s56468$$uhttps://cds.cern.ch/record/2862500/files/TaggedDis22GeV.png$$y00073 Expected tagged DIS $d(e,e'n_s)$ statistics for 22~GeV, the CLAS12 and BAND detectors and 180~fb$^{-1}$ of luminosity for four bins in $\alpha_s$ (the light cone momentum fraction) as a function of $x'$.
002862500 8564_ $$82459281$$s77282$$uhttps://cds.cern.ch/record/2862500/files/zye_flavor_EMC_Pb.png$$y00077 SIDIS super-ratios, $R=\frac{\sigma_A^{h+}/\sigma_A^{h-}}{\sigma_D^{h+}/\sigma_D^{h-}}$, between lead and deuteron for pion (left panel), kaon (middle panel), and proton (right panel) production for 3 $<Q^2<$ 4 GeV$^2$ and 0.3 $<z<$ 0.35 after integrating over $p_T$. The curves are EPPS21~\cite{Eskola:2021nhw} global nPDF fits (assuming flavor independence) and TUJU21~\cite{PhysRevD.100.096015} nPDF fits (allowing flavor dependence).
002862500 8564_ $$82459282$$s157297$$uhttps://cds.cern.ch/record/2862500/files/FFA_CEBAF_2.png$$y00103 Sketch of the CEBAF accelerator with the two highest energy arcs, Arc 9 and Arc A, replaced with a pair of FFA arcs (green).
002862500 8564_ $$82459283$$s13398$$uhttps://cds.cern.ch/record/2862500/files/SoLID_xQ2.png$$y00003 (Left) The kinematic coverage available from a 22~GeV beam and the unmodified acceptance of the SoLID spectrometer. (Right) The impact of simulated 22~GeV PVDIS proton and deuteron data on the strange quark PDF $s^+=s+\bar{s}$ in the JAM framework~\cite{Cocuzza:2022jye}.  A high statistics measurement of $A_{PV}$ with realistic normalization uncertainty measured with 22~GeV beam, the SoLID spectrometer, and the luminosity described in the text is simulated.
002862500 8564_ $$82459284$$s2299611$$uhttps://cds.cern.ch/record/2862500/files/CLAS12-DVCS22-kine.png$$y00036 Left: The CLAS12 detector system. Right: Response to exclusive DVCS + Bethe-Heitler events at 22 GeV beam energy: (a) Scattered electron kinematics in $Q^2$ vs. $x_B$. (b) DVCS-BH photon kinematics in polar angle vs. momentum, (c) proton kinematics in polar angle vs. momentum, (d) event distribution in $-t$ vs. azimuthal angle $\phi$.
002862500 8564_ $$82459285$$s25352$$uhttps://cds.cern.ch/record/2862500/files/dsigdQ2_22.png$$y00055 Left: Differential cross section $d\sigma/dQ^2$ for different beam energies for proton and neutron. Right: Same as left, expressed in terms of an event rate per unit integrated luminosity per $Q^2$ interval (assuming 2$\pi$ azimuthal angle acceptance).
002862500 8564_ $$82459286$$s60213$$uhttps://cds.cern.ch/record/2862500/files/clas12-pt-clas22n.png$$y00028 Transverse momentum dependence of sea and valence quarks \cite{Schweitzer:2012hh} (left) and extension of the transverse momentum coverage with JLab22 (open circles) for a given bin in $x$ and $z$ ($0.25<x<0.3, 0.35<z<0.45$) at $Q^2>3$ GeV$^2$.
002862500 8564_ $$82459287$$s17759$$uhttps://cds.cern.ch/record/2862500/files/pion-12-22-proj.png$$y00080 Left: the nuclear transparency for the $\rho$-meson experiment in Hall~B, where the solid circles correspond to the already published 5~GeV CLAS6 results on $^{56}$Fe~\cite{ElFassi:2012}, and the open squares (triangles) correspond to the projections with 11~GeV~(22~GeV) beam energy on $^{63}$Cu.~The Frankfurt–Miller–Strikman~(FMS)~\cite{Frankfurt:2008pz} curve is a linear extrapolation of the 11~GeV predictions. Right: the nuclear transparency for the $\pi^+$-meson in Hall~C on carbon and copper targets, where the solid points correspond to results already published~\cite{Dutta:2021,Abbott:1997,Garrow:2001}, and the open points correspond to the projections with 11~GeV and 17.6~GeV beam energies.
002862500 8564_ $$82459288$$s19695119$$uhttps://cds.cern.ch/record/2862500/files/2306.09360.pdf$$yFulltext
002862500 8564_ $$82459289$$s859703$$uhttps://cds.cern.ch/record/2862500/files/projections.png$$y00060 (Left) Luminosity versus invariant mass coverage of the available and foreseen facilities to explore hadron structure in experiments with electromagnetic probes. CLAS22 would be the only facility with sufficient luminosity to determine the $\gamma_vpN^*$ electrocouplings at $Q^2$ from 10-30~GeV$^2$ that can map out the dressed quark mass function within the range of quark momenta $k < 2$~GeV where the dominant part of hadron mass and the bound three-quark structure of $N^*$s emerge from QCD. (Right) Available results at $Q^2$ up to 5~GeV$^2$ and those projected for the $Q^2$ evolution of the $N(1440)1/2^+$ $A_{1/2}$ electrocoupling for $Q^2$ up to 30~GeV$^2$ for a luminosity of $5 \times 10^{35}$~cm$^{-2}$s$^{-1}$ and six months of data collection time.
002862500 8564_ $$82459290$$s63043$$uhttps://cds.cern.ch/record/2862500/files/nobuo-all.png$$y00030 Left panel: Polarized gluon distribution $x \Delta g(x)$ at $Q^2 = 10$~GeV$^2$ from JAM~\cite{Zhou:2022wzm}, showing separately  $\Delta g > 0$ (red lines) and $\Delta g < 0$ (blue lines) and contrasted to $\pm$ the unpolarized gluon distribution, $x|g(x)|$ (green lines). Right panel: double longitudinal spin asymmetry $A_{LL}^{\pi^+}$ for semi-inclusive $\pi^+$ production from a proton, for a selected kinematics at JLab with 22~GeV electron beam. Note that the heights of the colored boxes give a $1\sigma$ uncertainty in the asymmetry from the PDF replicas, while the error bars give the expected statistical uncertainty with 100\% acceptance.
002862500 8564_ $$82459291$$s10375$$uhttps://cds.cern.ch/record/2862500/files/XS-ebeam-pizero-24GeV.png$$y00095 Left: The measured cross section of $\gamma + $Si$\rightarrow \pi^0 + $Si from the PrimEx II experiment ~\cite{PrimEx-II:2020jwd} (with $E_\gamma$ of 4.45--5.30 GeV). Right: The projected cross section of $\gamma + e\rightarrow \pi^0 + e$ at JLab 22 GeV (with $E_\gamma$ of 20--22~GeV and without smearing of the experimental resolutions).
002862500 8564_ $$82459292$$s10715$$uhttps://cds.cern.ch/record/2862500/files/CollinsRho_22GeV_40M.png$$y00017 Prediction for the Collins asymmetries for $\rho^+$ (circles), $\rho^0$ (squares) and $\rho^-$ (triangles) in SIDIS off    transversely polarized protons in the JLab22 kinematics and the impact of VMs on the inclusive pion Collins SSA. The simulations are carried using the StringSpinner package \cite{Kerbizi:2021pzn} and the PYTHIA 8.2 \cite{Sjostrand:2014zea} event generator.
002862500 8564_ $$82459293$$s20770$$uhttps://cds.cern.ch/record/2862500/files/Ratio_bT_01.png$$y00024 Impact on the error bands of the TMD in $k_{\perp}$ space (left) and its Fourier-conjugate  $b_{\perp}$ (right) at two values of $x$ and at $Q= 2$ GeV, based on the MAP22TMD analysis~\cite{Bacchetta:2022awv}. Purple bands: current situation. Red bands: after the inclusion of JLab22 data.
002862500 8564_ $$82459294$$s10081$$uhttps://cds.cern.ch/record/2862500/files/Kin_Fact_TDA_gamma.png$$y00050 The factorized amplitude for backward electroproduction of a meson (left) or a photon (right). CF denotes the perturbatively calculable coefficient function.
002862500 8564_ $$82459295$$s27223$$uhttps://cds.cern.ch/record/2862500/files/projections_22GeV_bin1_values_RAh.png$$y00085 Three-fold $z$ ($z_2$)-binned projections of $R^A_h$ (left column), $\Delta\langle p_T^2\rangle$ (middle column), and $R_{2h}$ (right column) for various hadrons production off carbon target represented with different colors and for a combination of $x$ and $Q^2$ bins that are outside the 11~GeV coverage on both rows. Error bars represent the statistical precision of the simulated sample from GiBUU assuming a per-nucleon luminosity of $10^{35}$~cm$^{-2}$s$^{-1}$ and 15~PAC days.
002862500 8564_ $$82459296$$s56595$$uhttps://cds.cern.ch/record/2862500/files/alpha_map.png$$y00009 (Left) Expected $ \Gamma_1^{p-n}$ from 22 GeV (squares), 11 GeV (triangles), and EIC (crosses). 6 GeV data (circles) and theory expectation (plain line) are also shown. The rectangle shows the optimal range to extract $\alpha_s$. (Right) Expected accuracy on mapping $\alpha_s(Q^2)$ (squares) compared to world data~\cite{Deur:2022msf} (rhombi) and predictions~\cite{Brodsky:2010ur, Cui:2019dwv}.
002862500 8564_ $$82459297$$s36426$$uhttps://cds.cern.ch/record/2862500/files/KinePlots1.png$$y00054 Fixed target elastic $eN$ scattering kinematics for beam energies of 14, 18, and 22~GeV. From top left to bottom right: $Q^2$ dependence of electron and proton scattering angles $\theta_e$, $\theta_p$, scattered electron energy $E'_e$, and scattered proton momentum $p_p$.
002862500 8564_ $$82459298$$s89743$$uhttps://cds.cern.ch/record/2862500/files/pEMC_JLab_22.png$$y00078 Anticipated results for observable $R_1$ (see text). The assumed luminosity for this prediction is $\text{2x10}^{35} ~\mathrm{cm^{-2}s^{-1}}$, which has been nearly demonstrated in present-day CLAS for light nuclear targets.
002862500 8564_ $$82459299$$s67006$$uhttps://cds.cern.ch/record/2862500/files/compare_solid_ddvcs_11GeV_22GeV_Q2x.png$$y00042 Comparison of SoLID DDVCS kinematic coverage between 11 GeV (black) and 22 GeV (color) electron beams. They both use the same running conditions and detect the scattered electron and decay muon pair at forward and large angle. $x_B$ is Bjorken-$x$, $Q^2$ is the negative four momentum transfer squared, and $Q'^2$ is the invariant mass of muon pair squared. 22 GeV electron beam will allow access to substantially higher $x_B$, $Q^2$, and $Q'^2$.
002862500 8564_ $$82459300$$s80185$$uhttps://cds.cern.ch/record/2862500/files/alert_22_kin.png$$y00075 The 22~GeV kinematic coverage of $x$ vs.~$-t$ phase-space along with the expected $A_{LU}$ for selected set of bins. The shown asymmetry bins correspond to a fixed $0.12<-t<0.17~\text{GeV}^2$ range, and to $0.05<x<0.17$, $0.17<x<0.23$, and $0.23<x_{B}<0.50$ from top to bottom in the right panel.
002862500 8564_ $$82459301$$s421296$$uhttps://cds.cern.ch/record/2862500/files/Dt-pressure.png$$y00035 Left: The $D$-term form factor of the QCD energy-momentum tensor, $D_q(t)$, as a function of the momentum transfer $-t$, as extracted from DVCS experiments. The arrows indicate the $-t$ ranges covered at different beam energies with the constraint $-t/Q^2 < 0.2$. Right: Quark pressure distribution in the proton, $p(r)$, as a function of the distance from the proton center, $r$, obtained as the Fourier transform of $D_q(t)$.
002862500 8564_ $$82459302$$s30777$$uhttps://cds.cern.ch/record/2862500/files/Bj22_meas5.png$$y00008 (Left) Expected $ \Gamma_1^{p-n}$ from 22 GeV (squares), 11 GeV (triangles), and EIC (crosses). 6 GeV data (circles) and theory expectation (plain line) are also shown. The rectangle shows the optimal range to extract $\alpha_s$. (Right) Expected accuracy on mapping $\alpha_s(Q^2)$ (squares) compared to world data~\cite{Deur:2022msf} (rhombi) and predictions~\cite{Brodsky:2010ur, Cui:2019dwv}.
002862500 8564_ $$82459303$$s187111$$uhttps://cds.cern.ch/record/2862500/files/3Nkins.png$$y00071 Left: The $\alpha_{3N}$ dependence of inclusive cross section ratios for $^4$He to $^3$He.~The data are from JLab~\cite{Fomin_2012} and SLAC~\cite{Day:1979bx,Rock:1981aa} experiments. The horizontal line at $1.3\le \alpha_{3N}<1.5$ identifies the magnitude of the 2N~SRC plateau~\cite{Sargsian:2019,Day:2023}. Right: The $Q^2$ range necessary to isolate 3N~SRCs for JLab 22~GeV. Also shown are the ranges that will be accessed in the 12~GeV experiments.
002862500 8564_ $$82459304$$s3447342$$uhttps://cds.cern.ch/record/2862500/files/22PS.png$$y00014 Multi-D phase space of SIDIS at 22 GeV kinematics. The color range shows the expected relative uncertainties for SIDIS cross sections in 4D bins, using the existing CLAS12 simulation/reconstruction chain for 100 days of running with $10^{35}$~cm$^{-2}$s$^{-1}$ luminosity.
002862500 8564_ $$82459305$$s8332$$uhttps://cds.cern.ch/record/2862500/files/coherent_jpsi_cs_22.png$$y00088 Coherent $J/\psi$ photoproduction cross section from different nuclei, including free proton, deuterium, and $^4$He, as a function of the photon energy.
002862500 8564_ $$82459306$$s37166$$uhttps://cds.cern.ch/record/2862500/files/pippim_invmass.png$$y00048 Comparison of the available phase space, accessible with the present CLAS12 setup, in $Q^{2}-x_{B}$ or the $\pi^{-}\Delta^{++}$ process under forward kinematics ($-t <$~1.5~GeV$^{2}$) (left) and for the $\pi^{+}\pi^{-}$ invariant mass of the same process, which is used to suppress the dominant $\rho$ production background by the cut on $M(\pi^{+}\pi^{-}) >$~1.1~GeV, indicated by the yellow line (right) for a 10.6~GeV, 18~GeV and 22~GeV electron beam.
002862500 8564_ $$82459307$$s14264$$uhttps://cds.cern.ch/record/2862500/files/tr_cu-flagnthick-11-22gev.png$$y00079 Left: the nuclear transparency for the $\rho$-meson experiment in Hall~B, where the solid circles correspond to the already published 5~GeV CLAS6 results on $^{56}$Fe~\cite{ElFassi:2012}, and the open squares (triangles) correspond to the projections with 11~GeV~(22~GeV) beam energy on $^{63}$Cu.~The Frankfurt–Miller–Strikman~(FMS)~\cite{Frankfurt:2008pz} curve is a linear extrapolation of the 11~GeV predictions. Right: the nuclear transparency for the $\pi^+$-meson in Hall~C on carbon and copper targets, where the solid points correspond to results already published~\cite{Dutta:2021,Abbott:1997,Garrow:2001}, and the open points correspond to the projections with 11~GeV and 17.6~GeV beam energies.
002862500 8564_ $$82459308$$s20334$$uhttps://cds.cern.ch/record/2862500/files/Ratio_kT_01.png$$y00023 Impact on the error bands of the TMD in $k_{\perp}$ space (left) and its Fourier-conjugate  $b_{\perp}$ (right) at two values of $x$ and at $Q= 2$ GeV, based on the MAP22TMD analysis~\cite{Bacchetta:2022awv}. Purple bands: current situation. Red bands: after the inclusion of JLab22 data.
002862500 8564_ $$82459309$$s168906$$uhttps://cds.cern.ch/record/2862500/files/SFquarkmodels.png$$y00065 Left: Deuteron valence quark distribution based on a simple convolution model (dashed red line~\cite{Arrington:2003qt}), compared to a deuteron with a 5\% component based on the 6$q$-bag model of Ref.~\cite{Mulders:1983au}. In the EMC effect region, the impact is extremely small, while the six-quark bag contribution enhances the PDF for $x>1$, dominating the PDFs above $x=1.1$. Right: Deuteron structure function for unmodified deuteron and modified deuteron based on the color screening model~\cite{Sargsian:2003}. In this case, the deuteron PDF is suppressed at large $x$ and $Q^2$, rather than enhanced. The left figure is adapted from Ref.~\cite{Arrington:2003qt}, and the right figure is reproduced from Ref.~\cite{Sargsian:2003}.
002862500 8564_ $$82459310$$s11149$$uhttps://cds.cern.ch/record/2862500/files/CollinsPi-plusDecomposed_22GeV_40M.png$$y00018 Prediction for the Collins asymmetries for $\rho^+$ (circles), $\rho^0$ (squares) and $\rho^-$ (triangles) in SIDIS off    transversely polarized protons in the JLab22 kinematics and the impact of VMs on the inclusive pion Collins SSA. The simulations are carried using the StringSpinner package \cite{Kerbizi:2021pzn} and the PYTHIA 8.2 \cite{Sjostrand:2014zea} event generator.
002862500 8564_ $$82459311$$s39142$$uhttps://cds.cern.ch/record/2862500/files/figureJerry.png$$y00064 Enhancement of longitudinal cross sections as a function of $Q^2$ and $x=Q^2/2 M_N \nu$, where $M_N$ is the nucleon mass and $\nu$ is the virtual photon energy.
002862500 8564_ $$82459312$$s10024$$uhttps://cds.cern.ch/record/2862500/files/Kin_Fact_TDA.png$$y00049 The factorized amplitude for backward electroproduction of a meson (left) or a photon (right). CF denotes the perturbatively calculable coefficient function.
002862500 8564_ $$82459313$$s126050$$uhttps://cds.cern.ch/record/2862500/files/cyero_panel_top_v2.png$$y00068 Left: Angular distribution ratio $R(\theta_{\mathrm{nq}})= \sigma_{\mathrm{exp}} / \sigma_{PWIA}$ for $p_{m}=0.5$~GeV~\cite{Boeglin_2011}, where PWIA stands for the plane wave impulse approximation. Right: Reduced cross sections for the neutron recoil angle $\theta_{\mathrm{nq}}=35\pm5^{\circ}$~\cite{Yero:2020}.
002862500 8564_ $$82459314$$s3995$$uhttps://cds.cern.ch/record/2862500/files/TFFPole.png$$y00092 Pseudoscalar pole contributions to hadronic light-by-light scattering in the anomalous magnetic moment of the muon; crossed diagrams are not shown.  The red blobs denote the pseudoscalar transition form factors.  Figure taken from Ref.~\cite{Gan:2020aco}.
002862500 8564_ $$82459315$$s35146$$uhttps://cds.cern.ch/record/2862500/files/cff_jlab22_q210_valence_new.png$$y00039 Flavor separated and gluon contributions to the CFF plotted as a function of $x_{B}$ at JLab kinematics typical of a 22 GeV upgrade. Notice the role of the valence component in the evaluation of the CFF given that $q + \bar{q} = q_{v} + 2\bar{q}$. (work in progress with Brandon Kriesten)
002862500 8564_ $$82459316$$s43139$$uhttps://cds.cern.ch/record/2862500/files/etap_he_20.png$$y00098 Differential cross sections of $\gamma + ^4\!He\rightarrow\eta^{\prime}+ ^4\!He$ as a function of the $\eta^{\prime}$ production angles for the beam energy of 10 GeV (left) and of 20 GeV (right).
002862500 8564_ $$82459317$$s61345$$uhttps://cds.cern.ch/record/2862500/files/DKpainted.png$$y00032 The gluonic form factors $A(k^2=-t)$ (left) and $D(k^2)=4C(k^2)$ (right) extracted from the two-dimensional cross section data of $J/\psi-007$ Collaboration \cite{Duran:2022xag} using the holographic QCD approach \cite{Mamo:2019mka,Mamo:2022eui} (dash-dot curve) and the GPD approach \cite{Guo:2021ibg} (green solid curve), compared to the recent lattice calculation \cite{Pefkou:2021fni} (blue dotted curve).
002862500 8564_ $$82459318$$s624081$$uhttps://cds.cern.ch/record/2862500/files/ALERT_gas_enclosure.png$$y00074 The ALERT detector.
002862500 8564_ $$82459319$$s60441$$uhttps://cds.cern.ch/record/2862500/files/pion_impact.png$$y00011 (Left) The kinematics of the 11\,GeV (blue) and 22\,GeV (red) points in $Q^2$ versus $x_\pi$ along with the line of $W_\pi^2=1.04~{\rm GeV}^2$. Multiple bins in $t$ are on each red point. (Right) The impact on the valence quark distribution from the JLab TDIS experiments.
002862500 8564_ $$82459320$$s24862$$uhttps://cds.cern.ch/record/2862500/files/jpsi_deuteron_coherent_projection.png$$y00089 Expected nuclear coherent $J/\psi$ measurement statistics for deuterium (left) and Helium-4 (right). Calculations were performed at electron energies of 17~GeV (scaled down by a factor of 10) and 22~GeV, assuming an integrated luminosity of 200 pb$^{-1}$ for photons carrying between $87.5-97.5\%$ of the beam energy. Also included are projections for the incoherent background (dotted line), which dominate over the coherent signal at these kinematics.
002862500 8564_ $$82459321$$s31302$$uhttps://cds.cern.ch/record/2862500/files/TaggedDis.png$$y00072 The TDIS reaction. An electron with four-momentum $k$ exchanges a virtual photon with a nucleon in a deuteron with momentum $\vec p_i$.~The scattered electron has four-momentum $k'$.~The spectator backward nucleon is detected with momentum $\vec p_{rec}$, thus tagging the struck nucleon.~The four-momentum transfer is $Q^2= -(k-k')^2$ and the Bjorken scaling variable is $x_B$=~$x$= $Q^2/2M_N\nu$.
002862500 8564_ $$82459322$$s50454$$uhttps://cds.cern.ch/record/2862500/files/gluon_ppdf.png$$y00029 Left panel: Polarized gluon distribution $x \Delta g(x)$ at $Q^2 = 10$~GeV$^2$ from JAM~\cite{Zhou:2022wzm}, showing separately  $\Delta g > 0$ (red lines) and $\Delta g < 0$ (blue lines) and contrasted to $\pm$ the unpolarized gluon distribution, $x|g(x)|$ (green lines). Right panel: double longitudinal spin asymmetry $A_{LL}^{\pi^+}$ for semi-inclusive $\pi^+$ production from a proton, for a selected kinematics at JLab with 22~GeV electron beam. Note that the heights of the colored boxes give a $1\sigma$ uncertainty in the asymmetry from the PDF replicas, while the error bars give the expected statistical uncertainty with 100\% acceptance.
002862500 8564_ $$82459323$$s62374$$uhttps://cds.cern.ch/record/2862500/files/ZY-all_3bin_01_03_05_lin.png$$y00076 Kaon-SIDIS projection in 4-D binning ($Q^2$, $z$, $x$, $p_T$) for $^3$He at $10^{35}$~cm$^{-2}$ s$^{-1}$ luminosity and beam time of 100 days. Out of totally 38 ($Q^2$, $z$) bins, only three bins are shown here to illustrate the comparison of statistical uncertainties and coverage of $p_T$ and $x$ between 11~GeV (red circles) and 22~GeV (blue squares) beam energies for three different $Q^2$ bins and one fixed $z$ value.
002862500 8564_ $$82459324$$s33390$$uhttps://cds.cern.ch/record/2862500/files/cff_jlab22_q210_gluon.png$$y00040 Flavor separated and gluon contributions to the CFF plotted as a function of $x_{B}$ at JLab kinematics typical of a 22 GeV upgrade. Notice the role of the valence component in the evaluation of the CFF given that $q + \bar{q} = q_{v} + 2\bar{q}$. (work in progress with Brandon Kriesten)
002862500 8564_ $$82459325$$s111418$$uhttps://cds.cern.ch/record/2862500/files/FigQvsdEMv4-2percent-edit.png$$y00096 Light quark mass ratio ${\cal Q}$ determined by two different methods. The left-hand side are calculated from the $\eta\to 3\pi$ decay determined by using the Cornell Primakoff~\cite{Browman:1974sj}, the collider average~\cite{ParticleDataGroup:2018ovx} experimental results, and the projected Primakoff measurement at JLab 22 GeV for $\Gamma(\eta\to \gamma\gamma)$ as input. The right-hand side shows the results of ${\cal Q}$ obtained from the kaon mass difference with different theoretical estimates for the electromagnetic corrections based on Dashen's theorem, Ref.~\cite{Kastner:2008ch} (KN), and the lattice~\cite{Giusti:2017dmp}. This figure is taken from Ref.~\cite{Gan:2020aco} with modifications.
002862500 8564_ $$82459326$$s210614$$uhttps://cds.cern.ch/record/2862500/files/FFA_cell_W.png$$y00104 Compact FODO cell configured with two combined function magnets featuring closely spaced orbits and small Twiss functions for six different energy beams.
002862500 8564_ $$82459327$$s137736$$uhttps://cds.cern.ch/record/2862500/files/q2_x_101822.png$$y00047 Comparison of the available phase space, accessible with the present CLAS12 setup, in $Q^{2}-x_{B}$ or the $\pi^{-}\Delta^{++}$ process under forward kinematics ($-t <$~1.5~GeV$^{2}$) (left) and for the $\pi^{+}\pi^{-}$ invariant mass of the same process, which is used to suppress the dominant $\rho$ production background by the cut on $M(\pi^{+}\pi^{-}) >$~1.1~GeV, indicated by the yellow line (right) for a 10.6~GeV, 18~GeV and 22~GeV electron beam.
002862500 8564_ $$82459328$$s44892$$uhttps://cds.cern.ch/record/2862500/files/silicon_cs_1_v3.png$$y00094 Left: The measured cross section of $\gamma + $Si$\rightarrow \pi^0 + $Si from the PrimEx II experiment ~\cite{PrimEx-II:2020jwd} (with $E_\gamma$ of 4.45--5.30 GeV). Right: The projected cross section of $\gamma + e\rightarrow \pi^0 + e$ at JLab 22 GeV (with $E_\gamma$ of 20--22~GeV and without smearing of the experimental resolutions).
002862500 8564_ $$82459329$$s11832$$uhttps://cds.cern.ch/record/2862500/files/EICvsJLab_CS_pw.png$$y00026 Comparison of uncertainty bands for the Collins-Soper (CS) kernel versus $b_\perp$ ($b=b\perp$), directly extracted from the data using the method proposed in \cite{BermudezMartinez:2022ctj}, for both EIC and JLab22. The extractions consider only a single ratio of two bins in $Q$, integrated over $x$ and $z$. In the left figure, the CS kernels are normalized to the SV19 value \cite{Scimemi:2019cmh} for better visibility of the uncertainty bands. The right figure shows a more realistic picture of the extracted CS kernel, including the effects of power corrections.
002862500 8564_ $$82459330$$s69796$$uhttps://cds.cern.ch/record/2862500/files/fpi_EIC_5x100_22GeV.png$$y00053 Existing data (blue, black, yellow, green) and projected uncertainties for future data on the pion form factor from JLab (PionLT: cyan; 22 GeV VHMS+SHMS: red) and EIC (black), in comparison to a variety of hadronic structure models. JLab 22 GeV with an upgraded VHMS will dramatically improve the overlap between the $F_{\pi}$ from true L/T-separations at JLab and non-L/T-separated data from the EIC.
002862500 8564_ $$82459331$$s23336$$uhttps://cds.cern.ch/record/2862500/files/R_ptdep.png$$y00015 Estimate of $R_{\rm SIDIS} = F_{UU,L}/F_{UU,T}$ versus the hadron transverse momentum $P_T (P_{hT})$ at fixed values of $x$ and $z$ and for different values of $Q^2$, compatible with JLab22 kinematics, using MAP22 TMD analysis~\cite{Bacchetta:2022awv}.
002862500 8564_ $$82459332$$s36818$$uhttps://cds.cern.ch/record/2862500/files/mh.png$$y00019 Invariant mass $M_h$ distribution for $\pi^+\pi^-$ dihadrons from CLAS22 Monte Carlo data (black points). The colored distributions represent dihadrons where one or both of the hadrons are produced from the indicated parent. The dominant contributions are from $\rho^0$ and $\omega$ decays. One histogram entry is filled for each single pion.
002862500 8564_ $$82459333$$s62781$$uhttps://cds.cern.ch/record/2862500/files/sfq2_updated.png$$y00067 Kinematic domain accessible for 22~GeV electron beam. Colorful points are the 22~GeV projections while the open (solid) black circles are the 6 (12)~GeV measurements.
002862500 8564_ $$82459334$$s12178$$uhttps://cds.cern.ch/record/2862500/files/p2_2_uprim_m1_zoom.png$$y00044  : Differential cross section as a function of $S_{\gamma N}$ (bottom axis) and the corresponding $\xi$ (top axis) for $M_{\gamma\gamma}^2 = 4~\mathrm{GeV}^2$, $t=t_{min}$, and $u' = -1~\mathrm{GeV}^2$. The leading order result is denoted by the solid (dashed) red line, while the next-to-leading order one by the dotted (dash-dotted) blue line for the GK (MMS) GPD model.
002862500 8564_ $$82459335$$s172110$$uhttps://cds.cern.ch/record/2862500/files/Magnets.png$$y00105 The cross section and field specs of the open mid-plane magnets consisting of 24 wedge-shaped pieces of NdFeB. The outer wedges are symmetrical, while the top and bottom wedges have two edges parallel to the horizontal axis.
002862500 8564_ $$82459336$$s34409$$uhttps://cds.cern.ch/record/2862500/files/projections_22GeV_bin1_values_pT2broad.png$$y00086 Three-fold $z$ ($z_2$)-binned projections of $R^A_h$ (left column), $\Delta\langle p_T^2\rangle$ (middle column), and $R_{2h}$ (right column) for various hadrons production off carbon target represented with different colors and for a combination of $x$ and $Q^2$ bins that are outside the 11~GeV coverage on both rows. Error bars represent the statistical precision of the simulated sample from GiBUU assuming a per-nucleon luminosity of $10^{35}$~cm$^{-2}$s$^{-1}$ and 15~PAC days.
002862500 8564_ $$82459337$$s24143$$uhttps://cds.cern.ch/record/2862500/files/tantalscaling.png$$y00070 Left: The $\alpha_{3N}$ dependence of inclusive cross section ratios for $^4$He to $^3$He.~The data are from JLab~\cite{Fomin_2012} and SLAC~\cite{Day:1979bx,Rock:1981aa} experiments. The horizontal line at $1.3\le \alpha_{3N}<1.5$ identifies the magnitude of the 2N~SRC plateau~\cite{Sargsian:2019,Day:2023}. Right: The $Q^2$ range necessary to isolate 3N~SRCs for JLab 22~GeV. Also shown are the ranges that will be accessed in the 12~GeV experiments.
002862500 8564_ $$82459338$$s51169$$uhttps://cds.cern.ch/record/2862500/files/a1n_world_021723.png$$y00007 Neutron spin asymmetry $A_1^n$ from 6 GeV experiments (black symbols) and expected precision from the completed 11 GeV experiment E12-06-110 (blue down triangles). A possible follow-on experiment with 30 days of 22 GeV beam and standard Hall C equipment would extend the precision and kinematic reach of the existing data significantly (red circles). Various previous models for the $x$-dependence and the expected asymptotic value at $x \rightarrow 1$ are shown in addition to a new prediction based on  light-front holographic QCD (AdS/CFT)~\cite{AdSCFT}.
002862500 8564_ $$82459339$$s69322$$uhttps://cds.cern.ch/record/2862500/files/BDX-reach.png$$y00102 The BDX sensitivity  at 90$\%$ CL (green curve) by using a 22\,GeV  electron beam. The limit is given for the scaling parameter $y$, proportional to the LDM-SM interaction cross section, as a function of the LDM mass m$_{\chi}$. The curve refers to the ideal case of a zero-background measurement, assuming a 300\,MeV energy threshold and an overall 20$\%$ signal efficiency.
002862500 8564_ $$82459340$$s37412$$uhttps://cds.cern.ch/record/2862500/files/etap_he_10.png$$y00097 Differential cross sections of $\gamma + ^4\!He\rightarrow\eta^{\prime}+ ^4\!He$ as a function of the $\eta^{\prime}$ production angles for the beam energy of 10 GeV (left) and of 20 GeV (right).
002862500 8564_ $$82459341$$s58846$$uhttps://cds.cern.ch/record/2862500/files/epix-all-ptdep.png$$y00012 The double spin asymmetry as a function of $P_T$ in $ep\rightarrow e^\prime\pi^+X$ in a given bin in $x$ (left) and the $Q^2$-dependence of the double spin asymmetry in a given bin in $x$ for $ep\rightarrow e^\prime pX$ (right). The projections for 100 days, use the existing simulation and reconstruction chain, and the luminosity currently used for the CLAS12 detector (see Fig.~\ref{fig:JLAB4D}). The curves correspond to different widths in $k_T$ of $g_1(x,k_T)$ compared to $f_1(x,k_T)$.
002862500 8564_ $$82459342$$s59128$$uhttps://cds.cern.ch/record/2862500/files/CGL-for-ALP-nuclei.png$$y00100 The experimental reaches for the ALP-photon coupling vs. the ALP mass. The projected reaches for GlueX at JLab 22~GeV (in yellow and orange) are estimated for a $Pb$ target with 1~pb$^{-1}$ integrated luminosity. The reach at GlueX 12~GeV (in blue) is from~\cite{Aloni:2019ruo}. The projected Belle II~\cite{Dolan:2017osp} (a: prompt decay and b: displaced vertex) reaches (in pink) are for 50~ab$^{-1}$ integrated luminosity. The existing limits~\cite{Bjorken:1988as,OPAL:2002vhf,Knapen:2016moh,Blumlein:1991xh} are shown in gray.
002862500 8564_ $$82459343$$s152781$$uhttps://cds.cern.ch/record/2862500/files/compare_solid_ddvcs_11GeV_22GeV_Qp2Q2.png$$y00041 Comparison of SoLID DDVCS kinematic coverage between 11 GeV (black) and 22 GeV (color) electron beams. They both use the same running conditions and detect the scattered electron and decay muon pair at forward and large angle. $x_B$ is Bjorken-$x$, $Q^2$ is the negative four momentum transfer squared, and $Q'^2$ is the invariant mass of muon pair squared. 22 GeV electron beam will allow access to substantially higher $x_B$, $Q^2$, and $Q'^2$.
002862500 8564_ $$82459344$$s28416$$uhttps://cds.cern.ch/record/2862500/files/etap-projection.png$$y00099 The existing experimental results (the blue points) of the $\eta^{\prime} \to \gamma \gamma$ decay width by the collider experiments~\cite{ParticleDataGroup:2022pth} and the projected measurement at JLab 22 GeV (the red point) via the Primakoff effect.
002862500 8564_ $$82459345$$s29407$$uhttps://cds.cern.ch/record/2862500/files/final_comaprison_integrated.png$$y00046  : Preliminary results for the structure function ratio $\sigma_{LT'}/\sigma_{0}$ for $\pi^{-}\Delta^{++}$ (black) \cite{CLAS:2023akb} in comparison to results from $\pi^{+}n$ (red)~\cite{CLAS:2022iqy} and $\pi^{0}p$ (blue)~\cite{Kim23}. The gray histogram shows the systematic uncertainty of the $\pi^{-}\Delta^{++}$ measurement.
002862500 8564_ $$82459346$$s47613$$uhttps://cds.cern.ch/record/2862500/files/sea2val.png$$y00027 Transverse momentum dependence of sea and valence quarks \cite{Schweitzer:2012hh} (left) and extension of the transverse momentum coverage with JLab22 (open circles) for a given bin in $x$ and $z$ ($0.25<x<0.3, 0.35<z<0.45$) at $Q^2>3$ GeV$^2$.
002862500 8564_ $$82459347$$s14247$$uhttps://cds.cern.ch/record/2862500/files/sfquarkskin-mod.png$$y00062 Left: Absolute value of internal longitudinal momenta for DIS from bound nucleon with produced final mass of $W=2$~GeV at different $Q^2$. Right: Ratio of quasielastic to DIS contribution of the nuclear structure function $F_2$ for $x=1.5$ and different $Q^2$. No EMC effects are taken into account in this estimation.
002862500 8564_ $$82459348$$s1113101$$uhttps://cds.cern.ch/record/2862500/files/data_csm.png$$y00059 Results for the $p \to \Delta(1232)3/2^+$ magnetic transition form factor (left) and the $N(1440)1/2^+$ $A_{1/2}(Q^2)$ electrocoupling (middle) \cite{Burkert:2022ioj, Aznauryan:2011qj,Mokeev:2022xfo} from studies of $\pi N$ and $\pi^+\pi^-p$ electroproduction in measurements of the JLab 6-GeV era. CSM predictions with the running dressed quark mass deduced from the QCD Lagrangian, see Fig.~\ref{running_mass_reach} (left), are shown as blue solid lines \cite{Segovia:2015hra, Burkert:2017djo} and by employing a simplified contact $qq$-interaction resulting in a momentum-independent (frozen) quark mass of $\approx 0.36$~GeV as red dotted lines \cite{Wilson:2011aa}. Comparisons between the CSM prediction (solid line) on the $A_{1/2}(Q^2)$ $\Delta(1600)3/2^+$ electrocoupling~\cite{Lu:2019bjs} and preliminary results from the studies of $\pi^+\pi^-p$ electroproduction with CLAS are shown on the right. The data points with error bars have become available from independent analyses of the cross sections in overlapping $W$-intervals with substantial contributions from the $\Delta(1600)3/2^+$ as labeled for $Q^2$ from 2 to 5~GeV$^2$.
002862500 8564_ $$82459349$$s81356$$uhttps://cds.cern.ch/record/2862500/files/primex-pi0-edit.png$$y00093 The projected precision on $\Gamma(\pi^0\rightarrow \gamma\gamma)$ with an atomic electron target (the red point) and the previous published results (the blue points) listed in PDG~\cite{ParticleDataGroup:2022pth}. Theoretical predictions are: chiral anomaly~\cite{Adler:1969gk,Bell:1969ts} (dark red~band); IO, QCD sum rule~\cite{Ioffe:2007eg} (gray~band); KM, ChPT NNLO~\cite{Kampf:2009tk} (magenta~band); AM, ChPT NLO~\cite{Ananthanarayan:2002kj} (blue~band); GBH, ChPT NLO~\cite{Goity:2002nn} (green~band).
002862500 8564_ $$82459350$$s24792$$uhttps://cds.cern.ch/record/2862500/files/CountRate22.png$$y00056 Left: Differential cross section $d\sigma/dQ^2$ for different beam energies for proton and neutron. Right: Same as left, expressed in terms of an event rate per unit integrated luminosity per $Q^2$ interval (assuming 2$\pi$ azimuthal angle acceptance).
002862500 8564_ $$82459351$$s29581$$uhttps://cds.cern.ch/record/2862500/files/dvcseps_vq2_eic.png$$y00037 Longitudinal to transverse virtual photon polarization parameter for the DVCS process, $\epsilon_{DVCS}$. The L/T separation of the DVCS term can be accomplished at the kinematic points shown on (left) $E_{e} = 6,\, 11,\, 18,\, 24$~GeV and fixed $x_{B} = 0.2$, $t = -0.2$~GeV$^2$; (right) EIC configurations are given as $\sqrt{s} = 74$ GeV corresponds to $E_{e} = 5$~GeV, $E_p = 275$~GeV; and $\sqrt{s} = 104$~GeV corresponds to $E_{e} = 10$~GeV, $E_{p} = 275$~GeV at kinematics $x_{B} = 0.01$, $t = -0.2$~GeV$^2$ (work in progress with Brandon Kriesten)
002862500 8564_ $$82459352$$s21347$$uhttps://cds.cern.ch/record/2862500/files/projections_22GeV_bin2_values_R2h.png$$y00084 Three-fold $z$ ($z_2$)-binned projections of $R^A_h$ (left column), $\Delta\langle p_T^2\rangle$ (middle column), and $R_{2h}$ (right column) for various hadrons production off carbon target represented with different colors and for a combination of $x$ and $Q^2$ bins that are outside the 11~GeV coverage on both rows. Error bars represent the statistical precision of the simulated sample from GiBUU assuming a per-nucleon luminosity of $10^{35}$~cm$^{-2}$s$^{-1}$ and 15~PAC days.
002862500 8564_ $$82459353$$s28406$$uhttps://cds.cern.ch/record/2862500/files/physics-primakoff.png$$y00091 The QCD symmetries at low-energy and the properties of light pseudoscalar meson $\pi^0$, $\eta$, and $\eta^{\prime}$.
002862500 8564_ $$82459354$$s14480$$uhttps://cds.cern.ch/record/2862500/files/strange.png$$y00004 (Left) The kinematic coverage available from a 22~GeV beam and the unmodified acceptance of the SoLID spectrometer. (Right) The impact of simulated 22~GeV PVDIS proton and deuteron data on the strange quark PDF $s^+=s+\bar{s}$ in the JAM framework~\cite{Cocuzza:2022jye}.  A high statistics measurement of $A_{PV}$ with realistic normalization uncertainty measured with 22~GeV beam, the SoLID spectrometer, and the luminosity described in the text is simulated.
002862500 8564_ $$82459355$$s10392$$uhttps://cds.cern.ch/record/2862500/files/F1Gothe.png$$y00057 Proton mass budget, drawn using a Poincar\'e-invariant decomposition: emergent hadron mass (EHM) $= 94$\%; Higgs boson (HB) contribution $= 1$\%; and EHM+HB interference $= 5$\%. (Separation at renormalization scale $\zeta = 2\,$GeV, calculated using information from Refs.\,\cite{Flambaum:2005kc, RuizdeElvira:2017stg, Aoki:2019cca, Workman:2022ynf}).
002862500 8564_ $$82459356$$s118673$$uhttps://cds.cern.ch/record/2862500/files/QE_DIS_ratio.png$$y00063 Left: Absolute value of internal longitudinal momenta for DIS from bound nucleon with produced final mass of $W=2$~GeV at different $Q^2$. Right: Ratio of quasielastic to DIS contribution of the nuclear structure function $F_2$ for $x=1.5$ and different $Q^2$. No EMC effects are taken into account in this estimation.
002862500 8564_ $$82459357$$s51738$$uhttps://cds.cern.ch/record/2862500/files/deep_proj2.png$$y00081 Projections for D$(e,e'p)$ in rescattering kinematics. The curves are from Ref.~\cite{physics4040092} corresponding to 3 possible values of the CT model parameter, $\Delta M^2$.
002862500 8564_ $$82459358$$s6849$$uhttps://cds.cern.ch/record/2862500/files/Peng_Fig1.png$$y00006 Comparison of the $x(s(x) + \bar s(x))$ data (left) and the $x(\bar u(x) +\bar d(x) - s(x) - \bar s(x))$ distribution (right) extracted from HERMES data with the calculations based on the BHPS model. The solid and dashed curves are obtained by evolving the BHPS result to $Q^2 = 2.5$ GeV$^2$ using $\mu$ = 0.5 GeV and $\mu$ = 0.3 GeV, respectively. The normalizations of the calculations for $x(s(x) + \bar s(x))$ are adjusted to fit the data at $x > 0.1$, denoted by solid circles.
002862500 8564_ $$82459359$$s7997$$uhttps://cds.cern.ch/record/2862500/files/Peng_Fig2.png$$y00007 Comparison of the $x(s(x) + \bar s(x))$ data (left) and the $x(\bar u(x) +\bar d(x) - s(x) - \bar s(x))$ distribution (right) extracted from HERMES data with the calculations based on the BHPS model. The solid and dashed curves are obtained by evolving the BHPS result to $Q^2 = 2.5$ GeV$^2$ using $\mu$ = 0.5 GeV and $\mu$ = 0.3 GeV, respectively. The normalizations of the calculations for $x(s(x) + \bar s(x))$ are adjusted to fit the data at $x > 0.1$, denoted by solid circles.
002862500 8564_ $$82459360$$s25268$$uhttps://cds.cern.ch/record/2862500/files/jpsi_helium_coherent_projection.png$$y00090 Expected nuclear coherent $J/\psi$ measurement statistics for deuterium (left) and Helium-4 (right). Calculations were performed at electron energies of 17~GeV (scaled down by a factor of 10) and 22~GeV, assuming an integrated luminosity of 200 pb$^{-1}$ for photons carrying between $87.5-97.5\%$ of the beam energy. Also included are projections for the incoherent background (dotted line), which dominate over the coherent signal at these kinematics.
002862500 8564_ $$82459361$$s1817070$$uhttps://cds.cern.ch/record/2862500/files/running-plots.png$$y00058 Momentum-dependent dressed quark and gluon masses (left) \cite{Roberts:2021nhw} and the QCD running coupling (right) \cite{Deur:2022msf} deduced using CSMs from the QCD Lagrangian as a solution of the equations of motion for the quark and gluon fields. On the left the ranges of momenta accessible for mapping the dressed quark mass function from the results on the evolution of the $\gamma_vpN^*$ electrocouplings with $Q^2$ from the measurements of the 6-GeV/12-GeV eras with the CLAS/CLAS12 detectors are shown, as well as the corresponding momentum range that will be accessible after an increase of the CEBAF energy up to 22~GeV from the anticipated results on the $\gamma_vpN^*$ electrocouplings at $Q^2$ from 10-30~GeV$^2$ from the measurements with the CLAS22 detector.
002862500 8564_ $$82459362$$s21782$$uhttps://cds.cern.ch/record/2862500/files/SFQ-color-screening.png$$y00066 Left: Deuteron valence quark distribution based on a simple convolution model (dashed red line~\cite{Arrington:2003qt}), compared to a deuteron with a 5\% component based on the 6$q$-bag model of Ref.~\cite{Mulders:1983au}. In the EMC effect region, the impact is extremely small, while the six-quark bag contribution enhances the PDF for $x>1$, dominating the PDFs above $x=1.1$. Right: Deuteron structure function for unmodified deuteron and modified deuteron based on the color screening model~\cite{Sargsian:2003}. In this case, the deuteron PDF is suppressed at large $x$ and $Q^2$, rather than enhanced. The left figure is adapted from Ref.~\cite{Arrington:2003qt}, and the right figure is reproduced from Ref.~\cite{Sargsian:2003}.
002862500 8564_ $$82459363$$s90772$$uhttps://cds.cern.ch/record/2862500/files/jlab22-1.png$$y00005 The kinematic coverage in the $(x,Q^2)$ plane (left) and in the $(x,W^2)$ plane (right) of the projected JLab measurements with a lepton beam energy of 22~GeV, compared with the corresponding coverage of the current data taken with an 11~GeV beam. We also indicate $W^2=12.5$ GeV$^2$, the usual kinematic cut in most global PDF determinations, as well as $W^2=6.5$ GeV$^2$.
002862500 8564_ $$82459364$$s121737$$uhttps://cds.cern.ch/record/2862500/files/jlab22-2.png$$y00006 The forward-backward asymmetry as a function of Collins-Soper angle \cite{Collins:1977iv} in high-mass DY production at the LHC~\cite{Ball:2022qtp} provides enhanced sensitive to the behavior of the quark and antiquark PDFs in the large-$x$ extrapolation region.
002862500 8564_ $$82459365$$s533860$$uhttps://cds.cern.ch/record/2862500/files/Fig2.png$$y00022 The $q_T$ distribution of the SIDIS cross section can be divided in different regions according to the size of $q_T$ with respect to $Q$. Large $q_T$s correspond to the collinear region, where we expect pQCD to be at work. Small $q_T$s correspond to the TMD region, where non-perturbative effects become dominant. A smooth matching is supposed to happen in the intermediate region, the so-called matching region.
002862500 8564_ $$82459366$$s321113$$uhttps://cds.cern.ch/record/2862500/files/Fig1.png$$y00021 The $q_T$ distribution of the SIDIS cross section can be divided in different regions according to the size of $q_T$ with respect to $Q$. Large $q_T$s correspond to the collinear region, where we expect pQCD to be at work. Small $q_T$s correspond to the TMD region, where non-perturbative effects become dominant. A smooth matching is supposed to happen in the intermediate region, the so-called matching region.
002862500 8564_ $$82459367$$s2398023$$uhttps://cds.cern.ch/record/2862500/files/EmergenceStructure_F5_black.png$$y00000 \footnotesize The emergence of structure in QCD from the perturbative regime of quarks and gluons to bound hadrons to hadrons bound in nuclei.
002862500 8564_ $$82472823$$s28022$$uhttps://cds.cern.ch/record/2862500/files/F3NCcorr_ct18AsLatnn_Q2_4_x_0.25_2.png$$y00002 Hessian correlation~\cite{Pumplin:2001ct,Nadolsky:2001yg,Nadolsky:2008zw} obtained for two CT18 variant fits, CT18AS\_Lat and CT18As NNLO, between various PDFs and the neutral-current $F_3$ structure function (left) and a structure function combination $\mathcal{F} =(5F_2^{\gamma Zp}) - 2 F_2^{\gamma N}$ (right) in a specific kinematic region accessible to the 22 GeV program.
002862500 8564_ $$82472824$$s19345$$uhttps://cds.cern.ch/record/2862500/files/ALT.png$$y00045  : Double polarization asymmetry $A_{LT}$ for the exclusive photoproduction of $\gamma$-$\pi^+$ pair as a function of the pion's polar angle $\theta$ with a linearly polarized photon beam of energy $E_{\gamma} = 17~{\rm GeV}$ on a longitudinally polarized nucleon target, which is accessible at JLab Hall D with the upgraded JLab $22~{\rm GeV}$ setup. The black curve represents the asymmetry calculated with the GK model for GPDs. The other solid lines correspond to adding different shadow GPDs to unpolarized GPD $H$, while the dashed lines are generated by adding shadow GPDs to the polarized GPD $\tilde{H}$. In the inset figure, the total production cross section with $q_T \geq 1~{\rm GeV}$ and $|t| \leq 0.2~{\rm GeV}^2$ is shown as a function of the center-of-mass collision energy for producing $\gamma$-$\pi^+$ (black) and a $\gamma$-$\pi^-$ (red). The vertical green and blue dashed lines refer to the photon beam energies $E_{\gamma} = 9$ and $17~{\rm GeV}$, respectively.
002862500 960__ $$a13
002862500 980__ $$aARTICLE