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We investigate the imprints of accretion and dynamical friction on the gravitational-wave signals emitted by
binary black holes embedded in a scalar dark matter cloud. As a key feature in this work, we focus on scalar
fields with a repulsive self-interaction that balances against the self-gravity of the cloud. To a first approximation,
the phase of the gravitational-wave signal receives extra correction terms at −3PN, −4PN and −5.5PN orders,
relative to the prediction of vacuum general relativity, due to cloud gravity, accretion and dynamical friction.
Future observations by LISA and DECIGO have the potential to detect these effects for a large range of scalar
masses 𝑚DM and self-interaction couplings 𝜆4. This would correspond to scenarios with dark matter clouds
smaller than 0.1 pc, which would be difficult to detect by other probes.

I. INTRODUCTION

Perturbations to the orbits of compact objects, like black
holes (BHs), can serve as a dynamical probe of their local
environment. One important effect is dynamical friction,
first calculated in a seminal paper by Chandrasekhar [1] for
collisionless particles, and later extended to gaseous media
in, e.g., Refs. [2–5]. These quantities were also calculated in
the case of fuzzy dark matter (FDM), in the nonrelativistic
and relativistic regimes [6–13]. In this paper, we focus on the
case of self-interacting dark matter, which we considered in
[14–16]. In all of these cases, the compact object decelerates as
it exchanges momentum with distant particles - or “streamlines”
- that are deflected by its gravitational field. Equivalently, one
can think of dynamical friction as the gravitational pull on the
compact object exerted by the resulting fluid overdensity that
forms in its wake. A second effect is the accretion of matter
onto the compact object.

Naturally, the amount of influence these effects can have
on the compact object’s trajectory depends on the specific
nature of the environment. We are interested here in the case
of dark matter clouds, within which most binary systems are
expected to reside. Motivated by the lack of experimental
evidence for weakly interacting massive particles (see, e.g.,
the reviews in Refs. [17,18]), we focus on scalar-field dark
matter models with a particle mass between 10−20 eV and 1 eV.
Within this range, very large occupation numbers are needed to
form a galactic halo; hence, the scalar field behaves essentially
classically and is described by a Schrödinger wave function in
the nonrelativistic regime. Static equilibrium solutions, also
called “solitons,” form at the centers of these halos [19–46].
In this article, we investigate the impact on the gravitational-
wave (GW) signal emitted by a binary BH that is embedded in
one of these solitons.

In the wider cosmological context, the energy density of dark
matter in these scenarios is determined by the misalignment
mechanism [47–50], wherein the field is initially frozen but
then oscillates rapidly once its mass exceeds the Hubble rate.
For scalar-field potentials that are dominated by their mass
term, the energy density decays as 𝑎(𝑡)−3, as it does for cold
dark matter (CDM), with 𝑎(𝑡) the cosmic scale factor. One thus
recovers the main predictions of the standard CDM paradigm
on cosmological scales [51–58]. Meanwhile, the details of
what transpires on smaller scales depends on how strongly

the scalar self-interacts. For negligible self-interactions,
solitons are supported against gravitational collapse by the
wavelike nature of the scalar field, which gives rise to a
so-called “quantum pressure”—this is commonly referred
to as the fuzzy dark matter scenario [6]. Allowing for
a repulsive, quartic interaction term introduces additional
pressure effects [19,59–62], however, which can even dominate
over the quantum pressure in certain cases. This occurs
when the soliton size is greater than the scalar’s de Broglie
wavelength, and this will be the regime of interest in this paper.

Solitons with radii on the order of a kiloparsec may alleviate
some of the small-scale problems in galaxies encountered by
the standard CDM scenario, such as the core/cusp problem,
the too-big-to fail problem, or even the missing satellites
problem [63–66]. We note, however, that other scenarios
suggest that solitons could also form at higher redshifts and be
of a much smaller size (see, e.g., Ref. [67]). In this paper, we
make no a priori assumptions about the size of the soliton, and
will instead explore what information can be extracted from
GW signals for all possible values of soliton radii.

We consider the effects of both accretion and dynamical
friction on the waveform. A BH moving inside a (much larger)
soliton disturbs the distribution of dark matter both locally and
further out into the bulk. Near the BH, the density of infalling
dark matter grows as ρ ∝ 1/𝑟 until it reaches a nonlinear and
relativistic regime close to the horizon [14–16]. This inner-
radius boundary condition sets the accretion rate onto the
BH. At larger distances, dynamical friction arises due to the
deflection of streamlines over the bulk of the scalar cloud. As
for gaseous media [2–5], neglecting the backreaction of the
scalar field causes the dynamical friction force to vanish in the
subsonic regime [15,16]. Both effects decrease the relative
velocity between the BH and the scalar cloud. For BHs in a
binary system, the consequence is a higher rate of orbital decay
than if the binary were to evolve solely due to the emission of
GWs. In standard post-Newtonian (PN) terminology, we find
that accretion first contributes to the GW phase at the −4PN
level for the subsonic regime and moderate supersonic Mach
numbers, and at the −5.5PN level for high Mach numbers,
while dynamical friction is a −5.5PN order effect.

The remainder of this paper is organized as follows. In
Sec. II, we begin by reviewing the self-interacting model of
scalar-field dark matter that we consider. In Sec. III, we then
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solve for the motion of a binary BH in the presence of a scalar
cloud. The perturbations to the phase of the emitted GWs
arising from accretion and dynamical friction are derived in
Sec. IV. We describe our Fisher-matrix analysis in Sec. V and
finally, in Sec. VI we forecast the prospects of detecting such a
dark matter environment in current and future GW experiments.
We conclude in Sec. VII.

II. EQUATIONS OF MOTION

A. Scalar field dark matter
In this paper, we study the signatures imprinted on the

gravitational waveform of a binary system of BHs by dark
matter environments associated with a self-interacting scalar
field. The dynamics of the scalar are governed by the action

𝑆𝜙 =

∫
𝑑4𝑥

ℏ𝑐2
√−g

(
−1

2
gµν∂µ𝜙∂ν𝜙 −𝑉(𝜙)

)
, (2.1)

where we take the scalar-field potential to be

𝑉(𝜙) =
𝑚2

DM𝑐2

2ℏ2 𝜙2 + 𝜆4

4ℏ2𝑐2 𝜙
4, (2.2)

with coupling constant 𝜆4 > 0. This gives rise to a repulsive
self-interaction between dark matter particles in the nonrel-
ativistic limit, wherein the global behavior of dark matter is
akin to that of a compressible fluid. The effective outward
pressure of this repulsive interaction can counterbalance the
attractive force of gravity, and therefore leads to the formation
of stable, equilibrium dark matter configurations on small
scales, called solitons.

A detailed cosmological analysis of this dark matter model is
presented in Ref. [68]. We here briefly review the main points.
On cosmological scales, the oscillations of the scalar field due
to the quadratic mass term in 𝑉(𝜙) are dominant since at least
the time of matter-radiation equality. This ensures that the
scalar field behaves as dark matter with a background density ρ̄
that decays with the scale factor 𝑎(𝑡) as ρ̄ ∝ 𝑎(𝑡)−3. However,
the pressure associated with the self-interaction term prevents
the growth of density perturbations below the Jeans scale

𝑟𝑎 =
𝑐√︁

4𝜋Gρ𝑎
, ρ𝑎 =

4𝑚4
DM𝑐3

3𝜆4ℏ3 . (2.3)

The characteristic scale 𝑟𝑎 actually sets both the cosmological
Jeans length, which leads to a small-scale cutoff for cosmolog-
ical structure formation, and the radius of the soliton [19,69].

In the nonrelativistic regime, the nonlinear Klein-Gordon
equation derived from the action in Eq. (2.1) reduces to the non-
linear Schrödinger-Poisson system. In simple configurations
(wherein the density does not vanish), a Madelung transfor-
mation [70] can be used to map this onto a hydrodynamical
system, in which case the solitons correspond to hydrostatic
equilibria. The quartic self-interaction in Eq. (2.2) gives rise to
an effective pressure 𝑃 ∝ ρ2, not unlike a polytropic gas with
index 𝛾 = 2. The soliton density profile then takes the form

ρsol(𝑟) = ρ0
sin(𝜋𝑟/𝑅sol)

𝜋𝑟/𝑅sol
, 𝑅sol = 𝜋𝑟𝑎, (2.4)

in the Thomas-Fermi limit of negligible quantum pressure. Ob-
serve that such solitons are described by just three parameters:
the fundamental constants 𝑚DM and 𝜆4, and the average bulk
density ρ0. The value of this last quantity—or, equivalently,
the value of the soliton mass 𝑀sol = (4/𝜋)ρ0𝑅

3
sol—depends on

the formation history of the dark matter halo.
If the characteristic scale 𝑟𝑎 in Eq. (2.3) is on the order of a

kiloparsec or more, then these solitons form at the centers of
galaxies, as in the FDM case [71], while the outer regions of
the dark matter halo follow an NFW density profile [72]. A
numerical study of such soliton-halo systems for the potential
in Eq. (2.2) is presented in Ref. [46]. On scales greater than
𝑅sol and the de Broglie wavelength 𝜆dB ≡ 2𝜋ℏ/(𝑚DM𝑣), both
the self-interaction and quantum pressure are negligible, and
so scalar-field dark matter behaves as collisionless cold dark
matter would. Moreover, even though 𝑟𝑎 is fixed, increasingly
large and massive halos can form hierarchically in this model,
as in the standard CDM paradigm [73].

At the other end of the spectrum, if 𝑟𝑎 is much smaller than
the typical size of galaxies, then solitons may have formed
at early times before the formation of galaxies. In a manner
similar to the formation of primordial BHs, this could lead
to macroscopic dark matter objects with radii ranging from
that of an asteroid to giant molecular clouds [67]. Indeed, if
the hierarchy of scales is sufficiently large, then many small
solitons may be present within galactic halos. In this scenario,
stellar-mass binary BH systems could happen to be embedded
within such solitons. We shall investigate the impact of both
types of solitons—galactic sized or smaller—on the motion of
binary BHs.

Several assumptions have been made to render the calcula-
tions in this paper feasible. First, note that the sound speed of
the dark matter fluid is given by [14,15]

𝑐2
𝑠 =

ρ0
ρ𝑎

𝑐2, (2.5)

as would be expected for a polytropic gas with index 𝛾 = 2.
We restrict ourselves to the nonrelativistic regime wherein
𝑐𝑠 ≪ 𝑐, and thus ρ0 ≪ ρ𝑎. We further limit our attention to
the large-scalar-mass limit,

𝑚DM >
ℏ

𝑟𝑠𝑐
= 7 × 10−11

(
𝑚BH
1 𝑀⊙

)−1
eV, (2.6)

where 𝑟𝑠 ≡ 2G𝑚BH/𝑐2 is the Schwarzschild radius of the larger
of the two BHs embedded in the soliton. Taking this limit
amounts to assuming that the scalar’s de Broglie and Compton
wavelengths are smaller than the BH’s horizon, and much
smaller than the size of the soliton. The analytic formulas
for the accretion rate and dynamical friction force that we use
below were derived in Refs. [14–16] and are valid only when
this holds. Conveniently, a by-product of this assumption is
that the only dark matter parameters affecting the binary’s
motion are the two characteristic densities, ρ𝑎 and ρ0.

As a BH moves inside such dark matter solitons, it slows
down because of the accretion of dark matter and the dynamical
friction with the dark matter environment. In addition, it feels
the gravitational potential of the dark matter cloud. We describe
these effects in the next three sections.
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B. Accretion drag force
For the particular model in Eqs. (2.1) and (2.2), it was shown

in Ref. [16] that the accretion rate of scalar dark matter onto a
BH follows two regimes,

𝑣BH < 𝑣acc : .
𝑚BH =

.
𝑚max, 𝑣BH > 𝑣acc : .

𝑚BH =
.
𝑚BHL,

(2.7)
with

𝑣acc =
𝑐

2/3
𝑠 𝑐1/3

(3𝐹★)1/3 ,
.
𝑚max = 3𝜋𝐹★ρ𝑎𝑟2

𝑠𝑐 =
12𝜋𝐹★ρ0G2𝑚2

BH

𝑐2
𝑠𝑐

,

.
𝑚BHL =

4𝜋ρ0G2𝑚2
BH

𝑣3
BH

, (2.8)

where an overdot denotes differentiation with respect to time
and 𝐹★ ≃ 0.66 is obtained from a numerical computation of
the critical flux [14], which is associated with the unique radial
transonic solution that matches the supersonic infall at the
Schwarzschild radius to the static equilibrium soliton at large
distances. This critical behavior is similar to that found for
hydrodynamical flows in the classic studies of Refs. [74,75],
and is closely related to the case of a polytropic gas with index
𝛾 = 2 [14,15]. However, close to the BH, the dynamics deviates
from that of a polytropic gas as one enters the relativistic
regime. Near the Schwarzschild radius, the scalar field must
be described by the nonlinear Klein-Gordon equation instead
of hydrodynamics [14]. This implies that the critical flux
and the accretion rate .

𝑚max differ from the usual Bondi result
.
𝑚Bondi ∼ ρ0G2𝑚2

BH/𝑐
3
𝑠. This is manifest in the dependence of

.
𝑚max on the speed of light 𝑐, which is absent from the usual
Bondi result.

The high-velocity regime corresponds to the standard
accretion-column picture [76,77] and we recover the Bondi-
Hoyle-Lyttleton accretion rate .

𝑚BHL. There, most of the
accretion comes from the narrow wake behind the BH,
delimited by a conical shock within the Mach angle sin 𝜃𝑐 =

1/M ≪ 1, where M = 𝑣BH/𝑐𝑠 is the BH Mach number.
In the low-velocity regime the Bondi-Hoyle-Lyttleton ac-

cretion rate is greater than the maximum accretion rate .
𝑚max

that is allowed by the effective pressure associated with the
self-interactions (close to the BH horizon the velocity cannot
be greater than 𝑐 and the density greater than ρ𝑎). Then, the
accretion column is no longer a narrow cone behind the BH
and it encloses the BH from all sides. There is a bow shock
upstream of the BH, with a subsonic region that contains the
BH and diverts most of the dark matter flux. Close to the
horizon the flow is approximately radial and we recover the
accretion rate .

𝑚max. See [16] for details.
Now consider a BH moving with velocity vBH through this

scalar cloud. In the nonrelativistic limit 𝑣BH ≡ |vBH | ≪ 𝑐

and in the reference frame of the cloud, the accretion of zero-
momentum dark matter does not change the BH momentum
but slows down its velocity as

𝑚BH
.vBH |acc = − .

𝑚BHvBH. (2.9)

C. Dynamical friction
Dynamical friction also acts to reduce the BH’s velocity.

As in the hydrodynamical case [2,4,5], the dynamical friction
force (in the steady-state limit) vanishes for subsonic speeds
𝑣BH < 𝑐𝑠 [15] but is nonzero at supersonic speeds. The
additional force on the BH in the latter regime reads [16]

𝑚BH
.vBH |df = −

8𝜋G2𝑚2
BHρ0

3𝑣3
BH

ln
(

𝑟IR
𝑟UV

)
vBH, (2.10)

where 𝑟IR is the usual large-radius cutoff while the small-radius
cutoff of the logarithmic Coulomb factor is given by

𝑟UV = 3
√︂

2
𝑒
𝑟sgM−3/2 = 6

√︂
2
𝑒

G𝑚BH

𝑐2
𝑠

(
𝑐𝑠

𝑣BH

)3/2
. (2.11)

Here 𝑒 is Euler’s number (not to be confused with the orbital
eccentricity 𝔢 in Sec. III), M = 𝑣BH/𝑐𝑠 is the Mach number,
and 𝑟sg = 𝑟𝑠𝑐

2/𝑐2
𝑠. Equation (2.10) takes the same form

as the collisionless result by Chandrasekhar [1] but with a
multiplicative factor 2/3. It is not so surprising to obtain
a result that differs from Chandrasekhar’s formula, even for
distant streamlines. Indeed, the background made of the
soliton is governed by the balance between gravity and self-
interactions, so that the self-interactions are never negligible
throughout the dark matter soliton. We can also note that
in the subsonic regime, the dynamical friction is zero, which
shows the global impact of the self-interactions (which generate
the sound speed) throughout the medium, in the steady state.
Finally, in the collisionless case, distant trajectories that are
deflected by small angles would nevertheless cross each other
along the symmetry axis at large distance behind the BH,
which is not possible for a fluid with non-zero self-interactions.
Therefore, even distant streamlines must depart from distant
collisionless trajectories. These various arguments explain
why we could expect a different result from Chandrasekhar’s
formula even for distant streamlines (as long as they remain
within the dark matter soliton).

In addition, the ultra-violet cutoff 𝑟UV is here fully deter-
mined by the physics of the scalar field and its effective pressure,
instead of the minimum impact parameter 𝑏min ∼ G𝑚BH/𝑣2

BH.
As we have 𝑟UV ∼ 𝑏min

√︁
𝑣BH/𝑐𝑠 > 𝑏min, we can see that the

dynamical friction (2.10) is smaller than the collisionless result,
with a damping factor below 2/3.

The radius 𝑟sg = 𝑟𝑠𝑐
2/𝑐2

𝑠 in Eq.(2.11) is the radius where
in the spherical accretion case the dark matter density profile
makes the transition from the constant large-distance value ρ0
to the 1/𝑟 growth close to the BH. As could be expected, 𝑟UV
decreases in units of 𝑟sg for smaller 𝑐𝑠 (equivalently, smaller
𝜆4). This falls off as M−3/2 = 𝑐

3/2
𝑠 𝑣

−3/2
BH . Not surprisingly, we

have 𝑟UV ∼ 𝑟sg for Mach numbers of the order of unity. On
the other hand, at fixed ρ0, the radius 𝑟sg grows for smaller 𝜆
and smaller 𝑐𝑠. This is because the smaller self-interaction
requires a higher density for the pressure to be able to regulate
the infall onto the BH. Therefore, in the Bondi-like steady-state
a smaller 𝜆 leads to a higher density in the inner region and
to a transition to the constant-density plateau that is pushed
to larger distance. The growth of 𝑟sg happens to be steeper
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than the factor M−3/2 and leads to an increase of 𝑟UV. This
expression is actually fully determined by the large-distance
perturbative expansion presented in Sec.III of Ref. [16].

For a steady straight-line trajectory, we may take for the
infra-red cutoff the size of the dark matter soliton, which
depends explicitly on 𝑚DM and 𝜆4 via Eq. (2.3). However,
for bodies moving on circular orbits of radius 𝑟orb, numerical
simulations and analytical studies find that for gaseous media a
good match is obtained by using 𝑟IR = 2𝑟orb [78,79]. This can
be understood as follows. Estimating the dynamical friction
from the exchange of momentum with distant encounters or
streamlines of impact parameter 𝑏, as in the classical study
[1], the duration an encounter is Δ𝑡 ∼ 𝑏/𝑣BH. Requiring this
time to be smaller than the orbital period 𝑃orb ∼ 𝑟orb/𝑣BH,
so that the BH does not turn around during the encounter,
gives 𝑏 ≲ 𝑟orb. If we estimate the dynamical friction from
the gravitational attraction by the BH wake, at large distance
in the BH rest-frame matter flows away at the radial velocity
𝑣BH. Therefore, the wake is aligned behind the BH up to the
distance 𝑑 ∼ 𝑣BH𝑃orb/2, which gives again the large-radius
cutoff 𝑑 ≲ 𝑟orb. Therefore, we take

𝑟IR = 2𝑟orb, (2.12)

with the same normalization as found for gaseous media [78].
As shown in Sec. VI below, it turns out that the impact of the
dark matter environment on the gravitational waves signal is
dominated by the accretion rather than the dynamical friction.
Therefore, our results are not very sensitive to the precise value
of the infra-red cutoff (2.12).

D. Dark matter halo
Approximating the bulk of the soliton as a spherical halo

of density ρ0 and radius 𝑅sol, centered at position x0, the halo
gravitational potential reads

|x − x0 | < 𝑅sol : Φhalo(x) =
2𝜋
3
Gρ0 |x − x0 |2. (2.13)

This gives the gravitational acceleration

𝑚BH
.vBH |halo = −4𝜋

3
G𝑚BHρ0(x − x0). (2.14)

III. BINARY MOTION

We focus on a binary system of two BHs and study their
dynamics in their inspiralling phase in the Newtonian regime.
Then, the Keplerian orbital motion is perturbed by the dark
matter accretion, the dynamical friction and the halo gravity,
and by the emission of GWs. This leads to a shrinking of
the BH separation, until their merging. In the large-distance
inspiralling phase, we obtain the perturbations of the Keplerian
motion at first order. This allows us to consider separately the
impact of the scalar cloud and of the GWs.

A. Keplerian motion
To compute the perturbation of the orbits at first order, we use

the standard method of osculating orbital elements [80], where

we derive the drift of the orbital elements that determine the
shape of the orbits. To define our notations, we first recall the
properties of the Keplerian orbits. At zeroth order, the binary
system of the two BHs of masses {𝑚1, 𝑚2}, positions {x1, x2}
and velocities {v1, v2}, is reduced to a one-body problem by
introducing the relative distance r,

r = x1 − x2, v = v1 − v2, (3.1)

the total and reduced masses

𝑚 = 𝑚1 + 𝑚2, µ = 𝑚1𝑚2/𝑚. (3.2)

This gives the equation of motion

¥r = −G𝑚
𝑟3 r (3.3)

for the relative separation, whereas the center of mass remains
at rest if its initial velocity vanishes. Then, we also have

x1 =
𝑚2
𝑚

r, x2 = −𝑚1
𝑚

r, v1 =
𝑚2
𝑚

v, v2 = −𝑚1
𝑚

v, (3.4)

choosing for the origin of the coordinates the barycenter of
the binary system. The solution for bound orbits is the ellipse
given by

𝑟 =
𝑝

1 + 𝔢 cos(𝜙 − 𝜔)
, 𝑝 = (1 − 𝔢2)𝑎, (3.5)

where 𝑝 is the orbit semi-latus rectum, 𝑎 the semi-major axis,
𝔢 the eccentricity and 𝜔 the longitude of the pericenter. The
orbit takes place in the plane (e𝑥 , e𝑦) orthogonal to the axis e𝑧 .
In spherical coordinates, the polar angle 𝜃 = 𝜋/2 is constant
while the azimuthal angle 𝜙 runs. The total angular momentum
L is constant,

L = 𝑚1x1 × v1 + 𝑚2x2 × v2 = µh, (3.6)

with

h = r × v = ℎ e𝑧 , ℎ = 𝑟2 .
𝜙, 𝑝 =

ℎ2

G𝑚
. (3.7)

The constancy of 𝜔 is related to the conservation of the Runge-
Lenz vector,

A =
v × h
G𝑚

− e𝑟 = 𝔢(cos𝜔 e𝑥 + sin𝜔 e𝑦). (3.8)

In the following, we will also use the true anomaly defined by

𝜑 = 𝜙 − 𝜔, (3.9)

which measures the azimuthal angle from the direction of
pericenter and grows with time as

.
𝜑 =

√︄
G𝑚
𝑝3 (1 + 𝔢 cos 𝜑)2 . (3.10)

The period 𝑃orb and the frequency 𝑓orb of the orbital motion
read

𝑃orb = 2𝜋

√︄
𝑎3

G𝑚
, 𝑓orb =

1
2𝜋

√︂
G𝑚
𝑎3 , (3.11)

which is known as Kepler’s third law.
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B. Drag force from the dark matter
As seen in Sec. II, the equations of motion of the two BHs

read

𝑚1 ¥x1 = G𝑚1𝑚2
x2 − x1

|x2 − x1 |3
− .
𝑚1

.x1 − 𝑓1
.x1 − g1(x1 − x0),

𝑚2 ¥x2 = G𝑚1𝑚2
x1 − x2

|x1 − x2 |3
− .
𝑚2

.x2 − 𝑓2
.x2 − g2(x2 − x0),

(3.12)

where we take into account the Newtonian gravity of the binary,
the accretion of dark matter, the dynamical friction and the
halo gravity, with

𝑓𝑖(𝑡) = Θdf.𝑖
8𝜋G2𝑚2

𝑖
ρ0

3𝑣3
𝑖

ln
(

𝑟IR,𝑖

𝑟UV,𝑖

)
, g𝑖 =

4𝜋
3
G𝑚𝑖ρ0.

(3.13)
Here Θdf,𝑖 is a Heaviside factor associated with the two
conditions 𝑣𝑖 > 𝑐𝑠 and 𝑟IR,𝑖 > 𝑟UV,𝑖 . This is only an
approximation, however, as a perturbative treatment to higher
orders, which takes the scalar field’s backreaction onto the
BH into account, should smooth out the transition at 𝑐𝑠 and
give a small but nonzero force in the subsonic regime [81].
Nevertheless, we expect our use of a sharp transition to provide
a conservative estimate for the impact of the dynamical friction
on the motion of a BH.

This gives for the separation r the equation of motion

¥r = −G𝑚
𝑟3 r −

( .
µ

µ
+ 𝑚2 𝑓1
𝑚1𝑚

+ 𝑚1 𝑓2
𝑚2𝑚

)
.r − 4𝜋Gρ0

3
r. (3.14)

Here we used Eq.(3.4) to express x𝑖 in terms of r in the last
two terms, as we work at first order in the perturbations .

𝑚𝑖 , 𝑓𝑖
and g𝑖 . Thus, we obtain an equation of motion of the form

¥r = −G𝑚(𝑡)

𝑟3 r − 𝐹(𝑡)
.r − 𝐺r. (3.15)

Here and in the following, we assumed that at zeroth-order the
center of mass of the binary is at rest in the scalar cloud, or
more generally that its velocity is small as compared with the
binary orbital velocity v.

For circular orbits with 𝑣 =
√︁
G𝑚/𝑎, we obtain

𝑟IR,𝑖

𝑟UV,𝑖

=

√︄
𝑒𝑐𝑠𝑚

2µ5

18𝑣𝑚7
𝑖

,
𝑣𝑖

𝑐𝑠
=

µ𝑣

𝑚𝑖𝑐𝑠
(3.16)

and the Heaviside factor in Eq.(3.13) reads

Θdf,𝑖 = Θ

(
𝑚𝑖

µ
<

𝑣

𝑐𝑠
<

𝑒𝑚2µ5

18𝑚7
𝑖

)
, (3.17)

which is unity when the conditions are satisfied and zero
otherwise. We can see that the conditions 𝑟IR,𝑖 > 𝑟UV,𝑖 and
𝑣𝑖 > 𝑐𝑠 can only be simultaneously satisfied by the smallest
BH of the binary, when the symmetric mass ratio ν defined by

ν = µ/𝑚 = 𝑚1𝑚2/𝑚2 (3.18)

is below

ν ≲ 0.16. (3.19)

Following the method of the osculating orbital elements [80],
we obtain the impact of the accretion and of the dynamical
friction by computing the perturbations to the orbital elements.
It is clear from Eq.(3.15) that the orbital plane remains constant.
In particular, the specific angular momentum h remains parallel
to e𝑧 and evolves as

.
h = −𝐹(𝑡)h, (3.20)

whereas the Runge-Lenz vector evolves as

.
A = −

( .
𝑚

𝑚
+ 2𝐹(𝑡)

)
(A + e𝑟 ) +

𝐺ℎ𝑟

G𝑚
e𝜙 . (3.21)

This gives next the evolution of the eccentricity and of the
semi-major axis,

.
𝔢 = −

( .
𝑚

𝑚
+ 2𝐹(𝑡)

)
(𝔢 + cos 𝜑) − 𝐺ℎ𝑎(1 − 𝔢2) sin 𝜑

G𝑚(1 + 𝔢 cos 𝜑)
,

.
𝑎 = −

( .
𝑚

𝑚
+ 2𝐹(𝑡)

)
𝑎(1 + 𝔢2 + 2𝔢 cos 𝜑)

1 − 𝔢2 − 2𝐺ℎ𝔢𝑎2 sin 𝜑

G𝑚(1 + 𝔢 cos 𝜑)
.

(3.22)

Using Eq.(3.10), the derivatives with respect to the true
anomaly 𝜑 read at first order

𝑑𝔢

𝑑𝜑
= −

√︄
𝑝3

G𝑚

{( .
𝑚

𝑚
+ 2𝐹(𝑡)

)
𝔢 + cos 𝜑

(1 + 𝔢 cos 𝜑)2

+𝐺ℎ𝑎(1 − 𝔢2)

G𝑚
sin 𝜑

(1 + 𝔢 cos 𝜑)3

}
(3.23)

and

𝑑𝑎

𝑑𝜑
= −

√︄
𝑝3

G𝑚

{( .
𝑚

𝑚
+ 2𝐹(𝑡)

)
𝑎

1 − 𝔢2
1 + 𝔢2 + 2𝔢 cos 𝜑
(1 + 𝔢 cos 𝜑)2

+2𝐺ℎ𝔢𝑎2

G𝑚
sin 𝜑

(1 + 𝔢 cos 𝜑)3

}
. (3.24)

The perturbations generated by the dark matter lead to
oscillations and secular changes of the orbital elements. The
cumulative drift associated with the secular effects is obtained
by averaging over one orbital period, as

⟨ .𝑎⟩ = 1
𝑃

∫ 𝑃

0
𝑑𝑡

.
𝑎 =

1
𝑃

∫ 2𝜋

0
𝑑𝜑

𝑑𝑎

𝑑𝜑
. (3.25)

C. Effect of the accretion
We first consider the impact of the accretion of dark matter

on the orbital motion. This corresponds to both the term .
𝑚/𝑚

and the contribution 𝐹acc =
.
µ/µ to 𝐹(𝑡). We focus on the

regime where these accretion rates vary slowly as compared
with the orbital motion and we take them constant over one
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period. As seen in (2.7), we have two regimes for the accretion
rates, which are constant at low velocity and decays as 𝑣−3

𝑖
at

high velocity. Thus, we can write
.
𝑚

𝑚
+ 2

.
µ

µ
= 𝐴acc +

𝐵acc

𝑣3 , (3.26)

with

𝐴acc =
12𝜋𝐹★G2ρ0µ

𝑐2
𝑠𝑐

2∑︁
𝑖=1

Θ(𝑣𝑖 < 𝑣acc)

(
2 +

𝑚2
𝑖

𝑚µ

)
,

𝐵acc = 4𝜋G2ρ0µ
2∑︁
𝑖=1

Θ(𝑣𝑖 > 𝑣acc)
𝑚3

𝑖

µ3

(
2 +

𝑚2
𝑖

𝑚µ

)
. (3.27)

Then, at lowest order over the eccentricity 𝔢 we obtain from
Eqs.(3.23)-(3.24)

⟨ .𝔢⟩acc =
3𝔢
2

(
𝑎

G𝑚

)3/2
𝐵acc,

⟨ .𝑎⟩acc = −𝑎𝐴acc − 𝑎

(
𝑎

G𝑚

)3/2
𝐵acc. (3.28)

The eccentricity remains constant in the low-velocity regime
and increases in the high-velocity regime, if 𝔢 > 0. The size
of the orbit always decreases. The result (3.28) for the semi-
major axis can be recovered at once for circular orbits from the
constancy of the total angular momentum 𝐿 = µ

√︁
G𝑚𝑝, with

𝑎 = 𝑝 and 𝑣 =
√︁
G𝑚/𝑎 for 𝔢 = 0.

D. Effect of the dynamical friction
The dynamical friction corresponds to the contribution

𝐹df =
𝑚2 𝑓1
𝑚1𝑚

+ 𝑚1 𝑓2
𝑚2𝑚

, (3.29)

and we can write

2𝐹df(𝑡) =
𝐵df

𝑣3 + 𝐶df

𝑣3 ln
(

𝑣

𝑐𝑠

)
, (3.30)

with

𝐵df =
8𝜋G2ρ0µ

3

2∑︁
𝑖=1

Θdf,𝑖
𝑚3

𝑖

µ3 ln

(
𝑒𝑚2µ5

18𝑚7
𝑖

)
,

𝐶df = −8𝜋G2ρ0µ

3

2∑︁
𝑖=1

Θdf,𝑖
𝑚3

𝑖

µ3 . (3.31)

At lowest order over the eccentricity 𝔢 we obtain

⟨ .𝔢⟩df =
3𝔢
2

(
𝑎

G𝑚

)3/2
[
𝐵df + 𝐶df ln

(√︂
G𝑚
𝑎

1
𝑐𝑠

)
− 𝐶df

3

]
,

⟨ .𝑎⟩df = −𝑎
(

𝑎

G𝑚

)3/2
[
𝐵df + 𝐶df ln

(√︂
G𝑚
𝑎

1
𝑐𝑠

)]
. (3.32)

Thus, the dynamical friction increases the eccentricity, if 𝔢 > 0,
and reduces the size of the orbit.

E. GWs emission for the Keplerian dynamics
As is well known, the emission of GWs makes the orbits

become more circular and tighter, until the BHs merge. At
lowest order in a post-Newtonian expansion and using the
quadrupole formula, the drifts of the eccentricity and of the
semi-major axis are given by the standard results [80]

⟨ .𝔢⟩gw = −304ν𝑐
15𝑎

𝔢

(
G𝑚
𝑐2𝑎

)3
(1 − 𝔢2)−5/2

(
1 + 121

304
𝔢2
)
(3.33)

and

⟨ .𝑎⟩gw = −64ν𝑐
5

(
G𝑚
𝑐2𝑎

)3 1 + 73
24𝔢

2 + 37
96𝔢

4

(1 − 𝔢2)7/2 . (3.34)

As pointed out in Ref. [82], at large distances the increase
of eccentricity by accretion and dynamical friction in high-
density environments can lead to significant eccentricity for
some binaries as they enter the LISA observational band. This
effect is somewhat lessened in our case as the dynamical friction
vanishes in the subsonic regime. In this paper, we focus on
the later inspiral stage where the impact of the dark matter on
the binary is smaller than that of the emission of GWs and we
restrict ourselves to circular orbits with 𝔢 = 0. The analysis of
binaries that would have acquired a high eccentricity at earlier
stages, as studied in [82], is left for a future work.

F. Effect of the halo gravity
As can be checked at once in Eqs.(3.23)-(3.24), the 𝐺-

term associated with the halo gravity does not modify the
eccentricity and the size of the orbit over one period, ⟨ .𝔢⟩halo = 0
and ⟨ .𝑎⟩halo = 0. Indeed, within the approximation (2.14)
of a time-independent halo gravitational potential, this is a
conservative force. However, this modification of the Keplerian
potential induces a change of the orbital frequency and of the
emission of gravitational waves. Focusing on the binary and
halo gravity only, the equation of motion (3.14) corresponds
to the energy

𝐸 =
1
2
µ𝑣2 − Gµ𝑚

𝑟
+ 2𝜋Gρ0µ𝑟

2

3
. (3.35)

Writing the Euler-Lagrange equations of motion, we obtain for
circular orbits of radius 𝑎 the velocity

𝑣𝜙 =

√︂
G𝑚
𝑎

(
1 + 2𝜋ρ0𝑎

3

3𝑚

)
. (3.36)

Here and in the following, we work at linear order in ρ0. Thus,
relative corrections to the Keplerian results are set by the ratio
between the dark matter mass inside the orbital radius and the
binary total mass, The orbital frequency and the energy read
as

𝑓orb =
1

2𝜋

√︂
G𝑚
𝑎3

(
1 + 2𝜋ρ0𝑎

3

3𝑚

)
(3.37)

and

𝐸 = −G𝑚µ

2𝑎
+ 4𝜋Gρ0µ𝑎

2

3
. (3.38)
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As expected, the higher mass in the system, and hence the larger
gravity, increases the orbital frequency. Using the quadrupole
formula [80],

P =
G

5𝑐5 𝐼
( 𝑗𝑘)𝐼 ( 𝑗𝑘), 𝐼( 𝑗𝑘) = ν𝑚r 𝑗r𝑘 , (3.39)

where P is the rate of energy loss by gravitational waves and
𝐼( 𝑗𝑘) the mass quadrupole moment, we obtain for circular
orbits

P =
32ν2G4𝑚5

5𝑐5𝑎5

(
1 + 4𝜋ρ0𝑎

3

𝑚

)
. (3.40)

Then, the balance equation 𝑑𝐸
𝑑𝑡

= −P gives for the drift of the
orbital radius

⟨ .𝑎⟩gw = −64νG3𝑚3

5𝑐5𝑎3

(
1 − 4𝜋ρ0𝑎

3

3𝑚

)
, (3.41)

which agrees with Eq.(3.34) at 𝔢 = 0 when the dark matter halo
is negligible. Although the additional halo gravity increases
the radiative loss (3.40), this is more than compensated by the
higher energy (3.38) and the orbital drift is reduced.

IV. GW PHASE AND THE IMPACT OF DARK
MATTER

A. Constant mass approximation
At lowest order, we can sum the contributions from the

accretion of dark matter, the dynamical friction and the
emission of GWs. This gives the total drift of the orbital
radius

⟨ .𝑎⟩ = ⟨ .𝑎⟩acc + ⟨ .𝑎⟩df + ⟨ .𝑎⟩gw. (4.1)

This drift depends on the masses of the two BHs and their
accretion rates. However, for small accretion rates we can take
𝑚𝑖 and .

𝑚𝑖 to be constant over the duration of the measurement.
Assuming this spansN orbital periods, with typicallyN ∼ 100,
we require that .

𝑚𝑖N𝑃 ≪ 𝑚𝑖 . For the maximum accretion rate
(2.7) this gives

ρ𝑎 ≪ 𝑐3 𝑓

24𝜋𝐹★G2𝑚>N
, (4.2)

where 𝑓 = 2/𝑃orb is the GW frequency (which is twice the
orbital frequency) and 𝑚> = max(𝑚1, 𝑚2). This gives

ρ𝑎 ≪ 6 × 1010 N −1
(

𝑚>

1𝑀⊙

)−1(
𝑓

1 Hz

)
g · cm−3. (4.3)

The strongest limitation is associated with the case of Massive
Binary Black Holes (MBBH) to be detected with the space
interferometer LISA, at frequencies 𝑓 ≳ 10−4Hz. This gives
the upper bound ρ𝑎 ≪ 0.01 g/cm3, which is much beyond the
expected dark matter densities. For instance, the dark matter
density in the Solar System is about 10−24g/cm3 [83–91]. On
the other hand, accretion disks around supermassive BHs can
have baryonic densities up to 10−9g/cm3 for thick disks and

10−1g/cm3 for thin disks [92]. Therefore, the bound (4.3) is
well satisfied up to the baryonic densities found in accretion
disks. At higher densities, we should explicitly take into
account the time dependence of the BH masses and accretion
rates. This would further enhance the deviation from the signal
associated with the binary system in vacuum and increase
the dark matter impact on the waveform. Therefore, our
computation provides a conservative estimate of the detection
threshold.

B. Phase and coalescence time
In the limit of small eccentricity, 𝔢 ≪ 1, the drift (4.1) reads

.
𝑎 = −64ν𝑐

5

(
G𝑚
𝑐2𝑎

)3(
1 − 4𝜋ρ0𝑎

3

3𝑚

)
− 𝑎𝐴acc

−𝑎
(

𝑎

G𝑚

)3/2
[
𝐵acc + 𝐵df + 𝐶df ln

(√︂
G𝑚
𝑎

1
𝑐𝑠

)]
.(4.4)

The frequency 𝔣 of the gravitational waves is twice the orbital
frequency (3.37),

𝔣 =
1
𝜋

√︂
G𝑚
𝑎3

(
1 + 2𝜋ρ0𝑎

3

3𝑚

)
. (4.5)

We use a gothic font in this section to distinguish 𝔣, the function
of time describing the frequency sweep, from 𝑓 , the Fourier-
transform variable used below in the Fourier-space analysis of
the time-sequence data. This also gives, at first order in dark
matter perturbations,

.
𝔣 =

1
𝜋

√︂
G𝑚
𝑎3

( .
𝑚

2𝑚
− 3 .

𝑎

2𝑎

)
+ Gρ0

(
𝑎3

G𝑚

)1/2 .
𝑎

𝑎
. (4.6)

Together with Eqs.(4.4)-(4.5), and using Eqs.(2.7) and (3.27)
to combine the accretion terms, we obtain

.
𝔣

𝔣
= 𝐷gw + 𝐷halo + 𝐷acc + 𝐷df , (4.7)

with

𝐷gw = 𝔣 8/3 96𝜋8/3ν

5𝑐5 (G𝑚)5/3,

𝐷halo = − 𝔣 2/3 256𝜋5/3νρ0G8/3𝑚5/3

3𝑐5 ,

𝐷acc =
12𝜋𝐹★G2ρ0µ

𝑐2
𝑠𝑐

2∑︁
𝑖=1

Θ(𝔣 < 𝑓acc,𝑖)

(
3 + 2

𝑚2
𝑖

𝑚µ

)

+ 𝔣 −1 4Gρ0

2∑︁
𝑖=1

Θ(𝔣 > 𝑓acc,𝑖)
𝑚3

𝑖

µ2𝑚

(
3 + 2

𝑚2
𝑖

𝑚µ

)
,

𝐷df = −𝔣 −1 4Gρ0
3

2∑︁
𝑖=1

Θ( 𝑓 −df,𝑖 < 𝔣 < 𝑓 +df,𝑖)
𝑚3

𝑖

µ2𝑚
ln

(
𝔣

𝑓 +df,𝑖

)
,

(4.8)

and

𝑓acc,𝑖 =
𝑐2
𝑠𝑐𝑚

3
𝑖

3𝜋𝐹★G𝑚µ3 , 𝑓 −df,𝑖 =
𝑐3
𝑠𝑚

3
𝑖

𝜋G𝑚µ3 , 𝑓 +df,𝑖 =
𝑒3𝑐3

𝑠𝑚
5µ15

5832𝜋G𝑚21
𝑖

.

(4.9)
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In (4.7) we split the contributions from gravitational waves in
the standard 𝔣 8/3 term associated with Keplerian orbits and the
correction in 𝔣 2/3 due to the dark matter halo. Integrating the
phase Φ(𝑡) = 2𝜋

∫
𝑑𝔣 (𝔣/

.
𝔣) and the time 𝑡 =

∫
𝑑𝔣 (1/

.
𝔣) over

the GW frequency [93], we obtain

Φ(𝔣) = Φ𝑐 +Φgw +Φhalo +Φacc +Φdf (4.10)

and

𝑡(𝔣) = 𝑡𝑐 + 𝑡gw + 𝑡halo + 𝑡acc + 𝑡df , (4.11)

where Φ𝑐 and 𝑡𝑐 are the phase and the time at coalescence
time, and we introduced

Φgw = −2𝜋
∫ ∞

𝔣

𝑑𝔣
1

𝐷gw
, Φhalo = 2𝜋

∫ ∞

𝔣

𝑑𝔣
𝐷halo

𝐷2
gw

, . . .

𝑡gw = −
∫ ∞

𝔣

𝑑𝔣

𝔣

1
𝐷gw

, 𝑡halo =

∫ ∞

𝔣

𝑑𝔣

𝔣

𝐷halo

𝐷2
gw

, . . . (4.12)

Equations (4.10)-(4.11) provide an implicit expression for the
function Φ(𝑡), describing the GWs phase as a function of
time. Here, we linearized over the dark matter contributions
to the frequency drift, assuming they are weaker than the
Keplerian GW contribution. As seen in Sec. IV C below,
this is the case in realistic configurations. Besides, this is
sufficient for the purpose of estimating the dark matter density
thresholds required for detection. At much higher densities,
our computation of the frequency drift is no longer reliable but
the presence of dark matter would remain clear in the data.

We recover the fact that the dark matter contributions are
more important during the early stages of the inspiral, that is,
at low frequencies. This means that relativistic corrections to
the orbital motion would not change our results for the dark
matter detection thresholds.

The GW signal is of the form ℎ(𝑡) = A(𝑡) cos[Φ(𝑡)], where
Φ(𝑡) is implicitly determined by Eqs.(4.10)-(4.11) and A(𝑡) ∝
𝔣 2/3 if we neglect the dark matter corrections in the amplitude
[80]. The Fourier-space data analysis considers the Fourier
transform ℎ̃( 𝑓 ) =

∫
𝑑𝑡 𝑒𝑖2𝜋 𝑓 𝑡ℎ(𝑡). In the stationary phase

approximation [93], one obtains ℎ̃( 𝑓 ) = A( 𝑓 )𝑒𝑖Ψ( 𝑓 ), with

A( 𝑓 ) ∝ 𝑓 −7/6, Ψ( 𝑓 ) = 2𝜋 𝑓 𝑡★ −Φ(𝑡★) − 𝜋/4, (4.13)

where the saddle-point 𝑡★ is defined by 𝔣(𝑡★) = 𝑓 , as
.
Φ = 2𝜋𝔣.

Using Eqs.(4.10)-(4.11) we obtain

Ψ( 𝑓 ) = 2𝜋 𝑓 𝑡𝑐 −Φ𝑐 −
𝜋

4
+ Ψgw + Ψhalo + Ψacc + Ψdf , (4.14)

where the different contributions are

Ψgw = 2𝜋
[∫ ∞

𝑓

𝑑𝑓
1

𝐷gw
− 𝑓

∫ ∞

𝑓

𝑑𝑓

𝑓

1
𝐷gw

]
,

Ψhalo = 2𝜋

[
𝑓

∫ ∞

𝑓

𝑑𝑓

𝑓

𝐷halo

𝐷2
gw

−
∫ ∞

𝑓

𝑑𝑓
𝐷halo

𝐷2
gw

]
, . . . (4.15)

This gives [93]

Ψgw =
3

128

(
𝜋GM 𝑓

𝑐3

)−5/3 [
1 + 20

9

(
743
336

+ 11
4
ν

)
×
(
𝜋G𝑚 𝑓

𝑐3

)2/3
]
, (4.16)

where M is the chirp mass,

M = ν3/5𝑚, (4.17)

and

Ψhalo =
25𝜋
924

ρ0G3M2

𝑐6 (𝜋GM 𝑓 /𝑐3)−11/3, (4.18)

Ψacc = −25𝜋G3M2ρ0

38912𝑐6

(
𝜋GM 𝑓

𝑐3

)−16/3 2∑︁
𝑖=1

Θ( 𝑓 > 𝑓acc,𝑖)

×
𝑚3

𝑖

µ2𝑚

(
3 + 2

𝑚2
𝑖

𝑚µ

)
− 75𝜋𝐹★ν2/5G3M2ρ𝑎

26624𝑐6

(
𝜋GM 𝑓

𝑐3

)−13/3

×
2∑︁
𝑖=1

Θ( 𝑓 < 𝑓acc,𝑖)

(
3 + 2

𝑚2
𝑖

𝑚µ

)[
1 −
(

𝑓

𝑓acc,𝑖

)13/3

+13
19

(
𝑓

𝑓acc,𝑖

)16/3
]
, (4.19)

Ψdf =
875𝜋G3M2ρ0

11829248𝑐6

(
𝜋GM 𝑓

𝑐3

)−16/3 2∑︁
𝑖=1

𝑚3
𝑖

µ2𝑚
Θ( 𝑓 −df,𝑖 < 𝑓 +df,𝑖)

×
Θ( 𝑓 −df,𝑖 < 𝑓 < 𝑓 +df,𝑖)

1 + 304
105

ln
𝑓

𝑓 +df,𝑖
− 361

105

(
𝑓

𝑓 +df,𝑖

)16/3

+256
105

(
𝑓

𝑓 +df,𝑖

)19/3
 + Θ( 𝑓 < 𝑓 −df,𝑖)

−361
105

(
𝑓

𝑓 +df,𝑖

)16/3

+361
105

(
𝑓

𝑓 −df,𝑖

)16/3

+ 5776
315

(
𝑓

𝑓 −df,𝑖

)16/3

ln
𝑓 −df,𝑖

𝑓 +df,𝑖
+ 256

105

×
(

𝑓

𝑓 +df,𝑖

)19/3

− 256
105

(
𝑓

𝑓 −df,𝑖

)19/3

− 4864
315

(
𝑓

𝑓 −df,𝑖

)19/3

ln
𝑓 −df,𝑖

𝑓 +df,𝑖

 .

(4.20)

The factor Θ in the first line means that only the smaller BH
can contribute, if there exists a range for dynamical friction
where the two conditions 𝑣𝑖 > 𝑐𝑠 and 𝑟IR,𝑖 > 𝑟UV,𝑖 are satisfied.
This provides a conservative estimate of the impact of the dark
matter environment on the gravitational wave signal. A more
accurate treatment would probably give a nonzero dynamical
friction outside of the frequency ranges [ 𝑓 −df,𝑖 , 𝑓

+
df,𝑖]. Therefore,

the detection thresholds obtained in Table IV are conservative
results. However, as the signal is dominated by the accretion
rather than the dynamical friction, more accurate treatments
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of the dynamical friction that would give a small but non-zero
impact outside of these frequency ranges should not change
much our results.

In the dark matter contributions (4.18)-(4.20) to the phase
we used the leading term 𝐷gw given in (4.8) in the expressions
(4.15). This is sufficient for our purpose, which is to estimate
the dark matter density thresholds associated with a significant
impact on the GW signal. However, in the gravitational wave
phase (4.16) we have added the first post-Newtonian 1-PN order
[93]. This breaks the degeneracy over the two BH masses 𝑚1
and 𝑚2 shown by the leading term that only depends on the
chirp mass M. Then, the phase (4.16) depends independently
on both 𝑚1 and 𝑚2 and the gravitational wave signal can
constrain both BH masses. Higher-order 1.5-PN and 2-PN
terms allow one to constrain the BH spins [93], however we
do not consider BH spins in this paper. This ensures that for
vanishing dark matter density, i.e. a binary in vacuum, the
Fisher analysis performed in Sec. V over the binary parameters
{𝑡𝑐,Φ𝑐, ln(𝑚1), ln(𝑚2)} is well defined and can constrain both
BH masses, as in actual data analysis of GW signals.

C. Relative impact of various contributions
1. Dark matter halo gravity

From Eqs.(4.16) and (4.18), we obtain

Ψhalo
Ψgw

=
800ρ0G
693𝜋 𝑓 2 ∼ 2 × 10−8 ρ0

1 g · cm−3

(
𝑓

1 Hz

)−2
, (4.21)

where we only kept the leading term in Ψgw. This ratio
happens to be independent of the BH masses and is very small.
Therefore, the impact of the dark matter cloud gravitational
potential is typically negligible.

2. Accretion on the BHs
Denoting 𝑚> = max(𝑚1, 𝑚2) and 𝑚< = min(𝑚1, 𝑚2) the

greater and smaller mass of the binary, we obtain from Eq.(4.9)

𝑓acc,< ∼ 3 × 104 ρ0
ρ𝑎

(
𝑚>

1 𝑀⊙

)−1
Hz,

𝑓acc,> ∼ 3 × 104 ρ0
ρ𝑎

(
𝑚>

𝑚<

)3(
𝑚>

1 𝑀⊙

)−1
Hz. (4.22)

Since we typically have ρ0 ≪ ρ𝑎, these frequencies are usually
below 1 Hz and the smaller BH can experience both accretion
regimes in the range of frequencies probed by observations.
The impact of the accretion is typically greater for the more
massive BH, because of the factors 𝑚3

𝑖
and 𝑚2

𝑖
in Eq.(4.19).

Focusing on this contribution, we obtain

𝑓 > 𝑓acc,> :
Ψacc,>

Ψgw
∼ 0.1

(
𝑚>

𝑚<

)4 ρ0

1 g · cm−3

×
(

𝑚>

1 𝑀⊙

)−5/3(
𝑓

1 Hz

)−11/3
, (4.23)

and

𝑓 < 𝑓acc,> :
Ψacc,>

Ψgw
∼ 5 × 10−6 𝑚>

𝑚<

ρ𝑎
1 g · cm−3

×
(

𝑚>

1 𝑀⊙

)−2/3(
𝑓

1 Hz

)−8/3
. (4.24)

We can see that the contribution to the phase from the accretion
is typically much greater than that from the cloud gravity (4.21).
However, it remains small as compared with the standard
contribution Ψgw from gravitational waves, which validates
our perturbative computations. It increases for smaller masses
and low frequencies. This implies that it is most important at
the early stages of the inspiral phase.

3. Dynamical friction
From Eq.(4.9) we obtain

𝑓 −df,< ∼ 6 × 104
(
ρ0
ρ𝑎

)3/2(
𝑚>

1 𝑀⊙

)−1
Hz,

𝑓 −df,> ∼ 6 × 104
(
ρ0
ρ𝑎

)3/2(
𝑚>

𝑚<

)3(
𝑚>

1 𝑀⊙

)−1
Hz, (4.25)

and

𝑓 +df,< ∼ 2 × 102
(
ρ0
ρ𝑎

)3/2(
𝑚>

𝑚<

)6(
𝑚>

1 𝑀⊙

)−1
Hz,

𝑓 +df,> ∼ 2 × 102
(
ρ0
ρ𝑎

)3/2(
𝑚<

𝑚>

)15(
𝑚>

1 𝑀⊙

)−1
Hz. (4.26)

We recover the fact that only the smaller BH experiences a
significant dynamical friction, if the mass ratio is sufficiently
large. Then, we obtain

𝑓 −df,< < 𝑓 < 𝑓 +df,< :
Ψdf
Ψgw

∼ 7 × 10−3 ρ0

1 g · cm−3

×
(

𝑚>

1 𝑀⊙

)−5/3(
𝑓

1 Hz

)−11/3
. (4.27)

This is smaller than the accretion contribution (4.23) by a factor
(𝑚</𝑚>)

4 because the accretion is dominated by the larger BH
while in our approximation only the smaller BH experiences
dynamical friction. Again this is a small correction to the
gravitational wave term Ψgw from gravitational waves and it is
most important at the early stages of the inspiral phase, with
low frequencies.

4. Effective post-Newtonian orders
Contributions to the phase Ψ that scale as 𝑓 𝛼 may be

attributed an effective post-Newtonian order 𝑛 = 3𝛼/2 + 5/2.
Then, the cloud gravity (4.18) is associated with a -3 PN
contribution. The accretion gives a -4 PN contribution at
low frequency and a -5.5 PN contribution at high frequency,
keeping only the dominant terms. In the range 𝑓 −df < 𝑓 <

𝑓 +df the dynamical friction also gives a -5.5 PN contribution.
This negative orders express the fact that these dark matter
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contributions are increasingly important at low frequencies, in
the early stages of the inspiral. This also means that they are
not degenerate with usual relativistic corrections, associated
with positive post-Newtonian orders.

In this paper we do not include the backreaction of the
scalar field. Studies of the FDM scenario have shown that
this may contribute a -6 PN effect, which is however too small
to be observed [8,94]. On the other hand, the dynamical
friction can heat the gas and lead to a depletion of dark
matter in the vicinity of the orbital radius [95,96], which
decreases the actual amount of dynamical friction. For the self-
interacting case that we consider in this paper, the effective
pressure could lessen this effect if it can replenish the BH
neighbourhood. Moreover, the small-scale cutoff (2.11) makes
the dynamical friction insensitive to the local dark matter
density. A detailed investigation of this point is left to future
work. Another noteworthy factor, at 5 PN order, is the influence
of deformability effects caused by nonzero Love numbers for
dressed BHs (e.g., surrounded by a scalar field) as discussed
in [97,98]. Focusing on the low scalar-mass limit for FDM
models, 𝛼 = 𝑚DM𝑚BH𝐺/(ℏ𝑐) ≪ 1, these authors found that
these effects grow as 𝛼−8 and can be significant for 𝛼 ≲ 0.1.
In this paper, we focus instead on the large scalar-mass limit,
𝛼 ≫ 1 as in Eq.(2.6), and we can expect the tidal Love numbers
to be much smaller. Another difference is the importance of
the self-interactions. We plan to study the Love numbers in
this case in future papers.

5. Relativistic corrections
The dynamical friction formulae used here are valid in the

nonrelativist limit 𝑣 ≪ 𝑐. Relativistic corrections typically
give a corrective prefactor 𝛾2(1 + 𝑣2)2 in the dynamical
friction [9,99,100], which enhances the impact on the binary
and the detectability of the environment [101]. This can
be obtained in the collisionless case from the relativistic
formula for the scattering deflection angle and the relativistic
Lorentz boost between the fluid and BH frames [99]. The
relativistic corrections for fuzzy dark matter were also derived
from first principles in [12] and compared with numerical
simulations in [13]. This should remain a good approximation
in the highly supersonic case, where the streamlines at large
radii follow collisionless trajectories as pressure effects are
small. For velocities as high as 𝑣2 ∼ 0.137 𝑐2 this only
gives a multiplicative factor of about 1.5. As the dark matter
contributions are most important in the early inspiral, we can
see that relativistic corrections can be neglected and will not
change the order of magnitude of our results. In practice, we
cut the analysis below the frequency 𝑓𝛾 where 𝑣2 = 0.137 𝑐2,
to ensure relativistic corrections remain modest.

6. Dark matter parameters ρ𝑎 and ρ0

As seen in the previous sections, the gravitational wave signal
only depends on the dark matter environment through the two
parameters ρ𝑎 and ρ0, which are the characteristic density (2.3)
determined by the self-interaction and the bulk density of the
dark matter cloud. The cloud gravity (4.18), the accretion at
high frequency (4.19) and the dynamical friction (4.20) are

proportional to ρ0, whereas the accretion at low frequency
(4.19) is proportional to ρ𝑎. On the other hand, the thresholds
(4.9) depend on 𝑐𝑠 ∝

√︁
ρ0/ρ𝑎. Therefore, in principles it

is possible to constrain both parameters if the observational
frequency range contains the low-frequency accretion regime
or at least one of these frequency thresholds.

V. FISHER INFORMATION MATRIX

A. Fisher analysis
We use a Fisher matrix analysis to estimate the dark

matter densities ρ𝑎 and ρ0 that could be detected through
the measurement of GWs emitted by binary BHs in the inspiral
phase. The Fisher matrix is given by [93,102]

Γ𝑖 𝑗 = 4 Re
∫ 𝑓max

𝑓min

𝑑𝑓

𝑆𝑛( 𝑓 )

(
∂ ℎ̃

∂𝜃𝑖

)★(
∂ ℎ̃

∂𝜃 𝑗

)
, (5.1)

where {𝜃𝑖} is the set of parameters that we wish to measure
and 𝑆𝑛( 𝑓 ) is the noise spectral density, which depends on the
GW interferometer. The signal-to-noise ratio is

(SNR)2 = 4
∫ 𝑓max

𝑓min

𝑑𝑓

𝑆𝑛( 𝑓 )
| ℎ̃( 𝑓 )|2. (5.2)

Writing the gravitational waveform as ℎ̃( 𝑓 ) = A0 𝑓
−7/6𝑒𝑖Ψ( 𝑓 ),

as in Eqs.(4.13)-(4.14), we obtain

Γ𝑖 𝑗 =
(SNR)2∫ 𝑓max

𝑓min

𝑑 𝑓

𝑆𝑛( 𝑓 )
𝑓 −7/3

∫ 𝑓max

𝑓min

𝑑𝑓

𝑆𝑛( 𝑓 )
𝑓 −7/3 ∂Ψ

∂𝜃𝑖

∂Ψ

∂𝜃 𝑗

(5.3)

where the parameters that we consider in our analysis are
{𝜃𝑖} = {𝑡𝑐,Φ𝑐, ln(𝑚1), ln(𝑚2), ρ0, ρ𝑎}. The amplitude A0
would be an additional parameter. However, the Fisher matrix
is block-diagonal as ΓA0 , 𝜃𝑖 = 0 and the amplitude A0 is
completely decorrelated from the other parameters {𝜃𝑖} [93].
Therefore, we do not consider the amplitude any further. From
the Fisher matrix we obtain the covariance Σ𝑖 𝑗 =

(
Γ−1)

𝑖 𝑗
,

which gives the standard deviation on the various parameters
as σ𝑖 = ⟨(Δ𝜃𝑖)2⟩1/2 =

√
Σ𝑖𝑖 .

As compared with the study presented in [103], we neglect
the effective spin 𝜒eff ≡ (𝑚1𝜒1 + 𝑚2𝜒2)/𝑚, which is only
considered to calculate the last stable orbit using the analytical
PhenomB templates [104]. This is because our results for
the accretion rate and the dynamical friction have only been
derived for Schwarzschild BHs. However, we expect the order
of magnitude that we obtain for the dark matter densities
to remain valid for moderate spins. A second difference
from [103] is that in addition to the dark-matter density ρ0,
which describes the bulk of the cloud, we also have a second
characteristic density ρ𝑎. It describes the dark matter density
close to the Schwarzschild radius and it is directly related to
the strength of the dark-matter self-interaction.

B. Sectors in the (ρ0, ρ𝑎) plane
1. Binary and dark matter parameters

In this paper, we investigate the detection thresholds for a
dark matter environment. Then, we assumed that the dark
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matter impact is small and we linearized in all its contributions.
Thus, the phases (4.18)-(4.20) are proportional to the densities
ρ0 or ρ𝑎 (at fixed 𝑐𝑠). As expected, the contributions from the
halo gravity (4.18), the accretion in the high-frequency or high-
velocity regime (4.19), and the dynamical friction (4.20) are
proportional to the bulk halo density ρ0. The contribution from
the accretion in the low-frequency or low-velocity regime (4.19)
is proportional to the characteristic density ρ𝑎, associated with
the maximum allowed accretion rate.

Then, for vanishing or negligible dark matter
halo the standard waveform parameters {𝜃𝑖}𝑖=1,4 =

{𝑡𝑐,Φ𝑐, ln(𝑚1), ln(𝑚2)} are determined by the first four terms
in the phase (4.14), that is, the 𝑡𝑐 and Φ𝑐 factors and the
gravitational wave contribution Ψgw. This corresponds to the
standard analysis for binary systems in vacuum. For a small
dark matter halo, or for the fiducial ρ0 = ρ𝑎 = 0, this also
provides the 4 × 4 components Γ𝑖 𝑗 with 1 ≤ 𝑖, 𝑗 ≤ 4 of the
Fisher matrix.

The presence of a dark matter environment can be detected
through the phases (4.18)-(4.20). These contributions have
an amplitude proportional to ρ0 or ρ𝑎, multiplied Heaviside
factors Θ and slowly-varying terms such as 1 + ( 𝑓 / 𝑓acc)

13/3 or
ln( 𝑓 / 𝑓 +df). The frequencies (4.9) do not depend on ρ0 and ρ𝑎
independently, but only on the sound-speed 𝑐𝑠, that is, on the
ratio 𝑦 defined by

𝑦 ≡ ρ𝑎
ρ0

=
𝑐2

𝑐2
𝑠

≥ 1. (5.4)

Therefore, the different accretion and dynamical friction
regimes are delimited by specific values of 𝑦, which determine
several angular sectors in the (ρ0, ρ𝑎) plane. The physical part
of the positive quadrant {ρ0 ≥ 0, ρ𝑎 ≥ 0} is restricted to the
upper-diagonal sector ρ𝑎 ≥ ρ0 because of the condition 𝑐𝑠 ≤ 𝑐.
For a given binary system and observational frequency band
[ 𝑓min, 𝑓max], let us define the accretion thresholds in 𝑦,

𝑓min < 𝑓acc,𝑖 : 𝑦 < 𝑦+acc,𝑖 , 𝑦+acc,𝑖 =
𝑐3𝑚3

𝑖

3𝜋𝐹★G𝑚µ3 𝑓min
, (5.5)

𝑓max < 𝑓acc,𝑖 : 𝑦 < 𝑦−acc,𝑖 , 𝑦−acc,𝑖 =
𝑐3𝑚3

𝑖

3𝜋𝐹★G𝑚µ3 𝑓max
, (5.6)

and the dynamical friction thresholds

𝑓min < 𝑓 +df,𝑖 : 𝑦 < 𝑦+df,𝑖 , 𝑦+df,𝑖 =

(
𝑒3𝑐3𝑚5µ15

5832𝜋G𝑚21
𝑖
𝑓min

)2/3

,

(5.7)

𝑓max < 𝑓 −df,𝑖 : 𝑦 < 𝑦−df,𝑖 , 𝑦−df,𝑖 =

(
𝑐3𝑚3

𝑖

𝜋G𝑚µ3 𝑓max

)2/3

. (5.8)

Let us label the BH masses so that 𝑚1 ≥ 𝑚2, then we have

𝑚1 ≥ 𝑚2 : 𝑦+acc,1 ≥ 𝑦+acc,2, 𝑦−acc,1 ≥ 𝑦−acc,2, (5.9)

while only the smaller BH 𝑚2 can experience significant
dynamical friction. Then, we can split the behavior of the

accretion term Ψacc as

𝑦 > 𝑦+acc,1 : no accretion dependence on ρ𝑎,

𝑦 < 𝑦−acc,2 : no accretion dependence on ρ0, (5.10)

where we neglected the dependence on 𝑐𝑠 of the terms inside
the brackets in Eq.(4.19), which quickly converge to unity
below the threshold 𝑓acc,𝑖 . We can also split the behavior of
the dynamical friction term Ψdf as

𝑦 > 𝑦+df,2 : no dynamical friction,
𝑦−df,2 < 𝑦 < 𝑦+df,2 : dynamical friction,
𝑦 < 𝑦−df,2 : dynamical friction is degenerate with 𝑡𝑐 and Φ𝑐,

(5.11)

where again we neglected the dependence on 𝑐𝑠 of the terms
inside the brackets in Eq.(4.20).

2. High-𝑦 sector
In the high-𝑦 sector,

𝑦 > max(𝑦+acc,1, 𝑦
+
df,2), (5.12)

the phase Ψ is only sensitive to ρ0, through the halo gravity
(4.18) and the high-frequency regime of the accretion (4.19).
Therefore, we have no constraint on ρ𝑎 and the gravitational
wave measurement only provides a bound on the bulk density
ρ0. The Fisher matrix (5.3) is then a 5 × 5 matrix. This gives
the covariance matrix Σ𝑖 𝑗 =

(
Γ−1)

𝑖 𝑗
and the standard deviation

σρ0 =
√︁
Σρ0ρ0 . This corresponds to the detection threshold

ρ0★ = σρ0 : halos with a higher dark matter density can be
detected from the gravitational wave measurements whereas
lower density clouds cannot be discriminated from binaries in
vacuum. This corresponds for instance in the EMRI panel in
Fig. 1 to the vertical blue line above the upper red diagonal line,
which is the lower angular bound (5.12) in the plane (ρ0, ρ𝑎).

As seen in Sec. IV C 2, the contribution from the halo
gravity is negligible as compared with the contribution from
the accretion. Then, in the limit where we can neglect the corre-
lations between the binary parameters {𝑡𝑐,Φ𝑐, ln(𝑚1), ln(𝑚2)}
and ρ0, the detection threshold ρ0★ can be estimated as
ρ0★ ≳

1
SNR

���∂Ψacc
∂ρ0

���−1
,

ρ0★ ≳
1

SNR
19456𝑐6

25𝜋G3𝑚2
1

(
𝜋G𝑚1 𝑓min

𝑐3

)16/3(
𝑚2
𝑚1

)5
, (5.13)

which gives

ρ0★ ≳
3 × 10−6

SNR

(
𝑚2
𝑚1

)5(
𝑚1

1 𝑀⊙

)10/3(
𝑓min

1 Hz

)16/3
g/cm3.

(5.14)
Thus, we can see that this lower bound improves for instruments
that probe lower frequencies and for binaries with a higher
mass ratio. In practice, we perform a full Fisher matrix analysis.
Then, the partial degeneracies between the various parameters
and the finite frequency band [ 𝑓min, 𝑓max] give a detection
threshold that must be somewhat above (5.14).
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3. Intermediate-𝑦 sector
For the IMRI and EMRI cases to be discussed in Sec. VI

below, there is a narrow intermediate regime where dynamical
friction comes into play while accretion is still independent of
ρ𝑎,

𝑦−df,2 < 𝑦+acc,1 < 𝑦 < 𝑦+df,2. (5.15)

Neglecting the dependence on 𝑐𝑠 of the terms inside the
brackets in Eq.(4.20) to count the number of parameters, we
treat Ψdf as a linear function of ρ0 for a fixed density ratio
𝑦. Then, the Fisher matrix (5.3) is again a 5 × 5 matrix and
from the standard deviation σρ0 =

√︁
Σρ0ρ0 we again obtain the

lower bound ρ0★ = σρ0 . This provides a vertical boundary
line in the plane (ρ0, ρ𝑎) for the detection threshold, within
the narrow strip (5.15). This corresponds for instance in the
EMRI panel in Fig. 1 to the vertical dashed green line between
the upper red diagonal line and the upper blue dotted diagonal
line, associated with the angular bounds (5.15) in the plane
(ρ0, ρ𝑎).

4. Low-𝑦 sector
For low values of 𝑦,

1 ≤ 𝑦 < 𝑦+acc,1, (5.16)

the accretion contribution depends on ρ𝑎, while the halo
gravity always depends on ρ0, so that we have two dark matter
parameters and the Fisher matrix is a 6 × 6 matrix. For a
given density ratio 𝑦, we compute the associated Fisher ellipse
in the plane (ρ0, ρ𝑎) and its intersection with the direction
ρ𝑎/ρ0 = 𝑦. Thus, from the 6 × 6 Fisher matrix Γ𝑖 𝑗 we obtain
the 6×6 covariance matrix Σ𝑖 𝑗 . We marginalize over the binary
parameters {𝑡𝑐,Φ𝑐, ln(𝑚1), ln(𝑚2)} by defining the new 2 × 2
covariance matrix Σ̂𝑖 𝑗 associated with the rows and columns
of the two remaining parameters ρ0 and ρ𝑎, and we obtain
the 2 × 2 Fisher matrix Γ̂ = Σ̂−1. This determines the Fisher
ellipse in the plane (ρ0, ρ𝑎) defined by

Δ𝜒2 = Γ̂ρ0ρ0ρ
2
0 + 2Γ̂ρ0ρ𝑎

ρ0ρ𝑎 + Γ̂ρ𝑎ρ𝑎
ρ2
𝑎, (5.17)

which is restricted to the angular sector (5.16) in the plane
(ρ0, ρ𝑎). For simplicity we keepΔ𝜒2 = 1 as in the other angular
sectors. Because most of the dark matter signal comes from
the accretion contribution at low frequency, this elliptic section
is an almost straight horizontal line in the angular sector (5.16),
which gives an almost constant threshold ρ𝑎. This corresponds
for instance in the EMRI panel in Fig. 1 to the horizontal red
line between the upper blue dotted line and the black dashed
line, associated with the angular bounds (5.16) in the plane
(ρ0, ρ𝑎).

Neglecting correlations among parameters we obtain the

estimate ρ𝑎★ ≳ 1
SNR

���∂Ψacc
∂ρ𝑎

���−1
,

ρ𝑎★ ≳
1

SNR
13312𝑐6

75𝜋𝐹★G3𝑚2
1

(
𝜋G𝑚1 𝑓min

𝑐3

)13/3(
𝑚2
𝑚1

)2
,

(5.18)

which gives

ρ𝑎★ ≳
0.08
SNR

(
𝑚2
𝑚1

)2(
𝑚1

1 𝑀⊙

)7/3(
𝑓min

1 Hz

)13/3
g/cm3.

(5.19)
This lower bound again improves for instruments that probe
lower frequencies and for binaries with a higher mass ratio.
Again, because of partial degeneracies and the finite frequency
band the detection threshold obtained from the inversion of
the Fisher matrix is somewhat greater than the estimate (5.19).

5. Detection area in the plane (ρ0, ρ𝑎)

As displayed for instance in the EMRI panel in Fig. 1, the
thresholds ρ0★ obtained at large 𝑦 in Secs. V B 2 and V B 3 give
a degenerate Fisher ellipse that is a vertical strip around ρ0 = 0
of width ρ0★ that extends from the diagonal ρ𝑎 > 𝑦+acc,1ρ0
to infinite ρ𝑎. At lower 𝑦 the ellipse (5.17) gives an almost
horizontal strip around ρ𝑎 = 0 of width ρ𝑎★, which is bracketed
by the diagonals ρ0 = ρ𝑎/𝑦+acc,1 and ρ0 = ρ𝑎. In Fig. 1 this
corresponds to the white area in the upper left diagonal sector,
ρ𝑎 ≥ ρ0. The shaded complementary area corresponds to
densities that are beyond these Fisher ellipse boundaries, that
is, their dark matter impact on the gravitational waveform
is statistically inconsistent with the assumption of zero dark
matter environment. In this paper, we thus identify this region
with the detection threshold for the dark matter densities (i.e.,
dark matter environments that can be distinguished from the
null hypothesis). Although more sophisticated data analysis
may be considered, this should provide the correct order of
magnitude for the detection thresholds in the dark matter
density plane (ρ0, ρ𝑎).

VI. DETECTION PROSPECTS

A. Gravitational-wave detectors
The gravitational-wave detectors that we consider are LISA

[105], DECIGO [106], ET [107] and Adv-LIGO [108]. We
use the noise spectral densities presented in [109–112]. The
frequency ranges are given in Table I, where the PhenomB
inspiral-merger transition value 𝑓1 is defined in [104] and

𝑓obs = 4.149 × 10−5
(

M
106𝑀⊙

)−5/8 (
𝑇obs
1 yr

)−3/8
is the frequency

at a given observational time before the merger, as defined in
[113]. We take 𝑇obs = 4 yr in our computations.

B. Events
We focus on the description of 6 events, 2 ground based and

4 space based, the last ones being for LISA since its detection
range differs from the others. All the events are BH binaries.
The virtual events correspond to different types of binaries:
Massive Binary Black Holes (MBBH), Intermediate Binary
Black Holes (IBBH), an Intermediate Mass Ratio Inspiral
(IMRI) and an Extreme Mass Ratio Inspiral (EMRI). All of
these events are of the same type as the ones considered by
[103], but we focus on BH binaries and do not consider neutron
star binaries. The details of these events are given in Table II.
For completeness, we included the spins and 𝜒eff , which sets
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Detector
Frequency

𝑓min(Hz) 𝑓max(Hz)

LISA max
(
2 × 10−5, 𝑓obs

)
min

(
1, 𝑓1, 𝑓𝛾

)
DECIGO 10−2 min

(
100, 𝑓1, 𝑓𝛾

)
ET 3 min

(
𝑓1, 𝑓𝛾

)
Adv-LIGO 10 min

(
𝑓1, 𝑓𝛾

)
TABLE I: Gravitational waves frequency band considered for
the LISA, DECIGO, ET and Adv-LIGO interferometers,
where 𝑓obs is the frequency of the binary 4 years before
the merger [113] and 𝑓1 is the PhenomB inspiral-merger
transition value [104].

the upper frequency cutoff of the data analysis. The SNR values
for each of these events are taken from [103] and summarized
in Table III.

Event
Properties

𝑚1 (M⊙) 𝑚2 (M⊙) 𝜒1 𝜒2 𝜒eff

MBBH 106 5 × 105 0.9 0.8 0.87
IBBH 104 5 × 103 0.3 0.4 0.33
IMRI 104 10 0.8 0.5 0.80
EMRI 105 10 0.8 0.5 0.80
GW150914 35.6 30.6 −0.01
GW170608 11 7.6 0.03

TABLE II: Details on masses and spins of the considered
events. The information on GW150914 and GW170608 are
taken from [114].

Event
Detector LISA DECIGO ET Adv-LIGO

MBBH 3 × 104 × × ×
IBBH 708 × × ×
IMRI 64 × × ×
EMRI 22 × × ×
GW150914 × 2815 615 40
GW170608 × 1290 303 35

TABLE III: Value of the signal-to-noise ratio (SNR) of the
considered events for each detector, taken from [103].

C. Detection thresholds in the (ρ0, ρ𝑎) plane
We show in Figs. 1 and 2 our results for the detection

thresholds in the (ρ0, ρ𝑎), following the Fisher matrix analysis
described in Sec. V. Let us first describe the LISA-MBBH
case, shown in the upper left panel in Fig. 1. The lower
diagonal black dashed line is the lower limit 𝑦 = 1 (𝑐𝑠 = 𝑐)
on the physical part of the parameter space. The parallel blue
dotted lines are the thresholds 𝑦+acc,1 and 𝑦−acc,1 while the green
dot-dashed lines are the thresholds 𝑦+acc,2 and 𝑦−acc,2 (constant-𝑦
lines are parallel to the diagonal 𝑦 = 1 in the (log(ρ0), log(ρ𝑎))
logarithmic plane). Because ν > 0.16 there is no dynamical
friction.

Then, above the upper blue dotted line 𝑦+acc,1, we are in the
large-𝑦 regime (5.12) and there is no constraint on ρ𝑎. Thus, we
obtain a vertical line ρ0 > ρ0★ with ρ0★ ≃ 8×10−13g/cm3 This
should be compared with the simple estimate (5.14), which
gives ρ0★ ≳ 10−14g/cm3 as we have 𝑓min ≃ 6 × 10−5 Hz. As
expected the more accurate Fisher analysis gives a higher value
but we roughly recover the same order of magnitude. This
gives the shaded area to the right of ρ0★ and above the line
𝑦+acc,1 as a region where DM would be detected, mostly because
of the accretion contribution Ψacc,1 on the larger BH.

Between the lines 𝑦+acc,1 and 𝑦 = 1, we are in the low-𝑦 regime
(5.16) where the phase depends on both ρ0 and ρ𝑎. The Fisher
matrix analysis gives an almost flat boundary curve ρ𝑎 > ρ𝑎★
with ρ𝑎★ ≃ 5 × 10−9g/cm3 This should be compared with the
simple estimate (5.19), which gives ρ𝑎★ ≳ 10−11g/cm3. Again,
the more accurate Fisher analysis gives a higher value but we
roughly recover the same order of magnitude. In particular, the
estimates (5.14) and (5.19) correctly predict the large hierarchy
between the thresholds ρ0★ and ρ𝑎★. This gives the remaining
shaded area between the lines 𝑦+acc,1 and 𝑦 = 1, above ρ𝑎★, as
a region where DM would be detected, mostly because of the
accretion contribution Ψacc,1 on the larger BH, but now in the
low-velocity self-regulated regime.

The same behaviors are found for the LISA-IBBH case,
shown in the lower left panel in Fig. 1. In particular, with
𝑓min ≃ 6 × 10−4 Hz, Eqs.(5.14) and (5.19) give the simple
estimates ρ0★ ≳ 10−14g/cm3 and ρ𝑎★ ≳ 10−9g/cm3, whereas
the detailed Fisher matrix inversion gives the more accurate
results ρ0★ ≃ 5 × 10−13g/cm3 and ρ𝑎★ ≃ 3 × 10−8g/cm3.

Let us now consider the LISA-IMRI case, shown in the upper
right panel in Fig. 1. In addition to the thresholds {𝑦+acc,1, 𝑦

−
acc,1}

and {𝑦+acc,2, 𝑦
−
acc,2}, the red solid lines show the dynamical

friction thresholds {𝑦+df,2, 𝑦
−
df,2}. Above the upper line 𝑦+df,2 we

are again in the large-𝑦 regime (5.12), with a vertical bound
ρ0★ = 3× 10−20g/cm3. This is again within a factor 100 of the
simple estimate (5.14), which gives ρ0★ ≳ 10−21g/cm3 with
𝑓min ≃ 6 × 10−3 Hz. In the narrow band 𝑦+acc,1 < 𝑦 < 𝑦+df,2 we
are in the intermediate regime (5.15), with a weak dependence
on ρ𝑎 through 𝑐𝑠 in the terms inside the brackets in Eq.(4.20).
Thus, we still have a roughly vertical line. Below 𝑦+acc,1 we
are in the low-𝑦 regime (5.16), which is now dominated by
the new dependence of the accretion term on ρ𝑎, which gives
a roughly horizontal line with ρ𝑎★ ≃ 2 × 10−8g/cm3. The
simple estimate (5.19) gives ρ𝑎★ ≳ 10−9g/cm3, which is again
within a factor 100 of the more accurate Fisher matrix result
and reproduces the large hierarchy between ρ0★ and ρ𝑎★.

We obtain similar behaviors for the LISA-EMRI case, shown
in the lower right panel in Fig. 1. With 𝑓min ∼ 3× 10−3 Hz, the
simple estimates (5.14) and (5.19) give ρ0★ ≳ 10−24g/cm3 and
ρ𝑎★ ≳ 10−10g/cm3, whereas the more accurate Fisher matrix
results are ρ0★ ≃ 10−22g/cm3 and ρ𝑎★ ≃ 10−8g/cm3.

We obtain similar behaviors in 2 for the DECIGO, ET
and Adv-LIGO detectors, for stellar-mass binaries. As in the
MBBH and IBBH cases, there is no dynamical friction regime.
DECIGO provides constraints on DM environments that are
similar to those obtained from LISA, but the ET and Adv-LIGO
cannot detect the dark matter cloud for realistic densities.

Thus, in all cases the detection domain is an upper right
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FIG. 1: Maps of the detection prospects with LISA for different events, in terms of the dark matter parameters ρ0 and ρ𝑎. The
lower right area below the black dashed line is not physical. The shaded upper right area shows the region of the parameter
space where the dark matter environment can be detected.

region, delimited from the left by ρ0★, from below by ρ𝑎★, and
from the right by the diagonal ρ𝑎 = ρ0. The simple estimates
(5.14) and (5.19) are typically below the exact thresholds ρ0★
and ρ𝑎★ by a factor of up to 100, but they reproduce the
main trends and the hierarchy between ρ0★ and ρ𝑎★. The DM
detection is dominated by the accretion contribution Ψacc on
the larger BH. Above the diagonal 𝑦+acc,1, which runs through
the lower-left corner of this domain, the accretion rate is
proportional to ρ0 whereas below the diagonal 𝑦+acc,1 it is
proportional to ρ𝑎. Therefore, in the shaded domain above
𝑦+acc,1 we measure ρ0 whereas below 𝑦+acc,1 we measure ρ𝑎.

We summarize in Table IV the density thresholds ρ0★
and ρ𝑎★ above which the DM cloud can be detected, for
the detectors and binary systems displayed in Figs. 1 and
2. This is only possible at much higher densities than the
typical dark matter density on galaxy scales, which is about
10−26 to 10−23 g/cm3 [72,115–117]. For comparison, we
also note that accretion disks have a baryonic matter density
below ∼ 0.1 g/cm3 for thin disks, and below 10−9g/cm3 for

thick disks [92], with a lower bound around 10−16g/cm3.
Therefore, only LISA and DECIGO could detect DM clouds
with realistic bulk densities, ρ0 > 10−22g/cm3 for LISA-EMRI
and ρ0 > 10−15g/cm3 for DECIGO. The detection of the
scalar cloud also requires a very high value of the density
parameter ρ𝑎, ρ𝑎 ≳ 10−8g/cm3. However, this is not the
typical density of the DM cloud but only the density close to
the Schwarzschild radius, in the accretion regime regulated
by the self-interactions. On the other hand, DM clouds with
densities much higher than typical baryonic accretion disks
may be produced in the early universe, as discussed for instance
in [67,118] for several scenarios. Then, in contrast with the
standard CDM case, the dark matter density field would be
extremely clumpy, in the form of a distribution of small and
dense clouds (in a manner somewhat similar to primordial
BHs or macroscopic dark matter scenarios, but with larger-size
objects).



15

10 18 10 14 10 10 10 6 10 2

0 [g/cm3]
10 18

10 14

10 10

10 6

10 2

a
[g

/c
m

3 ]
DECIGO - GW150914

10 4 10 2 100 102 104

0 [g/cm3]
10 4

10 2

100

102

104

a
[g

/c
m

3 ]

ET - GW150914

100 102 104 106 108

0 [g/cm3]
100

102

104

106

108

a
[g

/c
m

3 ]

Adv-LIGO - GW150914

10 18 10 14 10 10 10 6 10 2

0 [g/cm3]
10 18

10 14

10 10

10 6

10 2

a
[g

/c
m

3 ]

DECIGO - GW170608

10 4 10 2 100 102 104

0 [g/cm3]
10 4

10 2

100

102

104

a
[g

/c
m

3 ]

ET - GW170608

100 102 104 106 108

0 [g/cm3]
100

102

104

106

108

a
[g

/c
m

3 ]

Adv-LIGO - GW170608

FIG. 2: Maps of the detection prospects for three different interferometers (from left-to-right: DECIGO, ET, and Adv-LIGO),
for the two events GW150914 (upper row) and GW170608 (lower row).

Event
Detector

LISA DECIGO ET Adv-LIGO

MBBH ρ0 > 8 × 10−13 g/cm3 > > >
ρ𝑎 > 5 × 10−9 g/cm3 > > >

IBBH ρ0 > 5 × 10−13 g/cm3 > > >
ρ𝑎 > 3 × 10−8 g/cm3 > > >

IMRI ρ0 > 3 × 10−20 g/cm3 > > >
ρ𝑎 > 2 × 10−8 g/cm3 > > >

EMRI ρ0 > 10−22 g/cm3 > > >
ρ𝑎 > 10−8 g/cm3 > > >

GW150914
>

ρ0 > 3 × 10−14 g/cm3 ρ0 > 0.9 g/cm3 ρ0 > 104 g/cm3>
ρ𝑎 > 10−8 g/cm3 ρ𝑎 > 103 g/cm3 ρ𝑎 > 5 × 106 g/cm3

GW170608
>

ρ0 > 5 × 10−16 g/cm3 ρ0 > 0.02 g/cm3 ρ0 > 120 g/cm3>
ρ𝑎 > 10−9 g/cm3 ρ𝑎 > 101 g/cm3 ρ𝑎 > 2 × 105 g/cm3

TABLE IV: Lower bounds ρ0★ and ρ𝑎★ on the DM density parameters for a detection of the DM cloud, for various detectors
and binary systems.

D. Detection threshold for ρa and parameter space
In this section, we compare the detection threshold ρ𝑎★

obtained in Table IV with the allowed parameter space of our
dark matter model, in the (𝑚DM, 𝜆4) plane. This allows us
to check wether this scenario can be efficiently probed by the
measurement of the gravitational waves emitted by BH binary
systems embedded in such dark matter clouds. Our results are
displayed in Figs. 3 and 4, representing the outcomes for LISA

and DECIGO. We do not consider ET and Adv-LIGO, because
they require bulk densities that are probably too high to be
realistic. Various colored regions on the figures correspond to
distinct limits based on either observational constraints or the
regime considered in our calculations.

From Eq.(2.3), a detection floor ρ𝑎★ corresponds to an upper
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FIG. 3: Domain over the parameter space (𝑚DM, 𝜆4) where our derivations are applicable, in the case of the LISA interferome-
ter. The white area represents the allowed parameter space. The upper left red region is excluded by observational constraints.
In the lower right blue region the scalar dark matter model is allowed but the assumptions used in our computations must be
revised. The black line corresponds to the detection limit obtained in Fig. 1. Parameter values above this line are beyond the
detectability range of the interferometer.

ceiling for 𝜆4 that scales as 𝑚4
DM,

ρ𝑎 > ρ𝑎★ : 𝜆4 <
4𝑚4

DM𝑐3

3ρ𝑎★ℏ3 , (6.1)

which reads

𝜆4 < 3 × 10−19
(

ρ𝑎★
1 g/cm3

)−1 (
𝑚DM
1 eV

)4
. (6.2)

This ceiling is shown by the black solid line labeled ρ𝑎★ that
runs through the white area in Figs. 3 and 4.

We now describes the constraints that determine the param-
eter space of the model, with the exclusion domains shown by
the colored regions in the plots. First, we require the condition
(2.6), which also reads

𝑚DM >
ℏ𝑐

2G𝑚<

, 𝑚DM > 7 × 10−11
(

𝑚<

1 𝑀⊙

)−1
eV. (6.3)

This ensures the validity of the accretion rate (2.7) and of the
dynamical friction (2.10), derived in [14–16] in the large-mass
limit ∂𝑟 ≪ 𝑐𝑚DM/ℏ. This condition excludes the green area
marked by a vertical line on the left in the figures, labeled
𝑚DM < ℏ/(𝑟𝑠𝑐).

Observations of cluster mergers, such as the bullet cluster,
provide an upper bound on the dark matter cross-section,
σ/𝑚DM ≲ 1 cm2/g [119]. This gives the upper bound [68]

𝜆4 < 10−12
(

𝑚

1 eV

) 3
2
, (6.4)

shown by the dashed red line in the upper left corner of the
figures, labeled σ/𝑚DM > 1 cm2/g.

Another observational limit, shown by the upper left red
dotted line labeled 𝑅sol > 10 kpc, is the maximum size of the
dark matter solitons. As we wish such solitons to fit inside
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FIG. 4: Domain over the parameter space (𝑚DM, 𝜆4) where
our derivations are applicable and detection threshold, as in
Fig. 3 but for the interferometer DECIGO.

galaxies, we require 𝑅sol < 10 kpc. This gives the upper bound

𝜆4 < 0.03
(

𝑅sol
10 kpc

)2 (
𝑚DM
1 eV

)4
. (6.5)

This condition is actually parallel to the detection threshold
(6.2) and somewhat above it in the Figs. 1 and 2. Therefore,
the largest solitons would not be detected by GW. This will be
more clearly seen in Sec. VI E below.

Our derivation of the accretion rate (2.7) and of the
dynamical friction (2.10) assumes that the self-interaction
dominates over the quantum pressure [14–16], in contrast
with FDM scenarios where the latter dominates and the self-
interactions are neglected. The self-interaction potential
reads Φ𝐼 = 𝑐2ρ/ρ𝑎, whereas the quantum pressure reads
Φ𝑄 = −ℏ2∇2√ρ/(2𝑚2

DM
√
ρ). This gives the condition

𝑐2ρ/ρ𝑎 > ℏ2/(𝑟2𝑚2
DM), where ρ and 𝑟 are the density and

length scale of interest. This condition near the BH horizon,
with ρ ∼ ρ𝑎 and 𝑟 ∼ 𝑟𝑠 , coincides with the condition (6.3) and
is thus already enforced. Requiring that this also holds over
the bulk of the soliton, at density ρ0 and radius 𝑟 ∼ 𝑅sol, gives

the additional constraint

𝜆4 >
8𝑚3

DM
√
G

3
√
𝜋ℏ2√ρ0

, (6.6)

which reads

𝜆4 > 6 × 10−38
(

ρ0

1 g/cm3

)− 1
2 (𝑚DM

1 eV

)3
. (6.7)

For the density ρ0★ this is shown by the blue dashed line labeled
Φ𝑄 > Φ𝐼(ρ0★). Below this threshold the model itself is not
excluded, but our computations should be be revised as the
bulk of the soliton is now governed by the quantum pressure
instead of the self-interactions. However, if the bulk density is
greater than ρ0★ this region moves down to smaller values of
𝜆4. Therefore, the blue dashed line is not a strict limit.

Lastly, the area below the blue dotted line labeled 𝑅sol <
𝑟orbit represents the parameter space where the soliton size
is smaller than the initial orbital radius of the binary system
during the measurement. To ensure the applicability of our
calculation across all frequencies, we must thus consider

𝜆4 >
16G𝑐𝑚4

DM𝑟2
orbit

3𝜋ℏ3 , (6.8)

which reads

𝜆4 > 3 × 10−10
(
𝑚DM
1 eV

)4
(
𝑟orbit
1 pc

)2
. (6.9)

For 𝑟orbit we take the maximum orbital radius, computed with
Kepler’s third law at the earliest measurement time, associated
with the frequency 𝑓obs(4 yr). This constraint is parallel to the
soliton-size condition (6.5) and to the detection threshold ρ𝑎★
in Eq.(6.2).

Hence, the white area in the parameter space indicates where
the dark matter model is realistic and all our calculations apply
successfully. More precisely, the upper bounds, associated with
the red exclusion regions, correspond to unphysical regions of
the parameter space, whereas the lower bounds, associated with
blue exclusion regions, only correspond to regions where some
of our computations should be revised. However, where they
fall within the detection domain, below the black solid line, it
should remain possible to detect the dark matter environment.

We can see in Fig. 3 and Fig.4 that in all cases the detection
threshold ρ𝑎★ runs through the white area. In particular, it
is parallel but below the upper bound associated with the
soliton size limit and above the lower bound associated with
the orbital radius limit. Thus, whereas the largest solitons
cannot be detected, a large part of the available parameter
space could lead to detection by interferometers such as LISA
and DECIGO. Whereas LISA probes models with a scalar
mass 10−15 ≲ 𝑚DM ≲ 1 eV, DECIGO is restricted to 10−12 ≲
𝑚DM ≲ 1 eV.

E. Constraints on the soliton radius
The two parameters 𝑚DM and 𝜆4 also determine the soliton

size 𝑅sol, as seen in Eqs.(2.3) and (2.4). As 𝑅sol is more relevant
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FIG. 5: Domain over the parameter space (𝑚DM, 𝑅sol) where our derivations are applicable and detection threshold, in the case
of the LISA interferometer as in Fig. 3

for observational purposes than the coupling 𝜆4, we show in
Figs. 5 and 6 the application domain of our computations and
the detection threshold ρ𝑎★ in the parameter space (𝑚DM, 𝑅sol),
instead of the plane (𝑚DM, 𝜆4) shown in Figs. 3 and 4 above.

We can see that no experiment can probe galactic-size
soltons, 𝑅sol ≳ 1 kpc, that could be invoked to alleviate
the small-scale problems encountered by the standard CDM
scenario. At best, LISA and DECIGO can probe models
associated with 10−7pc ≲ 𝑅sol ≲ 0.1 pc. These astrophysical
scales range from a percent of astronomical unit to a tenth of the
typical distance between stars in the Milky Way. Nevertheless,
this is still a large fraction of the parameter space.

Scalar dark matter scenarios associated with solitons of
such subgalactic size cannot be constrained by cosmological
probes, such as the Lyman-𝛼 forest, or galaxy rotation curves.
Their moderate density also evades microlensing detections.
Therefore, their impact on the gravitational waveforms emitted
by binary systems that they could contain would be a key probe
of these dark matter scenarios.

F. Comparison with other results
Our results for the minimal value ρ0★ of the bulk density ρ0

that can be measured (i.e., its detection threshold) are close
to the results obtained in Fig. 2 of [103] from collisionless
dynamical friction, for the DECIGO, ET and ADv-LIGO
events and for the LISA interferometer in the MBBH and
IBBH cases, and somewhat more optimistic than the Bayesian
analysis of [120]. While, as noticed above, the scalings of the
expression (2.10) for the dynamical friction drag force are quite
general and apply to most media, from collisionless particles
to gaseous media and scalar-field dark matter scenarios, up to
some numerical factors, it is not the reason for the similarity
in our outcomes. Our main determinant for the detection
threshold, as outlined in Eq.(5.14), is the accretion drag
force, not the dynamical friction. However, in the high-
frequency regime the accretion contribution (4.19) shows the
same scaling as the dynamical friction contribution (4.20),
Ψ ∼ (G3M2ρ0/𝑐6)(𝜋GM 𝑓 /𝑐3)−16/3, up to numerical factors
and ratios of the binary masses. This explains why we recover



19

10 13 10 10 10 7 10 4 10 1

mDM [eV]
10 12

10 10

10 8

10 6

10 4

10 2

100

102
R s

ol
 [k

pc
]

DECIGO - GW150914

10 13 10 10 10 7 10 4 10 1

mDM [eV]
10 12

10 10

10 8

10 6

10 4

10 2

100

102

R s
ol

 [k
pc

]

DECIGO - GW170608

FIG. 6: Domain over the parameter space (𝑚DM, 𝑅sol) where
our derivations are applicable and detection threshold, in the
case of the DECIGO interferometer as in Fig. 4.

similar results to those of Fig. 2 of [103] for the cases where
the binary masses are similar and those mass ratios are of the
order of unity.

However, for the IMRI and EMRI cases with the LISA
interferometer, our findings are more promising as we obtain
detection thresholds that are lower by factors ∼ 103 as
compared with Fig. 2 of [103]. This is because the accretion
contribution (4.19) is greater than the dynamical friction
contribution (4.20) that would be associated with the most
massive BH by a factor 𝑚2

𝑖
/(𝑚µ) ∼ 𝑚>/𝑚< ∼ 1/ν, which

reaches 103 and 104 for IMRI and EMRI.
Here we note that our results (4.19) and (4.20) actually

differ from the Bondi-accretion and collisionless dynamical
friction results of [103] by powers or ν, which are relevant
in case of IMRI and EMRI. As compared with [103], our
contribution from the accretion drags is enhanced by the factor
2𝑚2

𝑖
/(𝑚µ) ∼ 2𝑚>/𝑚< ∼ 2/ν associated with the accretion

onto the more massive BH. This term originates from the
factor .

𝑚/𝑚 in Eq.(3.22), which comes from the drift of the
Runge-Lenz vector (3.21). It seems that the expressions used

in [103] only take into account the term 2 .
µ/µ in the accretion

drag, that is, the accretion contribution to the force 𝐹(𝑡) in
Eqs.(3.15) and (3.22), and neglect the factor .

𝑚/𝑚.
Our contribution (4.20) for dynamical friction shows the

same scalings as in [103]. However, as we only include the
contribution from the smaller BH, because of the frequency
thresholds, its value is reduced because of the terms 𝑚3

𝑖
/(µ2𝑚),

which yield a suppression factor ∼ ν3 for small ν. This is
because we consider a self-interacting scalar-field environment
instead of collisionless particles. This shows the possible
impact of the properties of the medium on the gravitational drag.
However, in our case this term is subdominant as compared with
the accretion contribution and it may be difficult to estimate
its precise value from observations.

Our detection thresholds are much lower than those shown
in Fig. 1 of [103] for collisionless accretion. This is because
the accretion of scalar field dark matter if much more efficient
than that of collisionless particles (but less efficient than that
of a perfect gas at low Mach numbers), see [15,16]. Indeed,
pressure forces restrict tangential motion and funnel particles
in the radial direction [121]. This also gives a different velocity
and frequency dependence for the accretion drag associated
with collisionless and self-interacting dark matter.

VII. CONCLUSION

The detection of GWs has already given important results
for fundamental physics, e.g. the near equality between the
speed of GWs and the speed of light [122–124]. In this paper,
we suggest that future experiments could reveal some key
properties of dark matter. As an example, we focus on scalar
dark matter with quartic self-interactions and assume that the
dark matter density of the Universe is due to the misalignment
mechanism for the scalar field. Locally inside galaxies, these
models can give rise to dark matter solitons of finite size where
gravity and the repulsive self-interaction pressure balance
exactly. This regime applies when the size of the solitons
is much larger than the de Broglie wavelength of the scalar
particles. In this case, these solitons could be pervasive in each
galaxy and BHs could naturally be embedded within these
scalar clouds when inspiralling towards each other in binary
systems. The scalar clouds have three effects on the orbits of
the binary systems. First, the gravity of the cloud modifies the
trajectories of the BHs. Second, dark matter accretes onto the
BHs and slows them down. Third, in the supersonic regime the
dynamical friction due to the gravitational interaction between
the BHs and distant streamlines further slows them down.
These effects can lead to significant deviations of the binary
orbits and therefore to perturbations of the GW signal emitted
by the pair of BHs. The cloud gravity gives a -3PN contribution
to the gravitational waveform. The accretion gives a -4PN or
-5.5PN effect at low or high frequency, whereas the dynamical
friction gives a -5.5PN contribution. As such, these effects are
not degenerate with the relativistic corrections that appear at
higher post-Newtonian orders.

For a large part of the scalar dark matter parameter space,
future experiments such as LISA and DECIGO should be able
to observe the impact on GW of these dark matter environments,
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provided binary systems are embedded within such scalar
clouds. This would give new clues about the nature of dark
matter. Within the framework of the scalar field models with
quartic self-interactions studied in this paper, this would give
indications on the value of the bulk dark matter density ρ0
as well as the characteristic density ρ𝑎 of Eq.(2.3), that is,
the combination 𝑚4

DM/𝜆4. This would also give an indirect
estimate of the size 𝑅sol of the solitons, from Eq.(2.4). The
relatively high values of ρ0 required for detection, at least a
few hundred times above the dark matter density in the Solar
system for EMRI with LISA, suggest that this probe is mostly
relevant for scenarios where the scalar clouds form at high
redshifts, giving rise to a very clumpy dark matter distribution.
The fact that we have not detected such dark matter effects
in the ET and LIGO events is consistent with the high bulk
densities, ρ0 ≳ 1 g/cm3, that are needed to allow a detection
with these interferometers.

On the other hand, the scenarios that can be probed
through their impact on binary GW waveforms, studied in
this paper, correspond to small clouds below 0.1 pc that cannot
be constrained by cosmological probes or galaxy rotation
curves, while there density is still too small to be detected
by microlensing. Therefore, GW waveforms would be a key

probe of these dark matter models.
Perturbations to the gravitational waveforms may result

from diverse environments, including gaseous clouds or dark
matter halos associated with other dark matter models. In all
cases where such environments are present, we can expect
accretion and dynamical friction to occur and slow down the
orbital motion. It would be interesting to study whether one
can discriminate between these different environments. As
shown in this paper, to do so we could use the magnitude
of these two effects and also the parts in the data sequence
where dynamical friction appears to be active or not. Indeed,
depending on the medium dynamical friction is expected to be
negligible in some regimes, such as subsonic velocities. If one
can extract such conditions from the data, one may gain some
useful information on the environment of the binary systems.
We leave such studies to future works.
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