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After being produced as electron neutrinos (νe), solar neutrinos partially change their flavor to νμ and ντ

en route to Earth. Although the flavor ratio of the νe flux to the total flux has been well measured, the 
νμ : ντ composition has not yet been experimentally probed. In this work we investigate the potential 
of the next-generation experiments for measuring the νμ : ντ flavor ratio by utilizing flavor-dependent 
radiative corrections in the cross sections for νμ and ντ scattering. Since the transition probabilities of 
νe to νμ and ντ depend on the leptonic CP phase, we also investigate the sensitivity to the CP phase and 
show that a statistical significance of ∼ 1σ could be reached through precision measurements of solar 
neutrino spectra.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
1. Introduction

The first observation of solar neutrinos at the Homestake exper-
iment [1] was not consistent with the theoretical predictions from 
Bahcall [2] and this turned out to be the first experimental hint for 
neutrino oscillation [3–7]. This phenomenon implies that neutrinos 
produced in the Sun change flavor en route to Earth, which has by 
now been confirmed with a number of experiments including SNO 
[8,9], Super-Kamiokande [10,11], and Borexino [12,13]. For recent 
reviews on solar neutrino physics, see [14,15].

The modern-day solar neutrino observations have established 
that only about a third of neutrinos produced in the Sun arrive 
to Earth as electron neutrinos (νe), while the remaining fraction is 
composed of muon (νμ) and tau neutrinos (ντ ). The ratio between 
νμ and ντ fluxes is theoretically known but it has never been mea-
sured. A full measurement of the flavor composition (νe : νμ : ντ ) 
would be valuable, as it would not only allow us to gain a better 
understanding of our nearest star, but would also make it possi-
ble to probe the transition probabilities Pνe→νμ and Pνe→ντ which 
depend on the level of the CP violation in the lepton sector (pa-
rameterized by the phase δCP). Given such dependence, solar neu-
trinos could serve as a complementary probe of CP violation to the 
near-future acceleration-based neutrino program led by DUNE [16]
and Hyper-Kamiokande (HK) [17].
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In this letter we propose a viable method to differentiate be-
tween solar νμ and ντ . Since solar neutrino energies do not exceed 
∼ 20 MeV, νμ and ντ can only be detected via elastic scatter-
ing and, at the leading order, cross sections for this process are 
identical for both νμ and ντ . At the next-to-leading order (NLO), 
however, differences arise from flavor-dependent radiative correc-
tions [18–20]; see e.g. Fig. 1.

In this work we will be focused on solar neutrinos and the phe-
nomenological consequences that radiative corrections in the cross 
section for neutrino-electron elastic scattering (eES) [21,22] can in-
duce. One of the advantages for considering νμ,τ +e− → νμ,τ +e−
is the rather small theoretical uncertainty in the cross section 
which is at sub-percent level [23,24]. With sufficiently high statis-
tics, the difference between νμ and ντ cross sections could man-
ifest itself in the data, namely in the total number of eES events. 
We investigate that by considering large next-generation neutrino 
detectors such as HK [17], DUNE [16], JUNO [25] and THEIA [26].

2. Radiative corrections for eES cross section

As already introduced, in this work we will mainly consider 
eES, the experimental signature of which is the detection of elec-
tron recoil kinetic energy, denoted as T . The differential cross sec-
tion without the inclusion of any radiative corrections reads [22]
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Fig. 1. Feynman diagrams for νμ,τ scattering on electrons. The diagram on the left 
shows the leading order contribution whereas the one on the right illustrates the 
flavor-dependent NLO contribution.

Fig. 2. Comparison between the differential cross sections, normalized to the leading 
order one (see Eq. (1)). In particular, we would like to draw reader’s attention to the 
cyan line that demonstrates O(1%) difference between νμ and ντ scattering cross 
sections. This is the effect our phenomenological study is based on.
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where the + (−) sign applies for νe (νμ or ντ ) scattering on elec-
tron. In Eq. (1), G F is the Fermi constant, sW stands for the sine of 
the weak mixing angle and me is the electron mass.

The difference between νμ and ντ scattering cross sections 
comes about at NLO [21,22,27]. We are in particular interested in 
flavor-dependent corrections, which arise from higher-order dia-
grams involving μ and τ leptons in the loops, such as the right 
diagram in Fig. 1. This effect can be accounted for via redefinition 
s2

W → s2
W (1 − �) [19,27] in Eq. (1); here � accounts for a sub-

set of 1-loop corrections for eES and we are mostly interested in 
the flavor-dependent contribution �l ≡ α(6π s2

W )−1 Log(m2
W /m2

l )

where mW and ml are W boson and charged lepton masses, re-
spectively. �l is evaluated assuming a vanishing momentum trans-
fer which is a reasonable approximation given the magnitude of 
the considered Eν . It turns out that �μ − �τ ≈ 0.01, and this 
propagates to O(1%) difference in the cross section; the νμ cross 
section is larger than the ντ one, see the cyan line in Fig. 2. In 
the figure, we also compare each of these cross sections at 1-loop 
level with the respective tree-level expression (see Eq. (1)); these 
O(α) effects are shown by purple and green lines, respectively. 
Let us stress that in making Fig. 2 as well as for our analysis pre-
sented in the next sections, we utilize results from [23,24]. There, 
both electroweak and QED corrections as well as the emission of 
soft photons are taken into account for eES. Note that, as a cross 
check, we also explicitly implemented the expressions from [21]
and found consistent results; for instance, the difference between 
νμ and ντ cross sections was found, for any value of T , to deviate 
from cyan line in Fig. 2 by no more than 0.1%.

The above discussion on the cross sections is important for 
the detection of neutrinos. However, one may also wonder about 
the impact of radiative corrections in neutrino propagation; af-
2

ter all, for the computation of the Mikheyev-Smirnov-Wolfenstein 
(MSW) matter potential [5–7] the same diagrams as those pre-
sented in Fig. 1 should be evaluated at a zero momentum transfer. 
The flavor-dependent NLO effects in the propagation were stud-
ied in [28] where it was found that when summing the rele-
vant contributions, including diagrams with neutrino scattering on 
both electrons and quarks (nucleons), there is a cancellation at 
O(α) level for neutrinos traveling through a neutral unpolarized 
medium. In turn, the flavor-dependent effects in neutrino propa-
gation arise only at O(α(m2

l /m2
W )Log(m2

W /m2
l )) ≈ 10−6 which is 

rather small. This led the authors of [29] to conclude that such 
smallness of flavor-dependent terms leads to virtually no sensi-
tivity to δCP when studying solar neutrinos. In this paper we will 
oppose such a claim and demonstrate the sensitivity to CP vio-
lation by utilizing O(α) differences in eES for different neutrino 
flavors.

3. Measuring the flavor composition

Now, let us utilize the flavor-dependent cross sections to scru-
tinize the potential for measuring the solar neutrino flavor com-
position (φνe : φνμ : φντ ) where φνα denotes the flux of να . For 
convenience, we define

Rα ≡ φνα

φtotal
, φtotal ≡ φνe + φνμ + φντ . (2)

Since Re + Rμ + Rτ = 1, only two of the ratios are independent. We 
also define Rμ ≡ φνμ/(φνμ + φντ ) which can freely vary between 
0 to 1. Here, we should stress that the flavor ratios are actually 
energy-dependent according to the standard MSW solution. Never-
theless, in this section, for demonstration purposes, we take them 
as energy-independent in the fit and investigate how well the solar 
neutrino flux components can be measured. This contrasts to the 
following section in which we study δCP sensitivity in the frame-
work of the standard MSW solution.

To date, only Re has been successfully measured, via combina-
tion of eES, neutrino-nucleus charged current (CC) and neutral cur-
rent (NC) scattering. Among the three channels, eES and neutrino-
nucleus CC scattering have different cross sections for νe and νx

(x = μ or τ ) while neutrino-nucleus NC scattering is flavor inde-
pendent at the leading order. When combining the three channels, 
Re is actually overconstrained1 but the flavor composition φνμ : φντ

still cannot be resolved. To measure this flavor composition, one 
has to include the aforementioned radiative corrections which in-
duce small differences between νμ and ντ cross sections.

With the NLO corrections included and by taking (Re, Rμ) as 
free parameters, we perform a χ2-fit analysis to evaluate the po-
tential of next-generation neutrino experiments to measure φνe :
φνμ : φντ .

The next-generation neutrino detectors will feature comple-
mentary advantages. The HK detector, which will be a 187 kt wa-
ter Cherenkov detector, will have the highest statistics in the eES 
channel at energies above a certain threshold. We assume that the 
threshold is the same as for Super-Kamiokande, namely T � 3.49
MeV [31]. The far detector of JUNO will be a 20 kt liquid scin-
tillator (LS) detector and will also have high statistics in the eES 
channel. Despite the smaller fiducial mass, its detection thresh-
old, if neglecting cosmogenic backgrounds, could be much lower 
than the one at HK due to the high light yield in LS. If one only 
counts the yield of photoelectrons, the threshold is likely to reach 

1 The data from the three channels turns out to be compatible with each other; 
see e.g., Fig. 29 of Ref. [30].
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Fig. 3. The capability of next-generation neutrino detectors for measuring solar neutrino flavor compositions. The subscripts 1, 2 indicate that JUNO1,2 and/or THEIA1,2 is 
included in the analysis—see text for details. All contours are at 1σ CL and the assumed true value is marked by �.
T � 0.1 MeV.2 However, cosmogenic backgrounds [33] pose the 
main challenge to the detection of low-energy events. In Borexino, 
these backgrounds are effectively reduced via a few sophisticated 
methods (e.g. TFC) [34], which enable Borexino to successfully de-
tect the low-energy part (pp, 7Be, CNO) of solar neutrino spectrum. 
Since the underground depth of JUNO is about half the depth of 
Borexino, we anticipate that JUNO might be able to apply the same 
background reduction techniques to some extent. Hence, for JUNO, 
we consider two cases, denoted by JUNO1 and JUNO2. JUNO1 sim-
ply assumes the effective reduction of cosmogenic backgrounds 
while JUNO2 conservatively assumes that all eES events below 2 
MeV are not discernible from the background, leading to a rela-
tively high threshold T � 2 MeV. The far detector of the DUNE 
experiment will contain 40 kt of liquid Ar and it is anticipated to 
measure solar neutrinos in both CC (νe + 40Ar → e− + 40K, denoted 
by ArCC) and eES channels [35]. We assume that the threshold 
of ArCC process at DUNE will be Eν � 7 MeV. Very recently, the 
THEIA experiment has been proposed [26], with a 100 kt water-
based liquid scintillator (WbLS) detector placed deep underground. 
A high (low) percentage of LS in WbLS would decrease (increase) 
its capability of measuring the direction of interacting neutrinos, 
but it would lead to a lower (higher) energy threshold. If pure LS 
is employed, it would be very similar to Borexino, which accord-
ing to Refs. [36,37] has detected pp neutrinos successfully with 
the threshold around 150-200 keV. If 5% WbLS is used, then it is 
likely that the threshold may reach 0.6 MeV [26]. As the percent-
age of LS is not determined yet, we consider two configurations 
for THEIA, namely THEIA1 using pure LS with a 0.1 MeV threshold, 
and THEIA2 using 5% WbLS with a 0.6 MeV threshold. Dark matter 
detectors could contribute in the NC channel by collecting coher-
ent elastic neutrino-nucleus scattering (CEνNS) events induced by 
solar neutrinos. However, the statistics of such NC events in ton-
scale detectors is low (in particular, they have not been measured 
to date), compared to the achieved SNO (kt-scale) observations of 
ν + 2H → ν + n + p which is also a NC channel. The contribution 
of dark matter detectors for distinguishing between solar fluxes of 
φμ and φτ is therefore expected not to be competitive to the above 
introduced experiments and channels.

2 This is a reasonable assumption, given that KamLAND reached about 0.2 MeV 
according to Ref. [32] and JUNO will have a significantly higher yield of photoelec-
trons with respect to KamLAND.
3

In our analysis, the eES channel at HK, DUNE, JUNO and THEIA 
is studied and combined with the ArCC channel at DUNE. The eES 
event rate reads3

dN

dT
= Ne�t

∑
α

∫
dσνα

dT
(T , Eν)φνα (Eν)dEν , (3)

where Ne denotes the number of electrons in a detector and �t
is the exposure time and we assume �t = 10 years for all the 
considered experiments. For ArCC, in which T is also the main 
observable, the event rate is computed in a similar way, except 
that Ne should be replaced by the number of argon nuclei. In our 
analysis, we also assume that the uncertainties on solar neutrino 
flux components [38] will improve and reach ∼ 1%.4 The treat-
ment of such uncertainties is incorporated by φtotal → (1 + a)φtotal
where the normalization factor, a, is included with an uncertainty 
of σa = 1% and marginalized over in the χ2 analysis.

For each channel and each experiment, we perform a binned 
χ2 analysis to assess the sensitivity to the flux ratios (Re, Rμ) as-
suming the true value is (0.3, 0.5). In Fig. 3, we show the results 
by considering several experiments individually as well as their 
combinations. The left panel shows how well the fluxes can be 
measured by using eES in HK (light blue) and ArCC in DUNE (light 
brown) as well as their combination (green). In the other two pan-
els we add more experiments; the “pre.comb.” label in the legend 
of a given panel refers to the combination (green region) from the 
panel to the left. If all next-generation experiments are combined, 
and if the LS experiments JUNO and THEIA can reach the optimal 
configurations of T = 0.1 MeV (denoted by subscript 1 in Fig. 3) we 
expect that Rμ could be measured to the precision of 0.5 ± 0.15. 
In such a case, the majority of neutrino events would arise from 
the interactions of solar pp neutrinos with Eν � 0.4 MeV.

4. Solar neutrinos as a probe of CP violation

In Fig. 4, we show Pνe→να (Eν) for various δCP values, obtained 
using the adiabatic approximation (for the range of its validity, see 
detailed discussion in [15]). As shown in the figure, Pνe→νμ and 

3 In this work we are only concerned with the electron energy spectrum and we 
do not consider the angular spectrum which can be measured at HK and THEIA. 
Including the angular spectrum could in principle further improve the results.

4 We also implicitly assume that systematic uncertainties related to the detec-
tor are subleading. For instance, the present systematical uncertainties for Super-
Kamiokande detector are already at O(1%) level [31], and we anticipate further 
improvements for HK.
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Fig. 4. The solar neutrino transition probabilities Pνe→να (Eν ) for various values of δCP.
Fig. 5. δCP sensitivity in solar neutrino measurements at next-generation neutrino 
experiments.

Pνe→ντ vary significantly for δCP ∈ [0, π ]; the variation can be as 
large as ∼ 50%. In making the figure, we have also included the 
matter effect for neutrinos propagating inside Earth; specifically, 
we have averaged over the day and the night values of Pνe→να . 
Given the previous conclusion that the full flavor composition of 
solar neutrinos can be measured using NLO cross sections (see 
again Fig. 3), we expect that precision measurements of solar neu-
trinos should exhibit sensitivity to δCP. To demonstrate that, we 
performed a χ2 analysis and the result is presented in Fig. 5. As 
shown in the figure, the full combination of next-generation detec-
tors allows δCP = 0 and δCP = π (π/2) to be differentiated at ∼ 1σ
(∼ 0.5σ ) CL. We also found that, for σa � 0.1%, 2σ can be reached.

In making Fig. 5, we took δCP as the only fitting parameter and 
we fixed all other oscillation parameters at their present best fit 
values [39]. The reduction of uncertainties on the mixing angles, 
especially θ23, is anticipated across relatively short time scales [40]. 
Currently, varying θ13, θ12, and θ23 within their 1σ ranges [39]
would cause Peμ to change by 0.2%, 2%, 4%, respectively. We leave 
a dedicated investigation on the correlation between the mixing 
angles and δCP to future work.

5. Summary and conclusions

The survival probability of solar νe has been measured at a 
number of experiments in the ∼ 1–10 MeV energy range. On the 
other hand, directly measuring solar νμ and ντ fluxes is much 
more challenging and has not been performed to date. In this 
work, we propose a viable method to measure the flavor compo-
sition of solar neutrinos by utilizing differences between νμ and 
ντ eES cross sections. While these cross sections are identical at 
tree level, radiative corrections involving μ and τ leptons in loop 
4

diagrams induce an O(1%) difference. This allows one to probe 
the flavor composition of solar neutrinos through the observation 
of electron recoil spectrum. We have quantified such an effect 
by studying the potential of several forthcoming neutrino detec-
tors including HK, DUNE and JUNO, together with the proposed 
THEIA experiment. If THEIA and JUNO can realize 0.1 MeV de-
tection threshold, then the O(1%) difference in the cross sections 
would allow the combination of these experiments to effectively 
resolve the full flavor composition, see Fig. 3.

Furthermore, since Pνe→νμ and Pνe→ντ depend on δCP, the lep-
tonic CP violation could be probed with solar neutrinos if the 
flavor-dependent radiative corrections are taken into consideration. 
We have assessed the sensitivity to δCP and found that ∼ 1σ CL 
can be reached in differentiating between δCP = 0 and δCP = π . 
This result would improve to ∼ 2σ provided that the uncertainties 
in solar neutrino flux reach sub-percent level. For such a measure-
ment, the main experimental challenge would be low-threshold 
detection of solar neutrinos. Hence next-generation LS experiments 
like JUNO and THEIA will be particularly important.

6. Note added

As we were finalizing this work, Ref. [41] appeared on arXiv. 
There, the authors scrutinize the prospects for measuring NLO 
effects with CEνNS at next-generation dark matter experiments. 
While both CEνNS and neutrino-electron scattering feature very 
small uncertainties in the cross section, the latter process has 
already been measured with large statistics while the coherent 
elastic neutrino-nucleus scattering is yet to be recorded for solar 
neutrinos. Hence, we regard neutrino-electron scattering channel 
as more promising for measuring the flavor composition of solar 
neutrinos at next-generation experiments.
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