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For many state-of-the-art cross section computations the standard approach of Feynman integral
reduction with the Laporta algorithm is the main bottleneck of the computation. We study a new
approach of Feynman integral reduction by introducing a block-triangular form, which is a smaller
system of equations compared to the system of equations which is generated with the Laporta
algorithm. The construction of the block-triangular form and its implementation in the program
Kira is the main interest of this report.
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1. Introduction

Within the Large Hadron Collider era the high energy physics regime of the Standard Model is
probed with ever increasing accuracy. Many next-to-next-to-leading order, or, in some cases, even
higher [1] accuracy goals have to be reached for the calculation of cross sections for many scattering
processes.

To aid these goals we have implemented a tool named Kira [2] to manage very demanding
integration-by-parts (IBP) reductions. Later we increased Kira’s toolbox [3] by including the finite
field reconstruction methods [4–9] with FireFly [7, 9]. This helps in addition to study many user
defined problems which involve as well non-trivial linear relations [10–12].

The best adopted strategy in the calculation of scattering amplitudes is to express first Feynman
integrals in terms of the so called master integrals. The same relations can be used in many methods
to compute the master integrals themselves [13–20].

The only known general purpose strategy to perform the IBP reductions is the Laporta algo-
rithm [21] and its implementation is realized in many publicly available tools [2, 22–24]. This
algorithm involves a treatment of a big number of redundant integrals, a feature which leads to high
consumption of computing resources. Thus some special purpose strategies exist to circumvent
several draw backs of the Laporta algorithm e.g: syzygy equations to reduce the size of involved
integrals in the reduction process [25–30], the employment of algebraic geometry techniques which
help to reduce the swell of intermediate expressions grow [31–33], new algorithms with intersection
numbers are explored [34–38], and finite field and interpolation techniques are most of the time
mandatory [4–9].

In this report we focus on the improvement of general IBP reductions by adopting a new
strategy, which goes by the name of block-triangular form [39, 40]. This strategy aims to construct
small-sized IBP systems in block-triangular form and furthermore as demonstrated in [40] leads to
reduced main memory usage and to reduced overall run-time.

In this report after a brief introduction of notations we describe our plans on how to deploy the
block-triangular form algorithm in Kira.

2. Feynman integral reductions

2.1 Preliminaries

The primary object of interest is the Feynman integral in the loop-momenta representation

𝑇 (𝑎1, . . . , 𝑎𝑁 ) =
∫ (

𝐿∏
𝑖=1

d𝑑ℓ𝑖

)
1

𝑃
𝑎1
1 𝑃

𝑎2
2 · · · 𝑃𝑎𝑁

𝑁

, (1)

where 𝑃 𝑗 = 𝑞2
𝑗
−𝑚2

𝑗
, 𝑗 = 1, . . . , 𝑁 , are the inverse propagators (omitting the Feynman prescription).

The momenta 𝑞 𝑗 are linear combinations of the loop momenta ℓ𝑖 , 𝑖 = 1, . . . , 𝐿 for an 𝐿-loop integral,
and external momenta 𝑝𝑘 , 𝑘 = 1, . . . , 𝐸 for 𝐸 + 1 external legs (or 𝐸 = 0 for vacuum integrals),
and 𝑚 𝑗 are the propagator masses. The 𝑎 𝑗 are the (integer) propagator powers. The set of inverse
propagators must be complete and independent in the sense that every scalar product of momenta
can be uniquely expressed as a linear combination of the 𝑃 𝑗 , squared masses 𝑚2

𝑗
, and external
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kinematical invariants. The number of propagators is thus 𝑁 = 𝐿
2 (𝐿 + 2𝐸 + 1) including auxiliary

propagators that only appear with 𝑎 𝑗 ≤ 0.
Integrals of the form (1) for different values of 𝑎 𝑗 are in general not independent. Integration-

by-parts (IBP) identities [41, 42] and Lorentz-invariance (LI) identities [43], as well as symmetry
relations lead to linear relations between them. These identities can be used to express all integrals
through linear combinations of master integrals, which serve as a basis.
Kira employs a variant of the Laporta algorithm [21]: IBP, LI, and symmetry relations are

generated for different values for the 𝑎 𝑗 , resulting in a linear system of equations. This system of
equations is then systematically solved with a Gauss-type elimination algorithm to express integrals
which are regarded more complicated in terms of simpler integrals.

As a measure of complexity it is useful to define the number

𝑡 =

𝑁∑︁
𝑗=1

𝜃 (𝑎 𝑗 − 1
2 ), (2)

of propagators with positive power, the sum 𝑟 of all positive powers, and the negative sum of all
non-positive powers 𝑠,

𝑟 =

𝑁∑︁
𝑗=1

𝑎 𝑗𝜃 (𝑎 𝑗 − 1
2 ), 𝑠 = −

𝑁∑︁
𝑗=1

𝑎 𝑗𝜃 ( 1
2 − 𝑎 𝑗), (3)

where 𝜃 (𝑥) is the Heaviside step function. These values are used as limits in the choice of the sets
𝑎 𝑗 for which the IBP, LI, and symmetry relations are generated.

With 𝑠
𝑡

we denote a set of all Feynman integrals which can be constructed with the parameters
𝑠 = 0, . . . , 𝑠 and 𝑡.

2.2 Block-triangular form

Compared to the integral reduction with the standard Laporta algorithm, the block-triangular
form involves ideally several orders of magnitude less equations and integrals in the reduction
process. Furthermore one may impose a requirement that the block-triangular form contains
relations with polynomial coefficients of low degree. The main equation to construct the block-
triangular form is ∑︁

𝑗

𝑐 𝑗 (𝑑, ®𝑠)𝐼 𝑗 = 0, (4)

and in general the coefficients are

𝑐 𝑗 (𝑑, ®𝑠) =
𝑑max∑︁
𝑖=0

𝑑𝑖
𝑘max∑︁
®𝑙∈Ω𝑘 𝑗

𝑐
𝑖,𝑙1,...,𝑙𝑀
𝑗

𝑠
𝑙1
1 · · · 𝑠𝑙𝑀

𝑀
, (5)

where 𝑐
𝑖,𝑙1,...,𝑙𝑀
𝑗

are free numeric parameters left to be fixed and

Ω𝑘 𝑗
= {®𝑙 ∈ N𝑀 |

𝑀∑︁
𝑖=0

𝑙𝑖 = 𝑘 𝑗}. (6)
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Here 𝐼 𝑗 are Feynman integrals of different complexity and with different mass dimension. The
coefficients 𝑐 𝑗 (𝑑, ®𝑠) are polynomials of mass dimension 𝑘 𝑗 . The least possible value of 𝑘max is the
biggest mass dimension difference between all the integrals 𝐼 𝑗 . In practice a bigger value for 𝑘max

is required. The value of 𝑑max dictates the polynomial degree of the coefficients in the dimensional
regularization parameter 𝑑.

For demonstration purpose we discuss the following problem, the construction of a block-
triangular form consisting of 𝑁𝐽 equations for a set of Feynman integrals {𝐽 𝑗} with the same
integral complexity 𝑠 = 𝑠 and 𝑡, where 𝑁𝐽 is the number of 𝐽 𝑗 integrals. We make an Ansatz for all
Feynman integrals which should appear in the equation (4)

𝐼 𝑗 ∈ { 𝑠
𝑡
,
𝑠 − 1
𝑡 − 1

,
𝑠 − 2
𝑡 − 2

}. (7)

This Ansatz works for many applications where the Feynman integrals 𝐽 𝑗 are of complexity 𝑠 > 2.
In the next step let us assume that we are able to perform the reduction of all Feynman integrals
𝐼 𝑗 in equation (7) in terms of the master integrals. First we plug in the IBP reductions into the
equation (4) and secondly we group all coefficients in front of the master integrals. All coefficients
in front of the master integrals have to vanish individually because the master integrals are linearly
independent. This gives us 𝑁𝑀 relations between the undetermined coefficients 𝑐𝑖,𝑙1,...,𝑙𝑀

𝑗
, where

𝑁𝑀 is the number of master integrals. Many of the coefficients 𝑐𝑖,𝑙1,...,𝑙𝑀
𝑗

are redundant and can be
reduced to a linearly independent set by evaluating each of the 𝑁𝑀 relations for several numerical
points in (𝑑, ®𝑠) and solving all relations for the 𝑐

𝑖,𝑙1,...,𝑙𝑀
𝑗

. This gives a reduction of the coefficients

𝑐
𝑖,𝑙1,...,𝑙𝑀
𝑗

=
∑︁
𝑚

𝑥𝑚𝐶𝑚, (8)

in terms of the master coefficients 𝐶𝑚. With equation (8) we are equipped to construct the block-
triangular form. This time instead of using the IBP reductions for the integrals 𝐼 𝑗 we plug in
the results for the coefficients 𝑐

𝑖,𝑙1,...,𝑙𝑀
𝑗

in terms of the master coefficients in to the equation (4).
This equations is now used to construct the final block-triangular form: now the equation (4) only
depends on the master coefficients 𝐶𝑚 and we may set arbitrary numeric numbers for these master
coefficients 𝐶𝑚 and the equation (4) will be valid by construction. We choose 𝑁𝐽 different numeric
configurations for the master coefficients in such a way that we get 𝑁𝐽 relations which involve
linearly independently all 𝐽 𝑗 integrals. This is what we call a block-triangular form. In most cases
a block-triangular form is more desirable than the final reduction of the Feynman integrals, because
the numeric evaluation of the block-triangular form is faster, and numerically more stable due to
smaller and shorter equations in the block-triangular form compare to the numerical evaluation of
the IBP reduction coefficients.

In Kira we aim to construct the block-triangular form without imposing the knowledge of
the full reduction of the Feynman integrals. Note that the IBP reduction coefficients are much
bigger than the coefficients we aim to find in the block-triangular form. Thus we will perform the
reduction of the integrals with the finite field methods and skip the knowledge of the IBP reduction
coefficients. We use Kira to accomplish this task, because the finite field methods are supported
within this tool. When using the finite field methods the implementation of the block-triangular
form is a straight forward task. But because the implementation of the block-triangular form in
Kira is still work in progress we do not go into the rich implementation details.
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This time we evaluate the IBP reductions numerically for (𝑑, ®𝑠) modulo large prime number, and
insert the numerical IBP reductions into the equation (4). From this for each new numerical point
𝑁𝑀 relations follow which we solve instantly on-the-fly within Kira framework for the coefficients
𝑐
𝑖,𝑙1,...,𝑙𝑀
𝑗

. Thanks to the on-the-fly implementation in Kira we know when no new information
is generated from sampling in (𝑑, ®𝑠). We stop and do not proceed with the next prime number,
yet. As before we get relations as in equation (8), but the numeric parameters 𝑥𝑚 are modulo the
first prime number. We manage the master coefficients 𝐶𝑚 in the following way: for each master
coefficient we generate one relation by setting it to unity and the rest of master coefficients to zero.
This way we can easily find 𝑁𝐽 relations which are sufficient to build a block-triangular form for the
𝐽 𝑗 . Before we proceed with the next prime number to reconstruct the numeric parameters 𝑥𝑚 we set
all master coefficients to zero, which we did not set to unity to generate 𝑁𝐽 relations. By setting the
master coefficients to zero we minimize the initial Ansatz in equation (5). One important benefit
of this trick is, we apply the finite field reconstruction only to the relevant numeric parameters
𝑥𝑚 in equation (8). The criteria to minimize the possible terms in the Ansatz of equation (5) and
truncating the computation to the finite field reconstruction to only relevant parameters 𝑥𝑚 is the
major feature, which we aim to implement in Kira.

3. Conclusions

We have reviewed the concept of a block-triangular form within the program Kira. The public
release of the new feature is work in progress and will be discussed somewhere else in more detail.
We believe that the new emerging algorithms to construct the block-triangular form will allow us
to study many demanding reduction problems.
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