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1 Introduction

Understanding the non-perturbative structure of quantum field theories (QFTs) at finite
temperature is an important challenge of theoretical physics. In particular, thermal
fluctuations cannot be ignored when studying real-world, out-of-equilibrium phenomena in,
e.g., the quark-gluon plasma or strongly coupled condensed matter systems. Conformal
field theories (CFTs) provide a natural starting point for investigating QFTs more generally.
The additional symmetries in conformal theories impose powerful constraints on physical
observables, even at strong coupling. Achieving a better understanding of general thermal
field theories should therefore begin with an investigation of CFTs at finite temperature.

A basic probe in any local field theory is the stress tensor, Tµν . The importance of the
stress tensor, and correlators thereof, to CFT is hard to overstate. The stress-tensor sector
is completely universal in two-dimensional CFT, where the infinite-dimensional Virasoro
algebra allows determining physical observables based on symmetries. In higher dimensions,
although the structure of conformal correlators is less constrained and in general they are
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determined via case-by-case computations, the conformal invariance still fixes two- and
three-point stress-tensor correlators uniquely up to a few constants [1]. In particular, the
two-point stress-tensor correlator at zero temperature is fixed up to an overall coefficient,
the central charge CT .

When considering the theory at finite temperature, the stress-tensor two-point functions
are no longer fixed by one constant. Instead, these thermal TT correlators are generally
theory dependent: they depend on, for instance, the coefficients appearing in the zero-
temperature three-point correlators of stress tensors. It is desirable to identify physical
limits that make some universal aspects of the thermal correlators manifest, and then devote
future efforts to computing non-universal corrections to the correlators.

In this paper, using the AdS/CFT correspondence [2–4], we analyze thermal TT

correlators at large central charge in a class of holographic CFTs in four dimensions,
focusing on a certain universal, near-lightcone regime. Our analysis of the near-lightcone
TT correlators is in part motivated by the large body of recent work on thermal scalar
correlators and their near-lightcone behavior in spacetime dimensions greater than two [5–
37]. In the context of AdS3/CFT2 such correlators have been well-studied in the literature,
e.g., [38–52]. In d = 4 holographic CFTs, heavy-heavy-light-light (HHLL) correlators were
compared to thermal two-point functions in [5] and several operator product expansion
(OPE) coefficients of multi-stress tensor exchanges were computed in [6] which also observed
that the scalar correlator in the near-lightcone limit is unaffected by higher-derivative
interactions if one assumes a minimally coupled scalar in the bulk. Corrections to such
universality due to non-minimally coupled interactions were discussed in [20]. In [10, 13, 17]
the bootstrap procedure for computing HHLL correlators was developed. Subsequently,
it was pointed out [27, 32] that higher-dimensional scalar correlators near the lightcone
share certain similarities with the two-dimensional Virasoro vacuum blocks. Although the
underlying mechanism responsible for this remains to be better understood, the time is ripe
for investigation of a parallel story for the thermal correlators of stress tensors.

An initial step towards this direction was made in [53], which computed the thermal
two-point correlators of stress tensors in d = 4 holographic CFTs dual to Einstein gravity
and read off conformal data beyond the leading order in the large CT expansion. It was also
observed that some OPE coefficients cannot be determined in the near-boundary analysis
of the bulk equations of motion but these coefficients do not affect the near-lightcone TT

correlators. Subsequently, ref. [54] included the Gauss-Bonnet (GB) higher-derivative term
in the gravitational action in AdS5 to study what happens when the conformal collider
bounds [55] in the dual CFT are saturated.1 It was shown that the thermal stress-tensor
correlators near the lightcone take the vacuum form when this happens.

In this paper we point out that the stress-tensor correlators computed in Einstein-Gauss-
Bonnet gravity suggest a certain near-lightcone universality, which does not require ANEC
saturation. We shall elaborate on this observation in more detail, but the main message
is the following: thermal TT correlators near the lightcone are completely determined

1Conformal collider bounds, introduced in [55], are examples of Averaged Null Energy Conditions (ANECs)
which were shown to hold in unitary QFTs in [56, 57].

– 2 –



J
H
E
P
1
1
(
2
0
2
3
)
1
0
7

by three universal functions (depending on polarization). The Gauss-Bonnet term in the
bulk Lagrangian only affects the arguments of these functions via corrections to the cubic
stress-tensor couplings and the thermal stress-tensor one-point function. We hypothesize
that this remains the case in more general higher-derivative gravitational theories.2

The analysis in this paper involves correlators in momentum space, and we mostly
focus on retarded correlators in the near-lightcone regime. To show that they have a
universal structure, we identity a suitable limit in momentum space and show that the
equations of motion of gravitational fluctuations in this limit take the same form as those in
Einstein gravity. (These reduced bulk equations of motion isolate the contributions of the
leading-twist operators to the thermal TT correlators in the dual CFTs.) The near-lightcone
TT correlators depend on a single parameter, α ∼ q+(q−)3/T 4, where q± are the lightcone
momenta and T is the temperature. The expansion in the inverse powers of α is essentially
an OPE (where only the leading-twist multi-stress tensor operators contribute because of
the near-lightcone limit). The reduced equations can be solved perturbatively in 1/α and
one can read off the corresponding OPE data. Using the WKB approximation, we observe a
non-perturbative imaginary term ∼ ie−α

1
4 in the retarded correlator. Such non-perturbative

terms take the same form irrespective of polarization.

Outline. The rest of this paper is organized as follows. In section 2, we argue for
the universality of thermal TT -correlators in the near-lightcone regime. We then adopt a
momentum-space approach in section 3, where we show that the momentum-space equations
of motion in Einstein-Gauss-Bonnet gravity in a suitable limit take the same form as the
ones in Einstein gravity. By studying the on-shell action, we find that the near-lightcone TT

correlators (with three independent polarizations) in the holographic Einstein-Gauss-Bonnet
theory are completely determined by three universal functions.

In section 4, we compute the near-lightcone correlators in momentum space pertur-
batively in 1/α. In section 5, we compute the near-lightcone correlators numerically and
analyse the large α behavior using the WKB approach. We extract the non-perturbative
term in the retarded correlators. We discuss our results and pose some questions for future
work in section 6.

In appendix A, we discuss the position-space correlators and perform the Fourier
transform to check the momentum-space results. We also estimate the radius of convergence
in momentum space (for the scalar channel) of the near-lightcone correlators and find that
the radius of convergence approaches zero, i.e., the series is asymptotic. Thermal conformal
blocks in momentum space, discussed in appendix B, provide additional checks. We list the
equations of motion in Einstein-Gauss-Bonnet gravity in appendix C.

2 Position-space correlators

In this section, we point out a universality of the near-lightcone TT correlators based on
the position-space computation performed in [54].

2We expect similar results for the thermal correlators of conserved currents of spin one, with two (instead
of three) universal functions.
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Let us first recall that the vacuum stress-tensor three-point function in d = 4 CFT in
general depends on three coefficients (â, b̂, ĉ) [1]. Depending on three different channels, i.e.,
scalar, shear, and sound channels (polarisations), the “conformal collider bounds” place
constraints on some linear combinations of these coefficients [55]:

Cscalar ≡
5π2

3CT

(
− 7â − 2b̂ + ĉ

)
≥ 0 , (2.1)

Cshear ≡
10π2

3CT

(
16â + 5b̂ − 4ĉ

)
≥ 0 , (2.2)

Csound ≡ 15π2

CT

(
− 4â − 2b̂ + ĉ

)
≥ 0 , (2.3)

where the central charge can be expressed as

CT = π2

3
(
14â − 2b̂ − 5ĉ

)
. (2.4)

In this paper we are interested in thermal stress-tensor two-point functions on spatial
R3 which involve three independent polarizations, mapping separately to the three different
conformal collider bounds. The single-stress-tensor exchange contribution to thermal TT

correlators near the lightcone, as shown by [58] using the stress-tensor OPE, are directly
proportional to the same combinations of (â, b̂, ĉ) appearing in the conformal collider
bounds.3 At higher orders in the OPE, in large-CT CFTs, the thermal TT correlators
receive contributions from multi-stress-tensor exchanges. In [53], the OPE limit of the
thermal TT correlators in holographic CFTs dual to Einstein gravity was studied using
the thermal conformal blocks, including double-stress tensors ∼ [T 2]J with dimension
8 + O(1/CT ) and the corresponding CFT data was read off by comparison with a bulk
computation.

It is interesting to ask what happens when one includes higher-derivative corrections to
Einstein-gravity which modifies, in particular, the stress-tensor OPE coefficients (â, b̂, ĉ).
In the context of holographic CFTs dual to Einstein-Gauss-Bonnet gravity, the thermal
TT correlators were examined in [54] in position space. It was observed that, in the
near-lightcone regime, the saturation of a CCB, i.e., ANEC saturation, implies that the
corresponding correlator takes the vacuum form, independent of temperature. To gain a
broader understanding of the near-lightcone dynamics of the thermal correlators and their
possible universal behavior, in this paper we study these thermal correlators away from
ANEC saturation.4

Before proceeding, let us set up some notations. In any CFT, the thermal one-point
function of an operator O∆,J on S1

β×R3 with dimension ∆ and spin J is fixed, see e.g. [61, 62]

⟨O∆,J⟩β =
bO∆,J

β∆ (eµ1 . . . eµJ − traces) (2.5)

3One can use this fact and some minor assumptions to prove conformal collider bounds [59].
4In particular, the results of this paper are applicable for small values of the Gauss-Bonnet coupling,

which one expects for a unitary theory with a large gap [60].
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where β is the inverse temperature and eµ is a unit vector on the thermal circle S1
β . For our

discussion of the near-lightcone correlators, it will be further useful to define the following
quantities:

Ĉscalar ≡
bT

CT
Cscalar , Ĉshear ≡

bT

CT
Cshear , Ĉsound ≡ bT

CT
Csound , (2.6)

where Cscalar,shear,sound are defined in (2.1)–(2.3).
We will study the stress-tensor correlators integrated over the xy-plane:5

Gµν,ρσ(t, z) ≡
∫
R2

dxdy ⟨Tµν(t, z, x, y)Tρσ(0)⟩β . (2.7)

The stress-tensor correlators can be classified into three independent channels, see, e.g., [63].
In the lightcone coordinates x± = t ± z in Lorentzian signature, we consider the limit
x− → 0, with fixed x−(x+)3β−4. In any four-dimensional CFT with no operators with twist
less than or equal to two other than the stress-tensor, the thermal TT correlators in the
near-lightcone limit are given by

Gxy,xy(x+, x−) = −πCT

10(x−)3(x+)3

(
1− Ĉscalar

π2
x−(x+)3

β4 + . . .

)
, (2.8)

Gtx,tx(x+, x−) = −3πCT

80(x−)4(x+)2

(
1− Ĉshear

3π2
x−(x+)3

β4 + . . .

)
, (2.9)

Gtz,tz(x+, x−) = −πCT

20(x−)5x+

(
1− Ĉsound

12π2
x−(x+)3

β4 + . . .

)
. (2.10)

The leading and subleading terms in (2.8)–(2.10) are universal, but the higher-order terms
a priori are model-dependent. These higher-order terms contain contributions from the
operators with larger dimensions — in holographic CFTs, they include multi-stress tensor
operators denoted as [T k]J .

Position-space correlators in holographic Einstein-Gauss-Bonnet theory. Here
we make an observation based on the thermal TT correlators obtained holographically using
Einstein-Gauss-Bonnet gravity [54]. Denote the dimensionless Gauss-Bonnet coupling as
λGB.6 We introduce a parameter

κ =
√
1− 4λGB , (2.11)

which will help simplify expressions. The limit κ → 1 recovers Einstein gravity. The
coefficients (â, b̂, ĉ) can be related to the Gauss-Bonnet coupling:

â = 8CT

45π2

(
−6 + 5

κ

)
, b̂ = CT

90π2

(
33− 50

κ

)
, ĉ = 2CT

45π2

(
−84 + 61

κ

)
. (2.12)

The conformal collider bounds, (2.1)–(2.3) translate to, respectively,

(5κ − 4) ≥ 0 , (2− κ) ≥ 0 , (4− 3κ) ≥ 0 . (2.13)
5See [53, 54] for related discussions on the integrated correlators.
6Einstein-Gauss-Bonnet gravity is discussed in more detail in section 3.
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Now we make the following observation: the near-lightcone TT correlators in holographic
CFTs dual to Einstein-Gauss-Bonnet gravity computed in [54] can be recast in the following
way:

Gxy,xy = −πCT

10(x−)3(x+)3

(
1 + 1

π2 αscalar +
5

3π4 α2
scalar + . . .

)
, (2.14)

Gtx,tx = −3πCT

80(x−)4(x+)2

(
1 + 1

3π2 αshear +
85

504π4 α2
shear + . . .

)
, (2.15)

Gtz,tz = −πCT

20(x−)5x+

(
1 + 1

12π2 αsound + 11
756π4 α2

sound + . . .

)
, (2.16)

where (
αscalar, αshear, αsound

)
≡
(
Ĉscalar, Ĉshear, Ĉsound

) (−x−(x+)3)
β4 . (2.17)

While the first and second term are fixed by conformal symmetry as was shown in (2.8)–
(2.10), one can see that, even at O(α2), the dependence on the Gauss-Bonnet coupling can
be absorbed into the parameters α, which depend on the thermal one-point function of the
stress tensor (∼ bT β−4) and (â, b̂, ĉ) through the particular combinations appearing in the
conformal collider bounds.7 This observation hints at the following intriguing possibility:
multi-stress tensor contributions to the near-lightcone TT correlators in holographic CFTs
might be fixed by (the k-th power of) the single-stress-tensor contribution. Exploring such a
possibility and its consequences is the underlying motivation of the present work.

To see this universality in position space we note that near the lightcone the corre-
sponding reduced EoMs in Einstein-Gauss-Bonnet gravity obtained in section 3.2 of [54]
are identical to the ones in Einstein gravity, after performing suitable rescalings of the
coordinates. This is easy to see in the scalar and shear channels, while the sound channel is
technically more complicated when analyzed in position space. In the next section we shall
analyze the EoMs in momentum space and show the universality in all channels.

Before moving to the momentum-space analysis, let us conclude this section with a
technical remark: the structure of the higher-order terms, denoted by dots in (2.14)–(2.16),
in fact slightly differs from the first three terms we listed — besides the corresponding depen-
dence of αscalar, αshear and αsound, the higher-order terms are multiplied by a log

(
−x+x−)

piece. These arise for two different reasons, one is a contribution due to the anomalous
dimensions of the multi-stress tensor operators and the other is because we consider the
integrated correlator. We discuss this more in appendix A where we perform the Fourier
transformation of the position-space correlators.

3 Momentum-space correlators

In this section, we will study momentum-space thermal TT correlators and show that the
near-lightcone correlators computed in the holographic Einstein-Gauss-Bonnet theory are

7The coefficients appearing in (2.14)–(2.16) in the α expansion can also be verified to be the same in
Einstein gravity [53] and Einstein-Gauss-Bonnet gravity [54].
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universal: they are determined by three universal functions, depending on three polarizations.
We will hypothesize that this might be the case for all holographic theories. In subsequent
sections, we will compute these functions.

Let us give a brief review on Einstein-Gauss-Bonnet gravity. The action in five
dimensions is given by

SGB = 1
16πG

∫
d5x

√
−g

[
12
L2 + R + λGB

L2

2
(
R2 − 4RµνRµν + RµνρσRµνρσ

)]
. (3.1)

The theory admits a black-hole solution [64, 65]:

ds2 = r2

L2

(
−f(r)

f∞
dt2 + dx2 + dy2 + dz2

)
+ L2

r2
dr2

f(r) (3.2)

where f(r) and f∞ are

f(r) = 1
2λGB

1−
√√√√1− 4λGB

(
1− r4

+
r4

) and f∞ = 1−
√
1− 4λGB

2λGB
. (3.3)

The parameter r+ is the location of the black-hole horizon. We focus on a planar horizon.
In the following we set the AdS radius L/

√
f∞ to 1, i.e. L =

√
f∞

To study the equations of motion of gravitational fluctuations, we consider the metric
perturbation hµν = hµν(r)e−iωt+iqz, with the momentum along the z-direction, and adopt
gauge-invariant quantities following the recipe in [63]. The radial gauge hrµ = 0 is used.
The fluctuations are classified into three independent channels: scalar, shear, and sound. In
Einstein-Gauss-Bonnet gravity, the corresponding gauge invariants are given by [66]:

Z
(GB)
scalar =

1
r2 hxy , (3.4)

Z
(GB)
shear = q

r2 htx + w

r2 hzx , (3.5)

Z
(GB)
sound = 2q2

r2 htt +
4wq

r2 htz +
2w2

r2 hzz + q2
(
2f + rf ′

2f∞
− w2

q2

)
(hxx + hyy) , (3.6)

where (w, q) = 1
2πT (ω, q) are the dimensionless frequency and momentum; T is the Hawking

temperature. The linearized equations of motion of gravitational fluctuations in Einstein-
Gauss-Bonnet gravity were worked out in [66]. (See [67–83] for more recent applications
of Einstein-Gauss-Bonnet holographic gravity.) In this work, we are interested in the
near-lightcone regime of the correlators.

Defining a coordinate u = r2
+/r2, the equation of motion in each of the three channels

can be written as a second-order differential equation:

Z ′′(u) + A Z ′(u) + B Z(u) = 0 . (3.7)

The channel-dependent coefficients A and B are given in appendix C.
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3.1 Equations of motion in the near-lightcone limit

In this work, we are interested in the near-lightcone limit. Denote q± = w± q. We consider
the following limit:8

q+ → ∞, q− → 0, α = −q+(q−)3 fixed, ũ = u/(q−)2 fixed. (3.8)

This limit isolates contributions from the leading twist operators, which corresponds to
zooming in on the near-boundary region in the bulk. For the position-space stress-tensor
correlators, the corresponding near-lightcone limit in the bulk was discussed in [54].

We next show that, in the limit (3.8), the equations of motion in Einstein-Gauss-Bonnet
gravity reduce to those in Einstein gravity.

Scalar Channel: first we derive the reduced equation of motion in the scalar channel. In
the limit (3.8), the equation of motion at leading order can be written as

α(κ + 1)2
(
α
(
5κ2 + κ − 4

)
ũ2 − 8κ2

)
Zscalar(ũ)− 32κ2 (Z ′

scalar(ũ)− ũZ ′′
scalar(ũ)

)
= 0 . (3.9)

The observation is that, after rescaling the variables

ũ = κ2(κ + 1)
2(5κ − 4) ũr , α = 8(5κ − 4)

κ2(κ + 1)3 αr , (3.10)

the equation of motion (3.9) becomes

Z ′′
scalar(ũr)−

1
ũr

Z ′
scalar(ũr) +

(
α2

r ũr

4 − αr

ũr

)
Zscalar(ũr) = 0 . (3.11)

Since this equation is completely independent of κ, we conclude it is identical to the equation
of motion in Einstein gravity in the same limit.

Shear Channel: the equation of motion in the limit (3.8) is

α(κ + 1)2 (8κ2 + α(κ − 2)(κ + 1)ũ2)2
Zshear(ũ) (3.12)

+ 32κ2
((

8κ2 + 3α(κ − 2)(κ + 1)ũ2)Z ′
shear(ũ)+

(
α
(
−κ2 + κ + 2

)
ũ2− 8κ2) ũZ ′′

shear(ũ)
)
= 0 .

After performing the rescalings

ũ = −κ2(κ + 1)
2(κ − 2) ũr , α = − 8(κ − 2)

κ2(κ + 1)3 αr , (3.13)

we find

Z ′′
shear(ũr)−

1
ũr

(
3αrũ2

r − 4
αrũ2

r − 4

)
Z ′

shear(ũr) +
(

α2ũr

4 − αr

ũr

)
Zshear(ũr) = 0 (3.14)

which is identical to the equation of motion in Einstein gravity in the same limit.
8We use the minus sign in the expression for α to make calculations in the space-like regime (which we

will be interested in) more convenient.
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Sound Channel: in the limit (3.8), the sound-channel equation becomes
α(κ + 1)2 (8κ2 + α(κ + 1)(3κ − 4)ũ2) (24κ2 + α(κ + 1)(3κ − 4)ũ2)Zsound(ũ) (3.15)

+ 32κ2
( (

24κ2 + 5α(κ + 1)(3κ − 4)ũ2)Z ′
sound(ũ)−

(
α(κ + 1)(3κ − 4)ũ2 + 24κ2) ũZ ′′

sound(ũ)
)
= 0 .

Performing the rescalings

ũ = κ2(κ + 1)
8− 6κ

ũr , α = − 8(3κ − 4)
κ2(κ + 1)3 αr , (3.16)

we obtain the same equation as in Einstein gravity:

Z ′′
sound(ũr)−

1
ũr

(
5αrũ2

r − 12
αrũ2

r − 12

)
Z ′

sound(ũr) +
(

α2
rũr

4 − αr

ũr

)
Zsound(ũr) = 0 . (3.17)

In the Einstein gravity case, κ = 1, one can verify that ũ = ũr, α = αr in all channels.
In summary, the momentum-space reduced equations of motion in the three different

channels can be written as

Z ′′(ũr)−
K(αr, ũr)

ũr
Z ′(ũr) +

(
α2

r ũr

4 − αr

ũr

)
Z(ũr) = 0 (3.18)

where K(αr, ũr) is channel-dependent:(
Kscalar, Kshear, Ksound

)
=
(
1,

3αrũ2
r − 4

αrũ2
r − 4 ,

5αrũ2
r − 12

αrũ2
r − 12

)
. (3.19)

Hence, we have observed that the reduced equations of motion in the holographic Einstein-
Gauss-Bonnet theory take the same form as the ones obtained in Einstein gravity.

We will next analyze the action and show that the near-lightcone TT correlators
are determined by three universal functions which correspond to the three independent
polarizations.

3.2 Thermal correlators from holography

Here we compute holographic thermal TT correlators Gµν,ρλ in four spacetime dimensions.
The symmetries of the theory imply that the momentum-space retarded correlator has the
following form [63]:

Gµν,ρλ(k) = Lµν,ρλGscalar(k) + Sµν,ρλGshear(k) + Qµν,ρλGsound(k) , (3.20)

where Gscalar, Gshear and Gsound are three independent scalar functions of momenta and
the tensor structures Lµν,ρλ, Sµν,ρλ and Qµν,ρλ are fixed by the symmetries, see, e.g., [63].
If not stated otherwise, we use Minkowski signature.

Following the Lorentzian AdS/CFT dictionary [84–88] we impose incoming boundary
conditions at the horizon, ũ → ∞. To compute the correlators we need the O(Z2) on-shell
action in all three channels, which is given by [66]

Iscalar = −
π2CT r4

+
80f2

∞
lim
u→0

∫ dωdq

(2π)2
1
u

∂

∂u
Zscalar(u, k)Zscalar(u,−k) , (3.21)

Ishear = −
π2CT r4

+
80f2

∞
lim
u→0

∫ dωdq

(2π)2
1

u(w2 − q2)
∂

∂u
Zshear(u, k)Zshear(u,−k) , (3.22)

Isound =
3π2CT r4

+
320f2

∞
lim
u→0

∫ dωdq

(2π)2
1

u(3w2 − q2(3− u2))2
∂

∂u
Zsound(u, k)Zsound(u,−k) , (3.23)
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where CT is the central charge of the holographic Einstein-Gauss-Bonnet theory.
The correlators are given by

Gscalar =
π2CT r4

+
10f2

∞

Bscalar
Ascalar

, Gshear =−
π2CT r4

+
10f2

∞

Bshear
Ashear

, Gsound =−
π2CT r4

+
10f2

∞

Bsound
Asound

(3.24)
where A and B are the coefficients in the near-boundary expansion:9

Z(u) = A− αA
f2
∞(q−)2 u + Bu2 − α2A

2f4
∞(q−)4 u2 log u + . . . (3.25)

Let us adopt a new variable

x ≡ ũrαr = f−2
∞ ũα = −f−2

∞ q+q−u , (3.26)

where we used (3.10), (3.13), (3.16) and the relation

κ = 2
f∞

− 1 . (3.27)

We can now rewrite the equations of motion (3.18) as

Z ′′(x)− B(x, αr)Z ′(x) + x2 − 4αr

4αrx
Z(x) = 0 , (3.28)

(
Bscalar, Bshear, Bsound

)
=
(
1
x

,
3x2 − 4αr

x3 − 4αrx
,
5x2 − 12αr

x3 − 12αrx

)
.

Note that x → 0 is the boundary limit while x → ∞ corresponds to the black hole horizon.
Before solving the equation (3.28), let us consider a formal analysis of the near-boundary

structure of the correlators. The near-boundary expansion up to quadratic order is the
same in all channels and reads

Z(x) = a − ax + bx2 − a

2x2 log x + . . . (3.29)

where a and b are functions of αr. The coefficients A and B can be related to a, b in the
following way:

A = a , B = (q+q−)2f−4
∞

(
b − a

2 log
(
−f−2

∞ q+q−
))

. (3.30)

We can now write the correlator in e.g. the scalar channel as

Gscalar =
π2CT

160 (q+q−)2
(
fscalar(αr)−

1
2 log

(
−q+q−

))
, fscalar(αr) =

b

a
, (3.31)

9This is the standard Frobenius expansion around u = 0, i.e., Z = Au∆1 (1 + . . .) + Bu∆2 (1 + . . .), where
∆1 and ∆2 are the leading exponents. For equations (3.9), (3.12) and (3.15) one finds ∆1 = 0 and ∆2 = 2.
Since these differ by an integer, one has to include log-terms in the ∆2-part of the solution. Inserting the
resulting ansatz into the corresponding equation, one can determine the subleading coefficients in terms of
A and B.
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where we have ignored terms analytic in momenta.10 Note that the ratio f = b
a only depends

on q± through αr. The function fscalar can be obtained via

fscalar (αr) = lim
x→0

∂2

∂x2

(
Zscalar(x)

2 limx′→0 Zscalar(x′) +
x2

4 log x

)
(3.32)

after we solve for Z(x) from the corresponding equation of motion.
Analogously, in the other channels we obtain

Gshear = −π2CT

160 (q+q−)2
(
fshear(αr)−

1
2 log

(
−q+q−

))
, (3.33)

Gsound = −π2CT

160 (q+q−)2
(
fsound(αr)−

1
2 log

(
−q+q−

))
. (3.34)

The functions fshear(αr) and fsound(αr) are again defined as the ratios of the corresponding
coefficients in the near-boundary expansion of Z(x).

In the next two sections, we will compute the functions fscalar,shear,sound(αr) first per-
turbatively in 1/αr and then numerically. A few comments are in order:

• We again emphasize that the near-lightcone TT correlators in the holographic Einstein-
Gauss-Bonnet theory are expressed in terms of the same functions (there are three
of them, which corresponds to the three independent polarizations) as the ones that
appear in pure Einstein gravity. It is possible that this universality holds true more
generally, going beyond the holographic Einstein-Gauss-Bonnet theory. We rephrase
it in the language of the stress-tensor three-point couplings below.

• The function f has a perturbative expansion in 1/α which is basically an OPE, and
also non-perturbative terms of the type e−α

1
4 . The non-perturbative terms correspond

to tunneling under the potential barrier in the Schrödinger equation which can be
obtained from (3.28) and are sensitive to the boundary conditions at the horizon
(x→∞), as we explain in section 5.

• The perturbative expansion is not sensitive to the horizon boundary conditions —
it is equivalent to the OPE which can also be performed in position space. In
appendix A, we explicitly match several terms between the position- and momentum-
space expansions.

Let us now point out that the first term in the perturbative expansion of f is a non-
physical (cutoff-dependent) number, while the second term (proportional to β−4) is fixed
by the TTT three-point couplings and the coefficient bT [58]

fscalar(αr)|β−4 ∼ 7â + 2b̂ − ĉ

14â − 2b̂ − 5ĉ

b̃T

α
(3.35)

where b̃T is defined by
b̃T = bT

CT
. (3.36)

10These correspond to contact terms in position space.

– 11 –



J
H
E
P
1
1
(
2
0
2
3
)
1
0
7

The ratio of (3.35) to the corresponding term in Einstein gravity is given by

fscalar(αr)|β−4

fscalar(α)|β−4
= −5 7â + 2b̂ − ĉ

14â − 2b̂ − 5ĉ

b̃T

b̃T,0
= 8(5κ − 4)

κ2(κ + 1)3 (3.37)

where the zero in the subscript indicates the corresponding value for Einstein gravity. The
first equality in (3.37) follows from (3.35) and to get the second equality we have used
expressions for â, b̂, ĉ from (2.12). We also used11

b̃T

b̃T,0
= 8

κ(κ + 1)3 . (3.38)

Note that the first equality in (3.37) was derived from the Ward identity. Eq. (3.37) is
consistent with the relation between α and αr in (3.10), as it should. It is tempting to
propose that in any holographic theory the function that enters the correlator in the scalar
channel is

fscalar(αr) = fscalar

[−5 7â + 2b̂ − ĉ

14â − 2b̂ − 5ĉ

b̃T

b̃T,0

]−1

α

 . (3.39)

This statement means that the near-lightcone correlator for all holographic CFTs is com-
pletely fixed in terms of basic conformal data (such as â, b̂, ĉ, b̃T ) and the function f, which
we compute in the next two sections. For the other channels, similar logic implies

fshear(αr) = fshear

[10 16â + 5b̂ − 4ĉ

14â − 2b̂ − 5ĉ

b̃T

b̃T,0

]−1

α

 , (3.40)

fsound(αr) = fsound

[−45 4â + 2b̂ − ĉ

14â − 2b̂ − 5ĉ

b̃T

b̃T,0

]−1

α

 . (3.41)

Note that the combinations of â, b̂, ĉ in the numerators are proportional to the corresponding
ANECs. Hence, one obtains the vacuum result once an ANEC gets saturated, reproducing
the results of [54].

4 Perturbative analysis

Here we shall focus on computing the near-lightcone thermal TT correlators assuming
Einstein gravity in the bulk, setting αr = α. We focus on the scalar channel where the
perturbative expansion reads

fscalar(α) =
∞∑

n=0

f
(n)
scalar
αn

. (4.1)

The computation in the other two channels is analogous, so we will simply list the corre-
sponding results.

11This relation can be obtained from, e.g., eq. (2.9) of [54]. In this work we do not need to know the value
of b̃T,0, but it is available — for example it can be read off from eqs. (3.15–3.16) in [53].
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4.1 Leading order (vacuum correlators)

We start with the O(1/α0) term, f(0)
scalar, in the large α expansion, which corresponds to the

vacuum solution. As α → ∞ the reduced equation of motion becomes(
∂2

∂x2 − 1
x

∂

∂x
− 1

x

)
Z

(0)
scalar = 0 , (4.2)

and admits an analytic solution in terms of the Bessel functions:

Z
(0)
scalar(x) = 2c1xI2

(
2
√

x
)
+ 2c2xK2

(
2
√

x
)

(4.3)

with two coefficients c1 and c2. Regularity in the bulk requires c1 = 0, while c2 remains
arbitrary. This remaining coefficient corresponds to the norm of Z

(0)
scalar which does not

affect the value of the correlator; without loss of generality we require a = 1 in (3.30), thus
c2 = 1. The near-boundary expansion is then given by

Z
(0)
scalar(x)= 1−x+1

4x2(3−4γ−2log(x))+ 1
36x3(17−12γ−6log(x))+O

(
x4
)

, (4.4)

where γ is Euler’s constant. From (4.4) we find the ratio f
(0)
scalar = b

a = 1
4 (3− 4γ). Thus,

the O(1/α0) contribution to the correlator Gscalar is

G
(0)
scalar =

π2CT

160 (q+q−)2
(1
4 (3− 4γ)− 1

2 log
(
−q+q−

))
. (4.5)

A similar calculation in the shear and sound channels yields the same result:

f
(0)
scalar = f

(0)
shear = f

(0)
sound = 1

4 (3− 4γ) . (4.6)

Note that in all channels f(0) corresponds to the contact term.

4.2 Subleading order

To proceed with perturbative expansion for the scalar channel, it will be useful to convert
the corresponding reduced equation of motion (3.28) into the following Schrödinger form:

∂2

∂x2 Y (x) +
(
− 3
4x2 − 1

x
+ x

4α

)
Y (x) = 0 , Y (x) =

√
α

x
Z(x) . (4.7)

The expansion in 1/α reads

Y (x) = Y (0)(x) + 1
α

Y (1)(x) + . . . (4.8)

where Y (0)(x) =
√

α
x Z

(0)
scalar(x) was computed before. Expanding the equation (4.7) to

O(1/α) gives
∂2

∂x2 Y (1)(x)−
(1

x
+ 3

4x2

)
Y (1)(x) = −x

4Y (0)(x) . (4.9)

– 13 –



J
H
E
P
1
1
(
2
0
2
3
)
1
0
7

The solution can be written in terms of the MeijerG functions:

Y (1)(x) = x3

4
√

π

[
K2

(
2
√

x
)

G2,1
1,3

(
4x

∣∣∣∣∣ 1
1
2 , 5

2 ,−5
2

)
−πI2

(
2
√

x
)

G3,1
2,4

(
4x

∣∣∣∣∣ −3
2 , 1

−3
2 , 1

2 , 5
2 ,−5

2

)]
− 2ic3

√
xI2

(
2
√

x
)
+ 2c4

√
xK2

(
2
√

x
)

.

(4.10)

Expanding the solution near the horizon, regularity restricts the coefficient c3 = i
10 . Setting

a = 1 in the expansion (3.30) leads to c4 = 0, which completely fixes the O(1/α) solution.
This gives the following contribution to the correlator

Gscalar = G
(0)
scalar +

π2CT

1600
(q+q−)2

α
+O(α−2). (4.11)

Following the same path, we also obtain the results in the shear and sound channels.
Extracting the functions fscalar, fshear and fsound, we find

f
(1)
scalar =

1
10 , f

(1)
shear = − 1

40 , f
(1)
sound = 1

60 . (4.12)

4.3 Higher orders

The general equation satisfied by the higher-order terms is given by

∂2

∂x2 Y (n)(x)−
(1

x
+ 3

4x2

)
Y (n)(x) = −x

4Y (n−1)(x) . (4.13)

The homogeneous solution is given by

Y
(n)

H (x) = −2ic2n+1
√

xI2
(
2
√

x
)
+ 2c2n+2

√
xK2

(
2
√

x
)

, (4.14)

while a particular solution can be expressed via the Green’s function method described in,
e.g., [89], as

Y
(n)

P (x) = (−2i
√

xI2(2
√

x))
∫ x

0
dy

i

2(2
√

yK2(2
√

y))−y

4 Y (n−1)(y)

+ (2
√

xK2(2
√

x))
∫ ∞

x
dy

i

2(−2i
√

yI2(2
√

y))−y

4 Y (n−1)(y) .

(4.15)

Although it is not easy to perform the integrals in (4.15) explicitly, one can examine the
near-horizon behaviour of the particular solution which will be used to impose regularity at
the horizon

Y
(n)

P (x → ∞) =
(
lim

x→∞
−2i

√
xI2(2

√
x)
) ∫ ∞

0
dy

i

2(2
√

yK2(2
√

y))−y

4 Y (n−1)(y) . (4.16)

Focus now on the O(1/α2) term. Regularity of Y (2)(x) near the horizon leads to
c5 = i

20 , while requiring a = 1 in the expansion (3.30) fixes the remaining coefficient c6 = 0.
This yields the O(1/α2) contribution

Gscalar = G
(0)
scalar +

π2CT

1600
(q+q−)2

α
+ π2CT

3200
(q+q−)2

α2 +O(α−3). (4.17)
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In the same way, we can obtain the results in the remaining two channels. After
extracting the function f, we find the following results:

f
(2)
scalar =

1
20 , f

(2)
shear = − 1

40 , f
(2)
sound = 11

420 . (4.18)

The same method in principle allows one to work out higher-order terms. In appendix A
we also verify the above results using the position-space approach.

Radius of convergence: Let us now estimate the radius of convergence of the perturbative
expansion. We focus on the scalar channel. Define

rn =
∣∣∣∣∣ f

(n)
scalar

f
(n+1)
scalar

∣∣∣∣∣ . (4.19)

We plot rn(n) in figure 3 in appendix A.12 The radius of convergence is defined as limn→∞ rn

and we find that it seems to be zero.

5 Non-perturbative behavior

In this section we analyze the stress-tensor correlators in all channels by solving the reduced
equations of motion (3.28) numerically. Note that the retarded correlators in general have
an imaginary part, which represents a purely non-perturbative contribution. Using a WKB
approximation we analyse this contribution explicitly and show that all three channels
decay exponentially at the same rate.

5.1 Numerical solution

In what follows, we again focus on space-like momenta where α (and thus x) is positive. In
general, the solution in the limit x → ∞ is a regular function multiplied by a superposition of
incoming and outgoing waves. The natural choice is to pick the incoming-wave condition as
discussed in [84–87]. With this choice one obtains the retarded correlators in the dual CFT.

Consider the scalar channel. Near the horizon the corresponding reduced equation (3.28)
reduces to (

∂2

∂x2 − 1
x

∂

∂x
+ x

4α

)
Zscalar(x→∞) = 0 (5.1)

where Zscalar(x→∞) denotes the solution deep in the bulk. This equation can be solved
analytically in terms of the (differentiated) Airy functions. Expanding the solution for large
x and picking the incoming wave, one finds

Zscalar(x→∞) = x
1
4 e

− ix
3
2

3
√

α

(
α− 1

12 − 7iα
5

12

24x
3
2
+ . . .

)
. (5.2)

We use this expression to numerically solve equation (3.28) starting from large values of x

all the way to the boundary at x = 0. Then, using (3.32) we compute the function fscalar
from this numerical solution. We compute fshear and fsound in a similar way.

We next present the numerical results of both the real and imaginary parts of the
correlators, for all three channels.

12The higher-order perturbative terms in this plot are computed in position space and then Fourier
transformed to momentum space.
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Re(scalar)

Re(sound)

Re(shear)
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Figure 1. The real part of f(α). The upper (solid, red) line corresponds to the scalar channel.
The middle (dotted, green) line corresponds to the sound channel. The bottom (dashed, blue) line
corresponds to the shear channel. At large α, all three lines approach the expected value, 3

4 − γ

≈ 0.173, where γ is Euler’s constant. The additional smaller figures show the local minimum and
maximum that appear in the shear and sound channels, respectively, in a small α region.

Im(shear)

Im(sound)

Im(scalar)

0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0

α

Im()

Figure 2. The imaginary part of f(α). The upper (dashed, blue) line corresponds to the shear
channel. The middle (dotted, green) line corresponds to the sound channel. The bottom (solid, red)
line corresponds to the scalar channel.
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Real part: we plot the real part of the function f(α) in figure 1. For large α, in all
channels the numerical solutions quickly converge to the value 3

4 − γ, i.e., the leading order
in the perturbative expansion. We have also verified that, for every n ∈ N, there exists a
value αn, such that for all α > αn the n-th order perturbative expansion approximates the
numerical solution better than any expansion with n − 1 (or less) terms.

Imaginary part: we present the numerical solutions of the imaginary part of the function
f(α) in figure 2. The imaginary part of the correlators is purely non-perturbative in the
1/α expansion. Its concrete form is sensitive to the boundary condition at the horizon. If
one instead imposes the outgoing-wave condition in the bulk and computes an advanced
correlator, one finds that the correlator has the same real part but the imaginary part
differs by a sign (this also follows from the general properties of Green’s functions).

5.2 Imaginary part of correlators from WKB

An interesting question is how to estimate the non-perturbative behavior of the thermal
correlators calculated numerically above. Let us answer this question by calculating the
decay rate of ImGR using the WKB analysis. To do so, we shall transform the reduced
equations of motion (3.28) to the following form:

ℏ2d2Z(ξ)
dξ2 = V (ξ)Z(ξ) . (5.3)

Compared to the previous Schrödinger-like equation (4.7), here the V (ξ) term is independent
of the expansion parameter, allowing us to perform a standard WKB analysis. Starting
from (3.28), we first rescale x →

√
αy to have B(x) = B(y)α−1/2 where B(y) is independent

of α. We next introduce ξ(y) which satisfies the relation

∂y log
(
∂yξ

)
= B(y) . (5.4)

The equations of motion can be written as

α− 1
2 Z ′′(ξ) = − y2 − 4

4y(ξ′(y))2 Z(ξ) . (5.5)

The parameter α plays the role of ℏ; the precise identification is α− 1
4 = ℏ. For simplicity

we omit the channel index in ξ and Z. Note that the potential in (5.5) is positive in the
region y ∈ (0, 2) which corresponds to a classically forbidden region.

It may be useful to list explicit expressions relating y and ξ for different channels:13

Scalar : y =
√

ξ , (5.6)

Shear : y =
√

4± |ξ|
1
2 , (5.7)

Sound : y =
√

12 + ξ
1
3 . (5.8)

13Note (5.4) is a second-order differential equation. We have chosen two integration constants such that
these expressions look simple.
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In (5.7) we use plus for ξ > 0 and minus for ξ < 0. We omit the channel index in ξ.
Transformations (5.6)–(5.8) map the conformal boundary to the points 0, −16 and −1728
in the scalar, shear, and sound channel, respectively. In all three channels the horizon
corresponds to ξ = ∞. The transformed equations of motion have the form (5.3), with the
identifications ℏ = α− 1

4 and

{Vscalar, Vshear, Vsound} =

 4− ξ

16 ξ
3
2

,− ±1

64
(
4± |ξ|

1
2
) 3

2 |ξ|
1
2

,− 8 + ξ
1
3

144
(
12 + ξ

1
3

) 3
2

ξ
4
3

 , (5.9)

where in Vshear we use the plus signs for ξ > 0 and the minus ones for ξ < 0. In all channels
the potential forms a barrier (V > 0) in the near-boundary region:

Scalar : ξ ∈ (0, 4) , (5.10)
Shear : ξ ∈ (−16, 0) , (5.11)
Sound : ξ ∈ (−1728,−512) . (5.12)

The potential becomes negative for large ξ. In addition, in the sound channel we find a
singularity in the classically allowed region at ξ = 0.

One may now follow the standard WKB analysis. Considering the ansatz of the form

Z(ξ) = e
iα− 1

4
(

W0(ξ)+α− 1
4 W1(ξ)+...

)
(5.13)

and plugging this into the transformed equations, one determines the functions Wi(ξ). The
leading term is

W0(ξ) = ±
∫ ξ √

−V (ξ′)dξ′ . (5.14)

In the classically forbidden region we pick the sign corresponding to the decaying exponential,
while deep in the bulk we select the oscillating solution that satisfies the incoming-wave
condition near the horizon ξ = ∞. Validity of WKB is restricted to the region where∣∣∣∣ ddξ

√
V (ξ)

∣∣∣∣≪ α
1
4 |V (ξ)| . (5.15)

One cannot use the WKB ansatz close to the boundary and around the turning point —
in these regions one has to solve the equations of motion and connect solutions inside and
outside the barrier.

The imaginary part of the correlator, using (3.24), can be expressed as the following
tunnelling probability14

Im f ∼ ImGR ∼ exp
[
−2α

1
4

∫
barrier

√
V (ξ′) dξ′

]
. (5.16)

In all three channels, the imaginary part of the correlator decays exponentially at the
same rate15

Im f ∼ exp

−2α
1
4

∫ 2

0

√
4− y2

4y
dy

 = exp

−
√

π
2Γ
(

1
4

)
Γ
(

7
4

) α
1
4

 ≈ e−4.94 α
1
4 . (5.17)

14See also appendix B in [85] for a related discussion.
15Note the overall prefactors depend on the channels, as is apparent already from figure 2. We verified

that the WKB results agree with the numerics.
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It would be interesting to see if this behavior holds more generally. Note that the exponent in
the retarded thermal correlator of a scalar field in the large momentum limit was computed
in [35, 85]. Although the near-lightcone limit we consider here is different, the power of
momenta in the exponent is the same, i.e. α1/4 ∼ q, while the multiplicative constants in
the exponent differ.

6 Discussion

In this paper we point out that the near-lightcone thermal correlators of stress tensors
in holographic Einstein-Gauss-Bonnet gravity take the same form as those in Einstein
gravity.16 More precisely, we observe that the thermal two-point correlators of stress tensors
are rather constrained in the near-lightcone limit: they are given by three universal functions
(fscalar, fshear, fsound) whose arguments involve the combination of α ∼ q+(q−)3/T 4 and
the three coefficients â, b̂, ĉ which determine the stress-tensor three-point functions. The
correlator in a given channel takes the vacuum form when the corresponding ANEC is
saturated, as already noticed in [54].

The correlators admit a perturbative expansion in powers of 1/α. This is essentially
the OPE combined with the near-lightcone limit, where only the leading-twist multi-stress
tensors contribute. One can read off the OPE coefficients of the two stress tensors and
multi-stress tensors. The momentum space approach might be more convenient than the
one which employs the near-boundary ansatz in position space and substitutes it into the
equations of motion, e.g., [53, 54]. Note that the power series in momentum space seems to
have zero radius of convergence, i.e., it’s an asymptotic series.17

Depending on whether we want to compute retarded or advanced correlators, we need to
impose appropriate boundary conditions at the horizon (which in our variables corresponds
to the behavior at large x). Perturbatively, the correlator is completely determined by the
OPE (as we explain in section 3 and appendix A). However the boundary conditions at
the horizon affect the solution non-perturbatively in α. This is because a general solution
decays exponentially under the barrier, as discussed in section 5.2. It would be interesting
to understand the significance of such non-perturbative terms.18

In the near-lightcone limit, because of the universality of TT -correlators discussed
above, we can simply focus on the analysis based on pure Einstein gravity. Note that for the
transverse polarization of the stress tensor, the equation of motion for the metric fluctuation
is the same as that for a minimally coupled scalar. Hence the two point functions must be
identical. Naively one may find this surprising, given that the OPE coefficients for a scalar
contain poles at integer values of the scalar’s conformal dimension [6]. This corresponds to
the mixing with the double-trace operators and fixes the residue of the OPE coefficient of

16This work focuses on d = 4 and we expect similar results in other d > 2 dimensions.
17This was recently discussed in, e.g., [62, 90–92].
18In two spacetime dimensions, similar terms appear after the Fourier transform of the HHLL Virasoro

vacuum block, see, e.g., [85, 91]. (See also [93–96] for explicit expressions of retarded T T correlators.) In
four-dimensional holographic CFTs on the sphere, the spectrum of quasinormal modes contains contributions
that are non-perturbative in spin [34] (see also [97]). It would be interesting to understand to what extent
the non-perturbative terms are determined by the OPE in d = 4.
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the latter, which ensures the divergence is cancelled. How does this work in the stress-tensor
correlator case and how is this reflected in momentum space? The answer to this question
is that the logarithmic terms in position space which are produced by the cancellation of
the poles at ∆ = 4 get Fourier transformed to the rational functions of momenta (or, in our
limit, α) in momentum space. Indeed, in appendix B, we verify explicitly that the OPE
coefficients of the two scalars and multi-stress tensors, together with the thermal expectation
values of the latter, multiplied by the corresponding conformal blocks in momentum space
reproduce the perturbative expansion of the transverse TT correlator.

It is useful to examine the large-N counting of thermal TT correlators (where N ∼
√

CT ).
Consider a finite temperature connected TT -correlator on a sphere above the confinement-
deconfinement phase transition. The disconnected component scales like N4 and this
behavior is entirely due to the double-stress tensor operators [Tµν ]2, as explained in [53].
Indeed, the MFT OPE coefficients λTµνTαβ [Tµν ]2 ∼ 1 while ⟨[Tµν ]2⟩ ∼ N4. The subleading
corrections to the OPE coefficients and to the anomalous dimensions of [Tµν ]2 contribute
to the connected correlator [53]. It is easy to extract the large-N behavior of the OPE
coefficients with the k-stress tensors and convince oneself that they all contribute to the
connected correlator with the expected N2 scaling.

On the other hand, in the low-temperature phase ⟨[Tµν ]k⟩ scales like N0, while the
leading large-N behavior of the TT correlator scales like N2. In holographic theories
such correlators are simply given by the sum of the vacuum correlators over the thermal
images. One can immediately see how this is reproduced by multi-stress tensors. The only
contributions that survive in addition to the identity are the double-stress tensors.

There are various extensions to consider. Let us mention a few of them: (i) Extend the
analysis of near-lightcone correlators to the charged black hole case. (ii) Understand more
precisely how non-universal coefficients affect the thermal TT correlators when moving
slightly away from the lightcone limit. (iii) It may be useful to further study the thermal
TT correlators using CFT techniques developed in, e.g., [13, 26, 35, 36, 62, 91, 92, 98–107].
(iv) It would also be interesting to see if anything useful can be said about the regime
|k| ≫ |ω| [108, 109].

In this work, we speculate that the universality observed in the holographic Einstein-
Gauss-Bonnet theory remains valid in more general holographic theories. It would be
interesting to study the near-lightcone TT correlators using different gravity models to
see if this universality persists. On the other hand, understanding this directly from the
CFT point of view would be a more ambitious but very interesting goal. In this spirit a
possible step is to study the lightcone limit of heavy-heavy-light-light correlators, with the
light operators being stress tensors, from the bootstrap point of view. This would extend
recent progress for scalar correlators in e.g. [13, 14] and related works. In the latter, the
Lorentzian inversion formula was used to get the OPE data for multi-stress tensors in the
scalar case and it would be interesting to generalize this to stress tensor correlators, or
spinning correlators more generally. A CFT bootstrap approach would likely shed light
on the regime of universality beyond the cases explored in this paper and is therefore of
great interest.
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A Position-space analysis

To have a consistency check on the momentum-space results, here we discuss perturbative
solutions of the reduced equations of motion in position space, based on the computation
performed in [53, 54]. In position space, we can systematically calculate the near-lightcone
correlators order by order in a µ expansion where µ = (π/β)4.

A.1 OPE in position space from holography

Let the five-dimensional bulk coordinates19 be (r, tE , x, y, z) and assume the metric fluctua-
tions do not depend x and y. We consider a near-boundary, OPE:

r → ∞ with rtE , rz fixed . (A.1)

Defining v = z
r and w2 = 1 + r2t2

E + r2z2, the bulk limit that isolates the near-lightcone
correlator contribution is [6, 54]

r → ∞ with v fixed . (A.2)

Performing this limit on the equations of motion, one gets the reduced equations of motion
for the bulk-to-boundary propagators Z which can be solved by the ansatz:20

Z = ZAdS
(
Q + Q(log r − logw)

)
, (A.3)

Q =
∞∑

n=0

n∑
m=−n

anmv2nw2m and Q =
∞∑

n=0

n∑
m=3

bnmv2nw2m (A.4)

where ZAdS is the bulk-to-boundary propagator in pure AdS, which in the scalar channel
is 2r2

πw6 .21

19In this position-space calculation we adopt the Euclidean signature, as was done in [53, 54].
20We rewrite the ansatz so it looks different from the one in [54].
21The full solution Z is connected to Z by Z(tE , z, r) =

∫
dt′Edz′Z(tE − t′E , z − z′)Ẑ(t′E , z′), where Ẑ is

the boundary value of the invariant Z. For other channels and more details on the ansatz, see [53] and [54].
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Using the above ansatz and the scalar-channel reduced equation of motion (in the
position space) obtained in [54], one finds that the coefficients an,3 (for all n ≥ 3) in (A.4)
are undetermined. This reflects the fact that, by performing the limit (A.1) one loses the
information deep in the bulk. However, one can check that these undetermined coefficients
are always suppressed in the lightcone limit.

We next compute the holographic stress-tensor correlators perturbatively in the µ
expansion. In doing so, we note that in the lightcone limit (i.e., x− → 0 where x± = t± z =
−itE ± z) the correlator is fully determined by the coefficients ann. The first few terms of
the near-lightcone correlator Gscalar in position space are

lim
x−→0

Gscalar = −πCT

x−2

(
1

5x+3x−
+ 1

100µ

+ x−x+3

1200 µ2

− 21x−2
x+6 log(−x+x−)
286000 µ3

+ 71x−3
x+9 log(−x+x−)
9792000 µ4

− 2303x−4
x+12 log(−x+x−)

5684800000 µ5
)
+O(µ6) .

(A.5)

Using the same method, one can generalize the position-space computation to other two
channels. However, due to the computational complexity in position space, in this paper
we analyze the correlators in other channels in momentum space.

The correlator (A.5) depends on the combination x−(x+)3, consistent with the Fourier
transformed results using the variable α which we discuss next.

A.2 Fourier transform to momentum space

We here transform the position-space correlator (A.5) to momentum space, where the
conjugate variables to (x+, x−) are (q+, q−) = −1

2(q−, q+). Fourier transform of the zeroth-
order contribution diverges and thus needs to be regularized. We use the dimensional
regularization, where instead of (x−x+)−3 we consider (x−x+)−3−ϵ and then take ϵ → 0.
The result is

−π2CT (q+q−)2

320 ϵ
− 1

320π2CT (q+q−)2 (log (−q+q−
)
+ 2γ − 3− log(4)

)
+O (ϵ) , (A.6)

where γ is the Euler’s constant. Terms O(ϵ) can be neglected, while the pole can be
eliminated by counterterms. The regulator-independent (physical) log

(
−q+q−

)
term is

− πCT

5x−3x+3 −→ − 1
320π2CT (q+q−)2 log

(
−q+q−

)
. (A.7)

We have verified that this result exactly matches the leading term in (4.5) computed in
momentum space.

The O(µ1) and O(µ2) terms can be directly Fourier transformed:

− πCT µ

100x−2 −→ −π2CT µ(q+ + q−)
100q−

≈ −π2CT µq+

100q−
, − πCT µ2x+3

1200x− −→ 2π2CT µ2

25(q−)4 . (A.8)
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Figure 3. Estimation of the radius of convergence in the scalar channel.

For the terms O(µn) with n ≥ 3, we use

log
(
−x+x−) −→ 4π

q+q−
. (A.9)

Applying derivatives with respect to x+ and x− gives

(x+)−6(x+3
x−)n log

(
−x+x−) −→ −3π16n+2Γ(n + 3)Γ(3n + 6)

(n + 1)q+(q−)7 (q+(q−)3)n , (A.10)

which is valid for any n ≥ 0. Using this result, we can Fourier transform the log-terms
appearing in (A.5). We obtain

G = G0

(
−1
2 log

(
−q+q−

)
+
∑
k=1

ckα−k

)
, α = −q+(q−)3 (A.11)

where G0 and the first several coefficients ck are

Gscalar
0 = π2CT (q+q−)2

160 , cscalar
1 = 1

10 , cscalar
2 = 1

20 , cscalar
3 = 378

715 , . . . (A.12)

Gshear
0 =−π2CT (q+q−)2

160 , cshear
1 =− 1

40 , cshear
2 =− 17

560 , cshear
3 =−2241

5720 , . . . (A.13)

Gsound
0 =−π2CT (q+q−)2

160 , csound
1 = 1

60 , csound
2 = 11

420 , csound
3 = 2297

6435 , . . . (A.14)

We further list the fourth-order correction in the scalar channel for comparison in appendix B:

cscalar
4 = 4473

170 . (A.15)

Focusing on the scalar channel, in figure 3 we also estimate the radius of convergence
(see (4.19)) by computing more higher-order terms in the expansion (A.12). We find that
limn→∞ rn ≈ 0.

B Momentum-space thermal conformal blocks

In this appendix, we use the momentum-space conformal blocks to examine the scalar channel
in Einstein gravity, whose EoM and action are equivalent to the ones for a massless scalar
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field. Note, however, that this equivalence do not persist when considering higher-derivative
terms, such as Einstein-Gauss-Bonnet gravity.22

The thermal conformal blocks in momentum space were computed in [91]. Expanded
in thermal conformal blocks, the scalar correlator can be written as

⟨OO⟩β(ωn, |q| = q) =
∑
O∆,J

aO∆,J
G∆O

∆,J(ωn, q) , aO∆,J
=

λOOO∆,J
bO∆,J

cO∆,J
β∆

J !
2J
(

d−2
2
)

J

(B.1)

where ωn = 2πn
β is the Matsubara frequency and aO∆,J

are thermal coefficients. (The
explicit form of G∆O

∆,J(ωn, q) is given by eq. (2.11) in [91].) Minimal-twist operators are the
ones that dominate in the near-lightcone limit that we are interested in.

The relevant coefficients for the near-lightcone correlator up to O(β−16), where the
contributing operators are [T k]J with dimension 4k and spin J = 2k with k = 1, . . . 4, are

a1 =
3CT

10 , (B.2)

aT = 3CT

10
∆O

120

(
π

β

)4
, (B.3)

a[T 2]4 =
3CT

10
∆O

(
7∆2

O+6∆O+4
)

201600(∆O−2)

(
π

β

)8
, (B.4)

a[T 3]6 =
3CT

10
∆O

(
1001∆4

O+3575∆3
O+7310∆2

O+7500∆O+3024
)

10378368000(∆O−3)(∆O−2)

(
π

β

)12
, (B.5)

a[T 4]8 =
3CT

10
∆O

(
119119∆6

O+969969∆5
O+4184550∆4

O
)

592812380160000(∆O−4)(∆O−3)(∆O−2)

(
π

β

)16

+3CT

10
∆O

(
10867340∆3

O+16958856∆2
O+14428176∆O+5009760

)
592812380160000(∆O−4)(∆O−3)(∆O−2)

(
π

β

)16
. (B.6)

We have used µ = (π/β)4 and normalized the correlator to agree with the stress-tensor
correlator in the scalar channel, ⟨TxyTxy⟩. The stress-tensor coefficient is fixed by Ward
identities and the stress-tensor one-point function, while the [T 2]4 and [T 3]6 were computed
in [6, 13]. Here we have further obtained the coefficient for the [T 4]8 operator with dimension
16 and spin 8 based on the method of [13].

Let us first discuss operators [T k]J=2k with k = 0, 1, 2, 3. For the identity contribution,
the block has a simple pole at ∆O = 4 with a residue that is purely a contact term.
Removing the contact term gives

⟨OO⟩|1 = −π2CT

640
(
q2 + ω2

n

)2
log

(
q2 + ω2

n

)
. (B.7)

After Wick-rotating ωn → −iω and taking the lightcone limit we reproduce (4.5). Likewise,
for the stress-tensor exchange we find

⟨OO⟩|T = −CT π2

200
q−

q+

(
π

β

)4
, (B.8)

22More precisely, while the OPE coefficients for minimal-twist stress tensors in the minimally coupled scalar
case do not depend on higher-derivative terms such as the Gauss-Bonnet coupling [6] except through the
temperature, the scalar wave equation in Einstein-Gauss-Bonnet gravity is different from the scalar-channel
EoM of metric perturbations.
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which is in agreement with (4.12), where we remind the reader that Gxy,xy = 1
2Gscalar.

Moreover, we have verified that the [T 2]4 and [T 3]6 contributions reproduce the coefficients
listed in (A.12).

Something interesting happens when we consider [T k]2k with k ≥ 4. First notice that,
as seen in (B.6), there is a pole at ∆O = 4. Interpreted as a correlator of a scalar with
dimension four, this is related to the operator mixing between the [T 4]8 operator with
dimension 16 and spin 8 and a double-trace operator of the schematic form O∂(µ∂ν∂ρ∂σ)O
with the same quantum numbers. However, the block with ∆ = 16, J = 8 has a zero
at ∆O → 4:

G∆O
16,8(ωn, q) ∝

(∆O − 4)
(
q8 − 36q6ω2

n + 126q4ω4
n − 84q2ω6

n + 9ω8
n

)
(q2 + ω2

n)
10 +O

(
(∆O − 4)2) . (B.9)

Thus, the pole in a[T 4]8 cancels with the zero of the blocks. By Wick-rotating and taking
the lightcone limit, we obtain

⟨OO⟩|[T 4]8 = 2290176π2CT

425(q−)2(q+)10

(
π

β

)16
, (B.10)

which is in agreement with (A.15).

C Equations of motion for Einstein-Gauss-Bonnet gravity

In section 3, we showed that the equations of motion of metric fluctuations in Einstein-
Gauss-Bonnet gravity in the limit (3.8) reduce to the equations of motion in Einstein gravity.
Here we list the coefficients A, B in the Einstein-Gauss-Bonnet equations of motion using
the notation adopted in this paper.23

Scalar Channel:

Ascalar =
u

u2 − 1

(
1

(κ2 − 1) (1− u2) + 1 + 1
U(u)

)
− 1

u
, (C.1)

Bscalar =
1

4u(U(u)− 1)

(
(κ − 1)(κ + 1)2 (3 (κ2 − 1

)
u2 − κ2)

U(u)2 q2 +
(
κ2 − 1

)2

U(u)− 1 w2

)
(C.2)

where U(u) =
√

κ2 − κ2u2 + u2.

Shear Channel:

Ashear =
1

u(1−U(u))U(u)3
(
κ2(κ + 1)q2(U(u)− 1)− (κ2 − 1)ω2U(u)2

) (C.3)

×
[
2κ4(κ + 1)

(
1
2
(
1− κ2) (u2 − 1

)
(U(u)− 2) + U(u)− 1

)
q2

+
(
1− κ2) (κ4 +

(
1− κ2)2

u4 − 2
(
1− κ2)u2 (U(u)− κ2)− κ2U(u)

)
U(u)2w2

]
,

Bshear =
κ2(κ + 1)(U(u) + 1)
4u (u2 − 1)U(u)2 q2 + U(u)2 + 2U(u) + 1

4u (u2 − 1)2 w2 (C.4)

23In Einstein-Gauss-Bonnet gravity, the equations of motion in terms of gauge-invariant variables were
first derived in [66]. Some simplified expressions can be found in, e.g., appendix D of [79].
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Sound Channel:

Asound = 1
2uD1(u)(U(u)− 1)U(u)2

[
3D1(u)U(u)2(U(u)− 1) +

( (
κ2 − 1

)2
u4 (−3κ2 + 5U(u)− 7

)
+ κ2 (κ2 − 1

)
u2 (18κ2 − 13U(u) + 10

)
− 15κ4 (κ2 − 2U(u) + 1

) )
q2

− 3(1− κ)
(
κ2 −

(
κ2 − 1

)
u2) (5κ2(U(u)− 1)−

(
κ2 − 1

)
u2(5U(u)− 7)

)
w2
]

, (C.5)

Bsound =
(
κ2 − 1

)2

D0(u)

[ (
κ2 − 1

)3
q2u6 (3(κ − 1)w2 + q2)+ 12(κ − 1)2κ2(κ + 1)q2u5

− 4(κ − 1)κ2q2u3 (3κ2 − 7U(u) + 4
)
+
(
κ2 − 1

)2
u4
(
q4 (3κ2(U(u)− 2) + U(u)

)
+ 2(κ − 1)q2w2U(u)− 3(κ − 1)2w4U(u)

)
− κ2 (κ2 − 1

)
u2(q4 (κ2 + 2U(u)

)
+ (κ − 1)q2w2 (9κ2 − 4U(u)

)
− 6(κ − 1)2w4U(u)

)
− 3κ4(q4 (κ2(U(u)− 2) + U(u)

)
+ 2(κ − 1)q2w2 (U(u)− κ2)+ (κ − 1)2w4U(u)

)]
(C.6)

where

D0(u) = 4(κ − 1)u(U(u)− 1)2U(u)3D1(u) , (C.7)

D1(u) = (κ2 − 1)u2 (q2 + 3(κ − 1)w2)+ 3κ2 ((U(u)− 1)q2 − (κ − 1)w2) (C.8)
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