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ABSTRACT

The Weak Gravity Conjecture predicts that in quantum gravity there should exist overcharged
states, that is states with charge larger than their mass. Extending this to large masses and
charges, we are expecting similar overcharged classical solutions. This has been demonstrated
in higher-derivative extensions of General Relativity. In this paper we investigate the exist-
ence of overcharged solutions in General Relativity. We study the dynamics of a thin shell
of mass m and charge Q under the action of its own gravitational and U(1) fields. We show
that shells with surface energy σ and pressure P obeying P = wσ with 0 ≤ w ≤ 1 are ne-
cessarily undercharged m ≥ |Q| and always collapse to form Reissner-Nordström black holes.
Nevertheless, if −1 ≤ w < 0, we find that overcharged m ≤ |Q| shells exist, which however,
are inevitably stabilized at finite radial distance. Therefore they never form naked singularities
in accordance with cosmic censorship and the conjectured relation between cosmic censorship
and the Weak Gravity Conjecture. An intriguing consequence of the existence of such over-
charged shells is that gravitational modes may form bound states due to the peculiar form of
the Regge–Wheeler–Zerilli potential. This might lead to gravitational traps close the surface of
near-overcharged shells.
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1 Introduction

Although not much are known for theories of quantum gravity, there are some remarkably
simple statement about principles that such theories should respect [1–3]. The Weak Gravity
Conjecture (WGC) is one of these principles [4]. It argues that any gauge force must be stronger
than gravity. Besides its simplicity, this statement has profound consequences which have been
extensively been explored. One of them is that any consistent quantum theory of gravity should
contain in its spectrum states of mass m and charge Q that satisfy m < |Q| (in appropriate
units). Elementary particles are examples of such states.

The above argument extends also to states with mass larger than the Planck scale, which
are believed to be described as black holes (BHs). In particular, the mass-to-charge ratio
α = m/|Q| = 1 obeyed by extremal BHs cannot be exact and should decrease with Q so that
for any extremal BH there is another one with α < 1. In the opposite case, the extremal BHs
would be absolutely stable. Extending the above argument to large values of m and Q that
describe macroscopic BHs, it is expected that there are spherical symmetric, charged objects
that obey m/|Q| < 1. Such objects have been shown to exist in higher-derivative extensions
of GR. The latter are supposed to encode the corrections due to quantum gravity effects and
presumably will allow for BH solutions with m < |Q|. Indeed, it has been shown in [5] that the
order O(Q−4) effective action will have the generic structure

S =
∫
d4x
√
−g
(
R

2κ2 −
1
4FµνF

µν + c1R
2 + c2RµνR

µν + c3RµνρσR
µνρσ+

+ c4RFµνF
µν + c5R

µνFµρFν
ρ + c6R

µνρσFµνFρσ + c7 (FµνFµν)2

+ c8 (∇µFρσ)(∇µF ρσ) + c9 (∇µFρσ)(∇ρFµσ)
)
. (1.1)

The masses of the extremal BH solutions of the standard two-derivative GR are corrected such
that m < |Q|, supporting the WGC. However, the question remains: are there solutions in GR
that allow for m < |Q|?

The goal of this paper is to show that indeed in GR there are extended spherical symmetric
objects that have charge larger that their mass. We consider spherical symmetric shells within
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GR with total energy m and charge Q and appropriate Israel matching conditions. The surface
energy-momentum stress tensor is that of a perfect fluid with equation of state P = wσ, where
P, σ are the surface pressure and tension, respectively. We find that when 0 ≤ w ≤ 1, necessarily
m ≥ |Q|. In this case, the shell always collapses under its own gravitational field forming a
Reissner-Nordström black hole. However, for −1 ≤ w < 0, there are overcharged m < |Q|
shells, which however are stabilized at some finite radius. This is consistent with the cosmic
censorship hypothesis, revealing the connections between the latter and the WGC, which has
been advocated in [6, 7]. The cosmic censorship for overcharged shells has also been discussed
in [8]. Overcharged brane shells have also been exploited in [9] from compactifications of type
IIB string theory, whereas, the stability of spherical shells of matter in Newtonian gravity and
general relativity has been discussed in [10–16]. Thereby, extended stable objects satisfying
the WGC and consistent with the cosmic censorship exist already in classical Einstein-Maxwell
theory.

2 Charged shells in Newtonian gravity

Let us see what we can learn, based on Newtonian dynamics, for the gravitational collapse of a
thin spherical shell with charge Q and rest mass M . Its energy m is the sum of the rest mass,
the Coulomb and the gravitational binding energy so that

m = M + Q2

r
− m2

r
. (2.1)

We see that the energy is a function of the distance r from the center and its derivative is given
by

m′(r) = m2 −Q2

r(2m+ r) . (2.2)

The shell will collapse ifm decreases with decreasing r. Therefore, from (2.2), the shell collapses
when it is undercharged m2 > Q2, whereas it expands forever in the opposite overcharged case
m2 < Q2.

In the above argument, we have assumed that the internal energy U of the shell is negligible.
However, we should also take into account U in a full treatment of the energy budget of the
problem. Hence, the total energy of the shell should be

m = M + Q2

r
− m2

r
+ U . (2.3)

In the simplest case, we may consider a shell supporting an adiabatic fluid on its surface with
surface energy density σ, pressure P and equation of state P = wσ. In this case, the internal
energy satisfies

dU = −P dA , (2.4)

where dA = 8πrdr is the surface element on the spherical shell. Eq.(2.4) represents the fact
that the increase of the surface energy compensates the rate of work done by the pressure for
expanding the shell. For adiabatic process, we have that

P (4πr2)γ = P0(4πr2
0)γ , (2.5)
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so that

P = P0

(
r0
r

)2γ
, (2.6)

where γ = w − 1 and r0, P0 are the radius and the pressure of some initial shell configuration,
respectively. 1 Therefore, the energy m when the internal energy U is taken into account
according to Eq.(2.3), turns out to be

m′(r) = m2 −Q2 + r2 U ′(r)
r(2m+ r)

= m2 −Q2 − 8π P r3

r(2m+ r) . (2.7)

The condition then m′ > 0 for an imploding shell is equivalent to

m2 −Q2 > 8π P r3. (2.8)

We see from Eq.(2.8) that for P ≥ 0 (i.e., w ≥ 0) we have m2 − Q2 ≥ 0. In other words:
Collapsing shells with w ≥ 0 are necessarily undercharged m ≥ |Q|.

However, for w < 0 things are different: In this case, the pressure is negative p < 0 and
clearly we may have imploding shells with m2 < Q2. Therefore, we have collapse only when

m ≥ |Q| and w ≥ 0 ,
m < |Q| and w < 0 . (2.9)

Note that for w < 0, there is also maximum value of |Q| since from Eq.(2.8) we get

|Q| <
√
m2 + 8π|P0|r3

0 . (2.10)

What we learned so far is that gravitational collapse occurs for undercharged, m ≥ |Q| as well
as for overcharged, m < |Q| shells provided that in the latter case the shell is composed of
adiabatic fluid with negative pressure. The collapse of course will eventually end up in the
formation of a Reissner-Nordström black hole for an undercharged shell, and the formation of
a naked singularity violating cosmic censorship for an overcharged one. Below we will examine
the latter possibility, namely the collapse of an overcharged |Q| > m shell, and look for its
ultimate fate. In particular, we want to see if such a shell inevitable form a naked singularity
violating cosmic censorship.

3 Charged shells in General Relativity

Let us now examine the dynamics of the charged shell within General Relativity. To be more
specific, let us consider a charged spherical thin shell of total rest mass M , total charge Q,
energy density σ and pressure p. The intrinsic metric on the shell is

ds2
3 = γijdξidξj = −dτ2 +R2dΩ2, (i, j = 0, 1, 2) , (3.1)

1Similarly, since P = wσ we get that σ = σ0
(
r0
r

)2γ , where σ0 = P0/w. In addition, integrating Eq.(2.4) and
using Eq.(2.6) we find that U = 4π

w−2 P r
2 and U0 = 4πσ0r

2γ
0
(
r0
r

)2w
.
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where ξi = (τ, θ, φ) are the shell worldvolume coordinates. The scale factor R = R(τ) is the
radius of the shell and is a function of the proper time τ where the later is the time measured
by an observed moving along with the shell. The stress-energy tensor Sij of the shell has the
form of a perfect fluid

Sij = (σ + p)uiuj + Pγij , (3.2)

where ui is the three-velocity of the shell constituents. Its non-zero components are explicitly
written as has components

S0
0 = −

(1
2σ + P

)
, S1

1 = S2
2 = 1

2σ. (3.3)

Then, energy-momentum conservation leads to the equation [11]

∇α(σuα) = −P∇αuα , (3.4)

Eq.(3.4) can be written as

P + σ

2 + 1
2
d(σR)
dR = 0 , (3.5)

Note that Eq.(3.5) is nothing else than

dM = −P dA = −8πPR dR , (3.6)

where

M = 4πR2σ (3.7)

is the energy of the shell. For a perfect fluid with an equation of state p = wσ, by solving
Eq.(3.5) we find the general relations

σ = σ0
R2(1+w) , P = P0

R2(1+w) , M = M0
R2w , M0 = 4πσ0 , P0 = wσ0. (3.8)

The spacetime in the exterior of the shell is described by the Reissner-Nordström geometry with
line element

ds2
+ = g+

µνdxµ+dxν+ = −f(r)dt2 + dr2

f(r) + r2dΩ2
+ , f(r) = 1− 2m

r
+ Q2

r2 , (3.9)

and Maxwell field strength,

Frt = Q

r2 , (3.10)

where m and Q are the total energy (gravitational mass) and charge, respectively. For com-
pleteness we write down the coordinates of the external manifold xµ+ = (t, r, θ, φ) and the inner
r− and outer r+ horizons at radius

r± = m±
√
m2 −Q2 . (3.11)
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Inside the shell, the internal spacetime is Minskowski with vanishing electromagnetic field

ds2
− = g−µνdxµ−dxν− = −dη2 + dχ2 + χ2dΩ2

− , (3.12)

where η and χ are time and distance coordinate in the interior of the shell and xµ− = (η, χ, θ, φ).
The induced metrics γ±ij on the shell are calculated by the pullback of the interior and

exterior metric g±µν on the hypersurface

g±µν(e±)µi(e±)νj = γ±ij , (e±)µi = ∂xµ±
∂ξi

, (3.13)

with (e±)µi the tangent vector to the hypersurface. The line element from the pullback of the
interior side is

dσ2
− = −

(
ṫ2− − Ṙ2

−

)
dτ2 +R2

−dΩ2
2 , (3.14)

while from the exterior

dσ2
+ = −

(
f(R+)ṫ2+ −

Ṙ2
+

f(R+)

)
dτ2 +R2

+dΩ2
2 . (3.15)

The dot stands for derivative with respect to the shell proper time τ . The metrics in Eqs. (3.14)
and (3.15) should coincide with the shell metric Eq. (3.1) so that

ṫ2− − Ṙ2 = 1 (interior) , (3.16)

f(R)ṫ2+ −
Ṙ2

f(R) = 1 (exterior) , (3.17)

R− = R+ = R . (3.18)

Next we introduce the three-dimensional tensor K±ij which stands for the extrinsic curvature
defined by the pullback of the change of the normal vector nµ along each side of the hypersurface

K±ij = (e±)µi(e±)νj∇µn±ν . (3.19)

The extrinsic curvature is not continues but it has jumps specified by the the Israel matching
condition which is explictly written as [17]

∆Kij = K+
ij −K

−
ij = −8π

(
Sij −

1
2S

k
k γij

)
, (3.20)

Next consider the four-velocity vector Uµ and the normal vector nµ to the shell surface
defined as

uµ = dxµ
dτ , uµuνgµν = −1 , nµuµ = 0 , nµnµ = 1 , nµe

µ
i = 0 . (3.21)

Solving Eqs.(3.16)-(3.17) for ṫ±, the four-velocities are calculated to be

uµ− =
(√

1 + Ṙ2, Ṙ, 0, 0
)
, uµ+ =

(
f−1

√
f + Ṙ2, Ṙ, 0, 0

)
. (3.22)
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whereas the normal vector turns out to be

nµ− =
(
Ṙ,

√
1 + Ṙ2, 0, 0

)
, nµ+ =

(
Ṙ, f−1

√
f + Ṙ2, 0, 0

)
. (3.23)

Then, the Israel matching condition (3.20) is written as

n+
µ

duµ+
dτ
− n−µ

duµ−
dτ

= 8π
(1

2σ + p

)
. (3.24)

Using Eqs. (3.22) and (3.23), the Israel matching condition in Eq. (3.24) is explicitly written
as (

f + Ṙ2
)1/2
−
(
1 + Ṙ2

)1/2
= −4πσR . (3.25)

By using the explicit form of f , Eq. (3.25) specifies the total energy m to be

m = M
(
1 + Ṙ2

)1/2
− M2 −Q2

2R . (3.26)

which remains constant during the evolution with proper time τ whileM and R change. There-
fore, m can be determined at the equilibrium point (if such a point exists) and remain constant
through the whole dynamics.

We will now search for stable equilibrium points, i.e. points where the shell can be stabilized.
The conditions for stable equilibrium at R = R0 = const. is

Ṙ
∣∣
R0

= 0, R̈
∣∣
R0
> 0 , (3.27)

which leads to, with m0 = m(R0),

m0 = M − M2 −Q2

2R0
, (3.28)

∂m0
∂R0

= dM

dR0

(
1− M

R0

)
+ M2 −Q2

2R2
0

= 0 , (3.29)

∂2m0
∂R2

0
> 0 . (3.30)

The conditions above ensure the stability of the shell at specific radius R0. At this radius the
shell is gravitationally stable. Note that, if such a stable point R0 exists, the shell is always
stabilized outside the outer horizon of the exterior metric, i.e.

f(R0) = 1− 2m
R0

+ Q2

R2
0

=
(

1− M

R0

)2
> 0 . (3.31)

Once the outer horizon is crossed, the fate of the shell is predetermined: it will end up in a
charged BH.

3.1 Charged shells with zero or positive pressure

To specify the equilibrium radius R0 we proceed as follows. Once an equation of state P = P (σ)
is given, we can solve Eq.(3.6), in order to determine the mass M = M(R). We may then use
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M(R) in Eqs.(3.28) and (3.29) to find R0. Finally, we check if this solution satisfies Eq.(3.30).
If it does, then the shell is at stable equilibrium at R0.

In order to establish the above procedure, let us consider the known case of a charged dust
with p = 0 [10]. In this case, we have from Eq.(3.8)

σ = σ0
R2 , (3.32)

where σ0 is a constant, so that

M = 4πσ0 . (3.33)

It is then easy to see from Eqs.(3.28)-(3.31) that the condition for equilibrium is satisfied for
extremal shells, i.e, shells that satisfy m = |Q|. However, such shells are at neutral equilibrium
since ∂2m/∂R2

0 = 0 for any R0. Therefore, if the shell is initial at rest at R0, it will remain
there in indifferent equilibrium if P = 0. In fact it has been proven in [10] that when p ≥ 0, the
shell can never be overcharged, i.e.,

m ≥ |Q| for P ≥ 0 . (3.34)

Then, such a shell will inevitably collapse once enters the outer Reissner-Nordström horizon.
This is in accordance with the conclusion we arrived in section (2) based purely on Newtonian
arguments.

To establish Eq. (3.34), we note that

P = 1
16π

M2 −Q2

R2
(
R(1 + Ṙ2)1/2 −M

) . (3.35)

In order the pressure P to be always positive (P > 0) the motion should happen with radius R
larger than a critical Rc (when M2 > Q2)

R > Rc , Rc = M

(1 + Ṙ2)1/2 . (3.36)

Then expanding the inequality(
M(1 + Ṙ2)1/2 − |Q|

)2
≥ 0 , (3.37)

we find that

|Q| ≤ 1
2M(1 + Ṙ2)1/2 + 1

2
Q2

M(1 + Ṙ2)1/2 . (3.38)

In addition, from Eq.(3.26) we see that m = m(R) is an increasing function of R and therefore

m(Rc) ≤ m. (3.39)

On the other hand, for R = Rc we have

m(Rc) =M(1 + Ṙ2)1/2 − M2 −Q2

2Rc
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= 1
2M(1 + Ṙ2)1/2 + 1

2
Q2

M
(1 + Ṙ2)1/2 . (3.40)

Adding and subtracting the second term of Eq.(3.40), we can write the above equation as

m(Rc) = 1
2
Q2

M
(1 + Ṙ2)1/2 − 1

2
Q2

M(1 + Ṙ2)1/2 +
(

1
2M(1 + Ṙ2)1/2 + 1

2
Q2

M(1 + Ṙ2)1/2

)
. (3.41)

Therefore we get

m(Rc) ≥ |Q|+
1
2
Q2

M
(1 + Ṙ2)1/2

(
1− 1

1 + Ṙ2

)
≥ |Q|+ 1

2
Q2

M

Ṙ2

(1 + Ṙ2)1/2 ≥ |Q| (3.42)

and using Eq.(3.41) we get that bound

m ≥ |Q| . (3.43)

Therefore, there are no overcharged shells for P ≥ 0 (w ≥ 0). It is clear now that the above
argument cannot work whenever the pressure p in Eq.(3.35) is negative P < 0 (−1 ≤ w < 0),
in accordance with the general discussion based on purely Newtonian considerations.

3.2 Charged shells with negative pressure

Using Eq. (3.8) for a general equation of state p = wσ, the total energy at equilibrium R = R0

is

m0 = Q2

2R0
− M0

2R1+4w
0

(
M0 − 2R1+2w

0

)
, (3.44)

where the first term stands for the electric energy potential, the second for the surface tension
contribution and the third for gravitational potential2. Although we can keep the discussion
general, we prefer to work out a particular value for w for which analytic results can be obtained.
A particular simple case which can be treated completely analytically is w = −1/4, . In this case,
using Eq.(3.44) we find that the critical point condition in Eq.(3.29) specifies the equilibrium
point at R = R0

∂m0
∂R0

= M2
0R

3/2
0 −Q2

2R2
0

= 0 , (3.46)

so that the equilibrium point is at distance

R0 =
(
Q2

M0

)2/3

, (3.47)

2For completeness we write down the general formula for the total energy in Eq.(3.26) in terms of M0 using
Eq.(3.8)

m = M0R
−2w
√

1 + Ṙ2 + Q2 −M2
0R

−4w

2R , (3.45)

where is this expression R ≡ R(t).
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from the center of the shell. In addition, this is a stable equilibrium point since

∂2m0
∂R2

0
= 3M2

0
4Q2 > 0 . (3.48)

The total gravitational energy at the equilibrium point R0 turns out to be

m0 = −1
2M

2
0 + 3

2
(
M0Q

)2/3
, (3.49)

which can be written as

Y = −1
2Z

2 + 3
2Z

2/3 , (3.50)

where

Z = M0
|Q|1/2 and Y = m0

|Q|
. (3.51)

Then the range of Z where both Z and Y are positive (Z ≥ 0, Y ≥ 0) in order to have positive
energy is 0 < Z < 33/4. It is easy to check that for this range of Z we have

Y = m0
|Q|

< 1 → m0 < |Q| . (3.52)

Therefore, the positivity of m0 and M gives that

m0 < |Q| and M0 < 33/4|Q|−1/2 , (3.53)

so that the shell with w = −1/4 can be in equilibrium only when it is overcharged.

3.3 Dynamics of overcharged shells

We can also study the exact dynamics as described by Eq.(3.25). The latter can be written for
a shell with a general equation of state as

(
1− 2m

R
+ Q2

R2 + Ṙ2
)1/2
−
(
1 + Ṙ2

)1/2
= − M0

R1+2w . (3.54)

To study overcharged shells, we should consider the case of a negative w < 0 since as we have
seen above, when w ≥ 0 (p ≥ 0) the shell is always undercharged. 3 Taking a derivative of
Eq.(3.54) we find the equation of motion of the shell

R̈ = −∂V
∂R

, (3.55)

where the potential V (R) is given by

V (R) = − 1
8M2

0

(
M2

0
R1+2w −Q

2R2w−1 + 2mR2w
)2

. (3.56)

3Note that if we assume that the shell can go (or start) from infinity R → ∞, we get for negative w,
− 1

2 ≤ w < 0. Note that for this range of w, the potential in Eq.(3.56) is bounded at R→∞ as expected.
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The potential V is of the form

V (R) = −W 2 , (3.57)

where the prepotential W is

W = 1
2
√

2M0

(
M2

0
R1+2w −Q

2R2w−1 + 2mR2w
)
. (3.58)

In other words, the dynamics is described by Eq.(3.55) subject to the initial value equation
(from Eq.(3.54))

1
2Ṙ

2 = W 2 − 1
2 . (3.59)

The critical points of the potential are specified by solving V ′(R) = 0, which are the zeroes of
the equations

W = 0 , ∂RW = 0 , (3.60)

which are explicitly written as

M2
0 −Q2R4w

0 + 2m0R
1+4w
0 = 0 , (3.61)

M2
0 (1 + 2w) +Q2(2w − 1)R4w

0 − 4m0wR
1+4w
0 = 0 . (3.62)

The critical point specified by solving Eq.(3.61) are local global maxima since

V ′′(R)
∣∣∣
W=0

= −|∂RW |2 < 0 . (3.63)

The second critical point at ∂RW = 0 is a local minimum since the potential V → 0 as R→∞.
The potential is plotted in Fig 1. The maximum distance Rmax where the shell can be is,

for initial velocity Ṙin = 0, the largest root of (from Eq.(3.59))

W
(
Rmax

)2 = 1
2 . (3.64)

This value of W follows also from Eq.(3.58) for m ≡ m0, the total energy of the equilibrium.
For illustrative purposes, we will work out explicitly the case w = −1/4 discussed in subsec-

tion (3.2) as we can get closed expressions in this case. In this case, the minimum of potential
is specified by ∂RW = 0 from where we find that the equilibrium point Req is at

Req = 3Q2

2m+M2
0
. (3.65)

Comparing the equation above with R0 in Eq.(3.47) and solving for m we find that m ≡ m0

where m0 is given in Eq.(3.49). This means that we can always replace m with the total energy
at the vacuum.
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Figure 1: Left panel: The potential V of the overcharged shell with w = −1/4 discussed in
subsection (3.2). We choose M0 = 31/2|Q|−1/2 and Q = 1. For these values the conditions in
Eq.(3.53) are satisfied and the total energy is calculated to be m0 = 3/2(31/3 − 1) ≈ 0.66. The
potential gets the analytic form V = − (1−3×31/3R)2

24R3 and equilibrium radius at Req ≈ 0.69. The
latter is an asymptotically increasing function for large values of R. Right panel: The equations
of motions of the shell around the equilibrium in terms of time obtained using Eq.(3.55) and
Eq.(3.45). We plot the oscillatory behavior for the initial values R(0) = 0 and Ṙ(0) = 4.

3.4 Parameter space of stable charged shells

So far we have examined in our examples the stability of undercharged shells with w ≥ 0 and
the case of overcharged shells with negative pressure for the specific value w = −1/4 which can
be solved analytically. In this subsection we aim to find the stability regions of both over- and
under-charged shells scanning the parameter space of w. To do so we study extensively the
equilibrium/stability conditions given in Eqs.(3.29)-(3.30) and plot the regions where they are
satisfied.

As a first step we reduce the variables in these conditions using Eq.(3.44) and expressing
the mass of the shell in the following general form

M0 = R2w
0

(
R0 ±

√
Q2 − 2m0R0 +R2

0

)
. (3.66)

It is useful to introduce the following normalized variables of charge and radius in units of m0

Q̃ = |Q|
m0

, R̃ = R0
m0

, (3.67)

and then we re-express the Eq.(3.66) and the stability conditions in Eqs.(3.29)-(3.30) in terms
of them

m0(m0R̃)2w
(
R̃±

√
Q̃2 + R̃(R̃− 2)

)
= M0 , (3.68)

(1− R̃)R̃− 2w(Q̃2 − 2R̃+ R̃2)∓ (1 + 2w)R̃
√
Q̃2 + R̃(R̃− 2) = 0 , (3.69)

R̃(6w2 + 5w + 1)
(
−R̃∓

√
Q̃2 + R̃(R̃− 2)

)
− Q̃2(4w2 + 3w) + R̃(8w2 + 6w + 1) > 0 . (3.70)

In the case of charged shells stabilized outer of the external Reissner-Nordström horizon in
Eq.(3.31), one should consider the horizon condition and written in terms of the new variables
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takes the following form

R̃ > 1 +
√

1− Q̃2 , 0 ≤ Q̃ ≤ 1 . (3.71)

The solutions of the stability conditions are complicated analytic expressions and we solve them
numerically. However, we demonstrate the following characteristic cases with :

• w ≥ 0: there are no overcharged shells in this case, shown in (3.1).

• w = 0 : There is no stable equilibrium for any charge.

• w = −1/4 : Stable equilibrium for Q̃ > 1, presented in subsection (3.2).

• w = −1/2 : Stable equilibrium for Q̃2 = R̃ and Q̃ ≥ 1. Minimizing the total energy
including M0 one can find explicitly that

R0 = Q/
√
M0(2−M0) ,

and then
m0 = Q

√
M0(2−M0) .

This quantity is bounded for 0 < M0 < 2 and gives overcharged Q̃ > 1 and the extremal
case Q̃ = 1 for M0 = 1.

• Extremal case Q̃ = 1 : Stable equilibrium for −1 < w < 0. For w = −1 the stability
conditions are not satisfied.

Considering this inequality and the previous conditions, we find the parameter space where
charged shells are stable as shown on the left panel of the Fig.2:
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Q

=1.2

Q

=1

-0.5 -0.4 -0.3 -0.2 -0.1 0.0
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w

R

Figure 2: Left panel : The blue region stands for the parameter space where shells with stable
equilibrium exist ∂2m0/∂R

2
0 > 0. Stable shells are always overcharged Q̃ > 1 with w < 0. Right

panel : The parameter space of R̃ for fixed values of Q̃.
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4 Trapped spacetime modes

Perturbations of the Reissner-Nordström spacetime has been introduced in [18] and general-
ized to include also a cosmological constant in [19, 20]. In particular, the radial part of the
axial electromagnetic and gravitational perturbations are described by the equation in tortoise
coordinates dR∗ ≡ dR/f(R)

d2

dR2
∗
Z>i +

(
k2 − V >

i (R)
)
Z>i = 0 , i = 1, 2 (4.1)

where the potentials V1(R) and V2(R) correspond to the axial electromagnetic and gravitational
perturbations, respectively. They are explicit given by

V >
i (R) = f(R)

(
l(l + 1)
R2 − qj

R3 + 4Q2

R4

)
, (4.2)

where l is the spherical harmonic index and

qi,j = 3m±
√

9m2 + 4(l − 1)(l + 2)Q2 , i, j = 1, 2 i 6= j . (4.3)

On the other hand, the spacetime is flat inside the shell and therefore, there are only
gravitational perturbations, the radial part of which obey the equation

d2

dR2Z
<
2 +

(
k2 − V <

2 (R)
)
Z<2 = 0 , (4.4)

where

V <
2 (R) = l(l + 1)

R2 . (4.5)

The potentials V >
1 , V >

2 and V <
2 are shown in Figs. 3 and 5.

In the following, we will consider only the gravitational perturbations with corresponding
potentials V <

2 and V >
2 for inside and outside the shell, respectively. It is easy to see that the

potential V >
2 for undercharged shells with m ≥ |Q| has a minimum and a maximum, as can be

seen from Figs. 3 and 5. The minimum is hidden behind the outer horizon, where incoming
boundary conditions can be placed to describe standard QNM of Reissner-Nordström spacetime.

For overcharged shells with m < |Q| the situation is different. In particular, for m/|Q| .
0.912 the potential V >

2 has no extrema. In the opposite case, for 0.912 . m/|Q| < 1, the
potential V >

2 develops a minimum at Rmin and a maximum at Rmax with Rmin < Rmax as in
Figs. 3 and 4. It turns out that the shell is stabilized at a distance Req < Rmax. Therefore,
there are trapped spacetime modes [21] between the position of the shell Req and the maximum
of the potential at Rmax as illustrated in Fig. 6. They can be long-lived depending on the depth
of the potential well. Trapped modes have first been studied for the axial stellar perturbations
in [22,23]. It turns out that trapped modes exist whenever there are horizonless objects confined
in the interior of the potential barrier. This is the case for example of ultra-compact stars and
gravastars [24, 25] studied in [26–33], where the spectrum of the perturbations, including the
trapped modes, has been determined. If such horizonless ultra-compact objects formed in nature
once they involved in dynamical processes (binary mergers, collapse, excitations by other bodies)
will produced a characteristic signals (echoes) as in Fig. 7. A detailed analysis of the signals
will provide details and reveal the nature of the emitting object [30–33].
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Figure 3: We plot overcharged RN black holes with m0 ≈ 0.98 and Q = 1 and overcharged
shells at equilibrium. The singularity is hidden by the overcharged shell while the shaded region
corresponds to the interior of the shell. Upper panel: Overcharged shell with tensionM0 ≈ 0.829,
w = −1/4, stabilized at Req ≈ 1.133. Lower panel: Overcharged shell with tension M0 ≈ 0.85,
w = −1, stabilized at Req ≈ 0.87. The total energy and charge of the shells is m0 ≈ 0.98 and
Q = 1 respectively. Note that for negative values w > −1, e.g. w = −1/4, the equilibrium
point Req approaches the local maximum of the QN modes potential.
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Figure 4: Left panel: Schematic illustration of trapped spacetime modes on the exterior region
of an overcharged shell with w = −1/4, corresponding to the upper left panel of Fig.3. Right
panel: Schematic illustration of trapped modes on the exterior region of an overcharged shell
with w = −1, corresponding to the upper left panel of Fig.3.
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Figure 5: We plot overcharged RN black holes with m0 ≈ 0.999 and Q = 1 and overcharged
shells at equilibrium. The singularity is hidden by the overcharged shell while the shaded
region corresponds to the interior of the shell. Upper panel: Overcharged shell with tension
M0 ≈ 0.9614, w = −1/4, stabilized at Req ≈ 1.026. Lower panel: Overcharged shell with
tension M0 ≈ 0.9803, w = −1, stabilized at Req ≈ 0.933. The total energy and charge of the
shells is m0 ≈ 0.999 and Q = 1 respectively. Note that negative values w > −1, e.g. w = −1/4,
the equilibrium point Req approaches the local maximum of the QN modes potential.
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Figure 6: Left panel: Schematic illustration of trapped spacetime modes on the exterior region
of an overcharged shell with w = −1/4, corresponding to the Fig. 5. Right panel: Schematic
illustration of trapped modes on the exterior region of an overcharged shell with w = −1,
corresponding to the Fig. 5.
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Figure 7: Upper panels: The emerging signal for m0 = 0.980 and Req ≈ 1.133 (w = −1/4) on
the left and m0 = 0.980 and Req ≈ 0.87 (w = −1) on the right. Lower panels: The emerging
signal for m0 = 0.999 nd Req ≈ 1.026 (w = −1/4) on the left and m0 = 0.999 and Req ≈ 0.933
(w = −1) on the right. In all four panels the initial QNMs due to scattering on the potential
barrier is followed by “trapped” modes. The number of the trapped modes and the energy
that they carry depend on the triplet (m0, Req, w) which define the depth and the width of the
potential well.
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Figure 8: : Quasinormal modes for undercharged collapsed shells with Left panel: Q = 1 and
m0 = 1.02 Right panel: Q = 1 and m0 = 1.4. The vertical red dotted-dashed line stands for the
external horizon of the black hole.
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5 Conclusion

According to the WGC, there should be overcharged BHs with charge larger than their mass
|Q| > m. Such objects are not allowed in GR as they have naked singularities, violating the
cosmic censorship hypothesis. However, such objects have been constructed by extensions of GR
where higher derivative terms have been included in the gravitational action. Here we examined
overcharged spherical symmetric objects in GR and, in particular, we studied charged shells.
The shells we considered are made of perfect fluids with tension σ and pressure p obeying
p = wσ with |w| ≤ 1. We have found that all shells with positive pressure, 0 < w ≤ 1,
whether overcharged or undercharged, are unstable and collapse to form charged black holes.
For negative pressure, undercharged shells with −1 ≤ w < 0 are unstable. However we found
overcharged shells with −1 ≤ w < 0 stabilized at finite radial distance. This result is also
dictated by the cosmic censorship, since if an overcharged shell collapses, it will form a naked
singularity. We have also seen that for nearly overcharged shells with 0.912 . m/|Q| < 1, a
trapping potential is formed for the gravitational perturbations as well as for the electromagnetic
ones. This is in accordance with the fact that horizonless objects can exhibit trapped spacetime
modes if they are confined in the interior of the potential barrier.

Acknowledgement: We would like to thank C. Bachas for extensive discussions. A.R. is
funded by the Boninchi Foundation.
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