CERN Accelerating science

If you experience any problem watching the video, click the download button below
Download Embed
Preprint
Report number arXiv:2304.02650
Title Automatic Differentiation of Binned Likelihoods With Roofit and Clad
Author(s) Singh, Garima (Princeton U.) ; Rembser, Jonas (CERN) ; Moneta, Lorenzo (CERN) ; Lange, David (Princeton U.) ; Vassilev, Vassil (Princeton U.)
Imprint 2023-04-04
Number of pages 6
Presented at 21st International Workshop on Advanced Computing and Analysis Techniques in Physics Research, Bari, It, 24 - 28 Oct 2022, pp.
Subject category stat.CO ; Mathematical Physics and Mathematics ; cs.MS ; Computing and Computers
Abstract RooFit is a toolkit for statistical modeling and fitting used by most experiments in particle physics. Just as data sets from next-generation experiments grow, processing requirements for physics analysis become more computationally demanding, necessitating performance optimizations for RooFit. One possibility to speed-up minimization and add stability is the use of Automatic Differentiation (AD). Unlike for numerical differentiation, the computation cost scales linearly with the number of parameters, making AD particularly appealing for statistical models with many parameters. In this paper, we report on one possible way to implement AD in RooFit. Our approach is to add a facility to generate C++ code for a full RooFit model automatically. Unlike the original RooFit model, this generated code is free of virtual function calls and other RooFit-specific overhead. In particular, this code is then used to produce the gradient automatically with Clad. Clad is a source transformation AD tool implemented as a plugin to the clang compiler, which automatically generates the derivative code for input C++ functions. We show results demonstrating the improvements observed when applying this code generation strategy to HistFactory and other commonly used RooFit models. HistFactory is the subcomponent of RooFit that implements binned likelihood models with probability densities based on histogram templates. These models frequently have a very large number of free parameters and are thus an interesting first target for AD support in RooFit.
Other source Inspire
Copyright/License preprint: (License: CC BY-NC-ND 4.0)



 


 Zapis kreiran 2023-05-25, zadnja izmjena 2023-06-05


Cjeloviti tekst:
Download fulltext
PDF