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Abstract

An Euclidean bounce describing vacuum decay can be considered as an infinite stack

of concentric thin shells to which a thin-wall action can be assigned. The integral over

all shells produces then a tunneling action that is precisely the action functional in field

space of the so-called tunneling potential formalism. This procedure, which works also

when gravity is included, gives the simplest derivation of such actions.
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1 Introduction

In the problem of false vacuum decay in quantum field theory, there is one particular situation

that can be treated semi-analytically and simply: when the energy difference between the false

and true vacua is small compared to other scales. In this case, the scalar field φ(r) of the

Euclidean bounce that describes the decay makes a sharp transition between the vacua at

a well-defined bounce radius (thus the name “thin-wall case” [1]). However, in general, the

bounce has a thick wall, and no analytical treatment is possible.

A generic bounce can be thought of as an infinite stack of concentric thin-wall shells of

infinitesimal width (from φ to φ+ dφ) across which the (Euclidean) energy changes infinites-

imally. As shown in this paper, one can associate an infinitesimal action to such slices, given

by the simple thin-wall expression, generalized in the appropriate way. Integrating over all

slices one recovers the tunneling action for the general case, albeit written in a particular

form: the one recently proposed in the tunneling potential formalism [2,3]. The next section

shows how this is done (also with gravity) and the appendix extends the derivation to general

spacetime dimension d > 2.

The tunneling potential formalism [2, 3] for the calculation of tunneling actions does not

rely on Euclidean bounces and reformulates the calculation as a simple variational problem

in field space. Instead of a bounce one finds a “tunneling potential” function, Vt(φ), that

connects the false vacuum and (the basin of) the true vacuum and minimizes an action

functional S[Vt], an integral in field space of a simple action density. The resulting action

reproduces the Euclidean result and the formalism has a number of appealing properties that

have been discussed elsewhere.

The action functional S[Vt] was first derived starting from the Euclidean approach, using

the relation Vt = V − φ̇2/2 to get rid of all Euclidean quantities in favor of Vt(φ) and its

derivatives, and arriving at a particular second-order differential equation that Vt should

satisfy. Then S[Vt] is obtained so that its minimization leads to that differential equation

for Vt [2, 3] and its normalization is right to reproduce the Euclidean action. An alternative

(simpler) derivation of the Vt action uses a canonical transformation between Euclidean and

Vt formalisms [4]. The derivation of S[Vt] presented now in this paper is the simplest.

2 Thick Wall as Infinite Stack of Thin Walls

2.1 No Gravity

The thin-wall tunneling action (d = 4 spacetime dimensions, no gravity) is

Sthin =
27π2σ4

2ε3
, (1)
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Figure 1: Examples of tunneling potentials Vt for AdS decay (left) and dS decay (right). For

Minkowski or no-gravity cases, Vt is monotonic and qualitatively similar to the AdS case.

where σ is the wall tension and ε > 0 the difference in energy between the two vacua. In the

Euclidean formalism [1] one has [false vacuum at φ+, true vacuum at φ−, with V± ≡ V (φ±)]

σ '
∫ φ−

φ+

√
2(V − V−)dφ , ε ' −∆V ≡ −V− + V+ > 0 . (2)

In the Vt formalism, σ and ε are defined more precisely, as

σ =

∫ φ0

φ+

√
2(V − Vt)dφ , ε = −∆Vt ≡ −Vt(φ0) + Vt(φ+) > 0 , (3)

where φ0 is the “exit” point for tunneling [φ0 = φ(0) in the Euclidean formalism] with φ0 ' φ−
in the thin-wall case. In (3), ε is written in terms of Vt rather than V , using the fact that

Vt = V at φ+ and φ0 (points at which φ̇ = 0). In σ, Vt(φ) is the solution of the corresponding

differential equation. The left plot in Fig. 1 shows an example of Vt. In the thin-wall case,

however, Vt can be approximated well by a nearly flat monotonic function that connects the

two vacua [2].

Now consider any (generally thick-wall) bounce as a collection of concentric thin slices

from φ+ to φ0. Through each of them the field and Vt are changing a little and we assign to

them a differential wall tension and differential change in (Euclidean) energy as

dσ =
√

2(V − Vt)dφ , dε = −V ′t dφ . (4)

The relation Vt = V − φ̇2/2 tells us that Vt can also be interpreted as (minus) the Euclidean

energy, so that dε is the infinitesimal change in Euclidean energy across the wall. To get the

thick wall action we integrate the thin-wall action for all slices:

S =

∫ φ0

φ+

dSthin =

∫ φ0

φ+

27π2dσ4

2dε3
= 54π2

∫ φ0

φ+

(V − Vt)2

(−V ′t )3
dφ , (5)

which reproduces exactly the tunneling action in the Vt formalism [2].
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2.2 Gravity On: AdS/Minkowski Vacua

If gravity is included, the thin-wall action for the decay of a Minkowski or AdS false vacuum

can be written as [5, 6]

Sthin =
12π2

κ2V

(√
1− 3κV/C2 − 1

)∣∣∣φ0
φ+

=
12π2

κ2Vt

(√
1− 3κVt/C2 − 1

)∣∣∣φ0
φ+

, (6)

where κ ≡ 1/m2
P and C2 is

C2 = 3κVt+ +
1

σ2

(
ε− 3

4
κσ2

)2

= 3κV− +
1

σ2

(
ε+

3

4
κσ2

)2

. (7)

In the literature, this formula is written in terms of V rather than Vt but we use the fact

that V (φ+) = Vt(φ+) ≡ Vt+ and V (φ0) = Vt(φ0) to rewrite it in terms of Vt, which is the

natural choice to make the thick-from-thin connection. Similarly, σ and ε are defined as in

(3), although now Vt solves an equation of motion that includes gravitational effects [3].

We slice as before a thick wall in an infinite collection of concentric thin walls with dσ

and dε given by the same formulas (4). For a given thin-wall slice with field between φ and

φ+ dφ, C2 takes now the value

C2(φ) = 3κVt +
dε2

dσ2
=

D2

2(V − Vt)
, (8)

where

D2 ≡ V ′t
2 + 6κ(V − Vt)Vt . (9)

From this it follows
√

1− 3κVt/C2(φ) = −V ′t /D . For such slice we obtain the infinitesimal

action

dSthin =
12π2

κ2Vt

[√
1− 3κVt

C2(φ)
− 1

]∣∣∣∣∣
Vt(φ+dφ)

Vt(φ)

=
6π2

κ2V 2
t

2−

√
1− 3κVt

C2(φ)
− 1√

1− 3κVt
C2(φ)

V ′t dφ .
(10)

Integrating over all slices and using the previous relations, the thick-wall action is

S =

∫ φ0

φ+

dSthin =
6π2

κ2

∫ φ0

φ+

(D + V ′t )
2

DV 2
t

dφ , (11)

which reproduces the tunneling action of the Vt formalism [3]. Note that dSthin > 0.

2.3 Gravity On: dS Vacua

For the dS case, as is well known [3, 6, 7], the vacuum decay can be considered as composed

of two parts, a Hawking-Moss type transition from the false vacuum field value φ+ to a field

value φ0+ with higher energy and then a Coleman-De Luccia (CdL) type of transition from

φ0+ to φ0. In the Vt formalism, the first part has Vt = V as depicted in Fig. 1, right plot.
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For the Hawking-Moss part, we first have to derive the “thin-wall” approximation for that

case. The Hawking-Moss rate is [8]

SHM =
24π2

κ2

(
1

V+
− 1

Vtop

)
, (12)

where Vtop is the value of the potential at the top of the barrier that makes the vacuum

classically stable. We can talk of a thin-wall HM transition (thin in field space) from φ to

φ+ dφ simply setting V+ = V (φ) and Vtop = V (φ+ dφ) to get

dSHM =
24π2V ′

κ2V 2
dφ =

24π2V ′t
κ2V 2

t

dφ , (13)

where, for the last equality, we have used that Vt = V in the HM region of the decay.

For the CdL part of the transition the thin-wall result [6, 7] can be written as

Sthin =
12π2

κ2

{
1

Vt+

[
1− 1

Cσ

(
ε− 3κσ2

4

)]
− 1

Vt0

[
1− 1

Cσ

(
ε+

3κσ2

4

)]}
, (14)

with C2 as in (7). For the slice between φ and φ + dφ we get C2(φ) as in (8) for the

AdS/Minkowski case. Setting Vt+ = Vt(φ), Vt0 = Vt(φ+ dφ), and using dσ and dε as in (4)

dSthin =
6π2

κ2
(D + V ′t )

2

DV 2
t

dφ , (15)

which is, again, the correct action density [3]. Adding up all infinitesimal actions from HM

and CdL parts we finally get

S =
24π2

κ2

∫ φ0+

φ+

V ′t
V 2
t

dφ+
6π2

κ2

∫ φ0

φ0+

(D + V ′t )
2

DV 2
t

=
6π2

κ2

∫ φ0

φ+

(D + V ′t )
2

DV 2
t

, (16)

in agreement with the action for dS decay in the Vt formalism [3].

3 Conclusions

Although the thin wall action is a particular limit of the general tunneling action, this paper

shows how the general (thick) action can be recovered from the particular (thin) case: consider

any tunneling bounce as an infinite collection of concentric thin shells, apply to them the thin-

wall action (defined in a concrete way) and integrate over the full collection.

Obviously, the thin-to-thick connection discussed in this paper does not lead to an al-

gorithm useful to calculate the action or Vt (e.g. numerically) as the thin-wall infinitesimal

actions involve the global Vt.

The result is nevertheless interesting because the general action obtained is naturally a

functional in field space and corresponds precisely to the action used in the tunneling potential

formalism. The derivation in this paper can thus be considered as the simplest derivation of

such actions.
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Alternatively, the result can be interpreted as validating the picture of the slices as thin-

wall shells between nearby Euclidean energies carrying an infinitesimal wall tension in a sense

made precise by equation (4). This also lends support to the definition

σ =

∫ φ0

φ+

√
2(V − Vt)dφ , (17)

for general walls. In terms of the field slope, this corresponds to σ =
∫
|φ̇|dφ, which has been

advocated elsewhere (e.g. in [11]).
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A General d

A.1 No Gravity

The derivation goes through for d > 2 spacetime dimensions. Without gravity, the starting

point is the thin-wall action (see e.g. [9, 10])

Sthin =
(d− 1)d−1πd/2σd

Γ(1 + d/2)εd−1
, (18)

where σ is the wall tension and ε > 0 the difference in energy between the two vacua, as in

(3). The total thick-wall action is then, using (4):

S =

∫ φ0

φ+

dSthin =

∫ φ0

φ+

(d− 1)d−1πd/2(dσ)d

Γ(1 + d/2)(dε)d−1
=

(d− 1)d−1

Γ(1 + d/2)

∫ φ0

φ+

[2π(V − Vt)]d/2

(−V ′t )d−1
dφ , (19)

which reproduces exactly the tunneling action in the Vt formalism.

A.2 Gravity On: Minkowski/AdS Vacua

Including gravity, the thin-wall action for AdS or Minkowski decay reads

Sthin = − πd/2(d− 1)d−2

κΓ(1 + d/2)Cd−2

[
d
√

1− z + z(d− 1) 2F1(1/2, d/2; 1 + d/2; z)
]∣∣φ0
φ+

, (20)
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where z = 2κdVt/C
2, κd = κ(d− 1)/(d− 2), and

C2 = 2κdVt+ +
1

σ2

(
ε− 1

2
κdσ

2

)2

= 2κdVt− +
1

σ2

(
ε+

1

2
κdσ

2

)2

. (21)

For the infinitesimal slices we have

C2(φ) = 2κdVt +
ε2

σ2
=

D2
d

2(V − Vt)
, (22)

with D2
d = V ′t

2 + 4κd(V − Vt)Vt, and the infinitesimal action is

dSthin =
(d− 1)d−1πd/2

CdΓ(1 + d/2)

[
− d√

1− z
+ (d− 1)2F1(1/2, d/2; 1 + d/2; z)

]
V ′t dφ . (23)

Using the identity

2F1(1/2, d/2; 1+d/2; z) =
1

d− 1

[
d√

1− z
− (1− z)−d/22F1

(
d− 1

2
,
d

2
;
d

2
+ 1;

z

z − 1

)]
, (24)

we arrive at the action

S =
(d− 1)d−1

Γ(1 + d/2)

∫ φ0

φ+

[2π(V − Vt)]d/2

|V ′t |d−1
2F1

(
d− 1

2
,
d

2
;
d+ 2

2
; 1− D2

d

V ′t
2

)
dφ , (25)

which reproduces the result obtained in the Vt formalism [10].

A.3 Gravity On: dS vacua

For the dS case, the thin-wall approximation gives the action (for the CdL part) [10]

Sthin =
πd/2(d− 1)d−2

κCd−2Γ(1 + d/2)
[2F (zT )− F (z+)− F (z0) +G(z+)−G(zT )] , (26)

where

F (z) = d
√

1− z + z(d− 1)2F1(1/2, d/2; d/2 + 1, z) ,

G(z) = 2(d− 1)z1−d/22F1(1/2, d/2; d/2 + 1, 1) , (27)

with z = 2κdVt/C
2 and C2 is as given in (21). The qualitative shape of Vt can be of three

different types [10], controlled by the value of zT . When the maximum of Vt happens at φ+

(φ0), then zT = z+ (zT = z0). If the maximum occurs at some point in between, then zT = 1.

For the infinitesimal slices we just need to consider the two former cases, zT = z+ and zT =

z− (corresponding to V ′t < 0 and V ′t > 0 respectively). The case zT = 1 would occur only for

the infinitesimal slice right at the maximum of Vt and is therefore irrelevant for the final result.

Using C(φ) as given in (22) and replacing z+ = 2κdVt(φ)/C(φ)2, z0 = 2κdVt(φ + dφ)/C(φ)2

we get, for the case zT = z+

dSthin =
πd/2(d− 1)d−2

κCd−2Γ(1 + d/2)
[−F ′(z)]

2κdV
′
t

C2
dφ , (28)
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and for the case zT = z0

dSthin =
πd/2(d− 1)d−2

κCd−2Γ(1 + d/2)
[F ′(z)−G′(z)]

2κdV
′
t

C2
dφ , (29)

where z = 2κdVt(φ)/C(φ)2. In both cases, using the identity (24) and paying attention to the

sign of V ′t , one arrives at

dSthin =
π(d+1)/2Rd

t

Γ[(d+ 1)/2]
(V ′t + |V ′t |)dφ+ 2F1

(
d− 1

2
,
d

2
;
d

2
+ 1; 1− D2

V ′t
2

)
s0dφ , (30)

where

R2
t =

(d− 1)(d− 2)

κ|Vt|
, s0 =

(d− 1)d−1[2π(V − Vt)]d/2

Γ(1 + d/2)|V ′t |d−1
. (31)

This result agrees with the action density obtained in [10].

For the Hawking-Moss part of the dS action one has [10]

SHM =
−4
√
πV

(d− 2)Γ
(
d+1
2

) [π(d− 1)(d− 2)

2κV

]d/2∣∣∣∣∣
Vtop

V+

. (32)

The infinitesimal action for a HM transition from φ to φ+dφ, obtained taking the φ derivative

of the action above, should then be integrated in the HM region of the transition, between

φ+ and some φ0+. One therefore gets

δHMS =
−4
√
πVt

(d− 2)Γ
(
d+1
2

) [π(d− 1)(d− 2)

2κVt

]d/2∣∣∣∣∣
Vt,0+

Vt+

. (33)

This reproduces the corresponding result in the Vt formalism [10].
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