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1. Introduction

The highest energy which has so far been achieved by a proton accelerator 

is about 2-g GeV (2„5 x 10$ eV) from the Brookhaven Cosmotron. In this machine 

particles are accelerated along an orbit of radius about 10 metres inside a 

vacuum chamber whose available aperture is about 70 cm„ x 15 cm.. The cost of 

such a conventional synchrotron is 6 to 10 million dollars and using the same 

kind of techniques it would become very costly to extend the energy to 10 GeV* 

Some thought was given by C.E.R.N. to such an extension in early 1952 and a 

figure of about 15 million dollars was then estimated, provisionally, as the 

likely cost of a ll) GeV * conventional'machine.

Some fundamental change in technique is desirable for hi; her energy machines 

and this lecture will describe such a change, first suggested by Courant, Livingston 
JJ- 

and Snyder and since then extended and modified by work in both Europe ana U .S»..n 

The G.E.R.N. laboratory is planning a 4 strong-’•focussing synchrotron' of this type 

to give energies of 20->C GeV,

In this lecture the conventional and strong-focussing methods will be compared 

and the developments in the strong-focussing method described, recalling first 

the essential principles of conventional focussing and then proceeding to the 

later developments. In this lectre only the motion of particles circulating at 

constant energy in static magnetic fields is c msicered* No problems associated 

v-ith oscillations pf the particles in energy or phase due to acceleration are 

included.

2. The Conventional Synchrotron

The focussing principle of a conventional synchrotron relies on two fundamental 

ideas:

(a) To give axial stability the axial field, which bends the particles tc the

required circle, must decrease as the radius increases* Such a condition
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is necessary in order to produce the outward ’bowing* of the field lines 

required to return a particle to the median plane (See fig. la).

(b) To give radial stability the rate of decrease of field with radius must be 

limited. The limit is shown by considering a particle of energy Eo 

injected tangentially into a field at two different radii, r and ro. The 

limit of zero focussing occurs when the particles singly maintain their 

radii i.e. when Hzr * ^rQ or = B^(r/r0)""^. To obtain positive radial 

focussing of the particles towards a stable orbit at ro the axial field at 

r must be greater (for r < ro) than that given by the above condition i.e.

Hz - Ht/r/ro)"*1 with n < 1.

The condition for both axial and radial stability to coexist, therefore, is 

that

Hz = Hq (1 - ne/r0)............................................................................... (2)

from which the radial field component is approximately

= - B^.n.z/r0 ............................................................................... (j)

For such a 'linear' field motion is obtained which is, to a first approximation, 

independent in the axial and radial directions. Some coupling occurs in the 

second approximation because the machine is circular and there are consequent 

centrifugal terms in the equations of motion; in addition strictly linear fields 

radially and axially cannot coexist in a three dimensional machine. These 

factors will, however, be neglected and the equations of motion written:

In these equations the angular frequency of rotation, d0/dt, of the particle is 

denoted by w0 and a, b, c, d are constant determined by the injection conditions.
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To obtain more quantitative information about the orbits the axial field, 

Hz, is approximated, putting r - ro * Q, by the relationship

(1)

(4a)

(4b)

with solutions:

(?a)

(5b)



The condition for simultaneous stability in both g and z directions, 0 < n < 1, 

follows from equation (5). Typical orbits for the radial motion are shown in 

Pig. 2. For equal focussing action in both directions n = 0.5 and particles 

originating in a point focus refocus after about 0.7 revolutions, the focussing car 

betatron wavelength being /2 circumferential lengths.

The first consideration in designing a synchrotron is to fix on the minimum 

aperture required. Such consideration will first be restricted to a machine 

whose magnetic field has no irregularities such as thosewhich might arise from 

mechanical and electrical defects. Only the aperture required to accommodate 

the focussing oscillations, and not synchrotron oscillations will be studied. 

The aperture, A, required is then proportional to the angular spread, 0, of the 

source, or to some effective angular spread resulting from collisions with 

residual gas, and to the focussing wavelength, , that is

A<sl0\,............................................ .. ............................................... (6)

assuming that the source occupies a definite small fraction of the aprt 

Starting from a given injector and using focussing devices to bring the source 

size to the required constant fraction of the donut aperture, kA, the angular 

spread of the source is, with optimum adjustment, inversly proportion to the 

size of the aperture, that is:

A"1 .. .. ............................................................................... (7)

This follows from the Helmholz Lagrange condition in an optical system. 

Brom the equations (6) and (7)

......................................................... (8) 

It is desirable, therefore, to reduce the focussing wavelength, \, to a small 

value as shown in fig. 3. Such a reduction is possible in, say, the radial 

direction by making n take large negative values, when the radial aperture, 

A^», varies with n according to the relationship

.. .. «....................................................... .. .. (9)

since the wavelength is inversely proportional to ne (see equations 5)» 

These n values would, however, give defocussing in the a£ial direction, the 

behaviour corresponding to the orbit marked *+’ in figure 2, with z replacing 

as the ordinate scale. Prom equation (9) the advantages, from the viewpoint 

of redial aperture limitation, of reducing the radial focussing wavelength are 
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quite dear but no practical way of achieving a reduction in both the axial and 

radial apertures simultaneously was advanced for some timeo The suggestion made 

by Courant Livingston and Snyder is important because it does offer this possibility. 

Jt ensures a variation of aperture with field gradient of the form

A «*n“i .. .. .. . ................................................................... (10)

where A now refers to both radial and axial apertures.

J, The Strong Focussing Synchrotron

Courant, Livingston and Snyder showed that focussing may be obtained in 

both radial and axial directions simultaneously if the magnet circumference is 

broken up into a number of sectors, N, with alternating large positive and 

negative values of n. The scheme may be illustrated by plots of some typical 

orbits, in both directions, as shown in fig. 4. This figure is drawn fbr the 

case in which the field gradient (or n value) and sector length are so related 

that a phase change of 7^2 occurs in the normal betatron oscillation occurring in

one focussing sectoro These orbits are special cases of focussing oscillations 

in which repetition occurs in an integral number of sectors, but for a machine 

which is perfectly constructed there is a continuous range of values of n for which

stable operation in both directions is possible. This stable region is shown in 
negative

fig. 5., where the n values for the positive gradient sectors, nj, are not necessarily 

equal to the n values for the positive gradient sectors, nj» The limits of the 

stable region are found by a simple application of Floquet’s theorem which states 

that, in problems of this type, solutions can be found which are merely multiplied 

by an exponential factor, er’ / , in passing from one unit to the next, the unit 

consists of two sectors in this particular problem. Using this theorem, stable 

operation is possible provided that yi* is real, when the factor is oscillatory. 

/<then corresponds to the phase shift between each pair of sectors, the phase being 

measured in terms of the focussing wavelength in the new composite system.

Quantitatively the condition for stability is,

(ID

(11)

(11)

(remember that n1 is a positive number and n2 a negative number).
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Some typical orbits (in the median plane) both inside and outside the stable 

region are shown in fig. 6, the machine being normally operated at some point on 

the diagonal of figure 5 to give equal stability radially and axially.

The orbits inside the stable area consist, approximately of long period 

sinusoidal oscillations with other oscillations superposed of wavelength equal to 

two sectors lengths (figs. 6a and 6b). The relative magnitude of these superposed 

oscillations decreases as we operate at points increasingly close to 0 in fig. 5 

and there is thus some advantage to be gained, in reduction of aperture for given 

injection conditions, by operating the synchrotron rather nearer to 0 than is the 

case in the '1~^2 ©f ?-‘-g. 4. The mode number,is defined as the phase 

change in a pair of sectors, This phase change is defined in terms of the 

focussing oscillation in the composite system and not in terms of the betatron 

oscillation in a single focussing sectoro The mode used will depend on a compromise

between the focussing and synchrotron oscillation amplitudes, but operation with 

a mode number as low as the % mode is quite likely. (In this mode the oscillation

will repeat every 20 sectors).

At the limits of the s;able region the oscillation amplitude builds up 

linearly (fig. 6c); this situation will clearly arise since a linear sise must 

form the boundary between focussing behaviour (sinusoidal envelope) and defocussing 

(exponential envelope) behaviour. A special orbit could have been drawn on 

fig. 6(c), which maintained constant amplitude, by making the orbit originate at 

a radial position ro in the centre of a defocussing sector. Finally fig. 6(d) 

shows an orbit outside the stable region.

The ideal geometrical arrangement so far studied will certainly not be used 

in practice for various reasons. First it is necessary to have some separation 

between sectors having positive and negative n values, for both mechanical and 

magnetic reasons. Next it is necessary to put breaks in the magnet every so often 

to accommodate the H.F. accelerators, the injection mechanism, and other devices. 

Then again, the sectors can only be constructed and aligned within certain 

dimensional tolerances and variations are sure to exist in the magnetic properties 

of the iron used at different points of the circumference. All these factors 

introduce irregularities in the magnetic field which have important effects on 

the particle orbits as is shown in the next section.
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4. Azimuthal Inhoiusccneitiea weii> II nJlfamwi   m

The operation of the strong-focussing synchrotron is very sensitive to 

irregularities in the geometrical alignment of the sectors, so this type of 

azimuthal inhomogeneity will be studied as a first example„ The strong-focussing 

synchrotron is much more sensitive to alignment errors than a conventional machine, 

as is illustrated by the orbits plotted in fig. 7> where each type of machine is 

assumed to be manufactured accurately except for the displacement of &, of a given 

small element of the circumference of length d. For convenience it has been assumed 

that the focussing oscillations are sinusoidal of wavelength X although,, as 

explained in Section J, other smaller—wavelength oscillations are superposed. 

The displaced element, which is assumed short compared with A, deflects the 

particle through an angle that depends on the error in magnetic field on the 

particles' orbit. The error in magnetic field depends on the displacement of 

the element, 8 t and on the field indix, n. As has been shown previously Xis 

inversely proportioned to n* so finally the angle of deflection, for a given 

displacement of the element, is inversely proportioned to )?o The corresponding 

anqalitude of oscillation induced by the displaced element is proportional to X and 

to the angle of deflection, and is therefore ultimately proportional to or to 
n^. For element lengths of the oscillation amplitude reaches a value in 

excess of 2/, the value depending on the mode number and on whether the displaced 

element is focussing or defocussing.

If all individual elements in the circumferential length are displaced from 

the true circle in a random manner then the R.W.S. oscillation induced per 

revolution is/£T times the R.M.S. displacement of a single element, where S is the 

number of elements. It is permissible to treat the irregularities as one ’effective’ 

discontinuity (consisting approximately of the addition of a definite slope to the 

orbit) located at some point on the circumference.

In the strong focussing synchrotron the oscillation, already large, induced 

in one revolution can be further increased by resonant build-up of oscillations. 

This possibility exists as soon as the focussing wave-length becomes less than one 

circumferential length and is therefore not present in the conventional machine 

(see fig. 7)» The resonance occurs when <J, the number of focussing oscillations 

• ex revolution, is integral,, as is illustrated in fig. 8a, v.hsre the ri.salirninent 
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is represented by the constant change in slope,g . The oscillation amplitude is 

seen to build up linearly. If the machine is operated well away from a resonance, 

however, the oscillation amplitude builds up until there is a reversal in the phase 

of the discontinuity relative to the focussing oscillation* For half integral 

values of Q the maximum amplitude reached is just that corresponding to the 

discontinuity acting once on the orbit, since the amplitude added in one 

revolution is immediately removed by the out-of-phase action in the subsequent 

revolution.

The amplitude of oscillation built up is most conveniently deduced as a 

function of Q from the construction shown in fig. 8b. This diagram shows the 

only closed orbit, along which a particle can circulate for many revolutions, with 

one slope discontinuity, g per revolution. There is only one amplitude corresponding 

to each X or Q value which will give the required change in derivative, £,for the 

closed orbit, to repeat each revolution. All other orbits are formed by focussing 

oscillations of constant amplitude about this stable orbit and these will not 

repeat each revolution. The amplitude of this closed orbit may be plotted against 

Q as shown in fig. 8c. Although the closed orbit only becomes infinite for Q 

integral, for all practical purposes those values of Q are not permissible at 

which the amplitude of the closed orbit exceeds the donut dimensions* This range 

of Q Values is slm as a*forbidden band’ in figufe 8(c). The effect of the 

inhomogeneity is best represented by plotting the forbidden regions on a stability 

diagram-of the type shown in fig. 5* There are, of course, forbidden Q values 

for both the radial and axial motions and the resulting stability diagram therefore 

takes the form shown in figure 9; the diagram is broken into H/4- separated 

Usable bands in each direction, where N is the total number of sectors b©th 

focussing, and defocussing.

Another particularly siisple and instructive type of inhomogeneity met with 

in the strong focussing synchrotron occurs as a result of introducing straight 

field-free sections. These sections may be introduced intentionally and regularly 

for mechanical or electrical reasons. In addition, however, errors may be made 

in cubbing all sectors to the same length or in adjusting their circumferential 

positions. Such errors may be considered formally as the random introduction of 

further straight sections.
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The effect of straight fieId-free sections included regularly between positive 

and negative gradient sectors is merely tc change the overall size of the staole 

area of fig. 5 since their presence does not alter the basic idea of a number of 

similar units following each other. ’Vith straight sections the unit is (0, +, 0, 

rather than (>, -, ), where 0 is used to represent a field free sector. A typical 

change caused by introducing field-free sectors is shown in fig. 10(a). If, 

however, we have only one field-fre- region in the circumferential length the 

unit of repetition is not one single < 4^-) unit but rather the whole circumference 

of the machine, consisting of N/2 such units. The stability diagram is then 

split into stable bands corresponding to each direction, radial and axial, as 

shown in figure 10(b). Th:.s is double the number of bands (per direct ion) obtained 

with the simple misalignment of figure (9). The difference arises because build

up of the oscillation amplitude due to a misalignment inhomogeneity is not possible 

for half integral values of Q, since the effect of the discontinuity cancels 

itself after two revolutions (fig. H(a))„ For the field-free inhomogeneity, 

however, no such cancellation and suppression occurs, (fig. 11b). It may be 

noticed that the essential difference is that in fig. 11(b) the effect of the 

inhomogeneity(an aided, displacement) depends in sign upon the sign of the 

derivative of the orbit on encountering the inhomogeneity; in fig. 11(a), on 

the other hand, the effect of the inhomogeneity (an added derivative) is constant. 

The main resonances, for Q integral, do however occur in each case (fig. 11 c and d).

The stable regions for the field-free inhomogeneity are separated by bands 

of true instability, not merely lines of instability as was.the case for the mis

alignment inhomogeneity. The reality of these ’stop-bands’ (using the term 

common in filter-theory) i.3 clearly seen (e.g. for a main resonance) by comparing 

fig. 11(d) and 11(e) which show the orbits at the limits of the instability band. 

A limit between a focussing orbit (sinusoidal envelope of oscillations) and a 

defocussing one (exponential envelope of oscillations) must clearly be on orbit 

whose amplitude increases linearly with revolutions, as has already been mentioned 

in Section 3 and two such orbits are drawn: figure 11(d) shows an orbit whose 

displacement at the centre of the straight section increases linearly and 

figure 11(e) shows an orbit whose slope at the centre increases linearly. 

Inspection of these two orbits shows that the * stop-band’width is very nearly 

equal to a fractional change of wavelength given by
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where £ is the physical length of the field-free inhomogeneity., These ’stop 

bands* are, therefore, very narrow. If there are a number of random inhomogeneities 

in the circumference they can be represented, as before, by a single effective 

inhomogeneity of ^3 times the R.M.S. inhomogeneity, where S is the number of 

inhomogeneit ies.

As in the case of the misalignment inhomogeneity the amplitude of oscillation 

in the proximity ef a stopband is finite, and stable but large. The ’forbidden 

band* in which amplitudes exceed the donut walls is therefore larger than the stop 

band.

To summarise, the main difference between the effects of a misalignment and 

a field free inhomogeniety is that,for the latter, the closed orbit always remains 

at the centre of the donut but the focussing oscillations about it become unstable 

in the stop bands, whereas, for the former, the closed orbit becomes unstable at 

the resonances while the focussing oscillations about it are unaffected by 

resonances. The misalignments must be reduced until there is room everywhere between, 

the closed orbit and the donut wall for the unavoidable oscillations of particles 

about the closed orbit, and the stop bands must not be approached so near that the 

oscillation amplitude exceeds the donut dimensions.

These two quite different types of inhomogeneity have been chosen as 

particularly simple illustrative examples. Some more general types of 

inhomogeneity are shown in the table of fig. 12 and an analysis of them suggests 

the following method of classification of inhomogenities16; the classification 

relies on replacing the discontinuity by an equivalent discontinuity at th® centre

point of the inhomogeneity.

» Since this lecture was given Sturrock has called attention to the possibility 

that resonances can be excited by twist inhomogeneities.
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(a) The orbit may be operated on, at a particular point of the circumference, 

by the addition of a constant displacement or derivative. An example of 

adding a constant derivative is the misalignment inhomogeneity (figs. 7 to 9, 

Ila and 11c). The effects of adding a constant displacement are very similar.

(b) A displacement or derivative may be added which is proportional to the 

derivative or displacement of the orbit at the point where the inhomogeneity 

is applied. The field-free sector has been studied as the simplest type of 

such an imhomogeneity (fig. 10, 11(b), (d) and (e)); in it a displacement 

is added which is proportional to the derivative. More important is the 

effect of irregularities in the n value of nominally identical sectors. 

Such an irregularity is very nearly equivalent to the addition of a derivative 

which is proportional to the displacement of the orbit at that point. The 

behaviour is similar in all ways to that of adding straight sectors. It 

is summarised for completeness in fig. 13. It is particularly instructive 

to compare fig. 13(a) with fig. 11(a).

(c) A displacement cr derivative may be added which is proportional to some power 

of the existing derivative or displacement. Such inhomogeneities have not 

been lifted in the table, but may well occur in practice. They would excite 

further sub-resonances, e.g. those with Q one-third integral, and split the 

stability diagram still further.

(d) In general inhomogeneities may be resolved into a large number of terms with 

corresponding mixtures of the effects mentioned in subdivisions (a), (b) and 

(c), as well as mixtures of the effects mentioned in each sub-division. 

The above description has treated those inhomogeneities caused mainly by 

mechanical irregularities. The variou$6rbit changes and the widths of the stable 

bands for given mechanical irregularities depend in rather a complicated manner 

on the value of n chosen for the machine; in addition the minimum mechanical 

irregularities attainable will also depend on ’n‘ in a manner which cannot yet be 

predicted. The general tendency is for mechanical tolerances to require a fairly 

low value of n. Then a realistic variation of n can be tolerated during the 

acceleration cycle without too much danger of moving into a "forbidden band".
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In addition to mechanical tolerance difficulties, however, various 

inhomogeneities of magnetic origin are possible. These are caused by remanent 

magnetism, eudy current, etc.. The effects can be considered as equivalent to 

the mechanical effects already considered but a given field inhomogeneity causes 

a disturbance whose effect is reduced by a factor proportional to n compared with 

the equivalent mechanical inhomogeneity. The factor n arises because the rate 

of change of field with radius is proportional to n, Machines of lower n value 

tend, therefore, to be increasingly susceptible to inhomogeneities of magnetic 

origin.

5o Conclusion

Prom the foregoing discussion it is apparent that practical considerations 

of achievable accuracies greatly affect the design of the strong focussing 

synchrotron and determine how higii a value of n should be used, i.e„ how much 

advantage should be taken of the strong focussing idea. The aperture required 

does not vary rapidly with the n value, The already slow ideal variation of 

equation (1C) (Aot n”^) is modified by azimuthal inhomogeneity considerations to 

give a broad range of n values for which the aperture used is approximately a minimum. 

Plausible designs can be worked out with apertures under + 10 cm. for machines of 

energy 30 GeV. with n values in the region 100 to 1000 and the effect of the various 

parameters may be seen from the accompanying table (fig. 14),

The table (M.g. 14) assumes certain given tolerances both mechanical and 

magnetic on the magnet sectors. Unfortunately it is not yet known whether the 

values used are practicable. Information is required on the mechanical and 

magnetic tolerances achievable in the manufacture and measurement of magnets with 

various n values and apertures, on the changes in n and in field inhomogeneities 

occurring during the acceleration cycle, on the minimum angular and energy spread 

obtainable from an injector of given aperture, and on many other factors. In 

addition radio-frequency acceleration must be considered; this problems have been 

studied but have been excluded from this lecture. The effects of the various 

parmeters are not, however, critical. It is likely,therefore, that most of the 

parmeters can be fixed once fullcalculaticris and measurements have been made on 

a typical design.



It nay be observed that the lecture has been restricted to a study of orbits 

in magnetic fields which vary linearly with radius. Some non linearity in the 

fields will, of course, occur in practice. Such non-linearity is beneficial from 

some viewpoints and harmful from others; there is as yet little justification for 

using deliberately non-linear fields. Indeed instabilities have arisen in many 

computed orbits using certain non-linear fields. The limits on the linearity 

of the magnetic field across the aperture is illustrated by the following table 

which gives the tolerance within which *n* must be kept to avoid known bad effects 

of non linearity involving cubic terms in the magnetic field law. (i.e. a restoring 

force of the form y - kgp.)

n Tolerance

3600 ± 1.7%

900 + 3%

loo + lo%

6. Appendix

This lecture was delivered on 21st May at Saclay and has been presented in 

written form at their request. It was considered desirable to add the arguments 

leading to equation (9), sigce these arguments crystallised to sane extent during 

discussion at saclay, and also to work out some phyical explanation for ’stop "bands0 

by adding the section leading to equation (12.).

The lecture is based on work done in the C.E.R.N. proton synchrotron and 

theoretical groups, and in laboratories and acknowledgement is made to 

information abstracted from many reports prepared for circulation inside C.E.R.N. 

A complete list of these reports and their authors is appended.
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FTG. 14. TABLE Q? MACHINE PARAMETERS

50th harmonic, as % of aperture

Magnetic Field Index n 5670 930 110 117

Phase shift per pair of sectors 71/2 7^2 X/5
Betatron cycles per revolution <2 c(n^ 50.25 15.25 5.25 3.26

Magnet sectors per revolution N dn^ 242 122 42 66

Separation of main resonances ofa”$ 2.59 5.15 15.0 28.7

Separation of main resonance and 
adjacent sub-resonance

n z6 1.30 2.58 7.50 14.4

T e stop band width caused by 
Random If/ variation in sector 
n-value

Ai? 22.2 15.8 9.3 8.9

b) Random 0.2f;? variation in 
sector lengths

2Ani 
fin2

1
5.5 3.9 2.3 2.2

Final tolerance on n to avoid 
resonances and stop bands, 
(This is a maximum tolerance 
and in practice the working 
tolerance will be less than a 
half this value).

flnR
—2 
n 0.75 1.76 6.11 11.84

Vacuum dhamber aperture

Variation in magnetic field 
across aperture for centre field 
of 10 KG.

+ a 
etas

AB
in KG.

exh 4 ♦2.73

+10

+4.0

43.74

+7.0

+0.77

+7-0

♦0.82

displacement of equilibrium 
orbit due to random remanent fields "
oflaP/1 * If? at injection J

20 eras
(The sectors are divided into 
elements of roughly constant weight)

0.0272 0.0471 O.2J5 0.270

RMS betatron oscillation amplitude 
after one revolution due to, 
a) Mechanical errors

= 0.05
b) Remanent fields

%

%

62.5

45

40

36

13.5

63

14.2

77

Synchrotron Oscillation amplitude, 
for injection energy of 50 MeV and % 2.3 12.6 51


