
Exploring Future Storage Options for
ATLAS at the BNL/SDCC facility

CHEP 2023, Norfolk, Virginia - May 08 - May 12, 2023

Qiulan Huang, Vincent Garonne, Robert Hancock, Douglas Benjamin, Carlos
Gamboa, Shigeki Misawa, Zhenping Liu

Scientific Data and Computing Center (SDCC)/BNL

Motivation & Challenges
● Storage “Ecosystem” has evolved over the years

○ New/changes in protocol and storage software in WLCG
■ e.g., dCache, XRootD, EOS, Lustre, Ceph, MinIO

○ New data protection schemes (e.g., distributed RAID, erasure coding)
○ Hardware capabilities have increased

■ Network bandwidth
■ Server capability
■ HDD bandwidth/capacity

○ ATLAS Storage Environment and requirements have changed
■ Migration to new transfer protocols(GRIDFTP, WebDAV/XRootD), , storage tokens, …
■ ATLAS storage requirement: Space token, ADLER32, TPC Pull, ...

● BNL provides large scale storage service for large projects: ATLAS, Belle II, DUNE,
sPHENIX, STAR, NSLS-II, etc

○ Disk storage: 151.2PB (~87.2 PB dCache, 64.12PB Lustre, GPFS, NFS NetAPP)
○ Tape storage: ~221.5PB HPSS

An opportunity to revisit current implementation in view of forthcoming requirements for HL-LHC

2

https://twiki.cern.ch/twiki/bin/view/AtlasComputing/StorageSetUp#Protocols

Storage Components: Evaluation

3

1. Access Layer Frontend
Client access protocol support

2. Unified Storage System Layer
Organizes the storage blocks provided by the backend into a
coherent and unified storage space for storing data

3. Backend Storage Layer
Creates the storage “blocks” (space) used by the storage
system to store user data

Evaluated components

dCache | XRootD
(dCache is software that supports multiple access

protocols,XRootD is both software and a protocol)

dCache | XRootD + Lustre

OS level: Linux Software RAID (MDRAID), OpenZFS
Software defined: Ceph, Lustre

Three tested configurations to evaluate the stacks
1. dCache with ZFS pools
2. dCache with Lustre storage pools
3. XRootD with Lustre backend storage

dCache or XRootD are
recommended storage
technologies that meet
the ATLAS
requirements

The complete storage system may be implemented by one
software package or a set of software packages working in
concert

Early studies showed that CEPH was not considered for
ATLAS. The main reason (at that time) was the I/0
performance below US T1 requirements

Write/Read Stress Tests for TPC(Third Party Copy)

● Controlled test with FTS used to simulate
realistic load

● Bulk FTS transfers
● Files: 500K, Max active limit (FTS): 1200

FTS(File Transfer Service)

Goal: Saturate the different
storage configurations and
sustain the peak rates with
production data

4

Source
● Production ATLAS dCache

Testbeds
● dCache w/ZFS pools
● dCache w/Lustre pools
● XRootD w/ Lustre backend

storage

TPC write

Destination
● Production storage

TPC read

Testbed(cf. slides 12,13 and 14)
same hardware
➔ Large scale test 5 PB
➔ Simultaneous test of two

configurations

Lustre vs dCache: TPC-Write(per door)

5

Davs TPC XRootD w/ Lustre dCache w/ ZFS dCache w/ Lustre

traffic per
door

3.1GB/s per door +2.0GB/s per door +3.8 GB/s per door

CPU Usage <10% per door ~40% per door ~68%

Success
rate

>98.5% >99.4% >98%

➔ IO traffic of XRootD w/ Lustre is ~1.5 times of dCache w/ ZFS
➔ Important difference in checksum calculations (see next slide)

Thanks to XRootD team’s help with Lustre(e.g., configurations, tpc, checksum)
Thanks dCache develop team’s suggestions for tuning(e.g., HTTP encryption), the
gap between XRootd/Lustre and dCache/ZFS reduced from ~2 times to ~1.5times

Checksum calculation in dCache and XRootd

● dCache calculates dynamically checksum as the file is received or written to disk
● XRootD calculates checksum after the file has been written to disk

○ File read from backend storage cause extra I/O traffic
○ Increase load on network and backend storage servers(CPU, disk, etc)
○ Needs more gateway and tunings to saturate the backend storage performance

● Observed errors during TPC-write tests(slide 6), most of which are checksum related issues
○ Checksum timeout: happen while there are bulk of active requests on FTS
○ HTTP 500 error: Can be fixed by increasing the maximum number of checksum calculations that may run at the same time

6

Error Description XRootd w/Lustre dCache w/ZFS Comments

Recoverable error: [110] DESTINATION CHECKSUM
timeout of 1800s ✗ ✗ Checksum timeout on FTS side while there are

bulk of active requests(e.g.,1200)

Recoverable error: [5] DESTINATION CHECKSUM
HTTP 500 : Unexpected server error: 500

 ✓ ✓ Fixed the error by Increasing maximum number for

checksum calculations for XRootd

max>=512(According to tuning tests)

 ✗ : Exist
✓: Fixed

● dCache checksum with dynamic calculates behaves better compared to XRootD

Lustre vs dCache: TPC-Read(per door)

7

Davs TPC XRootD w/ Lustre dCache w/ ZFS dCache w/ Lustre

Aggregate traffic ~2.3GB/s ~1.15GB/s ~1.2GB/s

CPU Usage <3% per door <3% per door <3% per door

Comments 1)XRootd+Lustre gets best read performance, about 50% higher than dCache+ZFS
and dCache+Lustre pools.
2) dCache with ZFS and Lustre pools perform about the same.

XRootD w/ Lustre:~2.3GB/s

dCache w/ Lustre:~1.2GB/s

dCache w/ ZFS:~1.15GB/s

The results was reported to dCache team. They mentioned a potential issue, e.g.,
the remote transfer manager and RemoteHttpDataTransferProtocol 7

Backend Storage evaluation: OS Level

OpenZFS advantages over MDRAID
● Better data integrity（block checksum, auto healing corrupt data）
● Better IO performance in sequential read/write(cf.slide 16,17)
● Separate filesystems in same Zpool can be tuned to data access

patterns Automatic load balancing across LUNs
● Built in hot file cache (ARC) in memory
● (future) dRAID can significantly lower rebuild times to reduce risk of disk

failures
● Reduced manual intervention

8

OpenZFS
● Single RAIDz2 vdev Zpool

● Single RAIDz3 vdev Zpool

● Multi-vdev Zpool

● dRAID “distributed” RAID

LINUX MDRAID
● RAID-6 LUN

● No equivalent

● Striped RAID-N LUN

● No equivalent

➔ OpenZFS has been chosen to work as backend storage for the new
hardware of ATLAS dCache

MDRAID advantages over OpenZFS
● Supported by Redhat

● Faster rebuild on very full LUNs (compared to ZFS RAIDzN)

● No performance penalty for > 85% capacity usage

● Less capacity overhead for similar configuration(cf. Slide 15)

Summary

9

What we learned

● Gained expertise with alternate
storage options

○ All alternate configurations
provide the ATLAS needed
functionalities

○ XrootD Lustre vs. dCache
Lustre vs. dCache ZFS

● Evaluated the performance of
dCache and XRootD with alternate
options

○ XRootD + Lustre can show
better I/O performance than
dCache+ZFS for third party
copy

What we choose

● We have chosen the dCache ZFS
configuration for medium term

● ZFS gives reliability with low operation
cost

● XRootd+Lustre performs better (for
TPC) but missing important operation
experience

○ WLCG T1 sites needs 99% of
availability

● Latest dCache or forthcoming might
give improvement (thanks to dCache
developers and their good support)

Next step

● Further validation for various
production workflows is required

● Convergence toward a tiering storage
strategy at a data center for different
workflows

○ E.g., Fast I/O disk for analysis
with dCache as data
management / tiering layer

● Lustre is still a possible candidate for
long term (not Run 3) as we are
gaining operation experience with
NSLS, sPHENIX and ATLAS

● To be continued…

Thank you!

10

Backup

11

Test Hardware for Storage

12

10 Servers with identical HW specifications
● 5 Servers configured as Lustre OSS servers
● 5 Servers configured as dCache pool servers

Lustre Disk Organization
● 10 x (8+2) RAID 6 LUNs
● One LUN one OST

dCache Disk Organization
● Single ZFS zpool (14X7)
● 7 vdevs per zpool
● Each vdev configured as 14 disk RAIDz2

Server HW specifications
● 384GB RAM, 36 cores (18 cores/CPU)
● Network - 2 x 25 Gbps = 50Gbps
● One JBOD per server

a. 102 x 14TB drives
b. ~1 PB available

Testbed: XRootD+Lustre Deployment

13

XRootD+Lustre
● Lustre MDS - Lustre v2.12.8

○ One VM - 1TB HDD, 16 cores, 64GB RAM
● Single Lustre file system constructed from 5 OSS

servers
● 5 standalone XRootD servers

○ Lustre filesystem accessed via standard Lustre
kernel client module

Monitoring:

🐠Barreleye

Testbed: dCache Deployment

14

node3

Pools
Pool_1, …, Pool_10

Doors
WebDAV, Xrootd,
NFS.4.1

node4

Pools
Pool_1, …, Pool_10

 Doors
WebDAV, Xrootd,
NFS.4.1

node1

ZookeeperPostgres

Core cells
topo, billing, pnfsmanager,
poolmanager, pinmanager,
gplazma, spacemanager,
srmmanager, cleaner, info

node2

Zookeeper

Core cells
topo, billing, pnfsmanager,
poolmanager, pinmanager,
gplazma, spacemanager,
srmmanager, cleaner, info

Lustre
dCache-2 Config
dCache w/Lustre

dCache-1 Config
dCache w/local
disk-ZFS

dCache v7.2.3
5 PB Lustre or
5 PB local disk
storage

Lustre Pools
Pool_1, …, Pool_10

Lustre Pools
Pool_1, …, Pool_10

Pools
Pool_1, …, Pool_10

Pools
Pool_1, …, Pool_10

 Doors
WebDAV, Xrootd,
NFS.4.1

 Doors
WebDAV, Xrootd,
NFS.4.1

Lustre Pools
Pool_1, …, Pool_10

Lustre Pools
Pool_1, …, Pool_10

node5
Pools

Pool_1, …, Pool_10

Doors
WebDAV, Xrootd,
NFS.4.1

Lustre Pools
Pool_1, …, Pool_10

Monitoring:

Capacity Comparison (TiB)

15

Test Name ZFS
20x5

ZFS
10x10

ZFS
14x7

MD RAID
20x5

MD RAID
10x10

MD RAID
14x7

Full Capacity (TiB) 1132 970 1024 1150 1020 1071

Overhead Factor 1.148 1.339 1.269 1.133 1.286 1.214

Configurations for 100+ disk JBOD Chassis

FIO Bandwidth comparison (GBytes / sec)

16

ZFS/MD RAID Configuration (disks/LUN) x (# LUNs)

Test Name ZFS
20x5

ZFS
10x10

ZFS
14x7

MD RAID
20x5

MD RAID
10x10

MD RAID
14x7

Seq Read 10.339 9.610 9.119 5.230 8.031 6.862

Seq Write 3.969 3.837 3.874 2.719 4.480 3.789

64k Rand Write 0.233 0.226 0.228 0.175 0.393 0.239

64k Rand Read 0.528 0.686 0.772 1.609 3.181 2.740

8k Rand Write 0.029 0.028 0.028 0.026 0.057 0.041

8k Rand Read 0.300 0.247 0.208 0.540 0.539 0.544

FIO IOPS Comparison

17

ZFS/MD RAID Configuration (disks/LUN) x (# LUNs)

Test Name ZFS
20x5

ZFS
10x10

ZFS
14x7

MD RAID
20x5

MD RAID
10x10

MD RAID
14x7

Seq Read 10586 9840.9 9337.5 5353.7 8224.1 7026.3

Seq Write 4064.1 3929.2 3966.7 2784.6 4587.9 3879.6

64k Rand Write 3819.4 3697.8 3738.7 2861.1 6436.9 3921.6

64k Rand Read 8648.1 11242 12651 26363 52115 44899

8k Rand Write 3838.7 3689.1 3735.1 3350.5 7497.7 5312.8

8k Rand Read 39383 32326 27198 70744 70685 71343

Some additional discussion of differences for random reads might be found in
the Arstechnica article ZFS versus RAID: Eight Ironwolf disks, two filesystems, one winner | Ars Technica

https://arstechnica.com/gadgets/2020/05/zfs-versus-raid-eight-ironwolf-disks-two-filesystems-one-winner/

