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Distributed Machine Learning (ML) for ATLAS

% Motivations of Distributed Machine Learning
> Access to multiple remote large scale resources
m GPUs, HPCs, Clouds
> Meeting large scale Al/ML requirements
m Speed up the training and optimization by orders of
magnitude
m Make more complex and resource intensive Al/ML
applications accessible
> Support complex Al/ML workflows
m A single complex workflow can present requirements for
which a single resource is not optimal
% Goals of Distributed Machine Learning
> Transparently schedule workload to distributed resources,
scalable to various huge resource requirements
> Orchestrate between tasks in a workflow, to automate the
workflow
m Intraditional analyses, manual operations are required to
analyze the results to submit new tasks when a task
finishes

~ .
Q Brookhaven W. Guan&C. Weber CHEP 2023

National Laboratory

199k the HiggsML challenge

May to September 2014

When High Energy Physics meets Machine Learning
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ATLAS' Higgs ML Challenge
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https://atlas.cern/updates/news/atlas-higgs-ml-challenge-data-open-public

Distributed ML with PanDA and iDDS in ATLAS

% PanDA as an engine for large scale Al/ML
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>

PanDA is powerful to schedule jobs to
distributed heterogeneous resources

Large scale

Transparent to users for different computing
resources

Smart workload routing

CHEP2023 Talk: T. Maeno, et al. Utilizing Distributed

Heterogeneous Computing with PanDA in ATLAS
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iDDS (intelligent Data Delivery Service)
orchestrates the workflow for automation
> Generic workflow orchestration

m Directed Acyclic Graph (DAG) management.
m Condition workflow and Loop workflow
management

> Complex workflow orchestration

m Collect results from previous tasks

m Analyze the results with user predefined jobs

m Generate new tasks/jobs based on the
analyses



https://indico.jlab.org/event/459/contributions/11482/
https://indico.jlab.org/event/459/contributions/11482/

Workflow Orchestration

» IDDS orchestrates the workflow, to automate the task/job chain in the

workflow
> (Generic workflow orchestration (DAG, Loop workflow, Condition workflow)
m Mainly based on the status of the previous task/job, e.g. whether it’s finished or failed

>  Complex workflow orchestration
m Not only based on the status of the previous task/job, but also depends on the return data from

the previous task/job ---> Custom condition
m Even complicated cases, e.g. we may need an external job to analyze the return data from the

previous tasks/jobs, to generate new conditions with/without new parameter(s) for new jobs
----> Condition function
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EUStdo'm Cobndltziom Analyze the return
ondition based on data of the previous

retur.n daFa of the tasks/jobs.
previous job. +

Generic DAG DAG with custom condition DAG with condition function
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Complex Workflow Orchestration

% IDDS complex workflow orchestration requires two points

> Return data from the previous tasks/jobs
> (Condition function can be customized

% Return data of previous tasks/jobs

> |DDS provides APls for a job to report the return data to iDDS, an example format is a
pair of {parameter: result}

> The condition function can also use some data management tools, such as Rucio, to
download the files produced by previous jobs

% Condition function

> An interface to be able to execute external jobs to analyze the return data from the
previous jobs, to generate new conditions, and also with new parameters for next jobs
The external job can be some predefined methods, such as some predefined Bayesian
methods

The external job can also be user-defined methods

The external job normally will be executed in an iDDS internal cluster pool (to optimize
the turnaround time). It can also be scheduled to other resources
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Workflow orchestration for Distributed ML

% Iterative regression structure for Distributed ML with condition function

> Condition function
m Multiple inputs from distributed jobs
m Multiple new parameter outputs for a bunch of new jobs
m Threshold to trigger the condition function, e.g. when a job finishes or 50% jobs finish

> |terative loop supports
“ By customizing the condition function, different use cases can be
supported

> E.g. with the Bayesian Optimization method as a condition function to optimize
hyperparameters for a ML task

*» Distributed ML use cases in ATLAS
> Distributed HyperParameter Optimization (HPO) _ _
> Monte Carlo Toy based Confidence Limits
> Active Learning Condition functlon ; 4
Analyze the return
data of the prevnous ;
tasks/jobs. New arameter(s)
. R
]
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Distributed HyperParameter Optimization (HPO)

Provide a full-automated platform for HPO on
top of distributed heterogeneous computing

resources

> Hyperparameters are generated centrally in iDDS

> PanDA schedules ML training jobs to distributed
heterogeneous GPUs to evaluate the performance of the
hyperparameter

> |DDS orchestrates to collects the results and search new
hyperparameters based on the previous results

Applled for ATLAS FastCaloGAN
The HPO service is in production for FastCaloGAN, part of
the production ATLAS fast simulation AtlFast3

> With hyperparameters to tune various models targeting
different particles and 7, slices

> Distributed GPUs, HPCs, commercial cloud

> Ref: FastCaloGAN, AML workshop, IML, ATLAS S&C
week

Used in ATLAS, however not specific to ATLAS
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Normal HPO Segmented HPO

Object @
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R. Zhang 5th ATLAS Machine Learning Workshop

The segmented HPO workflow

Evaluation
% Segment name, Point
‘ " O'
Loss

Job with poipt(s) and
segmept name
g Report loss
Pass request

Steering
ATLAS (with model ID) | D D S Run

JEDI :
Model ID, Point(s) Model ID, Point(s)

SUberYﬂSk This workflow is used for FastCaloGAN
................................. :

1 Search space: a json file .
2 Training code: scripts / package / gitlab repo 1
3 Segment definition (each with a unique segment name) |

R. Zhang FastCaloSim+DnnCaloSim
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https://indico.cern.ch/event/1039582/contributions/4427659/attachments/2272299/3859340/FCG20210628.pdf
https://indico.cern.ch/event/1014398/contributions/4307720/attachments/2225299/3769097/AML20210413.pdf
https://indico.cern.ch/event/1015407/contributions/4261880/attachments/2209425/3738987/IMLHPO20210316.pdf
https://indico.cern.ch/event/1040142/contributions/4397646/subcontributions/341341/attachments/2265418/3846367/ComputingWF20210616.pdf
https://indico.cern.ch/event/1040142/contributions/4397646/subcontributions/341341/attachments/2265418/3846367/ComputingWF20210616.pdf

Monte Carlo Toy based Confidence Limits

% Confidence Limits in Analyses

> Exclude some ranges of relevant phase space for future processing
> Show that obtained results are meaningfully different from what could have
obtained by chance <8

% An Monte Carlo (MC) Toy based confidence limits workflow "
requires multiple steps of grid scans, where the current step
depends on the previous steps :

|
-0.5 0.0 0.5 1.0 1.5

— No nuisance parameter, A(o,u=1)
— Luminosity nuisance parame ter, A(o,p)

% Automate the workflow of Toy limits calculation and
aggregation

Null non-null value

> Point of Interest (POI) generation based on the search space and results
aggregation to generate new POls in iDDS
> Distributed Toy limits calculation to distributed resources with PanDA

Null
Hypothesis

HO

Alternative
Hypothesis

H‘

a o e
G&v < e SR <
POI IDDS
Q Toy limit N Results
calc .

space

’ Toy limits A —
o POI ——’//4 — .
- Toy limit
calc Toy limits
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Active Learning

< An iterative ML assisted technique to boost the e L. parimetuns

evaluation

parameter search in New Physics search space

> The Active Learning technique we are applying was developed
by Kyle Cranmer et al, “Active Learning for Excursion Set
Estimation”, ACAT 2019

> Redefine the parameter space for the next iteration based on
the previous results with ML, more efficient than a single-step

pI‘OCGSSing - What we do now

> Optimize the parameter space points for evaluation to § cccccccccecse
maximise the information gain from each evaluation Eleoceseosccsscs

> Distributed computing resources for parameter evaluation = § ‘ § § § § § § § . §

% Automate the multi-steps processing chain with °eccccccew |

Pan DA and IDDS for ATLAS What active IearniI:z;Mcgar\r;j:inc:eftc:arr 35

> Integrated REANA (Reusable Analyses) with PanDA for learning Bt . o
processing £, % .. °

> iDDS orchestrates the workflow to trigger new tasks/jobs £ e "o o
based on the previous results Sl ol o o

BSM Parameter ;.
Active Learning via iterative regression
on a limit surface
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Active Learning for ATLAS

>

>

>

CHEP2023 Talk: C. Waber, et al. An Active Learning application in a dark matter

 Applied the Active Learning service in the H
— ZZ ,— 4% dark sector analysis

Avoids a complex interpolation scheme, costly in
development and validation

Apply Bayesian Optimization to refine the parameter
space

Greater efficiency, scalability, automation enables a
wider parameter search (instead of 1D, 2D or even 4D
on large scale resources) and improved physics

result n PanDA/Grid &= nreana\R. Zhang
] . . . EVNT — SIMUL — PILEUP e ) h kfl :
Has demonstrated active learning driven re-analysis e 2 « Thvee independent
for dark sector analysis o [T | chesuih dflerent
) EWNT — SIMUL —> PILEUP T /3 REANA arlel

ATLAS PUB NOTE in progress / < Siikiodl Mg sl

DERIV to the final REANA
EVNT — SIMUL — PILEUP task

search with ATLAS PanDA and iDDS
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https://indico.jlab.org/event/459/contributions/11577/
https://indico.jlab.org/event/459/contributions/11577/

Active Learning for ATLAS

** Applying for generic Heavy Higgs — WW
search

>
>

>
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It’s important to understand the characteristics of the
mH-fw-fww space

It’s too expensive to sample the 3D space points with
the traditional way
Active Learning may be possible

m Draw a contour in fw-fww plain for a given mH

m Sample the 3D space points

Under R&D at the moment N

&2
((0, 6200)

fww

Mass limit
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Conclusion and future plans

\/
000

Distributed Machine Learning workflow with PanDA and iDDS

> PanDA as an engine for large scale Al/ML. It utilizes distributed
heterogeneous computing resources to support user workflows

> |DDS orchestrates the workflow. It automates the chain in the workflow

> An integrated service for Distributed Machine Learning

> Different use cases applied in ATLAS, however the work is not specific to
ATLAS

Future plans

> (Generalize the services as a contribution to the HEP Al/ML ecosystems

> Apply new technologies, such as Platform-as-a-Service (PaaS) and
Function-as-a-Service (Faas), to enhance the user ability and experience

> |mprove user interfaces with Jupyter.
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