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Abstract: We reformulate in Hamiltonian language the recent proposal by Hohm and
Zwiebach of an action yielding the most general O(d, d)-symmetric string cosmology equa-
tions, at tree-level in the string-loop expansion, but to all orders in the α′ expansion.
This allows us to give a simple characterization of a large class of non-singular, non-
perturbative, pre-big bang scenarios smoothly interpolating between a low-energy initial
accelerated (string frame) expansion and a phase of final (string and Einstein frame) decel-
erated expansion. Interestingly, these solutions must necessarily include, just around the
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1 Introduction

Since its original proposal more than thirty years ago [1] the pre-big bang (PBB) scenario
(see [2, 3] for comprehensive reviews) has been deeply rooted on the peculiar symmetries
(hereafter generically referred to as dualities) of the tree-level string cosmology equations
[4–9].

In spite of its sound top-down motivations in string theory, and its ability to produce
an observationally sensible spectrum of adiabatic curvature perturbations via the so-called
curvaton mechanism (see [10, 11] and references therein), the PBB scenario has suffered
from the lack of a convincing mechanism for avoiding the perturbative singularity that
separates the pre-bounce inflationary phase from the post-bounce decelerating expansion.

So far, all promising attempts to smoothly interpolate between these two branches
(see e.g. [3]) are based on the addition of high-energy/strong-coupling corrections to the
tree-level string cosmology equations, and have been mainly concentrated on searching for
regular solutions with an always expanding spacetime (H > 0) in the string frame, hence
describing an “anti-clockwise" path in the upper plane of Fig. 1.

The path represented by the red curve in Fig. 1, which smoothly connects the ex-
panding pre- and post-big bang branches (a ∼ (−t)−1/

√
d and a ∼ (t)1/

√
d, in d spatial

dimensions, hence related by scale-factor duality [4, 5] and time reversal a(t)↔ a−1(−t) ),
corresponds, in particular, to a regular exact solution of the gravi-dilaton equations which
can be explicitly parametrised, in cosmic time and in the string frame, as [12]:

a ∼
[
t+
(
1 + t2

)1/2]1/
√
d
, φ ∼ −1

2
ln
(
1 + t2

)
(1.1)

(where φ denotes the generalized dilaton variable φ = φ−d ln a invariant under scale-factor
duality transformations). Such a solution can be obtained by adding to the vacuum low-
energy equations obtained form the string frame action the contribution of a particular
(duality invariant) non-local dilaton potential [12], i.e. V (φ) = −V0e

4φ, with V0 > 0. Ac-
cording to Eq. (1.1) the dilaton (and thus the string coupling g2

s = eφ) keeps monotonically
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Figure 1. The red curve represents the parametric plot of the solution (1.1) with d = 3. The
low-energy expanding pre-big bang and post big bang branches, corresponding to the asymptotic
limits t → ±∞ of the solution (1.1), are represented by the dashed half lines φ̇ =

√
dH > 0 and

−φ̇ =
√
dH > 0. Their connection implemented by the full solution (1.1) describes a continuous

path turning “anticlockwise" in the plane of the figure.

growing, so that the appearance of additional string loop contributions may be naturally
expected. Indeed, it can be shown that the above potential is only a particular case of
more general class of higher-loop corrected, non local dilaton potentials producing regular
solutions (see [7], [1]) even in the presence of duality-invariant matter sources [13, 14].

The above approach to a regular pre- to post-bounce transition, besides having possible
causality problems related to non-locality, completely neglects the contribution of higher-
curvature α′ corrections. Actually, one would expect these corrections to play a crucial role
for implementing a bounce at the string scale H ∼ 1/λs ∼ 1/

√
α′ even in the absence of

the string-loop corrections, that one will have to add eventually if the string-coupling keeps
growing in time1.

If the α′ corrections are included into the string frame action, and if we try to evolve
the initial low-energy solution following the anti-clockwise path of Fig. 1, it can be shown
[15] that we can reach continuously a constant curvature, linear dilaton fixed-point solution
located in the region H > 0, φ̇ < 0 (at least in vacuum, and to first order in α′). The price
to be paid, however, is that of using higher-curvature corrected equations with explicitly
broken duality. If the symmetry is restored, as in Meissner’s first order example [16], one
finds that the same fixed-point solution still exists but cannot be smoothly connected to
the low-energy pre-big bang evolution [17].

1In the solution (1.1) the curvature scale at which the bounce occurs is arbitrary and, in particular, is
unrelated to the string scale.
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In more recent years there has been a renewed interest in analyzing and exploiting
the full O(d, d) symmetries of string cosmology, which generalizes scale-factor duality and
which, according to [8], should be valid at tree level but non-perturbatively in α′. Explicit
checks of O(d, d) invariance at finite order in α′, following the seminal paper [16], have been
successfully performed both in the conventional setup [18, 19] and in its double-field-theory
reformulation [20, 21]. These interesting developments, however, fall short of providing a
handy formalism for dealing with the problem non-perturbatively in the α′ expansion.

A crucial and qualitatively new step forward was recently made by Hohm and Zwiebach
[22] (see also [23–28] for related studies and applications) who managed to show that O(d, d)

invariance, together with local field redefinitions, allow to recast the string cosmology equa-
tions written in the string frame in a particularly simple and manifestly duality-invariant
form valid to all orders in the α′ corrections. In particular: i) the so-called (duality-
invariant) shifted dilaton φ appears in the very simple form that holds at lowest order; ii)
only first time derivatives of the metric gµν , of the dilaton φ, and of the Kalb-Ramond
antisymmetric tensor Bµν appear in the action; iii) at each order in α′ only a restricted set
of combinations of traces of the basic 2d× 2d matrix [6] containing the spatial components
ġij and Ḃij occurs.

In the particular case in which the Kalb-Ramond field Bµν is set to zero (but the
dilaton is non-trivial), and we specialize the string frame geometry to the case of a (d+ 1)-
dimensional, homogeneous and isotropic background described by the metric ds2 = dt2 −
a2(t)δijdx

idxj , the α′ corrected string cosmology equations for a and φ depend on just one
(string-theory-dependent) function of the Hubble parameter, F (H), H = ȧ/a, which can
be written as an infinite series of even powers of H [22].

The function F (H) is symmetric in its argument, so that the resulting (string frame)
gravi-dilaton equations are invariant under time reversal, t → −t, as well as under the
scale-factor-duality subgroup [4, 5] of the original O(d, d) symmetry, i.e. a(t) → a−1(t),
H → −H, φ→ φ. In the absence of sources, and working in the string frame, the time and
space components of the gravitational equations and the equation for the dilaton field can
be derived from a duality invariant action as shown in [22], and can be written, respectively,
as follows [22–27]:

φ̇
2

= F −HF ′, ḢF ′′ = φ̇F ′, 2φ̈ = −HF ′ , (1.2)

(the associated action will be explicitly recalled in Sect. 3 for possible generalizations.)
Here the dot denotes cosmic-time derivative, and a prime (following the notations of [22])
denotes the derivative with respect to the Hubble parameter, F ′ = dF/dH. It may be
useful to note that, if φ̇ 6= 0, the dilaton equation for φ̈ is a direct consequence of the first
two equations. Note also that the function F , to zeroth-order in the α′ expansion, simply
reduces to F = −dH2, and one recovers from Eqs. (1.2) the low-energy string cosmology
equations with the well-known solutions describing the phase of “dilaton driven" inflation
and its dual [1–3] , namely a ∼ (∓t)∓1/

√
d, φ = − ln(∓t), φ̇ = ±

√
dH , represented by the

dashed bisecting lines of Fig. 1.
In this short note we present and discuss a class of alternative bouncing scenarios,

based on regular solutions of the equations (1.2), invariant under scale factor duality, and
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implementing the transition from the low-energy expanding pre-big bang and post-big bang
solutions by turning “clockwise" in the {φ̇,

√
dH} plane. We will give quite generic suffi-

ciency conditions for such solutions to exist. We will also argue that, if we assume the
duality symmetry to be preserved at all orders in α′, and the background evolution (in
vacuum) is thus described by Eqs. (1.2), it is impossible to obtain solutions describing an
anti-clockwise close-loop trajectory like the one of Fig. 1.

In Sect. 2 we will restrict the discussion to the isotropic case for which Eqs. (1.2) apply.
We will also discuss the form and regularity of the solutions in the Einstein frame. Then,
in Sect. 3, we present a strategy for extending our considerations to a generic anisotropic
Bianchi I cosmology. The above-mentioned argument for the non existence of anti-clockwise
solutions will be detailed in Appendix A.

2 Regular isotropic bouncing solutions

The work presented in this paper was prompted by a class of regular bouncing solutions of
Eqs. (1.2) recently presented in [24] as a result of some “trial and error" procedure. For the
bosonic string model the solution can be parametrized directly in cosmic time as follows
[24]:

H(t) =
√

2
2dt2 − α′

(2dt2 + α′)3/2
, φ(t) = ln

[
1

2

(
α′

d(2dt2 + α′)

)1/2
]
. (2.1)

The corresponding parametric plot, shown in Fig. 2, describes a “heart-shaped" curve
travelled clockwise as time goes on. It is not clear, from the discussion in [24], which exact
choice of F (H) leads to the solution (2.1), although the authors make some consistency
perturbative checks. It is also unclear whether a special fine-tuning of the initial data
and/or of F are needed in order to avoid the singularity.

Below, we will clarify this issue by spelling out sufficient (and probably necessary, see
Appendix A) conditions for a regular “clockwise bounce" to occur. We find, amazingly,
that the clockwise alternative turns out to be much easier to achieve than its anti-clockwise
counterpart, and that the conditions for this to happen are rather generic and easy to
implement restrictions on the arbitrary function F (H). In such a context, it looks however
necessary for F (H) to have an α′ expansion with a finite radius of convergence, due to the
presence of branch-points in the complex-H plane. We think that the possible existence of
singularities at values of H of order 1/

√
α′ is to be expected, in general, since the effective

action describing the dynamics of the massless fields comes from integrating out the string’s
massive degrees of freedom, and such an effective action – like in any quantum field theory
– will cease to be analytic when the energy scale (here H) becomes comparable to the mass
of the lightest massive mode. This means, in other words, that our regular-bounce solutions
are truly non-perturbative from the point of view of the α′ expansion (unlike some other
cases recently considered in [28]).

We stress again that, in order to get a non-singular bounce, there is no need to invoke
loop corrections, to break scale-factor duality, and/or to add non local dilaton potentials.
All we need is to assume string theory to be kind enough to lead to an F (H) satisfying two
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Figure 2. Parametric plot of the regular bouncing solution of Eq. (2.1), with α′ = 2 and d = 3. It
describes a continuous, heart-like path turning clockwise in the plane of the figure.

properties that we shall now spell out for this simplest (FLRW) geometry (see Sect. 3 for
an extension to anisotropic backgrounds).

It is convenient to start by defining the function f(H) ≡ F ′(H). Because of the
symmetry properties of F we have f(H) = −f(−H). At zeroth-order in α′ we know that
f(H) = −2dH, so that, in this limit, we can easily invert the function f(H) to obtain
H(f) = −f/2d for α′ → 0. In order to characterise the class of functions implementing
a “clockwise" regular bounce let us consider the inverse function H = H(f) at the non-
perturbative level in α′. By definition, it satisfies the symmetry property H(f) = −H(−f).
Let us concentrate on the class of functionsH(f) satisfying also the two following conditions
(see Fig. 3):

1. H(f) has a zero2 at f = ±f0 6= 0. Since |H| is initially growing this is true provided
there is some point f1, with |f1| < |f0|, where the function H(f) has an extremum,
i.e.

(∂H/∂f)f1 = 0, |f1| < |f0|. (2.2)

2. For f > f0 and f < −f0 the function H(f) will typically change sign, and the second
condition is that there is a point f2 > f0 (and by symmetry one at f2 < −f0) such
that ∫ f2

0
dfH(f) = 0 =

∫ 0

−f2
dfH(f). (2.3)

2For the bosonic and heterotic string models, the sign of the first-order α′ term appearing in F is
consistent with this assumed condition [22].
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Figure 3. Qualitative behaviour of a simple function H(f) satisfying the two conditions (2.2) and
(2.3). The plotted curve H(f) = −f + f3 is characterised by f0 = 1, f1 = 1/

√
3, f2 =

√
2, and

physically corresponds to the particular solutions presented in [24] for appropriate values of the
parameters.

Such a behaviour of the function H(f) is qualitatively illustrated in Fig. 3, where the
shaded areas from 0 to f0 and from f0 to f2 are exactly the same but with opposite sign,
so that the integral (2.3) is vanishing.

It is clear that the two above conditions in no way imply a fine-tuning of the function
H(f). We now claim that the class of functions satisfying such conditions implement a
regular bouncing pre-big bang scenario exactly satisfying the equations (1.2), and of the
type illustrated in Fig. 2, where:

• H(−f1) is the positive maximum of H (the two upper “bulges" of the “heart" of Fig.
2);

• −f0 corresponds to the point at whichH turns negative (the intersection of the “heart"
with the positive axes φ̇ in Fig. 2), with φ̇ reaching its own maximum; and

• −f2 is where H reaches its negative minimum (the bottom “bulge" of the “heart" of
Fig. 2).

At the negative minimum of H we also have φ̇ = 0 (see Fig. 2), so that φ̇ turns negative
at f = −f2, and it always stays negative at later times when f goes back to the origin
following the previous route backwards3.

Note that, by differentiating with respect to H the general function F −HF ′ appearing
in the equations (1.2), one easily obtains

F −HF ′ = −
∫ H

0
H̃f ′(H̃)dH̃ = −

∫ f(H)

0
H(f̃)df̃ . (2.4)

3Actually, in order to avoid singularities in the solution, the “inverted route" must include some change
in the branch to be used for the function F (H). This is where the presence of branch points in F (H) plays
a crucial role. We are grateful to Barton Zwiebach for having emphasized this point with us in a private
communication.
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Hence, for f → −f2, the condition (2.3) implies F −HF ′ → 0, in agreement with the first
of the equations (1.2) and with the fact that, at f = −f2, we also have φ̇ = 0. Even more
important is the fact that, by using Eqs. (1.2) and (2.4), we can express φ̇ in terms of f as

φ̇(f) = ±
[
−
∫ f

0
H(f̃)df̃

]1/2

. (2.5)

Once H(f) is given then also φ̇(f) is known, and we can use the variable f to perform
parametric plots of the solution in the plane {φ̇(f),

√
dH(f)}, to be compared with the one

Fig. 2.
As an application of the above results, let us give two simple examples satisfying our

criteria (2.2) and (2.3) for regular exact solutions of all-orders equations (1.2), and describing
clockwise close-loop trajectories in the plane of Fig. 2.

The first example is our way to reconstruct the bouncing solution of [24] starting from a
suitable (and simple) form4 of H(f). If we satisfy the conditions (2.2) and (2.3) by choosing

H(f) = − f

2d
+ α′

(
f

2d

)3

, (2.6)

we obtain, from Eq. (2.5),

φ̇(f) = ± f

2d

(
d− α′

8
f2

)1/2

, (2.7)

and we can easily check that the parametric plot of this solution exactly coincides with
the plot shown in Fig. 2 for the solution (2.1) given in cosmic time, as in the original
parametrisation [24].

Let us now consider the following (new) example corresponding to

H(f) =
−f/2d+ (α′/2) (f/2d)3

1 + (α′/2)(f/2d)2
. (2.8)

Again, the conditions (2.2) and (2.3) are satisfied, and we can use Eq. (2.5) to compute
φ̇(f) and the associated parametric plot for this solution. However, let us first illustrate
the interesting behavior of the Hubble parameter around the bounce, by plotting H and φ̇
as a function of the cosmic time t.

In order to obtain H(t) we need f(t). By definition ḟ ≡ f ′Ḣ, so that the second of
the equations (1.2) gives us ḟ = fφ̇. On the other hand, we also have Ḣ−1 ≡ dt/dH =

(dt/df)(df/dH) ≡ f ′/fφ̇. Hence, by using Eq. (2.5) for φ̇, we get

dt =
f ′dH

fφ̇
= ±df

f

[
−
∫ f

0
H(f̃)df̃

]−1/2

. (2.9)

By integrating and inverting this equation, for any given H(f), one can then obtain f(t)

and the corresponding time behaviour of H(f(t)) and φ̇(f(t)).
4Instead, the explicit from of F (H), the solution of a cubic equation endowed with several branch points,

would have been extremely difficult to guess.
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Figure 4. The time behaviour of the solution (2.8), (2.10) is represented by the solid red curves,
plotted for d = 3 and α′ = 2 (for graphical reasons, we have expressed time in units of 5

√
α′).

The dashed black curves describe the behaviour of the (singular) low-energy pre- and post-big
bang branches, corresponding to the asymptotic limits t → ∓∞. The smooth transition between
the initial accelerated to the final decelerated expansion is triggered by a high-curvature phase of
accelerated/decelerated contraction.

For the solution (2.8) such a procedure can be easily applied numerically, and the results
is shown in Fig. 4 (where we have set d = 3 and α′ = 2). The oscillation of sign of H,
localised in the short bouncing region should be underlined: a similar effect is also present
in the solution reported in [24], and it is typical of a scenario where the smooth connection
between the pre- and post-big bang branches is implemented through a heart-like curve,
turning clockwise in the plane {φ̇,

√
dH}.

It seems appropriate to confirm this point by giving also the parametric plot, in the
above plane, of the solution H(f) corresponding to Eq. (2.8). The numerical integration
of Eq. (2.5) gives φ̇(f), which can be written (again, for d = 3 and α′ = 2) as

φ̇(f) = ±
[
6 ln

(
1 +

f2

36

)
− f2

12

]1/2

. (2.10)

The parametric plot of the solution (2.8), (2.10) then gives the red curve of Fig. 5. We can
easily check that the two upper bulges and the bottom bulge of the plotted heart exactly
correspond, respectively, to the positive maximum and negative minimum of H appearing
in Fig. 4.

Let us finally briefly discuss a few kinematic properties of this regular and isotropic
bouncing scenario. First of all we notice that we have considered solutions (to all orders in
α′) of the string cosmology equations (1.2) written in the so-called string-frame [3], where
the initial, asymptotic form (at t → −∞) of the solution describes an accelerated pre-big
bang expansion (the bisecting line of the upper-right quadrant of Fig. 5). What happens if
we describe this scenario in the context of the more conventional Einstein-frame geometry,
where the gravi-dilaton kinetic action is canonically normalised?
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Figure 5. Parametric plot of the new solution (2.8), (2.10) (for d = 3, in units α′ = 2). We stress
that the direction of the arrow along the curve cannot be reversed.

It is well known (see e.g. [3]) that for a homogeneous and isotropic geometry the E-
frame and S-frame scale factors, aE and a, are related by the conformal transformations
aE ∼ ae−φ/(d−1). It follows that HE ∼ H − φ̇/(d − 1), where φ̇ = φ̇ + dH. Hence, an
expanding geometry in the E-frame, HE > 0, is characterised by the condition H < −φ̇,
which is satisfied in the green shaded region on the left of the green line plotted in Fig. 6.
Thus, in the E-frame, we have an initial accelerated contraction (i.e. with negative first
and second time derivatives of the scale factor), which turns into expansion just before
the curvature bounce, and keeps expanding up to the final, decelerated, low energy regime
(i.e. with positive first and negative second time derivatives of the scale factor). Note
that the bounce of the scale factor (turning contraction into expansion or viceversa) is
not necessarily exactly simultaneous with the bounce of the curvature (turning a phase of
growing into decreasing spacetime curvature), even if they both occur at the string scale
(as also shown by the time behaviour of the Hubble parameter in Fig. 4).

Second, we know that the dilaton is growing (φ̇ > 0) in the initial, asymptotic solution:
what about the dilaton in the final regime? From the definition of φ̇, the condition of a
growing dilaton is given by H > −φ̇/d, which is satisfied in the sky-blue shaded region on
the right of the sky-blue line plotted in Fig. 6 (including the final expanding post-big bang
regime).

The above properties of the Einstein-frame geometry and of the dilaton dynamics can
be illustrated even more clearly by performing the parametric plot of the above solution in
the plane spanned by the variables {φ̇,

√
dHE}, and represented by the “deformed-heart"

curve of Fig. 7. Again, the trajectory of the curve is turning clockwise in the plane of the
figure, but there is only one point with vanishing HE , where the initial contraction HE < 0

turns into an expansion. Also, the time evolution of φ̇ is not left-right symmetric like that
of the duality invariant-variable φ̇ but, remarkably, its behaviour is qualitatively the same
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Figure 6. The green shaded region, satisfying the condition H < −φ̇, is the allowed region for
solutions describing an expanding metric in the E-frame. The sky-blue shaded region, satisfying
the condition H > −φ̇/d, is the allowed region for solutions describing a growing string coupling.
The superposition of the two allowed regions, in the upper-left quadrant of the figure, contains the
final, expanding post-big bang regime of the bouncing solutions presented in this paper.

both in the string and Einstein frame (unlike that of φ̇). Let us notice, finally, that having
a bounce of the curvature in the Einstein frame implies an effective violation of some energy
conditions if one brings the higher-derivative terms of the string cosmology equations on
the r.h.s. of the standard Einstein equations, interpreting them as some effective matter
contribution. But, actually, the singularity regularisation, and the smooth transition from
pre- to post-big bang, is not due to exotic sources but to the modified (with respect to
Einstein’s) gravitational dynamics produced by the α′ corrections.

-2 -1 1 ϕ


-1.0

-0.5

0.5

1.0

d HE

Figure 7. The “deformed-heart" curve representing the parametric plot of the solution (2.8), (2.10)
(for d = 3, in units α′ = 2), in the plane spanned by the kinetic energy of the “physical" dilaton
field φ and by the Hubble parameter HE of the Einstein-frame geometry.
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Therefore, in this scenario, the initially growing dilaton (i.e. string coupling) starts
decreasing shortly before and during the bounce, but it increases again in the final regime
after the bounce. This last property is a welcome one in our context, because it naturally
leads to a final strong coupling regime where the string-loop corrections are expected (see
e.g. [3]), and actually needed in order to induce particle production (reheating) effects, to
stabilise the string coupling, and to drive the cosmological background to the standard post-
bounce evolution scenario. In this respect, the results presented here should be regarded
only as a preliminary step towards a more complete and realistic description of the post-
bounce Universe, addressing phenomenological consequence and observational constraints.

3 A non-perturbative strategy for finding regular bouncing solutions

In this Section we will present a more general approach to the problem of finding reg-
ular bouncing solution using α′ corrections to all orders and even beyond the radius of
convergence of its Taylor series. We will illustrate the procedure in the case of a generic
anisotropic Bianchi I, higher-dimensional background, characterised by the line element
ds2 = dt2−

∑
i a

2
i (t)dx

idxi, where i = 1, . . . d, to which we add, as before, a time-dependent
dilaton φ(t) (see also [28–31] for a discussion of anisotropic backgrounds).

In this case the basic outcome of Hohm and Zwiebach’s analysis [22] can be simply
formulated in terms of an action S depending on the (log of the) scale factors, βi ≡ ln ai,
on the shifted dilaton φ̄, and on the lapse function N as follows:

S =

∫
dtNe−φ̄

[
N−2φ̇

2
+ F (N−1β̇i)

]
; F = −N−2

∑
i

β̇2
i + · · · (3.1)

where the dots denote higher order α′ corrections. Defining as usual Hi = β̇i, the duality
group now becomes the Zd2 group, corresponding to the transformations:

Hi → −Hi ; φ̄ ≡ φ−
∑
i

ln ai → φ̄, (3.2)

forcing the function F to satisfy F (Hi) = F (−Hi). The generalisation of the field equations
(1.2) is easily obtained by varying the action w.r.t. its variables and reads:

φ̇
2

= F −
∑
i

Hifi ; fijḢj ≡ ḟi = φ̇fi ; 2φ̈ = −
∑
i

Hifi , (3.3)

where we have defined fi = ∂F/∂Hi and fij = ∂fi/∂Hj = fji.
Our proposal for searching for regular bouncing solution consists of characterizing,

rather than the “Lagrangian" F , the “Hamiltonian" h connected to it by a standard Legendre
transform. Denoting the momenta conjugate to βi by πi we have (after eventually setting
N = 1):

πi =
∂F

∂β̇i
= −2Hi + . . . ; h(πi) =

∑
i

πiHi − F (Hi) = −1

4

∑
i

π2
i + . . . (3.4)
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As usual, the Hamiltonian h satisfies the exact equation ∂h/∂πi = Hi which basically
inverts the relation between the fi and the Hi. We also note that h(πi) is nothing but
the function g(Hi) of [22], i.e. g(Hi) =

∑
k fkHk − F , simply expressed in terms of the

conjugate variables πi ≡ fi.
Our strategy consists in spelling out conditions on h(πi) (rather than on F (Hi)) in-

suring that a regular bouncing solution will exist. As it turns out, these conditions are
easily satisfied by very simple Hamiltonians. These, however, correspond to complicated
Lagrangians exhibiting branch point singularities and therefore having Taylor expansions
with finite radius of convergence. Before illustrating this procedure in a specific example,
it is convenient to use appropriately rescaled momenta zi ≡ −πi/2 so that, at lowest order
in α′,

Hi(zj) = zi + . . . ; h(zj) = −
∑
i

z2
i + . . . ;

∂h(zj)

∂zi
= −2Hi . (3.5)

Let us now imagine to be given the function h(zi) and let us rewrite the three equations
(3.3) in terms of it. We easily obtain:

φ̇
2

= −h(zi) ; Ḣk = −1

2

∂2h

∂zk∂zl
zlφ̇ ; 2φ̈ = −

∑
i

zi
∂h

∂zi
. (3.6)

We can also obtain a simple evolution equation for zi since, by definition, zi = −πi/2 =

−fi/2 so that, by using the second of Eqs. (3.3) for ḟi, we find żi = ziφ̇. In order to present
a parametric plot of the various Hi in terms of φ̇ it is then sufficient to use the Hamilton
equation Hi(z) = ∂h/∂πi = −(1/2)∂h/∂zi, and to express φ̇ in terms of the zi using the
first of Eqns. (3.6).

A simple class of regular anisotropic bounces can now be obtained by generalizing the
ansatz (2.6) as follows5:

h(zi) = −
∑
i

z2
i + α′

c2

8

∑
i

z4
i + α′

c3

8

(∑
i

z2
i

)2

, (3.7)

from which
Hi ≡ −

1

2

∂h

∂zi
= zi − α′

c2

4
z3
i − α′

c3

4
zi
∑
j

z2
j , (3.8)

where, in analogy with what we did in the isotropic case, we take c2, c3 > 0 in order to
generalise our conditions for a regular bounce. In Fig. 8 we show an example of anisotropic,
yet regular, bounce, for a d+ n dimensional space where d dimensions are expanding with
scale factor a1, and n dimensions are expanding with scale factor a2. We have numerically
integrated the evolution equations żi = ziφ̇ by imposing initial conditions at Hi → 0

according to the low-energy pre-big bang solution (which satisfies dH2
1 + nH2

2 = φ̇
2
), and

we have chosen, initially, H1 6= H2.
5This is the simplest example in which the different scale factors interact with each other. We are aware

of the fact that, according to [22], “double-trace" terms, such as the one multiplying c3, only occur at higher
orders in α′.
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Figure 8. Parametric plot of the two Hubble parameters corresponding to the case of Eq. (3.8)
in which, out of a total of nine Hi, d = 3 are equal to H1 (red curve) and n = 6 are equal to H2

(black curve). We use units in which α′ = 2 as well as c2 = c3 = 2. We took, as initial conditions,
H1/φ̇ =

√
(1 + nε)/(d+ n), H2/φ̇ =

√
(1− dε)/(d+ n), with ε = 0.1 .

We may note that the different Hi “bounce" (i.e. reach their minimal negative value) at
the same time, when φ̇ = 0. However, the positive maximal value of the Hi, as well as the
bounces of the different scale factors (where Hi = 0) are not reached simultaneously along
the different spatial dimensions. The first of these two properties of the solution (3.8) is
clearly displayed by the plot of Fig. 8 while the second is not (because the actual numbers
are very close), but can be easily deduced by the general equations (3.3).

Also, it seems that there is no isotropisation mechanism induced by the α′ corrections
(at least in the case of this simple example). This last effect is even more evident if we
assume, for instance, that initially d dimensions are expanding while the other n dimensions
are contracting (or vice versa), because such a different kinematic behaviour will charac-
terise also the final asymptotic configuration after the bounce. Indeed, our regular bounce
connects two Kasner-type cosmologies – actually, their generalisation including a massless
scalar field – that are related by the simplest subgroup of O(d, d), the scale-factor duality
transformation that flips the sign of all the Kasner exponents. Amusingly, this is just what
has been recently selected as a possible consistent matching [32] between data across the
two sides of a singular hypersurface. We plan to come back to a more complete study of the
anisotropic situation (with both expanding and contracting dimensions) in the near future.

Here we shall only mention that in such an anisotropic context it is possible to inter-
polate smoothly between a rapidly varying dilaton in the initial phase and an essentially
constant dilaton in the far future6 (as illustrated in Fig. 9). For this to happen one just
needs to impose that the final Hubble parameters satisfy the condition φ̇ = φ̇+

∑
Hi → 0 for

t→ +∞, which, in view of the flip of sign in the Kasner exponents, implies φ̇−
∑
Hi → 0

in the initial data at t → −∞. A simple example is one in which the initial configu-
ration at large negative times describes d = 3 contracting dimensions with scale factor

6We thank Robert Brandenberger for bringing up the question of dilaton stabilisation, which motivated
this last comment.
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Figure 9. Time evolution of the dilaton’s growth rate according to the solution (3.8), for the
particular anisotropic initial configuration described in the text. Quite late after the bounce epoch
the dilaton tends to become time-independent (the apparent divergence at t = 0 is due to the
vanishing of φ̇ at the bounce, see e.g. Fig. 8).

a1 ∼ (−t)1/
√
d+n, and n = 6 expanding dimensions with scale factor a2 ∼ (−t)−1/

√
d+n

(which, together with φ ∼ − ln(−t), is an exact solution of the vacuum low-energy equa-
tions [1–3]). By numerically integrating as in the previous example we can check that the
solution implements a smooth transition to the duality-related post-big bang configuration
described, at large positive times, by a1 ∼ (t)−1/

√
d+n, a2 ∼ (t)1/

√
d+n, φ ∼ − ln(t). The

overall time evolution of φ̇ (normalised to φ̇) is illustrated in Fig. 9. Initially, the dila-
ton’s evolution is comparable to that of the background geometry, but stops in the final
asymptotic regime after the bounce.

4 Summary and outlook

In this short note we have made a first exploratory study of a large class of string cosmology
scenarios which, thanks to all-order α′ corrections, realize the old pre-big bang idea [1, 4]
of smoothly joining two duality-related solutions which would be otherwise separated by a
curvature singularity.

In our opinion this result removes the main conceptual shortcoming of the PBB sce-
nario, its lack of a consistent description of the high-curvature phase, opening the way to
the computation of physical effects originating from that phase.

On the technical side this modest breakthrough was made possible by two crucial
ingredients: i) the possibility, following Hohm and Zwiebach [22], to represent in a compact
and handy way, the effect of α′ corrections to all orders through a single duality-invariant
function of the Hubble parameter (or parameters in the anisotropic case), and ii) the
realisation that the apparent obstacle to achieving a smooth bounce disappears if one looks
at some kind of Hamiltonian corresponding to a Legendre transform of the Hohm-Zwiebach
Lagrangian and notices that, under mild restrictions, it predicts a “clockwise" rather than
the apparently more natural “anti-clockwise" bounce that one had been looking for all the

– 14 –



time7. For this to happen, the Hamiltonian of the system can be a quite simple analytic
function. However, when inverting the Legendre transform, it implies the presence of branch
point singularities in the Hohm-Zwiebach Lagrangian8.

In physical terms this means that the regular bounce is achieved after the initial (string-
frame) accelerated expansion reaches a maximal expansion rate and turns into a (string-
frame) contraction before making the real bounce when the contraction rate hits its maximal
(string-size) value (see Figs. 4, 5, 6).

At lowest order in the loop expansion, the existence of an exact symmetry [8] makes
the cosmology after the bounce a mirror image of the one before. But, as noticed long
ago, the mirror evolution takes inevitably the solution into the strong coupling regime in
which loop and non-perturbative effects in the string coupling become important and break
the symmetry between the pre and post-bounce phase. Loop effects will bring particle and
entropy production, inhomogeneities, and non perturbative potentials possibly stabilising
the dilaton and other moduli. The big question is: will this produce a post-big bang scenario
consistent with observations? Having a solid, zero order approximation makes this, at least,
a well-posed question.

Let us however conclude with a word of warning: In order to achieve the non-singular
bounce we had to make some assumptions on the (Legendre transform of the) Hohm-
Zwiebach function. String theory could be nasty enough to prevent these simple properties
to be realized. Also, it is not clear that any choice for the Hohm-Zwiebach function is com-
patible with the cosmological reduction of a general covariant action, a weaker requirement
than asking it to follow from some particular string theory. We hope that the results we
presented here will encourage people to address these difficult, but possibly very rewarding,
questions.

A Mathematical obstructions to an expanding anti-clockwise bounce

In this Appendix we give a “physicist proof" that an always expanding “anti-clockwise
bounce" of the type depicted in Fig. 1 (i.e. a bounce staying all the time in the upper
half plane of that picture) is incompatible with the duality-invariant cosmological equations
(1.2). Our proof is by contradiction and goes as follows9.

In the far past φ̇ > 0. In order for φ̇ to turn eventually negative there must be a time
interval during which φ̈ < 0. However, if H remains all the time positive, as we assumed,
the third of Eqs. (1.2) implies f > 0 during that same time interval.

7We stress again that the clockwise trajectory refers here to a geometry undergoing a transition from an
initial expanding to a final expanding state. The opposite is true, of course, for a trajectory connecting an
initial contracting to a final contracting configuration: its path cannot be confined to the half plane H < 0,
and its shape resembles an “inverted" heart.

8The possible link between non-singular cosmological solutions and multi-valued functions has been
discussed, in the context of “mimetic gravity" [33], in [34, 35]. We thank Jerome Quintin for bringing these
papers to our attention.

9Related arguments reaching similar conclusions for single-valued functions f(H) have also been given
in [27].
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Figure 10. Three possible plots of f versus H. The dashed curve is the case of a single-valued
f(H) staying at positive values of H during the time evolution. The solid curve corresponds to
a single-valued H(f) and leads to the regular bounce discussed in the main text. Finally, the
dotted curve is a more complicated curve which avoids negative values of H but gives a curvature
singularity at a finite t.

Let us first assume f(H) to be a regular, single-valued function. This possibility is
illustrated by the dashed curve of Fig. 10. In this case, since f is negative at very smallH, f ′

must turn positive at some point and f itself must go through zero at some positive value of
H. Let’s denote byH1 > 0 the first zero of f (i.e. f(H1) = 0 and f(H) < 0 for 0 < H < H1,
see the dashed curve in Fig. 10). Consider now the quantity −g(H) ≡ (F −Hf) appearing
in the first of Eqs. (1.2). The quantity −g is positive at small H and its value at H = H1

is clearly F (H1). Since F (0) = 0 we can compute it as:

− g(H1) = F (H1) =

∫ H1

0
f(H̃)dH̃ < 0 , (A.1)

since the integrand is always negative. But then there should be some positive H2 < H1

at which g(H2) = 0 and thus, by the first of Eqs. (1.2), φ̇ = 0 at the time t2 at which
H = H2. Finally, since φ̇ is initially positive, there must be a t3 < t2 < t1 at which φ̈ = 0,
in contradiction with having φ̈ < 0 as long as H > 0 and φ̇ < 0 (which is the case up to
time t3). We have thus arrived at a contradiction (in agreement with the results of [27]).

Consider now the case in which f(H) is not single valued. This looks actually necessary
if we want the evolution to go through negative values of H. Furthermore, such an f(H)

will typically exhibit branch points. This possibility is illustrated by the solid and dotted
curves in Fig. (10) with the branch point occurring where the curve f(H) turns around
at H = H>. At that point f ′ → ∞ and f changes branch at the corresponding time t>.
For t > t>, f keeps decreasing in time but so does H, so that f ′(H) ≡ df/dH > 0 for
t > t>. We have thus achieved the desired change of sign in f ′ in a different way w.r.t.
the dashed curve. In our regular bounce scenarios (solid curve in Fig. (10)) one eventually
goes through H = 0 into a contracting phase and everything works fine until H reaches its
minimum negative value −H< at the regular bounce.

One can ask whether, instead, one can avoid crossing the H = 0 axis, the possibility we
claim to be able to exclude. That would require f ′(H) to change sign again before reaching
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the H = 0 axis (dotted curve in Fig. 10) but this would imply, by the second of Eqs. (1.2),
a divergent Ḣ, thus a curvature singularity, at the time at which f ′(H) = 0.

Thus, without claiming to have given a rigorous mathematical proof, we seem to have
very strong arguments in favour of excluding a smooth transition from accelerated expansion
to decelerated expansion involving only the upper half of the plane depicted in Fig. 1 for
any string cosmology model which is duality-invariant at all orders in α′.
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