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Abstract: As demonstrated by the ATLAS New Small Wheel community with their MicroMegas
(MM) design, resistive electrodes are now used in different detector types within the Micro Pattern
Gaseous Detector family to improve their robustness or performance. The extended form of the
Ramo-Shockley theorem for conductive media has been applied to a 1 MΩ/� 2D resistive strip bulk
MM to calculate the signal’s spreading over neighbouring channels using an 80 GeV/c muon track.
For this geometry, the dynamic weighting potential was obtained numerically using a finite element
solver by applying a junction condition and coordinate scaling technique to accurately represent the
boundary conditions of a 10 × 10 cm2 active area. Using test beam measurements, the results of
this model will be used to benchmark this microscopic modelling methodology for signal induction
in resistive particle detectors.
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and induction, pulse formation), Particle tracking detectors, Micropattern gaseous detectors (MI-
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1 Introduction

Resistive elements are typically implemented in particle detectors for two distinct reasons: (i) to
increase their robustness, as is the case with the small-pad resistive MicroMegas (MM) [1], and (ii)
to improve their performance, of which the Resistive Silicon Detector is a prime example [2]. In the
presence of these materials, the total induced signal in the readout electrodes is the sum of the direct
induction from the movement of charged particles in the drift medium, and the time-dependent
reaction of the resistive materials. For the characterising their response, a growing interest in this
class of detectors rises the need of keeping modelling tools such as Garflield++ [3] linked with this
development. As a result, these models can inform the design of the next generation of particle
detectors driven by the specific needs of future High Energy Physics (HEP) experiments.

The weighting potential becomes time-dependent for geometries containing conductive materi-
als due to the medium’s finite conductivity [4–6]. Since through analytical methods these potentials
can only be obtained for a limited the number of geometries, a numerical method has been sug-
gested to model the time dependence of signals in these readout structures [7]. This approach
is to be benchmarked for a few key technologies, including the resistive strip bulk MM [8], by
comparing with measurements. The resistive strip bulk MM device uses an innovative resistive
AC-coupled readout to improve its robustness. For this Micro-Pattern Gaseous Detector (MPGD),
it is known that equipped with two-dimensional strip electrodes signal spreading can be observed
over neighbouring channels that run perpendicular to the resistive strips [9]. Figure 1 (left) shows
a cross-section view of the geometry. This observation spurred the acquisition of two virtually
identical prototypes with two different surface resistivities to assemble a benchmarking setup for
validating the simulation method using data taken at the H4 extraction beam line of the CERN Super
Proton Synchrotron (SPS). Used in the benchmarking effort, this work will describe the ongoing
development of the computational model of the response of a 1 MΩ/� 2D resistive strip bulk MM,
with a focus on representing the boundary conditions in large-area detectors accurately.
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Figure 1. Left: Schematic overview of the layout of the two-dimensional resistive strip bulk MM. The
electron avalanche sourced by a muon going through is sketched in yellow while the positive ion tracks are
suppressed to the red arrows. Right: Cross-section view of the toy-model geometry containing a resistive
layer of dimensions 𝑎 × 𝑎 that is grounded on all edges with a charge 𝑞 being deposited on it.

2 Going to large area detectors

Since the resistive strips are grounded on one edge of the geometry, the active area’s size does affect
the evolution of the delayed component of the signal. This impact has been studied analytically by
going to a resistive layer MM toy-model before proceeding to the full readout structure.

2.1 Charge diffusion on a resistive layer

For a charge 𝑞 deposited at time 𝑡 = 0 at the centre of a resistive layer grounded on the edge of a finite
square parallel plate geometry with length 𝑎 as depicted in Figure 1 (right), the induced charge on
the pads of the segmented anode has been calculated following [10]. Using a surface resistivity of
𝑅 = 1 MΩ/� these solutions are shown in Figure 2 for three adjacent pads for different values of 𝑎.
They suggest that in the central region of the detector the early-time behaviour is minimally affected
by varying 𝑎. Nonetheless, at later times, the difference in the size of the resistive layer becomes
apparent, where the smaller area detectors drain the diffusing charge distribution in the layer more
efficiently. This is reflected in their smaller characteristic time constants of the exponential decaying
tail dominating the late-time behaviour. The evaluation of this example can be shown to converge
more slowly as the area of the detector increases; requiring a total number of terms proportional to
𝑎2/𝑏2 for 𝑡 = 0 alone to be summed up, e.g., O(107) for 𝑎 = 10 cm. This number quickly rises
as soon as one steps into the area of applications in HEP experiments. The convergence speed can
possibly be improved by using series acceleration methods. However, for geometries lacking an
analytical solution, ways to manage larger area structures numerically need to be devised.

2.2 Numerical scaling of the model

The large ratio between the detector area’s size and the induction region’s thickness makes both
analytical and finite element numerical evaluations slow and cumbersome. The detector that we
aim to describe has a 10×10 cm2 active area where the Dirichlet boundary condition of the resistive
element needs to be taken into account to give an accurate description.
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Figure 2. Induced charge on three 1× 1 mm2 neighboring pads positioned at x = (𝑥𝑝 , 0,−𝑏) from a charge
𝑞 deposited at the center (x = 0) of a square resistive layer with various widths 𝑎. Here, 𝑔 = 128 𝜇m, 𝑏 = 100
𝜇m, and 𝑅 = 1 MΩ/�.

To this end, we have used two techniques. The first was to avoid the need to mesh the thin
resistive layer using the electric shielding surface condition available in the COMSOL Multiphysics
toolkit [11]. This follows the junction condition

n · (J1 − J2) = −∇𝑇 · 𝑑
((
𝜎 + 𝜀0𝜀𝑟

𝜕

𝜕𝑡

)
∇𝑇𝑉

)
, (2.1)

for a thin resistive layer with thickness 𝑑, conductivity 𝜎 = (𝑅𝑑)−1, relative permittivity 𝜀𝑟 , n the
normal vector of the resistive surface, J𝑖 the current densities of the region above and below the layer
and the operator ∇𝑇 represents the tangential derivative along the layer. The second point was to
stretch the model using coordinate mapping rather than directly implementing the total active area.
To accurately represent the boundary conditions of this geometry in the finite element model, linear
coordinate scaling was employed outside a sub-region of interest, allowing for a more numerically
friendly confined geometrical representation that is smaller than the total detector active area yet
equivalent.

Going back to the previous example, the time-dependent weighting potential of the pads has
been calculated using the finite element method, where these two techniques are applied. The
comparison of this solution with the analytical one is shown in Figure 3, indicating excellent
agreement between the two.

3 Simulations of a resistive strip bulk MM

To apply the extended form of the Ramo-Shockley (RS) theorem for conductive media numerically
to the geometry under investigation, the weighting potential is computed with COMSOL using the
techniques described above. Subsequently, we used this solution in Garfield++ to calculate the
induced signal on four strips for an event given by a muon track as indicated in Figure 1 (left).

3.1 Weighting potential solution

Three time slices of the weighting potential solution of one of the strips are shown in Figure 4
(left). At 𝑡 = 0 the prompt weighting field instantaneously permeates the detector volume, and all
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Figure 3. Comparison between the induced charge on neighbouring pads given analytically and the
corresponding COMSOL solution. The former is given by the full lines, while the latter is given by the
markers of the same colour for a few time points. The charge is deposited in the centre of a 10 × 10 cm2

resistive layer with R = 1 MΩ/�. The five 5 × 5 mm2 pads with index 𝑖 at 𝑥𝑝 = 𝑖 − 1 mm.

elements with finite resistivity appear as insulators. As time increases, the resistive strips diffuse the
potential over its surface so that for 𝑡 → ∞ all conducting materials behave like perfect conductors.

3.2 Description of the Monte Carlo model

The complete response of the detector is modelled as the result of a series of independent calculations
where the MM is approximated as a parallel plate chamber partitioned by an infinitesimally thin metal
layer in place of the mesh. The ionisation pattern due to a relativistic muon with a momentum of 80
GeV/c going through the 5 mm drift gap is given by HEED [12]. For the electrons, the parameters
used for their drift, diffusion, amplification and attachment are provided by MAGBOLTZ [13] and
used to microscopically model their trajectories to the mesh spurred by a 550 V/cm applied electric
field. After reaching the mesh, they are transferred to the 128 𝜇m induction gap where the avalanche
dynamics are simulated microscopically given a 510 V potential difference between the cathode
"mesh" substitute and the resistive strips. The resulting trajectories of the positive and negative
charge carriers are used in conjunction with the weighting potential solution to calculate the total
induced signal on the x-strips. Taken from Garfield++, the ion mobility is scaled up to match an
ion tail length measurement performed using a single-channel PICOSEC MM [14] non-resistive
single-channel prototype using the same gas mixture and equipped with a fast amplifier for the same
gas mixture. Finally, the impulse response function of the electronics is convoluted with the total
induced signal of the electrodes. We approximate the electronics by an idealized uni-polar shaper:

𝑓 (𝑡) = 𝑔𝑒𝑛
(
𝑡

𝑡𝑝

)𝑛
𝑒−

𝑡
𝜏 , (3.1)

where the peaking time is defined as 𝑡𝑝 = 𝑛𝜏 [15]. To mimic the response of the APV25 chip
we assume 𝑡𝑝 = 50 ns, and a first order shaping 𝑛 = 1, while keeping the amplification to 𝑔 = 1
[16, 17].

3.3 Induced signal waveform

The final bi-polar total induced signal after shaping is shown in Figure 4 (right) alongside its electron
component. As expected, the biggest signal amplitude is found in the strip positioned bellow the

– 4 –



Strip 1

Strip 2

Strip 3

Strip 4

0 100 200 300 400 500 600
-0.1

0.0

0.1

0.2

0.3

Time [ns]

A
m
pl
itu
de

[a
.u
.]

Induced signal on neighboring x-strips.

Figure 4. Left: Time sliced cross-section weighting potential map for x-strip number 1 with resistive strips
of 1 MΩ/�. Right: Simulated total induced signals (full lines) and electron contribution (dashed lines) in
four neighbouring readout strips normal to the resistive strips with a surface resistivity of 1 MΩ/� as sourced
by a muon perpendicular to the centre of strip 1.

muon track, whereas the neighbouring channels have progressively smaller peak amplitude values
that are shifted in time, indicating the "spreading" of the signal over the resistive strips and resulting
in the characteristic v-shape peak position in time curve [9]. The majority of the final waveform is
comprised of the ion contribution making the result sensitive to the accuracy of the ion mobility in
the gas.

4 Conclusions and outlook

In this proceeding, the ongoing development of a computational model for the signal induction in a
1 MΩ/� 2D resistive strip bulk MM was shown, which will be compared with SPS test beam data.
Two techniques were discussed to accurately represent the relatively large areas of the reference
devices successfully: (i) the use of a junction condition on the resistive strip boundary, avoiding the
need for the meshing of thin layers, and (ii) applying a coordinate mapping to stretch the geometry
mathematically. The final induced signals of four readout strips perpendicular to the resistive strips
were calculated with Garfield++, which show the expected "spreading" of the signal reported in the
literature. Before a detailed comparison with the measured data, refinements of the model in the
form of implementation of the mesh structure and adding of capacitive coupling will be explored.
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