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1 Introduction

A thermal two-point function describes the response of a system at finite temperature to
a small perturbation [1]. In theories with simple holographic duals, it is captured by the
wave equation in a black hole background [2–6].

In this paper we mostly (but not only!) concern ourselves with holographic CFTs, for
which the relevant geometry is a black hole in AdS. For this case, the problem of computing
the thermal response is reduced to a quantum-mechanical scattering problem in a potential
V (z) which encodes the black hole geometry. Very generally for non-extremal black holes,
this potential has the following features,1

V (z) ∼
{

1
z2 z → 0 (AdS boundary),∑∞
n=1 ane

− 4πn
β
z

z → ∞ (BH horizon).
(1.1)

The exponential decay close to the horizon is consistent with the periodicity of the potential
V (z) = V (z + iβ2 ) under complex shifts of z.

Let us denote the two-sided thermal function that can be obtained by solving the wave
equation as G12(ω), where we keep the angular/spatial momentum dependence implicit.
There are two basic facts about G12(ω) that will be important for us in the present paper:

• It is a meromorphic function of ω [7–9]. Its singularities, known as quasi-normal modes
(QNMs), encode the characteristic decay of perturbations in time [10, 11].

1Here z is the tortoise coordinate, i.e. dz = − dr
f(r) , where f(r) is the black hole redshift factor.
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• It has no zeros, or in other words, 1
G12(ω) is an entire function of ω. This property is

intimately related to the behavior of the potential V (z) close to the black hole horizon,
see [8] and appendix C.

Even though these properties have been extracted by studying classical wave propagation on
a black hole background, at the level of the thermal two-point function they can be considered
more generally in situations where there is no well-defined notion of a classical geometry or
black hole horizon. In fact, extrapolating beyond holography, we will find that both properties
hold at finite coupling in several low-dimensional examples of large N systems.

The two properties above imply, modulo simple technical details deferred to the main
text, that we can write a product formula representation for the two-sided correlator,2

G12(ω) =
G12(0)∏∞

n=1

(
1− ω2

ω2
n

)(
1− ω2

(ω∗
n)2

) , G12(0) > 0. (1.2)

In other words, the two-point function is fixed by the QNMs up to an overall rescaling. No
further data (such as the residues at the poles) is required. Note that the same statement
translates to the retarded two-point function GR(t) for t > 0, see appendices A and B. In
frequency space we have the following relation

G12(ω) =
GR(ω)−GR(−ω)
2i sinh(βω/2) , ω ∈ C . (1.3)

Another characteristic feature of the black hole geometry in AdSd+1>3/CFTd>2 is the
presence of the curvature singularity. In [9] it was argued that the singularity leads to
exponential decay of the two-sided two-point function at large imaginary ω. An illuminating
way to encode this property is to say that the two-sided correlator obeys the following
dispersive sum rules

BH singularity :
∮
C∞

dω′ (ω′)mG12(ω′) = 0, (1.4)

see figure 1. Again, even though (1.4) was extracted by studying the classical wave equation,
it is interesting to contemplate the possibility that it holds more generally and consider its
violation as some sort of “resolution” of the singularity.

The purpose of this paper is to analyze the general properties of the product formula (1.2),
as well as to explore its workings in various examples. In particular, we study the constraints
imposed on the structure of QNMs by the OPE; we discuss how the singularity sum rules (1.4)
are satisfied and violated; and finally, we explore the relation between the structure of QNMs
and the low-energy (hydrodynamic) expansion of the correlator. In the latter case, we find
that the hydrodynamic expansion encodes certain moments of the QNM density.

After examining the general constraints, we specialize to several analytically solvable
examples, including BTZ and Rindler space. We then proceed to discuss several examples in
pure GR and beyond for which no analytic expression is available. To compute the QNMs
for these cases, we use the package QNMSpectral [12].

2The condition G12(0) > 0 is a consequence of unitarity, see section 2.
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In the final section of the paper, we show that the two-point functions in several SYK-type
models satisfy the holographic properties mentioned above. We conclude by presenting a
hypothesis regarding the two-point function in planar chaotic theories, and with a discussion
of various open directions.

2 Analytic structure of thermal two-point functions

In this paper we are mainly interested in the two-sided thermal two-point function, defined
as follows,

G12(t, x⃗) ≡
〈
O
(
t− iβ

2 , x⃗
)
O(0, 0)

〉
β

= 1
Z(β)tr

[
e−βHO

(
t− iβ

2 , x⃗
)
O(0, 0)

]
, (2.1)

where β is the inverse temperature and the spatial coordinate x⃗ labels a point on the spatial
manifold on which the CFT lives. We will mostly consider the case where x⃗ ∈ Rd−1 in
the present paper.

We will be considering G12(t, x⃗) in Fourier space

G12(ω, k) =
∫
dt dd−1x⃗ eiωt−ik⃗·x⃗G12(t, x⃗), x⃗ ∈ Rd−1, (2.2)

where k ≡ |⃗k|. We will be mostly concerned with the dependence of the two-sided correlator on
ω, while keeping k fixed. We will therefore sometimes write G12(ω) with the spatial dependence
kept implicit. We have chosen to work with G12(ω, k) because of its nice properties, but all
other two-point functions can be easily obtained once G12(ω, k) is known, see appendix A.

2.1 Definitions and general properties

Let us review some basic properties of the two-sided thermal two-point function G12(ω)
as a function of ω:

• Unitarity: on the real axis the two-sided correlator is real and non-negative

G12(ω) ≥ 0, ω ∈ R. (2.3)

This property simply follows from the insertion of a complete set of states between
the two operators in the definition of the two-sided correlator and unitarity of the
underlying theory.3 Assuming that G12(ω) is real-analytic for real ω, we get in the
complex plane

G∗
12(ω) = G12(ω∗). (2.4)

When G12(ω) = 0 on the real axis something special happens, namely the local operator
with a given energy ω annihilates the thermal state. We expect that this is only possible
in free (or integrable) theories, and that in interacting theories G12(ω) > 0 on the
real axis.

3In the most general setting, G12(ω) is a distribution, and therefore (2.3) should be understood in the
distributional sense. In the present paper we will treat G12(ω) as a function. In particular, we will study its
analytic properties in the complex ω plane. We believe that this is justified for interacting CFTs on S1 ×Rd−1

and large N interacting CFTs on S1 × Sd−1 above the Hawking-Page phase transition [13]. It is true by
inspection for holographic CFTs.
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• KMS symmetry: the two-sided correlator is even under ω → −ω,

G12(ω) = G12(−ω). (2.5)

• OPE limit: the large frequency limit of the correlator is universal and is controlled by
the unit operator,

lim
ω→+∞

G12(ω) ∼ e−
βω
2 ω2∆−d, (2.6)

where ∆ is the conformal dimension of O and the proportionality coefficient is known
exactly in terms of d and ∆. As we will see later, corrections to this formula at large ω
can be systematically computed in the 1/ω expansion, and are determined by the OPE
coefficients and thermal one-point functions of operators that appear in the O × O
OPE expansion.

The properties above hold in any CFT and do not rely on holography.

2.2 Properties of holographic thermal correlators

Next we list the properties of G12(ω) which are specific for theories with a classical gravity dual:

• Meromorphy: the only singularities of G12(ω) are isolated simple poles in the complex
plane [7–9].4 These singularities correspond to quasi-normal modes (QNMs), and they
characterize the real-time decay of a perturbation to the thermal plasma [10, 11]. By
virtue of (2.4) and (2.5), QNMs come in families (ωn,−ωn, ω∗

n,−ω∗
n). Similarly, the

residues of G12(ω) for various frequencies within one family are all related to each other,

ResωnG12(ω) = −Res−ωnG12(ω) = (Resω∗
n
G12(ω))∗ = −(Res−ω∗

n
G12(ω))∗. (2.7)

• No zeros: the two-sided correlator does not have zeros in the complex ω-plane [8].
This property follows from the fact that the two-sided correlator is obtained by solving
the wave equation in the black hole background and from the universal properties of
the scattering potential close to the black hole horizon, see appendix C. Put differently,
1/G12(ω) is an entire function.

• Asymptotic behavior: along any ray in the complex plane that asymptotically avoids
poles, the two-sided correlator satisfies∣∣∣∣ 1

G12(ω)

∣∣∣∣ ∼ eλ(θ)r, ω = reiθ → ∞, λ(θ) ≥ 0, (2.8)

up to a polynomial prefactor. In other words, 1/G12(ω) is an entire function of order
one. The asymptotic behavior (2.8) follows from the large ω expansion of the wave
equation, see [8].

4Double poles are allowed on the imaginary axis (although imaginary poles are still generically simple).
For instance in AdS3/CF T2 there are double poles on the imaginary axis when k = 0.
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The three properties above imply the following product formula for holographic thermal
correlators,5

G12(ω) =
G12(0)∏∞

n=1

(
1− ω2

ω2
n

)(
1− ω2

(ω∗
n)2

) . (2.9)

To see this, we use Hadamard’s factorization theorem, see e.g. [15], which states that an
entire function f(z) of order m and zeroes an can be written as

f(z) = zℓeP (z)
∞∏
n=1

E⌊m⌋(z/an), (2.10)

where P (z) is a polynomial of degree q ≤ m and

E⌊m⌋(z) = (1− z)
⌊m⌋∏
k=1

ez
k/k (2.11)

are elementary factors. By assumption, 1/G12 is of order m = 1. Imposing evenness, ℓ = 0,
and noting that E1(z)E1(−z) = E0(z)E0(−z) = 1− z2, the product formula follows.

In writing (1.2) we assumed that ω∗
n ̸= −ωn, which is not true for purely imaginary

QNMs. It is trivial to extend the ansatz by including the product of purely imaginary simple
modes ωn = iω̃n as follows,

∏∞
n=1

(
1 + ω2

ω̃2
n

)−1
.

2.3 Black hole singularity sum rules

In [8, 9] it was shown that for the Schwarzschild black hole, G12(ω) at large imaginary ω

is controlled by a real geodesic that bounces off the black hole singularity [16, 17]. As a
result, the correlator decays exponentially as ω → ±i∞ [8, 9],

|G12(ω)| ∼ e−β̃|ω|/2, ω → ±i∞, β̃ = β cot
(π
d

)
. (2.12)

The two-point function is also exponentially decaying in the region ω → ±∞, where it is
controlled by the OPE behavior (2.6). Therefore in the presence of the curvature singularity
there exists a positive number κ such that (avoiding the poles)

|G12(ω)|
e−κ|ω|

→ 0 as |ω| → ∞, κ > 0. (2.13)

This is a stronger condition than (2.8), which allows for a vanishing decay rate λ(θ) = 0
along some complex ray.

We can use the condition (2.13) to write down a simple set of sum rules,6

BH singularity :
∮
C∞

dω′ (ω′)mG12(ω′) = 0, (2.14)

5An analogous product formula appeared in the context of thermal functional determinants [14], but for
thermal correlators we are not aware of such results in the literature.

6By singularity here we mean the curvature singularity. For example, (2.14) does not hold for the BTZ
black hole.
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C∞

Figure 1. The contour integral along C∞ in (2.14) vanishes due to the asymptotic decay of the
correlator. By deforming the integration contour inside and picking up the contribution of QNMs we
get the sum rules (2.15).

see figure 1. The asymptotic behavior (2.13) guarantees that the contour integrals (2.14)
vanish. We can then deform the contour and rewrite these sum rules in terms of the residues
of G12(ω), λn, at the QNMs ω = ωn. For m even the sum vanishes identically, but for m
odd we find a nontrivial constraint:

Re
∑
n

ωmn λn = 0, for odd m > 0, (2.15)

where we used the relations (2.7) between residues of poles in the same family. Note that the
sum rules (2.15) immediately imply that the residues λn decay exponentially fast in n. As we
will see in section 5.3, the singularity sum rules follow directly from the product formula (1.2)
with some mild assumptions on the asymptotic structure of QNMs. In section 5.3 we will
use the exponential decay at ω → i∞ along with the OPE to uniquely fix the leading
high-energy asymptotics of QNMs.

Let us also notice that we can consider finite energy singularity sum rules by placing
the integration contour CΛ in (2.14) at some finite radius |ω| = Λ.7 In this case the sum
rules are satisfied up to exponentially small corrections e−cΛ. The advantage of considering
sum rules at finite ω is that we expect them to hold also at finite ’t Hooft coupling (or
string length) as long as Λ ≲ 1

ls
.

3 QNMs and black hole geometry

In the next section we will analyze various constraints placed on the QNMs by the product
formula (1.2). To set the stage for these constraints, let us first give a brief overview of QNMs
and their connection to the geometry of the black hole background, closely following [8, 21].
For a detailed review, see [11].

7See e.g. [18–20] for discussions of finite energy sum rules in the context of scattering amplitudes. In
particular, in [19] they were rigorously derived using Tauberian theorems.
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We consider a spherically symmetric asymptotically AdSd+1 black hole, with metric

ds2 = −f(r) dt2 + dr2

f(r) + r2 dΩ2
d−1. (3.1)

In order to write the scalar field wave equation (□−∆(∆− d))ϕ = 0 in a convenient form,
let us Fourier expand

ϕ(t, x⃗, r) = e−iωtYJm⃗(Ω)r−(d−1)/2ψ(ω, J, r), (3.2)

where YJm⃗ are spherical harmonics on Sd−1. In terms of ψ, the wave equation takes the form
of the Schrodinger equation for a particle in a potential,

(−∂2z + V (J, z)− ω2)ψ = 0, (3.3)

where dz = − dr
f(r) is the tortoise coordinate. The horizon is located at z = ∞ and the

boundary at z = 0. The potential is given by

V (J,z)= f(r)
(
J(J+d−2)

r2
+ν2− d2

4 + (d−1)f ′(r)
2r +(d−1)(d−3)

4r2 f(r)
)
, (3.4)

where ν = ∆− d/2. The potential for a black brane takes the same form, with J(J + d− 2)
replaced with k2.

Now let us discuss the behavior of the potential (3.4) near the horizon and infinity. For
a general AdS black hole, the asymptotic behavior is universally given by

V (J, z) ∼


ν2− 1

4
z2 z → 0∑∞
n=1 an(J)e

− 4πn
β
z

z → ∞.
(3.5)

The behavior at the boundary follows from the asymptotics f(r) ∼ r2 at large r. The
structure of the potential near the horizon can be justified as follows. Since the redshift
factor f(r) has a simple zero at the horizon rS , we can expand

f(r) = 4π
β
(r − rS) +

∞∑
n=2

1
n!
dnf

drn
(rS)(r − rS)n. (3.6)

The tortoise coordinate is then

z = z0 −
∫ r

dr

(
β

4π(r − rs)
− β2f ′′(rS)

32π2 + . . .

)
(3.7)

= z0 −
β

4π log(r − rS) +
β2

32π2 f
′′(rS)(r − rS) + . . . (3.8)

Solving for r(z), we find

r = rS + exp
(
−4π
β
(z − z0)

)
+ β

8πf
′′(rS) exp

(
−8π
β
(z − z0)

)
+ . . . , (3.9)

where the higher corrections are of the form exp (−4πn(z − z0)/β). Since the potential is an
analytic function of r, we therefore find that the potential takes the form shown in (3.5).

– 7 –
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Because perturbations can fall into the horizon, we cannot define normal modes of the
scalar field. Instead, we consider quasi-normal modes, which are ingoing at the horizon
and normalizable at the boundary,

ψ(z) ∼ eiωz, z → ∞ (3.10)

ψ(z) ∼ z
1
2+ν , z → 0. (3.11)

Such resonances can only exist at a discrete set of complex energies, which satisfy Im ω < 0
for real J [10]. Note that Im ω < 0 implies that perturbations decay in time, whereas
poles in the upper half plane would lead to a growing mode, signifying an instability of
the black hole. There are also constraints on QNMs from causality [22–24], but we do not
explore them in this paper.

In order to obtain a qualitative understanding of the structure of QNMs, it is useful
to consider the WKB limit ∆ → ∞ with ω/∆ and J/∆ fixed. The potential (3.4) then
takes the form

V (z) = f(r)
(
J2

r2
+∆2

)
. (3.12)

For z0 extremizing the potential, there exists a line of QNM poles emanating from
√
V (z0).

However, not all extrema contribute. To find the relevant values of z0, one must first solve
the equation V (r) = u2 for the turning point r(u). The physical turning point is defined
to be the solution r(u) which behaves as r(u) ∼ u/∆ for large real u. Then the extrema of
the potential corresponding to QNMs are those at which the physical turning point merges
with another turning point at some value of u in the lower half plane. We refer the reader
to [21] for further details.

The first few modes of this line of poles are given by the expression

ωn =
√
V (z0) +

(
n+ 1

2

)√
V ′′(z0)
2V (z0)

, n = 0, 1, . . . (3.13)

The branches of the square roots should be chosen so that ωn is in the lower half plane.
Let us now discuss several important cases of the Bohr-Sommerfeld approximation

to QNMs.

• Weakly damped modes: the first example we consider is where V (z) has a metastable
minimum outside the horizon, as depicted in figure 2(a). Then in the approxima-
tion (3.13), the associated QNMs are purely real. The imaginary part is exponentially
small since it is related to tunneling over the potential barrier, and it is not captured by
the leading WKB approximation. Since these modes decay very slowly, they represent
the leading contribution to the two-point function at late times. One case where such
a metastable minimum arises is at large J . The corresponding modes are related to
stable orbits around the black hole [8, 21, 25–27].

• Virtual bound states: in the previous example, the minimum of the potential was
outside the horizon. We can also consider the case where the minimum is behind the

– 8 –
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(a) (b)

Figure 2. (a) A potential with a metastable minimum outside the horizon, leading to a line of weakly
damped QNMs. The potential goes to +∞ at the boundary, to −∞ at the singularity, and is zero at
the horizon r = rS . (b) A potential with a global stable minimum, corresponding to a line of virtual
bound states. The minimum is in between the inner horizon r− and the outer horizon r+.

horizon in a region where V (z0) < 0, see figure 2(b). We see from (3.13) that the modes
are then purely imaginary. Charged black holes provide an example of this phenomenon,
as we will see later. In this case, there is a stable minimum of the potential between
the inner and outer horizon.

• Complex extrema: generically, extrema of the potential are at some arbitrary point in
the complex plane off the real r axis. In this case there is no clean physical interpretation
of the QNMs in terms of the real section of the geometry. Note that the extrema come
in complex conjugate pairs, since V ∗(r) = V (r∗). Therefore a complex extremum leads
to two lines of poles related by ωn → −ω∗

n, at an angle determined by (3.13). For
example, consider the QNMs of the black brane metric

f(r) = r2 − 1
rd−2 (3.14)

at zero spatial momentum. There are d complex extrema with f ′(r) = 0 at rd = 1−d/2,
but the only two that contribute according to the prescription described above have
phase e±iπ/d. This leads to a line of poles in the lower half plane at angle e−πi/d [21],

ωn = e−
πi
d

√
d− 2

(
d

2 − 1
) 1

d
(
∆
√
d+ d

(
n+ 1

2

))
, (3.15)

along with its image under ωn → −ω∗
n.

Let us now comment on the QNMs beyond the lowest lying modes (3.13). In the case of
a metastable minimum, the low-lying QNMs have exponentially small imaginary part, but
at some nmax the modes go off into the complex plane at a finite angle. Therefore there are
only finitely many weakly damped modes. In contrast, the virtual bound states and modes
associated to complex extrema go on forever. As we will see later, there must be infinitely
many QNMs in order to reproduce the operator product expansion.

– 9 –
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In this section we have discussed the QNMs in the large ∆ limit. The highly damped
QNMs can also be computed for order one ∆ by solving the wave equation near the singularity
and near the boundary and then matching the two solutions. See [28, 29] for details.

4 Asymptotic Minkowski OPE

Let us consider a CFT two-point function of scalar primary operators on S1
β × Rd−1. We

can write the following OPE expansion,

⟨O(τ, x⃗)O(0, 0)⟩β =
∑
O∆,J

a∆,J
β∆

C
( d−2

2 )
J

(
τ√

τ2 + x⃗2

)
(τ2 + |x⃗|2)

∆−2∆O
2 , (4.1)

where C
( d−2

2 )
J (cos θ) are the usual Gegenbauer polynomials and τ is the Euclidean time

β > τ ≥ 0. The sum goes over the primary operators that appear in the OPE of O ×O, and
the expansion coefficients a∆,J are given by the product of the corresponding three-point
function and thermal expectation value ⟨O∆,J⟩β, see [30] for details.

In this paper we are interested in the Lorentzian correlator. More precisely, we consider
the two-sided correlator, which is related to the Euclidean correlator above as follows,

G12(ω, k) =
∫ ∞

−∞
dt eiωt

〈
O
(
β

2 + it, k⃗

)
O(0, 0)

〉
β

. (4.2)

We would like to understand how the OPE expansion (4.1) constrains the form of G12(ω, k).
We will be interested in the limit ωβ ≫ 1 with

ζ ≡ k

ω
≥ 0 (4.3)

kept fixed.
It has been suggested in [31] that in this limit the two-sided correlator admits the

following asymptotic Minkowski OPE expansion

G12(ω, k) = e−
βω
2 ω2∆O−dθ(1− ζ)

∑
O∆,J

a∆,J
(βω)∆G∆,J(ζ) +O(e−βω), (4.4)

where the conformal blocks G∆,J (ζ) take the following form (see appendix D for the derivation),

G∆,J(ζ) =
π

d
2+12d+∆−2∆O+1Γ(d+ J − 2)

Γ(d− 2)Γ(J + 1)Γ
(
J
2 − ∆

2 +∆O
)
Γ
(
−d

2 − J
2 − ∆

2 +∆O + 1
)

×
(
1− ζ2

) 1
2 (2∆O−d−∆−J)

2F1

(
1− J

2 ,−J2 ,
d− 1
2 , ζ2

)
. (4.5)

The support of G12(ω, k) in (4.4), namely the presence of θ(1 − ζ), was discussed in [32].
This expansion is supported by the known holographic and perturbative examples and we
will assume it to be true in this paper. Note that G12(ω, k) is nonzero for k > ω, but it is
expected to be exponentially suppressed in this region [6, 33, 34].

The basic idea behind (4.4) is the following. The coordinate space OPE leads to the large
frequency expansion of the Euclidean correlator. The behavior of the Euclidean correlator at
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large Matsubara frequencies controls the behavior of the retarded correlator via the relation
GE(ωn) = GR(iωn). Consider next the dispersion relation for the retarded correlator8

GR(ω) = −
∫ ∞

−∞

dω′

2π
ρ(ω′)

ω − ω′ + iϵ
, (4.6)

where ρ(ω) is the spectral density. It follows from (4.6) that the large frequency behavior
of GR(ω) at imaginary frequencies controls the large ω behavior of the spectral density
or, equivalently, the two-sided correlator via complex Tauberian theorems for the Stieltjes
transform [19]. Assuming that G12(ω, k) itself admits a power-like expansion leads to the
formulas above. More generally, rigorous formulas can be derived as in [19]. This is particularly
relevant for finite cT CFTs on a sphere, where G12(ω) is given by a sum of δ-functions.

We next discuss the universal contribution to the OPE as well as its structure in
holographic theories.

4.1 The unit operator and the stress tensor

The leading contribution at large frequencies comes from the unit operator ∆ = J = 0. The
first subleading correction comes from the stress tensor. The leading terms in the expansion
of the two-point function thus take the following form

G12(ω, k)
e−

βω
2 ω2∆O−d

1+T= 4 d+1
2 −∆Oπ

d
2+1(1− ζ2)∆O−d/2

Γ(∆O)Γ
(
∆O + 1− d

2
)

+ aT
(βω)d

4d−∆O(d− 1)(d− 2)π d
2+1

Γ(∆O − d)Γ
(
∆O + 1− d

2
)(1− ζ2)∆O−d

(
1 + d

d− 1
ζ2

1− ζ2

)
,

(4.7)

where the coefficient of the stress tensor is fixed by the Ward identities as follows,

aT = −fSd
2∆O
d− 2

cfree
cT

. (4.8)

Here Sd = vol(Sd−1) = 2πd/2

Γ(d/2) and cfree = d
d−1

1
S2

d
is the free boson two-point function of the

stress tensor. Finally, f is related to the free energy density as follows

f ≡ F

T d
. (4.9)

For holographic theories a convenient formula was found in [35]

fholo = −
22d−3(d− 1)

(1
d

)d+1
πd/2Γ (d/2)3

(d+ 1)Γ(d) S2
dcT , (4.10)

where we used that f = − s
d , and s is the entropy density. Plugging this into (4.8) we get

aholo
T =

2d−2 (1
d

)d
πd+

1
2Γ
(
d
2 − 1

)
Γ
(
d+3
2
) ∆O. (4.11)

We have tested this formula in the case of an AdS black brane by numerically solving the
wave equation at large ω. Let us also notice that for ∆O = d, d − 1, . . ., the contribution
of the stress tensor drops out.

8In general subtractions are necessary.
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4.2 Multi-stress tensor operators

Next we discuss the contribution of multi-stress tensor operators Tn to the OPE. These have
scaling dimension ∆Tn = nd and spin 0 ≤ J ≤ 2n. In a generic CFT it is not known how
to compute the contribution of these operators to the OPE.

For theories with gravity duals it can be done, see [36]. Indeed, their contribution is
controlled by the physics close to the AdS boundary. To keep the discussion simple, let
us present the result for the contribution of T 2 operators in d = 4. Combining the results
above with the ones in [36] we get9

Gholo
12 (ω, k)

e−
βω
2 ω2∆O−4

T 2
= 1

(ωβ)8
π1143−∆O∆O

(
1− ζ2

)∆O−8

1575Γ(∆O − 5)Γ(∆O − 1) (c0 + c2ζ
2 + c4ζ

4) (4.12)

c0 = 7
(
9∆4

O − 95∆3
O + 240∆2

O + 80∆O + 96
)
,

c2 = 6
(
7∆4

O − 105∆3
O + 280∆2

O + 400∆O + 288
)
,

c4 = 7∆4
O − 65∆3

O + 160∆2
O + 240∆O + 288 .

Notice that the effect that we observed at the level of a single stress tensor, namely vanishing of
its contribution for ∆O = 3 and ∆O = 4, continues here as well. We see that for ∆O = 3, 4, 5
the expression above vanishes.

We believe the same effect continues for Tn, and therefore we can write simple closed
form expressions (up to nonperturbative corrections) for the OPE expansion. It follows
that (4.7) represents the full answer for ∆O = 3, 4, 5 in d = 4.

4.3 Leading nonperturbative correction

We now consider the leading nonperturbative correction to the large frequency expansion
above. In coordinate space this correction has a regular expansion at small separations
and therefore we expect that it could be related to the double trace operators.10 These are
operators schematically of the form O□n∂µ1∂µ2 . . . ∂µJO. In the limit we are working their
scaling dimension is 2∆O + J + 2n. Therefore, we see from (4.1) that they will contribute
to the OPE with analytic terms.

For theories with gravity duals these corrections can be computed by analyzing the wave
equation in the large ω regime, see [8] and references therein. The solution to the wave equation
close to both the singularity and the boundary can be approximated by Bessel functions in
the tortoise coordinate z. For large ω the regions of validity of these approximations overlap
and it is possible to obtain a solution valid for all z. Finally, one can use such a solution to
extract the leading order contribution to (4.4) with its nonperturbative corrections (but no

9We set in [36] f0 = (π/β)4, which is valid for the black brane.
10It would be interesting to compare this nonperturbative correction with a direct computation of the

contribution of double trace operators in position space, but to our knowledge this computation has not
been done.
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power law corrections). The leading term with the first nonperturbative correction reads

Gholo
12 (ω,0)≃ e−

βω
2 ω2∆O−d 4 d+1

2 −∆Oπ
d
2+1

Γ(∆O)Γ
(
∆O+1− d

2
) (1−4e−

βω
2 cos

(
π

(
∆O− d

2

)
− β̃ω

2

))
.

(4.13)

In appendix E we show that this correction can be reproduced from the exact expression
for G12(ω, 0) found in [37].

5 QNMs and the OPE

We have argued that the quasi-normal modes determine the holographic Wightman function
up to a constant. By providing additional input for G12, we can place constraints on the
spectrum of QNMs.

In this section, we will input the constraint from the operator product expansion at
large real frequency. As ω → +∞, we should recover the zero temperature answer up to
an overall factor of e−βω/2, see [32, 38, 39],

G12(ω) ∼ ω2∆−de−βω/2, ω → +∞, (5.1)

where the proportionality constant and subleading in 1
ω corrections can be found in the

previous section.
The goal is to use this constraint to derive conditions on the asymptotic behavior of QNMs.

The first step is to convert the product over QNMs into a convenient sum. From (1.2), we have

∂ω logG12(ω) = −
∑
n

(
1

ω − ωn
+ 1
ω + ωn

+ 1
ω − ω∗

n

+ 1
ω + ω∗

n

)
. (5.2)

On the other hand, from (5.1) we have

∂ω logG12(ω) ∼ −β2 + 2∆− d

ω
+ . . . (5.3)

Let us now compare these two expressions. It is immediately clear that (5.3) implies that
the number of QNMs has to be infinite and that they must extend all the way to infinity.
Indeed, imagine that there are a finite number of QNMs. Then ∂ω logG12(ω) ∼ 1

ω at large
ω, which is not consistent with (5.3).

Next we consider several simple ways in which QNMs can approach infinity and see
how this approach is constrained by the OPE.

5.1 A single line of asymptotic QNMs

We start with the simplest case, where the QNMs are asymptotically organized into a single
line at angle θ, see figure 3. We consider the following ansatz11

ωn = reiθnα + . . . , n≫ 1, 0 < θ < π/2. (5.4)
11Strictly speaking these are the images of QNMs under KMS symmetry, not QNMs themselves.
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Figure 3. A single line of evenly spaced QNMs with angle θ and spacing r.

Computing the large ω behavior of the sum we get

∂ω logG12(ω) = −
∞∑
n=1

(
1

ω − reiθnα
+ images

)

≈ − 2π
αω

(ω
r

)1/α cos
(
π−2θ
2α
)

sin
(
π
2α
) , (5.5)

where the leading asymptotic does not depend on the lower limit in the sum.
Matching to the leading term in (5.3), we find

α = 1 (5.6)

and

β = 4π sin θ
r

. (5.7)

For a line of simple poles on the imaginary axis, one should divide the right hand side of (5.7)
by two, since there is only one image.

Let us now consider the first subleading term at large n. For this purpose, we take
the improved ansatz

ωn = reiθn+ seiϕ + . . . . (5.8)

Using the Euler-Maclaurin formula, the sum (5.2) to order 1/ω is

∂ω logG12(ω) ≈ −1
2

(
1

ω − ω1
+ images

)
− 2π sin θ

r
+ 4
ω

−
∫ ∞

1
dn

(
seiϕ

(ω − reiθn)2 + images
)

≈ −2π sin θ
r

+ 4s cos(θ − ϕ) + 2r
rω

. (5.9)

Comparing with (5.3), we find

2∆− d = 4s cos(θ − ϕ) + 2r
r

. (5.10)
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To shed more light on this result, let us imagine that we add an extra QNM at ω0. A single
QNM contributes at large ω as ∂ω logG12(ω) ∼ − 4

ω . For the computation above adding a
single QNM corresponds to effectively relabeling n → n − 1, which shifts the subleading
constant as seiϕ → seiϕ−reiθ. Plugging this expression into (5.9) indeed leads to the expected
shift − 4

ω . In this sense the subleading term in (5.8) is sensitive to the global structure of
QNMs, but it is not sensitive to the details of their distributions at low energies.

To summarize, we have learned that for a single line of QNMs, the spectrum must be
asymptotically linearly spaced. Moreover, the spacing and angle must be related in terms of
the temperature, and the first subleading term in the expansion is related to the conformal
dimension of the operator under consideration. These conditions apply for any black hole
solution in which there is only one line of asymptotic QNMs. For example, the QNMs
of massless fields with ∆ = d in large AdSd+1/Schwarzschild black holes asymptotically
approach the line12 [28, 29]

ωn ≃ 4π
β

sin
(π
d

)
eiπ/d

(
n+ d− 2

4 − i
log 2
2π

)
+ . . . , (5.11)

which is easily seen to satisfy (5.7) and (5.10). Notice that the OPE expansion effectively
maps to the 1

n expansion of the QNMs. Moreover, we see that at each order in the expansion
we have two real parameters to fix, and we have only one equation.

To proceed to subleading orders we can write

ωn = reiθn+ seiϕ + teiψ

nγ
+ . . . γ > 0. (5.12)

If γ is an integer, then it is straightforward to check that subleading terms in ∂ω logG12(ω)
receive contributions from all n in the sum, so we cannot fix t purely in terms of the
asymptotics of the QNMs. Let us now consider the case where γ is fractional. At large ω,
the sum (5.2) is dominated by n ∼ ω, so we can expand the summand in n−γ . Expanding
∂ω logG12 at large ω and plugging in (5.10) and (5.7) gives

∂ω logG12(ω) ≈ −β2 + 2∆− d

ω
−
∫ ∞

1
dn

(
teiψn−γ

(ω − reiθn)2 + images
)

≈ −β2 + 2∆− d

ω
+

2πtγrγ−1 cos
(
θ − ψ + γ

(
π
2 − θ

))
ωγ+1 sin

(πγ
2
) . (5.13)

Since fractional powers of ω do not appear in the OPE expansion of ∂ω logG12(ω) for
holographic correlators, it must be the case that

ψ = ±π2 + θ + γ
(π
2 − θ

)
. (5.14)

In section 6, we will check this relation for AdS black branes.
We have seen that fractional powers can appear in the expansion of the QNMs at

subleading orders. In fact, if there are two asymptotic lines of QNMs, fractional powers can
appear in the leading behavior of one of the lines. We turn to this case next.

12In flat space a similar formula was first derived in [40].
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Figure 4. The ansatz (5.17) and (5.18) for α = 2. The red points are evenly spaced, and the blue
points scale quadratically with n.

5.2 Adding another asymptotic line

We now consider the case of several asymptotic lines of poles. If all the lines are asymptotically
linearly spaced, then the previous calculation generalizes immediately, and we find

β = 4π
∑
i

sin θi
ri

. (5.15)

As mentioned above, a line of simple imaginary poles needs to be treated separately, and
contributes 2π/ri to this sum. Similarly, we have the subleading constraint

2∆− d =
∑
i

4si cos(θi − ϕi) + 2ri
ri

. (5.16)

The more interesting situation is when not all lines are asymptotically linearly spaced. Let
us consider the case of two asymptotic lines. We take one of the lines along the imaginary
axis for simplicity, and choose the ansatz

ω1,n = ianα + . . . , n≫ 1, a > 0, α > 1 (5.17)
ω2,n = reiθn+ seiϕnγ + . . . , n≫ 1, 0 < θ < π/2, 0 < γ < 1. (5.18)

Proceeding as above, we find

∂ω logG12(ω) ≈ −
∫ ∞

1
dn

[(
1

ω − ianα
+ image

)
+
(

1
ω − reiθn

+ images
)

−
(

eiϕnγs

(ω − eiθnr)2 + images
)]

(5.19)

≈ −2π sin θ
r

− π

αω

(ω
a

)1/α 1
sin
(
π
2α
) + 2πsγ

ωr

(ω
r

)γ cos
(
ϕ− θ + γ

(
π
2 − θ

))
sin
(πγ

2
) .

We now match powers of ω to the OPE expansion (5.3). The first term in (5.19) reproduces
the result (5.7) from before. The other terms must cancel, giving the conditions γ = 1/α and

s = r
(r
a

)1/α 1
2 cos

(
ϕ− θ + 1

α(π/2− θ)
) . (5.20)
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We will confirm this prediction later by analyzing the QNMs in the presence of a higher
derivative correction W 2ϕ2, where W is the Weyl tensor. This higher derivative term
introduces a new line of QNMs on the imaginary axis with asymptotic n3 scaling, and we
will see numerically that (5.20) is satisfied to high accuracy in this case.

5.3 Behavior in the complex ω plane

So far, we have analyzed the behavior of the correlator at large real ω. Let us now discuss
what happens when ω is taken to infinity along some complex ray. In the case of a single
line of QNMs, the lines of poles divide the complex plane into four asymptotic regions. For
example, as ω → i∞ with the ansatz (5.4) with α = 1, we find

∂ω logG12(ω) ≈
2πi cos θ

r
, ω → i∞. (5.21)

It follows that the correlator exponentially decays at ω = i∞ with rate 2π cos θ/r. As long
as θ ̸= π/2, this decay rate is nonzero. Similar remarks apply for the other three regions
of the complex plane, so the singularity sum rules (2.15) are satisfied when θ ̸= π/2. We
conclude that meromorphy and no zeroes imply the singularity sum rules, given a line of
asymptotic QNMs that is not parallel to the imaginary axis.

In fact, the same conclusion holds if there are several lines of asymptotic QNMs, as long
as at least one line is at angle θ ̸= π/2. The lines divide the complex ω plane into different
asymptotic regions, and in each region the correlator exponentially decays. Therefore the
singularity sum rules will be satisfied.

It is instructive to compare the large frequency expansions along the real and imaginary
axis. To this end we consider the ratio

log G12(ω)
G12(iω)

= β̃ − β

2 ω + C0 + . . . βω ≫ 1, (5.22)

where we wrote only the leading contribution to the ratio and we defined β̃ through the
leading asymptotic of logG12(iω) ≃ − β̃ω

2 . Both β̃ and C0 are sensitive only to the large
n tails of the large QNM expansion, and therefore can be safely computed using the same
methods that we used above.

Using ωn = reiθn + seiϕ we get

log G12(ω)
G12(iω)

= β

2 (cot θ − 1)ω + π

(
∆− d+ 2

2

)
tan(θ − ϕ) . (5.23)

The holographic computation in the AdS-Schwarzschild background gives [8, 9]

β̃ = β cot π
d
,

C0 = log 2 , (5.24)

which leads to the following expression for the asymptotic behavior of the QNMs,

ωn ≃ 4π
β

sin
(π
d

)
eiπ/d

(
n+ ∆

2 − d+ 2
4 − i

log 2
2π

)
. (5.25)

For ∆ = 4 this agrees with (5.11).
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6 OPE sum rules

In the previous section we explored the basic relationship between the leading terms in the
OPE expansion of the correlator and the structure of the QNMs. In this section we show
how inputting more data about the asymptotic expansion for the quasi-normal modes leads
to exact sum rules for QNMs. These sum rules encode the subleading terms in the OPE
expansion, going beyond the previous section.

6.1 OPE sum rules for QNMs

Let us imagine that we have worked out the asymptotic expansion of the QNMs as above
to a certain order in 1

n , such that

ωn = ωasy
n + δωn, (6.1)

such that

lim
n→∞

nk∗δωn = 0. (6.2)

We can then use the OPE to write down a set of sum rules for δωn. More precisely, we write

∂ω logG12(ω)−∂ω logGasy
12 (ω)=−

∑
n

(
1

ω−ωasy
n −δωn

− 1
ω−ωasy

n
+images

)
, (6.3)

where Gasy
12 (ω) is obtained by replacing ωn with ωasy

n in the product formula (1.2) without
the prefactor G12(0). Given the OPE and ωasy

n we can compute the large ω expansion of the
left hand side. Expanding the right hand side at large ω under the sum we get

∂ω logG12(ω)−∂ω logGasy
12 (ω)=−

∞∑
k=1

4
ω2k+1

∞∑
n=1

Re
(
(δωn+ωasy

n )2k−(ωasy
n )2k

)
. (6.4)

Such an expansion only makes sense if the sums over n converge. The most dangerous
contribution comes from δωn(ωasy

n )2k−1 ∼ δωnn
2k−1. For this to converge we require

k∗ ≥ 2k. (6.5)

For example, to write down the sum rule corresponding to the contribution of the stress
tensor in d = 4 we need k = 2, which requires k∗ = 4.

Let us write more explicitly the first sum rule. We set

ωasy
n ≃ 4π

β
sin
(π
d

)
eiπ/d

(
n+ ∆

2 − d+ 2
4 − i

log 2
2π

)
− c

n
d

d−1
e
i

(d−2)π
2d(d−1) , (6.6)

where c is computed in appendix F. Note that the phase of the last term in this expression
agrees with the prediction (5.14).

Using (6.6), we can write down the first nontrivial sum rule for k = 1. The left hand
side of (6.4) takes the form

∂ω logG12(ω)− ∂ω logGasy
12 (ω) = −δc3

ω3 , (6.7)

where δc3 is given explicitly in (F.5). Therefore we see that by combining the asymptotic large
n expansion of the QNMs with the asymptotic OPE expansion we get exact nonperturbative
QNM sum rules, which are sensitive to all QNMs.
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Figure 5. We plot the k = 1 OPE sum rule partial sums sm for ∆ = d = 4 as a function of m.

Example: ∆ = 4, d = 4. Let us consider the k = 1 sum rule explicitly for ∆ = 4 and
d = 4. Setting β = 1, we get the following equation

∞∑
n=1

Re
(
ω2
n − (ωasy

n )2
)
= δc3

4 ≃ 15.281. (6.8)

To check this sum rule let us introduce partial sums sm ≡ 1 −
∑m

n=1 Re
(
ω2

n−(ωasy
n )2

)
15.281 . For

m→ ∞, the partial sums sm approach 0. We can compute the first few QNMs numerically
using QNMSpectral and check how well the sum rules are satisfied. The reader can find these
modes in the accompanying file modes.txt. We plot sm in figure 5.

We also checked numerically that the leading large n asymptotic of δωn in this case
takes the form ≃ 0.340 e

−i π
48

n7/3 and this tail correctly accounts for the ∼ 23% of the sum rule
left for the k > 60 modes in figure 5.

6.2 Overall constant

There is one last piece of data that comes from the OPE that we have not used. It is the
overall normalization of the correlator at large ω, as given by (4.7). Similarly, on the product
formula side (1.2), G12(0) has not entered in any of the equations above because it does not
contribute to ∂ω logG12(ω). Likewise, it canceled in the ratio G12(ω)/G12(iω).

As above, we can imagine that the asymptotic large n expansion of QNMs is known.
We then can write

logG12(ω)−logGasy
12 (ω)= logG12(0)+

∞∑
n=1

log

(
1− ω2

(ωasy
n )2

)(
1− ω2

(ωasy∗
n )2

)
(
1− ω2

ω2
n

)(
1− ω2

(ω∗
n)2

) . (6.9)

We can now take the large ω limit to get the following equation

logG12(0) = logGOPE
12 + 2

∞∑
n=1

log |ωasy
n |2

|ωn|2
, (6.10)
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where logGOPE
12 can be computed given the normalization of the vacuum two-point function

of the operator of interest and the explicit form of ωasy
n via the following formula

logGOPE
12 = lim

ω→∞

(
logG12(ω)− logGasy

12 (ω)
)
. (6.11)

Example: shear viscosity in N = 4 SYM at strong coupling. Let us consider the
scalar two-point function for ∆ = 4 in d = 4. As reviewed in appendix G, this is related
to the shear viscosity in N = 4 SYM at strong coupling. Setting d = 4 in (G.13), the
prediction from gravity is

logG12(0) = log π
5

12 ≃ 3.23874, (6.12)

where we set β = 1. We would now like to understand how this result is reproduced from
the sum rule (6.10). The asymptotic form of the QNMs takes the form

ωasy
n = 2π(1 + i)

(
n+ 1

2 − i
log 2
2π

)
, (6.13)

see (6.6) for d = 4. Computing the large ω limit and using (4.7) we get

logGOPE
12 = log π

3

96 − log 9
4
√
2
(
π2 + log2(2)

)2 ≃ 3.07947. (6.14)

Therefore we get the following sum rule

∞∑
n=1

log |ωasy
n |2

|ωn|2
= 1

2 log
(

9
√
2π2(

π2 + log2(2)
)2
)

≃ 0.079637. (6.15)

To see how the sum rule is satisfied let us introduce partial sums sm ≡ 1 −
∑m

n=1 log |ωasy
n |2

|ωn|2

0.079637 ,
so that limm→∞ sm = 0. We compute ωn numerically using QNMSpectral, and we plot
sm in figure 6.

In principle we can repeat the same computation as above by including the next term
in the large n expansion,

δωasy
n = 6π

21/635/6e− 11iπ
12 Γ

(5
6
)

7n4/3Γ
(1
6
)
Γ
(1
3
) . (6.16)

With this correction the sum rule becomes

∞∑
n=1

log |ωasy
n + δωasy

n |2

|ωn|2
≃ −0.03873. (6.17)

We can again construct partial sums sm ≡ 1−
∑m

n=1 log |ωasy
n +δω

asy
n |2

|ωn|2

−0.03873 , and we plot sm in figure 6.
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Figure 6. We plot the partial sums sm for shear viscosity as a function of m. The black dots
correspond to the choice (6.13) for the asymptotic modes, whereas the magenta dots include one extra
correction as in (6.16). We see that for the corrected model (in magenta), knowing the first 10 QNMs
allows us to satisfy the sum rule with 0.3% error.

7 Positive moments for hydrodynamics

It is interesting to see how the location of QNMs translates into the low-energy (hydrodynamic)
expansion of the correlator. In this section, we find that by restricting the location of QNMs
to a subregion of the complex plane, we get nontrivial bounds on the hydrodynamic expansion
coefficients.

The basic observation is that the no-zero property of the thermal correlator can be thought
as positivity of the discontinuity of logG12(ω). The product formula (1.2) corresponds to
the dispersive representation of logG12(ω), with logG12(0) being the subtraction constant.
We then find that the coefficients of the low-energy expansion of the two-sided correlator
are related to certain moments of the non-negative density of QNMs.

The mathematical structure that emerges is similar to bounds that appear in the context
of scattering amplitudes [41]. The role of Wilson coefficients is played by the hydrodynamic
expansion, whereas the role of dispersion relations is played by the product formula (1.2).

To follow this idea, it is convenient to introduce a positive-definite measure

ρ(ω) =
∞∑
n=1

δ(2)(ω − ωn) ,

ρ̃(ω) =
∞∑
n=1

δ(ω − ω̃n) , (7.1)

where ωn are QNMs which satisfy Re ωn > 0, Im ωn > 0. As before it is also convenient
to separately consider purely imaginary QNMs, for which ω = iω̃n for real ω̃n. In terms
of these densities we can write

log G12(ω)
G12(0)

= −
∫
d2ω̂ ρ(ω̂) log

[(
1− ω2

ω̂2

)(
1− ω2

(ω̂∗)2

)]
−
∫
dω̃ ρ̃(ω̃) log

(
1 + ω2

ω̃2

)
. (7.2)
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Let us consider next the low energy expansion of the two-sided correlator. It takes
the following form,

log G12(ω)
G12(0)

=
∞∑
k=1

(−1)k 2µk + µ̃k
k

ω2k, (7.3)

where

µk =
∫
d2ω̂ ρ(ω̂)Re 1

(−iω̂)2k ,

µ̃k =
∫
dω̃ ρ̃(ω̃) 1

ω̃2k . (7.4)

We immediately see that the hydrodynamic expansion is naturally organized in powers of
the smallest QNM. To this end, let us introduce ωmin and ω̃min for the QNMs closest to the
origin. It is convenient to define the moments in units of |ωmin|. For this purpose we can write

log G12(ω)
G12(0)

=
∞∑
k=1

(−1)k
k

(
2µk

ω2k

|ωmin|2k
+ µ̃k

ω2k

ω̃2k
min

)
, (7.5)

where the moments have been defined as follows,

µk =
∫
|ω̂|≥1

d2ω̂ ρ(ω̂)Re 1
(−iω̂)2k ,

µ̃k =
∫ ∞

1
dω̃ ρ̃(ω̃) 1

ω̃2k . (7.6)

We therefore see that the low-energy expansion is related to moments of the QNM density.
In fact, the moment problem for µ̃k is nothing but the simplest Hausdorff moment problem,
which can be seen by switching to ỹ = 1

ω̃2 ∈ [0, 1].
The moment problem for µk is more nontrivial since it involves the geometry of the 2d

plane. Below we restrict our considerations to the cases where the QNMs are supported
in the region Re ωn ≤ Im ωn. For this configuration µ1 ≥ 0 and it is natural to consider
bounds on the ratios (µ2

µ1
, µ3
µ1
). We have derived the bounds in two steps. First, we derived

the bounds numerically by discretizing the region of support of QNMs and then solving
the coupling maximization problem using LinearProgramming in Mathematica. We then
have identified the boundary of the allowed regions analytically, finding that for the cases
considered here they are very simple.

7.1 Purely imaginary QNMs

We first consider the simplest case when QNMs are purely imaginary so that µi = 0.
Restricting our attention to (µ̃1, µ̃2, µ̃3), we can write down a set of optimal constraints [42]:

µ̃1 ≥ µ̃2 ≥ µ̃3 ≥ 0,
µ̃1µ̃3 − (µ̃2)2 ≥ 0. (7.7)

The allowed region is depicted in figure 7.
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Figure 7. (a) We plot the allowed region for the ratios ( µ̃2
µ̃1
, µ̃3

µ̃1
) of the first three low-frequency

expansion coefficients for the case when all QNMs are purely imaginary, see (7.7). The boundary
of the allowed region can be realized with two QNMs and one QNM. The red curve corresponds to
the zero momentum BTZ correlator (7.8) as ∆ is varied. For small ∆ → 0 the moments reach the
upper-right cusp. The black and magenta dots are the results for the SYK chain at different momenta
for the couplings v = 0.8 and v = 0.2 correspondingly, with the momentum chosen in a range where
all the poles are on the imaginary axis. As the momentum becomes small the points approach the tip
of the allowed region. (b) The same plot but zoomed closer to the tip of the allowed region. We see
that for small momenta the SYK chain results are close to saturating the upper bound.

An example of this type is provided by the BTZ correlator at zero momentum, for
which we have

µ̃1 =
∆2

2 ψ(1)
(
∆
2

)
, µ̃2 =

∆4

48 ψ
(3)
(
∆
2

)
, µ̃3 =

∆6

3840ψ
(5)
(
∆
2

)
. (7.8)

Doing a shift ∆ → ∆ − d−2
2 one recovers the Rindler space correlator, and by replacing

∆ → 2
q we get the result in the SYK model.

Let us quickly comment on the structure of the boundary of the allowed region in
figure 7. Let us introduce 0 ≤ x = 1

ω̃ ≤ 1. Then the green upper line corresponds to
ρ̃(x) = αδ(x) + (1 − α)δ(1 − x) with 0 ≤ α ≤ 1, with the upper cusp corresponding to
α = 0 and the lower cusp corresponding to α = 1. The blue boundary corresponds to
ρ(x) = δ(x − x0).

7.2 QNMs on a line

For the next model we consider the case where all QNMs are located on a single line in
the complex plane. In other words, we consider

ωn = eiϕ + ane
iθ, (7.9)

where an ≥ 0 and real. This case again effectively reduces to a one-dimensional mo-
ment problem. This time, however, it is not easily treated analytically. It is nevertheless
straightforward to work out the desired bounds numerically, by reformulating it as a linear
programming problem.
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Figure 8. (a) We plot the allowed region for the ratios (µ2
µ1
, µ3

µ1
) of the first three low-frequency

expansion coefficients for the case when all QNMs lie on the line (7.9) with ϕ = π
4 and θ = π

2 .
The boundary of the allowed region can be realized with two QNMs and one QNM. The red curve
corresponds to the k = ∆ momentum BTZ correlator (7.8) as ∆ is varied. For small ∆ → 0 the
moments approach µ2

µ1
→ −∞ and µ3

µ1
→ 0. (b) The same plot but zoomed closer to the boundary of

the allowed region. Notice that slightly positive values of µ2
µ1

are realized for certain ∆s.

To be concrete let us consider the particular case ϕ = π
4 and θ = π

2 . We first notice
that in this case µ1 ≥ 0, where µ1 = 0 corresponds to a degenerate case where we have
a single QNM at a = 0, where a is defined in (7.9). We can then derive the bounds for
(µ2
µ1
, µ3
µ1
) shown in figure 8.

Let us compare the derived bounds with the explicit results for the BTZ black hole for
momentum k = ∆ (which corresponds to ϕ = π

4 )

µ1 =
∆2

4

[
ψ(1)

(
1 + i

2 ∆
)
+ ψ(1)

(
1− i

2 ∆
)]

,

µ2 =
∆4

48

[
ψ(3)

(
1 + i

2 ∆
)
+ ψ(3)

(
1− i

2 ∆
)]

,

µ3 =
∆6

1920

[
ψ(5)

(
1 + i

2 ∆
)
+ ψ(5)

(
1− i

2 ∆
)]

. (7.10)

We see that we get a two-sided bound for µ3
µ1

, but only a one-sided bound for µ2
µ1

. Moreover,
the simplest example of the BTZ black hole correlator realizes arbitrarily negative µ2

µ1
.

Let us explain the structure of the boundary of the allowed region in figure 8. The
green upper line corresponds to a pair of QNMs ρ(a) = αδ(a−

√
7+1√
2 ) + (1− α)δ(a), where

0 ≤ α ≤ 1. As α → 0 the point moves to minus infinity, whereas for α = 1 it touches the
blue boundary which is described by a single QNM ρ(a) = δ(a− a0) with 0 ≤ a0 ≤

√
7+1√
2 .
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Figure 9. The allowed region for the ratios (µ2
µ1
, µ3

µ1
) for the case when all QNMs lie in the sectorial

domain (7.11). The boundary of the allowed region can be realized with two QNMs and one QNM.
The pink domain corresponds to the BTZ black hole for 0 ≤ k ≤ ∆ and arbitrary ∆. The black dots
represent the results for charged AdS black holes for ∆ = 4 and different values of charge Q ranging
from .42 to 1.27. In this range the QNMs are all contained within the sectorial region (7.11).

7.3 Sectorial QNMs

Finally, we consider the case where the allowed region of support of QNMs is given by a
sectorial region:

Im ωn ≥ 1, Re ωn ≤ Im ωn. (7.11)

It includes the two cases considered above but also allows for two-dimensional configurations
of QNMs (not necessarily located on a line). We plot the results in figure 9.

Let us comment on the structure of the boundary in figure 9. The upper green line
corresponds to a pair of QNMs ρ(ω) = αδ(ω − i) + (1 − α)δ(ω − (1 + i)) with 0 ≤ α ≤ 1.
As α→ 0 the point on the curve moves to the left, while α→ 1 corresponds to the cusp at
(1, 1), where we have only one QNM at i. The blue segment corresponds to a single QNM at
ω0 + i, where 0 ≤ ω0 ≤

√
7− 2. Finally, the lower green line is described by a pair of QNMs

ρ(ω) = αδ(ω − (
√
7 − 2 + i)) + (1 − α)δ(ω − (1 + i)) for 0 ≤ α ≤ 1.

An obvious question is: what happens to the bounds as we relax the condition (7.11)?
For example, a natural minimal condition to consider is Im ωn ≥ 1 which simply corresponds
to the statement that there is a minimal characteristic timescale for perturbations to decay.
We have not explored thoroughly what can be said about the structure of the hydrodynamic
expansion in this case. However, we observed that for (µ2

µ1
, µ3
µ1
) we do not get any nontrivial

bounds in this case.
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8 BTZ and Rindler space

Next we would like to discuss how the general structure discussed in the previous sections
is realized in various examples. We start by considering the simplest examples in which
the correlator is known analytically.

The two-sided correlator in the BTZ background is given by [6] (here β = 2π)

G12(ω, k) =
1

πΓ(∆− 1)2Γ
(
∆± i(ω + k)

2

)
Γ
(
∆± i(ω − k)

2

)
, (8.1)

where Γ(a ± b) = Γ(a + b)Γ(a − b). The poles are located at ωn = k + i(2n − 2 + ∆) for
n = 1, 2, . . . and the three images (−ωn, ω∗

n,−ω∗
n), with residues

λn = 2i(−1)nΓ(ik − n+ 1)Γ(n− 1 + ∆)Γ(−ik + n+∆− 1)
π(n− 1)!Γ(∆− 1)2 . (8.2)

The pole spacing is r = 2 at angle θ = π/2, and the subleading constant correction is
seiϕ = k + (∆ − 2)i, so the OPE constraints (5.7) and (5.10) indeed hold. Note that the
singularity sum rules (2.15) are not satisfied, since there is no curvature singularity in the
BTZ black hole. For instance, truncating the first sum rule at n = nmax gives

Re
nmax∑
n=1

ωnλn ∼ − 2k
sinh(πk)Γ(∆− 1)2n

2∆−1
max , nmax → ∞ (8.3)

This diverges as nmax → ∞, reflecting the fact that the contour integral along C∞ does
not vanish.

It is straightforward to verify that the BTZ two-sided correlator (8.1) can equivalently
be written using the product formula (1.2) with ωn = k + i(2n+∆) (note that G12(0, k) ̸= 1
in (8.1), so that the product formula will differ from (8.1) by a normalization). For k = 0
the simple poles merge into double poles on the imaginary axis.

An example of known higher-dimensional thermal correlators comes from CFTs on
S1
β × Hd−1 with β = 2π which can be conformally mapped to a Rindler wedge in Rd, see

e.g. [43]. The scalar two-point function on S1
β × Hd−1 was studied in [44] and is given

by (β = 2π)

G12(ω,k)=
π

d−2
2

Γ(∆)Γ
(
∆− d−2

2
)

×Γ
(
∆−(d−2)/2±i(ω+k)

2

)
Γ
(
∆−(d−2)/2±i(ω−k)

2

)
, (8.4)

which reduces to the scalar correlator in BTZ (8.1) for d = 2. Here k labels the principal
series representation of SO(1, d− 1), see [44] for details. This has no zeroes, and has poles
at ω = k + i

(
−d

2 +∆+ 2n− 1
)

for n = 1, 2, . . . and the corresponding images. Note also
that the OPE expansion of (8.4) is different from what we derived in section 4 because the
spatial slice Hd−1 has non-zero curvature. Given the poles, we can reconstruct the two-sided
correlator using the product formula.
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The retarded energy-energy two-point function in Rindler space was further obtained
in [45], for d = 4 it is given by

G
(d=4)
R,(tt,tt)(ω, k) = −cTπ

2

240 (k2 + 4)(k2 + 1)

×
[
ψ

(
1 + i(k − ω)

2

)
+ ψ

(
1− i(k + ω)

2

)]
. (8.5)

Using (A.7), the two-sided correlator is therefore found to be

G
(d=4)
12,(tt,tt)(ω, k) =

cTπ
3

480
4 + 5k2 + k4

cosh(πk) + cosh(πω) , (8.6)

which has poles at ωn = k + i(2n − 1) for n = 1, 2, . . . and the corresponding images.
Moreover, (8.6) has no zeroes and can be written equivalently using the product formula (1.2).

9 Examples in pure GR

In this section we consider examples that originate from matter minimally coupled to general
relativity in AdS. The utility of the product formula (1.2) comes from the fact that it fixes
the two-sided correlator in terms of the QNMs. The latter can be rather effectively found
numerically [12] (whenever they are not known analytically), thereby paving the way to
straightforwardly computing the two-sided correlator G12(ω).

9.1 General strategy

In this section we study QNMs numerically for various wave equations and use the (truncated)
product formula to reconstruct the correlator. More precisely, we can truncate the product
formula at a fixed number nmax of QNMs,

Gnmax
12 (ω) = G12(0)∏nmax

n=1

(
1− ω2

ω2
n

)(
1− ω2

(ω∗
n)2

) , (9.1)

and then systematically improve it by increasing nmax and/or attaching to it a tail of the
asymptotic QNMs. The error made in this way can be estimated as follows. As discussed in
section 5, one way to reproduce the OPE (which is realized in many examples that we will
consider) is if the poles are asymptotically linear. If asymptotically we have a single line of
QNMs ωn ≈ reiθn + . . . for 0 ≤ θ ≤ π

2 , then for ω ≪ ωnmax we have13

log G
nmax
12 (ω)
G12(ω)

= −2ω2 cos(2θ)
r2nmax

+ . . . . (9.2)

For the special case θ = π/4 (which holds for AdS5/Schwarzschild), the error is order 1/n2max.
If there are multiple lines of QNMs one has to sum over all of them.

Now let us introduce an improved truncation scheme which improves the error esti-
mate (9.2). Let us assume as above that we have ωn ≈ ωnmax + reiθ(n − nmax) for nmax

13Here we assume that the first nmax QNMs are known exactly, and do not take into account numerical error.
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large and n ≥ nmax. Assuming that we choose nmax big enough, we can then improve the
truncated solution by

Ĝnmax
12 (ω) = Gnmax

12 (ω)
Γ
(
ωnmax±ω
reiθ + 1

)
Γ
(
ω∗

nmax±ω
re−iθ + 1

)
|Γ
(ωnmax
reiθ + 1

)
|4

, (9.3)

where Γ(a± b) ≡ Γ(a+ b)Γ(a− b). Eq. (9.3) can be generalized to purely imaginary modes
with asymptotically linear scaling with the mode number n.

The improved correlator (9.3) correctly captures the large n behavior of QNMs, so that
for ωn = reiθ(n − nmax) + ωnmax + f

nγ eiρ + . . . we instead find

log Ĝ
nmax
12 (ω)
G12(ω)

= 4fω2 cos(3θ − ρ)
(2 + γ)r3n2+γmax

+ . . . , (9.4)

which is improved compared to (9.2) by a factor of n−(1+γ)
max for generic values of θ and ρ.

We begin this section with a toy model, the two-point function of R-currents in N = 4
SYM with zero spatial momentum. The correlator and the QNMs are known analytically
and can be compared with the truncated counterpart. We then move on to scalar QNMs in
a black brane background, which can be calculated using a variety of methods (see [10, 11]
and references therein). In practice we use the QNMSpectral package [12]. The truncated
correlator is then obtained using (9.1). We further show the applicability to stress tensor
correlators by studying metric fluctuations, and also consider the scalar correlator in a charged
brane background. In these examples, the QNMs grow asymptotically linearly with the
mode number n, so the truncated product formula can be improved using (9.3). For ω ∈ R
we further numerically solve the bulk wave equation to extract the correlator and compare
against the product formula with perfect agreement.

9.2 R-currents

Our first example is the two-point function of R-currents with zero spatial momentum14 in
N = 4 SYM [46], which is the simplest known example of a two-point function in a higher
dimensional black hole. The retarded Green’s function is

GR(ω, 0) = − N2

32π2

[
iω + ω2

(
ψ

(
(1− i)ω

2

)
+ ψ

(
−(1 + i)ω

2

))]
, (9.5)

where ψ is the digamma function and β = 2π.
Using (A.7), we find the two-sided Wightman function

G12(ω, 0) =
N2

32π
ω2

cosh(πω)− cos(πω) . (9.6)

The poles of this function in the upper right quadrant are at

ωn = (1 + i)n. (9.7)

14When k = 0 the correlators are the same for any polarization.
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Figure 10. We plot y = log(Gnmax
12 (ω, 0)/G12(ω, 0)) at ω = 1 for R-currents as a function of nmax

and compare against the red line y = 0.083
n3

max
− 0.12

n4
max

+ 0.078
n5

max
. The coefficient of n−3

max agrees with (9.11)
which predicts 1

12 ≈ 0.083.

The spacing between QNMs is r =
√
2 at angle θ = π/4, and the subleading constant

correction vanishes, so the OPE predictions (5.7) and (5.10) are indeed satisfied with ∆ = 3.
The residues are

λn = N2

32π
(1 + i)n2(−1)n

sinh(πn) . (9.8)

These satisfy the singularity sum rules (2.15), since

Re
( ∞∑
n=1

((1 + i)n)m (1 + i)n2(−1)n
sinh(πn)

)
= 0, for odd m > 0. (9.9)

Let us notice that the sum converges exponentially fast due to the 1
sinh(πn) factor. We now

assume that the QNMs ωn = (1 + i)n are given as input. Using the product formula (1.2),
we reproduce the expected result

G12(0, 0)
∞∏
n=1

1(
1− ω2

ω2
n

)(
1− ω2

(ω∗
n)2

) = G12(0, 0)
π2ω2

cosh πω − cosπω (9.10)

On the other hand, truncating to include the first nmax QNMs, we plot in figure 10
log(Gnmax

12 (ω, 0)/G12(ω, 0)) at ω = 1 as a function of nmax. In this case, the modes are
given by ωn =

√
2eiπ

4 n, with no subleading terms in 1/n. One then finds along the lines
of (9.2) that

log G
nmax
12 (ω, 0)
G12(ω, 0)

= ω4

12n3max
+ . . . . (9.11)

For ω = 1 this decays as 1
12n

−3
max, in agreement with the observed values in figure 10.

9.3 Scalar QNMs in black branes

We now consider a more nontrivial example for which we resort to numerics: the scalar
two-point function with ∆ = 4 on S1

β × R3 dual to a massless scalar field in an AdS black
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Figure 11. (a) QNMs for a massless scalar field with k = 0, 2, with temperature set to T = π−1.
(b) G12 for k = 0 and k = 2. The lines correspond to the results obtained using the first 27 modes
and a tail of modes with r = 2

√
2 and θ = π

4 , while the points correspond to the result obtained by
numerically solving the bulk wave equation and extracting the correlator.

brane background.15 This is equivalent to the scalar perturbation of the metric in pure GR
and the correlator will therefore be the same as for ⟨TxyTxy⟩.16 The metric is given by17

ds2 = 1
u
(−f(u) dt2 + dx⃗2) + du2

4u2f(u) , (9.12)

where f(u) = 1 − u2 and u = r2
0
r2 , r0 being the horizon radius. In (9.12) without loss of

generality we set the AdS radius and r0 to 1, which fixes the temperature β = π. The
wave equation for a scalar field ϕ(u, t, z) = ϕ(u)e−iωt+ikz dual to an operator with ∆ = 4
is then given by (

∂2u −
1 + u2

uf
∂u +

ω2 − k2f

4uf2

)
ϕ(u) = 0. (9.13)

Imposing infalling boundary conditions ϕ(u) ∼ (1 − u)−iω/4 at the horizon u → 1, we can
extract the retarded correlator and hence the two-sided correlator using (A.7). For further
details see e.g. [6, 47, 48].

In figure 11(a) we display the first 7 QNMs obtained from (H.2) for a scalar field with
k = 0 and k = 2. The truncated product formula with nmax = 27 modes and improved with
r = 2

√
2 and θ = π

4 is shown in figure 11(b), where we also compared against the result
obtained from numerically solving the ODE (9.13) in Mathematica.

As shown analytically in section 5, the OPE predictions for the linear and constant
term in the QNM asymptotics are satisfied for this model. We can see this numerically as
well. A numerical fit in the two cases gives

ωn ≃ c(k) + 2.00(1 + i)n ,
c(0) ≃ 1.219 + 0.7789i , c(2) ≃ 1.28 + 0.76i .

(9.14)

15It is straightforward to do the same computations for generic values of ∆.
16Up to overall normalization.
17We follow the conventions in [47].
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Figure 12. (a) QNMs in the shear channel for k = 6
10 and k = 12

10 . (b) Im GR,(tx,tx) for k = 6
10 and

k = 12
10 , where the lines were obtained from the improved truncated product formula with nmax = 13,

r = 2
√
2 and θ = π

4 . The points were obtained from NDSolve. For small k the peak is located at
ω = k2

4 , due to the hydrodynamic shear mode [48]. As above, we have chosen the normalization for
the product formula to agree with the result from NDSolve at the lowest value of ω used in the latter,
as well as chosen the absolute normalization arbitrarily.

Comparing with (5.7) we find

4π sin θ
r

≃ 3.14 ≃ π ≃ β, (9.15)

consistently. Likewise, for the subleading term in the OPE expansion we find for k = 0

4s cos(θ − ϕ)
r

+ 2 ≃ 4.00, (9.16)

in agreement with (5.10) for ∆ = d = 4. For k = 2 with nmax ∼ 80 modes we get ≃ 4.05.
The picture discussed here does not change qualitatively as we change ∆ or d. As we

vary ∆ away from 4 we get more contributions in the large ω OPE expansion. We considered
∆s for which both the stress tensor and the double-trace stress tensor operators appear,
and checked that the product formula correctly reproduces the numerical solution. One
difference as we change d is that the asymptotic angle at which the QNMs approach infinity
changes to e−iπ

d , see (6.6). As a noteworthy example, it has been recently shown [49] that
QNMs of the gravity dual to the BFSS matrix model [50] can be computed using the black
brane geometry in d = 14

5 .

9.4 Metric fluctuations

In this section, we will observe numerically that the product formula (1.2) correctly reproduces
the correlator for metric fluctuations. The metric perturbations hµν are classified according
to their symmetry properties with respect to rotations along the transverse directions of the
propagation. This leads to three gauge invariant combinations Zi = Zi(hµν), corresponding
to three independent scalar functions determining the stress tensor two-point functions at
the boundary. However, note that the analysis of the zeroes of the Wightman function in
appendix C is only applicable for the scalar wave equation, since the potential for metric
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Figure 13. (a) QNMs in the sound channel for k = 6
10 , 3. (b) Im GR,(tt,tt) for k = 6

10 , 3 with
nmax = 13, r = 2

√
2 and θ = π

4 . For small k there is a sharp peak located at ω = k√
3 due to the

hydrodynamic sound mode [48]. Here we have chosen the normalization for the product formula to
agree with the result from NDSolve at the lowest value of ω used in the latter, as well as chosen the
absolute normalization arbitrarily.

fluctuations contains singularities at positions depending on the spatial momentum and
frequency (see [51] for a recent discussion). It would be interesting to generalize the analysis
to metric fluctuations as well. We leave this problem for future work.

The scalar perturbation is equivalent to a ∆ = 4 scalar, which was studied in section 9.3.
For the shear channel Z1 and sound channel Z2, the wave equations are given by [47](

∂2u + pi∂u + qi
)
Zi(u) = 0, (9.17)

where

p1 =
(ω2 − k2f)f + 2u2ω2

uf(k2f − ω2) (9.18)

q1 =
ω2 − k2f

4uf2 (9.19)

p2 = −3ω2(1 + u2) + k2(2u2 − 3u4 − 3)
uf(3ω2 + k2(u2 − 3)) (9.20)

q2 =
3ω4 + k4(3− 4u2 + u4) + k2(4u2ω2 − 6ω2 − 16u3f)

4uf2(3ω2 + k2(u2 − 3)) . (9.21)

Here f(u) = 1−u2 and we have set β = π. Given the gauge-invariant observables Zi, the stress
tensor two-point functions for various polarisations can be extracted, see [47, 48] for details.

In figure 12(a) we have plotted the QNMs in the shear channel for k = 6
10 and k = 12

10 .
In figure 12(b) we plotted the imaginary part of the retarded correlator Gtx,tx for ω ∈ R
using the improved truncated product formula and compared against the numerical solution.
Similarly, in figure 13(a) we plotted the QNMs in the sound channel for k = 0.6 and k = 3,
and the comparison between the improved truncated product formula and the numerical
solution of the bulk wave equation in figure 13(b). The asymptotic behavior of the QNMs
for metric fluctuations was obtained in [28, 29] in general dimensions. For both the shear
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Figure 14. (a) QNMs in a charged black brane with Q = 1 and k = 0, 2. (b) G12 for Q = 1 and
k = 0, 2. Here we have used nmax,2 = 19 and nmax,1 = 24, and we have extended with the asymptotics
r2 = 3.60, ϕ2 = 0.89, r1 = 1.76 and ϕ1 = π

2 .

and the sound channel these are given by

ωasy
n = 4π

β
ei

π
d sin

(π
d

)(
n+ d− 2

4 − i log 2
2π

)
, (9.22)

which is the same as a scalar with ∆ = d. Note that in both cases the hydrodynamic modes
are not included. It is then seen that the OPE of TtxTtx is correctly reproduced, since

∂ω logG12,(tx,tx)(ω) = −β2 + d− 2
ω

+ . . . , (9.23)

where we used (5.2), (5.7) and (5.10) together with (9.22), ∆ = d and the fact that there is a
purely imaginary hydrodynamic mode and its image contributing as − 2

ω . Likewise, we find that

∂ω logG12,(tt,tt)(ω) = −β2 + d− 4
ω

+ . . . , (9.24)

in agreement with expectations for the TttTtt OPE. The term − 4
ω is again due to the

hydrodynamic mode and its images.

9.5 Charged black brane

In this section we consider a scalar correlator in a charged state, dual to a charged black brane.
The QNMs in a charged AdS black hole were analyzed in [28, 52, 53]. The main new feature
in this case compared to the uncharged case is the presence of an infinite line with purely
imaginary modes. By modifying the truncated product ansatz (9.1) to include such imaginary
modes we will again verify good agreement with the numerical solution on the real line.

The metric for a charged black brane is given by, see e.g. [54],

ds2 = −r2f(r) dt2 + dr2

r2f(r) + r2 dx⃗2, (9.25)

where f(r) = 1 − µr−4 + Q2r−6. We fix the temperature T = 1
π (1 − Q2

2 ) by setting the
horizon at r = 1, which further implies that µ = 1 + Q2.
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In figure 14(a) we plot the QNMs with Q = 1 and k = 0, 2, which contain a new
infinite line of imaginary modes that were absent in the uncharged case. In figure 14(b)
we compare the numerical solution to the improved truncated product formula, modified
to include pure imaginary modes.

To compare with (5.15) we fit the two lines of QNMs. For the k = 0 case, using about
50 complex modes and 80 imaginary modes we find

ω1,n ≃ i(−0.867 + 1.76n) ,
ω2,n ≃ (1.33 + 1.21i) + (2.27 + 2.79i)n .

(9.26)

The OPE predictions are then satisfied,

4π sin θ2
r2

+ 2π
r1

≃ 6.28 ≃ β,

4s2 cos (θ2 − ϕ2) + 2r2
r2

+ 2s1 + r1
r1

≃ 4.00 ∼ 2∆− d .

(9.27)

For k = 2 and a similar number of modes we get 2∆ − d ≃ 4.13, consistent with the fact
that we expect slower convergence for higher k.

10 Higher derivative corrections

The examples considered so far have all been at infinite λ, but the product formula (1.2) is
equally applicable when higher derivative corrections are taken into account. In this section
we analyze several instructive examples of higher derivative terms in the Lagrangian, and
confirm the product formula and the predictions from the OPE.

10.1 Gauss-Bonnet black holes

Let us first calculate the QNMs in Gauss-Bonnet gravity, from which we compute the
two-point function and compare with the numerical solution to the wave equation. The
Gauss-Bonnet QNMs were previously discussed in [55, 56].

Consider a black brane in Gauss-Bonnet gravity, with the metric [57, 58]

ds2 = −r
2f(r)
L2f∞

dt2 + L2 dr2

r2f(r) +
r2

L2 (dx
i)2, (10.1)

where f∞ = 1−
√
1−4λGB
2λGB

, λGB is the Gauss-Bonnet coupling and

f(r) = 1
2λGB

1−

√
1− 4λGB

(
1−

r4+
r4

) , λGB ≤ 1
4 . (10.2)

The AdS radius is given by L̃2 = L2/f∞. The Hawking temperature is

T = r+
πL2√f∞

. (10.3)

From now on we set L = 1 and further fix the temperature in terms of λGB by setting r+ = 1.
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Figure 15. (a) Gauss-Bonnet QNMs for λGB = 8
100 and k = 0, 2. (b) Scalar correlator with ∆ = 4

for λGB = 8
100 and k = 0, 2. Here we have used nmax,1 = 17 purely imaginary modes and nmax,2 = 44

complex modes.

The QNMs can be calculated as above by passing to Eddington-Finkelstein coordinates,18

and are shown for a scalar operator with ∆ = 4 in figure 15(a). Likewise, the numerical
solution of the correlator is shown in figure 15(b) and compared against the improved
truncated product formula.

A numerical fit gives for the two lines of QNMs (again we restrict to the k = 0 case)

ω1,n ≃ 7.77in ,
ω2,n ≃ (2.53 + 2.54i)n .

(10.4)

This gives

4π sin θ2
r2

+ 2π
r1

≃ 3.30, (10.5)

while the inverse temperature reads

β = π

√
1−

√
1− 4λGB
2λGB

≃ 3.29, (10.6)

consistently with (5.15). To check the subleading sum rule more QNMs are needed, and
we leave this problem to future work. It would be also curious to generalize this analysis
to metric perturbations [59, 60].

10.2 ϕ2W 2 coupling

We now introduce a higher derivative term that displays novel behavior for QNMs. In
particular, we will find a line of imaginary modes which asymptotically behave as ωn ∝ in3.

Let us consider the Lagrangian

L = −1
2

∫
d5x

√
−g
[
(∂ϕ)2 +m2ϕ2 + αW 2ϕ2

]
, (10.7)

18One needs to take into account the extra factor of f−1
∞ in the dt2 term in the metric (10.1).
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Figure 16. (a) Massless QNMs for α ≲ 0. Here we have a line of imaginary modes with n3 scaling.
(b) Large ν scalar black brane QNMs with an αW 2ϕ2 coupling, with αc < ᾱ < 0 and ν = 18. The
spacing between the imaginary modes starts linearly, and gradually increases when going towards the
asymptotic ω ≫ ν region. In both plots k = 0.

where W is the Weyl tensor. A similar interaction W 2ϕ was analyzed in [61, 62] as a model
for higher derivative corrections to the one-point function. We consider again the black brane
metric (9.12) with β = π. The squared Weyl tensor in these coordinates is

WµνρσW
µνρσ = 72u4 . (10.8)

The equation of motion reads(
∂2u −

1 + u2

uf
∂u +

ω2 − k2f

4uf2 − ∆(∆− 4)
4u2f(u) − 18u2

f
α

)
ϕ(u) = 0. (10.9)

The coupling α is measured in units of the AdS radius L = 1. We plot the QNMs for
α = −0.2 and α = −0.3 in figure 16(a). For these values of the coupling we find a line
of imaginary QNMs with nonlinear spacing. A numerical fit involving 5 imaginary modes
for α = −0.2 gives for this line

ω1,n ≃ i(an3 + bn2) , a ≃ 2.1 , b ≃ 0.13 . (10.10)

The OPE expansion predicts that the line of complex QNMs takes the form

ω2,n ≃ reiθn+ seiϕn1/3 + c . (10.11)

A numerical fit involving about 70 complex modes confirms the predictions and sets

c ≃ 0.80ei0.96 , r ≃ 2.8 , θ ≃ 0.78 ≃ π

4 , s ≃ 1.8 , ϕ ≃ 0 . (10.12)

From (5.7)

β = 4π sin θ
r

≈ 3.1 ≈ π, (10.13)
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consistently. Finally, we also confirm the prediction made in (5.20), that is

r4/3a−1/3

2 cos
(
π
6 − 4

3θ
) ≈ 1.8 ≈ s . (10.14)

Note that b, c will contribute at higher orders in the ω−1 expansion.
Here we only considered QNMs for α ≲ 0. More generally, the structure of the QNMs as

a function of α displays a rich structure. To gain a qualitative understanding, let us consider
the WKB limit ω, ν, α → ∞ with α/ν = ᾱ and ω/ν fixed. The WKB potential reads

V (z) = f(r)
(
1 + 72ᾱ

r8

)
= f(r)

(
1− ᾱ

αc

1
r8

)
, (10.15)

where r = 1/u2 is the usual radial coordinate. We start by considering ᾱ < 0. In this case,
since the α term dominates close to the singularity, the potential goes to +∞ as r → 0.
We can distinguish 3 cases:

• ᾱ = −1/72 = αc. The WKB potential is positive definite and has a global minimum at
the horizon r = 1 (z → ∞). Here

lim
z→∞

∂nz V (z) = 0 , n ≥ 0 , (10.16)

but limz→∞ V (z)−1∂2zV (z) = −16. Therefore we can still apply (3.13), and we find a
new line of poles at ωn = −(2 + 4n)i for n ≥ 0.

• ᾱ < αc. The global minimum moves outside the horizon to a finite value of z where V (z)
is negative. This minimum leads to linearly spaced (∂2zV (zmin) ̸= 0) purely imaginary
modes in the upper half plane. These modes correspond to bound states, since for
ωn = i|ωn| the ingoing solution behaves as e−|ωn|z as z → ∞. As mentioned in section 3,
they are associated to an instability of the black hole.

• αc < ᾱ < 0. The minimum moves inside the horizon, and the potential hosts virtual
bound states corresponding to linearly spaced QNMs on the lower imaginary axis.

On the other hand when ᾱ > α∗ > 0, with α∗ ≃ 0.12, the potential develops a metastable
minimum outside the horizon, corresponding to weakly damped QNMs. If α∗ > ᾱ > 0 the
metastable minimum becomes complex and the QNM spectrum is qualitatively unchanged
compared to the α = 0 case.

Note that the WKB analysis holds for ω ∼ ν, while to compare with the OPE predictions
we need to analyze the asymptotic behavior of QNMs in the limit ω ≫ 1,∆, k. The qualitative
features of the QNMs are the same as discussed above. The main difference is in the spacing
between modes in the case αc < ᾱ < 0. As shown in figure 16(b), in the large ν regime the
separation between these modes indeed starts linearly, but increases gradually as ω becomes
larger than ν, until we find ωn ∝ in3 as noted previously.
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11 Beyond the strong coupling limit

In the bulk of this paper we have discussed the analytic properties of the two-point function
in the holographic regime of infinite N and infinite λ. In order to understand the range
of applicability of our results, it is important to analyze which of these properties survives
at finite coupling and finite N .

Let us first discuss the effect of 1/N corrections. At one loop, the two-point function
develops a branch cut, corresponding to late-time hydrodynamic tails [39]. As a result, the
Wightman function is not an analytic function of frequency, so its poles and zeroes are no
longer enough to determine the full function. It follows that the results presented here have
limited applicability at finite N (at least without some modification).

We now turn to the case where the coupling is finite but N is infinite. In the rest of this
section, we will present several instructive examples of lower-dimensional models where the
holographic properties (meromorphy and no zeroes) extend to arbitrary coupling. We first
consider the SYK model [63–66], a chaotic 0+1 dimensional theory with a built-in disorder
average. We then discuss a 1+1 dimensional generalization of the SYK model known as
the SYK chain [67, 68]. In both cases, G12 is meromorphic and has no zeroes, which shows
that the analytic properties of a holographic CFT have a chance of extending beyond the
holographic regime. We conclude with several examples of non-chaotic theories, in which
both properties are violated.

11.1 SYK

The SYK model is a quantum mechanical system of N fermions, with a random coupling
involving an even number q fermions at a time. The Hamiltonian is given by [63–66]

H = iq/2
∑

1<i1<...i1<N
ji1...iqψi1 · · ·ψiq , ⟨j2i1...iq⟩ =

J2(q − 1)2
N q−1 . (11.1)

We consider the limit N → ∞ with q fixed, followed by the limit q → ∞. In this regime,
the two-sided Wightman function is given by [63, 69]

G12(t) ∝
1

cosh
(
πtv
β

)2/q , βJ = πv

cos
(
πv
2
) . (11.2)

Fourier transforming, we find

G12(ω) ∝ Γ
(
1
q
− iβω

2πv

)
Γ
(
1
q
+ iβω

2πv

)
. (11.3)

For any value of the coupling v, this is a meromorphic function of ω. The poles all lie
on the imaginary axis,

ωn = ±2πi(1/q + n− 1)v
β

, n = 1, 2, . . . (11.4)

Moreover, there are no zeroes, echoing the property discussed in the holographic context. In
this model, the Wightman function is structureless as a function of the coupling, since G12(ω)
is only a function of ω/v. In order to get a richer structure, we next turn to the SYK chain.
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11.2 The SYK chain

The SYK chain is a generalization of the SYK model to a lattice model in 1+1 dimensions.
This lattice model contains both on-site interactions between q fermions and nearest neighbor
interactions between q/2 fermions from each site. We refer the reader to [67, 68] for the
full definition of the model.

As above, we take the limit N → ∞, followed by q → ∞. We consider the two-point
function of energy density operators in this limit. The two-point function was computed
in [67] to be (here we have used (A.7) and set β = 2π)

G12(ω) ∝
i

sinh(πω)∂θ log
(
f(−ω, θ)
f(ω, θ)

) ∣∣
θ=θv

, (11.5)

where

f(ω,θ)=
iΓ
(
1− h

2 −
iω
2v

)
sin
(

πh
2 + πiω

2v

)
sinh

(
πω
2
)

Γ
(1

2−
h
2 +

iω
2v

) cosθ(sinθ)h
2F1

(
1+h− iω

v

2 ,
1+h+ iω

v

2 ,
3
2 ,cos

2 θ

)
+
Γ
(1−h

2 − iω
2v

)
cos
(

πh
2 + πiω

2v

)
cosh

(
πω
2
)

2Γ
(
1− h

2 +
iω
2v

) (sinθ)h
2F1

(
h− iω

v

2 ,
h+ iω

v

2 ,
1
2 ,cos

2 θ

)
.

(11.6)

The parameter h is given by

h = 1
2

(
1 +

√
9 + 4γ(cos k − 1)

)
, (11.7)

where k is the spatial momentum and γ controls the relative strength of the on-site and
intersite couplings, with 0 ≤ γ ≤ 1. Finally, we have defined

θv =
π

2 (1− v), (11.8)

where 0 < v < 1 is the overall coupling strength.
The two-point function (11.5) defines a meromorphic function of frequency for any

coupling. In figure 17 we plot G12(ω) for several values of the parameters. The poles
of this function are all close to, but not necessarily on, the imaginary axis. Moreover,
there are no zeroes, so this model provides a nontrivial example where the properties of
the holographic Green’s function extend beyond the holographic regime. We have checked
numerically that (11.5) has no zeroes for various parameter values. It would be interesting
to prove this analytically.

11.3 Non-chaotic theories

In theories which are not chaotic, we do not expect the no-zeroes or meromorphy properties
to hold. For example, consider N = 4 SYM at zero ’t Hooft coupling, as analyzed in [7].
Setting β = 2π, the Wightman function for O = Tr F 2 at zero spatial momentum is given by

G12(ω, 0) =
N2

8π
ω4

sinh2(πω/2)
. (11.9)
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(a) (b)

Figure 17. (a) A plot of G12(ω) in the complex ω plane for k = 1.297, γ = 1, and v = .8. As shown
in the legend, the coloring captures the phase and the brightness signifies the magnitude. The poles,
shown in white, are all on the imaginary axis. Putative zeroes would be shown in black, and are
absent. (b) Here the parameters are taken to be k = 1.35, γ = 1, and v = .8. The first two poles have
moved off the imaginary axis, as pointed out in [67]. There are still no zeroes.

This is an analytic function of ω. However, we see that there is a zero at ω = 0, so the
no zeroes property no longer holds.

When a nonzero spatial momentum is introduced, the correlator develops branch cuts
in the complex ω plane [7],

G12(ω,k)=−
N2 (k2−ω2)2
8π2ik sinh(πω)

(i−ω) log(ω+k
ω−k

−i0
)
+2i log

Γ
(
− i(k+ω)

2

)
Γ
(
i(k−ω)

2

) −(ω→−ω)

 .
(11.10)

It follows that the analyticity property is broken at finite momentum. Let us briefly discuss
the properties of this function as we increase k. First of all we see that it has a zero at ω = k

(the same that we observed for k = 0). At this point we have ω − k = 0 and therefore our
local operator carries a null momentum, and thus can be interpreted as a light-ray operator
that annihilates the vacuum [70]. Resolving the identity as in [71], we can write the thermal
expectation value as a sum of double commutators which have zeros at certain integer-spaced
values of scaling dimensions. Due to the integrability of the free theory the whole spectrum
consists of integer-valued scaling dimension operators and we get zero. For the same reason
we do not expect G12(ω, k) to have zeros for real ω in interacting theories. For k > ω the
correlator decays exponentially fast with the rate e−πk as expected on general grounds [6, 34].

It is important to understand whether analyticity and no-zeroes are restored at small
but finite ’t Hooft coupling. A resummation is likely necessary to address this problem,
since perturbation theory in λ breaks down at late times [72]. An alternative possibility is
that there is a transition between the holographic and free field theory behaviors at some
intermediate coupling (see also [56, 73, 74] for related discussions).
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Another simple example of a nonchaotic system is generalized free field theory. The
generalized free field result takes a very simple form for the case S1 × Rd−1, where the
two-sided correlator is given by the vacuum block in (4.4), see [32].19 Ignoring the θ(ω2− k2),
we see that the two-sided correlator exhibits branch cuts at ω = ±k and a power-law behavior
along the imaginary axis ω → ±i∞ in contrast to the result in the black hole phase. Let
us also mention that below the Hawking-Page transition the correlator to leading order is
given by the generalized free field result on S1 × Sd−1.

It is an interesting question what happens for interacting QFTs in AdS at finite tem-
perature. Perturbatively, we do not expect to see any change [75]. However it could be
that perturbation theory breaks down at large (but not too large) times, which happens
in other related cases [72].

Finally, vector models in d = 3 at large N are characterized by weakly broken higher
spin symmetry [76], and in this sense are not chaotic. This manifests itself for example
through the fact that higher spin currents have anomalous dimension O(1/N). Another
way to see that these theories are not chaotic is that the Lyapunov exponent is O(1/N)
in this case [77]. Thermal correlators in the O(N) models have been studied for example
in [78–80]. The basic result is that they do not exhibit quasi-normal modes as expected in
chaotic theories, and they have branch cuts in the ω-plane. Similarly, we expect Chern-Simons
matter theories at finite temperature [81] not to exhibit meromorphy and no-zero structure,
but we have not explicitly checked this.

12 Conclusions and further discussion

The emergence of semi-classical gravity in holography is associated with strongly coupled
quantum dynamics. Thermal correlators are particularly interesting observables in this regard
since the dual geometry contains a black hole. However, understanding thermal correlators in
strongly coupled systems is a challenging task. In particular, developing efficient bootstrap
methods for probing them is an open problem.

In this paper we have considered the holographic thermal two-point function and we
noted that it exhibits an intriguing and non-obvious property: thermal two-sided correlators
do not have zeros in the complex energy plane. From the dual geometry point of view, this
property is very closely associated with the presence of the black hole horizon. Together
with meromorphy, the no-zero property leads to the product representation of the thermal
correlator (1.2). We have derived this representation for holographic systems. However, we
believe it may hold more generally.

Thermal product hypothesis (TPH). The two-sided thermal two-point correlator in
a chaotic large N system is a meromorphic function with no zeros in the ω-plane. As such
it is given by a product over its poles.

From holography we expect that large N chaotic theories at finite temperature are
described by some kind of stringy black holes. Then the content of TPH is that at the
level of the thermal two-point function, stringy black holes behave like ordinary black

19Recall that for actual CFTs, we are always in the black hole phase on S1 × Rd−1.
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holes. We checked this property analytically in the SYK model and numerically in the SYK
chain in section 11. In particular, in the latter case it looks quite nontrivial; it would be
instructive to derive the no-zero property of correlators in the SYK chain using an analytic
argument. We also checked in section 10 that TPH holds if we include certain higher
derivative corrections to GR.

A few comments are in order. In the context of CFTs, we expect that TPH can only
be valid for theories where the anomalous dimensions of higher spin currents are O(1), as
opposed to O(1/N). In particular, TPH does not apply to theories with slightly broken
higher spin symmetry [76]. The requirement that the theory is chaotic is necessary since
there are branch cuts for the correlator in free field theory or in the planar O(N) model [80].

We expect that TPH may hold for CFTs on S1 ×Rd−1, or S1 ×Sd−1 above the Hawking-
Page phase transition. On S1 × Sd−1, the assumption of large N is required since otherwise
the two-sided correlator is given by a sum of δ-functions. On S1 × Rd−1, large N is required
since otherwise we expect to have branch cuts due to long-time tails, see e.g. [80]. We require
the theory to be above the Hawking-Page transition so that it is described by the black hole
geometry. Finally, cuts appear in a simple kinetic theory description of thermal correlators
in weakly coupled gauge theories, see e.g. [74]. However, to the best of our knowledge their
existence has not been rigorously established, see the discussion in [7].

We have also reviewed the observation of [9], related to the previous work [16, 17], that
holographic two-sided correlators decay exponentially fast as ω → ±i∞ in d > 2. This
behavior is associated with a light-like geodesic that bounces off the black hole singularity.
We noticed that when combined with the prediction from the OPE there is a dispersive
way to express this behavior through the black hole singularity sum rules (1.4). Assuming
the product representation of the thermal correlator, we see that the sum rules are trivially
satisfied by having a family of QNMs that go to infinity in the complex plane at some angle
ω ∼ eiθ with θ ̸= π

2 . At finite string coupling λ we expect the sum rules to still hold in some
range of the ω-plane for which the gravity approximation applies. In this case we can consider
finite energy singularity sum rules:

∮
CΛ
dω′ (ω′)mG12(ω′) ≃ 0, where Λ is a finite energy scale.

We can imagine that a similar version of the sum rules might hold at large but finite N .
Another open problem is to develop computational techniques to probe the region of

large imaginary frequencies in string theory (or gauge theories, see e.g. [72]). In particular,
tidal effects should become important near the singularity. These effects are responsible
for resolving singularities in the two-point function on the bulk light-cone in one-sided
correlators [82, 83], and it seems plausible that tidal effects change the behavior of the
two-sided correlator at large imaginary frequencies as well. However, the black hole geometry
receives large corrections at a string length away from the singularity, so new insights are
likely needed to address this problem.

In section 5 and section 6, we explored how the structure of the QNMs is constrained by
the OPE. In section 7 we studied how the known structure of the QNMs puts constraints
on the low-energy or hydrodynamic expansion of the correlator. The basic observation
here is that the product representation of the correlator and its no-zero property lead to
a convenient dispersive representation of the two-point function, see (5.2). Moreover, the
no-zero property translates into the fact that the discontinuity of the correlator is non-negative.
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The hydrodynamic expansion then turns into a moment problem for QNMs, and depending
on the structure of QNMs bounds on the hydrodynamic expansion can be derived. It would
be very interesting to understand such constraints more systematically. Conversely, the
known data on the hydrodynamic coefficients can be used to put bounds on the geometry
of QNMs (again assuming the no-zero property).

Another challenge that could provide important insights into the finite coupling structure
of the correlators and the dual geometry is to find models in which the structure of the QNMs
can be computed in a controllable setting and the emergence of gravitational features can be
understood, see e.g. [84]. It would also be interesting to see if the product representation of
thermal correlators generalizes beyond the two-point function [85, 86].

Finally, the results of [87, 88] suggest that instanton corrections to weakly coupled thermal
correlation functions can be interpreted in terms of AdS black holes. This is reminiscent of
the fact that instanton corrections to vacuum correlators at weak coupling can be written as
an integral over AdS, where the AdS space is simply the moduli space of instantons [89–92].
It would be interesting to explicitly compute the first instanton correction to the thermal
two-point function at weak coupling in N = 4 SYM, and to analyze its properties.
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A Two-point functions at finite temperature

Here we recall some basic definitions of thermal correlators, see e.g. [93] for a detailed
discussion. The Wightman, retarded, and advanced two-point functions are defined as

GW (t) = 1
Z

Tr
(
e−βHO(t)O(0)

)
(A.1)

GR(t) = iθ(t) 1
Z

Tr
(
e−βH [O(t),O(0)]

)
(A.2)

GA(t) = −iθ(−t) 1
Z

Tr
(
e−βH [O(t),O(0)]

)
. (A.3)

The two-sided Wightman correlator is

G12(t) = GW

(
t− i

β

2

)
. (A.4)

In frequency space, the two-point functions are related as

G12(ω) = e−βω/2GW (ω) = GR(ω)−G∗
R(ω)

2i sinh(βω/2) (A.5)

GA(ω) = GR(−ω), G∗
R(ω) = GR(−ω∗), (A.6)
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where in (A.5) ω approaches the real axis from above. Note that for real ω, G12(ω) =
ρ(ω)/(2 sinh(βω/2)), where the spectral density ρ is defined by ρ(ω) = 2Im GR(ω).

In general, (A.5) defines a distribution and not a function, but for holographic correlators
GR(ω) is a meromorphic function with no poles on the real axis, and we can rewrite (A.5)
as follows

G12(ω) =
GR(ω)−GR(−ω)
2i sinh(βω/2) . (A.7)

This relation can now be analytically continued to ω ∈ C and defines the meromorphic
G12(ω) studied in this paper. The “no-zero” property discussed in the main text translates
to the statement that the equation

GR(ω) = GR(−ω) (A.8)

has solutions only for Matsubara frequencies

ω = 2πi
β
n. (A.9)

The Euclidean correlator defined at Matsubara frequencies ωn = 2πi
β n is related to the

retarded correlator as follows

GE(ωn) = GR(iωn), n > 0. (A.10)

B Probing the ω-plane in real time

From the point of view of an experimentalist, the complex ω-plane discussed in this paper is
not easily accessible. On the other hand, QNMs are known to control the late time behavior of
the retarded two-point function which can be accessed more easily. In fact, for the correlators
we consider QNMs control correlators at all times. By this we mean the following.

Let us consider the retarded correlator for some positive non-zero time t > 0,

GR(t) =
1
2π

∫ ∞

−∞
dω e−iωtGR(ω). (B.1)

We can close the contour into the lower half-plane to get

GR(t) = −i
∑
k

e−iωktResωk
GR(ω), t > 0, (B.2)

where the condition t > 0 is necessary to drop the arc at infinity. In particular, there could be
distributional terms localized at t = 0 which are not captured by QNMs. These correspond
to subtractions in dispersion relations for GR(ω).

Let us next express the residues in terms of QNMs. For this purpose we write

GR(ω) = GR(−ω) + 2i sinh(βω/2)G12(ω), ω ∈ C . (B.3)

In writing the formula above we used meromorphy of GR(ω), see appendix A and (A.7).
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Figure 18. (a) We set β = 2π and plot the retarded function GR(t) as a function of time t for
R-currents in N = 4 SYM. The black dots correspond to the exact result. Various colors correspond
to the result coming from summing over the first k QNMs. We see that at late times the leading
QNM dominates, but at shorter times higher QNMs become important. (b) The contribution of a
single QNM at ωn = (1− i)n. We see that they form a nice hierarchical structure when we decrease t
from infinity. First only the n = 1 QNM matters, then the second QNM becomes important, etc.

Considering next ω in the lower half-plane we get

Resωk
GR(ω) = 2i sinh(βωk/2)Resωk

G12(ω)

= − i sinh(βωk/2)G12(0)∏∞
n ̸=k

(
1− ω2

k
ω2

n

)(
1− ω2

k
(ω∗

n)2

) ωk

1− ω2
k

(ω∗
k)2

. (B.4)

Restricting thus to QNMs with Re ωk > 0 we get the following expression for the
retarded two-point function in terms of the QNMs,

GR(t) = −i
∑
k

(
e−iωktResωk

GR(ω) + eiω
∗
ktRes−ω∗

k
GR(ω)

)

= −2G12(0)
∑
k

Re

 e−iωkt sinh(βωk/2)ωk(
1− ω2

k
(ω∗

k)2

)∏∞
n ̸=k

(
1− ω2

k
ω2

n

)(
1− ω2

k
(ω∗

n)2

)
 . (B.5)

The sum converges for any t > 0, with more and more QNMs becoming important at
earlier times.

As an example we consider the thermal two-point function of R-currents, see (9.6). In
figure 18 we plot GR(t) and its approximation by a few QNMs. We see that as we decrease
t from infinity, higher QNMs become important in an ordered fashion. Note also that by
measuring the residue of the first two QNMs we get access to some information about the
high-energy tail through (B.5). Indeed, in the ratio of the residues G12(0) cancels and we
get some prediction for the infinite products.

C Analytic properties of AdS wave equations

Here we review some analytic properties of holographic correlators based on the bulk equations
of motion [8, 9]. In particular, we will recall the argument that Wightman correlators have
no zeroes, which is a consequence of scattering theory in quantum mechanics [94].

– 45 –



J
H
E
P
0
1
(
2
0
2
4
)
0
3
6

Consider the scalar wave equation (3.3) in an AdS black hole background. The nor-
malizable mode g and non-normalizable mode g̃ are specified by the boundary conditions
at z → 0,20

g(ω, z) ∼ z
1
2+ν

g̃(ω, z) ∼ z
1
2−ν ,

(C.1)

while the ingoing solution hR and outgoing solution hA are specified by the boundary
conditions at the horizon z → ∞

hR(ω, z) ∼ eiωz

hA(ω, z) ∼ e−iωz.
(C.2)

Various properties under conjugation and ω → −ω can readily be found from these boundary
conditions. These solutions can further be expressed in terms of each other, in particular

g(ω, z) = 1
2iω (f(−ω)hR(ω, z)− f(ω)hA(ω, z)), (C.3)

where f(ω) is the so-called Jost function given by the Wronskian

f(ω) = hR∂zg − g∂zhR. (C.4)

Since the Wronskian is independent of z, we can evaluate it at z = 0. This gives

f(ω) = 2ν lim
z→0

(
zν−1/2hR(ω, z)

)
. (C.5)

Therefore the analytic properties of the Jost function are the same as those of the ingoing
mode hR(ω, z).

We further consider the physical solution proportional to the normalizable mode

ψ(ω, z) = C(ω)z
1
2+ν , z → 0, (C.6)

where C(ω) is fixed by the normalization

ψ(ω, z) = eiωz+iδ + e−iωz−iδ, z → ∞, (C.7)

and δ is the phase shift. It was shown in [9] that

C2(ω) = 4ω2

f(ω)f(−ω) (C.8)

and that the Wightman correlator is given by

GW (ω) = 4ν2
2ω

C2(ω)
1− e−βω

. (C.9)

The analytic properties of the Wightman function can therefore be read off from those of the
Jost function f(ω). In particular, for a regular potential with the asymptotic behavior (3.5),

20Below we drop dependence on the spatial momentum since we are mainly concerned with the analytic
behavior as a function of ω.
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the Jost function is a meromorphic function with simple poles at the Matsubara frequencies
ω = −i2πnβ with n = 1, 2, . . .. It therefore follows that the Wightman function has no zeroes.
Moreover, the zeroes of the Jost function correspond to the QNMs.

Let us review the argument that the only poles of the Jost function appear at the
Matsubara frequencies. For simplicity, we begin by assuming that ν2 = 1

4 so that the
potential behaves like V ∼ zϵ−2 as z → 0 with ϵ > 0. In this case we can borrow the
techniques of scattering theory with zero angular momentum l = 0. It is straightforward
to generalize the results to generic real values of ν2 > 0, as we will see later. The ingoing
solution can be written as a Volterra equation as follows,

hR(ω, z) = eiωz − γ

ω

∫ ∞

z
dz′ sin(ω(z − z′))V (z′)hR(ω, z′), (C.10)

where we have multiplied V (z) by a parameter γ, which we will eventually set to one. The
solution to (C.10) can be shown to define an absolutely convergent power series in γ at
finite z, see e.g. section 12.1 in [94], if

α =
∫ ∞

z
dz′ z′|V (z′)|e(|Im ω|−Im ω)z′ <∞. (C.11)

Assuming the potential is regular for finite z, only the large z region in (C.11) could give rise
to a divergence. In particular, for any decaying potential α is finite for Im ω > 0. Because
of the presence of the horizon, we restrict to potentials which are exponentially decaying
as V =

∑
n ane

− 4πn
β
z as z → ∞. For the purposes of studying whether α is finite or not,

we can then choose z > z0 for some large enough z0 and replace the potential with the
sum of exponentials. Consider therefore

α =
∞∑
n=1

an

∫ ∞

z
dz′ z′e

(
− 4πn

β
−2Im ω

)
z′
, Im ω < 0. (C.12)

The integral converges for Im ω > −2πn
β , corresponding to the nth Matsubara frequency.

The region of analyticity can however be extended beyond this point with simple poles at
ω = −i2πnmβ for m = 1, 2, . . .. This can be seen explicitly by solving (C.10) order-by-order
in γ, with a new simple pole arising at each order, see section 12.1.1 in [94] for details.21

It then follows from (C.5) that the Jost function f(ω) is meromorphic with simple poles
at the Matsubara frequencies.

We note that at isolated points in parameter space, the residue of the pole of the Jost
function at one of the Matsubara frequencies might vanish. For example, for the black
brane potential we have

V (k, z) ∼ e
− 2πz

β

(
k2 + ν2 + d(d− 2)

4

)
+ . . . , z → ∞. (C.13)

It follows that a1 = 0 when

k2 = −
(
ν2 + d(d− 2)

4

)
. (C.14)

21It is also possible to write down the exact solution for the exponential potential and it is meromorphic
with poles arising from a factor of Γ(1 − i βω

2π
), see section 14.3 in [94].
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This coincides with the first pole-skipping point [95–99]. For the special value (C.14) of k,
G12(ω) has a pole at the first Matsubara frequency.

Consider now the case ν2 ̸= 1
4 . The solution for hR(ω,z) can be found from the ν2 = 1

4
solution hR,ν= 1

4
(ω, z) = hR(ω, z) by

hR,ν(ω, z) = hR(ω, z) +
(
ν2 − 1

4

)∫ ∞

z
dz′ G(ω; z, z′)hR,ν(ω, z

′)
(z′)2 , (C.15)

where G is the Green’s function

(−∂2z + V (z)− ω2)G(ω; z′, z) = −δ(z − z′). (C.16)

One can show that G is an analytic function of ω and that the solution to (C.15) has the
same analytic structure as hR(ω, z). The solution hR,ν then has the same poles as hR.

Consider the Jost function f(ω) = W (hR, g) at spectral points ω = ωn ̸= 0, where
f(ωn) = 0 by definition. One can show that f ′(ωn) ̸= 0 for ωn in the lower half plane and on
the positive imaginary axis, corresponding to resonances and bound states respectively, and
the Jost function therefore has simple zeroes at those spectral points [100]. This follows from
the use of the wave equation to relate f ′(ω0) to an integral of the square of hR(ω0, z), which
converges and is non-zero for resonances and bound states. For virtual states with ωn = −i|ωn|
this no longer is true and it is in principle possible that the zeroes can be of higher order.
This arose in the study of higher-derivative corrections [73], which found that QNMs on the
imaginary axis for certain values of the coupling collided and branched into complex QNMs.

D OPE in momentum space

Let us consider the OPE for a pair of identical scalar operators at finite temperature,

⟨O(τ, x⃗)O(0, 0)⟩β =
∑
O∆,J

a∆,JC
( d−2

2 )
J

(
τ√

τ2 + x⃗2

)
(τ2 + |x⃗|2)

∆−2∆O
2 , (D.1)

where we set β = 1.
We would like to perform the Fourier transform of this OPE expansion to derive the

asymptotic expansion of the two-sided correlator G12(ω, k). We start with the spatial Fourier
transform. The result takes the following form [32]

⟨O(τ, k⃗)O(0,0)⟩β =
∑
O∆,J

a∆,J

[J/2]∑
j=0

cJ,j
2π d−1

2 τJ−2j

Γ
(
2∆O−∆+J−2j

2

) (2τ
k

)β−−1/2
Kβ−−1/2(τk), (D.2)

β−= d−∆−J+2j
2 , (D.3)

cJ,j =(−1)j
Γ
(
J−j+ d−2

2
)

Γ
(
d−2
2
)
Γ(j+1)Γ(J−2j+1)

2J−2j , (D.4)

where recall that k = |⃗k|.
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Next we set τ = 1
2 + it and perform the Fourier transform

G12(ω, k) =
∫
dt eiωt

〈
O
(
1
2 + it, k⃗

)
O(0, 0)

〉
β

= θ(ω)θ(ω2 − k2)e−
βω
2 ω2∆O−d

∑
O∆,J

a∆,J
(βω)∆G∆,J

(
k

ω

)
, (D.5)

where the relevant block takes the form

G∆,J(ζ)=
[J/2]∑
j=0

2π d−1
2 cJ,j

Γ
(
∆+J−2j

2

) ∫ arccosh1/ζ

0
dx

π2β−+ 1
2 ζ

1
2 −β− cosh

((
β−− 1

2
)

x
)
(1−ζ cosh(x))−β−+2j−J− 1

2

Γ
(
2j−J −β−+ 1

2
)

= π
d
2 +12d+∆−2∆O+1Γ(d+J −2)

(
1−ζ2) 1

2 (2∆O−d−∆−J)

Γ(d−2)Γ(J+1)Γ
(

J
2 − ∆

2 +∆O
)
Γ
(
− d

2 − J
2 − ∆

2 +∆O+1
) 2F1

(
1−J
2 ,−J2 ,

d−1
2 , ζ2

)
.

(D.6)

The integral can be computed explicitly in terms of the AppellF1 function. We can then
compute the small ζ expansion of the block.

E An exact expression for G12

In [37] an exact expression for the thermal scalar two point function in d = 4 in the holographic
regime has been presented. The expression is given in terms of the connection coefficients for
the Heun functions computed in [101] and the Nekrasov-Shatashvili partition function FNS, a
special function appearing in the context of N = 2 4d supersymmetric gauge theories [102–
106]. The idea of applying N = 2 technologies to spectral problems started with [106],
and was applied in the context of black hole perturbations for the first time in [107] (for
subsequent related works see [108–115]).

The expression for G12 for a theory dual to a black brane geometry in the bulk reads

G12(ω, ζ) = π 2−2a1e−∂a1FNS
1

Γ (2a1 + 2)Γ (2a1 + 1)×

×
∏
θ=±1

(∑
σ=±1

e−σ∂aFNStσaΓ (1− 2σa) Γ (−2a)
Γ
(1
2 − σa+ θat

)2∏
± Γ

(1
2 − σa+ a1 ± a∞

))−1

, (E.1)

where

a1 =
∆O − 2

2 , at = i
βω

4π , a∞ = β̃ω

4π , t = 1
2 (E.2)

are the parameters of the wave equation of a scalar in the black brane background in the
variables x = r2/(1 + r2), χ(x) =

(
f(r)dxdr

) 1
2 ψ(x), that is(

∂2x+
1
4−a

2
1

(x−1)2−
1
2−a

2
1−a2t+a2∞+u
x(x−1) +

1
4−a

2
t

(x−t)2+
1

4x2+
u

x(x−t)

)
χ(x)= 0 . (E.3)
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(a) (b)

Figure 19. (a) A plot of Im GR(βω) in the complex βω plane for k = 0 and ∆ = 5
2 from the product

formula. Here the first 3 modes have been used. (b) Here Im GR(βω) is computed from a numerical
evaluation of the exact result found in [37]. The FNS series is truncated at order t5. The slight
mismatch in the position of the second pole is expected to be resolved by truncating the series at
higher orders. The white spots along the imaginary axis are due to the presence of unphysical poles
in the relation (E.4).

Here u = β2ω2

8π2

(
1− 2ζ2

)
− a21. The parameters u, a are related to each other through

FNS (ai, a, t) as follows:

u = −1
4 − a2 + a2t + t∂tFNS . (E.4)

FNS is given as a convergent power series in t. Since for the black brane t = 1/2, (E.1) cannot
be analytically expanded perturbatively for t ∼ 0. However since 1/2 is a small number and
the series is convergent, one can still truncate the series to a given order and compute (E.1)
numerically. In figure 19 we compare ImGR obtained from the product formula with the
numerical evaluation of (E.1).

Equation (E.1) dramatically simplifies as |ω| → ∞. The key observation is that for large
ω (E.3) reduces to an hypergeometric equation in the variable x̃ = (x − t)/(1 − t),(

∂2x̃ +
(1
4 − a2t

)
(1− x̃) +

(1
4 − a21 −

(1
4 − a2∞

)
(1− x̃)

)
x̃

x̃2(1− x̃)2

)
χ(x̃) = 0 . (E.5)

In order for this to be consistent with (E.3) and (E.4), at leading order in ω we must have

FNS ≃
(
1
4 − a21 − a2t + a2∞

)
log(1− t) , a ≃ at . (E.6)

Note that the previous expression gives FNS at a specific value of a = at, so it cannot be
used to evaluate ∂aFNS in (E.1). By solving (E.4) order by order in t and then expanding
for large ω we find

∂aFNS = icβω +O(ω0) , c ∈ R . (E.7)
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Figure 20. The red line is the prediction for c in (E.9). The black dots are the values of c obtained
by truncating the t series in FNS at order tnmax as a function of nmax.

Substituting (E.6) and (E.7) in (E.1) and expanding for large positive ω we get the leading
order with its nonperturbative corrections. On the other hand, to compute power law
corrections we would need corrections to (E.6).

Up to the first nonperturbative correction we get

G12 (ω,0)≃ e
−
βω

2 ω2∆O−4 4
5
2 −∆Oπ3

Γ(∆)Γ(∆O−1)

(
1−4e−

βω

2 cos
(
π(∆O−2)− βω

2

(
2c+1

2+
2log2
π

)))
.

(E.8)
Comparing with (4.13) with d = 4 and β = β̃ we find the following prediction for c,

c = 1
4 − log 2

π
≃ 0.0294 . (E.9)

The prediction is confirmed numerically, see figure 20.

F Subleading corrections to black brane QNMs

In this appendix we compute the large n asymptotics of QNMs in the AdS black brane
to the next subleading order beyond the constant term. We start with the black brane
potential at k = 0,

V (z) =
(
r2 − 1

rd−2

)(
ν2 − 1

4 + (d− 1)2
4rd

)
. (F.1)

Following [28, 29, 116], we need to compute the series expansion of the potential near the
singularity. We work in the conventions of [116], so that the tortoise coordinate is defined by
dz = dr/f(r), with z = 0 corresponding to r = 0. The expansion of the tortoise coordinate
around r = 0 is

z = − rd−1

d− 1 − r2d−1

2d− 1 + . . . (F.2)
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Plugging into (F.1), we find

V (z) = − 1
4z2 + d2 + 4ν2 − 8dν2

4(2d− 1)(−(d− 1)z)
d−2
d−1

+ . . . . (F.3)

The asymptotic expansion of the QNMs can now be computed to first order in perturbation
theory, by matching the solution at the singularity to the normalizable solution at the
boundary and imposing ingoing boundary conditions. This computation was done in [116],
and we can read off the answer from equation 100 in that paper. The asymptotic expansion
takes the form (6.6), with

c = π

β

(8dν2 − d2 − 4ν2) cos
(

π
2(d−1)

)
Γ
(
d−2
d−1

)
Γ
(

d
2(d−1)

)
2d(2d− 1)

(
d

2(d−1) sin
(
π
d

)) 1
d−1 Γ

(
d−2

2(d−1)

)3 , (F.4)

where recall that ν = ∆ − d
2 .

Using this expression it is straightforward to compute the coefficient for the first sum
rule in (6.7),

δc3=−sin2
(

π

d

) log(4)sin
( 2π

d

)(
π2 (4−3(d−2∆)2)+log2(4)

)
3πβ2

−sin2
(

π

d

)
π(d−2∆)cos

( 2π
d

)(
π2(d−2∆−2)(d−2∆+2)−3log2(4)

)
3πβ2

+c
8sin

(
π
d

)(
π sin

(
π(d−2)2

2(d−1)d

)(
4ζ

(
1

d−1

)
−(d−2∆+2)ζ

(
d

d−1

))
+log(4)ζ

(
d

d−1

)
sin

(
π(3d−4)
2(d−1)d

))
β

−4c2ζ
( 2d

d−1

)
cos
(

π(d−2)
(d−1)d

)
, (F.5)

where ζ(x) is the Riemann zeta function.

G Shear viscosity and the scalar two-point function

Let us consider the Wightman two-point function of stress-energy tensors in position space.
It takes the form

⟨Tµν(x)Tρσ(0)⟩ =
cT
x2d

(
1
2!(Iµρ(x)Iνσ(x) + Iµσ(x)Iνρ(x))−

1
d
ηµνηρσ

)
, (G.1)

Iµν(x) = ηµν − 2xµxν
x2

, (G.2)

where we work with mostly plus signature. Consider next∫
ddx e−iq·x⟨Tµν(x)Tρσ(0)⟩. (G.3)

This problem was solved for example in [117]. The result takes the form

⟨Tµ1µ2(q)Tν1ν2(0)⟩= cT
πd/2+1θ(q0)θ(−q2)(−q2)d/2

2d−1(d+1)Γ(d−1)Γ
(
d+2
2
) 2∑
n=0

2n+1

n!(2−n)!

(
−d

2
)
n

(−d)n

×
(
1
2
qµ1qν1 . . . qµnqνn

(−q2)n ηµn+1νn+1 . . .ηµ2ν2+permutation−trace
)
.

(G.4)

– 52 –



J
H
E
P
0
1
(
2
0
2
4
)
0
3
6

For the shear viscosity computation we choose ⟨Txy(ω, 0⃗, qz)Txy(0)⟩. In this case only the
n = 0 term of the Iac(x)Ibd(x) part contributes, with the following result

⟨Txy(ω, 0⃗, qz)Txy(0)⟩ = cT
πd/2+1θ(ω)θ(ω2 − (qz)2)(ω2 − (qz)2)d/2

2d(d+ 1)Γ(d− 1)Γ
(
d+2
2
) . (G.5)

Let us compare this with the Wightman function of the normalized scalar primaries ⟨O(x)O(0)⟩ =
cO
x2d of scaling dimension ∆ = d,

⟨O(ω, 0⃗, qz)O(0)⟩ = cO
πd/2+1θ(ω)θ(ω2 − (qz)2)(ω2 − (qz)2)d/2

2d−1Γ(d)Γ
(
d+2
2
) . (G.6)

From this we find that

cO = d− 1
2(d+ 1)cT . (G.7)

This is the normalization for the scalars that we need to use in our computations for ∆ = d

in order to compare to the stress-energy computation.
The shear viscosity η is defined as [118]

η = lim
ω→0

1
ω

Im GR(ω, 0). (G.8)

In a theory with a gravity dual it is given by

η = σabs(0)
16πGN

, (G.9)

where σabs(0) is the black hole cross-section at zero frequencies, which is given by the area
of the horizon (per unit CFT volume)

σabs(0) = Area. (G.10)

Recall that the black hole entropy density is in the same way s = Area
4GN

. This produces the
famous relation η/s = 1

4π [119]. Therefore the prediction is

lim
ω→0

1
ω

d− 1
2(d+ 1)cT Im GR(ω, 0)|∆=d =

Area
16πGN

, (G.11)

where GR(ω, 0) is the scalar two-point function with the normalization used in this paper,
namely ⟨O(x)O(0)⟩ = 1

x2d .
Recall that we have [35]

cT = π−d/2−1Γ(d+ 2)
8(d− 1)Γ(d/2)

1
GN

,

Area =
(
4π
d

)d−1
β1−d, (G.12)

where we set RAdS = 1.
In this way we get the following prediction for the holographic correlator for ∆ = d

G12(0) =
(2
d

)d
π

3d−1
2

Γ
(
d+1
2
) β−d. (G.13)
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H Computation of QNMs

In the main body of this work we have numerically calculated the QNMs in various examples
using the publicly available QNMSpectral package for Mathematica [12]. The method used
is described in detail in [12], which we briefly review here. In holographic theories, the
calculation of QNMs boils down to solving wave equations on top of a black hole background
in AdS with specified boundary conditions, namely ingoing boundary conditions at the
horizon and normalizable boundary conditions at the AdS boundary. As discussed in detail
in appendix C, the QNMs are solutions for discrete values of ω ∈ C such that the solution
with ingoing boundary conditions at the horizon is proportional to the normalizable mode
and the Wronskian therefore vanishes.

The method of [12] finds a solution to the wave equation numerically by discretizing
the radial direction on a grid of n+ 1 points, reducing the wave equation to a generalized
eigenvalue problem of (n+ 1)× (n+ 1)-matrices. The boundary conditions are imposed by
expanding in a set of functions which manifestly obey the specified boundary conditions. The
output is n + 1 eigenvalues, some of which correspond to physical QNMs while some are
unphysical. To filter out unphysical solutions, following [12] we compute the QNMs twice
with different grid sizes22 and keep only those that appear in both cases.

The computational time and the number of physical QNMs that are obtained depend
on the grid size n and the precision used when solving the generalized eigenvalue equation.
These aspects were studied for AdS-Schwarzschild in appendix A of [12]. It was found that
when the precision is set to n/2, the computational time grows roughly like t ∼ t0n

3.3 for
large enough n, and the number of physical QNMs grows linearly with n.

Let us review in a bit more detail how this works for the ∆ = 4 scalar ϕ(U, t, x) =
ϕ(U)e−iωt+ikz in a black brane background. A convenient way to impose the correct the
boundary conditions for QNMs is to pass to Eddington-Finkelstein coordinates

ds2 = −F (U) dt2 + 2G(U) dt dU + 1
U2 dx⃗

2, (H.1)

where F (U) = 1
U2 − U2 and G(U) = − 1

U2 . We further consider the wave equation in terms
of the field ψ(U) = U−3ϕ(U), which is given by[(

−k2U2+3iUω−9U4−3
)
+U

(
2iUω−7U4+3

)
∂U−

(
U4−1

)
U2∂2U

]
ψ(U)= 0. (H.2)

The main points are the following: 1) after going to EF coordinates, at the horizon the
ingoing mode approaches a constant ψ ∝ 1 + . . ., while the outgoing mode oscillates rapidly
ψ ∝ (1−U) iω

2 + . . . and 2) after rescaling by U−3, at the boundary the non-normalizable mode
diverges as ψ ∝ U−3 + . . ., while the normalizable mode goes to zero linearly, ψ ∝ U + . . ..

In order to discretize and solve (H.2) numerically, [12] uses a pseudo-spectral method
where a function f(x) is approximated on a grid xi with i = 0, 1, 2 . . . n as

f(x) =
n∑
j=0

f(xj)Cj(x), (H.3)

22Typically we choose n = 200 and n = 400 with the precision set to n/2.
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where Cj(xi) = δij . In particular, the so-called cardinal function Cj(x) is given by

Ci(x) =
n∏

j=0,j ̸=i

x− xj
xi − xj

, (H.4)

and the interpolation (H.3) is exact on the grid points xi. The grid points in [12] are chosen
to be the Chebyshev grid23

xi = cos (iπ/n) , i = 0, 1, 2 . . . n. (H.5)

Inserting the choice of grid points (H.5) into (H.4), the functions Ci can be written as a
linear combination of Chebyshev polynomials Ti(x), see [12] for further details.

In particular, with this choice the interpolation (H.3) can never approximate a function
that diverges close to the boundary and oscillates rapidly as we approach the horizon. The
boundary conditions corresponding to QNMs are therefore automatically implemented. By
separating the ω0 and the ω1 terms in (H.2), the wave equation evaluated at the grid points
can be put into the form of an (n+ 1)× (n+ 1) generalized eigenvalue equation. The n+ 1
eigenvalues then corresponds to candidate QNMs ωn. However, for a fixed number of grid
points n, only a subset of the (n+ 1) eigenvalues correspond to actual QNMs. To select the
physical solutions, one can do the computation with different grid sizes n1 and n2, and keep
only the solutions which agree between the two [12].24

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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