Measurement of di-J/psi events at ATLAS

Yusheng Wu

University of Science and Technology of China

For ATLAS collaboration

COMPASS "Analysis Phase" mini-workshop, April 19th, 2023

Spectroscopy x Production

Desire I: explore zoo of particles composed of quarks, gluons

- mesons, baryons
- exotic hadrons
- multi-quark (gluon) states

Bump hunting, property measurements

Desire II: understand at QCD scales how particles are produced and distributed ...

- perturbative, non-perturbative QCD
- prompt, non-prompt
- ✤ single (double) parton interactions
- ✤ across different platforms

(Differential) Cross-section measurements

4/19/2023

J/psi events

- Abundantly produced and well accessible through its dimuon decays
- Standard candle for detector calibration, especially for low pT muons
- Reference point for triggering, opening a window for flavor physics at the high lumi., general-purpose detectors
 - Higher states / hadrons decaying to J/psi => rare decay, exotic hardon searches
 - Precision measurements (searches) with J/psi
 => critical inputs to theoretical models

Complementarity in kinematics, interplay

Y. Wu

between ATLAS/CMS, with other experiments (BELLE-II, COMPASS, LHCb, ALICE...), and next generation tau-charm factories

3

Double J/psi events

Doubled the difficulties of measurements:

- ↔ O(10) pb fiducial cross-sections → rare process,
 - Analogy to electroweak diboson/Higgs production
 - Not accessible at lower luminosity machines
- ✤ Higher CME requirement → not accessible at traditional charm-tau factories
 - LHC experiments (yes), B factory (?), next-gen. taucharm factories (?)
- ✤ More complicated decay final states w.r.t. single J/psi → may not be fully efficient in single-arm detectors, general purpose detectors like ATLAS, CMS can be promising

Doubled the physics potentials

- Stringent test of QCD (a.k.a. in the rare process domain)
- Sizable DPI contribution (insights on less touched territories of hadron structure)
- Backgrounds to resonances decays to J/psi pairs (e.g., search for cccc tetraquark)
- Backgrounds to low mass resonance searches at charm-bottom energies
 - e.g., SUSY, dark sector, QCD resonances decaying to four low pT muons

Covered in this talk

A short overview on experimental instrument and techniques

Di-J/psi measurement at ATLAS with 8 TeV data [EPJC 77 (2017) 76]

♦ With reference to J/psi + W measurements with 8 TeV [JHEP 01 (2020) 095]

Efforts on 13 TeV data at ATLAS

single J/psi measurement [<u>ATLAS-CONF-2019-047</u>]

search for resonances decaying to di-J/psi [arXiv:2304.08962]

Focus on discussing these ATLAS results, would not have time to cover complementarity discussions between ATLAS, CMS, and other experiments

ATLAS detector

Experimental handles

A display of 3μ +MET final state from W+J/psi production

- No traditional pID (p/K/π etc.) at ATLAS, but we have clear ID of high-pT objects such as muons, electrons, ...
- Muons can be reconstructed down to
 2.5-3 GeV pT, with pT resolution ~ 1%
 - Inner tracker dominates the resolution in concerned phase space, while muon detector crucial for identifying the muons and triggering the events
- ❖ J/psi → di-µ is the channel we typically rely on (which could be combined with tracks, with mass hypotheses applied to select on higher exotic states, etc.)
- ♦ O(50) µm vertex precision in x-y, and ranging from O(50) µm to mm in z → enable to separate prompt and nonprompt contributions

4/19/2023

Examples about object performance

Eur. Phys. J. C 81 (2021) 578

Ability to identify muons with small pT

- Lower threshold around 2-3 GeV due to MIP energy loss in calorimeter
- Optimized for rejecting non-prompt muons from light flavor hadron decays

Vertex spatial reso. in a nutshell

Visualization of muon pT reso.

8 TeV Di-J/psi measurement at ATLAS EPJC 77 (2017) 76

Di-J/psi measurement at 8 TeV

A glance of how di-J/psi candidate events are selected

Trigger:

Data set taken with 2µ trigger in J/psi mass range, trigger selections: pT > 4 GeV, and 2.5 < m(µµ) < 4.3 GeV

 $|\eta^{\mu}| < 2.3 \text{ and } p_{\rm T}^{\mu} > 2.5 \text{ GeV}.$

 $2.8 \le m(\mu\mu) \le 3.4$ GeV.

 $|y^{J/\psi}| < 2.1$ and $p_{\rm T}^{J/\psi} > 8.5$ GeV.

For the triggered J/ψ , both of the reconstructed muons must have an ID track matched to a MS track.

Offline:

For the non-triggered J/ψ candidate, at least one of the reconstructed muons must have an ID track matched to a MS track.

The distance between the two J/ψ decay vertices along the beam direction is required to be $|d_z| < 1.2$ mm. This requirement aims to select two J/ψ mesons that originate from the same proton–proton collision.

The uncertainty in the measurement of L_{xy} is required to be less than 0.3 mm.

Defines the fiducial region

Instrument quality selection

Extract signals from signal region

J/psi pairs ordered by pT, Lxy stands for x-y distance between J/psi vertex and primary vertex

Extra Corrections on prompt fraction extraction

The last step (previous page) accounts for averaged prompt fraction (f_{PP}) across kinematic bins, simulation-based corrections are offered for each bins

Statistical Fits

4/19/2023

Unbinned fits to kinematic distributions

Crystal ball signal + flat background $P = P_{\text{sig}} \times CB(m(J/\psi_1)) \times CB(m(J/\psi_2)) + P_{\text{bkg}} \times P_0$ >0 0 250 -(s = 8 TeV, 11.4 fb⁻¹ 200 200 150 150 -Entries / 0.04 Ge/ ATLAS $|y(J/\psi_{,})| < 1.05$ $1.05 \le |y(J/\psi_{,})| < 2.1$ 120 vs = 8 TeV, 11.4 fb Data Data 100 80 150 60 100 40 50 20 2.8 2.8 3.3 2.9 3 3.1 3.2 3.3 3.4 2.9 3 3.1 3.2 3.4 m(J/ψ_) [GeV] m(J/ψ_) [GeV] (a) (b) Entries / 0.04 GeV 1200 1200 GeV _**ATLAS** √s = 8 TeV, 11.4 fb⁻¹ ATLAS $|y(J/\psi_{2})| < 1.05$ $1.05 \le |y(J/\psi_{o})| < 2.1$ 120 Vs = 8 TeV, 11.4 fb Entries / 0.04 0 001 0 Data Data 60 100 40 50 20 2.8 2.8 3.3 3.3 3.4 3.1 3.2 3.4 3.1 3.2 3 2.9 3 2.9 m(J/ψ₂) [GeV] m(J/ψ₂) [GeV] (c) (d)

Physical functions
convoluted with $R = G_1(L_{xy}) + G_2(L_{xy}) + G_3(L_{xy}) + G_4(L_{xy})$ convoluted with
resolution
function R $S = \delta(L_{xy}) * R$

(d)

Y. Wu

13

Extraction of DPI contributions

Another important outcome of this work is to examine the DPI/SPI fractions inside prompt di-J/psi production 2D template from data built based on the assumption that DPI di-J/psi is a random mixture of two SPI J/psi, with rate constraint by factorisation formula

Uncertainties

Systematic uncertainty: di- J/ψ cross-section [%]				
Source	$ y(J/\psi_2) < 1.05$	$1.05 \le y(J/\psi_2) < 2.1$		
Trigger	±7.5	±8.3		
Muon reconstruction	±1.1	±1.3		
Kinematic acceptance	± 0.4	±1.1		
Mass model	±0.1	± 0.1		
Mass bias	±0.2	± 0.2		
Prompt-prompt model	±0.2	± 0.01		
Differential $f_{\rm PP}$ corr.	±0.6	±0.3		
Pile-up	±0.03	± 0.4		
Total	± 7.7	± 8.5		
Branching fraction		±1.1		
Luminosity		±1.9		

Systematic uncertainty: <i>f</i> _{DPS} [%]			
Source	Relative uncertainty [%]		
Trigger	± 0.7		
Muon reconstruction	± 0.1		
Mass model	± 0.01		
Mass bias	± 0.02		
Prompt-prompt model	± 0.1		
Differential f_{PP} corr.	± 0.1		
Pile-up	± 0.8		
DPS model	±5.6		
Total	± 5.7		

Presentation of a thorough assessment of typical uncertainty sources for cross-section measurement and for DPI measurement

- → Statistical uncertainty of the data important
- → Trigger uncertainty dominates the overall systematic unc. (conservative approach)

Results

Differential measurements presented for two rapidity bins

Measurement v.s. Prediction

Comparison to theoretical predictions:

SPI NLO QCD Pred. from HELAC-Onia and CTEQ PDF [1410.8822][1308.0474]

DPI LO Pred. assumes factorisation

➔ Generally reasonable agreement, but SPI/DPI fraction, shape modelling may be improved (?)

(d)

More investigations

With cuts on delta(Y) or delta(phi), SPI-depleted regions are used to examine the discrepancies:

 \Rightarrow Hinted about feed-down SPI contributions contributing to large delta(Y)

Y. Wu

Effective cross-section measurement

Ref: 8 TeV W + J/psi measurements

Interesting measurement of this kind to probe associated multi-body production

Enhanced DPI production in low pT of J/psi, also hinted a better match to data with smaller σ (eff) Color-octet alone may not describe high pT ...

13 TeV J/psi efforts at ATLAS

ATLAS-CONF-2019-047, arXiv:2304.08962

Disclaimer: topics here are slightly off the axis, also given the commonly used techniques, will focus on discussing results

13 TeV J/psi measurements

The overall methodology goes similar, but fitting models get more complicate due to extensive amount of J/psi data

13 TeV J/psi measurements

Representative uncertainty breakdowns

13 TeV J/psi measurements

Beautiful, precise O(10%) measurement up to 300 GeV

24

Join the party: hunt for di-J/psi resonances

A particular candidate is $X(6900) \rightarrow di-J/psi$

arXiv:2304.0896 Or see ATLAS-CONF-2022-040

Signal region	Control region	Non-prompt region		
Di-muon or tri-muon triggers, oppositely charged muons from each charmonium, <i>loose</i> muons, $p_T^{1,2,3,4} > 4, 4, 3, 3$ GeV and $ \eta_{1,2,3,4} < 2.5$ for the four muons, $m_{J/\psi} \in [2.94, 3.25]$ GeV, or $m_{\psi(2S)} \in [3.56, 3.80]$ GeV, Loose vertex requirements $\chi^2_{4\mu}/N < 40$ ($N = 5$) and $\chi^2_{di-\mu}/N < 100$ ($N = 2$),				
Vertex $\chi^2_{4\mu}/N < 3$, $L^{4\mu}_{xy} < 0.2$ m	m, $ L_{xy}^{\text{di-}\mu} < 0.3 \text{ mm}, m_{4\mu} < 11 \text{ GeV},$	Vertex $\chi^2_{4\mu}/N > 6$,		
$\Delta R < 0.25$ between charmonia	$\Delta R \ge 0.25$ between charmonia	$ $ or $ L_{xy}^{\text{di-}\mu} > 0.4 \text{ mm}$		

- Very low pT muons are expected => offline threshold limited by trigger and reco.
- In searching mode, define control regions to control the background models •
- Di-J/psi production (SPS, DPS, non-prompt) from MC but corrected with CR ٠
- Unblinded fit with signal (multi-resonance interfering) and background to the $m(4\mu)$ ٠ distributions, simultaneously for SR/CR 25 4/19/2023 Y. Wu

Hunt for di-J/psi resonances

SR

Confidence of MC background modelling is visible in the different regions,

Apart from the sought for region of X to be fitted into signal models

Hunt for di-J/psi resonances

In general, it is evident that a narrow peak at 6.9 GeV with a broad structure below is observed, which might be a combination of multiple structures

- \Rightarrow Echoing the observation from LHCb
- \Rightarrow Disclosure of the full picture needs more follow-ups

Summary

- ✤ A report of 8 TeV di-J/psi measurement was presented, with relevant discussions concerning 13 TeV efforts
- With increasing amount of data sets, and stable methodology, measurements went more and more precise => better constraining power to understand QCD models, and a variety of effects
- Comprehensive understanding of J/psi, di-J/psi encouraged a direct look into more rare, complex phenomena, such as tetraquark resonances => evident results were shown for 6.9 GeV
- Careful study of different effects, improvement of measurement techniques could bring these studies to a next level, stay tuned!

Thanks!