J Grid Computing (2023) 21:9
https://doi.org/10.1007/s10723-023-09645-2

®

Check for
updates

Leveraging State-of-the-Art Engines for Large-Scale
Data Analysis in High Energy Physics

Vincenzo Eduardo Padulano -

Ivan Donchev Kabadzhov -

Enric Tejedor Saavedra - Enrico Guiraud -
Pedro Alonso-Jorda

Received: 9 August 2022 / Accepted: 5 January 2023
© The Author(s) 2023

Abstract The Large Hadron Collider (LHC) at
CERN has generated a vast amount of information
from physics events, reaching peaks of TB of data
per day which are then sent to large storage facili-
ties. Traditionally, data processing workflows in the
High Energy Physics (HEP) field have leveraged grid
computing resources. In this context, users have been
responsible for manually parallelising the analysis,
sending tasks to computing nodes and aggregating
the partial results. Analysis environments in this field
have had a common building block in the ROOT

V. E. Padulano (P<) - I. D. Kabadzhov -

E. Tejedor Saavedra - E. Guiraud

EP-SFT, CERN, Meyrin, 1211, Geneva, Switzerland
e-mail: vincenzo.eduardo.padulano@cern.ch

1. D. Kabadzhov
e-mail: ivan.donchev.kabadzhov @cern.ch

E. Tejedor Saavedra
e-mail: enric.tejedor.saavedra@cern.ch

E. Guiraud
e-mail: enrico.guiraud @cern.ch

V. E. Padulano - P. Alonso-Jorda

Department of Computation Systems and Computation,
Universitat Politécnica de Valéncia,

Valencia, 46022, Valencia, Spain

P. Alonso-Jord4
e-mail: palonso@upv.es

I. D. Kabadzhov
Department of Computer Science, Albert Ludwig
University of Freiburg, Freiburg, 79098, Freiburg, Germany

Published online: 10 February 2023

software framework. This is the de facto standard
tool for storing, processing and visualising HEP
data. ROOT offers a modern analysis tool called
RDataFrame, which can parallelise computations
from a single machine to a distributed cluster while
hiding most of the scheduling and result aggrega-
tion complexity from users. This is currently done
by leveraging Apache Spark as the distributed execu-
tion engine, but other alternatives are being explored
by HEP research groups. Notably, Dask has rapidly
gained popularity thanks to its ability to interface with
batch queuing systems, widespread in HEP grid com-
puting facilities. Furthermore, future upgrades of the
LHC are expected to bring a dramatic increase in data
volumes. This paper presents a novel implementation
of the Dask backend for the distributed RDataFrame
tool in order to address the aforementioned future
trends. The scalability of the tool with both the new
backend and the already available Spark backend is
demonstrated for the first time on more than two
thousand cores, testing a real HEP analysis.

Keywords Root - High energy physics -

Distributed computing - Dask - Spark

1 Introduction

The Large Hadron Collider (LHC) at CERN has gen-

erated an unprecedented amount of data over the
course of its first two active periods (also called

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-023-09645-2&domain=pdf
mailto:vincenzo.eduardo.padulano@cern.ch
mailto:ivan.donchev.kabadzhov@cern.ch
mailto:enric.tejedor.saavedra@cern.ch
mailto:enrico.guiraud@cern.ch
mailto:palonso@upv.es

9 Page 2 of 21

V.E. Padulano et al.

“runs”). The next active period, Run 3, has recently
begun and it will be immediately followed by a major
hardware upgrade (named HL-LHC [1]) that will in
turn start generating data in 2029. With each run, the
collider is fine-tuned and more events are generated.
HL-LHC is foreseen to generate roughly thirty times
more data than the LHC has produced so far. Given
the available future budget estimations and expected
technological evolution [2], software tools will play a
crucial role to cover the performance gap and be able
to process the foreseen data volumes.

Already with its current configuration, the accel-
erator produces information from physics events at
rates of multiple GB/s. The information is initially
filtered to remove non-interesting events that would
only bring noise, then is sent from the experiments
present around the accelerator itself to large storage
facilities both at CERN and at collaborating institutes.
These datasets follow a specific pipeline where they
are further filtered and structured into a well-defined
format that serves as the standard for different groups
of physicists. This format uses a columnar layout that
allows writing to disk any kind of structure, from
scalar values to arbitrarily complex objects. Data are
saved according to the different columns but also in
groups of rows, every time there is more than a certain
size threshold to be written (by default every 30 MB).
Thus, it allows reading parts of the dataset indepen-
dently, with a granularity that can vary from different
columns in their entirety to a certain group of rows
from a certain column.

This common format is implemented within the
ROOT [3] software framework and it has been demon-
strated that this custom data format brings tangible
I/O performance gains when dealing with the specific
characteristics of HEP data [4, 5]. ROOT has become
the de facto standard for data I/O, processing and visu-
alisation in the High Energy Physics (HEP) field. This
framework is mainly implemented in C++ but also
offers Python bindings. It is made of different com-
ponents, among which RDataFrame [6] is the main
interface for data analysis.

The high amount of data collected by the LHC
experiments has made distributed computing a staple
in HEP data processing workflows for a long time. The
traditional approach in this field is taking advantage
of computing power granted by the different insti-
tutions that collaborate with CERN, coordinating it
through a common grid. In particular, this is called

@ Springer

the Worldwide LHC Computing Grid (WLCG) [7].
Historically, a researcher wanting to run a physics
analysis on the grid would have had to perform various
steps. First, the core application logic would have had
to be thought and implemented. Usually, this would
have involved thinking about how to process each row
of the dataset (one row equals to one physics event),
then iterating the logic on all the rows. This appli-
cation would have expected as input one part of the
total dataset. Then the user had to submit multiple
jobs to the grid, each applying the code to a differ-
ent piece of data. This would result in many partial
results, that would usually be saved into the remote
storage of the grid. The user would then have to code
a separate program and submit it as another job on the
grid, in order to take care of merging all the differ-
ent partial results into the final result. In this context,
one of the most common statistics to obtain is a his-
togram of one or more columns in the dataset. It is
quite common to see analyses where thousands of par-
tial histograms are generated in each job and then the
merging step has to produce a list of histograms result-
ing from correctly merging the partial histograms that
referenced the same physical dimensions in the vari-
ous jobs. This approach was not user-friendly and it
was often error-prone, even though many HEP col-
laborations developed their own distributed computing
frameworks to mitigate potential issues.

Considering the challenges that HL-LHC will
bring, it will be crucial to ensure that physicists
only have to think about the algorithm involved to
process an event and not about all the scheduling
and implementation details. In this regard, distributed
computing will need to be further explored with new
approaches that allow making best use of available
computing resources while providing an ergonomic
interface for final users [8].

While HEP has relied mostly on grid computing
and batch queueing technologies such as HTCon-
dor [9] or Slurm [10], distributed computing in other
industries has also seen other approaches being used
at scale. Notably, interactive execution engines from
Hadoop such as Apache Spark [11] or from the Python
ecosystem such as Dask [12] have seen more and more
usage in many data science applications over a wide
spectrum of use cases. One of the driving factors for
such tools is exactly that they do not require the user to
think about scheduling the distributed computations,
instead offering APIs that can be called interactively

Leveraging State-of-the-Art Engines for Large-Scale Data...

Page30f21 9

(meaning inside the same user application) to steer
the computations to remote machines and directly get
back the results.

This work presents a novel extension of the ROOT
RDataFrame analysis interface, allowing to steer a
physics analysis application to a distributed cluster
of nodes with the Dask Python library. This enables
large scale parallelisation of physics applications writ-
ten in Python while still executing C++ code inside a
distributed task on a computing node. Through Dask,
RDataFrame can leverage widely used batch systems
like HTCondor as resource managers of HEP hard-
ware infrastructure. The new backend is compared
against the already existing Spark backend using a
concrete physics analysis as a benchmark, for the first
time showing scalability of the tool with more than
two thousand cores.

2 Related Work

Large-scale distributed computing has become more
and more relevant in recent times with the huge
increase in data volumes that characterises many use
cases in different industries and research fields.

Examples of using Dask to distribute computations
can be found in Earth and Climate sciences [13, 14].
Also in those fields datasets contain many years of
data and can reach sizes of multiple TBs, with non-
trivial multidimensional schemas similar to what can
be found in HEP. In one of the cited works, data
processing through Dask allows parallelising part of
the data analysis workflow, the scalability results are
shown up to 32 cores with a speedup value of around
9 in the best cases [13]. The same community made
an effort to develop an ecosystem for distributed data
analysis, recognising that previous approaches led
to fragmentation and unproductivity [15]. In another
work, molecular dynamics simulations were pro-
cessed on a computing cluster using Dask as execution
engine [16]. The split-apply-combine approach to dis-
tribute tasks shown in that work is similar to what will
be discussed in this paper, but applied to a different
field with different user workflows in mind. The Dask
library itself provides a dataframe interface which
can be directly used as an entrypoint for generic data
analysis [17].

Apache Spark has been used as building block to
scale analysis computations in many use cases. It can

be considered as a more mature framework since it
has been developed and explored for longer than Dask
[18] and can be employed at least on the same set of
workflows. Examples include multi-stage deep learn-
ing approaches [19], generic feature selection frame-
works [20], streaming data analytics for IoT devices
[21] and smart grid systems [22]. Usage extends as
well to academia, for example in a geoscience effort to
compare different storage systems with the objective
of getting the best performance from a Spark-based
analysis framework [23].

Although many tools exist to address data analy-
sis needs of industries and academia, it should not be
taken for granted that they can all work just as well
in any other field. Particularly, it has been shown that
for the HEP data analysis requirements a tailor-made
tool like ROOT with its RDataFrame data analysis
interface still has a major advantage over other indus-
try frameworks [24]. The HEP field is not new to
the investigation of large-scale distributed execution
engines. The ROOT framework itself offered the Par-
allel ROOT Facility (PROOF), a tool to automatically
parallelise HEP applications [25]. This provided a
way to avoid all the manual submission work required
by traditional batch systems, but it could only work
with ROOT services that needed to be launched on
the cluster resources (no other resource manager was
supported). In 2017 two similar works presented a
distributed data analysis system of the CMS exper-
iment [26] using Spark, but encountered limitations
in having to convert data from the standard HEP
ROOT format to formats that Spark could understand
natively, incurring in major performance bottlenecks
[27, 28]. A later study overcame this issue, but did not
achieve higher scaling when using available CERN
storage facilities [29]. An example of good scalability
was provided by researchers of the TOTEM experi-
ment at CERN, with a first approach at distributing
a ROOT application over Spark resources in a cloud
[30]. The presence of Spark in the HEP community
has become relevant enough that CERN has invested
in specific infrastructure to support Spark analysis
workflows [31].

No other large-scale execution engine has been
explored as much as Spark in this field. Usage of Dask
has begun only recently, also brought by the increased
popularity in HEP of Python-based interfaces. In par-
ticular, it is being explored in the context of the
so-called analysis facilities, where different tools are

@ Springer

9 Page 4 of 21

V.E. Padulano et al.

unified in a coherent software stack that can fulfill all
of physicists’ analysis needs [32]. In this regard, a key
feature of Dask is provided by its interfaces with batch
computing systems, in particular HTCondor, widely
used in HEP computing clusters.

No scalability test was presented with more than
two thousand cores in the literature found for the
HEP field. Also, while there are efforts to steer dis-
tributed computations to computing clusters through
large-scale engines, none of them combines the possi-
bility of using a user-friendly interface language like
Python to actually distribute C++ computations. This
is actually made possible by ROOT RDataFrame, that
is already capable of automatically steering user code
to a Spark cluster. This work extends that capabil-
ity by adding a new Dask backend, which fulfills a
very strong need to make use of available HEP hard-
ware resources which are tightly integrated with batch
resource managers. Furthermore, it lets C++ computa-
tions run along other Python-only functions called by
internal Dask mechanisms.

3 Engines for Large-Scale Data Analysis

It has been established that HEP data analysis needs
require distributed computing resources, which are
mostly available through the grid. Accessing these
resources requires a lot of effort from the users
and is usually not an interactive workflow, rather a
series of job submissions to the grid. HEP research
groups have been exploring more interactive and user-
friendly ways to steer the computations to the remote
resources, which rely on execution engines that pro-
vide both a solid framework to access and utilise the
distributed resources as well as more modern APIs
that can be used interactively in the user application.
These often share a common interface language in
Python, that is used as a glue language to allow for
an easier programming experience. Two such engines
are briefly described in this section, namely Spark and
Dask, which are widely used in various data science
communities and are notably important for the future
of distributed computing in HEP.

3.1 Apache Spark

Spark is an Apache project aimed at cluster computing
and based on Hadoop MapReduce [33], extending it to

@ Springer

more types of computations with a higher efficiency.
The main feature of Spark is the ability to perform
in-memory cluster computing to increase the process-
ing speed of an application. Spark implements its
own cluster management logic, separate from Hadoop,
providing a faster and more general data processing
platform.

Writing a Spark program involves creating an
object called SparkContext that is able to con-
nect and send computations to a remote cluster. Vari-
ous functions in the Spark API enable parallelisation
of user code through the SparkContext. On the
cluster side, one Spark scheduler is responsible to
send computations to one or more Spark workers and
retrieve the results before sending them again to the
user. A few cluster managers are available in Spark,
namely:

® Spark standalone: manually starting the scheduler
and worker services on the available nodes of the
cluster.

® YARN [34]: the default Hadoop resource man-
ager.

e Kubernetes [35]: a deployment system to scale
containerised applications.

3.2 Dask

Dask is a Python library that allows to easily paral-
lelise existing Python workflows. It is mainly targeted
at supporting other common Python analysis tools
like Numpy [36] or Pandas [37], but it is flexible
enough to accomodate any type of computation. Thus,
it offers many interfaces for data processing, including
machine learning and real-time analysis. In the context
of this work, Dask is employed as a distributed sched-
uler, offering a wide set of configurations thanks to
which an application can be scaled to different cluster
setups like:

1. Start all the remote nodes from a single machine
through SSH.

2. Leverage existing cluster deployments with
Kubernetes or YARN.

3. Connect to high performance computing resource
managers that implement batch submission sys-
tems, like HTCondor, Slurm or PBS [38].

Two ingredients are necessary in order to distribute
computations in a Dask application. The first is the

Leveraging State-of-the-Art Engines for Large-Scale Data...

Page 5of21 9

object representing the remote cluster itself, includ-
ing how many resources will be assigned to it for
the duration of the application. The second is an
object representing the connection between the local
machine and the remote cluster. This is simply called
Client and can be used with any of the different
implementations of resource managers available in
Dask described above. The C1ient API allows users
to asynchronously launch tasks to the remote cluster.

4 A Dask Backend for Distributed RDataFrame

As highlighted in Sections 1 and 2, distributed com-
puting plays a key role in fulfilling data analysis
needs of large HEP collaborations. In recent years,
more attention has been put towards user-friendliness
and interactivity aspects of distributed analysis frame-
works, shifting away from the traditional batch queue
systems. Nonetheless, these still provide the back-
bone of HEP computing facilities. In this regard, Dask
has recently started to be explored by researchers
in the field since it allows connecting arbitrary user
code to an interactive scheduler that can also inter-
face to the traditional batch systems. This section
describes the development of a new backend for
distributed RDataFrame based on Dask. Section 4.1
gives more detail about the RDataFrame tool in the
ROOT framework, its programming model and the
extension that was developed to distribute physics
analysis which currently supports scheduling through
Spark. Section 4.2 describes the implementation of
the new Dask backend. Section 4.3 highlights the
developments brought to the distributed RDataFrame
tool that allow executing C++ computations from the
Python processes spawned by Dask without overhead.
Section 4.4 describes the automatic splitting of the
user application into multiple tasks that are sent to
the execution engine. Finally, Section 4.5 explores
some of the nuances that may impact the user work-
flow when employing Spark or Dask as the execution
engine.

4.1 ROOT RDataFrame
RDataFrame is the high level interface to data anal-

ysis offered by ROOT. It features a declarative API
with lazy evaluation [39] of the functions called by the

user. In fact, the tool effectively builds a computation
graph that is only triggered when the results are actu-
ally requested in the application. Through the Python
bindings offered by ROOT, RDataFrame allows physi-
cists to write their code with the user friendliness
and flexibility offered by the Python language, while
the underlying tool runs computations in C++. It also
implements specific HEP features like support for
systematic variations, nested collections, producing
histograms with associated statistics.

The declarative approach of RDataFrame also
allows to better manage low-level optimisations and
I/O scheduling with the ROOT format, the standard
format in which all HEP data is stored. For exam-
ple, it is able to parallelise the execution on different
ranges of entries, aligned with respect to the parts of
the dataset that can be read independently from disk.
The operation of splitting the input dataset into vari-
ous smaller ranges of entries and assigning one range
to each task is also called “dataset chunking”, and
it is commonly found in distributed computing use
cases [40, 41].

Parallelisation has been a key feature of RData-
Frame since its inception. The native C++ implemen-
tation allows to use all the cores in a single machine
through implicit multithreading, which can be acti-
vated by a single function call at the beginning of
the user application. More recently, the tool has been
extended with a Python module that is able to take
an already existing RDataFrame application and dis-
tribute its computations to a cluster of nodes.

The core idea of the extension is to wrap the com-
putation graph defined in user code and execute it
on each node, on a different portion of the original
dataset. A HEP dataset can be split along its rows,
each one usually representing a collision event. Since
different physics events are statistically independent,
parallelising the workflow on different data chunks is
a valid approach. This also makes HEP data analysis
an embarassingly parallel problem. The ROOT data
format allows not only reading different columns inde-
pendently, but it also defines a minimum amount of
rows that can be read independently. In ROOT, the
minimum amount of entries that can be retrieved inde-
pendently from a file is called “entry cluster” or just
“cluster”. Thus, distributed RDataFrame computing
can be achieved by executing the same computation
graph on different ranges of entries of the original

@ Springer

9 Page 6 of 21

V.E. Padulano et al.

dataset. Aligning a task with respect to the entry clus-
ters of the dataset ensures that no two tasks repeat
the computations on the same entries while at the
same time minimising the I/O transactions needed.
The specific algorithm for task creation developed
together with the new backend is better described in
Section 4.4.

Once a list of tasks is generated on the client side,
this should be sent to a scheduler for distributed exe-
cution. An important design choice in this regard was
to make the extension modular, so that the tasks can be
sent to potentially many different execution engines.
The first prototype of this tool used the Apache Spark
framework to distribute the physics analysis. This was
the only available distributed RDataFrame backend in
ROQOT before this work, which thus builds upon that
previous effort [42].

4.2 Executing the Computation Graph with Dask

The main object of this work is thus to enable
RDataFrame workflows for users who want to exploit
the flexibility offered by Dask scheduling. This goal
is also completely in line with the design goal of
the distributed RDataFrame tool, to support as many
execution engines as the physicists may need.

In order to achieve it, the following must happen
inside a distributed RDataFrame application:

1. The list of operations that make up the computa-
tion graph defined by the user is structured in a
way that is serialisable.

2. Similarly, the input dataset is split in logical par-
titions, giving the user the option to specify the
number of partitions.

3. A Dask client is created and connected to a clus-
ter.

4. The computation graph, together with all the par-
titions defined in step 2, are registered with the
Dask client.

5. Finally, the application triggers the Dask client,
that will in turn communicate with the Dask
scheduler in order to run the distributed computa-
tions in the cluster.

The first two items in the list are in principle han-
dled by the already available implementation of the
distributed RDataFrame tool: a mapper and a reducer
function are already defined to take care of transform-
ing the user-defined operations in actual RDataFrame

@ Springer

function calls that will be executed on different chunks
of the input dataset. Although Sections 4.4 and 4.3
will describe the improvements that went into the task
creation and execution thanks to this work.

What is needed then is finding a way of submit-
ting these functions defined locally to Dask. Dask
offers many interfaces for data analysis, but the most
interesting for the purposes of this work is called
dask.delayed [43]. This is a Python decorator
that effectively allows to run custom workflows of
any type, by wrapping the user provided functions in
objects that will delay the computations until actu-
ally requested by the application. In particular, call-
ing a function that was previously decorated with
delayed returns a Delayed object, which will
wait to start the computations until the user calls
its compute method. Both the mapper and reducer
functions created in distributed RDataFrame are dec-
orated with the delayed function, thus when they
will be called on any given data chunk, they will not
be executed right away, but accumulated by Dask.
Effectively, a parallel computation graph is built at
the Dask level, that will then execute the RDataFrame
computation graph when triggered. From the point of
view of the execution engine, this is still a MapRe-
duce graph (like it is done in the previously available
Spark backend), with the reduce phase done in a tree-
like pattern. This is depicted in Fig. 1. In the figure,
each square represents a node of the Dask computation
graph. Looking at each vertical set of nodes, the first
one includes all mapper tasks, that is all the different
applications of the RDataFrame computation graph to
a separate range of entries of the original dataset. All
other tasks are reducing partial results of the mappers,
two at a time until only the single, final result is left to
be sent to the user.

Implementing this pattern on the backend side is
shown in Listing 1. This shows the function that is
responsible to take the computation graphs and the
data chunks from the framework and connect it to
Dask. In particular:

® Lines 4, 5: calls to the delayed interface. This
makes the execution of the mapper and reducer
functions deferrable. When they are called, they
are registered in a computation graph internal to
Dask.

e Lines 7-9: creation of the tasks by calling the
delayed mapper function on each chunk of the

Leveraging State-of-the-Art Engines for Large-Scale Data...

Page 70f21 9

. waiting - in-memory
. processing . completed

Fig. 1 Visualisation of the Dask computation graph generated
by calling the delayed mapper and reducers in distributed
RDataFrame. The colours of the nodes represent their status:
nodes that are waiting for results from others are in grey; those
that are currently processing a task are in green; those that have
completed their task but need to wait for another task before
sending their result to the next reducer keep the result in mem-
ory and are shown in red; finally, the nodes that have completed
their task and do not need to wait for others are shown in blue

dataset. This is represented by the first vertical
line of nodes described in Fig. 1.

e Lines 11-13: implementation of the reduce phase.
The first two elements of the list of partial
results are removed from the list and given to the
reduce function; the result of the reduction is then
appended to the same list; this is repeated until
there is only one element in the list, meaning that
all the partial results have been merged into the
final result.

e Line 15: trigger the start of the computations
by the Dask scheduler, by calling the compute
method on the only remaining value of the
described list.

4.3 Efficient Execution of C++ Code in Dask Python
Processes with RDataFrame

The details given so far already show the core ingre-
dient needed to enable the new backend. But another

1 def process_dask(

2 mapper, reducer, chunks):

3

4 dmapper = dask.delayed (mapper)

5 dreducer = dask.delayed(reducer)
6

7 futures = []

8 for chunk in chunks:

9 futures.append (dmapper (chunk))
10

11 while len(futures) > 1:

12 futures.append (dreducer(

13 futures.pop(0), futures.pop(0)))
14

15 return futures[0].compute()

Listing 1 Implementation of the MapReduce pattern in the
Dask distributed RDataFrame backend

important part of this work is taking care that par-
allelisation of RDataFrame computations is properly
handled by Dask on the computing nodes. At the node
level, the parallelisation is done through Python mul-
tiprocessing. Each process is a separate Dask worker
that will receive one or more tasks to run. Inside each
Python process, Dask will spawn multiple Python
threads. The main thread is responsible for running the
user-provided function, which in the context of dis-
tributed RDataFrame is a mapper (or reducer) task.
Other threads involve Dask internal mechanisms such
as inter-task and inter-node communication.

A distributed RDataFrame application is written
in Python and also the functions that are serialised
and sent to the Dask workers are in Python. But
when a worker is executing a task and calls into the
RDataFrame API, it is going to run C++ code because
the actual implementation of RDataFrame is in C++.
This is made possible thanks to the dynamic Python
bindings available in ROOT, named PyROOT, which
can load a C++ library at runtime and call into it right
away, thanks to the ROOT C++ interpreter. Thanks to
PyROQT, there is no need to generate or send static
Python-C++ bindings to the computing nodes, Dask
will see only the Python layer of the tool and the
implementation of distributed RDataFrame will trans-
parently and automatically call functions implemented
in C++.

Since Python is constrained by the Global Inter-
preter Lock (GIL), the different Python threads actu-
ally need to wait on each other before doing their job.
Crucially, the main thread that is running the com-
putations should never acquire the GIL for too long

@ Springer

9 Page 8 of 21

V.E. Padulano et al.

to avoid blocking resources for the others. Instead,
by default, the thread that runs the task code through
PyROOT holds the GIL and does not release it when
calling into C++ functions. Thus, the threads that
are responsible for communication starve, leading to
major slowdowns and timeouts when running the tasks
on the Dask workers.

In order to overcome this issue, this work changes
the implementation of the distributed RDataFrame
Python package to ensure that the Python GIL is
released when calling into C++ RDataFrame code to
run a task. This is done by exploiting a feature of the
Python bindings in ROOT, that is the possibility to
unlock the GIL for the duration of a specific function.
This is done at the beginning of the mapper function
in each task, before executing the computation graph.
From the point of view of a Python process running
in one of the computing nodes, All Dask mechanisms
can now work freely while the C++ computations
are running. Communication between different Dask
workers or with the Dask scheduler is ensured and
the main Python thread does not block them anymore,
thus bringing a tangible performance increase. With-
out this change, the Dask backend would just not be
convenient for users and would not be competitive
with the already existing Spark backend.

4.4 Client-Side Generic Task Creation
for Distributed Backends

Automatic creation of tasks for distributed execu-
tion is a core feature of the distributed layer for
RDataFrame. The main goal is ensuring that two dis-
tinct tasks will operate on two distinct parts of the
dataset specified by the user. This requires exploit-
ing as much as possible the I/O granularity offered
by the data format when reading a ROOT file. As a
simple example, let us take a ROOT file containing a
dataset with two columns and two entry clusters. Two
tasks can be possibly defined for this example, the first
task operates on the first cluster, the second task on
the second cluster. Both tasks need to also receive the
information about the file(s) that contain the entries
they were assigned. In general, the following rules can
be derived about task creation:

® A task should be assigned with a range of entries
to process from a particular set of files. This

@ Springer

range should be aligned with respect to the clus-
ter boundaries, to avoid reading a whole group of
rows in memory and then just processing a few of
them.

e For any given application, the maximum amount
of tasks that should be created is equal to the
total amount of clusters in the dataset. Creating
more tasks would mean triggering unnecessary
I/0O requests to (potentially remote) ROOT files,
adding a significant overhead to the analysis.

Creating the list of tasks to be passed to the execution
engine has proven to be a great bottleneck in dis-
tributed RDataFrame. This issue arises from the fact
that the information regarding clusters in a file can
only be queried after the file has been opened. Before
this work, all files of the dataset had to be opened on
the client side to query the relevant metadata. Tests
done at CERN have shown that a single open operation
of a remote file stored within the CERN network from
a client machine within the same network can take a
few seconds to complete. A real HEP analysis can pro-
cess O(1000) files, thus bringing a startup time cost of
tens of minutes just to create the tasks. In this work,
a new algorithm for task creation has been developed
to completely remove the need to open remote files in
the client, thus bringing the startup time close to zero.
This is implemented via creating the task in two steps,
one on the client side and the other on a distributed
worker.

The generic idea of the algorithm is as follows.
On the client side, the only information that is read-
ily available because it is provided by the user is some
specification of the input dataset, namely the list of
files to process. This list is split into a series of tasks
with length equal to the number of chunks specified
by the user. On the local machine, no file is opened.
Instead, splitting the input files into tasks is done by
considering each file as an entity that can be divided
according to percentages. For example, an application
that processes two files in two tasks would have one
task processing 100% of the first file and the other task
processing 100% of the other file. The granularity can
go even further: a task can be assigned with a range of
percentage of a single file (e.g. [33, 66)). This is done
because such a generic task will then be sent to some
distributed worker which will need to convert this per-
centages into actual cluster boundaries. The difference

Leveraging State-of-the-Art Engines for Large-Scale Data...

Page9of21 9

def create_generic_tasks(
filenames, n_partitions):

1

2

3

4 all_files = compute_files_in_tasks()
5 percs_f, percs_l = (

6 compute_percentages ()

7

8

9

)

res = []
10 for files, perc_f, perc_1l in zip(
11 all_files, percs_f, percs_l):
12
13 res.append(
14 (files, perc_f, perc_l)
15)
16
17 return res

Listing 2 Approximate implementation of the creation of tasks
on the client side

now 1is that files are only opened on the computing
nodes that need to process them.

Listing 2 shows more details about the client side.
In particular:

e Lines 1, 2: the function expects in input only the
list of files that must be processed (i.e. the dataset)
and a number of partitions in which they should
be split.

e Line 4: gather a list of the files that should be pro-
cessed in each task. This involves a few extra steps
which are omitted from the listing:

— First, the function creates a list of per-
centages according to how many parti-
tions are required. For example, 5 files
and 3 partition would give a list such as
[0, 1.66, 3.33, 5].

— Then it retrieves the corresponding list of
file boundaries as integers: [0, 1, 3,
5].

— Then it computes the difference element
by element, to get the corresponding por-
tion of the file for each percentage of the
first list: [0, 0.66, 0.33, O0].

— From the list of file boundaries, the begin
and end index (end exclusive) of the files
in each task can be computed. Using this
information, the all_files variable is
a list where each element is another list
containing the files that a task should
process (a subset of the list of files in
input to the function).

e Lines 5-7: gather two lists with the percentages

of the first and last files, respectively, in each
task where the processing should begin or end.
Using the same example as above, percs_f is
[0, 0.66, 0.33] andpercs_1lis [0.66,
0.33, 1]. Taking the first task for example, it
will read files 0 and 1, file O will be read starting
from percentage O (i.e. from its beginning) and file
1 will be read until percentage 0.66 (i.e. 66% of
the entries in that file).

e Lines 9-15: construct the list of tasks by storing
together the file indexes, the percentage of the first
file and the percentage of the last file in a single
object (i.e. the payload) for each task.

At the end of this function, each created task con-
tains: a list of files (subset of the list of total files
of the dataset), the percentage from which the task
should start processing the first file, and the percent-
age until which the task should start processing the last
file. Files in between the first and the last will be fully
processed.

The payload obtained from the function described
above will be sent to the remote workers. There, the
approximate task needs to be concretised, i.e. the per-
centages need to be converted to actual entry numbers
in the files. It must be noted again that this is deferred
until the task is processed on the remote workers to
avoid opening the files on the client side (a costly
operation). Listing 3 shows an approximate imple-
mentation of this conversion from the payload task to
an actual task. In particular:

® Lines 3-7: gather information from the payload.
first file idx and last_file_idx repre-
sent the index of the first and last file that should
be processed from the list of files received in the
payload. This are shown here to help readability,
as they will be used in later parts of the function.
perc_f and perc_1 represent the percentages of
the first and last file obtained from the function in
Listing 2.

® Lines 9-11: retrieve, for each file in the payload,
a list of the entry clusters and the total number
of entries in the file. The concept of entry cluster
is specific to the data format provided by ROOT.
It is the minimum amount of entries that can be
read independently from a file, thus represents the
smallest I/O transaction that can be performed. It
is thus important that concrete tasks are aligned

@ Springer

9 Page 10 of 21

V.E. Padulano et al.

with respect to cluster boundaries, so that I/O is
minimised.

e Lines 13-16: convert the percentage of the first
file from the payload to a real beginning entry of
the first file. This is computed in the following
steps:

— The percentage is multiplied by the num-
ber of entries in the file, to get a candi-
date beginning entry.

— This candidate is compared against the
list of cluster boundaries for that file. The
clusters are considered as bins and the
corresponding cluster index is computed
for the candidate entry.

— The beginning entry of that cluster is
taken as the beginning entry for the task.

— The algorithm establishes whether a
generic task should actually process a
cluster or not based on whether the can-
didate entry coincides with the begin-
ning entry of the cluster. For example,
suppose a cluster spans entries from 10
(inclusive) to 20 (exclusive). If the can-
didate entry is equal to 10, the task will
start processing from that cluster, other-
wise not. This ensures that only one task

def convert_task(task):

1
2
3 files = task.files

4 first_file_idx = 0

5 last_file_idx = len(files) - 1
6 perc_f = task.perc_f

7 perc_l = task.perc_1l

8

9

clusters, entries = (

10 get_clusters_entries(files)

11)

12

13 begin_entry_f = get_begin_entry(
14 perc_f, entries[first_file_idx],
15 clusters[first_file_idx]

16)

17

18 end_entry_1 = get_end_entry(

19 perc_l, entries[last_file_idx],
20 clusters[last_file_idx]

21)

22

23 return (

24 files, begin_entry_f, end_entry_1
25)

Listing 3 Approximate implementation of the conversion of a
generic task into an actual task in a distributed worker

@ Springer

takes that particular cluster of entries, so
that there cannot be two tasks processing
the same entries.

e Lines 18-21: convert the percentage of the last
file from the payload to a real ending entry of the
last file. This follows the same algorithm as in the
previous item.

e Lines 23-25: return the concrete task. This
includes the list of files received in the payload,
the beginning entry where the task should start
processing the first file, the ending entry where
the task should stop processing the last file. These
entries are aligned with respect to cluster bound-
aries. Files in between the first and the last are
processed fully.

4.5 Impact of the Two Execution Engines on End
User Workflows

As stated in Section 4.1, one of the main design
choices for distributed RDataFrame is to make the
extension modular so that it can fit with different exe-
cution backends. Thus, for the final user, using the
Spark backend or the Dask backend should make no
difference when running a distributed RDataFrame
application. In fact, they write exactly the same analy-
sis code, with the only difference being in the setup of
the connection to the cluster.

The two engines also have many similarities.
Notably, they both support expressing custom com-
putations using the MapReduce paradigm (although
Dask extends the support to any arbitrary execution
pattern). Furthermore, they will both present the user
with graphical dashboards showing real-time task exe-
cution and status of the nodes [44, 45]. Nonetheless,
the two execution engines have different approaches
which may result in nuanced differences regarding
their usability.

One notable example is the cluster setup that
is implicitly expected by the two different engines.
Factoring out the standalone setups (i.e. manually
launching either Spark or Dask services on various
machines), Dask has the clear, crucial advantage of
being able to interface to submission systems that
are ubiquitous in HEP computing infrastructures. This
means that setting up a Spark cluster will require either
manual user intervention, or new facilities built ad-
hoc for the purpose of interactive distributed analysis.

Leveraging State-of-the-Art Engines for Large-Scale Data...

Page 11 0of21 9

With enough user demand this may become worth its
cost, as mentioned in Section 2. But being able to use
pre-existing computing resources with no added engi-
neering, logistic or maintenance cost is undoubtedly a
valuable feature.

This advantage is not only visible on the infras-
tructure side, but also on the end user side. Not all
users have direct access to the Spark cluster at CERN,
so their only alternative, if they would like to use
the Spark functionalities, is to launch the services on
the traditional distributed computing resources. This
involves manually launching jobs on the cluster, then
launching the Spark services when the job is ready.
Furthermore, although this work, and the distributed
RDataFrame tool in general, are framed in the con-
text of Python-based analysis workflows, the Spark
library depends on Java in order to work. On most
systems this is installable through the system pack-
age manager, but it is not guaranteed that users will
have permission to do that. Dask on its side is a
pure Python library, and any user can create a Python
virtual environment in their home directory without
additional permissions. There is thus a larger overhead
with choosing Spark over Dask for a user that wants
to start their analysis workflow for the first time, and
it will be shown with more details in Section 5.3.2.

5 Experiments

In this section, the performance of the newly presented
Dask backend is tested on a computing cluster, run-
ning a physics analysis example with different config-
urations. First, the analysis is run on a single node with
varying number of cores. The processing throughput
per core is compared against the processing through-
put of running the same analysis with RDataFrame in
sequential execution. Later, the Dask backend is com-
pared against the previously present Spark backend
running the same analysis on a larger dataset with both
backends. By fixing the number of tasks executed by
the two backends and the granularity of those tasks,
we can compare how much they scale and if they
introduce any noticeable overhead.

5.1 Application

The physics analysis used in this work processes
data from events recorded by the CMS experiment

at CERN in 2012. The analysis extracts the di-muon
mass spectrum by computing the invariant mass of
muon particles with opposite charge in the dataset.
The result of the analysis is a histogram of the
mass spectrum, showing peaks highlighting the pres-
ence of different particles in the physics events. This
application is available through the CERN open data
portal [46].

The original application was implemented using
ROOT RDataFrame on a single machine. In this work,
it was adapted to run with distributed RDataFrame.
This practically involves only a few lines of setup code
which are needed to connect to the cluster resources,
depending on the desidered backend. The calls to the
RDataFrame API are completely unmodified.

In the two different test configurations mentioned
above, the original dataset is replicated in order to
reach a higher size providing a more realistic compu-
tational workload. In the first configuration that runs
the application on one node only, the dataset is repli-
cated fifty times, whereas on the second configuration
it is replicated four thousand times. The final dataset
sizes for both configurations are reported in Table 1.
Values in the table may present small rounding adjust-
ments, the original dataset contains exactly 61 540413
entries and its size is 2 244 449 133 bytes.

Replicating a ROOT dataset can be easily done
by providing multiple times the path to a ROOT file
to RDataFrame. Internally, the entries of the various
files will be chained together and RDataFrame will be
able to process them as a single coherent entity. This
practice is valid for benchmarking purposes, since the
physics events are statistically independent. In a first
round of tests, the dataset is made available locally
on each computing node, in order to factor out I/O
performance from the results and read directly from
filesystem cache. Subsequently, the dataset will be
read remotely from its storage location at the CERN
data center, providing a more concrete example of
what physicists may experience.

5.2 Testbed

Resources from an HPC cluster at CERN are used for
these tests. The computing nodes have the following
characteristics:

1. 2x AMD EPYC 7302 16-Core Processor (total of
32 physical cores, no hyper-threading).

@ Springer

9 Page 12 of 21

V.E. Padulano et al.

Table 1 Dataset sizes in the proposed experiments

Dataset # Files # Entries [K] Size [MB]
Original 1 61540 2224

1st configuration 50 3077020 111222
2nd configuration 4000 246161 652 8897796

First row: original dataset

Second row: dataset used when testing the Dask backend on a single node. Third row: dataset used when comparing the Dask backend

against the Spark backend on many nodes of the cluster

2. 512GB DDR4 3200Mhz memory.
3. Infiniband 100 Gbps network card.
4. Samsung PCI-e NVME SSD.

This cluster relies on the Slurm framework to man-
age hardware resources. It is a batch queuing system,
which offers a perfect example of where the new
backend may shine also in terms of usability.

5.3 Methodology

When running a HEP analysis, one the most interest-
ing measurements for the final user is the so-called
“time to plot”. That is the time between triggering the
computations and receiving the final result that can be
then plotted. In the following sections, the time to plot
is measured in each test between the beginning and the
end of the RDataFrame computations, irrespective of
whether they are run locally or distributedly. The pro-
cessing throughput of an application is then computed
by dividing the size of the data that is actually read and
processed in the benchmark by the corresponding time
to plot. The considered analysis processes all columns
and all entries of the input dataset.

5.3.1 Single Node Test with Dask

The original application is run on one of the nodes of
the computing cluster, to get a first baseline measure-
ment of the processing throughput on a single core.
Then, it is converted to run with Dask, using a single
computing node and increasing the number of cores
used in that node. Details of the connection to Dask are
specified in the next section. Furthermore, the number
of chunks in which the dataset is split is also increased.
Namely, 1, 2 and 4 chunks per core are tested.

@ Springer

5.3.2 Tests Comparing Dask and Spark Backends

Before actually running the tests with Spark, the
needed resources must be requested to Slurm. When
they are granted, the Spark scheduler and all the
worker services on the computing nodes are started
with a bash script that was provided in the Slurm
request. Only after the Spark cluster is available, the
Python application with distributed RDataFrame code
is started. Thus, there is no direct way to start the
Spark cluster by connecting to the batch system in the
user application. The extra code needed by the Spark
version of the benchmark is shown in Listing 4. In this
case, the object that represents the connection to the
cluster is called SparkContext. Its configuration
options can be defined in the SparkConf, as shown
in lines 10-21 in the listing. In this case, they just mir-
ror the same resource configuration that was used to
launch the services through the bash script mentioned
above.

A different approach is shown in Listing 5 with
the Dask setup. In this case, the object representing
the connection to the cluster is a Dask Client. The
cluster resources can be programmatically defined
in the application itself, creating a cluster object
from the types supported by Dask. In this work,
the SLURMCluster class was chosen to connect to
the cluster. It allows to automatically submit request
for resources to Slurm, without the need to invoke
a separate bash script, and shows the more user-
friendly approach that Dask enables. This enables a
direct interface with the resource manager, providing
a different, more ergonomic approach for users with
respect to what was described for Spark. The rele-
vant steps needed for this setup are highlighted in
Listing 5:

Leveraging State-of-the-Art Engines for Large-Scale Data...

Page 130f21 9

1 from pyspark import SparkConf

2 from pyspark import SparkContext

3 def main_spark(

4 master, n_nodes, cores_per_node, dataset):
5

6 total_cores = (

7 n_nodes * cores_per_node

8)

9

10 sconf = SparkConf () .setA11([

11 ("spark.master",

12 f"spark://{master}:7077"),

13 ("spark.executorEnv.PYTHONPATH",
14 os.environ["PYTHONPATH"]),

15 ("spark.executor.instances",

16 n_nodes),

17 ("spark.executor.cores",

18 cores_per_node) ,

19 ("spark.cores.max",

20 total_cores)

21 ID)

22

23 scontext = SparkContext (conf=sconf)
24

25 run_analysis(scontext, dataset)

Listing 4 Setup function of a Spark benchmark. The analysis
receives the created SparkContext object to distribute the
application on the cluster

e Lines 6-14: The class SLURMCluster expects
the information needed to create a job, i.e. the
resources that it should request to the Slurm man-
ager. These include: the amount of cores per job,
which corresponds to the cores of one node in
these benchmarks; the amount of Dask processes,
which is set to the amount of cores per node in
order to have no Python multithreading; the name
of the Slurm queue where the job should be sub-
mitted; a few extra options that make sure the job
will gain exclusive access to the node.

e Line 15: Calling the scale method on the cre-
ated object will launch as many jobs as the num-
ber provided as argument. For these benchmarks,
one job per node is requested.

e Line 18: Before starting the RDataFrame analy-
sis, the Dask client waits for all the Slurm jobs to
be started and the Dask workers to be ready. This
is done to have consistent time to plot measure-
ments for the purposes of the benchmarks. In a
real scenario, the application would start as soon
as at least one job is ready, in order to minimise
the waiting time for the user.

1 from dask.distributed import Client
2 from dask_jobqueue import SLURMCluster
3 def main_dask(

4 n_nodes, cores_per_node, dataset):

6 cluster = SLURMCluster (

7 cores=cores_per_node,

s processes=cores_per_node,
9 queue=QUEUENAME,

10 job_extra_directives=[

11 "--exclusive",

12 "--ntasks-per-node=1"

13]

14)

15 cluster.scale(n_nodes)

16

17 daskclient = Client(cluster)

18 daskclient.wait_for_workers(n_nodes)
19

20 run_analysis(daskclient, dataset)

Listing 5 Setup function of a Dask benchmark. The analysis
receives the created Client object to distribute the application
on the cluster

The benchmarks are executed both with the new
Dask backend and the Spark backend of distributed
RDataFrame. Each benchmark is repeated ten times,
using from one to 64 computing nodes to distribute the
computations. 32 distinct processes are run concur-
rently on each node (one process per core). In Spark,
this is handled through Java Virtual Machine (JVM),
whereas Dask spawns a different Python process for
each core. For each test, the number of chunks in
which the dataset is split is four times the number of
cores used for that particular test.

Source code of the tests discussed in this section is
publicly available on GitHub [47].

5.4 Results and Discussion

The results of the tests done on one computing node
are shown in Fig. 2. The lines in the figure refer to
benchmarks of distributed RDataFrame with the Dask
backend, using a variable number of cores of the node
and also an increasing number of tasks per core. Each
task processes a separate chunk of the original dataset.
The figures also report the result of the original appli-
cation, which uses the traditional RDataFrame version
processing the dataset sequentially.

In Fig. 2a, the processing throughput is reported
in terms of Megabytes of data processed per second.
Generally, changing the number of partitions per core

@ Springer

9 Page 14 of 21

V.E. Padulano et al.

— 1800 8

2.
"= 1600 f
1400 — ////

1200 —

1000

Processing throughput

800 -

Partitions per core

600 =
2
400 3 4
+ sequential
200
0
12 4 8 16 32
Cores
(a)

Fig. 2 Processing throughput achieved on a single computing
node, with increasing number of cores and partitions per core. In
each plot, three lines indicate the results of increasing the num-
ber of cores used in the benchmark. Each line corresponds to
a different number of partitions per core. The result of running

doesn’t affect the overall throughput of the bench-
mark, with the same number of cores. This is a positive
result because it means that the Dask backend is able
to properly process multiple tasks assigned to the same
core without creating imbalance.

In Fig. 2a, the throughput shown in the previous
figure is normalised by the number of cores used in
each benchmark run. Overall, the highest throughput
per core is achieved by the benchmark running the
original analysis with RDataFrame sequentially. This
can be explained easily since there is no extra schedul-
ing of tasks and remote communications involved, so
it runs slightly faster. It should be noted that the bench-
mark using the Dask backend and running with one
core and one partition has a slightly higher through-
put than the benchmarks using one core and two or
four partitions. Since there is only one processing
core, it can be expected that having more than one
task brings some overhead. When more cores are used
and there is more than one task per core, different
tasks can be sent to those cores that are free. Poten-
tially, this can be very beneficial when the dataset
is imbalanced (different files having very different

@ Springer

Processing throughput
N
T

Partitions per core

25
L

20; 5

10 + sequential

5;

0 T T

12 4 8 16 32
Cores

(b)

the original analysis sequentially is also indicated at the 1 core
data point of the x axis. a: Processing throughput expressed in
Megabytes per second. b: Processing throughput normalised by
the number of cores

number of entries) or when it is read remotely and
network I/O becomes an issue. The main objective
of the distributed mode is still to use the full poten-
tial of the node. Varying the number of partitions per
core leads to the same throughput when considering
the same amount of cores. The throughput per core
shows an almost flat line with respect to the num-
ber of cores. The lowest point is reached when all 32
cores of the node are used at the same time. Since
the node is being fully utilised, the processing tasks
are influenced by other processes happening like 1/O,
Dask internal communication threads. Nonetheless,
the drop in normalised throughput between using one
core and 32 cores is around 10%, while achieving a 28
times higher nominal throughput.

The results obtained in the single node scenario
also had some influence on the methodology of the
benchmarks with multiple nodes. For example, set-
ting the number of chunks to four times the number
of cores can be safely done knowing that it will not
decrease the throughput notably with any number of
cores. At the same time, it allows for an overall better
scheduling due to finer task granularity.

Leveraging State-of-the-Art Engines for Large-Scale Data...

Page 150f21 9

90

r
|

| Dask

Time to plot [min]
©
o

70 ‘1 -~ Spark
60
50 |
40
30
20 \
10 X
124 8 16 32

(a)

Nodes

90

80 Dask

Time to plot [min]

70 —Spark

0
124 8 16 32 64
Nodes

(b)

Fig. 3 Time to plot (in minutes) achieved with an increasing number of nodes. 32 concurrent processes are run on each node. a: Time
to plot of the first run of the benchmark. b: Average time to plot for consequent runs of the benchmark

Figure 3 shows the time to plot of the benchmark
scaling to multiple nodes. For this figure and follow-
ing similar ones, it must be noted that: the image on
the left shows the time to plot of the first run of the
benchmark at each node count; the image on the right
shows the average time to plot of the following runs at
each node count; error bars for the average are not vis-
ible in the plot because they are too small with respect
to the y-axis scale. In this configuration, the time to
plot experienced by the user continuously decreases
with the increased number of nodes, from slightly less
than 90 minutes to less than 2 minutes. As far as the
time to plot is concerned, there is no appreciable over-
head in the first run of the benchmark with respect to
following runs.

Figure 4 shows the same results expressed in pro-
cessing throughput (in Gigabytes per second). Here,
the overhead of the first run can be better appreci-
ated. The peak processing throughput achieved in the
first run is 87 GB/s, whereas in following runs a peak
of 102 GB/s is reached when using the Spark back-
end. The Dask backend can still achieve a very high
throughput, although slightly lower than the Spark
backend.

Figure 5 shows the speedup achieved when running
on an increasing number of nodes. The speedup in the
first run shows a change of slope after the 16 nodes

count and stays further away from the linear line. Con-
secutive runs show a better trend for both backends,
closer to a linear behaviour with respect to the number
of nodes used.

All these results show that the new Dask backend
performs on par with the previously existing Spark
backend. In general, the distributed RDataFrame tool
can parallelise well even when thousands of comput-
ing cores are used.

It should be noted that, from the comparison of
the time to plot measurements with the processing
throughput of Figs. 3 and 4, the experience for the user
does not change significantly between the first run and
consecutive runs. The highest difference in time to
plot is present when using only one node and it is just
less than two minutes with respect to an overall run-
time of almost ninety minutes. The overhead present
in the first run becomes more evident only when dis-
cussing the throughput and trying to lower it becomes
important in the effort to best utilise cluster resources.

Figure 4 clearly shows that the first run of the
benchmark has a lower throughput than consecutive
runs. This is mainly due to the necessary startup rou-
tines performed by ROOT and its C++ interpreter. Fur-
thermore, when using RDataFrame with the Python
bindings, users still run their C++ functions by pass-
ing them as Python strings to the RDataFrame API

@ Springer

9 Page 16 of 21

V.E. Padulano et al.

GB
S
o
S

90 Dask
80 -~ Spark
70

Processing throughput [SB}

60

50

40 /

30 A
20 /

0
124 8 16 32 64
Nodes
(a)

Fig. 4 Processing throughput (in Gigabytes per second)
achieved with an increasing number of nodes. 32 concurrent
processes are run on each node. a: Throughput achieved by

functions. These strings then need to be just-in-time
(JIT) compiled by the ROOT interpreter. This oper-
ation, also called JITting, incurs in initialisation cost

60

Dask
-~ Spark

50

Speedup [w.r.t 1 node]

0
124 8 16 32 64

Nodes
(a)
Fig. 5 Speedup achieved with an increasing number of nodes.

32 concurrent processes are run on each node. Speedup is rel-
ative to the result obtained when using one node. a: Speedup

@ Springer

8l

9”100

90 Dask
80 -+ Spark
70

Processing throughput

60

50

40

30 v

20 /

0
124 8 16 32 64

Nodes
(b)

the first run of the benchmark. b: Average throughput for
consequent runs of the benchmark

the first time it is done in a certain Python process
and will cache some information internally for later
use. Notably, most of the functions, C++ template

Speedup [w.r.t 1 node]

0
124 8 16 32 64
Nodes
(b)

obtained with the first run of the benchmark. b: Speedup
obtained with consequent runs of the benchmark

Leveraging State-of-the-Art Engines for Large-Scale Data...

Page 170f21 9

instantiations, constant structures that belong to the
computation graph. Since the execution of the dis-
tributed application is done with multiprocessing on
each computing node, this means that the initialisation
cost is incurred once per core used in the benchmark.
Potentially, this can be improved with a hybrid par-
allelism approach. That is, if distributed RDataFrame
could communicate with the execution engines in a
way that the given resources can be completely con-
trolled by the analysis tool, then instead of relying
on multiprocessing and the scheduling of the vari-
ous engines the parallelism could be achieved by the
implicit multithreading capabilities already available
within ROOT. From the point of view of a single
node, the tool would start a single Python process
which would then run RDataFrame in multi-threading
with as many threads as available cores on the node.
This would thus decrease startup costs and intra-
node communications between different Python pro-
cesses happening on the same node. With the resource
configuration used in this work, this improvement
would mean running the ROOT startup routines only
once instead of 32 times per computing node.

The benchmark runs following the first run, pre-
sented in Figs. 4 and 5, show a better throughput
and speedup behaviour overall. Although the through-
put achieved in this case is very high at around 100
GB/s with both backends, some non-idealities are still
present and become more evident after the 32 nodes
mark. This is due to the fact that even though the
interpreter has been already initialised at this point,
some JITting is still involved in each task. A clear
improvement on this side could be brought by creating
and compiling the RDataFrame workflow in a certain
process when the first task starts, then caching it in
memory and reusing it in subsequent task happening
in the same process.

The results for the next configuration of this bench-
mark, reading data from remote CERN storage facil-
ities rather than locally on the nodes, are shown in
Fig. 6. In this case, only the runs with the Dask back-
end are shown, so that the comparison with Spark
is not influenced by variability due to the remote
I/0. In fact, this image shows the distributions of the
time to plot measurements with each different num-
ber of nodes. The distributions are much wider than
in the previous cases, sometimes also showing outliers
(as indicated by the “x” marks at 1 and 64 nodes).
This large variance could be helped by an even finer

—_ —
» 2]
o o

—_
N
o

Time to plot [min]

100
80

60

o B

20 -
&

124 8 16 32 64
Nodes

Fig. 6 Time to plot (in minutes) achieved with an increasing
number of nodes. 32 concurrent processes are run on each node.
Data processed in the experiments are read remotely from the
storage facilities at CERN. A box plot of the distribution of
results is shown for each point on the x axis, ten runs per node
count. The box spans from the first to the third quartile. Inside
the box, a dashed line represents the mean, a solid line repre-

FTaRt)

sents the median. “x”” marks at 1 and 64 nodes represent outliers,
those points that are outside the range of the whiskers. This
range is defined as the distance between the first quartile and
the third (also called interquartile range) multiplied by 1.5

grained task distribution on the application side, but it
is also influenced by the status of the network and pos-
sibly the implementation of the remote I/O. It is thus
left for future studies directed at this specific issue.

Both in the first run results discussed above and
in consecutive runs, the amount of JITting is propor-
tional to the number of tasks. This also raises the
question of finding a good balance in parallelising the
processing of the input dataset. On the one hand, cre-
ating more tasks means splitting the dataset in smaller
chunks, thus leaving more room for the scheduler to
assign work to the computing nodes, avoiding possible
imbalances due to some nodes being slightly slower
than others or some parts of the dataset requiring
higher computational load than others. On the other
hand, creating more tasks leads to more overhead in
spawning them and recreating the computation graph
on-the-fly.

The slopes of the speedup lines shown with both
backends do not diverge greatly from the linear
behaviour shown for reference in Fig. 5. Although it
might be possible in principle to reach this behaviour

@ Springer

9 Page 18 of 21

V.E. Padulano et al.

when using multiple nodes, the non-idealities dis-
cussed in scaling the computation graph justify the
missing performance gains. It should be especially
noted that the overhead discussed is per-task, not per-
core or per-node. This means that the more tasks,
the more overhead on the whole runtime of the dis-
tributed execution. This fact clashes with the intuition
that splitting the input dataset in more chunks should
allow for a more fine-grained scheduling by the exe-
cution engine, thus avoiding potential slowdowns due
to some tasks or nodes taking longer than others. In
general, optimising dataset splitting is a non-trivial
problem of distributed execution engines, with sparse
literature suggesting different ways to choose the split-
ting value. For example, the Spark documentation
suggests setting it to 2 or 3 times the amount of avail-
able CPUs in the cluster [48]. But other strategies exist
depending on the number of files and size of the input
dataset and the available resources [49] or even on the
choice of the number of chunks being done statically
or dynamically [50]. The results discussed previously
refer to benchmarks with four tasks per computing
core, which, for the purposes of this work, seems to
strike a good balance between making the load even
on the nodes and avoiding too much overhead.

6 Conclusions

This paper has presented a novel backend for the dis-
tributed ROOT RDataFrame tool, which relies on the
popular Dask framework to steer the computations
to a distributed cluster. The backend implementation
involved different efforts, such as: a plugin to interface
the existing RDataFrame code with Dask primitives;
a redesign of the computation graph trigger on the
computing nodes, so that the C++ event loop does not
interfere with Dask Python threads; a more generic
implementation of task creation on the client side, so
that no remote I/O is involved locally but only on the
distributed nodes. These changes have been commit-
ted to the upstream ROOT repository and are available
to all users.

A HEP analysis example has been used to test
the scalability of distributed RDataFrame. Initially,
the analysis was run on a single node, to compare
the throughput obtained running sequentially against
the throughput obtained using multiple cores of the
node. This was also normalised to the number of

@ Springer

cores used in each run, showing that the extra work
in scheduling the tasks does not account for a high
drop in throughput. Also, it was demonstrated that the
dataset can be split in many partitions without loss
in performance, opening the door to heavier work-
loads involving remote I/O where the finer granularity
may lead to improved balancing. At a second stage,
the analysis was scaled on multiple nodes, compar-
ing the already existing Spark backend with the newly
developed Dask backend presented in this paper on an
HPC cluster at CERN. The test was run using up to
a total of 64 nodes (2048 cores). Results show very
high raw processing throughput values (more than 100
GB/s with the highest core count) and good scaling,
with non-idealities showing up after the 512 cores
mark. Both backends perform similarly, with Dask
having a slight disadvantage when more than 1000
cores are used, which can be due to being a less mature
framework than Spark in the data science ecosystem.

The overhead brought by JITting found in the
benchmark runs with very high core counts is
understood and potential improvements have been
described. These will help in further addressing very
large scale requirements of HEP distributed comput-
ing.

Acknowledgments The hardware used to perform the exper-
imental evaluation of the software was made available by
CERN.

Author Contributions The following statement is based on
CRediT taxonomy, giving contributions of each author in the
work:

® Vincenzo Eduardo Padulano: Conceptualization, Investiga-
tion, Writing - original draft, Software, Methodology

® [van Donchev Kabazhov - Conceptualization, Investigation

® Enric Tejedor Saavedra: Conceptualization, Supervision,
Investigation, Writing - review and editing, Validation

® Enrico Guiraud: Conceptualization, Supervision, Investi-
gation, Writing - review and editing, Validation

® Pedro Alonso-Jorda: Supervision, Writing - review and
editing, Validation

Funding Open Access funding provided thanks to the
CRUE-CSIC agreement with Springer Nature. This work
benefited from the support of grant PID2020-113656RB-
C22 funded by Ministerio de Ciencia e Innovacién (Spain)
MCIN/AEI/10.13039/501100011033.

Data Availability All benchmarks performed in this work and
the information about the datasets used are available in a public
repository [47].

Leveraging State-of-the-Art Engines for Large-Scale Data...

Page 190f21 9

Compliance with Ethical Standards This work bene-
fited from the support of grant PID2020-113656RB-C22
funded by Ministerio de Ciencia e Innovaciéon (Spain)
MCIN/AEI/10.13039/501100011033.

The hardware used to perform the experimental evaluation
of the software was made available by CERN.

Ethics approval and consent to participate Not applicable.

Consent for Publication All authors consent to the publica-
tion of this article.

Competing interests Financial interests are disclosed in
Section 7.5. The authors declare no other competing interest for
this work.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Cre-
ative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated oth-
erwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the per-
mitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visithttp://
creativecommons.org/licenses/by/4.0/.

References

1. Apollinari, G., Béjar Alonso, I., Briining, O., Fessia,
P, Lamont, M., Rossi, L., Tavian, L.: High-luminosity
large hadron collider (HL-LHC): technical design report
V. 0.1. Technical report CERN. https://doi.org/10.23731/
CYRM-2017-004 (2017)

2. Elsen, E.: A roadmap for HEP software and computing
R&D for the 2020s. Comput Softw Big Sci, vol 16(3).
https://doi.org/10.1007/s41781-019-0031-6 (2019)

3. Brun, R., Rademakers, F.: ROOT — an object oriented data
analysis framework. Nuclear Instr. Methods Phys. Res.
Section A Accelerators, Spectrometers, Detectors Assoc.
Equip. 389(1), 81-86 (1997). https://doi.org/10.1016/S01
68-9002(97)00048-X. New computing techniques in
physics research V

4. Blomer, J., Canal, P., Naumann, A., Piparo, D.: Evolution
of the ROOT tree I/0. EPJ Web Conf. 245, 02030 (2020).
https://doi.org/10.1051/epjcont/202024502030

5. Lopez-Gomez, J., Blomer, J.: RNTUple performance: sta-
tus and outlook. arXiv:2022.09043. https://doi.org/10.48
550

6. Piparo, D., Canal, P.,, Guiraud, E., Valls Pla, X., Ganis,
G., Amadio, G., Naumann, A., Tejedor Saavedra, E.:
RDAtaframe: easy parallel ROOT analysis at 100 threads.
EPJ Web Conf. 214, 06029 (2019). https://doi.org/10.1051/
epjcont/201921406029

10.

11.

12.

13.

14.

15.

16.

18.

19.

. Bird, I.: Computing for the large hadron collider. Annu.

Rev. Nucl. Part. Sci. 61(1), 99-118 (2011). https://doi.org/
10.1146/annurev-nucl-102010-130059

. Team, R., Brann, K.A., Amadio, G., An, S., Bellenot, B.,

Blomer, J., Canal, P., Couet, O., Galli, M., Guiraud, E.,
Hageboeck, S., Linev, S., Vila, PM., Moneta, L., Naumann,
A., Tadel, A.M., Padulano, V.E., Rademakers, F., Shadura,
0., Tadel, M., Saavedra, E.T., Pla, X.V., Vassilev, V., Wun-
sch, S.: Software challenges for HL-LHC data analysis.
arXiv:2004.07675. 10.48550 (2020)

. Tannenbaum, T., Wright, D., Miller, K., Livny, M.: Condor

— a Distributed Job Scheduler. In: Sterling, T. (ed.) Beowulf
Cluster Computing with Linux. MIT Press (2001)

Jette, M., Dunlap, C., Garlick, J., Grondona, M.: Slurm:
simple linux utility for resource management. Techni-
cal report, LLNL. https://www.osti.gov/biblio/15002962
(2002)

Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker,
S., Stoica, I.: Spark: cluster computing with working
sets. In: Proceedings of the 2nd USENIX Conference on
Hot Topics in Cloud Computing. HotCloud’10, p. 10.
USENIX association. https://www.usenix.org/conference/
hotcloud- 10/spark- cluster-computing- working-sets (2010)
Rocklin, M.: Dask: parallel computation with blocked algo-
rithms and task scheduling. In: Huff, K., Bergstra, J. (eds.)
Proceedings of the 14th Python in Science Conference,
pp. 130-136. SciPy (2015)

Rilee, M., Griessbaum, N., Kuo, K.-S., Frew, J., Wolfe,
R.: STARE-based integrative analysis of diverse data
using dask parallel programming demo paper. In: Proceed-
ings of the 28th International Conference on Advances
in Geographic Information Systems. SIGSPATIAL 20,
pp.- 417-420. Association for computing machinery.
https://doi.org/10.1145/3397536.3422346 (2020)

Gharat, J., Kumar, B., Ragha, L., Barve, A., Jeelani, S.M.,
Clyne, J.: Development of NCL equivalent serial and paral-
lel python routines for meteorological data analysis. Int. J.
High Performance Comput. Appl., https://doi.org/10.1177/
10943420221077110 (2022)

Hamman, J.J., Rocklin, M., Abernathy, R.M.: Pangeo: a
big-data ecosystem for scalable earth system science. In:
20th EGU General Assembly, EGU2018, p. 12146. The
SAO/NASA astrophysics data system (ADS) (2018)

Fan, S., Linke, M., Paraskevakos, 1., Gowers, R.J., Gecht,
M., Beckstein, O.: PMDA - Parallel molecular dynam-
ics analysis. In: Calloway, C., Lippa, D., Niederhut, D.,
Shupe, D. (eds.) Proceedings of the 18th Python in Science
Conference, pp. 134—142. SciPy. https://doi.org/10.25080/
Majora-7ddc1dd1-013 (2019)

. Dask: dask.dataframe documentation. https://docs.dask.org/

en/stable/dataframe.html . Accessed 25 Nov 2022 (2022)
Salloum, S., Dautov, R., Chen, X., Peng, P.X., Huang, J.Z.:
Big data analytics on Apache Spark. Int. J. Data Sci. Anal.
1, 145-164 (2016). https://doi.org/10.1007/s41060-016-00
27-9

Khan, M.A., Karim, M.R., Kim, Y.: A two-stage big data
analytics framework with real world applications using
spark machine learning and long Short-Term memory net-
work. Symmetry, vol. 10(10). https://doi.org/10.3390/sym
10100485 (2018)

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.23731/CYRM-2017-004
https://doi.org/10.23731/CYRM-2017-004
https://doi.org/10.1007/s41781-019-0031-6
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1051/epjconf/202024502030
http://arxiv.org/abs/2022.09043
https://doi.org/10.48550
https://doi.org/10.48550
https://doi.org/10.1051/epjconf/201921406029
https://doi.org/10.1051/epjconf/201921406029
https://doi.org/10.1146/annurev-nucl-102010-130059
https://doi.org/10.1146/annurev-nucl-102010-130059
http://arxiv.org/abs/2004.07675
https://www.osti.gov/biblio/15002962
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-wo rking-sets
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-wo rking-sets
https://doi.org/10.1145/3397536.3422346
https://doi.org/10.1177/10943420221077110
https://doi.org/10.1177/10943420221077110
https://doi.org/10.25080/Majora-7ddc1dd1-013
https://doi.org/10.25080/Majora-7ddc1dd1-013
https://docs.dask.org/en/stable/dataframe.html
https://docs.dask.org/en/stable/dataframe.html
https://doi.org/10.1007/s41060-016-0027-9
https://doi.org/10.1007/s41060-016-0027-9
https://doi.org/10.3390/sym10100485
https://doi.org/10.3390/sym10100485

9

Page 20 of 21

V.E. Padulano et al.

20. Ramirez-Gallego, S., Mourifio-Talin, H., Martinez-Rego,

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

D., Bolon-Canedo, V., Benitez, J.M., Alonso-Betanzos, A.,
Herrera, F.: An information theory-based feature selec-
tion framework for big data under apache spark. IEEE
Trans. Syst. Man Cybern. Syst. 48(9), 1441-1453 (2018).
https://doi.org/10.1109/TSMC.2017.2670926

Chaudhari, A.A., Mulay, P.: SCSI: real-time data anal-
ysis with cassandra and spark, pp. 237-264. Springer.
https://doi.org/10.1007/978-981-13-0550-4_11 (2019)
Shyam, R., Bharathi Ganesh, H.B., Sachin Kumar, S., Poor-
nachandran, P., Soman, K.P.: Apache spark a big data ana-
lytics platform for smart grid. Proced. Technol. 21, 171-178
(2015). https://doi.org/10.1016/j.protcy.2015.10.085

Shin, H., Lee, K., Kwon, H.: A comparative experimental
study of distributed storage engines for big spatial data pro-
cessing using GeoSpark. J. Supercomput. 78, 2556-2579
(2022). https://doi.org/10.1007/s11227-021-03946-7
Graur, D., Miiller, 1., Proffitt, M., Fourny, G., Watts, G.T.,
Alonso, G.: Evaluating query languages and systems for
high-energy physics data. Proc. VLDB Endow. 15(2), 154—
168 (2021). https://doi.org/10.14778/3489496.3489498
Feichtinger, D., Canal, P.,, Reed, C., Loizides, C.,
Ballintijn, M., Rademakers, F., Peters, A.J., Kickinger,
G., Iwaszkiewicz, J., Ganis, G., Brun, R., Bellenot,
B., Feichtinger, D., Canal, P, Reed, C., Loizides, C.,
Ballintijn, M., Rademakers, F., Peters, A.J., Kickinger,
G., Iwaszkiewicz, J., Ganis, G., Brun, R., Bellenot, B.:
PROOF - the parallel ROOT facility. In: 2006 15th IEEE
International Conference on High Performance Distributed
Computing, pp. 379-380. EDP sciences. https://doi.org/10.
1109/HPDC.2006.1652193 (2006)

Chatrchyan, S., et al.: The CMS experiment at the CERN
LHC. JINST 3, 08004 (2008). https://doi.org/10.1088/
1748-0221/3/08/S08004

Sehrish, S., Kowalkowski, J., Paterno, M.: Spark and HPC
for high energy physics data analyses. In: 2017 IEEE Inter-
national Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pp. 1048-1057. IEEE, Lake Buena
Vista, FL, USA. https://doi.org/10.1109/IPDPSW.2017.112
(2017)

Gutsche, O., Cremonesi, M., Elmer, P., Jayatilaka, B.,
Kowalkowski, J., Pivarski, J., Sehrish, S., Surez, C.M., Svy-
atkovskiy, A., Tran, N.: Big data in HEP: a comprehensive
use case study. J. Phys. Conf. Ser. 898, 072012 (2017).
https://doi.org/10.1088/1742-6596/898/7/072012

Gutsche, O., Canali, L., Cremer, I., Cremonesi, M., Elmer,
P, Fisk, 1., Girone, M., Jayatilaka, B., Kowalkowski, J.,
Khristenko, V., Motesnitsalis, E., Pivarski, J., Sehrish, S.,
Surdy, K., Svyatkovskiy, A.: CMS analysis and data reduc-
tion with apache spark. J. Phys. Conf. Ser. 1085, 042030
(2018). https://doi.org/10.1088/1742-6596/1085/4/042030
Avati, V., Blaszkiewicz, M., Bocchi, E., Canali, L., Cas-
tro, D., Cervantes, J., Grzanka, L., Guiraud, E., Kaspar,
J., Kothuri, P.,, Lamanna, M., Malawski, M., Mnich, A.,
Moscicki, J., Murali, S., Piparo, D., Tejedor, E.: Declar-
ative big data analysis for high-energy physics: TOTEM
use case. In: Yahyapour, R. (ed.) Euro-par 2019: Parallel
Processing, pp. 241-255. Springer (2019)

@ Springer

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Baranowski, Z., Kleszcz, E., Kothuri, P., Canali, L.,
Castellotti, R., Marquez, M.M., De Barros, N.G.M,,
Motesnitsalis, E., Mrowczynski, P., Duran, J.C.L.: Evo-
lution of the hadoop platform and ecosystem for high
energy physics. EPJ Web Conf. 214, 04058 (2019).
https://doi.org/10.1051/epjcont/201921404058

Adamec, M., Attebury, G., Bloom, K., Bockelman, B.,
Lundstedt, C., Shadura, O., Thiltges, J.: Coffea-casa: an
analysis facility prototype. EP] Web Conf. 251, 02061
(2021). https://doi.org/10.1051/epjconf/202125102061
Dean, J., Ghemawat, S.: Mapreduce: simplified data pro-
cessing on large clusters. Commun. ACM 51(1), 107-113
(2008). https://doi.org/10.1145/1327452.1327492
Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S.,
Konar, M., Evans, R., Graves, T., Lowe, J., Shah, H., Seth,
S., Saha, B., Curino, C., O’Malley, O., Radia, S., Reed,
B., Baldeschwieler, E.: Apache hadoop YARN: yet another
resource negotiator. In: Proceedings of the 4th Annual
Symposium on Cloud Computing. SOCC ’13. Association
for computing machinery. https://doi.org/10.1145/2523616.
2523633 (2013)

Kubernetes: homepage. https://kubernetes.io/. Accessed 25
Nov 2022 (2022)

NumPy: homepage. https://numpy.org/. Accessed 25 Nov
2022 (2022)

Pandas: homepage. https://pandas.pydata.org/. Accessed 25
Nov 2022 (2022)

Nitzberg, B., Schopf, J.M., Jones, J.P.: PBS pro: grid com-
puting and scheduling attributes, pp. 183-190. Kluwer
academic publishers, USA (2004)

Hudak, P.: Conception, evolution, and application of func-
tional programming languages. ACM Comput. Surv. 21(3),
359411 (1989). https://doi.org/10.1145/72551.72554
Dozza, M., Bidrgman, J., Lee, J.D.: Chunking: a proce-
dure to improve naturalistic data analysis. Accident Anal.
Prevention 58, 309-317 (2013). https://doi.org/10.1016/
j-aap.2012.03.020

Rew, R.: Chunking data: why it matters. https://www.
unidata.ucar.edu/blogs/developer/en/entry/chunking_data_
why_it_matters (2013)

Padulano, V.E., Villanueva, J.C., Guiraud, E., Saavedra,
E.T.: Distributed data analysis with ROOT RDataframe.
EPJ Web Conf. 245, 03009 (2020). https://doi.org/10.1051/
epjconf/202024503009

Dask: dask.delayed documentation. https://docs.dask.org/
en/stable/delayed.html. Accessed 25 Nov 2022 (2022)
Spark: web UL Accessed 25 NOv 2022. https://spark.
apache.org/docs/latest/web-ui.html (2022)

Dask: dashboard diagnostics. Accessed 25 Nov 2022.
https://docs.dask.org/en/stable/dashboard.html (2022)
Waunsch, S.: Analysis of the di-muon spectrum using data
from the CMS detector taken in 2012. https://doi.org/
10.7483/OPENDATA.CMS.AAR1.4NZQ (2019)
Padulano, V.E.: Test suite repository. Accessed 25 Nov
2022. https://github.com/vepadulano/distRDF_benchmarks
(2022)

Spark: tuning guide. Accessed 25 Nov 2022. https://spark.
apache.org/docs/latest/tuning.html#level-of-parallelism
(2022)

https://doi.org/10.1109/TSMC.2017.2670926
https://doi.org/10.1007/978-981-13-0550-4_11
https://doi.org/10.1016/j.protcy.2015.10.085
https://doi.org/10.1007/s11227-021-03946-7
https://doi.org/10.14778/3489496.3489498
https://doi.org/10.1109/HPDC.2006.1652193
https://doi.org/10.1109/HPDC.2006.1652193
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1109/IPDPSW.2017.112
https://doi.org/10.1088/1742-6596/898/7/072012
https://doi.org/10.1088/1742-6596/1085/4/042030
https://doi.org/10.1051/epjconf/201921404058
https://doi.org/10.1051/epjconf/202125102061
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/2523616.2523633
https://doi.org/10.1145/2523616.2523633
https://kubernetes.io/
https://numpy.org/
https://pandas.pydata.org/
https://doi.org/10.1145/72551.72554
https://doi.org/10.1016/j.aap.2012.03.020
https://doi.org/10.1016/j.aap.2012.03.020
https://www.unidata.ucar.edu/blogs/developer/en/entry/chunking_data_why_i t_matters
https://www.unidata.ucar.edu/blogs/developer/en/entry/chunking_data_why_i t_matters
https://www.unidata.ucar.edu/blogs/developer/en/entry/chunking_data_why_i t_matters
https://doi.org/10.1051/epjconf/202024503009
https://doi.org/10.1051/epjconf/202024503009
https://docs.dask.org/en/stable/delayed.html
https://docs.dask.org/en/stable/delayed.html
https://spark.apache.org/docs/latest/web-ui.html
https://spark.apache.org/docs/latest/web-ui.html
https://docs.dask.org/en/stable/dashboard.html
https://doi.org/10.7483/OPENDATA.CMS.AAR1.4NZQ
https://doi.org/10.7483/OPENDATA.CMS.AAR1.4NZQ
https://github.com/vepadulano/distRDF_benchmarks
https://spark.apache.org/docs/latest/tuning.html#level-of-parallelism
https://spark.apache.org/docs/latest/tuning.html#level-of-parallelism

Leveraging State-of-the-Art Engines for Large-Scale Data...

Page 21 of21 9

49.

50.

Gupta, A.: Building partitions for processing data files
in apache spark. Accessed 25 Nov 2022. https://medium.
com/swlh/building-partitions-for-processing-data-files-in-
apache-spark-2ca40209¢9b7 (2020)

Bertolucci, M., Carlini, E., Dazzi, P., Lulli, A., Ricci, L.:
Static and dynamic big data partitioning on apache spark,

vol. 27, pp. 489-498. I0S Press. https://doi.org/10.3233/
978-1-61499-621-7-489 (2016)

Publisher’s Note Springer Nature remains neutral with
regard to jurisdictional claims in published maps and institu-
tional affiliations.

@ Springer

https://medium.com/swlh/building-partitions-for-processing-data-files-in-apache-spark-2ca40209c9b7
https://medium.com/swlh/building-partitions-for-processing-data-files-in-apache-spark-2ca40209c9b7
https://medium.com/swlh/building-partitions-for-processing-data-files-in-apache-spark-2ca40209c9b7
https://doi.org/10.3233/978-1-61499-621-7-489
https://doi.org/10.3233/978-1-61499-621-7-489

	Leveraging State-of-the-Art Engines for Large-Scale Data...
	Abstract
	Introduction
	Related Work
	Engines for Large-Scale Data Analysis
	Apache Spark
	Dask

	A Dask Backend for Distributed RDataFrame
	ROOT RDataFrame
	Executing the Computation Graph with Dask
	Efficient Execution of C++ Code in Dask Python Processes with RDataFrame
	Client-Side Generic Task Creation for Distributed Backends
	Impact of the Two Execution Engines on End User Workflows

	Experiments
	Application
	Testbed
	Methodology
	Single Node Test with Dask
	Tests Comparing Dask and Spark Backends

	Results and Discussion

	Conclusions
	References

