
Nuclear Inst. and Methods in Physics Research, A 1054 (2023) 168449

M
E
E
M
P
P

h
R
A
0
(

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

achine Learning based tool for CMS RPC currents quality monitoring
. Shumka 6,∗, A. Samalan 1, M. Tytgat 1, M. El Sawy 2, G.A. Alves 3, F. Marujo 3, E.A. Coelho 3,
.M. Da Costa 4, H. Nogima 4, A. Santoro 4, S. Fonseca De Souza 4, D. De Jesus Damiao 4,
. Thiel 4, K. Mota Amarilo 4, M. Barroso Ferreira Filho 4, A. Aleksandrov 5, R. Hadjiiska 5,

. Iaydjiev 5, M. Rodozov 5, M. Shopova 5, G. Soultanov 5, A. Dimitrov 6, L. Litov 6, B. Pavlov 6,

. Petkov 6, A. Petrov 6, S.J. Qian 7, H. Kou 8,9, Z.-A. Liu 8,9, J. Zhao 8,9, J. Song 8,9, Q. Hou 8,9,
W. Diao 8,9, P. Cao 8,9, C. Avila 10, D. Barbosa 10, A. Cabrera 10, A. Florez 10, J. Fraga 10, J. Reyes 10,
Y. Assran 11,12, M.A. Mahmoud 13, Y. Mohammed 13, I. Crotty 13, I. Laktineh 15, G. Grenier 15,
M. Gouzevitch 15, L. Mirabito 15, K. Shchablo 15, I. Bagaturia 16, I. Lomidze 16, Z. Tsamalaidze 16,
V. Amoozegar 17, B. Boghrati 17,18, M. Ebraimi 17, M. Mohammadi Najafabadi 17, E. Zareian 17,
M. Abbrescia 19, G. Iaselli 19, G. Pugliese 19, F. Loddo 19, N. De Filippis 19, R. Aly 19,36, D. Ramos 19,
W. Elmetenawee 19, S. Leszki 19, I. Margjeka 19, D. Paesani 19, L. Benussi 20, S. Bianco 20,
D. Piccolo 20, S. Meola 20, S. Buontempo 21, F. Carnevali 21, L. Lista 21, P. Paolucci 21, F. Fienga 22,
A. Braghieri 23, P. Salvini 23, P. Montagna 24, C. Riccardi 24, P. Vitulo 24, E. Asilar 25, J. Choi 25,
T.J. Kim 25, S.Y. Choi 26, B. Hong 26, K.S. Lee 26, H.Y. Oh 26, J. Goh 27, I. Yu 28, C. Uribe Estrada 29,
I. Pedraza 29, H. Castilla-Valdez 30, A. Sanchez-Hernandez 30, R.L. Fernandez 30,
M. Ramirez-Garcia 31, E. Vazquez 31, M.A. Shah 31, N. Zaganidis 31, A. Radi 32,14, H. Hoorani 33,
S. Muhammad 33, A. Ahmad 33, I. Asghar 33, W.A. Khan 33, J. Eysermans 34, F. Torres Da Silva De
Araujo 35, on behalf of the CMS Muon Group
1 Ghent University, Department of Physics and Astronomy, Proeftuinstraat 86, B-9000 Ghent, Belgium
2 Université Libre de Bruxelles, Avenue Franklin Roosevelt 50-1050 Bruxelles, Belgium
3 Centro Brasileiro Pesquisas Fisicas, R. Dr. Xavier Sigaud, 150 - Urca, Rio de Janeiro - RJ, 22290-180, Brazil
4 Dep. de Fisica Nuclear e Altas Energias, Instituto de Fisica, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, BR - Rio de
Janeiro 20559-900, RJ, Brazil
5 Bulgarian Academy of Sciences, Inst. for Nucl. Res. and Nucl. Energy, Tzarigradsko shaussee Boulevard 72, BG-1784 Sofia, Bulgaria
6 Faculty of Physics, University of Sofia, 5 James Bourchier Boulevard, BG-1164 Sofia, Bulgaria
7 School of Physics, Peking University, Beijing 100871, China
8 State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
9 University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
10 Universidad de Los Andes, Carrera 1, no. 18A - 12, Bogotá, Colombia
11 Egyptian Network for High Energy Physics, Academy of Scientific Research and Technology, 101 Kasr El-Einy St., Cairo, Egypt
12 Suez University, Elsalam City, Suez - Cairo Road, Suez 43522, Egypt
13 Center for High Energy Physics(CHEP-FU), Faculty of Science, Fayoum University, 63514 El-Fayoum, Egypt
14 Department of Physics, Faculty of Science, Ain Shams University, Cairo, Egypt
15 Univ Lyon, Univ Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, F-69622, Villeurbanne, France
16 Georgian Technical University, 77 Kostava Str., Tbilisi 0175, Georgia
17 School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
18 School of Engineering, Damghan University, Damghan, 3671641167, Iran
19 INFN, Sezione di Bari, Via Orabona 4, IT-70126 Bari, Italy
20 INFN, Laboratori Nazionali di Frascati (LNF), Via Enrico Fermi 40, IT-00044 Frascati, Italy
21 INFN, Sezione di Napoli, Complesso Univ. Monte S. Angelo, Via Cintia, IT-80126 Napoli, Italy
22 Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione - Università Degli Studi di Napoli Federico II, IT-80126 Napoli, Italy
23 INFN, Sezione di Pavia, Via Bassi 6, IT-Pavia, Italy
24 INFN, Sezione di Pavia and University of Pavia, Via Bassi 6, IT-Pavia, Italy
25 Hanyang University, 222 Wangsimni-ro, Sageun-dong, Seongdong-gu, Seoul, Republic of Korea
26 Korea University, Department of Physics, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea

∗ Corresponding author.
E-mail address: elton.shumka@cern.ch (E. Shumka).
ttps://doi.org/10.1016/j.nima.2023.168449
eceived 21 November 2022; Received in revised form 28 February 2023; Accepted 20 April 2023
vailable online 15 June 2023
168-9002/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license
http://creativecommons.org/licenses/by-nc/4.0/).

https://doi.org/10.1016/j.nima.2023.168449
https://www.elsevier.com/locate/nima
http://www.elsevier.com/locate/nima
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2023.168449&domain=pdf
mailto:elton.shumka@cern.ch
https://doi.org/10.1016/j.nima.2023.168449
http://creativecommons.org/licenses/by-nc/4.0/


E. Shumka, A. Samalan, M. Tytgat et al. Nuclear Inst. and Methods in Physics Research, A 1054 (2023) 168449
27 Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
28 Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
29 Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
30 Cinvestav, Av. Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, CP 07360, Ciudad de Mexico D.F., Mexico
31 Universidad Iberoamericana, Mexico City, Mexico
32 Sultan Qaboos University, Al Khoudh, Muscat 123, Oman
33 National Centre for Physics, Quaid-i-Azam University, Islamabad, Pakistan
34 Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, United States
35 III. Physikalisches Institut (A), RWTH Aachen University, Sommerfeldstrasse D-52056, Aachen, Germany
36 Physics Department, Faculty of Science, Helwan University, Ain Helwan 11795, Cairo, Egypt

A R T I C L E I N F O

Keywords:
CMS experiment
Resistive Plate Chambers
Machine Learning
Gas detectors
Monitoring tools

A B S T R A C T

The muon system of the CERN Compact Muon Solenoid (CMS) experiment includes more than a thousand
Resistive Plate Chambers (RPC). They are gaseous detectors operated in the hostile environment of the CMS
underground cavern on the Large Hadron Collider where pp luminosities of up to 2×1034 cm−2s−1 are routinely
achieved. The CMS RPC system performance is constantly monitored and the detector is regularly maintained to
ensure stable operation. The main monitorable characteristics are dark current, efficiency for muon detection,
noise rate etc. Herein we describe an automated tool for CMS RPC current monitoring which uses Machine
Learning techniques. We further elaborate on the dedicated generalized linear model proposed already and
add autoencoder models for self-consistent predictions as well as hybrid models to allow for RPC current
predictions in a distant future.
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1. Introduction

The muon system of the CMS experiment [1] includes 1056 Resis-
tive Plate Chambers (RPC) operated at nominal high voltages (HV) of
9–10 kV. Monitoring their dark current evolution, spotting deviations
from normal performance and anticipating an HV failure that would
immediately propagate to higher detector control levels is an unfeasible
task for an online operator. Detector parameters are abundant [2],
thus HV problems manifest differently, making the human intervention
inefficient. Therefore, an automated process with built-in notification
logic and mechanism is highly sought after for development and further
implementation. Being able to spot increasing current tendencies, for
example, before they lead to an error is very important for controlling
detector operation. An automated tool that performs anomaly detection
for the RPC currents by using Machine Learning (ML) methods is
presented here.

Two types of ML approaches are used: Generalized Linear Models
(GLM) and Autoencoders.

In the GLM case, a set of parameters such as environmental condi-
tions, LHC parameters and detector working points are used to charac-
terize the behavior of the current.

In the autoencoder case, the full set of the RPC HV system currents
is used as an input and the autoencoder network is trained to reproduce
these inputs onto the output neurons.

Both approaches show very good predictive capabilities that are the
basis for the monitoring tool. All the developed tools are integrated in
a framework that can be easily accessed and controlled by a specially
developed Web User Interface that allows the end-users to work with
the monitoring tool in a simple manner. It is being deployed for use
during the CERN LHC Run-3 data-taking period.

2. Generalized linear model

The GLM depicted in Fig. 1 is a generalization of a simple linear
regression used to model the current as a function of the following sets
of parameters:

• Environmental conditions: temperature (T), relative humidity
(RH) and pressure (P)

• LHC parameters: instantaneous luminosity (L) and integrated lu-
minosity (∑L)

• Applied HV
 b

2

Fig. 1. The structure of the GLM.

• Combined terms: L × exp(HV/P) and (
∑HV∕P)𝛥𝑡, where 𝛥𝑡 is the

length of the time period with no luminosity

he ∑L term replaces the 𝛥𝑡 term used in the initially proposed
odel [3]. The improvement is inspired by [4]. The first combined

erm is to account for the exponential increase of gas multiplication
ith the raising of HV while the second one is to account for the

hamber relaxation and the drop of the current baseline during cosmic
ata taking, when there is no beam luminosity and the chambers are
t their working point. All the remaining terms and the motivation for
ncluding them are discussed in [3].

. Autoencoder

In contrast to the GLM approach, where we use detailed knowledge
or the physical processes taking place in a particular type of detector
n order to build the ML model, in this section we take a more general
pproach, namely develop an ML model based on cross-correlation
etween different detector modules, thus applicable for detector sys-
ems consisting of a large number of RPC chambers. We develop
n ML algorithm based on an autoencoder model. Autoencoders are
eural networks that are trained to encode the input into a number of
eurons that is lower than the number of inputs themselves and then
ecode that same information onto the output layer (Fig. 2). During
he learning stage, the autoencoder is supposed to learn the collective
ehavior of all the RPC chambers. Such an autoencoder could be used
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Fig. 2. Topology of an autoencoder.

ater on to spot an anomalous behavior of a single or a small subset of
PC chambers.

In this work, the set of RPC currents at a given moment in time
s given as an input to the autoencoder and the network is trained to
eproduce them on its output layer. The number of input and output
eurons is 773, which corresponds to the number of HV channels in
he RPC system. The hidden layers count respectively: 512, 128, 64,
28 and 512 neurons.

. Hybrid network

As discussed above, GLM describes individual RPC chamber be-
avior while the autoencoder describes collective correlations of the
hole system. In order to use their best qualities, we combine the two
pproaches into a model, referred to as a hybrid network. In this model,
set of GLM equal in size to the number of HV channels provide as

utput the currents for a given moment in time. These currents are
hen used as inputs for an autoencoder, as shown in Fig. 3. The hybrid
etwork is tested in a distant prediction scenario, where the end of the
raining period is separated in time (e.g. 1 year) from the beginning of
he prediction period. Its performance in such a scenario (Section 7)
hows that it can be used as indication for current values that we
ould expect on a system level for some specified conditions (e.g. the
uminosity of the High-Luminosity LHC).

. Monitoring tool

The accurate predictions of the currents performed by both the
LM and autoencoder can be used to detect anomalies in the RPC
etector current performance. The implemented tool follows the work-

low presented in the flowchart in Fig. 4. Raw data coming from the
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CMS non-physics event bus, referred to as online condition data, are
written in the cms_omds_adg database copy. For each point in time
for which data is available, the tool performs comparisons between the
measured and predicted RPC currents. If differences higher than some
predetermined threshold values are detected for a given HV channel,
a flag is raised and the case of that particular channel is followed.
There are two thresholds, the lower one inducing a warning and the
higher one inducing an error. After a specified number of points in time,
the running average of the differences is calculated and if this average
exceeds the thresholds, a warning or an error is sent to the end-users.
This allows for the detection of problematic HV channels before they
result in an HV channel trip.

6. Software implementation

The monitoring tool is programmed in Python. Tensorflow [5] is
used for the implementation of ML. The software is conceptualized and
implemented with modularity in mind (Fig. 5). All modules communi-
cate back-and-forth with a database. The ‘‘Trainer Module’’ reads the
training data from a table and after performing the training, writes back
the ML model parameters in another database table. The ‘‘Estimator
Module’’ loads the models and performs predictions, which are also
stored into the database. Finally, the ‘‘Notifications Manager’’ searches
for anomalies in the current values, as described in the previous section
and provides notifications.

7. Performance results

ML model performance validation is done for three different train-
ing scenarios:

• Short-term training (ST), with data from May to September 2018.
Such models are able to spot a rapid increase in the RPC currents.

• Mid-term training (MT), with data from July 2017 to July 2018,
appropriate for describing the seasonal behavior of the currents.

• Long-term training (LT), with data from May 2016 to July 2018,
appropriate for modeling the overall RPC currents evolution.

All models are tested against the RPC currents measured in the two-
month period between September and October of 2018. These tests
show that GLM performs best in LT scenario (Fig. 6), while the autoen-
coder performs best in ST (Fig. 7). The hybrid network performance is
shown in Fig. 8. The Mean Absolute Error (MAE) and Mean Squared
Error (MSE), which are used as performance metrics, are defined as:

MAE =
𝑁
∑

𝑖=1

|I𝑖𝑚𝑜𝑛 − I𝑖𝑝𝑟𝑒𝑑 |
N (1)

MSE =
𝑁
∑

𝑖=1

(I𝑖𝑚𝑜𝑛 − I𝑖𝑝𝑟𝑒𝑑 )2

N (2)

The sigma of the histogram in both cases is <1 μA, which shows that
both models have excellent predictive capabilities consistent with the
Fig. 3. The hybrid network (the left and right parts of this figure are the same as Figs. 1 and 2, respectively).
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Fig. 4. Monitoring tool workflow.

Fig. 5. Software structure.

Fig. 6. GLM LT performance.

Fig. 7. Autoencoder ST performance.
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Fig. 8. Hybrid network performance.
Fig. 9. Screenshot of the Web User Interface.
Table 1
Performance results.

Model class Training period Prediction period 1D histo mean [μA] 1D histo sigma [μA] 2D histo MAE [μA] 2D histo MSE [μA2]

GLMv2 18-05-01 to 18-09-01 18-09-01 to 18-10-30 −0.02 1.65 1.23 7.62
GLMv2 17-07-01 to 18-07-01 18-09-01 to 18-10-30 0.33 1.66 1.23 7.42
GLMv2 16-05-01 to 18-07-01 18-09-01 to 18-10-30 0.21 0.59 0.72 3.24
Autoencoder 18-05-01 to 18-09-01 18-09-01 to 18-10-30 0.14 0.83 0.49 1.39
Autoencoder 17-07-01 to 18-07-01 18-09-01 to 18-10-30 0.69 1.44 0.96 4.18
Autoencoder 16-05-01 to 18-07-01 18-09-01 to 18-10-30 0.42 1.40 0.85 3.16
GLMv2 16-05-01 to 17-07-01 18-09-01 to 18-09-30 −0.24 2.59 1.92 18.69
Autoencoder 16-05-01 to 17-07-01 18-09-01 to 18-09-30 0.06 2.51 2.14 22.57
Hybrid 16-05-01 to 17-07-01 18-09-01 to 18-09-30 0.60 2.49 2.09 23.19
uncertainty in the current measurement which is also of that same
order. All performance results are shown in Table 1.

Fig. 10 shows the case of an RPC chamber where the predicted
current increasingly diverges from the measured one. It was found that
this discrepancy could be explained with the appearance of a gas leak
in this chamber around the same time.

8. Deployment on the CERN PaaS platform

The monitoring tool is accessible through a Web User Interface that
is being deployed on the CERN Platform-as-a-Service (PaaS) virtual
5

environment (Fig. 9). It is based on OpenShift [6], a platform which
allows for containerized application deployment.

9. Conclusions

We use Machine Learning (ML) methods for anomaly detection in
the current behavior of CMS Resistive Plate Chambers. The excellent
accuracy of the ML model predictions allow us to implement a powerful
monitoring tool which notifies the end-users about potential high-
voltage channel deviations from normal behavior and increased risk
of operational failures. The monitoring tool has been developed and
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Fig. 10. Monitored and predicted currents for an RPC chamber in W-1 of the CMS
arrel.

ill be fully deployed for use during the Year-End Technical Stop
YETS22/23).
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