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We present a series of examples designed to clarify the formalism of the previous paper. After summarizing
this formalism in a prescriptive sense, we run through several examples: first, deriving the embedded defect
spectrum for the Weinberg-Salam theory, then discussing several examples designed to illustrate facets of the
formalism. We then calculate the embedded defect spectrum for three physical grand unified theories and
conclude with a discussion of vortices formed in the superfitid-A phase transition.
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PACS numbds): 11.27+d

[. INTRODUCTION behind the formalism of9] is exploited to determine the
properties and spectrum of embedded defects. The purpose

Embedded defects have received an impressive amount of this paper is to provide a list of several examples to illus-
interest over the last couple of years. Principally this is beirate the formalism of the previous paper. First, however, we
cause theZ string of the Weinberg-Salam theory was re- Summarize the formalism derived fa0], so that it may be
cently realized to be stable for part of the parameter spacesed prescriptively to determine the spectrum and stability of
[1], although it proves to be unstable in the physical regimeembedded defects.
[2,3], though there may be other stabilizing effe¢ts5].

However,.be it stable or unstable, _it may still haye important Il. SUMMARY OF FORMALISM
cosmological consequences—as indicated by its connection
to baryon number violationgs]. For a Yang-Mills theory, the embedded defects are deter-

The standard model also admits a one-parameter family ghined by the symmetry breakinG—H. The symmetry
unstable, gauge equivalent vortices, ¥hestrings[7]. To-  breaking depends upon a scalar fidid lying in a vector
gether, with theZ string, these constitute a very nontrivial spaceV, acted on by th® representation o&. Denoting the
spectrum of vortices arising from the vacuum structure of thd-ie algebra ofG by G, the natural action off upon® is by
Weinberg-Salam theory, two gauge-inequivalent families othe derived representatiah defined byD (e*) = e,
vortices, with one familyinvariant under the residual elec- The naturalGI()) invariant inner product oW is the real
tromagnetic gauge group and the other a one-parameter farferm
ily of gauge equivalent vortices. Furthermore, only one of
these families has the potential to be stable. (D, V)= Reg®™), &, Te). D

Embedded defects have also been specifically studied in
another symmetry breaking scheme, grand unified theoryhe generaG-invariant inner product og is defined by the

(GUT) flipped SUS) [8]. One finds an 11-parameter family gecomposition ofG into mutually commuting subalgebras
of gauge equivalent, unstable vortices plus another globally;_ G,1®---®G, and is of the form
gauge invariant, potentially stable vortéke V string).
The general formalism for describing embedded defects 1 1
was derived by Barriolat al. [9]. Here the construction of (= =, )
embedded defect solutions for general Yang-Mills theories 4 n
was described: one defines a suitadaebeddedubtheory of
the Yang-Mills theory upon which a topological defect solu-with {.,.}; the inner produc{X,Y}=—p Re(Tr(X'Y)), re-
tion may be defined. In extending the embedded subtheorstricted toG;. This hasn scales characterizing all possible
back to the full theory one loses the stabilizing topologicalG-invariant inner products og. In a gauge theory context
nature of the defect, but retains it as solution to the theory.these scales correspond to the gauge coupling constants.
In the previous paperl0], the underlying group theory Note that the same symbol is used to denote the inner
product onG and V; we hope it should be clear from the
context which we are using. Corresponding norms for these
*Email address: N.F.Lepora@amtp.cam.ac.uk two inner products are denoted jf. We discuss these inner
"Email address: A.C.Davis@amtp.cam.ac.uk products more fully in the previous paper0].
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A reference pointbge V is arbitrary because of the de- Here fyg and gyo are the Nielsen-Olesen profile functions
generacy given by the vacuum manifoll =D(G)®, for the vortex{11] and we describe their dependence upon
=G/H. Where hereH is the residual symmetry group, de- in the Appendix of the previous papgt0]. The vortex gen-
fined by the reference poinb, to beH={ge G:D(g)®, eratorX has the constraints
=®,}. ThenH determines a reductive decompositionchf

Xe ./\/li f (ga)
G=HoM, (3
D(ezwx)q)ozq)o. (9b)
with H the Lie algebra oH, such that _
The winding number of such a vortex is given |p$]/| X™",
[H,H]CH and [H,M]CM. (4)  whereX™" is a nontrivial minimal generator in the samé
as X obeying the above two conditions. Family structure
Under the adjoint action dfl, defined Adp)X=hXh"1, M originates from the gauge equivalence of vortices defined by

decomposes into irreducible subspaces equal norm generators in the saoh, .
Vortex stability subdivides into two types: dynamical and
M=M @& My. (5) topological. Furthermore, there are two types of topological

stability: Abelian, from U(1)»1 symmetry breaking; and
These irreducible spaces describe how the group acts on ti@n-Abelian, which is otherwise. I10] we show that Abe-
vacuum manifold, yielding the family structure for embed- lian topological and dynamical stability relate o ,(C):
ded defects. Abelian topological stability corresponds to a trivial projec-
Finally, recall that the centet of G is the set of elements tion, while dynamical stability corresponds to a nontrivial
that commute withg. Then the stability of vortices is related projection.

to the projection ofC onto M, Generally, only generatois e M; define embedded vor-
tices. However, if the coupling constarftg,} take critical
Pr o (X)=X+X, 6) values, such that between, sayf; and M;

with X, e H, the unique element, such thpt ,,(X) e M. [dCX) P — [dCX)) o
One should noter ,,(C) consists of one-dimensional irre- Il X
ducible M;’s. (10

This structure is enough to categorize all the topologica})

XiEMi, XJEMJ,

and nontopological embedded domain walls, embedded vo hen one has extraombinationembedded vortices defined
y generators in\{;& M; .

tices, and embedded monopole solutions of a Yang-Mill

theory.
C. Monopoles
A. Domain walls Embedded monopoles are defined by triplets
Embedded domain walls are defined elemehgs= V: (Do, X1, Xp) € VX MXM:

D(r)=Tfrodr)F, (11a

@ (2)=fpom(2)Po, (79) :

gmon(r

M = ——

A“=0, (7b) Aa([) r E,uabxbl (11b)

wheref oy is a real function such thdtyoy(+)=1, and  Where X;=[X;,X,], and we are treatingb as a vector
foom(— )@= D, belongs to the vacuum manifold. within in its embedded subtheory.

Providing the vacuum manifold is connected this solution Monopole generators have the following restrictigh§].
is unstable, suffering from a short range instability in the (i) The pair X;,X;) e M;XM;, and are properly nor-
scalar field. Solutions within connected parts of the vacuuninalized so that, for={1,2,

manifold are gauge equivalent.
g g d eXF(Z’TTXi)(DO:q)(). (12)

B. Vortices (i) The pair (X;,X,) consists of two members of an or-
Embedded vortices are defined by pairdy(X)eV  thogonal basis of an su(2)g, thus
X M:

IXall=1Xall,  (X1,X2)=0, 13
®(r,0)=fno(X;r)D(e™) Dy, (8a)
] There are some complications when the rdeke prenote of
_ Ino(XiF) | - [10]) of M; is greater than one—we shall generally indicate when
A(r,0)= X0. (8b) ?
r such happens in the text.
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and —-iBcos®d, O 0 v
M= 0 i and Mp=| ol
XL I XL e X, { X0, [ X, X e Xy (14 B Y 21
(i) The embedded S@) is such that SU(2DH  The center of su(2pu(l)y, which isC=u(1),, projects
=U(1), thus nontrivially onto M; under the inner produdtl7).

The first class of embedded vortices are defined from el-
ements XeM; such that e*™=1. Since M,
=pr(u(l)y) these vortices are stable in the coupling con-
stant limitg— 0. From Eq.(8) one immediately writes down
the solution as

[Xy1,Xo]eH. (15

The winding number of the monopole is given by
[X/[IXT", whereX{"" is the minimal generator in the same
M; as X; obeying the above conditions. Monopoles also

have a family structure, depending upon whigfy they are v 0
defined from. or.0)="—> fﬁo(r)(eme , (229

lll. DEFECTS IN THE WEINBERG-SALAM THEORY gﬁo(r) —incos®, O).

To illustrate our results we rederive the existence and Alr,0)= r 0 in/ =’
properties of thew and Z strings[1,7] for the Weinberg- (22b)
Salam theory. One should note that it is the simplest example
that illustrates our formalism. wheren is the winding number of the vortex. Note that this

The isospin-hypercharge gauge symmey=SU(2), vortex is also invariant under global transformations of the
X U(1)y, acts fundamentally on a two-dimensional complexresidual gauge symmetry. These solutions zstrings.
scalar field®. As a basis we take the $2J-isospin genera- The second class of embedded vortices are defined from
tors to beX2=(i/2)a?, with ® the Pauli spin matrices, and €lementsX e M, such thate*™ = 1. From Eq.(8) one im-
the U(1),-hypercharge generator to b€ =(i/2)1,. Then mediately writes down the solution as
these generators act fundamentally upon the scalardield

_Yw e'’sinng
d( @ X'+ aX?) = ai X+ a®X", (16 Pr0)= "2 ol cosng | (233
The inner product on su(2pU(1)y may be written g (r) 0 ne?\| _
A(r,0)= : (_nei5 0 )_0. (23b)

1
(X,Yy=——= {2 Tr XY+ (cof 6,,—1)Tr X Tr Y}, o o
g with e'°= y/| y| andn the winding number of the vortex. Al
17 the isolated solutions of the same winding number in this
one-parameter family are gauge equivalent. Furthermore, the

with g andg’ the isospin and hypercharge gauge couplingyptivortex is gauge equivalent to the vortex, so isolated so-

H — —1r~7
constants. The Weinberg anglg,=tan (g'/q). lutions are parametrized by the positive winding number
Choosing a suitable reference point in the vacuum Maniynly These solutions ad/ strings.
fold The above generators i, and M, satisfy the condition
[d(X)Do|/||@oll=n of the Appendix in the previous paper
P _v (0> 19) [10]. Thus, profile functions for th& and W strings are re-
VRN lated (first stated in12]);
A
the gauge groups breaks to fﬁo()\;r):f\’(lvo(F;Kr)’ (243
H=U(1) (ei‘” 0) (19
= = : A
©lo 1 gﬁo()\;r)=g\,(,vo(7;fcr>, (240
gli\h/l wvih[gr,e%). ThenH defines the decompasltiofi=# where k=+/(g“+g’'“/g“) and \ is the quartic scalar self-
' coupling.
i O —ipcosd, vy
H= 0 o and M= o i) (20) IV. THE MODEL SU (3)—SU(2)

We give here an example of a model that admits as a
with «, B real, andy complex. The star denotes a complex solution an unstable globally gauge invariant vortex. In ad-
conjugation. dition it is a nice example of a model admitting nontopologi-

Under AdH), M is reducible toM = M,;& M,, where  cal embedded monopoles.
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The gauge group i6=SU(3), acting fundamentally on a

PHYSICAL REVIEW D58 125028

Nontopological embedded monopole solutions are present

three-dimensional complex scalar field. Denoting the generan this model. The solutions are specified by a gauge-

tors by{X®*:a=1---8}, the derived representation acts as

d(a'XH)=a'X!. (25)

A Landau potential is sufficient to break the symmetry, be-
causeM is of the same dimension as the maximal sphere X=Ad(h)

contained withinC3. Hence, the vacuum manifold is isomor-
phic to a five-sphere, witks transitive over it.
Taking the reference point in the vacuum manifold to be

0
dy=v , (26)
1
the gauge group breaks kb= SU(2),
SU(2) 0
H= CG. (27
0 1

At the reference pointby, G decomposes under A@H)
into irreducible subspaces of the forg=Ho M;& M,,
where

iy O 0
My=| 0 iy 0
0 0 -2y
and
0 0 a
My= 0 0 b, (28
—a* —b* 0

with y real anda, b complex.
The first class of vortex solutions are classified Xy
e My . They are given by

0
(b(rva):UfNO(Xl;r)( 0 ) (299
ein0
X —in/2 0 0
A(r,6)=M 0 -in2 0%
0 0 in
(29b)

The integern is the winding number of the vortex. These

solutions have no semilocal limit and are therefore always
unstable. The second class of vortex solutions are those clas

sified by Xe M,. They are a three-parameter family of
gauge equivalent, unstable solutions.

The vortex winding number in both class¢4, and M,
is [|[d(X)D||/||®oll. From the Appendix of the previous pa-

equivalent class of generatorX,{) e M,X M,, such that
(X,Y)=0 and[X,Y]e H. A class of such generators is

0O 0 1 0O 0 O
0 0 0], Y=Ad){O O 1],
-1 0 O 0O -1 0
(30
with
0O -1 0
[X,Y]=Ad(h)| 1 O OfewH, (31
0O 0 O

whereh is some element il. There is a one-to-one corre-
spondence between elementdHrand the choice of the em-
bedded monopole. It should be noted that elements of the
form

0 i
0 0
i 0

Y’ =Ad(h)

o O -

0
0

-1 0
(32

do not define monopole solutions becapiseé,Y'] ¢ H. An-
timonopoles are defined in the above form but with one of
the generators negative.

In conclusion, there is a two-parameter family of unstable
embedded monopole solutions of the form defined in Eg.
(12).

V. THE MODEL U (1)xU(1)—1

This model is presented to illustrate combination vortices.
By “combination vortices” we mean vortices that are gen-
erated by elements that are not in any of the irreducible
spacesM;, the vortex generators being instelagtweerthe
spaces.

In Sec. Il, we said that such combination vortices are
solutions, providing the coupling constants take a critical set
of values. We illustrate this principle by explicitly finding
such solutions in the model () xU(1)—1.

The gauge group iI6=U(1)xxXU(1)y, with elements

oo

ndf,¢ [0,27). Generators of U(L) and U(1), are

el

i0

0
el®

e

0 (33

g9(0,¢)=

al

i 0
0 0

0 0

o i)

(34)

per[10], profile functions for both classes coincide with eachThe groupG acts fundamentally on a two-dimensional com-

other and the Abelian-Higgs model.

plex scalar fieldP = (¢, ,¢,)"
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e? o When q;=q,, the Lie algebra elements that generate
0 e+l (35 closed geodesics are of the form

D(g(ﬁ,cp)):(
i . Z=56X+€Y, (42
The inner product o is of the form

providing there exists >0 with D(e??)®,=®,. Since the
coupling constants are equélgenerates a (1) subgroup of
G. Relating this back to the geometry of a torus, the con-

(X,Y)y==Tr(XQ 1Y),

with straint on nonzere and é is
o Cﬁ 0 (36) €
=l o 2/’ 5€ Q, (43

whereq, andq;, are the coupling constants for the respectivethe rational numbers. One can interpret the effect of the scal-

parts ofG. ing as “twisting” directions in the tangent space to the
To breakG to triviality, the parameters of the scalar po- vacuum manifold relative to directions in the Lie algebra.

tential must be chosen correctly. The general, renormalizThis twisting only happens between the irreducible sub-

able, gauge-invariant scalar potential for this theory is spaces ofM.
However, not all of these geodesics define embedded vor-
V(1,02 =N1( P d1—v3) 2+ No( 5 po—v3)? tices. One also needs to satisfy conditi@n in the previous
. . paper[10]:
+ N33 h105 b (37)
Vv

For some range ofNj,\»,A\3,01,05) (the range being un- <‘I’ (9?)> =0, (44)
important to our argumenjtsthis is minimized by a two torus

of values, therG breaks to triviality. . ~ whereW e V5, and® e Ve, A trivial substitution yields

Without loss of generality the scalar field reference point
is chosen to be M=A=\, vi=v3=0? ande=6. (45)
v ! . . . .
Cbo:<v%), (39) This is the only combination vortex.
2

VI. EMBEDDED DEFECTS IN REALISTIC GUT MODELS
where unless)§=v§, the primed vacuum expectation value )
(VEV) v}, v} are unequal to; andv,. Then the groups We now gives some examples of the embedded defect

breaks to the trivial groupi=1. Under the adjoint action of SPECtrum in some realistic GUT models. The examples here
H, the Lie algebra oG splits into are certainly not meant to be exhaustive, merely just a few of

the simplest examples.
g: Ml@ Mz y (39)
A. Georgi-Glashow SU5)

The gauge group i$5=SU(5) [13], acting on a 24-
0 dimensional scalar field by the adjoint action. For scalar
I 2_( Ib) )

with

(40) vacuum

o

(ia 0
Ma= 0 0

anda, b real. 3
The topology of the vacuum manifold is nontrivial, hence bo=v| . . (46)
vortex solutions that are generated by elements\ip or ]
M., are topologically stable. These vortices are well defined 0 P
and are stationary solutions of the Lagrangian.
It is interesting to consider the existence of vortices genG breaks toH = SU(3)c X SU(2) X U(1)y,
erated by elements in the whole #ft;® M,, and not just .
vortices generated in either of these two spaces separately. SU3)o 0
Combination vortices may exist when the coupling constants
are such that Eq10) is satisfied. Substitution of the genera-

tors X andY into Eqg.(10) yields the condition that combina- 0 : SU2)
tion vortices exist for el23iog, 0
[dOO] [[d(Y)] =l (42) X = 9 CSUs). @7
xnr Tyl M2 . —i
I 1Y v 0 S P
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To find the embedded defect spectrum one determines tr\gz = cos®A15— sin OA Xy=cos®XB—sin®X, (533
reduction of G into G=H®M and finds the irreducible 15 _ 5 ~
spaces ofM under the adjoint action dfi. The spaceM is  Y,=Sin ©OA, +C05®Aw Xy=sin @X>+cosO®X. (53b)

03 A Thend(H)®,,= 0. The isospin and color symmetry groups
M= s e | (48) are
_at .
A O, SU3)c O
with A a two-by-three complex matrix. This is irreducible CSuU(5). (59
under the adjoint action dfl. 0 ©sU(2),

Thus the defect spectrum of the model is monopoles,
which can be confirmed to be topologically stable, and a
family of unstable leptoquark strings. The family of lepto-
quark strings is complicated byt containingtwo distinct
(nonproportional commuting generators.

To find the embedded defect spectrum one determines the
reduction of G into G=H®M and finds the irreducible
spaces ofM under AdH), which is M= M;& M, such

that

B. Flipped SU(5) 0, DA

For a more detailed discussion of embedded defects and M. =RX Mo=| o e (55)
their properties in flipped Si8), see[8]. The gauge group is Loy e po '
G=SU(5)xU(1) [14], and acts upon a complex ten- AL G
dimensional scalar fielvhich we conveniently represent as —_—

a five-by-five complex antisymmetric matyivby the 10- The first spaceM, is the projection of u(1pnto. M. This
antisymmetric representat|0n Denoting the generators gs important for the stability of vortex solutions defined from

SU(5) asX? and[JTld) asX the derived representation acts it. Such vortices are stable in the lintg 1— /2, then, by
upon the scalar field as continuity, also in a region around/2. The second space

M, generates a family of unstable leptoquark strings and
d(a@ X+ a®X) = 2 (XD + BX") + "X . (49)  hontopological monopoles. The family of leptoquark strings
is complicated byM containingtwo distinct (nonpropor-
The inner product upon §B)@u(l) is of the form tional) commuting generators.

C. Pati-Salam SU4)x SU4)—SU(3)ox SU(2), X U(1)y

Pati and Salam emphasized a series of models of the form
G=GSxGW, where G® and G" are identical strong and

~ — ) weak groups related by some discrete symmégtf. The
whereg andg are the SU5) andU(1) coupling constants.  4pqye model is the simplest one of this form. The model is

The GUT mixing angle is ta®@=g/g. For the following dis- actually [SU@4)XSU(4)], X[SU@)xSU(4)]g (“L" and
cussion it is necessary to explicitly know the following gen- « g denoting the separate couplings to left and right-handed

1 1
(X,Y)=— & Tr XY+ 5 (cof ®@—1)Tr X Tr Y],
(50

erators fermion9 to accommodate parity violation in weak interac-
5 tions. For simplicity we shall only consider half of the
~1; 0 model.
5 \F 3 ~ The gauge groufs=SU(4)°<SU(4)", breaking toH
XP=ig\5| ... .. | X591 BD —1su@)xU(1)]SX SU)W:
0o : -1 SU(3)c - 0
These generators are normalized with respect to(&d). )
For a vacuum given by 0 o Uy/ ¢
0 ¢ 0 SU2), : o0
v 0 1 s w
Dg="| - - |, wherel= , [ | CSU4)SxSU4)W,
7 . -1 0 :
0 I 0 oLy,
(52

(56)
one breaks S(%)xU(1) to the standard modél = SU(3):
><SU(2)|><U(1)Y provided that the parameters of the po- Writing G=H@® M, the irreducible spaces oM under
tential satisfys?, A;>0 and (2;+\,)>0. TheV and hy- Ad(H) are M= Ml@Mz@M whereM is a collection of
percharge fields are given by four irreducible spaces, with
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0, : A 0,0 : B A. The 3He-A phase transition
My=| e M= e e | The full symmetry group of liquidHe is
T _gt :
—AT 0/ B" : 0/, Gs,, .= SA(3)sX SOA3) X U(1)y;, (58)
and which acts on the two group-index order parametgy by
) ) the fund s®fund_ \ representation oﬁgHe. Denoting
02 . 02 ia12 : 02

/"\'/l: ol - - , Aaj:Aodaq’j, (59
6, : C/, 0, : -—ialy/,, with unit vectord, e R®* andW¥;=(&,+i&,)/v2 e C3, where

(57 &, &eR3 such thate,.e;=e,.6,=1 and&,.&,=0. The
quantity Ay is a real number unimportant for the present
whereA is a complex three-dimensional vect8&andC are  discussion.
complex two-by-two matrices, witlC, an anti-Hermitian, ThenGs,_acts onA,; fundamentally:
and « is a real number. °
Each of the above 'spaces _gives _rise to their re_zspective D((9s,9L ,9n))aj sl sk =A0(9sd) (9L ONP); . (60)
embedded defects. FirsiM, gives rise to topologically
stable monopoles and a five-parameter family of unstablén addition Gs,, is a global symmetry of the field theory.
vortices. SecondlyM, gives rise to nontopological unstable  The field theory is described by the Lagrangian
monopoles and a seven-parameter family of unstable vorti-
ces. Thirdly, M, which is a collection of four irreducible LIA 1= Loyn Agi 1+ LIAL ], (62)
spaces, admits globally gauge invariant unstable vortices. In
addit'ion,./\/t' has combination .VorFeX SOI!JtionS between theW|th Esym having G3He g|oba| Symmetry an&j representing
four irreducible spaces, of which it consists. the extra vector type couplings of the order parameter. We
may write
VII. VORTICES IN THE °He-A PHASE TRANSITION
, o Loyl Agj]= 31 A% A — V[ A4, (62)
We wish to show here that our results on the classification
of vortices for general gauge theories are also relevant folith V some Landau-type potential invariant undgg,,e.
condensed matter systems. As an example we choose tF®r the vector type couplings we write
3He-A phase transition, though we expect the general onus _
of our results to be applicable to other situations having a LA 1= 710iA% A+ ¥20iA%; A4 (63
similar nature.
Superfluid *He has global symmetries of spi8O(3)s  which are explicitly not SO(3)invariant. By partial integra-
rotationd, angular rotation§SO(3) ), and a phaséassoci- tion of theactionintegral, this may be rewritten as
ated with particle number conservatjoit has several phase

transitions corresponding to different patterns of breaking Z[Aaj]z(’yl-i- yz)aiAZi&jAa,-=3«9iA’;iajAaj. (64)
this symmetry. We concentrate here on #hghase transi-
tion. TheA phase is reached through symmetry breaking with a

Condensed matter systems, suchis, have added com- vacuum of the form
plications above that of gauge theories, meaning that we can-
not just naively apply the approach used in the rest of this Ap=AqdoWo,
paper. This complication originates through the order param-

eter being avectorunder spatial rotations, not a scalar as in 1 1
conventional gauge theories. The upshot being that extra where do=( 0|, Wo=|1], (65)
terms are admitted in the Lagrangian that are not present in a 0 0

conventional gauge theory. These terms couple derivatives
of components with different angular momentum quantumso that the residual symmetry group is
numbers and so are not invariant under SQ(®}ations in
the conventional sense—thus spoiling the SQ(&)vari- Ha=U(1)s,XU(1) -nXZ3, (66)
ance. The general effect of this is to complicate the spectrum
of vortex solutions, and their actual form and interaction. where
Our tactic to investigate the effect of these extra nonin-

variant SO(3) terms is to first examine théHe-A phase 1 0 0

transitions without the inclusion of these terms so that we _ : .

may use the techniques of embedded vortices used in the rest UL)s,= 0 CO.Sa sina | tael0.2m)

of this paper, and then see how these terms affect the solu- 0 —sina cosa/ g

tions. (679
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cosa sina O
U(1),_n={ e '?| —sina cosa 0| :ae[0,2m)},
0 0 1/,
(67b
( -1 0 O
Z,={ 1gx1,, | 0 -1 0
| o o0 1/
-1 0 O
x{ 0 =1 0 (670
0 0 1

It should be noted that thig,N} part of the group is similar
to the Weinberg-Salam theory @t,,= w/4, but taking the

limit in which (both) of the coupling constants become zero.
However, note that SO(3)is not simply connected, this has

important stabilizing effects on the vorticEkb].

Writing Gape= Ha® M, the irreducible spaces o¥1 un-
der the adjoint action of , are denoted by\{= M ;& M,
® Mg, with

0 0 «a 0O vy 6
My| O 0 B|, My=|-y 0 0],
—a -B 0/ -5 0 0/
i 1 0
and My=3 | ~1 i 0 (68)
0 0 i

anda, B, v, 6, € are real numbers.

B. Vortices in the SQ(3), symmetric theory
We firstly analyze the theory whep=0, so that the La-

grangian is SO(3) symmetric. In this regime the techniques

of embedded vortices are applicable.

1. Embedded vortices

The first class of generatord/{;, give a one-parameter
family of gauge-equivalent global vortices, with profiles of

the form

cos a/2+i sin a/2 cosn@
A(r,a)zAOf_(n/\Q;r)d0 —sin a/2+i cosal2 cosné | .
—i sinné
(69

Here n is the winding of the vortexq labels the family

member, and is defined below. These are the disgyration

vortices ofHe.
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The second class of generatord/,, give a one-
parameter family of gauge-equivalent global vortices, with
profiles of the form

cosnéd
A(r,0)=A0f(n;r)<

—cosa sin ne) V. (70
sin a sinné

Heren is the winding of the vortex, and labels the family
member. These are the so-called spin vortices.

The third class of generator{;, give a gauge-invariant
global vortex, with a profile of the form

1
A(r,6)=A0f(n;r)d0ei”"(i). (71
0

Heren is the winding of the vortex and labels the family
member. These vortices are the so-called singular-line vorti-
ces.

The profile functions depend upon the embedded vortex
considered, generated B§..,,, say, and are minima of the
Lagrangian

yA3 [df)?2

f2
‘?[”:T(a :

+ 577 XemPol >~ VIF(N], (72

whereV is the potential, which is independent of the defect
considered. Writind|XemAoll = N||Ao| we refer to the solu-
tions asf(n;r).

2. Combination vortices

Because the symmetri€s; . are global there are combi-
nation vortex solutions between the three families of genera-
tors. The most general combination embedded vortex is gen-
erated by a combination of generators from each of the three
classes—this is the spin—singular line-disgyration combina-
tion vortex. Because of the way we shall determine such
vortices we first discuss the singular line-disgyration combi-
nation.

One obtains a discrete spectrum of singular line-
disgyration combination embedded vortices. Solutions are of
the form

A(r,0)=Auf(X;r)dg exp(X0)W,, (73a
0 1 0
a
with X=§ ilz+{ -1 0 O
0O 0 O L
0O 0 1
-0 0 O
+b ) (73b)
-1 0 0/,

Then some algebra yields
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A(r,0)=Aof (p;r)doe'2?2

ia
cos s+ — sin 0s
2s

2

a i , @
b +Zcosas

X sin s+ Z

2s

b iab
~3 sin s+

52 (cosfs—1)

(74)
where s=.a%/4+b? and p=\(7m?+n?)/2. Using the

single valuedness constraint thisgr,277) = A(r,0) gives the
following discrete spectrum of values farandb:

a=2m, b=*+n°-m? mneZ. (75)
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associatedwhich tells one whether that family of vortices is
topologically stable or unstable.
The vacuum manifold looks like

SQ(3)sXSA3) X U(1)y  SEXS3\/Z, -
U(1)s, X U(1) -nXZ; Z, '
Here S is ann sphere. This vacuum manifold contains
three inequivalent families of incontractible loops. First,
those contained within juss{>\/Z,. Secondly, those going
from the identity, througts$) into S(*}/Z, by theZ, factor,

and then back to the identity. Thirdly, there are combinations
of the first two types. The classes of the first homotopy group
of the vacuum manifold are thus

SQ(3)sXSA3) X U(1)y
U(1)s, X U(1)-nXZ;

T :Z4. (79)

It seems that the singular line vortex and the disgyration
may not be continuously deformed into one another, since if This gives rise to three different topological charges for
this was to be the case then the spectrum of combinatiothe vortices, the charge labeling the family from which they

vortices should becontinuous We obtain adiscrete spec-

originate. Technically, th&, arises from two separaté,

trum. For them to be continuously deformable into one an-contributions, and then we can label the chaime), with p,
other we need solutions that are not of the embedded typeq=0,1; however, a more convenient notatigvhich will be

The spin—singular line-disgyration combination vortex

better contextualized in the conclusigms to assign a single

can be constructed from the above form. Since the generatoiisdex to these as iM16], »: (0,0)=0,(1,0)=1/2,(0,1)
for spin vortices commute with the generators for singular=1,(1,1)=3/2=—1/2.

line-disgyration combination vortices, the form of solution is

a spin vortex combined with a singular line-disgyration com-

bination, i.e.,

cosjo
—Ccosa sinjé
—sina sinjéo

A(r,0)=Aof (V(7TmZ+2) 2+ n2)/2;r)(

ia
CcoSs fs+ — sin 6s
2s

|

b2+ & cos 95) (76)

) a i
eaf2l — — sin gs+
2s 2 4

b . iab 1
gsm 03+2—32(cos¢93 )

with a andb as above anflan integer. Again the spectrum is
discrete.

In particular, we shall need to know the form of the spin-
singular line combination embedded vortex, which is

cosjé 1
A(r,0)=Aof(\(j2+n?);r)| —cosasinjd|en?| i
—sina sinjé 0

(77

3. Stability of the embedded vortices
The topology of the vacuum manifold contains loops,

The v=1/2 stable vortices are half-quantum sg&ngu-
lar line-disgyration combinations, where one makes use of
the Z, mixing of the spin and angular groups for stability.
Considering the spin-singular line combination abdt.
(74)], the stable half-quantum spin-singular line combination
vortex corresponds tp=n=1/2:

o cos /2 1
A(r,0)=Aof(1WV2;r)| —cosa sin 6/2 | ¢'9?| i
—sin a sin 6/2 0

(80)

Of course, there are also half-quantum spin-disgyration vor-
tices, and combinations in between. These all have topologi-
cal chargev=1/2.

The v=1 stable vortices are some of the singular line
[Eqg. (68)] and disgyration embedded vortidésy. (66)], also
including the combination vorticefEg. (71)] in between.
These all have the form above. The winding humberl
vortices are the only stable solutions. Oaldrortices may
decay to these, also having topological chargel ; evenn
decays to the vacuum, having topological charge0O. Fi-
nally, thev=3/2 vortices are combinations of the=1/2 and
v=1 vortices.

C. Vortex spectra of the full *He theory

We wish to find the embedded vortex spectrum of the full
®He theory, when one is including terms that are not invari-

which are incontractible and thus gives classes of stable vor-

tices. With each of the families of embedd@ihd combina-

2More precisely, with the familyndthe winding number, but we

tion) vortices an element of the homotopy group may beshall only be considering unit winding number vortices.
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ant under spatial rotations of the Lagrangian. Our tactic is to 1
see which of the above embedded vortex solutions remain . i

. . o e X : A(r,0)=Ayf(n;r)dy| 1 cosné |, 84
solutions in the full theory. This is facilitated by investigat- (r,0)=A0f(n;r)do —i sin ne) &9

ing how the profile equations are modified by inclusion of
terms that are not invariant under SO(3jif the profile heren is the winding of the vortex. Substitution into the

equations make sense, for instance they must only be rad‘*’?" il Lagrangian[Eq. (58)] yields terms that are not invariant
dependent, then one can say that those embedded vorticgs jer spatial rotations

remain solutions to the theory.

Providently, it transpires that only those embedded vorti- 2

. : . ) ~ - df
ces which areopologically stableremain solutions to the L[f]=yA3| | cos @ ar +| cosné sin ¢ ar
full *He Lagrangian, with inclusion of terms that are not r r
rotationally symmetric. nf 2

-7 cos @ sinné (85)

1. Singular-line vortices

The singular-line vortex has a profile of the foffilom  sjnce the profile functiori(r) is independent of, and the

Eq. (68)] Lagrangianﬁsyn{f]+21[f] that described (r) is not rota-
tionally symmetric, we conclude that the embedded disgyra-
1 tion vortices do not remain a solution when nonspatially ro-
ingl tationally symmetric terms are added to the Lagrangian.
A(r,0)=Aqf(n;r)dee?| | (81
0 4. Combination vortices

) o o In general only combinations of embedded vortices that
wheren is the winding number of the vortex. Substitution jnqjyidually remain solutions when nonspatially symmetric
into the full LagrangianEq. (58)] yields the profile equation  {ermg are added to the Lagrangian remain solutions. Thus the

to be only combination embedded vortices that are solutions to the
full LagrangianLs,,+ £ are thecombination spin-singular
. ~ Jl(d 2 2f2 __nfdf line vortices
‘C[f]+£[f]:(2'y+7)AO[<m +_I'2_ —Z’YAOTW
D. Conclusions
—V[f(n]. (82

We conclude, by comparing the results of Sec. VII C3
with Sec. VII B3, that embedded vortices that are solutions
Since the extra termff’/r is least dominant asymptotically when rotationally nonsymmetric terms are added to the La-
we may conclude the singular line ansatz is still a solution taggrangian,

the full Lagrangian, but with a slightly modified profile func- - . -
tion. LIA]1= (vt 72) AL AL = VIR diA . (86)

2. Spin vortices those vortices that are topologically stable, or higher winding
number counterparts of those vortices. The topologically
stable embedded vortices are labeled by their topological
chargev [16] and take the following forms.

O First, the half-quantum spin-singular line combination

Nortex, has topological charge=1/2 and looks like

Vortices embedded solely in the spin sedtwith profiles
given by Eq.(67)] are solutions to the full Lagrangian be-
cause the embedded defect formalism is applicable t
symmetry-invariant parts of the Lagrangian, which the spi
sector is.

This observation is backed up within the mathematics; cos 6/2 1

how that for the spin vortex Ansatz — . . .
one may s A(r,0)=Af(1V2Z;r)| —cosa sin 6/2 |02 |

—sin a sin 6/2 0
aiA;iajAaj:aiA;jaiAaj . (83) (87)

~ ] . . Secondly, the singular line vortex has topological charge
Thus the terms of that are not invariant under spatial rota- ;=1 and looks like

tions become equivalent to the kinetic terms of the symmet-
ric 3He Lagrangian for spin vortices. 1
: . . A(r,0)=Aof (L;r)doe™| T |. (88)
3. Disgyration vortices 0
The embedded disgyration vortex has a profile of the form
in Eq. (66); to simplify the matter we shall consider the  Thirdly and finally, the combination of the above two
family member witha=0 (without loss of generality vortices has topological charge=3/2 and looks like
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cos 6/2 1 of the Weinberg-Salam model. Our results are in agreement
A(r,0)=Aof(\VB/2:r)| —cosa sin 612|302 i | with other methods.
(r.6) of ) —sina sin 6/2 0 (3) In Sec. IV we derived the embedded defect spectrum

(89) of the model SWB)—SU(2), finding embedded monopoles,
gauge invariant unstable vortices, and a family of unstable
This vortex winds around the singular line part one and avortices.
half times and around the spin part half a time. One should (4) In Sec. V we illustrated “combination vortices” by
note that from the above spectrum a new meaning for th¢he model W1)xU(1)—1. This illustrates how such objects
topological charger may be interpreted, as the winding may only be solutions in certain limits of the coupling con-
number of the singular line part of the vortex. stants, and the form of their spectrum when such solutions
Another, final, observation that we would like to make is have been found.

that upon the addition of spatial nonrotationally symmetric (5) In Sec. VI we examined the embedded defect spec-
terms to the Lagrangian the only embedded vortices that rarum for three realistic GUT models, namely, Georgi-
main solutions to the theory are those which containan-  Glashow SU5), Flipped SU5), and Pati-Salam St(4).
gular dependence of those spatially associated components (6) Finally, in section VII, we illustrated how our formal-
of the order paramete(i.e., none are generated by any partism may also be used in some condensed matter contexts,
of SO(3) ). With hindsight, this may be expected to be theusing the specific example of vortices frle-A. This also
case, but it is pleasing to see it coming through in the mathillustrated combination vortices and some of their stability
ematics. This leads one to wonder conjecture, perhap# properties.
a similar phenomena happens in other cases where the spatial
rotation group acts nontrivially upon the order parameter. ACKNOWLEDGMENTS
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