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Examples of embedded defects„in particle physics and condensed matter…
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We present a series of examples designed to clarify the formalism of the previous paper. After summarizing
this formalism in a prescriptive sense, we run through several examples: first, deriving the embedded defect
spectrum for the Weinberg-Salam theory, then discussing several examples designed to illustrate facets of the
formalism. We then calculate the embedded defect spectrum for three physical grand unified theories and
conclude with a discussion of vortices formed in the superfluid3He-A phase transition.
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I. INTRODUCTION

Embedded defects have received an impressive amou
interest over the last couple of years. Principally this is
cause theZ string of the Weinberg-Salam theory was r
cently realized to be stable for part of the parameter sp
@1#, although it proves to be unstable in the physical regi
@2,3#, though there may be other stabilizing effects@4,5#.
However, be it stable or unstable, it may still have import
cosmological consequences—as indicated by its connec
to baryon number violations@6#.

The standard model also admits a one-parameter famil
unstable, gauge equivalent vortices, theW strings @7#. To-
gether, with theZ string, these constitute a very nontrivi
spectrum of vortices arising from the vacuum structure of
Weinberg-Salam theory, two gauge-inequivalent families
vortices, with one familyinvariant under the residual elec
tromagnetic gauge group and the other a one-parameter
ily of gauge equivalent vortices. Furthermore, only one
these families has the potential to be stable.

Embedded defects have also been specifically studie
another symmetry breaking scheme, grand unified the
~GUT! flipped SU~5! @8#. One finds an 11-parameter fami
of gauge equivalent, unstable vortices plus another glob
gauge invariant, potentially stable vortex~the V string!.

The general formalism for describing embedded defe
was derived by Barriolaet al. @9#. Here the construction o
embedded defect solutions for general Yang-Mills theor
was described: one defines a suitableembeddedsubtheory of
the Yang-Mills theory upon which a topological defect so
tion may be defined. In extending the embedded subthe
back to the full theory one loses the stabilizing topologi
nature of the defect, but retains it as solution to the theo

In the previous paper@10#, the underlying group theory
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behind the formalism of@9# is exploited to determine the
properties and spectrum of embedded defects. The pur
of this paper is to provide a list of several examples to illu
trate the formalism of the previous paper. First, however,
summarize the formalism derived in@10#, so that it may be
used prescriptively to determine the spectrum and stability
embedded defects.

II. SUMMARY OF FORMALISM

For a Yang-Mills theory, the embedded defects are de
mined by the symmetry breakingG→H. The symmetry
breaking depends upon a scalar fieldF, lying in a vector
spaceV, acted on by theD representation ofG. Denoting the
Lie algebra ofG by G, the natural action ofG uponF is by
the derived representationd, defined byD(eX)5ed(X).

The naturalGl(V) invariant inner product onV is the real
form

^F,C&5Re~F†C!, F,CPV. ~1!

The generalG-invariant inner product onG is defined by the
decomposition ofG into mutually commuting subalgebra
G5G1%¯%Gn and is of the form

^.,.&5
1

q1
2 $.,.%11¯1

1

qn
2 $.,.%n , ~2!

with $.,.% i the inner product$X,Y%52p Re„Tr(X†Y)…, re-
stricted toGi . This hasn scales characterizing all possib
G-invariant inner products onG. In a gauge theory contex
these scales correspond to the gauge coupling constants

Note that the same symbol is used to denote the in
product onG and V; we hope it should be clear from th
context which we are using. Corresponding norms for th
two inner products are denoted byi.i. We discuss these inne
products more fully in the previous paper@10#.
©1998 The American Physical Society28-1
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A reference pointF0PV is arbitrary because of the de
generacy given by the vacuum manifoldM5D(G)F0
>G/H. Where hereH is the residual symmetry group, de
fined by the reference pointF0 to be H5$gPG:D(g)F0
5F0%. ThenH determines a reductive decomposition ofG:

G5H%M, ~3!

with H the Lie algebra ofH, such that

@H,H##H and @H,M##M. ~4!

Under the adjoint action ofH, defined Ad(h)X5hXh21, M
decomposes into irreducible subspaces

M5M1%¯%MN . ~5!

These irreducible spaces describe how the group acts on
vacuum manifold, yielding the family structure for embe
ded defects.

Finally, recall that the centerC of G is the set of elements
that commute withG. Then the stability of vortices is relate
to the projection ofC ontoM,

prM~X!5X1Xh , ~6!

with XhPH, the unique element, such thatprM(X)PM.
One should noteprM(C) consists of one-dimensional irre
ducibleMi ’s.

This structure is enough to categorize all the topologi
and nontopological embedded domain walls, embedded
tices, and embedded monopole solutions of a Yang-M
theory.

A. Domain walls

Embedded domain walls are defined elementsF0PV:

F~z!5 f DOM~z!F0 , ~7a!

Am50, ~7b!

where f DOM is a real function such thatf DOM(1`)51, and
f DOM(2`)F0ÞF0 belongs to the vacuum manifold.

Providing the vacuum manifold is connected this solut
is unstable, suffering from a short range instability in t
scalar field. Solutions within connected parts of the vacu
manifold are gauge equivalent.

B. Vortices

Embedded vortices are defined by pairs (F0 ,X)PV
3M:

F~r ,u!5 f NO~X;r !D~euX!F0 , ~8a!

AI ~r ,u!5
gNO~X;r !

r
XuÎ . ~8b!
12502
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Here f NO and gNO are the Nielsen-Olesen profile function
for the vortex@11# and we describe their dependence uponX
in the Appendix of the previous paper@10#. The vortex gen-
eratorX has the constraints1

XPMi , ~9a!

D~e2pX!F05F0 . ~9b!

The winding number of such a vortex is given byiXi /iXmini,
whereXmin is a nontrivial minimal generator in the sameMi
as X obeying the above two conditions. Family structu
originates from the gauge equivalence of vortices defined
equal norm generators in the sameMi .

Vortex stability subdivides into two types: dynamical an
topological. Furthermore, there are two types of topologi
stability: Abelian, from U(1)→1 symmetry breaking; and
non-Abelian, which is otherwise. In@10# we show that Abe-
lian topological and dynamical stability relate toprM(C):
Abelian topological stability corresponds to a trivial proje
tion, while dynamical stability corresponds to a nontrivi
projection.

Generally, only generatorsXPMi define embedded vor
tices. However, if the coupling constants$qk% take critical
values, such that between, say,Mi andMj

id~Xi !F0i
iXi i

5
id~Xj !F0i

iXj i
, XiPMi , XjPMj ,

~10!

then one has extracombinationembedded vortices define
by generators inMi %Mj .

C. Monopoles

Embedded monopoles are defined by triple
(F0 ,X1 ,X2)PV3M3M:

FI ~rI !5 f mon~r !rÎ , ~11a!

Aa
m~rI !5

gmon~r !

r
emabXb , ~11b!

where X35@X1 ,X2#, and we are treatingFI as a vector
within in its embedded subtheory.

Monopole generators have the following restrictions@10#.
~i! The pair (X1 ,X2)PMi3Mi , and are properly nor-

malized so that, fori 5$1,2%,

exp~2pXi !F05F0 . ~12!

~ii ! The pair (X1 ,X2) consists of two members of an o
thogonal basis of an su(2),G, thus

iX1i5iX2i , ^X1 ,X2&50, ~13!

1There are some complications when the rank~see prenote of
@10#! of Mi is greater than one—we shall generally indicate wh
such happens in the text.
8-2
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and

$X1 ,@X1 ,X2#%}X2 , $X2 ,@X1 ,X2#%}X1 . ~14!

~iii ! The embedded SU~2! is such that SU(2)ùH
5U(1), thus

@X1 ,X2#PH. ~15!

The winding number of the monopole is given b
iX1i /iX1

mini, whereX1
min is the minimal generator in the sam

Mi as X1 obeying the above conditions. Monopoles al
have a family structure, depending upon whichMi they are
defined from.

III. DEFECTS IN THE WEINBERG-SALAM THEORY

To illustrate our results we rederive the existence a
properties of theW and Z strings @1,7# for the Weinberg-
Salam theory. One should note that it is the simplest exam
that illustrates our formalism.

The isospin-hypercharge gauge symmetryG5SU(2)I
3U(1)Y , acts fundamentally on a two-dimensional compl
scalar fieldF. As a basis we take the SU~2!-isospin genera-
tors to beXa5( i /2)sa, with sa the Pauli spin matrices, an
the U(1)Y-hypercharge generator to beX05( i /2)12 . Then
these generators act fundamentally upon the scalar fieldF:

d~a iXi1a0X0!5a iXi1a0X0. ~16!

The inner product on su(2)I % U(1)Y may be written

^X,Y&52
1

g2 $2 Tr XY1~cot2 uw21!Tr X Tr Y%,

~17!

with g and g8 the isospin and hypercharge gauge coupl
constants. The Weinberg angleuw5tan21(g8/g).

Choosing a suitable reference point in the vacuum ma
fold

F05
v

&
S 0
1D , ~18!

the gauge groups breaks to

H5U~1!Q5S eiv 0

0 1D , ~19!

with vP@0,2p). Then H defines the decompositionG5H
%M, where

H5S ia 0

0 0D and M5S 2 ib cos 2uw g

2g* ib D , ~20!

with a, b real, andg complex. The star denotes a compl
conjugation.

Under Ad(H), M is reducible toM5M1%M2 , where
12502
d

le

g

i-

M15S 2 ib cos 2uw 0

0 ib D and M25S 0 g

2g* 0D .

~21!

The center of su(2)I % u(1)Y , which is C5u(1)Y , projects
nontrivially ontoM1 under the inner product~17!.

The first class of embedded vortices are defined from
ements XPM1 such that e2pX51. Since M1
5prM„u(1)Y… these vortices are stable in the coupling co
stant limitg→0. From Eq.~8! one immediately writes down
the solution as

F~r ,u!5
v

&
f NO

Z ~r !S 0
einu D , ~22a!

AI ~r ,u!5
gNO

Z ~r !

r S 2 in cos 2uw 0

0 in D uÎ ,

~22b!

wheren is the winding number of the vortex. Note that th
vortex is also invariant under global transformations of t
residual gauge symmetry. These solutions areZ strings.

The second class of embedded vortices are defined f
elementsXPM2 such thate2pX51. From Eq.~8! one im-
mediately writes down the solution as

F~r ,u!5
v

&
f NO

W ~r !S eid sin nu
cosnu D , ~23a!

AI ~r ,u!5
gNO

W ~r !

r S 0 neid

2ne2 id 0 D uÎ , ~23b!

with eid5g/ugu andn the winding number of the vortex. Al
the isolated solutions of the same winding number in t
one-parameter family are gauge equivalent. Furthermore
antivortex is gauge equivalent to the vortex, so isolated
lutions are parametrized by the positive winding numb
only. These solutions areW strings.

The above generators inM1 andM2 satisfy the condition
id(X)F0i /iF0i5n of the Appendix in the previous pape
@10#. Thus, profile functions for theZ andW strings are re-
lated ~first stated in@12#!;

f NO
Z ~l;r !5 f NO

W S l

k2 ;kr D , ~24a!

gNO
Z ~l;r !5gNO

W S l

k2 ;kr D , ~24b!

where k5A(g21g82/g2) and l is the quartic scalar self
coupling.

IV. THE MODEL SU „3…˜SU„2…

We give here an example of a model that admits a
solution an unstable globally gauge invariant vortex. In a
dition it is a nice example of a model admitting nontopolog
cal embedded monopoles.
8-3
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The gauge group isG5SU(3), acting fundamentally on a
three-dimensional complex scalar field. Denoting the gen
tors by$Xa:a51¯8%, the derived representation acts as

d~a iXi !5a iXi . ~25!

A Landau potential is sufficient to break the symmetry, b
causeM is of the same dimension as the maximal sph
contained withinC3. Hence, the vacuum manifold is isomo
phic to a five-sphere, withG transitive over it.

Taking the reference point in the vacuum manifold to

F05vS 0
0
1
D , ~26!

the gauge group breaks toH5SU(2),

H5S SU~2! ] 0

¯ ¯ ¯

0 ] 1
D ,G. ~27!

At the reference pointF0 , G decomposes under AdG(H)
into irreducible subspaces of the formG5H%M1%M2 ,
where

M15S ig 0 0

0 ig 0

0 0 22ig
D

and

M25S 0 0 a

0 0 b

2a* 2b* 0
D , ~28!

with g real anda, b complex.
The first class of vortex solutions are classified byX

PM1 . They are given by

F~r ,u!5v f NO~X1 ;r !S 0
0

einu
D , ~29a!

AI ~r ,u!5
gNO~X1 ;r !

r S 2 in/2 0 0

0 2 in/2 0

0 0 in
D uÎ .

~29b!

The integern is the winding number of the vortex. Thes
solutions have no semilocal limit and are therefore alw
unstable. The second class of vortex solutions are those
sified by XPM2 . They are a three-parameter family
gauge equivalent, unstable solutions.

The vortex winding number in both classesM1 andM2
is id(X)F0i /iF0i . From the Appendix of the previous pa
per@10#, profile functions for both classes coincide with ea
other and the Abelian-Higgs model.
12502
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Nontopological embedded monopole solutions are pres
in this model. The solutions are specified by a gau
equivalent class of generators (X,Y)PM23M2 , such that
^X,Y&50 and@X,Y#PH. A class of such generators is

X5Ad~h!S 0 0 1

0 0 0

21 0 0
D , Y5Ad~h!S 0 0 0

0 0 1

0 21 0
D ,

~30!

with

@X,Y#5Ad~h!S 0 21 0

1 0 0

0 0 0
D PH, ~31!

whereh is some element inH. There is a one-to-one corre
spondence between elements inH and the choice of the em
bedded monopole. It should be noted that elements of
form

X85Ad~h!S 0 0 1

0 0 0

21 0 0
D , Y85Ad~h!S 0 0 i

0 0 0

i 0 0
D
~32!

do not define monopole solutions because@X8,Y8#¹H. An-
timonopoles are defined in the above form but with one
the generators negative.

In conclusion, there is a two-parameter family of unsta
embedded monopole solutions of the form defined in E
~11!.

V. THE MODEL U „1…3U„1…˜1

This model is presented to illustrate combination vortic
By ‘‘combination vortices’’ we mean vortices that are ge
erated by elements that are not in any of the irreduci
spacesMi , the vortex generators being insteadbetweenthe
spaces.

In Sec. II, we said that such combination vortices a
solutions, providing the coupling constants take a critical
of values. We illustrate this principle by explicitly findin
such solutions in the model U~1!3U~1!→1.

The gauge group isG5U(1)X3U(1)Y , with elements

g~u,w!5S eiu 0

0 eiwD PG, ~33!

andu,wP@0,2p). Generators of U(1)X and U(1)Y are

X5S i 0

0 0D , Y5S 0 0

0 i D . ~34!

The groupG acts fundamentally on a two-dimensional com
plex scalar fieldF5(f1 ,f2)T
8-4
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D„g~u,w!…5S eiu 0

0 eiwD . ~35!

The inner product onG is of the form

^X,Y&52Tr~XQ21Y!,

with

Q5S q1
2 0

0 q2
2D , ~36!

whereq1 andq2 are the coupling constants for the respect
parts ofG.

To breakG to triviality, the parameters of the scalar p
tential must be chosen correctly. The general, renorma
able, gauge-invariant scalar potential for this theory is

V~f1 ,f2!5l1~f1* f12v1
2!21l2~f2* f22v2

2!2

1l3f1* f1f2* f2 . ~37!

For some range of (l1 ,l2 ,l3 ,v1 ,v2) ~the range being un
important to our arguments!, this is minimized by a two torus
of values, thenG breaks to triviality.

Without loss of generality the scalar field reference po
is chosen to be

F05S v18

v28
D , ~38!

where unlessv1
25v2

2, the primed vacuum expectation valu
~VEV! v18 , v28 are unequal tov1 andv2 . Then the groupG
breaks to the trivial groupH51. Under the adjoint action o
H, the Lie algebra ofG splits into

G5M1%M2 , ~39!

with

M15S ia 0

0 0D , M25S 0 0

0 ib D , ~40!

anda, b real.
The topology of the vacuum manifold is nontrivial, hen

vortex solutions that are generated by elements inM1 or
M2 are topologically stable. These vortices are well defin
and are stationary solutions of the Lagrangian.

It is interesting to consider the existence of vortices g
erated by elements in the whole ofM1%M2 , and not just
vortices generated in either of these two spaces separa
Combination vortices may exist when the coupling consta
are such that Eq.~10! is satisfied. Substitution of the gener
torsX andY into Eq.~10! yields the condition that combina
tion vortices exist for

id~X!i
iXi 5

id~Y!i
iYi ⇒q1

25q2
2. ~41!
12502
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When q15q2 , the Lie algebra elements that genera
closed geodesics are of the form

Z5dX1eY, ~42!

providing there existsv.0 with D(eZv)F05F0 . Since the
coupling constants are equalZ generates a U~1! subgroup of
G. Relating this back to the geometry of a torus, the co
straint on nonzeroe andd is

e

d
PQ, ~43!

the rational numbers. One can interpret the effect of the s
ing as ‘‘twisting’’ directions in the tangent space to th
vacuum manifold relative to directions in the Lie algebr
This twisting only happens between the irreducible su
spaces ofM.

However, not all of these geodesics define embedded
tices. One also needs to satisfy condition~2! in the previous
paper@10#:

K C,
]V

]F L 50, ~44!

whereCPVemb
' andFPVemb. A trivial substitution yields

l15l25l, v1
25v2

25v2, and e5d. ~45!

This is the only combination vortex.

VI. EMBEDDED DEFECTS IN REALISTIC GUT MODELS

We now gives some examples of the embedded de
spectrum in some realistic GUT models. The examples h
are certainly not meant to be exhaustive, merely just a few
the simplest examples.

A. Georgi-Glashow SU„5…

The gauge group isG5SU(5) @13#, acting on a 24-
dimensional scalar fieldF by the adjoint action. For scala
vacuum

F05vS 2

3
13 ] 0

¯ ¯ ¯

0 ] 212

D , ~46!

G breaks toH5SU(3)C3SU(2)I3U(1)Y ,

S SU~3!0 ] 0

¯ ¯ ¯

0 ] SU~2! I

D
3S e~2/3!iu13 ] 0

¯ ¯ ¯

0 ] c2 iu12

D ,SU~5!. ~47!
8-5
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To find the embedded defect spectrum one determines
reduction of G into G5H%M and finds the irreducible
spaces ofM under the adjoint action ofH. The spaceM is

M5S 03 ] AI

¯ ¯ ¯

2AI †
] 02

D , ~48!

with AI a two-by-three complex matrix. This is irreducib
under the adjoint action ofH.

Thus the defect spectrum of the model is monopo
which can be confirmed to be topologically stable, and
family of unstable leptoquark strings. The family of lept
quark strings is complicated byM containingtwo distinct
~nonproportional! commuting generators.

B. Flipped SU„5…

For a more detailed discussion of embedded defects
their properties in flipped SU~5!, see@8#. The gauge group is
G5SU(5)3U(1)̃ @14#, and acts upon a complex ten
dimensional scalar field~which we conveniently represent a
a five-by-five complex antisymmetric matrix! by the 10-
antisymmetric representation. Denoting the generators
SU~5! asXa andU(1)̃ as X̃, the derived representation ac
upon the scalar field as

d~a iXi1a0X̃!5a i~XiF1FXi T!1a0X̃F. ~49!

The inner product upon su~5!%u~1! is of the form

^X,Y&52
1

g2 H Tr XY1
1

5
~cot2 Q21!Tr X Tr YJ ,

~50!

whereg and g̃ are the SU~5! andU(1)̃ coupling constants
The GUT mixing angle is tanQ5g̃/g. For the following dis-
cussion it is necessary to explicitly know the following ge
erators

X155 igA3

2S 2

3
13 ] 0

¯ ¯ ¯

0 ] 212

D , X̃5 i g̃15 . ~51!

These generators are normalized with respect to Eq.~50!.
For a vacuum given by

F05
v

& S 03 ] 0

¯ ¯ ¯

0 ] I
D , where I 5S 0 1

21 0D ,

~52!

one breaks SU~5!3U~1! to the standard modelH5SU(3)C
3SU(2)I3U(1)Y , provided that the parameters of the p
tential satisfyh2, l1.0 and (2l11l2).0. TheV and hy-
percharge fields are given by
12502
he
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of

Vm5cosQAm
152sin QÃm , XV5cosQX152sin QX̃, ~53a

Ym5sin QAm
151cosQÃm , XY5sin QX151cosQX̃. ~53b

Thend(H)Fvac50. The isospin and color symmetry group
are

S SU~3!C ] 0

¯ ¯ ¯

0 ] SU~2! I

D ,SU~5!. ~54!

To find the embedded defect spectrum one determines
reduction of G into G5H%M and finds the irreducible
spaces ofM under Ad(H), which isM5M1%M2 such
that

M15RXV , M25S 03 ] AI

¯ ¯ ¯

2AI †
] 02

D . ~55!

The first spaceM1 is the projection of u(1)˜ ontoM. This
is important for the stability of vortex solutions defined fro
it. Such vortices are stable in the limitQGUT→p/2, then, by
continuity, also in a region aroundp/2. The second spac
M2 generates a family of unstable leptoquark strings a
nontopological monopoles. The family of leptoquark strin
is complicated byM containing two distinct ~nonpropor-
tional! commuting generators.

C. Pati-Salam SU„4…3SU„4…˜SU„3…03SU„2…I 3U„1…Y

Pati and Salam emphasized a series of models of the f
G5GS3GW, where GS and GW are identical strong and
weak groups related by some discrete symmetry@15#. The
above model is the simplest one of this form. The mode
actually @SU~4!3SU(4)#L3@SU~4!3SU(4)#R ~‘‘ L’’ and
‘‘ R’’ denoting the separate couplings to left and right-hand
fermions! to accommodate parity violation in weak intera
tions. For simplicity we shall only consider half of th
model.

The gauge groupG5SU(4)S3SU(4)W, breaking toH
5@SU~3!3U(1)#S3SU(2)W:

S SU~3!C ] 0

¯ ¯ ¯

0 ] U~1!Y

D
S

3S SU~2! I ] 0

¯ ¯ ¯

0 ] 12

D
W

,SU~4!S3SU~4!W.

~56!

Writing G5H%M, the irreducible spaces ofM under
Ad(H) areM5M1%M2%M̃, whereM̃ is a collection of
four irreducible spaces, with
8-6
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M15S 03 ] AI

¯ ¯ ¯

2AI †
] 0

D
S

, M25S 02 ] B

¯ ¯ ¯

2B†
] 02

D
W

,

and

M̃5S 02 ] 02

¯ ¯ ¯

02 ] C
D

W

% S ia12 ] 02

¯ ¯ ¯

02 ] 2 ia12

D
W

,

~57!

whereAI is a complex three-dimensional vector,B andC are
complex two-by-two matrices, withC, an anti-Hermitian,
anda is a real number.

Each of the above spaces gives rise to their respec
embedded defects. First,M1 gives rise to topologically
stable monopoles and a five-parameter family of unsta
vortices. Secondly,M2 gives rise to nontopological unstab
monopoles and a seven-parameter family of unstable v
ces. Thirdly,M̃, which is a collection of four irreducible
spaces, admits globally gauge invariant unstable vortices
addition,M̃ has combination vortex solutions between t
four irreducible spaces, of which it consists.

VII. VORTICES IN THE 3He-A PHASE TRANSITION

We wish to show here that our results on the classifica
of vortices for general gauge theories are also relevant
condensed matter systems. As an example we choose
3He-A phase transition, though we expect the general o
of our results to be applicable to other situations havin
similar nature.

Superfluid 3He has global symmetries of spin@SO(3)S
rotations#, angular rotations„SO(3)L…, and a phase~associ-
ated with particle number conservation!. It has several phas
transitions corresponding to different patterns of break
this symmetry. We concentrate here on theA-phase transi-
tion.

Condensed matter systems, such as3He, have added com
plications above that of gauge theories, meaning that we
not just naively apply the approach used in the rest of
paper. This complication originates through the order para
eter being avectorunder spatial rotations, not a scalar as
conventional gauge theories. The upshot being that e
terms are admitted in the Lagrangian that are not present
conventional gauge theory. These terms couple derivat
of components with different angular momentum quant
numbers and so are not invariant under SO(3)L rotations in
the conventional sense—thus spoiling the SO(3)L invari-
ance. The general effect of this is to complicate the spect
of vortex solutions, and their actual form and interaction.

Our tactic to investigate the effect of these extra non
variant SO(3)L terms is to first examine the3He-A phase
transitions without the inclusion of these terms so that
may use the techniques of embedded vortices used in the
of this paper, and then see how these terms affect the s
tions.
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A. The 3He-A phase transition

The full symmetry group of liquid3He is

G3He
5SO~3!S3SO~3!L3U~1!N , ~58!

which acts on the two group-index order parameterAa j by
the fund.S^ fund.L,N representation ofG3He

. Denoting

Aa j5D0daC j , ~59!

with unit vectordaPR3 andC j5(ê11 i ê2)/&PC3, where
ê1 , ê2PR3 such thatê1 .ê15ê2 .ê251 and ê1 .ê250. The
quantity D0 is a real number unimportant for the prese
discussion.

ThenG3He
acts onAa j fundamentally:

D„~gS ,gL ,gN!…a j bkAbk5D0~gSd!a~gLgNC! j . ~60!

In additionG3He
is a global symmetry of the field theory.

The field theory is described by the Lagrangian

L@Aa j #5Lsym@Aa j #1L̃@Aa j #, ~61!

with Lsym havingG3He global symmetry andL̃ representing
the extra vector type couplings of the order parameter.
may write

Lsym@Aa j #5g] iAa j* ] iAa j2V@Aa j #, ~62!

with V some Landau-type potential invariant underG3He.
For the vector type couplings we write

L̃@Aa j #5g1] iAa i* ] jAa j1g2] iAa j* ] jAa i , ~63!

which are explicitly not SO(3)L invariant. By partial integra-
tion of theaction integral, this may be rewritten as

L̃@Aa j #5~g11g2!] iAa i* ] jAa j5g̃] iAa i* ] jAa j . ~64!

TheA phase is reached through symmetry breaking wit
vacuum of the form

A05D0d0C0 ,

where d05S 1
0
0
D , C05S 1

i
0
D , ~65!

so that the residual symmetry group is

HA5U~1!S3
3U~1!L2N3Z2 , ~66!

where

U~1!S3
5H S 1 0 0

0 cosa sin a

0 2sin a cosa
D

S

:aP@0,2p!J ,

~67a!
8-7



o
s

s

r
of

on

ith

t

rti-

tex

ct

-
ra-
en-
ree

na-
ch
bi-

e-
of

NATHAN F. LEPORA AND ANNE-CHRISTINE DAVIS PHYSICAL REVIEW D58 125028
U~1!L2N5H e2 iaS cosa sin a 0

2sin a cosa 0

0 0 1
D

L

:aP@0,2p!J ,

~67b!

Z25H 1S31L , S 21 0 0

0 21 0

0 0 1
D

S

3S 21 0 0

0 21 0

0 0 1
D

L

J . ~67c!

It should be noted that the$L,N% part of the group is similar
to the Weinberg-Salam theory atQw5p/4, but taking the
limit in which ~both! of the coupling constants become zer
However, note that SO(3)L is not simply connected, this ha
important stabilizing effects on the vortices@16#.

Writing G3He5HA%M, the irreducible spaces ofM un-
der the adjoint action ofHA are denoted byM5M1%M2
%M3 , with

M1S 0 0 a

0 0 b

2a 2b 0
D

L

, M25S 0 g d

2g 0 0

2d 0 0
D

S

,

and M35
e

2 S i 1 0

21 i 0

0 0 i
D

L

, ~68!

anda, b, g, d, e are real numbers.

B. Vortices in the SO„3…L symmetric theory

We firstly analyze the theory wheng̃50, so that the La-
grangian is SO(3)L symmetric. In this regime the technique
of embedded vortices are applicable.

1. Embedded vortices

The first class of generators,M1 , give a one-paramete
family of gauge-equivalent global vortices, with profiles
the form

A~r ,u!5D0 f̄ ~n/&;r !d0S cosa/21 i sin a/2 cosnu
2sin a/21 i cosa/2 cosnu

2 i sin nu
D .

~69!

Here n is the winding of the vortex,a labels the family
member, andf̄ is defined below. These are the disgyrati
vortices of3He.
12502
.

The second class of generators,M2 , give a one-
parameter family of gauge-equivalent global vortices, w
profiles of the form

A~r ,u!5D0 f̄ ~n;r !S cosnu
2cosa sin nu
sin a sin nu

D C0 . ~70!

Heren is the winding of the vortex, anda labels the family
member. These are the so-called spin vortices.

The third class of generators,M3 , give a gauge-invarian
global vortex, with a profile of the form

A~r ,u!5D0 f̄ ~n;r !d0einuS 1
i
0
D . ~71!

Heren is the winding of the vortex anda labels the family
member. These vortices are the so-called singular-line vo
ces.

The profile functions depend upon the embedded vor
considered, generated byXemb, say, and are minima of the
Lagrangian

L@ f #5
gD0

2

2 S d f

dr D
2

1
g f 2

2r 2 iXembA0i22V@ f ~r !#, ~72!

whereV is the potential, which is independent of the defe
considered. WritingiXembA0i5niA0i we refer to the solu-
tions asf̄ (n;r ).

2. Combination vortices

Because the symmetriesG3He are global there are combi
nation vortex solutions between the three families of gene
tors. The most general combination embedded vortex is g
erated by a combination of generators from each of the th
classes—this is the spin–singular line-disgyration combi
tion vortex. Because of the way we shall determine su
vortices we first discuss the singular line-disgyration com
nation.

One obtains a discrete spectrum of singular lin
disgyration combination embedded vortices. Solutions are
the form

A~r ,u!5D0f ~X;r !d0 exp~Xu!C0 , ~73a!

with X5
a

2 Xi131S 0 1 0

21 0 0

0 0 0
D

L

C
1bS 0 0 1

20 0 0

21 0 0
D

L

.
~73b!

Then some algebra yields
8-8
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A~r ,u!5D0 f̄ ~p;r !d0eiau/2

3S cosus1
ia

2s
sin us

2
a

2s
sin us1

i

s2 S b21
a2

4
cosusD

2
b

s
sin us1

iab

2s2 ~cosus21!

D ,

~74!

where s5Aa2/41b2 and p5A(7m21n2)/2. Using the
single valuedness constraint thatA(r ,2p)5A(r ,0) gives the
following discrete spectrum of values fora andb:

a52m, b56An22m2, m,nPZ. ~75!

It seems that the singular line vortex and the disgyrat
may not be continuously deformed into one another, sinc
this was to be the case then the spectrum of combina
vortices should becontinuous. We obtain adiscretespec-
trum. For them to be continuously deformable into one
other we need solutions that are not of the embedded ty

The spin–singular line-disgyration combination vort
can be constructed from the above form. Since the genera
for spin vortices commute with the generators for singu
line-disgyration combination vortices, the form of solution
a spin vortex combined with a singular line-disgyration co
bination, i.e.,

A~r ,u!5D0 f̄ „A~7m212 j 21n2!/2;r …S cos j u
2cosa sin j u
2sin a sin j u

D ,

eiau/2S cosus1
ia

2s
sin us

2
a

2s
sin us1

i

s2 S b21
a2

4
cosusD

2
b

s
sin us1

iab

2s2 ~cosus21!

D , ~76!

with a andb as above andj an integer. Again the spectrum
discrete.

In particular, we shall need to know the form of the sp
singular line combination embedded vortex, which is

A~r ,u!5D0f ~A~ j 21n2!;r !S cos j u
2cosa sin j u
2sin a sin j u

D einuS 1
i
0
D .

~77!

3. Stability of the embedded vortices

The topology of the vacuum manifold contains loop
which are incontractible and thus gives classes of stable
tices. With each of the families of embedded~and combina-
tion! vortices an element of the homotopy group may
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associated,2 which tells one whether that family of vortices
topologically stable or unstable.

The vacuum manifold looks like

SO~3!S3SO~3!L3U~1!N

U~1!S3
3U~1!L2N3Z2

5
SS

~2!3SL,N
~3! /Z2

Z2
. ~78!

Here S(n) is an n sphere. This vacuum manifold contain
three inequivalent families of incontractible loops. Firs
those contained within justSL,N

(3) /Z2 . Secondly, those going
from the identity, throughSS

(2) into SL,N
(3) /Z2 by theZ2 factor,

and then back to the identity. Thirdly, there are combinatio
of the first two types. The classes of the first homotopy gro
of the vacuum manifold are thus

p1XSO~3!S3SO~3!L3U~1!N

U~1!S3
3U~1!L2N3Z2

C5Z4 . ~79!

This gives rise to three different topological charges
the vortices, the charge labeling the family from which th
originate. Technically, theZ4 arises from two separateZ2
contributions, and then we can label the charge~p,q!, with p,
q50,1; however, a more convenient notation~which will be
better contextualized in the conclusions! is to assign a single
index to these as in@16#, n: (0,0)50,(1,0)51/2,(0,1)
51,(1,1)53/2521/2.

The n51/2 stable vortices are half-quantum spin~singu-
lar line-disgyration! combinations, where one makes use
the Z2 mixing of the spin and angular groups for stabilit
Considering the spin-singular line combination above@Eq.
~74!#, the stable half-quantum spin-singular line combinati
vortex corresponds toj 5n51/2:

A~r ,u!5D0 f̄ ~1/&;r !S cosu/2
2cosa sin u/2
2sin a sin u/2

D eiu/2S 1
i
0
D .

~80!

Of course, there are also half-quantum spin-disgyration v
tices, and combinations in between. These all have topol
cal chargen51/2.

The n51 stable vortices are some of the singular li
@Eq. ~68!# and disgyration embedded vortices@Eq. ~66!#, also
including the combination vortices@Eq. ~71!# in between.
These all have the form above. The winding numbern51
vortices are the only stable solutions. Odd-n vortices may
decay to these, also having topological chargen51; even-n
decays to the vacuum, having topological chargen50. Fi-
nally, then53/2 vortices are combinations of then51/2 and
n51 vortices.

C. Vortex spectra of the full 3He theory

We wish to find the embedded vortex spectrum of the f
3He theory, when one is including terms that are not inva

2More precisely, with the familyand the winding number, but we
shall only be considering unit winding number vortices.
8-9
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ant under spatial rotations of the Lagrangian. Our tactic is
see which of the above embedded vortex solutions rem
solutions in the full theory. This is facilitated by investiga
ing how the profile equations are modified by inclusion
terms that are not invariant under SO(3)L—if the profile
equations make sense, for instance they must only be rad
dependent, then one can say that those embedded vo
remain solutions to the theory.

Providently, it transpires that only those embedded vo
ces which aretopologically stableremain solutions to the
full 3He Lagrangian, with inclusion of terms that are n
rotationally symmetric.

1. Singular-line vortices

The singular-line vortex has a profile of the form@from
Eq. ~68!#

A~r ,u!5D0f ~n;r !d0einuS 1
i
0
D , ~81!

wheren is the winding number of the vortex. Substitutio
into the full Lagrangian@Eq. ~58!# yields the profile equation
to be

L@ f #1L̃@ f #5~2g1g̃ !D0
2F S d f

dr D
2

1
n2f 2

r 2 G22g̃D0
2 n f

r

d f

dr

2V@ f ~r !#. ~82!

Since the extra termn f f8/r is least dominant asymptoticall
we may conclude the singular line ansatz is still a solution
the full Lagrangian, but with a slightly modified profile func
tion.

2. Spin vortices

Vortices embedded solely in the spin sector@with profiles
given by Eq.~67!# are solutions to the full Lagrangian be
cause the embedded defect formalism is applicable
symmetry-invariant parts of the Lagrangian, which the s
sector is.

This observation is backed up within the mathemati
one may show that for the spin vortex Ansatz

] iAa i
! ] jAa j5] iAa j

! ] iAa j . ~83!

Thus the terms ofL̃ that are not invariant under spatial rot
tions become equivalent to the kinetic terms of the symm
ric 3He Lagrangian for spin vortices.

3. Disgyration vortices

The embedded disgyration vortex has a profile of the fo
in Eq. ~66!; to simplify the matter we shall consider th
family member witha50 ~without loss of generality!:
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A~r ,u!5D0f ~n;r !d0S 1
i cosnu

2 i sin nu
D , ~84!

wheren is the winding of the vortex. Substitution into th
full Lagrangian@Eq. ~58!# yields terms that are not invarian
under spatial rotations

L̃@ f #5g̃D0
2F S cosu

d f

dr D
2

1S cosnu sin u
d f

dr

2
n f

r
cosu sin nu D 2G . ~85!

Since the profile functionf (r ) is independent ofu, and the
LagrangianLsym@ f #1L̃@ f # that describesf (r ) is not rota-
tionally symmetric, we conclude that the embedded disgy
tion vortices do not remain a solution when nonspatially
tationally symmetric terms are added to the Lagrangian.

4. Combination vortices

In general only combinations of embedded vortices t
individually remain solutions when nonspatially symmet
terms are added to the Lagrangian remain solutions. Thus
only combination embedded vortices that are solutions to
full LagrangianLsym1L̃ are thecombination spin-singular
line vortices.

D. Conclusions

We conclude, by comparing the results of Sec. VII C
with Sec. VII B3, that embedded vortices that are solutio
when rotationally nonsymmetric terms are added to the
grangian,

L̃@Aa j #5~g11g2!] iAa i
! ] jAa j5g̃] iAa i

! ] jAa j , ~86!

those vortices that are topologically stable, or higher wind
number counterparts of those vortices. The topologica
stable embedded vortices are labeled by their topolog
chargen @16# and take the following forms.

First, the half-quantum spin-singular line combinatio
vortex, has topological chargen51/2 and looks like

A~r ,u!5D0 f̄ ~1/&;r !S cosu/2
2cosa sin u/2
2sin a sin u/2

D eiu/2S 1
i
0
D .

~87!

Secondly, the singular line vortex has topological cha
n51 and looks like

A~r ,u!5D0 f̄ ~1;r !d0einuS 1
i
0
D . ~88!

Thirdly and finally, the combination of the above tw
vortices has topological chargen53/2 and looks like
8-10



u
th
g

is
ric
t r

en
r

he
th

pa
.

i-

u

ent

um
,
ble

s
n-
ons

ec-
i-

-
exts,

ity

he
bil-
r
.

re-

EXAMPLES OF EMBEDDED DEFECTS~IN PARTICLE . . . PHYSICAL REVIEW D58 125028
A~r ,u!5D0 f̄ ~A5/2;r !S cosu/2
2cosa sin u/2
2sin a sin u/2

D ei3u/2S 1
i
0
D .

~89!

This vortex winds around the singular line part one and
half times and around the spin part half a time. One sho
note that from the above spectrum a new meaning for
topological chargen may be interpreted, as the windin
number of the singular line part of the vortex.

Another, final, observation that we would like to make
that upon the addition of spatial nonrotationally symmet
terms to the Lagrangian the only embedded vortices tha
main solutions to the theory are those which containno an-
gular dependence of those spatially associated compon
of the order parameter~i.e., none are generated by any pa
of SO(3)L). With hindsight, this may be expected to be t
case, but it is pleasing to see it coming through in the ma
ematics. This leads one to wonder~or conjecture, perhaps! if
a similar phenomena happens in other cases where the s
rotation group acts nontrivially upon the order parameter

VIII. CONCLUSIONS

We conclude by summarizing our main results.
~1! In Sec. II we summarized the formalism of the prev

ous paper.
~2! In Sec. III we rederived the embedded defect spectr
e

e
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of the Weinberg-Salam model. Our results are in agreem
with other methods.

~3! In Sec. IV we derived the embedded defect spectr
of the model SU~3!→SU~2!, finding embedded monopoles
gauge invariant unstable vortices, and a family of unsta
vortices.

~4! In Sec. V we illustrated ‘‘combination vortices’’ by
the model U~1!3U~1!→1. This illustrates how such object
may only be solutions in certain limits of the coupling co
stants, and the form of their spectrum when such soluti
have been found.

~5! In Sec. VI we examined the embedded defect sp
trum for three realistic GUT models, namely, Georg
Glashow SU~5!, Flipped SU~5!, and Pati-Salam SU4(4).

~6! Finally, in section VII, we illustrated how our formal
ism may also be used in some condensed matter cont
using the specific example of vortices in3He-A. This also
illustrated combination vortices and some of their stabil
properties.
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