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Abstract

We present a series of examples designed to clarify the formalism of the

companion paper ‘Embedded Vortices’: where we showed how the family

structure and stability of embedded defects is related to group theoretic con-

siderations. After summarising this formalism in a prescriptive sense, we run

through several examples: firstly, deriving the embedded defect spectrum for

Weinberg-Salam theory, then discussing several examples designed to illus-

trate facets of the formalism. We then calculate the embedded defect spec-

trum for three physical Grand Unified Theories and conclude with a discussion

of vortices formed in the superfluid 3He-A phase transition.
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1 Introduction.

Embedded defects have received an impressive amount of interest over the last couple

of years. This is principally because the Z-string, of the Weinberg-Salam model, was

recently discovered to be stable for part of the parameter space [1]. Unfortunately (or

fortunately, maybe?), it proves to be unstable in the physical regime [2] [3]; though

there may be other stabilising effects [4] [5]. However, be it stable or unstable, it may

still have important cosmological consequences — as indicated by its connection to

baryon number violation [6].

In addition, the standard model also admits a one-parameter family of unsta-

ble, gauge equivalent vortices called W-strings [7]. These W-strings are not gauge

equivalent to Z-strings. Thus, a very non-trivial spectrum of vortices arises from the

vacuum structure of the standard model: two families of gauge inequivalent vortices,

with one family globally gauge invariant (under the residual symmetry group) and

the other a one parameter family of gauge equivalent vortices. Furthermore, it is

only one of these families which has the potential to be stable.

As well as the Weinberg-Salam model, embedded defects have been studied

specifically in another symmetry breaking scheme — namely the GUT flipped-SU(5)

[8]. One finds an eleven parameter family of gauge equivalent, unstable vortices plus

another globally gauge invariant, potentially stable vortex (the V-string). Further-

more, it seems likely (or at least an open question) that the V-string may be stable

for physical parameters.

The general formalism for describing embedded defects was derived by Vachas-

pati, et. al. [9]. They described how to construct an embedded defect solution in a

general Yang-Mills theory. The general idea of this formalism was that one defined

a subtheory (the embedded subtheory) of the full theory upon which one may de-

fine a topological defect solution (domain wall, vortex or monopole). In extending

the embedded subtheory back to the full theory one loses the topological nature of

the defect (which guarantees the stability), but the defect still remains a solution

providing certain restrictions are obeyed.

Recently, in a companion paper to this [10], we showed how the group theory

which lies behind the formalism of Vachaspati, et. al. is instrumental in determining

the properties and spectrum of embedded defects for a general Yang-Mills theory.
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By nature, the calculations in that paper are rather technical; although we think the

results are fairly simple. The group theory gives one a handle on family structure

and how this relates to stability.

The purpose of this paper is to provide a list of several examples to illustrate

certain facets of the formalism of that companion paper. Whereas that paper derives

the formalism, we intend this paper to describe how to apply the formalism.

We firstly summarise the formalism derived in [10], so that it can be used as a

prescriptive tool to find the spectrum of embedded defects, and to determine which

defects may be stable.

Then, for our first example, we rederive the existence and properties of the W

and Z-strings in the Weinberg-Salam model. We use this example for two reasons.

Firstly, it has been exhaustively examined already [1], [7]. Secondly, it is the simplest

gauge theory that illustrates our formalism.

As our second example we consider the symmetry breaking SU(3) → SU(2).

This model serves to illustrate the family structure of embedded defects in more

depth than the Weinberg-Salam theory. It also admits embedded (non-topological)

monopoles as solutions.

Our next example is to consider the model U(1) × U(1) → 1 as an example

of a theory which admits ‘combination vortices’. These ‘combination vortices’ are

vortices which lie between the families of vortices. In general they are only solutions

for certain representation-dependant critical values of the coupling constants.

Most of these examples are fairly unphysical and cannot be realistically expected

to describe nature. Hence we then discuss defects in three Grand Unified Theories.

Namely, Georgi-Glashow SU(5); flipped-SU(5); and Pati-Salam SU4(4).

We conclude this paper by showing how the techniques used are relevant to a

condensed matter system: namely that of vortices formed in the superfluid 3He-

A phase transition. This example also conveniently illustrates some properties of

combination vortices.
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2 Summary of Formalism.

For a Yang-Mills theory, the embedded defect spectrum and properties are entirely

determined by the symmetry breaking G → H. The symmetry breaking is deter-

mined by a Higgs field Φ and the representation of G, which describes how G acts on

the Higgs field Φ. Suppose Φ lies in the vector space V. The inner products that we

use are the (real-) inner products defined from the Euclidean inner product for V,

and G has a (real-) inner product defined from the Maxwell term in the Lagrangian.

The definition of the inner products is discussed in more detail in the companion

paper [10]. We denote the corresponding norms by ‖ .‖.

It is notationally useful to include the gauge coupling constants in the repre-

sentation, since this is the quantity that appears in the Lagrangian. Write G =

G1×· · ·×GN , with the Gi’s simple or U(1). For each Gi the derived representation

is a map di : Gi → aut(V); aut(V) being automorphisms over V — i.e. actions

upon the Higgs representation space. We then scale each di by the relevant coupling

constant qi for that part of the group. Hence, the scaled derived representation (the

quantity which appears in the Lagrangian) is d =
∑
i qidi

‡. The scaled represen-

tation, D, of the group is the exponential of this. It should be noted that, except

where explicitly stated, we shall always use the scaled representation.

Choose a reference point Φc in the vacuum manifold. This reference point is

arbitrary because of the degeneracy of choice D(G)Φc, which form the vacuum

manifoldM0. The residual symmetry group H is determined by Φc to be H = {g ∈

G : D(g)Φc = Φc}. Then one writes G as the reductive decomposition

G = H⊕M, (1)

such that

[H,H] ⊆ H, and [H,M] ⊆M. (2)

Under the adjoint action of H (Ad(h)X = hXh−1),M decomposes into irreducible

subspaces

M =M1 ⊕ · · · ⊕MN . (3)

‡It should be noted that if d is to be a representation then the non-Abelian scales are fixed by

[d(Xi), d(Xj)] = d([Xi, Xj ]).
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These irreducible spaces describe how the group acts on the vacuum manifold; ad-

ditionally yielding the family structure for embedded defects.

The stability of embedded defects is also related to the family structure above.

Recall that the centre C of G is the set of elements which commute with G. In general

it is an Abelian algebra. The stability of vortices is related to how the centre of G

projects onto M, which is defined by the projection mapping pr : C → M, where

for Xc ∈ C,

pr(Xc) = Xc +Xh ∈M, (4)

where Xh ∈ H is the unique element such that this is true. Such a projection of C

onto M consists of one-dimensional irreducible Mi’s.

This structure is enough to categorise all the topological and non-topological

embedded domain wall, embedded vortex and embedded monopole solutions of a

Yang-Mills theory.

2.1 Domain Walls

A domain wall solution is defined only by its reference point, Φc. The solution is

Φ(z) = fDOM(z)Φc, (5a)

Aµ = 0, (5b)

where fDOM is a real function such that fDOM(+∞) = 1, and fDOM(−∞)Φc 6= Φc

belongs to the vacuum manifold.

Providing the vacuum manifold is connected this solution is unstable; suffering

from a short range instability in the Higgs field. Solutions within connected parts

of the vacuum manifold are gauge equivalent.

2.2 Vortices

An embedded vortex solution is defined by the pair (Φc ∈ V, Xs ∈ M). The solution

is [13]

Φ(r, θ) = fNO(Xs; r)D(eθXs)Φc , θ ∈ [0, 2π), r ∈ [0,∞), (6a)

A(r, θ) =
gNO(Xs; r)

r
Xsθ̂. (6b)
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Here fNO and gNO are the Nielsen-Olesen profile functions for the vortex; their

dependence upon Xs is described in the appendix of the companion paper [10]. The

vortex generator Xs has the constraints that §

Xs ∈Mi, (7a)

D(e2πXs)Φc = Φc, (7b)

and the winding number of the vortex is given by n =‖Xs ‖ / ‖Xmin
s ‖, where Xmin

s

is the minimal generator in the same Mi as Xs obeying the above two conditions.

Family structure originates from the result that vortices of the same winding

number that are defined by generators in the same Mi are gauge equivalent.

The stability of vortices subdivides into two types: dynamical stability and topo-

logical stability. Furthermore, there are two types of topological stability: Abelian

(from broken U(1) parts of the symmetry breaking) and non-Abelian (from quotients

by discrete factors). The result is that dynamical and Abelian topological stability

originate from the projection of the centre of G onto M: Abelian topologically sta-

ble vortices are generated by elements in the intersection; whilst dynamically stable

vortices are generated by elements in the non-trivial projection.

If the coupling constants are at a critical point where, betweenMi andMj say,

the scaled representations satisfy:

‖d(Xi)Φc ‖

‖Xi‖
=
‖d(Xj)Φc ‖

‖Xj ‖
, Xi ∈Mi, Xj ∈Mj , (8)

then one has vortex solutions defined by generators in Mi ⊕Mj. Their stability

properties are described by the above results.

2.3 Monopoles

An embedded monopole solution is defined by the triplet (Φc ∈ V, Xs, X
′
s ∈ M).

The solution (with winding number n = 1) is

Φ(r) = fmon(r)r̂, (9a)

Aµa(r) =
gmon(r)

r
εµabXb, (9b)

§there are some complications when the rank (see prenote of [10]) of Mi is greater than one —

we shall generally indicate when such happens in the text.
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This solution may be generalised to higher windings, and then the form of the

Higgs field corresponds to spherical harmonics. Notationally, we are treating Φ to

be a vector within its corresponding embedded subtheory, and we are using X3 =

[X1, X2].

The monopole generators have the following restrictions [10]:

X1, X2 ∈Mi with 〈X1, X2〉 = 0, (10a)

[X1, X2] ∈ H, (10b)

‖X1‖=‖X2‖ with D(e2πX1)Φc = Φc. (10c)

and the winding number of the monopole is given by n =‖Xs ‖ / ‖Xmin
s ‖, where

Xmin
s is the minimal generator in the same Mi as Xs obeying condition eq. (10).

Monopoles also have a family structure, depending upon which Mi they are

defined from.

3 Defects in the Weinberg-Salam Theory

To illustrate our results we rederive the existence and properties of the W and Z-

strings in the Weinberg-Salam model. This model seems to be a good example for

two reasons. Firstly, it has been exhaustively examined already [1], [7]. Secondly, it

is the simplest gauge theory that illustrates our formalism.

The Weinberg-Salam theory has full gauge symmetry G = SU(2)I × U(1)Y

(isospin and hypercharge) acting on a two-dimensional complex Higgs field Φ (i.e

V = C2) by the fundamental representation. The generators of SU(2)I areXa = i
2
σa

and the U(1)Y generator is X0 = i
2
12, with the scaled derived representation acting

as

d(αiX i + α0X0) = gαiX i + g′α0X0, (11)

where g and g′ are the SU(2)I and U(1)Y gauge coupling constants respectively.

The Higgs potential is a Landau potential, λ(Φ†Φ − 1
2
v2)2. Hence, the vacuum

manifold, which is the minimum of the potential, is a three-sphere

We shall take the reference point in the vacuum manifold to be:

Φc =
v
√

2

 0

1

 . (12)
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Then the gauge groups breaks to the subgroup that acts trivially upon Φc, namely

H = U(1)Q =

 eiω 0

0 1

 , (13)

with ω ∈ [0, 2π). Then, at this reference point, the Lie algebra of the gauge group

decomposes into G = H⊕M, where

H =

 iα 0

0 0

 and M =

 0 γ

−γ∗ iβ

 , (14)

with α, β are real and γ is complex. The star denoting complex conjugation.

It is simple to verify that M is reducible under the adjoint action of H and

decomposes to the irreducible subspaces M =M1 ⊕M2, where

M1 =

 0 0

0 iβ

 and M2 =

 0 γ

−γ∗ 0

 . (15)

We also need to find the projection of the centre of G ontoM. Clearly the centre

of G is C = u(1)Y . Then it is simple to see that pr(u(1)Y ) =M1.

The first class of embedded vortices are defined from elements Xs ∈ M1 such

that e2πXs = 1. Furthermore, since M1 = pr(u(1)Y ) these vortices are stable in

a limit of the coupling constants — namely g → 0. From eq.(6) one immediately

writes down the solution as:

Φ(r, θ) =
v
√

2
fZNO(r)

 0

einθ

 , (16a)

d(A(r, θ)) =
gZNO(r)

r

 0 0

0 in

 θ̂, (16b)

where n is the winding number of the vortex. It should be noted that this vortex

is also gauge invariant under global gauge transformations of the residual gauge

symmetry. Clearly these solutions are the familiar Z-strings.

The second class of embedded vortices are defined from elements Xs ∈M2 such

that e2πXs = 1. Furthermore, sinceM2 is not the projection of the centre of G there

is no limit of the coupling constants in which the vortex is stable. From eq.(6) one
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immediately writes down the solution as:

Φ(r, θ) =
v
√

2
fWNO(r)

 eiδsinnθ

cosnθ

 , (17a)

d(A(r, θ)) =
gWNO(r)

r

 0 neiδ

−ne−iδ 0

 θ̂, (17b)

with eiδ = γ/|γ | and n the winding number of the vortex. All the isolated solutions

of the same winding number in this one-parameter family are gauge equivalent. Fur-

thermore, the anti-string is gauge equivalent to the string. Thus, isolated solutions

are parameterised by the positive winding number only. Clearly these solutions are

the familiar W-strings.

For the case of Weinberg-Salam theory, generators in M1 and M2 satisfy the

condition ‖d(X)Φc‖ / ‖Φc ‖= n of the appendix in the companion paper [10]. Thus,

the profile functions for the Z and W-strings are related to those of the Abelian-Higgs

model and, additionally, we have the relation between vortices of equal winding (first

stated by MacDowell and Tornkvist [11])

fZNO(λ; r) = fWNO(
λ

κ2
;κr), (18a)

gZNO(λ; r) = gWNO(
λ

κ2
;κr), (18b)

where κ =
√

g2+g′2

g2 and λ is the quartic scalar self coupling.

4 The Model SU(3)→ SU(2).

From the discussion in section (2), where we showed that an embedded vortex which

may be stable is always gauge invariant under global gauge transformations of the

residual symmetry group, one might think that, perhaps, all globally gauge invariant

vortices may be stable — which would be a very strong result. We give the above

model as a counterexample to this hypothesis; as a solution it admits an unstable

globally gauge invariant vortex. In addition it is a nice example of a model admitting

embedded (non-topological) monopoles.

The (original) gauge group is G = SU(3), which acts on a three-dimensional

complex Higgs field by the fundamental representation. Denoting the generators by
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{Xa : a = 1 · · ·8}, the scaled derived representation acts upon the Higgs field as:

d(αiX i) = gαiX i, (19)

where g is the SU(3) coupling constant.

A Landau potential is sufficient to break the symmetry. This is becauseM is of

the same dimension as the highest dimensional sphere to be contained within C3.

Hence, the vacuum manifold is isomorphic to a five-sphere, with G transitive over

it.

We shall take the reference point in the vacuum manifold to be

Φc = v


0

0

1

 . (20)

Then the gauge group breaks to H = SU(2), with H nestled in G as

H =


SU(2)

... 0

· · · · · · · · ·

0
... 1

 ⊂ G. (21)

At the reference point Φc, G decomposes under the adjoint action of H into irre-

ducible subspaces of the form G = H⊕M1 ⊕M2, where

M1 =


iγ 0 0

0 iγ 0

0 0 −2iγ

 , and M2 =


0 0 a

0 0 b

−a∗ −b∗ 0

 , (22)

with γ real and a, b complex.

Since the centre of su(3) is trivial, M1 cannot be its projection onto M

The first class of vortex solutions are classified by Xs ∈M1. They are given by,

in the temporal gauge,

Φ(r, θ) = vfNO(X1; r)


0

0

einθ

 , (23a)

A(r, θ) =
gNO(X1; r)

r


−in/2 0 0

0 −in/2 0

0 0 in

 θ̂. (23b)
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The integer n is the winding number of the vortex. These solutions have no semi-

local limit and are therefore always unstable.

The second class of vortex solutions are those classified by Xs ∈ M2. They are

a three-parameter family of gauge equivalent, unstable solutions.

It is easily verified that ‖d(X)Φc ‖ / ‖Φc ‖ is the winding number of the defect

for both equivalence classes. Therefore the profile functions for both classes coincide

with each other and the Abelian-Higgs model.

There are embedded monopole solutions in this model. These solutions are not

topologically stable — so therefore they are unstable [12]. The solutions are specified

by a gauge equivalent class of generators Xm, X
′
m ∈ M2, such that 〈Xm, X

′
m〉 = 0

and [Xm, X
′
m] ∈ H. A class of such generators is

Xm = Ad(h)


0 0 1

0 0 0

−1 0 0

 , X ′m = Ad(h)


0 0 0

0 0 1

0 −1 0

 , (24)

with

[Xm, X
′
m] = Ad(h)


0 −1 0

1 0 0

0 0 0

 ∈ H, (25)

where h is some element in H. There is a one-to-one correspondence between ele-

ments in H and the choice of embedded monopole. It should be noted that elements

of the form

X = Ad(h)


0 0 1

0 0 0

−1 0 0

 , X ′ = Ad(h)


0 0 i

0 0 0

i 0 0

 , (26)

do not define monopole solutions because [X,X ′] 6∈ H. Anti-monopoles are defined

in the above form but with one of the generators negative.

In conclusion, there is a two-parameter family of embedded monopole solutions

of the form defined in eq. (9).
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5 The Model U(1)× U(1)→ 1.

This model is presented to illustrate combination vortices. By ‘combination vortices’

we mean vortices that are generated by elements that are not in any of the irreducible

spaces Mi; the vortex generators being, instead, between the spaces.

In section (2), we said that such combination vortices are solutions if the repre-

sentation allows them. This corresponds to the coupling constants taking a critical

set of values. We illustrate this principle by explicitly finding such solutions in the

model U(1)× U(1)→ 1.

The gauge group is G = U(1)X × U(1)Y , and we represent the general group

element g(θ, ϕ) by

g(θ, ϕ) =

 eiθ 0

0 eiϕ

 ∈ G, (27)

with θ, ϕ ∈ [0, 2π). The generators of U(1)X and U(1)Y are, respectively,

X =

 i 0

0 0

 , Y =

 0 0

0 i

 . (28)

The group G acts on a two-dimensional complex Higgs field Φ = (φ1, φ2)
> by the

fundamental representation, such that the coupling constants scale the derived rep-

resentation:

D(g(θ, ϕ)) =

 eiq1θ 0

0 eiq2ϕ

 (29)

where q1 and q2 are the coupling constants for the respective parts of G.

To obtain the required symmetry-breaking, i.e G breaks to triviality, we must

choose the parameters of the Higgs potential correctly. The most general, renormal-

isable, gauge invariant Higgs potential for this theory is:

V (φ1, φ2) = λ1(φ∗1φ1 − v
2
1)2 + λ2(φ∗2φ2 − v

2
2)2 + λ3φ

∗
1φ1φ

∗
2φ2. (30)

For some range of (λ1, λ2, λ3, v1, v2) (the range being unimportant to our arguments)

this is minimised by a two-torus of values and G breaks to triviality.

Then, we may take the Higgs reference point to be

Φc =

 v′1

v′2

 , (31)
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where unless v2
1 = v2

2, the primed vevs v′1, v′2 are unequal to v1 and v2. Then the

group G breaks to the trivial group H = {1}. Under the adjoint action of H, the

Lie algebra of G splits into

G =M1 ⊕M2, (32)

with

M1 =

 ia 0

0 0

 , M2 =

 0 0

0 ib

 , (33)

with a, b real.

The topology of the vacuum manifold is non-trivial, hence vortex solutions that

are generated by elements inM1 orM2 are topologically stable. These vortices are

well defined and are stationary solutions of the Lagrangian.

It is interesting to consider the existence of vortices generated by elements in the

whole of M1 ⊕M2, and not just vortices generated in either of these two spaces

separately. Combination vortices may exist when the coupling constants are such

that eq. (8) is satisfied. Substitution of the generators X and Y into it yields the

condition, that combination vortices exist for:

‖d(X)‖

‖X ‖
=
‖d(Y )‖

‖Y ‖
⇒ q2

1 = q2
2. (34)

When q1 = q2, the elements of the Lie algebra that generate closed geodesics are

of the form

Xs = δX + εY, (35)

such that there exists an ω > 0 with D(eXsω)Φc = Φc. Since the coupling constants

are equal, this says that Xs generates a U(1)-sub-group of G. Relating this back to

the geometry of a torus, we see that the constraint on ε and δ is, providing both ε

and δ are non-zero,
ε

δ
are rational. (36)

One can interpret the effect of scaling the Higgs representation as ‘twisting’ direc-

tions in the Higgs representation space relative to directions in the Lie algebra. This

twisting only happens between the irreducible subspaces ofM.

However, not all of these geodesics define embedded vortices. One also needs to

satisfy cond. (2) in the companion paper [10], which is

〈Ψ,
∂V

∂Φ
〉 = 0, (37)
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where Ψ ∈ V⊥emb and Φ ∈ Vemb. Trivial substitution yields

λ1 = λ2 = λ, v2
1 = v2

2 = v2, and ε = δ. (38)

This is the only combination vortex.

6 Embedded Defects in Realistic GUT models

We now gives some examples of the embedded defect spectrum in some realistic

GUT models. The examples here are certainly not meant to be exhaustive, merely

just a few of the simplest examples.

6.1 Georgi-Glashow SU(5)

The gauge group is G = SU(5) [14], which acts on a twenty-four dimensional Higgs

field Φ by the adjoint action. For a Higgs vacuum,

Φc = v


2
3
13

... 0

· · · · · · · · ·

0
... −12

 , (39)

the gauge group G breaks to H = SU(3)c × SU(2)I × U(1)Y , which is contained in

G as: 
SU(3)c

... 0

· · · · · · · · ·

0
... SU(2)I

×

e

2
3
iθ13

... 0

· · · · · · · · ·

0
... e−iθ12

 ⊂ SU(5). (40)

Then, to find the embedded defect spectrum one determines the reduction of G

into G = H⊕M and finds the irreducible spaces of M under the adjoint action of

H. The space M is

M =


03

... A

· · · · · · · · ·

−A†
... 02

 , (41)

which is irreducible under the adjoint action of H.

Thus the defect spectrum of the model is: monopoles, which can be confirmed to

be topologically stable; and a family of unstable Lepto-quark strings. The family of
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lepto-quark strings is complicated byM containing two distinct (non-proportional)

commuting generators.

6.2 Flipped-SU(5)

For a more detailed discussion of embedded defects and their properties in flipped-

SU(5), see [8].

The gauge group is G = SU(5) × Ũ(1) [15], which acts on a ten dimensional,

complex Higgs field (conveniently represented as a five by five, complex antisym-

metric matrix) by the 10-antisymmetric representation. Denoting the generators of

SU(5) as Xa and Ũ(1) as X̃, the scaled derived representation acts on the Higgs

field as:

d(αiX i + α0X̃) = gαi(X iΦ + ΦX i>) + g̃α0X̃Φ. (42)

Here g and g̃ are the SU(5) and Ũ(1) coupling constants, respectively.

It is necessary for the following discussion to know a couple of generators explic-

itly, namely:

X15 = i

√
3

10


2
3
13

... 0

· · · · · · · · ·

0
... −12

 , X̃ = i

√
12

5
15. (43)

These generators are properly normalised with respect to a standard inner product

on the Lie algebra.

For a vacuum given by

Φc =
v
√

2


03

... 0

· · · · · · · · ·

0
... I

 , where I =

 0 1

−1 0

 , (44)

one obtains breaking to the standard model H = SU(3)c×SU(2)I×U(1)Y provided

the parameters of the potential satisfy η2, λ1 > 0 and (2λ1 + λ2) > 0. The V and

hypercharge fields and generators are given by ¶

Vi = cos ΘA15
i − sin ΘÃi, XV = cos ΘX15 − sin ΘX̃, (45a)

Yi = sin ΘA15
i + cos ΘÃi, XY = sin ΘX15 + cos ΘX̃. (45b)

¶We are using a slightly different definition from that used in [8]
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where the GUT mixing angle is tan Θ = g̃/g. Then d(H)Φvac = 0, with the isospin

and colour symmetry groups nestled in SU(5) as
SU(3)c

... 0

· · · · · · · · ·

0
... SU(2)I

 ⊂ SU(5). (46)

Then, to find the embedded defect spectrum one determines the reduction of G

into G = H⊕M and finds the irreducible spaces of M under the adjoint action of

H. The spaceM reduces into two irreducible spaces under the adjoint action of H,

which are:

M1 = {αXV : α real}, M2 =


03

... A

· · · · · · · · ·

−A†
... 02

 . (47)

The first space M1 is the projection of ũ(1) onto M. This is important for the

stability of vortex solutions defined from it. Such vortices are stable in the limit

ΘGUT →
π
2
, then, by continuity, also in a region around π

2
.

The second space M2 generates: a family of unstable Lepto-quark strings; and

also unstable (not topological) monopoles. The family of lepto-quark strings is com-

plicated by M containing two distinct (non-proportional) commuting generators.

6.3 Pati-Salam SU(4)× SU(4)→ SU(3)c × SU(2)I × U(1)Y

Pati and Salam emphasised a series of models of the form G = GS ×GW , where GS

andGW are identical strong and weak groups related by some discrete symmetry [16].

The above model is the simplest one of this form. The model is actually (SU(4)×

SU(4))L × (SU(4) × SU(4))R (‘L’ and ‘R’ denoting the separate couplings to left

and right-handed fermions) to accommodate parity violation in weak interactions.

We shall only consider one half of the model.

The gauge group is G = SU(4)S × SU(4)W which breaks to H = (SU(3) ×

U(1))S × SU(2)W , where H is nestled in G in the following way:
SU(3)c

... 0

· · · · · · · · ·

0
... U(1)Y


S

×


SU(2)I

... 0

· · · · · · · · ·

0
... 12


W

⊂ SU(4)S × SU(4)W . (48)
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Then write G = H ⊕M. The irreducible spaces of M under the adjoint action of

H are denoted byM =M1 ⊕M2 ⊕M̃ (here, M̃ is a collection of four irreducible

spaces), with

M1 =


03

... A

· · · · · · · · ·

−A†
... 0


S

, M2 =


02

... B

· · · · · · · · ·

−B†
... 02


W

,

and M̃ =


02

... 02

· · · · · · · · ·

02
... C


W

⊕


iα12

... 02

· · · · · · · · ·

02
... −iα12


W

, (49)

where A is a three dimensional complex vector, B and C are two by two complex

matrices, with C anti-hermitian, and α is a real number.

Each of the above spaces gives rise to their respective embedded defects. Firstly,

M1 gives rise to topologically stable monopoles and a five parameter family of unsta-

ble strings. Secondly,M2 gives rise to unstable (non-topological) monopoles and an

seven parameter family of unstable strings. Thirdly, M̃, which is a collection of four

irreducible spaces, admits globally gauge invariant unstable string solutions (under

the residual symmetry group). In addition, M̃ has combination string solutions

between the four irreducible spaces that it consists of.

7 Vortices in the 3He-A Phase Transition

We wish to show her that our results on the classification of vortices for general

gauge theories are also relevant for condensed matter systems. As an example we

choose the 3He-A phase transition, though we expect the general onus of our results

to be applicable to other situations having a similar nature.

Superfluid 3He has global symmetries of spin (SO(3)S rotations), angular ro-

tations (SO(3)L) and a phase (associated with particle number conservation). It

has several phase transitions corresponding to different patterns of breaking this

symmetry. We concentrate here on the A-phase transition.

A condensed matter system such as 3He has added complication above that of

gauge theories, meaning that we cannot just naively apply the approach used in the
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rest of this paper. This complication originates through the order parameter being

a vector under spatial rotations, not a scalar as in conventional gauge theories. The

upshot being that extra terms are admitted in the Lagrangian that are not present in

a conventional gauge theory. These terms couple derivatives of components with dif-

ferent angular momentum quantum numbers and are so not invariant under SO(3)L

rotations in the conventional sense — thus spoiling the SO(3)L invariance. The

general effect of this is to complicate the spectrum of vortex solutions, and their

actual form and interaction.

Our tactic to investigate the effect of these extra non-invariant SO(3)L terms is

to firstly examine the 3He-A phase transitions without inclusion of these terms so

that we may use the techniques of embedded vortices used in the rest of this paper,

and then to see how these terms affect the solutions.

7.1 The 3He-A Phase Transition

The full symmetry group of liquid 3He is

G3He = SO(3)S × SO(3)L × U(1)N , (50)

which acts on the two group-index order parameter Aαj by the fund.S⊗ fund.L,N

representation of G3He. Denoting

Aαj = ∆0dαΨj, (51)

with unit vector dα ∈ R3 and Ψj = (ê1 + iê2)/
√

2 ∈ C3, where ê1, ê2 ∈ R3 such that

ê1.ê1 = ê2.ê2 = 1 and ê1.ê2 = 0. The quantity ∆0 is a real number unimportant for

the present discussion.

Then G3He acts on Aαj fundamentally:

D((gS, gL, gN))αjβkAβk = ∆0(gSd)α(gLgNΨ)j . (52)

In addition G3He is a global symmetry of the field theory.

The field theory is described by the Lagrangian

L[Aαj] = Lsym[Aαj] + L̃[Aαj ], (53)
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with Lsym having G3He global symmetry and L̃ representing the extra vector type

couplings of the order parameter. We may write

Lsym[Aαj] = γ∂iA
?
αj∂iAαj − V [Aαj ], (54)

with V some Landau-type potential invariant under G3He. The vector-type couplings

we write

L̃[Aαj ] = γ1∂iA
?
αi∂jAαj + γ2∂iA

?
αj∂jAαi, (55)

which are explicitly not SO(3)L invariant. By partial integration of the action

integral, this may be rewritten as

L̃[Aαj ] = (γ1 + γ2)∂iA
?
αi∂jAαj = γ̃∂iA

?
αi∂jAαj . (56)

The A-phase is reached through symmetry breaking with a vacuum of the form

Ac = ∆0dcΨc, where dc =


1

0

0

 , Ψc =


1

i

0

 , (57)

so that the residual symmetry group is

HA = U(1)S3 × U(1)L−N × Z2, (58)

where

U(1)S3 =




1 0 0

0 cosα sinα

0 − sinα cosα


S

: α ∈ [0, 2π)

 (59a)

U(1)L−N =

e
−iα


cosα sinα 0

− sinα cosα 0

0 0 1


L

: α ∈ [0, 2π)

 (59b)

Z2 =

1S × 1L,


−1 0 0

0 −1 0

0 0 1


S

×


−1 0 0

0 −1 0

0 0 1


L

 (59c)

It should be noted that the {L,N} part of the group is similar to the Weinberg-

Salam theory at Θw = π/4, but taking the limit in which (both) of the coupling
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constants become zero. However, note that SO(3)L is not simply connected; this

has important stabilising effects on the vortices [17].

Writing G3He = HA ⊕M, the irreducible spaces of M under the adjoint action

of HA are denoted by M =M1 ⊕M2 ⊕M3, with

M1 =


0 0 α

0 0 β

−α −β 0


L

, M2 =


0 γ δ

−γ 0 0

−δ 0 0


S

,

and M3 =
ε

2


i 1 0

−1 i 0

0 0 i


L

, (60)

and α, β, γ, δ, ε are real numbers.

7.2 Vortices in the SO(3)L Symmetric Theory

We firstly analyse the theory when γ̃ = 0, so that the Lagrangian is SO(3)L sym-

metric. In this regime the techniques of embedded vortices are applicable.

7.2.1 Embedded Vortices

The first class of generators, M1, give a one parameter family of gauge equivalent

global vortices, with profiles of the form

A(r, θ) = ∆0f̄(n/
√

2; r)dc


cosα/2 + i sinα/2 cosnθ

− sinα/2 + i cosα/2 cosnθ

−i sin nθ

 . (61)

Here n is the winding of the vortex, α labels the family member, and f̄ is defined

below. These are the disgyration vortices of 3He.

The second class of generators,M2, give a one parameter family of gauge equiv-

alent global vortices, with profiles of the form

A(r, θ) = ∆0f̄(n; r)


cosnθ

− cosα sin nθ

sinα sinnθ

Ψc. (62)
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Here n is the winding of the vortex, and α labels the family member. These are the,

so called, spin vortices.

The third class of generators, M3, give a gauge invariant global vortex, with a

profile of the form

A(r, θ) = ∆0f̄(n; r)dce
inθ


1

i

0

 . (63)

Here n is the winding of the vortex, and α labels the family member. These vortices

are the, so called, singular-line vortices.

The profile functions depend upon the embedded vortex considered, generated

by Xemb say, and are minima of the Lagrangian

L[f ] =
γ∆2

0

2

(
df

dr

)2

+
γf 2

2r2
‖XembAc ‖

2 −V [f(r)], (64)

where V is the potential, which is independent of the defect considered. Writing

‖XembAc ‖= n ‖Ac ‖ we refer to the solutions as f̄(n; r).

7.2.2 Combination Vortices

Because the symmetries G3He are global there are combination vortex solutions

between the three families of generators. The most general combination embedded

vortex is generated by a combination of generators from each of the three classes

— this is the spin - singular line - disgyration combination vortex. Because of the

way we shall determine such vortices we firstly discuss the singular line -disgyration

combination.

One obtains a discrete spectrum of singular line-disgyration combination embed-

ded vortices. Solutions are of the form

A(r, θ) = ∆0f(Xs; r)dc exp(Xsθ)Ψc, (65a)

with Xs =
a

2

i13 +


0 1 0

−1 0 0

0 0 0


L

+ b


0 0 1

−0 0 0

−1 0 0


L

. (65b)
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Then some algebra yields

A(r, θ) = ∆0f̄(p; r)dce
iaθ/2


cos θs + ia

2s
sin θs

− a
2s

sin θs + i
s2

(b2 + a2

4
cos θs)

− b
s

sin θs+ iab
2s2

(cos θs− 1)

 , (66)

where s =
√
a2/4 + b2 and p =

√
(7m2 + n2)/2. Using the single valuedness con-

straint that A(r, 2π) = A(r, 0) gives the following discrete spectrum of values for a

and b:

a = 2m, b = ±
√
n2 −m2, m, n ∈ Z. (67)

It seems that the singular line vortex and the disgyration may not be continuously

deformed into one another, since if this was to be the case then the spectrum of

combination vortices should be continuous. We obtain a discrete spectrum. For

them to be continuously deformable into one another we need solutions that are not

of the embedded type.

The spin - singular line - disgyration combination vortex can be constructed from

the above form. Since the generators for spin vortices commute with the generators

for singular line - disgyration combination vortices, the form of solution is a spin

vortex combined with a singular line - disgyration combination, i.e.

A(r, θ) = ∆0 f̄(
√

(7m2 + 2j2 + n2)/2; r)


cos jθ

− cosα sin jθ

− sinα sin jθ



eiaθ/2


cos θs+ ia

2s
sin θs

− a
2s

sin θs+ i
s2

(b2 + a2

4
cos θs)

− b
s

sin θs + iab
2s2

(cos θs− 1)

 , (68)

with a and b as above and j an integer. Again the spectrum is discrete.

In particular, we shall need to know the form of the spin - singular line combi-

nation embedded vortex, which is:

A(r, θ) = ∆0f(
√

(j2 + n2); r)


cos jθ

− cosα sin jθ

− sinα sin jθ

 einθ


1

i

0

 . (69)
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7.2.3 Stability of the Embedded Vortices

The topology of the vacuum manifold contains loops which are incontractible and

thus gives classes of stable vortices. With each of the families of embedded (and

combination) vortices an element of the homotopy group may be associated ‖ which

tells one whether that family of vortices is topologically stable or unstable.

The vacuum manifold looks like

SO(3)S × SO(3)L × U(1)N
U(1)S3 × U(1)L−N × Z2

=
S

(2)
S × S

(3)
L,N/Z2

Z2

. (70)

Here S(n) is an n-sphere. This vacuum manifold contains three inequivalent families

of incontractible loops. Firstly, those contained within just S
(3)
L,N/Z2. Secondly, those

going from the identity, through S
(2)
S into S

(3)
L,N/Z2 by the Z2 factor, and then back

to the identity. Thirdly, there are combination of the first two types. The classes of

the first homotopy group of the vacuum manifold are thus

π1

(
SO(3)S × SO(3)L × U(1)N
U(1)S3 × U(1)L−N × Z2

)
= Z4. (71)

This gives rise to three different topological charges for the vortices, the charge

labelling the family from which they originate. Technically, the Z4 arises from two

separate Z2 contributions, and then we can label the charge (p, q), with p, q = 0, 1;

however, a more convenient notation (which will be better contextualised in the

conclusions) is to assign a single index to these as in [17], ν: (0, 0) = 0, (1, 0) =

1/2, (0, 1) = 1, (1, 1) = 3/2 = −1/2.

The ν = 1/2 stable vortices are half-quantum spin - (singular line - disgyration)

combinations — where one makes use of the Z2 mixing of the spin and angular

groups for stability. Considering the spin - singular line combination above (eq.

(69)), the stable half-quantum spin-singular line combination vortex corresponds to

j = n = 1
2
:

A(r, θ) = ∆0f̄(1/
√

2; r)


cos θ/2

− cosα sin θ/2

− sinα sin θ/2

 eiθ/2


1

i

0

 , (72)

‖more precisely, with the family and the winding number, but we shall only be considering unit

winding number vortices
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Of course, there are also half-quantum spin - disgyration vortices, and combinations

in between. These all have topological charge ν = 1/2.

The ν = 1 stable vortices are some of the singular line (eq. (63)) and disgyration

embedded vortices (eq. (61)), also including the combination vortices (eq. (66))

inbetween. These all have the form above. The winding number n = 1 vortices are

the only stable solutions. Odd-n vortices may decay to these, also having topological

charge ν = 1; even-n decay to the vacuum, having topological charge ν = 0.

Finally, the ν = 3/2 vortices are combinations of the ν = 1/2 and ν = 1 vortices.

7.3 Vortex Spectra of the Full 3He Theory

We wish to find the embedded vortex spectrum of the full 3He theory, when one is

including terms which are not invariant under spatial rotations of the Lagrangian.

Our tactic is to see which of the above embedded vortex solutions remain solutions

in the full theory. This is facilitated by investigating how the profile equations are

modified by inclusion of terms that are not invariant under SO(3)L — if the profile

equations make sense, for instance they must only be radially dependent, then one

can say that those embedded vortices remain solutions to the theory.

Providently, it transpires that only those embedded vortices which are topologi-

cally stable remain solutions to the full 3He Lagrangian with inclusion of terms that

are not rotationally symmetric.

7.3.1 Singular-Line Vortices

The singular-line vortex has a profile of the form (from eq. (63))

A(r, θ) = ∆0f(n; r)dce
inθ


1

i

0

 , (73)

where n is the winding number of the vortex. Substitution into the full Lagrangian

(eq. (53)) yields the profile equation to be

L[f ] + L̃[f ] = (2γ + γ̃)∆2
0

(df
dr

)2

+
n2f 2

r2

− 2γ̃∆2
0

nf

r

df

dr
− V [f(r)]. (74)
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Since the extra term nff ′/r is least dominant asymptotically we may conclude the

the singular line Ansatz is still a solution to the full Lagrangian, but with a slightly

modified profile function.

7.3.2 Spin Vortices

Vortices embedded solely in the spin sector (with profiles given by eq. (62)) are

solutions to the full Lagrangian because the embedded defect formalism is applicable

to symmetry-invariant parts of the Lagrangian — which the spin sector is.

This observation is backed up within the mathematics; one may show that for

the spin vortex Ansatz

∂iA
?
αi∂jAαj = ∂iA

?
αj∂iAαj . (75)

Thus the terms of L̃ that are not invariant under spatial rotations become equivalent

to the kinetic terms of the symmetric 3He Lagrangian for spin vortices.

7.3.3 Disgyration Vortices

The embedded disgyration vortex has a profile of the form in eq. (61); to simplify the

matter we shall consider the family member with α = 0 (without loss of generality)

A(r, θ) = ∆0f(n; r)dc


1

i cosnθ

−i sinnθ

 . (76)

where n is the winding of the vortex. Substitution into the full Lagrangian (eq.

(53)) yields terms that are not invariant under spatial rotations

L̃[f ] = γ̃∆2
0

(cos θ
df

dr

)2

+

(
cosnθ sin θ

df

dr
−
nf

r
cos θ sin nθ

)2
 . (77)

Since the profile function f(r) is independent of θ, and the Lagrangian Lsym[f ]+L̃[f ]

that describes f(r) is not rotationally symmetric, we conclude that the embedded

disgyration vortices do not remain a solution when non-spatially rotationally sym-

metric terms are added to the Lagrangian.
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7.3.4 Combination Vortices

In general only combinations of embedded vortices that individually remain so-

lutions when non-spatially symmetric terms are added to the Lagrangian remain

solutions. Thus the only combination embedded vortices that are solutions to the

full Lagrangian Lsym + L̃ are the combination spin-singular line vortices.

7.4 Conclusions

We conclude, by comparing the results of sec. (7.3.3) with sec. (7.2.3), that em-

bedded vortices that are solutions when terms rotationally non-symmetric terms are

added to the Lagrangian,

L̃[Aαj ] = (γ1 + γ2)∂iA
?
αi∂jAαj = γ̃∂iA

?
αi∂jAαj , (78)

are those vortices that are topologically stable, or higher winding number counter-

parts of those vortices. The topologically stable embedded vortices are labelled by

their topological charge ν [17] and take the following forms.

Firstly, the half-quantum spin-singular line combination vortex, which has topo-

logical charge ν = 1/2 and looks like

A(r, θ) = ∆0f̄(1/
√

2; r)


cos θ/2

− cosα sin θ/2

− sinα sin θ/2

 eiθ/2


1

i

0

 . (79)

Secondly, the singular line vortex, which has topological charge ν = 1 and looks

like

A(r, θ) = ∆0f̄(1; r)dce
inθ


1

i

0

 . (80)

Thirdly and finally, the combination of the above two vortices, which has topo-

logical charge ν = 3/2 and looks like

A(r, θ) = ∆0f̄(
√

5/2; r)


cos θ/2

− cosα sin θ/2

− sinα sin θ/2

 ei3θ/2


1

i

0

 . (81)
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This vortex winds around the singular line part one and a half times and around

the spin part half a time.

One should note that from the above spectrum a new meaning for the topological

charge ν may be interpreted: as the winding number of the singular line part of the

vortex.

Another, final, observation that we would like to make is that upon addition

of spatial non-rotationally symmetric terms to the Lagrangian the only embedded

vortices that remain solutions to the theory are those which contain no angular

dependence of those spatially associated components of the order parameter (i.e. non

are generated by any part of SO(3)L). With hindsight, this may be expected to be

the case, but it is pleasing to see it coming through in the mathematics. This leads

one to wonder (or conjecture, perhaps) if a similar phenomena happens in other

cases where the spatial rotation group acts non-trivially upon the order parameter.

Conclusions

We conclude by summarising our main results:

1. In section 2 we summarised the formalism of the companion paper ‘Embedded

Vortices’ [10].

2. In section 3 we rederived the embedded defect spectrum of the Weinberg-Salam

model. Our results are in agreement with other methods.

3. In section 4 we derived the embedded defect spectrum for the model SU(3)→

SU(2), finding: embedded monopoles, gauge invariant unstable strings and a

family of unstable strings. This illustrates: not all globally gauge invariant

vortices are stable.

4. In section 5 we illustrated ‘combination vortices’ by the model U(1)×U(1)→

1. This illustrates how such objects may only be solutions in certain limits of

the coupling constants, and the form of their spectrum when such solutions

have been found.
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5. In section 6, we examined the embedded defect spectrum for three realis-

tic GUT models, namely: Georgi-Glashow SU(5); Flipped-SU(5); and Pati-

Salam SU4(4). This illustrated how our formalism may be used for realistic

models.

6. Finally, in section 7, we illustrated how our formalism may also be used in

some condensed matter contexts — using the specific example of vortices in

3He-A. This also illustrated combination vortices and some of their stability

properties.
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