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ABSTRACT

The efficient detection of chaotic behavior in orbits of a complex dynamical system is an active
domain of research. Several indicators have been proposed in the past, and new ones have recently
been developed in view of improving the performance of chaos detection by means of numerical
simulations. The challenge is to predict chaotic behavior based on the analysis of orbits of limited
length. In this paper, the performance analysis of past and recent indicators of chaos, in terms of
predictive power, is carried out in detail using the dynamical system characterized by a symplectic
Hénon-like cubic polynomial map.

1 Introduction

The study of the long-term evolution of Hamiltonian systems is a very difficult task from both a theoretical and a
numerical point of view. The KAM theory[1] does not provide a solution to the stability problem for Hamiltonian
systems in more than two degrees of freedom. Therefore, great effort has been devoted to improving time stability
estimates after the celebrated Nekhoroshev theorem [2]. However, the existence of chaotic layers in phase space
strongly affects the long-term evolution of the orbits, and for this reason, numerical indicators have been proposed to
detect the chaotic character of orbits using a limited number of time steps.

For a given Hamiltonian model, one has to tackle the problem of comparing the performance of the various indicators
to assess which one provides the optimal classification of the orbits. In applications, this task must be accomplished
taking into account the characteristics of the physical problem under consideration. For instance, in the field of
accelerator physics, the study of the charged-hadron motion in the magnetic lattice of a circular accelerator is often
devoted to the determination of the region of phase space in which bounded motion occurs. The extent of such a region
is called dynamic aperture, and its precise determination involves studying the stability of orbits of a 6D symplectic
map in a neighborhood of an elliptic fixed point, up to 108 − 109 iterations (see, e.g., [3]). An exhaustive analysis of
the phase-space topology is clearly beyond the current computational capabilities, even for relatively simple systems.
Therefore, indicators of chaos turn out to be extremely useful to reduce the amount of computational time needed
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to assess the character of orbits (regular or chaotic). This task may be affected by the presence of orbit diffusion in
phase space, which occurs in chaotic layers. The presence of small stochastic effects, which naturally arise in physical
systems, may prevent orbit trapping near regular regions, the so-called stickiness phenomenon [4, 5], thus inducing
diffusive behavior in phase space.

It is worth noting that polynomial symplectic maps are central for the analysis of accelerator physics problems, but
they are also present in other domains and have been intensively studied to understand the phase space structure of
Hamiltonian systems [6], and are a fundamental tool for long-term integration of orbits [3].

The main result of this paper is to show that it is possible to determine a classification performance ranking of the
main commonly used chaotic indicators when applied to a generic 4d cubic polynomial symplectic map of Hénon-
like form (see, e.g., [3]), which is an excellent prototype dynamical system for applications, such as circular hadron
accelerators.

The indicators of chaos are typically based on the existence of positive Lyapunov characteristic exponents, and their
numerical performance is strongly affected in the regions where sticky orbits are present.

The family of Fast Lyapunov indicators (FLI) [7] has been proposed to distinguish the regions of regular and chaotic
motion for symplectic maps [5]. They also proved to be suitable for identifying resonant regions in phase space and to
visualize the Arnold web of resonances where slow diffusion occurs [8]. These indicators are based on the evolution
of an initial deviation vector and provide the linear response of the tangent map along an orbit. When considering one
or more initial deviation vectors, the result depends on the direction of the initial deviation vectors. To overcome this,
the linear response to a random displacement vector with zero mean value and unit variance was recently proposed [9].
The trace of the corresponding covariance matrix defines the square Lyapunov Error (LE), which is similar to FLI .
Furthermore, the invariants of the covariance matrix of order k > 1 are asymptotically related to the sum of the
first k Lyapunov exponents. However, unlike the Generalized Alignment Index (GALI(k)) indicators [10, 11], these
invariants do not depend on the initial deviations [12]. Recently, a couple of approaches have been proposed to improve
the performance of some indicators, namely applying the Weighted Birkhoff averaging [13] or the Mean Exponential
Growth of Nearby Orbit (MEGNO) [14], which is used to filter the oscillations and to improve the accuracy by
averaging on map iterations [15, 16].

To calculate the sensitivity to small deviations along an orbit, the Reversibility Error Method (REM ) can be used [17,
18]. In this case, the linear response to the forward evolution in the presence of small random noise is considered,
followed by the unperturbed backward evolution. The covariance matrix of the random process, which provides the
final deviation from the initial condition in the limit of zero noise amplitude, can be computed, and its invariants
quantify the violation of reversibility. The first invariant for the forward-backward process BF is the square of the
reversibility error, which is equal to the sum of the squares of Lyapunov errors computed at each iteration of the map.
This invariant can be compared with the results for REM , when the stochastic perturbation is generated by the finite
numerical precision present in both the forward and backward directions.

Finally, a completely different indicator introduced by J.Laskar [19, 20] is represented by the Frequency Map Analysis
FMA, which computes the variation of the main frequency of a given orbit considering different orbit lengths to detect
the chaotic character.

In this paper, we perform an accurate analysis of the performance of the indicators briefly introduced above to classify
the orbits of a 4d modulated polynomial symplectic map, namely a 4d Hénon map that is considered a reference
model for several applications. In Section 2 we define mathematically and discuss in some detail the chaos indicators
considered, and in Section 3 we discuss their numerical implementation. In Section 4 we present the numerical
results and rank the different indicators in terms of classification efficiency, in particular, studying their predictivity.
Finally, some conclusions are drawn in Section 5. In addition, we report some details on the computational cost of
implementing indicators using parallel computing facilities in Appendix A, while some considerations on the time
dependence of indicators are presented in Appendix B.

2 Definition and main properties of indicators of chaos

2.1 Frequency Map Analysis

Originally introduced by J. Laskar in the field of celestial mechanics, the Frequency Map Analysis (FMA) rapidly
found applications outside the initial domain of application (see, e.g., [21, 22, 23, 24, 19, 25, 26, 27, 28, 29, 20, 30,
31, 32, 33, 34, 35] for a selected list of references, with special emphasis on accelerator-related applications) is a
numerical method to inspect the global dynamics of multidimensional Hamiltonian systems, taking advantage of the
quasiperiodicity of regular orbits located on KAM tori.
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Given a Hamiltonian system H(I, θ) = H0(I) + εH1(I, θ), where for ε = 0 the Hamiltonian H0(I) is integrable and
(I, θ are action angle variables in Rn×Tn, where T represents a one-dimensional torus. If the system is nondegenerate,

det

(
∂ν(I)

∂I

)
= det

(
∂2H0(I)

∂I2

)
6= 0 , (1)

the application
F : I ∈ Rn −→ ν ∈ Rn (2)

is a diffeomorphism on its image. This means that the invariant tori are equally identified by the action variables I
or by their corresponding frequency vector ν. For a nondegenerate system, when ε is sufficiently small, the KAM
theorem [36, 37, 38], states that there still exists a set of initial conditions of positive measure that correspond to
regular orbits on invariant tori, for which, according to Pöschel [39], a similar diffeomorphism still applies.

Based on this theoretical framework, it is possible to distinguish between regular orbits on the KAM tori, which
feature a discrete structure for Fourier components defined by the harmonic of the fundamental frequencies, and
chaotic orbits, which exhibit a complex structure in the Fourier spectrum [28]. In this sense, FMA is a technique
that performs numerical evaluations of the frequency vector ν from a time series corresponding to a certain interval
[i, i + n], for different values of i. In case of a regular orbit lying on a KAM tori, the frequency vectors for various i
will agree up to the precision of the numerical method used to determine the frequency. On the other hand, a chaotic
orbit will have ν that evolves over different intervals, showing fluctuations in frequency space [26].

To achieve an accurate numerical evaluation of fundamental frequencies, multiple studies have been carried out to
improve standard algorithms such as the Fast Fourier Transform (FFT) or the Average Phase Advance (APA) [40, 19,
41, 42]. In the work of Bartolini et al. [43], the fundamental frequency is evaluated using an FFT combined with a
Hanning filter and an interpolation algorithm, resulting in a closed-form formula for the fundamental frequency. In
recent studies [44], the frequency determination carried out using the average phase advance algorithm is improved
by applying the weighted Birkhoff averaging [45], which will be used in the sequel to perform the evaluation of
FMA. More precisely, we define FMAn as the Euclidean distance between two vectors defined by the fundamental
frequencies ν1 and ν2, evaluated respectively over the time intervals [0, n/2] and [n/2, n] of the orbit. An initial
condition on a KAM torus has FMAn converge to zero when n → ∞. In contrast, an initial condition in a chaotic
layer will converge to an asymptotic value for FMAn bounded away from zero.

2.2 Lyapunov Error invariants

Let M(x, n) be a time-dependent symplectic map with x ∈ R2d where the first d components of x are the space
coordinates and the last d their conjugate moments. Denoting by DM the Jacobian matrix (DM)ij = ∂Mi/∂xj and
by xn the orbit after n iterations, the corresponding tangent map Ln(x) is defined by

xn = M(xn−1, n− 1) ≡Mn(x) , x0 = x;

Ln(x) = DM(xn−1, n− 1) Ln−1(x) ≡ DMn(x) , L0 = I ,

(3)

where Mn(x) = M(x, n− 1) ◦Mn−1(x) with M0(x) = x.

For any initial condition x, consider a small stochastic deviation εξ where ξ is a unit random vector with 〈 ξ 〉 = 0 and
a unit covariance matrix 〈 ξ ξT 〉 = I, where the suffix T denotes the transposed vector. Letting yn = M(yn−1, n− 1)
be the orbit with initial condition y0 = x0 + εξ the linear response Ξn(x), initialized by Ξ0 = 0 is given by

Ξn(x) = lim
ε→0

yn − xn
ε

= DM(xn−1, n− 1) × lim
ε→0

yn−1 − xn−1

ε
= DM(xn−1, n− 1)Ξn−1

= Ln(x) ξ .

(4)

The random vector Ξn has zero mean and covariance matrix

Σ2
n(x) = 〈Ξn(x)ΞT

n (x) 〉 = Ln(x)LTn (x) . (5)

Oseledets theorem [46] states that the limit

lim
n→∞

(LTnLn)1/2n = W eΛ WT (6)

3
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exists, where W is an orthogonal symplectic matrix and Λ is diagonal with entries λj(x) ordered in a decreasing
sequence in j.

The diagonal entries of Λ are the Lyapunov exponents, and the columns of W the corresponding Lyapunov vectors.
Since the eigenvalues of LTnLn are the same as those of the covariance matrix LnL

T
n , the two matrices have the same

characteristic polynomial. Then consider the corresponding invariants I(k)
n (x), k = 1, . . . , 2d, i.e., the coefficients of

the characteristic polynomial. The first invariant I(1)
n (x), is given by the trace of the covariance matrix, namely,

I(1)
n (x) ≡ Tr

(
Σ2
n(x)

)
= Tr

(
LTn (x) Ln(x)

)
= LE2

n(x) , (7)

which is the square of the Lyapunov error LEn(x). Note that it does not depend on the initial deviation vector or on
the chosen orthogonal reference frame, and its asymptotic behavior is determined by the first, i.e., largest, Lyapunov
exponent λ1.

The other invariants I(k) are the sum of all products that combine k distinct eigenvalues if they are simple. The geo-
metric interpretation is straightforward. Letting ej be the standard base vectors, we have Ln = (e1 n, . . . , e2d n)where
ej n = Ln ej . As a consequence, the invariant I(k)

n (x) is the sum of the squared volumes of the (2d
k ) parallelotopes

whose sides are the vectors ej1 n(x), . . . , ejk n(x).

The difference with respect to GALI (k)
n indicators (see Subsection 2.5), is that the I(k)

n (x) are independent of the
initial displacements.

For a symplectic map, Ln(x) is a symplectic matrix, and Σ2
n(x) = Ln(x) LTn (x) is symplectic and positive definite.

As a consequence, ordering the eigenvalues in a decreasing sequence, we have eλj;neλ2d−j+1;n = 1. The asymptotic
behavior of the invariant I(k)

n , k ≤ 2d is given by

lim
n→∞

1

2n
log I(k)

n (x) = λ1(x) + . . .+ λk(x) . (8)

In a region of chaotic motion, λj n(x) are positive for j ≤ d just as their limit λj(x), so that I(k)
n (x) has exponential

growth with n, for n sufficiently large. In a region of regular motion, I(k)
n (x) grows according to a power law

I
(k)
n (x) ∼ n2k for k ≤ d as all Lyapunov exponents vanish.

2.3 Fast Lyapunov Indicator and Weighted Birkhoff averaging

The Fast Lyapunov Indicator [7], is one of the best known dynamic indicators, due to its straightforward implement-
ation and its sensitiveness to the detection of chaotic structures [47]. Given M(x, n), its tangent map Ln(x), and an
arbitrary initial unitary deviation vector ξ, FLI is defined for n ≥ 1, as:

FLIn(x0, ξ) = ln ‖Ln(x0)ξ‖ , (9)

i.e., the logarithm of the linear response Ξn(x), calculated for an arbitrary fixed deviation vector. The quantity
FLIn/n tends to the largest Lyapunov exponent as n → ∞. Therefore, in a region of regular motion, this quantity
tends to zero, whereas in a region of chaotic motion it takes a positive value.

It is possible to take advantage of the properties of the logarithm in Eq. (9) to avoid overflows for large values of n,
and to express the limit FLIn/n as an average along the trajectory xn [48]:

FLIn(x0, ξ)

n
=

n−1∑

i=0

ln ‖yi − xi‖
n

,

yi = DM(xi−1, i− 1)
yi−1 − xi−1

‖yi−1 − xi−1‖
,

y1 = DM(x0, 0)ξ .

(10)

In the work of Das et al. [13], it is presented how the application of the Weighted Birkhoff averaging method WBn [45]
in the evaluation of FLI can lead to superconvergence properties when applied to oscillating time series. Instead of
considering equal weighting (1/n), the Weighted Birkhoff averaging method uses a weighting function w

(
i
n

)
, which

acts similarly to a window function in spectral analysis. A function w(t) that proved to be very effective in improving
the convergence of quasiperiodic time series averages [45] reads as follows:

w(t) :=

{
exp

[
− 1
t(1−t)

]
, for t ∈ (0, 1)

0, for t /∈ (0, 1)
. (11)

4
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Replacing the standard mean with w(t) in Eq. (10) leads to the weighted Fast Lyapunov Indicator FLIWB
n :

FLIWB
n (x0, ξ) =

n−1∑

i=0

w

(
i

n

)
ln ‖yi − xi‖ . (12)

We expect that FLIWB
n (x0, ξ) converges faster than FLIn(x0, ξ)/n to their common limit at least in the case of

regular orbits.

To simplify the notation, in the numerical analysis we refer to FLIn(x0, ξ)/n and FLIWB
n (x0, ξ) as FLIn(ξ)/n and

FLIWB
n (ξ), respectively, specifying the choice made for the initial unitary displacement ξ.

2.4 Backward-Forward reversibility error

The reversibility error is obtained by computing the linear response of the dynamics to small additive stochastic
perturbations on the orbit after n forward iterations n followed by n backward iterations

yn′ = M(yn′−1, n
′ − 1) + εξn′ , y0 = x

1 ≤ n′ ≤ n ;

yn′ = M−1(yn′−1, 2n− n′) + εξn′ ,

n+ 1 ≤ n′ ≤ 2n .

(13)

where ξn′ are random vectors with zero mean and unit covariance matrix 〈ξn′〉 = 0 and 〈ξn′ξTn′′〉 = δn′n′′ . We denote
by xn′ the orbit when random deviations are absent ε = 0. This orbit enjoys the symmetry property xn′ = x2n−n′ for
n+ 1 ≤ n′ ≤ 2n, so the reversibility condition x2n = x is satisfied.

The linear response for the BF process is defined by

ΞBF
n′ (x) = lim

ε→0

yn′ − xn′

ε
, 1 ≤ n′ ≤ 2n, (14)

and the cumulative random deviation ΞBF
n′ (x) satisfies the recurrence

ΞBF
n′ = DM(xn′−1, n

′ − 1) ΞBF
n′−1(x) + ξn′ ,

1 ≤ n′ ≤ n;

ΞBF
n′ = DM−1(x2n−n′+1, 2n− n′) ΞBF

n′−1 + ξn′ ,

n+ 1 ≤ n′ ≤ 2n .

(15)

From the recurrence relation of the tangent map (3) evaluated for n′ and from the equality
DM−1(M(x, k), k))DM(x, k) = I for k = 2n− n′ it follows

DM(xn′−1, n
′ − 1) = Ln′(x) L−1

n′−1(x) ,

DM−1(x2n−n′+1, 2n− n′) =
(
DM(x2n−n′ , 2n− n′)

)−1

= L2n−n′(x) L−1
2n−n′+1(x) .

(16)

Replacing Eq. (16) in Eq. (13) we obtain the final result

ΞBF
n (x) = Ln(x)

n∑

k=1

L−1
k (x) ξk ;

ΞBF
2n (x) = L−1

n (x) ΞBF
n (x) +

n−1∑

k=0

L−1
k (x) ξ2n−k

=

n−1∑

k=1

L−1
k (x) (ξk + ξ2n−k) + ξ2n + L−1

n (x)ξn.

(17)

If random deviations are present only in the forward process, the covariance matrix of ΞBF
2n is given by

Σ2 BF
n (x) =

〈
ΞBF

2n (x)
(
ΞBF

2n (x)
)T〉

=

n∑

k=1

(
LTk (x)Lk(x)

)−1
.

(18)

5
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If random deviations are present both in the forward and backward processes, we define Σ2 BF
n as 1/2 the covariance

matrix of ΞBF
2n , and the result is the r.h.s. of Eq. (18) where the last term of the sum (LTnLn)−1 is replaced by

1
2 I + 1

2 (LTnLn)−1 due to the boundary condition, and asymptotically, for n→∞ the difference is negligible.

The invariants of the matrix Σ2 BF
n , i.e., the coefficients of the characteristic polynomial det

(
Σ2 BF
n − λI

)
, λ ∈ C

and λi an eigenvalue, provide information on the effect of small random perturbations along the orbits. If the map
M is symplectic, both Ln and LTnLn are symplectic matrices and the trace of LTnLn and its inverse are equal. As a

consequence, it is not difficult to check that the trace of
(∑

n′

(
LTn′ Ln′

)−1
)k

and of
(∑

n′ L
T
n′ Ln′

)k
are equal and

the invariants of the covariance matrices of the BF process become

I(k) BF
n (x) = I(k)

(
n∑

k′=1

(
LTn′(x) Ln′(x)

)−1
)

= I(k)

(
n∑

k′=1

LTn′(x) Ln′(x)

)
.

(19)

The first invariant has a very simple relation to the Lyapunov error LEn(x). Explicitly, we have the following
(
EBFn (x))

)2

≡ I(1) BF
n (x) =

n∑

n′=1

Tr
(
LTn′(x)Ln′(x)

)

=

n∑

n′=1

(
LEn(x))

)2

.

(20)

We conclude by observing that the BF reversibility error analysis can be applied to investigate the effect of rounding
errors in numerical computations [49]. Letting Mε be the map evaluated with round-off errors and M−1

ε its inverse,
we have M−1

ε (Mε(x)) = x + O(ε). In the IEEE 754 international standard, the precision of a real number is
ε ∼ 10−16. Iteration with rounding is defined by Eq. (13) where εξn′ is missing, but M is replaced by Mε. The matrix
1
2 ΞBF

2n

(
ΞBF

2n

)T
, whose average defines the covariance matrix of the BF reversibility error, is replaced by

XBF2n (x) =
1

2

y2n − x

ε

(y2n − x)T

ε
. (21)

This matrix has a nonzero eigenvalue, with eigenvector y2n − x, and a null eigenvalue of multiplicity 2d − 1 with
eigenspace orthogonal to y2n − x. The noise-induced Reversibility Error Method (REM ) squared is the nonzero
eigenvalue of such a matrix, equal to its trace, and given by

(
REMBF

n (x)
)2

= Tr
(
XBF2n (x)

)

=
1

2

y2n − x

ε
· y2n − x

ε
.

(22)

The main difference is thatREM , due to rounding, is the result of a single realization with a pseudorandom error and,
therefore, is affected by large fluctuations when we vary n or x. These fluctuations are absent for the BF reversibility
error previously defined, since averaging over the random deviations is carried out. The other relevant difference is
that the higher-order REM invariants are zero.

Note that the implementation of REM is trivial since it does not require the evaluation of the tangent map and the
computational cost is just twice the cost of the orbit computation, provided that the inverse map is explicitly known.

2.5 GALI(k) indicators

The k-order indicatorsGALI(k) use the volumes of parallelotopes whose sides are normalized images of the k linearly
independent vectors ηj with 1 ≤ j ≤ k.

GALI(k)
n (x) =

∥∥∥∥
Ln(x)η1

‖Ln(x)η1‖
∧ . . . ∧ Ln(x)ηk

‖Ln(x)ηk‖

∥∥∥∥ , (23)

where ∧ stands for the external product of two vectors. Their asymptotic behavior for chaotic orbits, whose first d
Lyapunov exponents are positive, is given by

GALI(k)
n ∼ e−n

(
(λ1−λ2)+...+(λ1−λk)

)
. (24)

6
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where we assume a decreasing order for the exponents.

For regular, quasi-periodic orbits, whose Lyapunov exponents vanish, theGALI(k) indicators decay following a power
law. We recall that the Lyapunov error invariants I(k)

n grow exponentially with a coefficient given by the sum of the
first k Lyapunov exponents for chaotic orbits, or according to a power law for regular orbits.

2.6 Introducing filters

We conclude by remarking that the introduction of a filter such as MEGNO [15, 50] that drastically reduces the
numerical oscillations of the indicator of chaos may greatly improve the efficiency of the indicator. In principle, the
oscillations disappear using suitable normal coordinates for the considered systems, but their computation faces the
limits and technical difficulties of perturbation theory. Referring to the phase flow that interpolates the orbits at integer
times t = n, MEGNO, applied to LEt(x), it has the double-time average of d logLEt(x)/d log t

MEGNOn(LE(x)) =

〈〈
t
d logLEt(x)

dt

〉〉

where 〈 f(t) 〉 =
1

t

∫ t

0

f(t′) dt′ .

(25)

If the indicator LEn(x) grows exponentially as eλt, then MEGNOn(LE(x)) increases as λt. If LEn(x) follows the
power law tα, then MEGNOn(LE(x)) converges to 2α.

3 Numerical implementations

3.1 Models

To test the effectiveness of the proposed indicators of chaos, we consider a 4d polynomial symplectic map dependent
on time, which is a generalization of the Hénon map [51]. The origin is an elliptic fixed point, and the nonlinear terms
combine fixed quadratic nonlinearities and variable cubic ones. The map reads:




xn+1

px,n+1

yn+1

py,n+1


 = R(ωx,n, ωy,n)×

×




xn
px,n + x2

n − y2
n + µ

(
x3
n − 3xny

3
n

)
yn

py,n − 2xnyn + µ
(
y3
n − 3ynx

3
n

)


 ,

(26)

where µ represents the intensity of the cubic nonlinearity and R is a 4× 4 rotation matrix defined as

R(ωx,n, ωy,n) =

(
R (ωx,n) 0

0 R (ωy,n)

)
, (27)

with R (ωx,n) and R (ωy,n) being 2 × 2 rotation matrices. In the following, we refer to the map (26) as the 4d
Hénon map and remark that it is often used as a reference model in applications such as accelerator physics (see, e.g.,
[51, 52, 53]), since it represents the dynamics generated by a magnetic lattice that includes sextupole and octupole
magnets [51].

Linear frequencies ωx,n and ωy,n are slowly modulated as a function of time n according to

ωx,n = ωx,0

(
1 + ε

m∑

k=1

εk cos (Ωkn)

)
,

ωy,n = ωy,0

(
1 + ε

m∑

k=1

εk cos (Ωkn)

)
,

(28)

where ε represents the modulation amplitude and the parameters εk and Ωk are taken from Table 1 in [52] to model the
effect of frequency modulation in a particle accelerator due to ripples in the currents of the power supplies that feed

7
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the magnets. Modulation of the linear frequency may cause the appearance of weak chaotic regions in the stability
basin near the origin. We recall that the parameters εk have an order of magnitude of 10−4.

In numerical simulations, two sets of frequencies ωx0 and ωy0 have been considered, namely (0.168, 0.201), which
is close to resonances of order 5 and 6, and (0.28, 0.31), which are the frequencies in the transverse phase space for
charged particles orbiting in the LHC at injection energy [54]. We have analyzed the performance of chaos indicators
as a function of parameters ε and µ, which have been varied in the intervals [0, 64] and [0, 1], respectively. Some
considerations on the computational costs of implementing the various indicators of chaos in a parallel computing
architecture are reported in the Appendix A.

Figure 1 shows some survival plots for various configurations of the 4d Hénon map. A set of 300 × 300 initial
conditions, sampled on a uniform Cartesian grid in the x−y plane, choosing px = py = 0, is tracked up to nmax = 108

turns. Grid boundaries are selected to sample a region of interest, which depends on the linear frequencies and their
modulation amplitude, that contains the stability basin of the origin, more specifically (x, y) ∈ [0.0, 0.45]×[0.0, 0.45]
for case (ωx0, ωy0) = (0.168, 0.201), or (x, y) ∈ [0.0, 0.60] × [0.0, 0.60] for case (ωx0, ωy0) = (0.28, 0.31).
An initial condition is considered stable if its distance from the origin is less than a certain control radius rc when
n = nmax. Otherwise, the initial condition is considered lost and its tracking is stopped, and the stability time is given
by the first value nstab for which

√
x2
nstab

+ p2
x,nstab

+ y2
nstab

+ p2
y,nstab

≥ rc. The choice of rc is rather arbitrary (we

have considered rc = 102) and the dependence of the results on rc is very weak since at that amplitude the dynamics
of the 4d Hénon map is fully dominated by polynomial terms. The two rows of Fig. 1 show the survival plots for the

Figure 1: Survival plot for various 4d modulated Hénon maps with quadratic and cubic nonlinearities. Initial con-
ditions, sampled on an uniform Cartesian 300 × 300 grid in the x − y plane, are tracked up to nmax = 108 and
are considered lost when their distance to the origin exceeds a predefined maximum radius rc = 102. The two sets
of linear frequencies feature different shapes of the stable region as can be seen by comparing the plots in the two
rows. The parameters ε and µ induce additional changes, in particular the increase of the size of the transition region
between stability up to nmax and shorter stability time. The color scale is related to the logarithm of the stability time
as reported on the right.

two sets of frequencies considered in the studies. The shape of the stable region (yellow area) strongly depends on
the frequencies, as different sets of resonances affect the dynamics. Furthermore, the impact of ε and µ is also clearly
seen. The first enlarges the transition region between stable initial conditions and unstable ones, i.e., the region for
which nstab < nmax, where a weak diffusion occurs, while the latter changes the shape of the stable region.
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4 Results of numerical investigations

In the following, we report the results of the numerical study of the dynamic indicators presented in Section 2, namely
log10(LE), FLI , FLIWB , MEGNO(LE), GALI(4), REM , and FMA. Note that we consider the logarithm of
LE, as it is a quantity comparable to FLI and MEGNO(LE). We first focus on the dependence of FLI on the
choice of the initial displacement vector ξ, and compare it with log10(LE). Next, we discuss a comparison between
the convergence rate of FLI and that of FLIWB . Finally, we compare the classification performance of all dynamic
indicators by determining their accuracy, together with its time dependence, in reconstructing a Ground Truth (GT)
evaluated at a high iteration time.

4.1 Dependence on the initial displacement

The main feature of LE, compared to FLI , is its independence from the initial choice of direction of the unitary
displacement vector ξ. To highlight this, in Fig. 2, we directly compare the calculated values of log10(log10(LE)/n)
with those of log10(FLI/n), calculated with an initial displacement along one of the four orthonormal base vectors
x̂, p̂x, ŷ, and p̂y . These calculations are carried out for a set of 300 × 300 initial conditions, sampled on a uniform
Cartesian grid in the x− y plane. It is possible to see how, at low turn number (n = 102, top row), the different choice
of displacement highlights the structures in FLI that are missing in LE. This can be explained by considering that
the displacement vector is not fully aligned along the largest Lyapunov exponent yet. In contrast, these structures are
missing for LE, which has smoother behavior.
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Figure 2: Color maps of log10(log10(LE)/n) and log10(FLI/n) indicators for a low iteration number (n = 102, top
row) and a high iteration number (n = 104, bottom row). In both rows, the FLI for the four possible displacements
is shown together with LE, to highlight the different structures shown by the indicators. It is possible to see how, for
low iteration numbers, different choices of initial displacement for FLI highlight structures that do not appear in LE.
The differences reduce for higher number of turns, but are still present. These structures have a vage resemblance with
the net of resonances that is present in phase space. Note that an arrow at the bottom of the color bar means that pixels
of the bottom color correspond to a value equal to or lower than the bottom value. White pixels correspond to initial
conditions whose distance from the origin has exceeded a predefined radius (rc = 102) during the tracking, before
reaching the target iteration number n. (Simulation parameters used: (ωx0, ωy0) = (0.168, 0.201), ε = 64.0, µ =
0.5).

The observed differences are much reduced for a higher number of turns (n = 104, bottom row), as the initial displace-
ment tends to become almost aligned along the direction corresponding to the largest Lyapunov exponent. However,
despite the smaller differences between log10(log10(LE)/n) and log10(FLI/n), the behavior of the various indic-
ators is still not the same. It is worth noting how displacements along x̂ and ŷ produce similar structures that are,
however, different with respect to the case in which displacement is carried out along p̂x or p̂y . Globally, these obser-
vations underline the value of the invariance properties of LE, which seems to be more promising than FLI for the
analyses that will be discussed in the following sections.

9



A PREPRINT - 18TH APRIL 2023

As this dependence on the initial displacement decreases with higher iteration numbers, we will focus only on FLI(x̂)
for the remainder of the paper, as the rest of the results are not significantly affected by this choice.

4.2 Application of Weighted Birkhoff averaging to FLI

As an additional analysis of the time dependence of chaos indicators, we compare the values obtained for FLI at
different times, using the standard approach that considers the mean in Eq. (10), that is, FLI/n, or the variant based
on the use of Birkhoff weights as in Eq. (12), that is, FLIWB . The analysis starts considering two ensembles of regular
and chaotic particles that have been classified by means of the value of the FLI indicator computed for n = 108 turns
(effectively this sets a ground-truth level, as discussed in the next section). The sets are also used to calculate the time
evolution of FLI/n and FLIWB with the objective of evaluating possible improvements in the latter compared to the
first. In Fig. 3 (top), the comparison is made for a subset of the set of regular initial conditions, whereas the behavior of
chaotic ones is shown in the bottom plot of the same figure. It is possible to observe how, for regular initial conditions,
Birkhoff averaging consistently speeds up the convergence of FLIWB to zero.
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Figure 3: Time evolution of FLI computed using either a standard mean or the Birkhoff averaging. Top plot: indic-
ators computed for a set of 100 regular initial conditions, the fit highlights a faster convergence rate for the Birkhoff
averaging. Bottom plot: indicators computed for a set of 100 chaotic initial conditions. A similar improvement in
convergence rate is observed for low n values, before reaching a saturation value of the indicator of the order of 10−3.
(Simulation parameters: (ωx0, ωy0) = (0.28, 0.31), ε = 32.0, µ = 0.5).

The case of chaotic initial conditions has different characteristics. In fact, a saturation region is observed for the
indicator value on the order of 10−3 for both indicators. When this value is reached, both indicators oscillate around
it. However, the slope with which this nonzero value is reached is different for the two indicators and is higher in
absolute value for FLIWB than for FLI/n, similar to what is observed for the case of regular orbits. It is also worth
stressing the presence of initial conditions that, up to some n = 106 turns, feature a steady decrease in the value of
the dynamic indicator, as if they were characterized by regular motion. However, after that, the value of the indicator
suddenly increases, reaching the value that identifies chaotic orbits. This behavior clearly defies any approach aimed
at classifying initial conditions as regular or chaotic in finite time.

The improvement caused by the Birkhoff averages is also clearly visible in Fig. 4, where the time evolution of the
distribution of the values of FLI/n (top) and FLIWB (bottom) is shown. The part of the distribution corresponding
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to the regular initial conditions reaches its peak (yellow band) and moves towards zero with increasing n. However,
the displacement towards zero is faster for FLIWB . Furthermore, the peak of the distribution is sharper for FLIWB

than for FLI . In both graphs, a faint trace of a peak is visible corresponding to the indicator value of about 10−3.
This feature is remarkably similar for the two indicators, as already seen in Fig. 4.
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Figure 4: Time evolution of the distribution of the values of FLI (top) and FLIWB (bottom) indicators for the whole
set of 15684 initial conditions that survived up to nmax = 108. The Birkhoff averaging leads to faster convergence
towards zero of the regular initial conditions, which are represented by the yellow band. Furthermore, the width of
such a band is narrower for FLIWB with respect to FLI . The red dashed lines represent threshold values, defined by
our algorithm, representing the attempt to perform the binary classification in regular and chaotic initial conditions.
(Simulation parameters: (ωx0, ωy0) = (0.28, 0.31), ε = 32.0, µ = 0.1).

This behavior shows that the regular orbits benefit from the use of the Birkhoff averages, whereas the chaotic ones are
mostly unaffected by the special averaging mechanism. These features can be exploited for the classification problem
that will be addressed in the next section.

4.3 Classification performance

For this analysis, we study the predictive performance of chaos indicators in terms of a binary classification of a large
set of initial conditions by varying the number of iterations n. It should be stressed that this classification is performed
only on the orbit of an initial condition that has been detected to be stable for nmax.

An overview of the time dependence of the dynamic indicators and the distribution of their values observed in our
numerical investigation is given in the Appendix B. The main feature of interest, which constitutes the basis of this
analysis, is the general tendency of dynamic indicators to create a bimodal distribution, as has also been reported for
finite-time Lyapunov exponents in [55, 56]. We focus on studying the evolution of this specific characteristic, i.e., the
presence of two peaks in the distribution of indicator values, as a function of time, which is the key feature used for
the classification analysis.

As the development of the bimodal distribution requires various orders of magnitude of the number of turns,
we perform our analysis on the logarithm of the seven dynamic indicators, namely log10(log10(LE)/n),
log10(MEGNO(LE)/n), log10(FLI/n), log10(FLIWB), log10(GALI(4)), log10(REM), and log10(FMA). The
factor n−1 is included in the first two indicators to observe a comparable evolution of values over time with the two
FLI indicators, since, ultimately, its presence does not alter the outcome of these studies.

To carry out this task, we first construct a ground truth (GT) for different sets of parameters for the 4d Hénon map,
iterated for nmax = 108. The initial conditions are then classified into a binary chaotic/regular classification scheme
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using the LE indicator. An example is given in Fig. 5 where eight cases, the same as those depicted in Fig. 1, are
displayed. Dark colors identify regular regions of the phase space, whereas lighter colors denote chaotic regions. It is
clearly seen that the frequency modulation and the presence of the cubic nonlinearity increase the extent of the chaotic
areas of the phase space, also generating regions in which regular and chaotic orbits are deeply intertwined.

Figure 5: Distributions of log10(log10(LE)/n) for various 4dmodulated Hénon maps (the same cases shown in Fig. 1)
with quadratic and cubic nonlinearities. 300×300 initial conditions, sampled on an uniform Cartesian grid in the x−y
plane, are tracked up to nmax = 108. It is possible to observe how the case for ε = 0.0, µ = 0.0, corresponding to the
absence of modulation and cubic nonlinearities, lead to regular motion almost everywhere, except for a small set of
initial conditions. For the other cases, extended regions of chaotic motion are visible. Note that the maximum value
registered in the color maps corresponds to numerical saturation.

The GT classification is built from the distribution of the values of log10(log10(LE)/n) for nmax. The resulting dis-
tribution has a main group of regular initial conditions with low value LE, and a second group of chaotic initial
conditions with higher value LE. Due to the large separation of these two clusters, a threshold value has been calcu-
lated to distinguish them using a kernel density estimation method (KDE) [57, 58] with a Gaussian kernel and different
bandwidth values. This allows investigating the Mode Tree [59] of the distribution, detecting its two main modes, and
setting the position of the minimum of the distribution between them. It is worth stressing that more refined approaches
might be devised to detect the peaks or, equivalently, cluster the indicator values, but they have not been considered
in this analysis. In fact, our focus is on the performance of the indicator in generating a suitable distribution for the
classification problem, even for low values of n, not on designing a sophisticated algorithm to analyze the distribution
of the indicator, including its peculiarities.

An example of the GT construction process can be seen in Fig. 6. Stable initial conditions up to nmax are identified
by direct tracking (first graph from the left), and the value of the indicator LE is calculated for the set of stable initial
conditions (second graph from the left). At this stage, it is possible to compute the distribution of LE and determine
the threshold that separates the peaks of the bimodal distribution (third plot from the left) and provides the criterion to
classify any given initial condition as regular or chaotic. Applying the computed threshold, it is possible to generate a
binary map with the resulting classification (fourth plot from the left). In this case, the determination of the threshold
for the case shown is rather straightforward, as the large separation between the two peaks makes the actual value of
the threshold not particularly relevant. However, when n� nmax the separation between the peaks decreases and the
threshold value becomes essential for an efficient classification of the initial conditions.

Examples of the procedure for determining the threshold based on the indicator distribution are shown in Fig. 7. In the
top plot, the case of REM is depicted (but it is representative of all other indicators except FMA). The use of KDE
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Figure 6: Ground Truth construction for a modulated Hénon map. From left to right: a survival plot of the initial
conditions stable up to nmax = 108 (yellow is stable, purple is unstable); distribution of the LE indicator for all stable
initial conditions, evaluated at nmax; histogram of log10(log10(LE)/n), classified with a threshold evaluated with a
KDE-based procedure; binary classification of regular (yellow) and chaotic (purple) initial conditions. (Simulation
parameters: (ωx0, ωy0) = (0.28, 0.31), ε = 32.0, µ = 0.5).

with different bandwidth clearly shows how the two peaks of the distribution can be detected. This allows the position
of the threshold to be set at the location of the minimum value of the distribution in between the two peaks. The case
of FMA is different since the distribution has three peaks and the standard algorithm to determine the threshold must
be adapted. Therefore, KDE is used to determine the position of the three peaks, and the threshold is set at the position
of the minimum of the distribution in between the two peaks with the largest amplitude.

This choice is somewhat arbitrary, but the features of the distribution clearly indicate that the performance of the
indicator is limited, with little possibility of improving it. Indeed, the non-negligible fraction of initial conditions
that generate the part of the distribution in between the extreme peaks cannot be clearly classified by the proposed
approach, as some of them will turn chaotic, whereas other regular if the indicator would be computed over a longer
time span.

Once the GT has been computed, we define as predictive performance of a dynamic indicator the accuracy in recon-
structing the binary classification in the GT, that is, the ratio between the correctly labeled initial conditions and the
total number of stable initial conditions. Such a reconstruction is attempted using the same strategy implemented
for the determination of the GT, namely, we consider the distribution of the dynamic indicator under consideration
and define a binary classification using a threshold computed via the KDE-based approach. The resulting thresholds
evaluated over time for REM and FMA are visualized in detail in Fig. 8, while the results for the other dynamic
indicators are presented in Appendix B.

The accuracy performance of the dynamic indicator is then evaluated for various n < nmax. We expect a good-
performing dynamic indicator to achieve high accuracy values when it generates two separate groups, even when
n � nmax. Such behavior, in fact, enables effective mode detection and consequent effective GT reconstruction. In
contrast, a poor-performing dynamic indicator will need a longer tracking time before showing the presence of two
separate clusters, causing the threshold determination to be unable to separate the chaotic from the regular initial
conditions.

A global comparison of the classification performance of the seven dynamic indicators is carried out, and the accuracy
achieved by the dynamic indicators as a function of n is shown in Fig. 9, for different sets of parameter values for the
4d Hénon maps.

When considering the Hénon maps with ε = 0.0, i.e., without frequency modulation, a rather small fraction of
chaotic orbits with a very mild dependence on n of the accuracy of the various dynamic indicators is observed.
Furthermore, FMA differs from all other indicators, clearly showing poorer performance in terms of accuracy. All
other indicators have very similar performance, the only difference being in the time at which a steplike increase in
accuracy is observed, which occurs for n = 103−104, corresponding to 4-5 orders of magnitude lower than nmax. This
sudden increase in accuracy is related to the time required by dynamic indicators to generate a bimodal distribution
that can be efficiently analyzed using our KDE-based procedure. In this sense, it should be noted that GALI(4) is the
most accurate indicator, as it reaches high accuracy values even at very low values of n and the gradual increase does
not occur in the range of n shown in the graphs. In general, the behavior observed for all indicators (except FMA)
shows that a rather accurate prediction of GT can be achieved using the information provided by the indicators over a
rather limited number of turns.
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Figure 7: Example of the KDE-based procedure for computing a threshold for the binary classification (regu-
lar/chaotic) of initial conditions. Top: application to log10(REM) (evaluated at n = 105). KDEs with various
bandwidth are used until the two main peaks of the bi-modal distribution are detected, the threshold is then placed at
the position of the minimum of the distribution between them. This procedure is applied to all dynamic indicators ex-
cept for FMA. Bottom: application of the procedure to log10(FMA) (evaluated at n = 105), which clearly exhibits
a three-mode distribution. The procedure is applied so that it detects the three main modes of the distribution, and then
sets the threshold at the minimum of the distribution between the two modes at higher values. (Simulation parameters:
(ωx0, ωy0) = (0.28, 0.31), ε = 32.0, µ = 0.5).

In the case with ε = 32.0, i.e., with frequency modulation and a larger fraction of chaotic orbits, the situation changes
dramatically. Accuracy depends rather strongly on n, suggesting that chaos detection requires a larger number of
turns to be accurate. In terms of the ranking of the indicators, FMA remains the worst (this is certainly true for case
(ωx0, ωy0) = (0.28, 0.31), while for case (ωx0, ωy0) = (0.168, 0.201) a better performance is observed). REM and
GALI(4), are the best values in a wide range of values of n. Furthermore, they do not show any sudden jump in
accuracy because of their well-behaved distribution. Finally, we remark that beyond n = 106 − 107, the precision of
all indicators is very similar.

To provide a quantitative assessment of the performance of the dynamic indicators, we define a performance estimate
as

1

2

∫ 6

4

Accuracy(10x) dx , (29)

i.e., the integral of the accuracy achieved and displayed in Fig. 9 normalized to the integral of the ideal case with
unit accuracy throughout the turn interval. The reasons for such a definition are twofold: First, it avoids the possible
bias introduced by indicators that are more efficient in detecting the chaotic behavior at low number of turns but that
are not so efficient afterwards; second, it probes the predictive power of the indicator by setting an upper bound that
is lower than the turn number used for determining the GT. Equation (29) has been numerically evaluated using the
trapezoidal rule and considering 50 values of n equally spaced on a logarithmic scale over the interval 104− 106. The
performance estimate values for the dynamic indicators for the various Hénon maps are reported in Table 1.
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Figure 8: Distribution of values of log10(REM) (left) and log10(FMA) (right) as a function of time for a modulated
4dHénon map. The red dashed lines represent threshold values, defined by our algorithm shown in Fig. 7, representing
our criterion to distinguish regular and chaotic orbits. For low values of the iterations n, the distribution of both
indicators is in general represented by a uni-modal function. For higher values of n, we can see the formation of two
separate clusters in the case of REM , making the distribution bi-modal. For FMA, we have in general a different
behavior, as it tends to form a tri-modal distribution. (simulation parameters: (ωx0, ωy0) = (0.28, 0.31), ε =
32.0, µ = 0.5).
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by the various dynamic indicators for eight cases of the 4d modulated Hénon maps (the same cases shown in Fig. 1),
differing by cubic nonlinearities and frequency modulation.
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Table 1: Performance estimate of the dynamic indicators for the various Hénon map configurations, evaluated using
Eq. (29) over the interval n = 104 − 106. Values are ranked in decreasing order. It is clearly seen that GALI(4) is the
highest scorer andREM is the second-best scorer in most of the cases considered. The uncertainty in the performance
estimate is evaluated by applying a variation of the calculated thresholds of ±5%.

(ωx, ωy) = (0.28, 0.31)
ε = 0.0;µ = 0.0 ε = 0.0;µ = 0.5

log10(GALI(4)) 0.99700± 0.00014 log10(GALI(4)) 0.9956± 0.0002
log10(FLIWB(x̂)) 0.9966± 0.0005 log10(REM) 0.99423± 0.00004
log10(MEGNO(LE)/n) 0.9965± 0.0008 log10(log10(LE)/n) 0.99± 0.03
log10(REM) 0.99629± 0.00003 log10(FLIWB(x̂)) 0.99± 0.10
log10(log10(LE)/n) 0.99± 0.05 log10(FLI(x̂)/n) 0.9080± 0.0016
log10(FLI(x̂)/n) 0.94± 0.01 log10(MEGNO(LE)/n) 0.90± 0.14
log10(FMA) 0.8738± 0.0005 log10(FMA) 0.8797± 0.0004

(ωx, ωy) = (0.28, 0.31)
ε = 32.0;µ = 0.0 ε = 32.0;µ = 0.5

log10(GALI(4)) 0.9453± 0.0014 log10(GALI(4)) 0.924± 0.002
log10(REM) 0.9329± 0.0003 log10(REM) 0.9096± 0.0003
log10(MEGNO(LE)/n) 0.93± 0.08 log10(MEGNO(LE)/n) 0.90± 0.09
log10(log10(LE)/n) 0.924± 0.011 log10(log10(LE)/n) 0.888± 0.015
log10(FLIWB(x̂)) 0.913± 0.007 log10(FLIWB(x̂)) 0.88± 0.02
log10(FMA) 0.869± 0.003 log10(FLI(x̂)/n) 0.843± 0.009
log10(FLI(x̂)/n) 0.863± 0.007 log10(FMA) 0.797± 0.005

(ωx, ωy) = (0.168, 0.201)
ε = 0.0;µ = 0.0 ε = 0.0;µ = 0.5

log10(GALI(4)) 0.9896± 0.0004 log10(GALI(4)) 0.9909± 0.0004
log10(REM) 0.98682± 0.00009 log10(MEGNO(LE)/n) 0.99± 0.09
log10(FLIWB(x̂)) 0.986± 0.002 log10(REM) 0.98850± 0.00012
log10(log10(LE)/n) 0.981± 0.003 log10(FLIWB(x̂)) 0.988± 0.002
log10(FLI(x̂)/n) 0.980± 0.016 log10(log10(LE)/n) 0.99± 0.07
log10(FMA) 0.9319± 0.0010 log10(FLI(x̂)/n) 0.980± 0.015
log10(MEGNO(LE)/n) 0.9± 0.2 log10(FMA) 0.9510± 0.0009

(ωx, ωy) = (0.168, 0.201)
ε = 32.0;µ = 0.0 ε = 32.0;µ = 0.5

log10(GALI(4)) 0.903± 0.003 log10(GALI(4)) 0.914± 0.003
log10(REM) 0.8880± 0.0004 log10(REM) 0.8915± 0.0004
log10(MEGNO(LE)/n) 0.87± 0.09 log10(MEGNO(LE)/n) 0.89± 0.11
log10(log10(LE)/n) 0.863± 0.016 log10(FMA) 0.881± 0.007
log10(FLI(x̂)/n) 0.849± 0.012 log10(log10(LE)/n) 0.88± 0.02
log10(FLIWB(x̂)) 0.849± 0.007 log10(FLIWB(x̂)) 0.870± 0.012
log10(FMA) 0.843± 0.004 log10(FLI(x̂)/n) 0.850± 0.017

Performance estimates have been ranked in decreasing order, separating the various cases considered in our analyses.
GALI(4) turns out to be the highest scorer in all cases, followed byREM . Then we findMEGNO and FLIWB(x̂),
while FMA tends to be the last in this ranking. The error associated with each performance estimate value is provided
by the variation of the accuracy whenever the automatic threshold value is varied by ±5%. This quantity provides
information on the robustness of the accuracy against perturbation of the threshold: A small value indicates a high
stability of the numerical values. It is also worth noting that the performance estimates of the best dynamic indicators
are correlated with small values of the corresponding error.

Important insights on the performance of the various indicators can be gained by looking at the relative identification
error in terms of false positive, i.e., when a regular orbit is classified as chaotic, and false negative, i.e., when a chaotic
orbit is classified as regular. A false negative is almost unavoidable, according to the behavior shown in Fig. 3, unless
the indicator is calculated over a very large number of turns, which means accepting a very limited predictive power
of the indicator. However, the behavior of the two types of errors reveals interesting features of the various indicators.
An overview of the dependence of false positive and false negative errors is shown in Fig. 10, where relative errors are
displayed as functions of the turn number for the map configurations considered in the first row of Fig. 9.
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Figure 10: Identification errors for the various indicators as a function of the number of turns for the cases displayed
in the first row of Fig. 9.

The behavior of the false positive error reveals a fundamental difference between FMA and the other indicators. In
fact, FMA shows an error value that is only slightly dependent on the turn number and drops to small values for very
large n. For the other indicators, for a low number of turns, this type of error is large, and then, around 104 turns, it
drops essentially to zero. This feature is related to the fact that, for a low number of turns, the bimodal structure is not
yet present. It is also worth noting that, for the case of FLI(x̂) the Birkhoff averaging introduces a clear improvement
by pushing the position of the sudden drop to zero of the false positive error to a lower number of turns.

The false negative error increases sharply at a turn number close to that corresponding to the abrupt decrease in the false
positive error. After this turn number, two behaviors are observed: In the first case, the error level is approximately
constant until it drops to a low value after n ≈ 107. This value is relatively close to that used to determine the GT,
which indicates a limited predictive power of the indicator. In the second case, the error level decreases almost linearly
as a function of n. This is the key to achieving good performance and is the feature shown by REM and GALI(4). It
should be noted that FMA also behaves in this way, i.e., with a linear decrease in the false positive error. However,
when the false negative error drops, a jump in the false positive error is observed. This error then shows a decrease that
is almost negligible up to nmax. These characteristics, related to the characteristics of the distribution of the FMA
values, prevent this indicator from reaching a good performance level.

As a last comment, these features are always present, but frequency modulation strongly enhances the errors.

5 Conclusions

In this paper, various numerical indicators to identify the chaotic character of orbits of Hamiltonian systems have
been presented and discussed in detail. The powerful Birkhoff averages were used to improve the convergence rate
of an indicator in the case of regular initial conditions. The goal of our analysis is to evaluate the performance of the
indicators in terms of accuracy in the binary classification of an orbit identified by its initial conditions, as regular or
chaotic. An important element in this assessment is whether the correct classification can be achieved by using the
information over a limited number of turns, i.e., whether an early chaos detection can be effectively performed, which
is equivalent to probing the predictive power of dynamic indicators.

The dynamical system that has been selected as a test bed for performance analyzes is a 4dHénon-like symplectic map,
with or without cubic nonlinearity and with or without frequency modulation. This choice is justified by the relevant
applications of this map to understand long-term stability problems in particle accelerators. Several configurations
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have been considered and, for each case, a ground truth classification has been determined with n = 108 iterations.
The various indicators have been used to provide an estimate of the classification performance with respect to ground
truth as a function of the number of turns used. The classification is based on the bimodal feature of the indicator
value distributions, which points out two clusters associated with regular and chaotic orbits. To define a classification
threshold, we use a KDE-based algorithm to determine the position of the distribution minimum between the two
modes.

A ranking of the performance of the various indicators has been established, with GALI(4) slightly outperform-
ing the other indicators in all the cases considered, immediately followed by REM . Then we find FLIWB and
MEGNO(LE). Modulation of the linear frequencies significantly reduces the predictive power of each indicator. It
should be noted that the identification errors of the various indicators are largely dominated by the wrong labeling of
the initial conditions as regular.

The conclusions drawn for the case of the 4d Hénon-like map are generic for a polynomial Hamiltonian system in a
neighborhood of elliptic fixed points. Hence, these results can be particularly useful for applications such as nonlinear
beam dynamics. The specific choice of an indicator to predict the chaotic character should take into account the
performance evaluated in our analysis, as well as the computational efforts needed to compute the various indicators.
In this sense, REM could be a very interesting candidate due to its good performance combined with computational
efficiency, which is particularly suitable for reducing the CPU time required for the numerical integration of complex
physical systems.

A Computational costs for evaluating the indicators of chaos

Evaluation of a dynamic indicator requires a variable amount of computational cost, which could affect the feasibility
and efficiency of specific implementations or favor the usage of specific dynamic indicators. Here, we focus our
considerations on the specific case of a discrete map with a known analytic expression for both the tangent and the
inverse maps.

For LE, FLI , and MEGNO(LE), the main computational effort consists of tracking the value of Ln(x), along the
orbit of x. This implies the additional memory requirement to store a matrix of size 2d × 2d and the execution of
matrix-matrix and matrix-vector multiplications at each iteration. It should be noted that an important feature of these
indicators is that their evaluation at a target iteration number n also provides their value for all lower iteration numbers.
This feature frees up additional computational costs for the analysis of the evolution of the dynamic indicator value
over time.

GALI(k) requires the evaluation of Ln(x) to calculate the normalized k images of ηj with 1 ≤ j ≤ k. A practical and
fast method for computing the norm of external products in Eq. (23) is given in [12], where it is proven that GALI(k)

is equal to the product of singular values zj , of A, where A is a 2d× k matrix that reads

A =




(
Ln(x)η1

‖Ln(x)η1‖

)
1
· · ·

(
Ln(x)ηk

‖Ln(x)ηk‖

)
1

...
...(

Ln(x)η1

‖Ln(x)η1‖

)
2d
· · ·

(
Ln(x)η1

‖Ln(x)η1‖

)
2d


 . (30)

The singular values of A can be obtained by applying the Singular Value Decomposition (SVD) method [60]. Note
that the evaluation of GALI(k) for a target iteration number n̄ also provides the values of ηj for all lower values of n.
However, for each n ≤ n̄ for which we wish to evaluate GALI(k), a specific SVD calculation is required.

For the reversibility error indicator BF , it is possible to use Eq. (17) to evaluate ΞBF
n (x) with the possibility of

exploring several realizations of ξ. This requires the evaluation, for each iteration, of L−1
n (x) or Ln(x), together with

the evaluation of the sum with a selected or a set of selected noise realizations. This can lead to higher memory
demands when several noise realizations or the time evolution of the indicator needs to be evaluated. Furthermore, its
evaluation at a target iteration number n̄ does not provide the values for n ≤ n̄, as each evaluation requires a different
summation and noise realization. If the map analyzed is symplectic, the corresponding invariant defined in Eq. (20)
can be used, resulting in a computational effort comparable to the evaluation of LE.

REM , conversely, involves very little computational effort, as it does not require the evaluation of Ln(x), but only the
execution of the orbit computation twice. This makes REM very attractive for applications in which no explicit or
analytical expression for the tangent map is available. However, the evaluation of REM for a target iteration number
n gives no information on its value for lower iteration values, as its evaluation requires separate backtracking each
time.
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Finally, for FMA, if the fundamental frequency is evaluated using FFT-based methods (see, e.g., [43, 41]), consid-
erable effort is required in terms of memory usage, due to the necessity of storing the entire orbit of M(x, n), then
perform the algorithm. This is not the case if the fundamental frequency is evaluated using the APA method (see,
e.g., [43, 41]), as the mean can be progressively evaluated without the need to store the entire orbit history.

Modern parallel computing architectures, such as those offered in General Purpose Graphics Processing Units (GP-
GPU) [61], follow the single-instruction, multiple-data (SIMD) architecture, that is, they execute the same operations
over large data allocations, using thread wraps of hundreds of processing cores.

To fully exploit the SIMD architecture, an algorithm must offer options for scaling up parallelization without strong
penalties in terms of memory management or branching.

Tracking multiple initial conditions in discrete-time maps is one of the most straightforward processes to implement in
a SIMD architecture, as it can be treated as a problem “embarrassingly parallel” [62], and multiple examples of GPGPU
applications can be observed, for example, in charged particle tracking in accelerator physics [63, 64, 65, 66, 67, 68].

The various indicators of chaos presented here offer, in general, a straightforward conversion to a SIMD approach,
since it is immediately possible to perform the tracking and the turn-after-turn dynamic indicator evaluation of several
initial conditions. This improvement alone enables mass processing of initial conditions for large values of the turn
number nmax, allowing various types of statistical analysis.

However, an exception is given by FMA when evaluated using FFT-based methods, as it requires one to keep track
in memory of the orbit of any initial condition and then perform numerical estimates of the fundamental frequencies.
Due to this requirement, scaling up the procedure to a large number of turns or a large number of initial conditions may
lead to memory limitations. To fully benefit from the SIMD architecture, we evaluated the fundamental frequency via
the APA method with Birkhoff weights, which does not require the storage of the entire orbit but only the weighted
mean phase advance, which can be progressively evaluated without high memory requirements.

A similar limitation is present in the BF reversibility error, since its direct evaluation, defined in Eq. (17), requires
maintaining track of the entire orbit when there is interest in evaluating different realizations of ξn. In contrast, REM
offers a straightforward GPGPU approach, since it only requires explicit forward and backward tracking, without the
need to evaluate the tangent map. We recall thatREM evaluates only the first invariant from a single noise realization,
obtained by exploiting the numerical roundoff.

B Time dependence of dynamic indicators

When considering a large amount of initial conditions to determine the properties of the corresponding orbits by
means of dynamic indicators, it is possible to obtain an accurate picture of the phase-space structures, such as regions
characterized by regular dynamics and regions where frequency modulation and nonlinearities induce chaotic behavior.
In Fig. 11, the seven chaos indicators computed for n = 105 are presented for a set of initial conditions that turned
out to be stable up to nmax = 108. All indicators highlight a region of regular motion close to the origin and chaotic
structures at higher amplitudes. Generally speaking, the various dynamic indicators reconstruct very similar shapes
for the regular and chaotic regions of the phase space, with the exception of FMA. Indeed, this indicator provides a
lot of structure even inside the region that is classified as regular by the other indicators, and in which the values of the
other indicators are to a high degree of accuracy constant. We inspect the distribution of values of the various dynamic
indicators, computed at a large number of turns. It is possible to observe the formation of bimodal or, as we shall see
for the case of FMA, three-modal distributions. In Fig. 12, the time evolution of the distribution of the indicator value
is shown. The red lines represent the threshold that we use to distinguish between regular and chaotic orbits, whose
definition was given in Section 4.3.

The indicators log10(LE)/n, FLI(x̂)/n, FLIWB(x̂), and MEGNO(LE)/n have a comparable behavior and glob-
ally tend to cluster regular orbits into an ensemble peaked at near-zero values, whereas chaotic orbits are part of another
cluster featuring a large spread of values, which correspond to indicator values that are orders of magnitude higher. To
achieve a valid overview of the value distribution, especially its tendency to create a bimodal distribution [55, 56], we
will consider the logarithm of these three indicators, i.e. log10(log10(LE)/n), log10(FLI(x̂)/n), log10(FLIWB(x̂)),
and log10(MEGNO(LE)/n).

By direct inspection of the color maps in Fig. 12, it can be seen how these four indicators generate bimodal distri-
butions, with the peak corresponding to regular orbits featuring a clear trend towards zero, and this trend appears
to be faster for log10(FLIWB(x̂)), and log10(MEGNO(LE)/n), due to the applied filters. log10(FLI(x̂)/n)
and log10(FLIWB(x̂)) feature an increasing spread of values corresponding to chaotic orbits, a clear trend of
the distribution of regular orbits toward zero. A similar trend is also observed in log10(log10(LE)/n) and
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Figure 11: Color maps of the various dynamic indicators for a modulated 4d Hénon map evaluated at n = 105. It can
be seen how the indicators globally highlight the same structures in phase space, with the exception of FMA, which
also shows structures related to resonances. Note that an arrow at the top of the color bar means that pixels of the top
color correspond to a value equal to or greater than the top value. White pixels correspond to initial conditions whose
distance from the origin has exceeded a predefined radius (rc = 102) during the tracking, before reaching the target
iteration number nmax = 108. (Simulation parameters: (ωx0, ωy0) = (0.28, 0.31), ε = 32.0, µ = 0.5).

log10(MEGNO(LE)/n), however, the current numerical implementation of LE suffers from numerical saturation
for chaotic orbits that exhibit exponential growth in the values of the tangent map. This results in a limitation for
the spread of values that can be observed for chaotic orbits at high numbers of turns, but, ultimately, the distinction
between clusters remains.

GALI(4) takes values in the interval [0, 1], corresponding to the range of values of the volume of the 4d paral-
lelotope, constructed by normalized orthonormal displacements. The unit value is associated with the initial or-
thonormal displacement, whereas zero implies an exact chaos-induced alignment of at least two displacement vectors
along the direction of the maximum Lyapunov exponent. Inspecting the indicator distribution in logarithmic scale,
i.e. log10(GALI(4)), highlights a bimodal distribution, where the peak corresponding to the ensemble of regular or-
bits moves towards small values of the indicator, following a power law distribution. Moreover, an ensemble of chaotic
orbits creates a tail distribution of values lower than the regular ensemble, thus creating a second, smaller-amplitude
peak in the indicator distribution. The presence of the logarithm when evaluating the distribution of GALI(4) gener-
ates a numerical artifact. Indeed, certain chaotic orbits feature a 4d volume, computed using the SVD method, that
reaches values below numerical precision, which are consequently registered as zero. We assign to these initial condi-
tions a value of 10−64, which represents a product of 4 singular values zj = ε ∼ 10−16 with extended precision. The
cluster of these special initial conditions generates yet another peak in the indicator distribution that is, nevertheless,
irrelevant in future considerations about the classification of orbits.

The dynamic indicator REM is also considered on a logarithmic scale to better appreciate its behavior. The measured
Euclidean distance for the case of regular orbits ranges from a few orders of magnitude higher than the numerical
precision ε ∼ 10−16 for small values of n. These indicator values increase with n following a power law (typically,
the peak reaches 105 for n = 105) due to the accumulation of the numerical error. Instead, for chaotic orbits, we
observe exponential growth that saturates to an almost constant value. This occurs since chaotic orbits belong to an
invariant bounded set of diameter D so that the saturation value is about ε−1D. Similarly to GALI(4), we inspect the
indicator in logarithmic scale, i.e. log10(REM).

FMA is based on the evaluation of the Euclidean distance in the frequency space of the fundamental frequencies
computed over different time intervals. If we inspect its distribution on logarithmic scale, we observe how the indic-
ator converges to a three-mode distribution. This configuration consists of an ensemble of initial conditions rapidly
converging to values close to numerical precision, an ensemble of initial conditions maintaining values above 10−5,
and a well-populated ensemble of initial conditions that connect these two ensembles (this distribution is also shown
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Figure 12: Distribution of values of the various dynamic indicators as a function of time for a modulated 4d Hénon
map. For low values of the iterations n, the distribution is in general represented by a uni-modal function. For
higher values of n, we can see the formation of either two separate clusters, making the distribution bi-modal, or
an individual cluster with a significant tail. log10(FMA) constitutes an exception, as it evolves forming a tri-modal
distribution (also shown in detail in Fig. 7, bottom). The red dashed lines represent threshold values, defined by our
algorithm, representing our criterion to distinguish regular and chaotic orbits. (simulation parameters: (ωx0, ωy0) =
(0.28, 0.31), ε = 32.0, µ = 0.5).

in Fig. 7, bottom). Inspecting the logarithm of the indicator, i.e. log10(FMA), allows to inspect the full spread of
values achieved by the various orbits.

References

[1] C. L. Siegel and J. Moser. Lectures in celestial mechanics. Berlin Springer Verlag, Berlin, Germany, 1971.
[2] N. Nekhoroshev. An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems. Russ.

Math. Surv., 32:1, 1977.
[3] A. Bazzani, G. Servizi, E. Todesco, and G. Turchetti. A normal form approach to the theory of nonlinear

betatronic motion. CERN Yellow Reports: Monographs. CERN, Geneva, 1994.
[4] H.E. Kandrup, C. Siopis, G. Contopoulos, and R. Dvorak. Diffusion and scaling in escapes from two-degrees-

of-freedom hamiltonian systems. Chaos, 9 2:381–392, 1999.
[5] J.D. Szezech, S.R. Lopes, and R.L. Viana. Finite-time lyapunov spectrum for chaotic orbits of non-integrable

hamiltonian systems. Phys. Lett. A, 335(5):394–401, 2005.
[6] Dmitry Turaev. Polynomial approximations of symplectic dynamics and richness of chaos in non-hyperbolic

area-preserving maps. Nonlinearity, 16(1):123, nov 2002.
[7] C. Froeschlé, R. Gonczi, and E. Lega. The fast Lyapunov indicator: a simple tool to detect weak chaos. Applic-

ation to the structure of the main asteroidal belt. Planetary and Space Science, 45(7):881–886, 1997. Asteroids,
Comets, Meteors 1996 - II.

[8] V.I. Arnol’d, V.V. Kozlov, and A.I. Neishtadt. Mathematical aspects of classical and celestial mechanics. Dy-
namical systems III; 3rd rev. version. Encyclopaedia of mathematical sciences. Springer, Heidelberg, 2006.

[9] G. Turchetti, F. Panichi, S. Sinigardi, and S. Vaienti. Errors, Correlations and Fidelity for noisy Hamilton flows.
Theory and numerical examples. Journal of Physics A: Mathematical and Theoretical, 50, 09 2015.

[10] Ch. Skokos, T. Bountis, Ch. Antonopoulos. Geometrical properties of local dynamics in Hamiltonian systems:
The Generalized Alignment Index (GALI) method. Physica D, 231:3054, 2007.

21



A PREPRINT - 18TH APRIL 2023

[11] Ch. Skokos and T. Manos. The Smaller (SALI) and the Generalized (GALI) Alignment Indices: Efficient Methods
of Chaos Detection. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

[12] C. Skokos, T. Bountis, and C. Antonopoulos. Detecting chaos, determining the dimensions of tori and predicting
slow diffusion in fermi–pasta–ulam lattices by the generalized alignment index method. The European Physical
Journal Special Topics, 165(1):5–14, Dec 2008.

[13] Suddhasattwa Das, Yoshitaka Saiki, Evelyn Sander, and James A Yorke. Quantitative quasiperiodicity. Nonlin-
earity, 30(11):4111–4140, oct 2017.
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