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Abstract: We analyze the constraints obtainable from present data using the Standard
Model Effective Field Theory (SMEFT) on extensions of the Standard Model with addi-
tional electroweak singlet or triplet scalar fields. We compare results obtained using only
contributions that are linear in dimension-6 operator coefficients with those obtained in-
cluding terms quadratic in these coefficients as well as contributions that are linear in
dimension-8 operator coefficients. We also implement theoretical constraints arising from
the stability of the electroweak vacuum and perturbative unitarity. Analyzing the models at
the dimension-8 level constrains scalar couplings that are not bounded at the dimension-6
level. The strongest experimental constraints on the singlet model are provided by Higgs
coupling measurements, whereas electroweak precision observables provide the strongest
constraints on the triplet model. In the singlet model the present di-Higgs constraints al-
ready play a significant role. We find that the current constraints on model parameters
are already competitive with those anticipated from future di- and tri-Higgs measurements.
We compare our results with calculations in the full model, exhibiting the improvements
when higher-order SMEFT terms are included. We also identify regions in parameter space
where the SMEFT approximation appears to break down. We find that the combination
of current constraints with the theoretical bounds still admits regions where the SMEFT
approach is not valid, particularly for lower scalar boson masses.
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1 Introduction

The Standard Model Effective Field Theory (SMEFT) [1] is a convenient tool for assessing
the sensitivities of present and future experimental measurements to possible extensions of
the Standard Model (SM) containing additional massive degrees of freedom that decouple
at low energies. In principle, the SMEFT offers a systematic framework for approximating
progressively the low-energy effects of such decoupled physics. In practice, many SMEFT
analyses include only dimension-6 operators (see, e.g., [2, 3]), often working to linear order
and hence to O(1/Λ2) in the new physics scale Λ (see, e.g., [4–11]), though sometimes
also considering some terms of quadratic order that are of O(1/Λ4) in the new physics
scale (see, e.g., [12–15]). However, working consistently to O(1/Λ4) requires in general
also including effects that are linear in dimension-8 operators. An understanding of the
relevance of dimension-8 effects is crucial for establishing the validity of the SMEFT as a
model-independent framework to search for new physics at collider experiments. This has
been made possible in a general sense with the determination of complete, non-redundant
dimension-8 operator bases in recent years [16, 17].

A complete treatment of all dimension-8 operators, even to linear order, is beyond our
current reach, but there are several ways to explore the possible importance of dimension-8
operators. Specific phenomenological studies have also been performed quantifying dimension-
8 effects in key processes and observables such as Higgs production and decay [18–20],
Electroweak precision observables (EWPOs) [21], neutral- and charged-current Drell Yan
processes [22–24], and diboson production [25, 26]. Alternatively, one may identify processes
to which there are no dimension-6 contributions, examples of which include light-by-light
scattering [27], gluon-gluon scattering to photon pairs [28] and Zγ [29], as well as triple
neutral-gauge-boson vertices [30–32]. Another possibility is to look at specific minimal ex-
tensions of the SM and assess the relative importances of linear dimension-6, quadratic
dimension-6 and linear dimension-8 effects in these models, which is the approach taken in
this paper.

We consider two minimal extensions of the SM that include massive scalar fields, either
an electroweak singlet S or a hypercharge-zero triplet Ξ, and compare the sensitivities to
the masses and couplings of these fields estimated using consistent truncations of SMEFT
effects to O(1/Λ2) and O(1/Λ4). In the former case, we include only the linear contributions
of dimension-6 operators due to their interferences with SM amplitudes, and in the second
case we include both the quadratic contributions of dimension-6 operators to experimental
rates and the linear (interference) contributions of dimension-8 operators. Such a top-down
approach provides complementary information about the SMEFT, where by knowing the
full result, we can quantify whether the expansion faithfully approximates the heavy new
physics model. Several works have studied dimension-8 effects in simple extensions of the
SM [21, 33–37] including for the two models we study in our paper. Our work continues
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in this vein, completing the associated tree-level matching at dimension-8 and providing
an in-depth exploration of the constraints on the parameter space and the validity of the
SMEFT approximation, making use of the fitmaker code [11] to combine information from
EWPOs, Higgs signal strengths, and di-Higgs production rates.

To set the scene for our analysis, in Section 2 we review the dimension-4, -6 and -8
Higgs operators that are relevant to our analysis (see Tables 1 and 2). We then analyze in
Section 3 how the SM expressions for observables such as the Higgs vacuum expectation
value (vev), the Higgs mass, Z and W couplings, and the Yukawa and trilinear and quartic
self-couplings of the Higgs boson are modified in the presence of non-zero coefficients for
the dimension-6 and -8 Higgs operators. The relevant experimental constraints, theoretical
predictions and their statistical interpretation are discussed in Section 4. Then, in Section 5
we derive the tree-level matching conditions for the relevant dimension-6 and -8 operator
coefficients in the two scalar field extensions of the SM that we consider.

As quantitative applications of these derivations, in Sections 6 and 7, we present a global
analysis of EWPOs, Higgs signal strengths and di-higgs rate measurements interpreted via
the dimension-8 SMEFT in the contexts of the singlet and triplet scalar extensions of the
SM. On one hand, these results allow us to quantify the impact of extending the analysis
to dimension-8, where we find that it brings sensitivity to new model parameters and leads
to a richer interplay between the data and model parameters. On the other, it also helps us
to uncover the regions in parameter space where the SMEFT expansion does not converge,
by comparison to calculations in the full model. For the singlet model, we also calculate
the possible magnitude of the quartic-Higgs coupling that could be generated, given the
prospective sensitivities of future measurements of double- and triple-Higgs production. As
an aside, we also quantify the impact of the recent W -mass measurement on the triplet
model parameter space, focusing on the dimension-8 effects and the EFT validity. Finally
in Section 8, we summarise and conclude.

2 Setting the Scene

Experiments have provided many precise verifications of predictions involving most of the
interactions in the SM Lagrangian. The SMEFT provides a systematic framework that is
suitable for formulating global analyses of extensions of the SM, such as the single scalar
field extensions that we discuss in this paper. In this Section we highlight briefly the SM
data sectors that are particularly relevant for probing these SM extensions.

The scalar field extensions that we consider generate SMEFT operators that involve
not only the Higgs field but also other SM fields that could modify processes other than
Higgs production. The relevant dimension-4 and -6 SMEFT operators are displayed in
Table 1, and those of dimension 8 are displayed in Table 2. We denote the high mass scale
of BSM physics by Λ, and denote the dimensionless Wilson coefficients of the operators Oi
by Ci.
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Dim - 4 OH4 (H†H)2

Dim - 6

H6 and H4D2

OH (H†H)3

OHD (H†DµH)∗(H†DµH)

OH� (H†H)�(H†H)

ψ2H3

OeH (H†H)(l̄perH)

OuH (H†H)(q̄purH̃)

OdH (H†H)(q̄pdrH)

Table 1: Dimension-4 and -6 Higgs operators relevant for our analysis (in the Warsaw
basis).

Dim - 8

H8, H6D2 and H4D4 (L̄R)(L̄R)H2 + h.c
OH8 (H†H)4 O(1)

lequH2 (l̄jper)εjk(q̄
k
sut)(H

†H)

O(1)
H6 (H†H)2(DµH

†DµH) O(2)
lequH2 (l̄jper)(σ

Iε)jk(q̄
k
sut)(H

†σIH)

O(2)
H6 (H†H)(H†σIH)(DµH

†σIDµH) O(1)
q2udH2 (q̄jpur)εjk(q̄

k
sdt)(H

†H)

O(1)
H4 (DµH

†DνH)(DνH†DµH) O(2)
q2udH2 (q̄jpur)(σ

Iε)jk(q̄
k
sdt)(H

†σIH)

O(3)
H4 (DµH

†DµH)(DνH
†DνH) O(3)

leqdH2 (l̄perH)(q̄sdtH)

ψ2H5 O(3)
l2e2H2 (l̄perH)(l̄setH)

OleH5 (H†H)2(l̄perH) O(5)
q2u2H2 (q̄purH̃)(q̄sutH̃)

OquH5 (H†H)2(q̄purH̃) O(5)
q2d2H2 (q̄pdrH)(q̄sutH)

OqdH5 (H†H)2(q̄pdrH)

ψ2H3D2 + h.c. (L̄L)(R̄R)H2

O(1)
leH3D2 (DµH

†DµH)(l̄perH) O(1)
l2e2H2 (l̄pγ

µlr)(ēsγµet)(H
†H)

O(2)
leH3D2 (DµH

†σIDµH)(l̄perσ
IH) O(2)

l2e2H2 (l̄pγ
µσI lr)(ēsγµet)(H

†σIH)

O(1)
quH3D2 (DµH

†DµH)(q̄purH) O(1)
q2u2H2 (q̄pγ

µqr)(ūsγµut)(H
†H)

O(2)
quH3D2 (DµH

†σIDµH)(q̄purσ
IH) O(2)

q2u2H2 (q̄pγ
µσIqr)(ūsγµut)(H

†σIH)

O(1)
qdH3D2 (DµH

†DµH)(q̄pdrH) O(1)
q2d2H2 (q̄pγ

µqr)(d̄sγµdt)(H
†H)

O(2)
qdH3D2 (DµH

†σIDµH)(q̄pdrσ
IH) O(2)

q2d2H2 (q̄pγ
µσIqr)(d̄sγµdt)(H

†σIH)

(L̄R)(R̄L)H2 + h.c.
O(1)
leqdH2 (l̄jper)(d̄sqtj)(H

†H) O(5)
lequH2 (l̄perH)(H̃†ūsqt)

O(2)
leqdH2 (l̄per)σ

I(d̄sqt)(H
†σIH) O(5)

q2u2H2 (q̄pdrH)(H̃†ūsqt)

Table 2: Dimension-8 Higgs operators relevant for our analysis.

– 4 –



2.1 Higgs Coupling Strengths

As we discuss in Section 6, the most relevant couplings for the singlet scalar extension of
the SM are those of the Higgs boson. The most important impact of this model is via
mixing of the singlet scalar with the SM Higgs field through a universal mixing angle α,
which has the effect of suppressing the couplings of the Higgs boson to other SM particles
by a universal factor cosα:

hSMHXX → cosα× hSMHXX . (2.1)

The ATLAS and CMS Collaborations have recently published legacy papers summarizing
their measurements of the couplings of the Higgs boson 10 years after its discovery [38,
39]. Analysing the constraints from these measurements in the SMEFT framework and
interpreting the results in the singlet model, we find an upper limit

sin2 α ≤ 0.114 . (2.2)

We use this bound in Section 6 in our analyses of the singlet scalar extension of the SM
at the dimension-6 and -8 levels, comparing these results to check the convergence of the
SMEFT expansion and towards an analysis of the full model.

2.2 Electroweak Precision Observables

As we discuss in Section 7, the most relevant SM sector for constraining the triplet scalar
extension of the SM is that of electroweak precision observables (EWPOs). These include
measurements of electroweak couplings at the Z peak as well as measurements of the W
mass. As is well known, the current status ofW mass measurements is somewhat unsettled.
Measurements from LEP and the LHC are consistent with the SM prediction, but a recent
measurement from the CDF Collaboration [40] is in significant disagreement with the SM.
A global dimension-6 SMEFT analysis [41] identified several single-field extensions of the
SM that could potentially alleviate this discrepancy, including the triplet scalar field that
we analyze here in Section 7. We also analyse this extension of the SM at the dimension-6
and -8 levels along with an analysis of the full model, considering two possibilities for the
W mass: the pre-CDF world average and the new CDF value [40].

2.3 Higgs Self-Interactions

In contrast to the two categories of observables summarized above, one category of SM
interactions that has not yet been constrained significantly is that of the self-interactions
of the Higgs boson [42]. These Higgs self-couplings, which include terms proportional to
hn in the Higgs potential as well as possible derivative interactions, could provide a deeper
understanding of the nature of the electroweak symmetry breaking (EWSB) mechanism.
They are relevant for the stability of the electroweak vacuum, and determine the shape
of the Higgs potential, which has implications for the nature of the electroweak phase
transition (EWPT) and baryogenesis [43], as well as the possible generation of a stochastic
background of gravitational waves (see, e.g., [44]). For all these reasons, probing the Higgs
self-couplings is one of the main objectives of current and future particle colliders.
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Within the SM, the Higgs cubic and quartic self-couplings are completely determined
by the Higgs boson mass mH ' 125 GeV and its vev, v ' 246 GeV:

Vself,SM =
m2
H

2v
h3 +

m2
H

8v2
h4 . (2.3)

However, physics beyond the Standard Model (BSM) may enter the Higgs sector and induce
deviations from the SM predictions for the cubic and quartic Higgs self-couplings, which
can be parametrized as:

Vself =
m2
H

2v
(1 + c3)h3 +

m2
H

8v2
(1 + d4)h4 , (2.4)

where c3 and d4 are model-dependent parameters. As we discuss in more detail below,
the BSM physics would, in general, modify the SM expressions for mH and v in terms of
underlying parameters in the Lagrangian, as well as the Higgs field normalisation. These
modifications are taken into account in specific models when calculating c3 and d4. Signif-
icant deviations from the SM predictions would provide indirect evidence that there exists
BSM physics that couples to the EWSB sector [45].

One of the outputs of our analyses of the SMEFT framework including dimension-6
and dimension-8 Higgs operators is to study how specific models of high-scale BSM physics
involving singlet and triplet scalar fields can induce deviations from the SM predictions for
the Higgs cubic and quartic self-couplings, and compare them with present and prospec-
tive experimental constraints on these couplings. Interestingly, we find that the present
experimental limit on di-Higgs production already plays a role in our analysis by exclud-
ing regions of parameter space where a second minimum of the likelihood appears in the
SMEFT analysis using single-Higgs data alone.

3 SMEFT contributions to experimental measurements

In this section we detail the calculations needed to determine the impact of the singlet
and triplet scalar extensions of the SM on EWPOs, Higgs signal strengths and di-Higgs
production. We do this in the SMEFT formalism up to operator dimension-8, calculating
the relevant shifts in couplings that lead to modifications of the observables of interest.
We do not present a complete calculation considering the effects of all possible dimension-8
operators, but rather focus on the following operators, which are those generated by the
scalar field models studied in this work:

Dimension-6 : OH�,OHD,OtH ,OH ; (3.1)

Dimension-8 : O(1)

H6 ,O(2)

H6 ,OquH5 ,OH8 . (3.2)

As shown later in Tables 3 and 4, all other operators involving light quarks that could
potentially affect the aforementioned observables are suppressed by at least one power of a
non-top quark Yukawa coupling. We neglect such Yukawa couplings, keeping only that of
the top quark, so only modifications to its coupling to the Higgs boson are relevant for our
purposes. The remaining operators of relevance only involve the Higgs field and the EW
gauge bosons via its covariant derivative.
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3.1 Input scheme

We extract the values of the SM input parameters in the {α,mZ , GF } scheme, including
effects from the operators of interest. These are the hypercharge and weak gauge couplings,
the Higgs vev and the Higgs quartic coupling, denoted by {g′2, g2, v2

T , λ}, respectively. As
reviewed in Appendix B, this corresponds to obtaining expressions for the input observables,
{αEM ,m2

Z , GF ,m
2
H} (where GF is extracted from the measurement of the muon decay

lifetime), in terms of the input parameters and the Wilson coefficients and inverting the
system to second order in Λ−2.

The Higgs potential receives corrections from the sextic and octic self-interaction terms:

VSMEFT = −µ2(H†H) + λ(H†H)2 − 1

Λ2
CH(H†H)3 − 1

Λ4
CH8(H†H)4 . (3.3)

Extremising with respect to (H†H) results in the minimisation condition

µ2 − λv2
T +

v4
T

Λ2

3CH
4

+
v6
T

Λ4

CH8

2
= 0 , (3.4)

which implies a correction to the vev with respect to the SM:

〈H†H〉 =
v2

2

(
1 +

v2

Λ2

3CH
4λ

+
v4

Λ4

9C2
H + 4λCH8

8λ2

)
+O

(
Λ−6

)
≡ v2

T

2
, (3.5)

where v2 ≡ µ2/λ is the expression for the Higgs vev in the SM and vT ' 246 GeV is the
physical value extracted from data, including the BSM effects. We then expand the Higgs
field around its vev as follows:

H =
1√
2

(
0

h+ vT

)
. (3.6)

The relevant effects for our purposes are the shifts in the W , Z and Higgs boson
mass terms. The latter two are direct input observables and the former affects the ex-
pression for the muon decay amplitude, which is used to define the Fermi constant, an-
other input quantity. None of the operators of interest affect the diagonalisation of the
EW gauge boson kinetic terms, which is affected by other operators such as OHWB =

(H†τ IH)W I
µνB

µν at dimension-6, and OWBH4

(1) = (H†H)(H†τ IH)W I
µνB

µν and OW2H4

(3) =

(H†τ IH)(H†τJH)W I
µνW

J,µν at dimension-8. This simplifies the exercise at hand, since
the compositions of the photon and Z-boson mass eigenstates in terms of the hypercharge
and neutral SU(2) fields are the same as in the SM, there is no induced shift of the fine
structure constant, and the Z-boson mass term is much simpler. We point interested readers
to Ref [46] for a treatment of these effects in a compact, geometric formalism.

Following EW symmetry breaking, the Z and W masses are given by

m2
Z =

(g2 + g′2)v2
T

4

[
1 +

v2
T

Λ2

(
CHD

2

)
+
v4
T

Λ4

(
C(1)

H6

4
+
C(2)

H6

4

)]
, (3.7)

m2
W =

g2v2
T

4

[
1 +

v4
T

Λ4

(
C(1)

H6

4
−
C(2)

H6

4

)]
=
g2v2

T

4

[
1 + ∆(8)mW

]
, (3.8)
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where the shifts in the latter, arising purely at dimension-8, feed into the muon decay
amplitude that defines the Fermi constant:

GF =
1√
2v2

T

[
1− v4

T

Λ4

(
C(1)

H6

4
−
C(2)

H6

4

)]
. (3.9)

The dynamical Higgs field receives corrections to its kinetic term, and requires canonical
normalisation by a field redefinition:

h→ h

[
1− 2

v2
T

Λ2

(
CH� −

CHD
4

)
+
v4
T

Λ4

(
C(1)

H6

4
+
C(2)

H6

4

)]− 1
2

,

≈ h (1 + ∆h) ≡ h
(

1 +
v2
T

Λ2
∆(6)

h +
v4
T

Λ4
∆(8)

h

)
,

(3.10)

∆(6)

h = CH� −
CHD

4
, ∆(8)

h =
1

2

(
3(∆(6)

h )2 −
C(1)

H6

4
−
C(2)

H6

4

)
, (3.11)

after which we can read off the Higgs mass, having additionally made use of Eq. (3.4) to
eliminate µ:

m2
H = 2λv2

T

[
1 +

v2
T

Λ2

(
2∆(6)

h −
3CH
2λ

)
+
v4
T

Λ4

(
4(∆(6)

h )2 − 3CH
λ

∆(6)

h −
C(1)

H6

4
−
C(1)

H6

4
− 3CH8

2λ

)]
.

(3.12)

We can now make use of Eqs. (3.7), (3.9), (3.12) and the fact that the fine structure constant
receives no corrections in our models to identify the various ∆(i)On shifts as in Eqs. (B.8)–
(B.11) and extract the derived SM parameters, gi = {g′2, g2, v2

T , λ}. We follow the notation
of [47], defining as follows the relative shifts in the parameters:

gi = ĝi

(
1 + δ(6)gi

v̂2

Λ2
+ δ(8)gi

v̂4

Λ4

)
, (3.13)

where the hat notation denotes the corresponding SM function of the input parameters, as
in Eq. (B.13). Since we are computing to dimension-8, we have to account for the explicit
dependence of the ∆(6)On on the derived parameters, including the v2

T
Λ2 factors that appear

throughout. The shifts in the derived parameters are found to be:

δ(6)v2
T = 0 ; δ(8)v2

T =
C(2)

H6

4
−
C(1)

H6

4
; (3.14)

δ(6)λ =
3CH

2λ̂
− 2CH� +

CHD
2

; δ(8)λ =
3CH8

2λ̂
+
C(1)

H6

2
; (3.15)

δ(6)g′ 2 =
s2
ŵ

c2ŵ

CHD
2

; δ(8)g′ 2 =
s2
ŵ

2c2ŵ

(
s2
ŵ(c2

ŵ + c2ŵ)

c2
2ŵ

C2
HD

2
+ C(2)

H6

)
; (3.16)

δ(6)g2 = − c
2
ŵ

c2ŵ

CHD
2

; δ(8)g2 =
c2
ŵ

2c2ŵ

(
c2
ŵ(c2ŵ − s2

ŵ)

c2
2ŵ

C2
HD

2
− C(2)

H6

)
. (3.17)
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These can be used to calculate the shift in the m2
W prediction, which includes both the

direct contribution from Eq. (3.8) and the indirect ones from the derived parameters:

m2
W =

ĝ2v̂2

4

(
1 + δ(6)m2

W

v̂2

Λ2
+ δ(8)m2

W

v̂4

Λ4

)
,

δ(6)m2
W = δ(6)g2 + δ(6)v2

T = δ(6)g2 ,

δ(8)m2
W = δ(6)g2δ(6)v2

T + δ(8)g2 + δ(8)v2
T + ∆(8)m2

W = δ(8)g2 ,

(3.18)

where in the second equalities we have used the fact that δ(6)v2
T = 0 and δ(8)v2

T = −∆(8)m2
W

in our case (cf. Eqs. (3.8) and (3.14)).

3.2 Z and W boson couplings

Since we can neglect direct contributions from two-fermion operators that are not relevant
for the extended scalar models considered here, only the indirect effects arising from the
derived parameters affect the weak boson couplings to fermions. The generic Z coupling to
a pair of fermions ψ of chirality χ is

GZ,ψ
χ =gZ

(
T χ3,ψ −Qψs

2
Z

)
,
[
TL3,ψ = T ψ3 , T

R
3,ψ = 0

]
, (3.19)

where Tχ3,ψ and Qψ denote the third component of hypercharge and electric charge, respec-
tively, and in the SM, gZ → ĝZ =

√
ĝ′ + ĝ2 and s2

Z → s2
ŵ. We note that, beyond dimension

6, s2
Z does not correspond to the corrected sine of the Weinberg angle, s2

w [21, 46]. However,
this is not relevant for our models, which do not induce direct corrections to the weak mix-
ing angle, in the sense that the Z, γ eigenvalues are the same as for the SM mass matrix.
Nevertheless, the input parameter shifts translate into corrections to the weak mixing angle,
which, in turn, affect the chiral couplings of the Z boson:

s2
w =

ĝ′ 2

ĝ2 + ĝ′ 2
+ δ(6)s2

w

v̂2

Λ2
+ δ(8)s2

w

v̂4

Λ4
;

δ(6)s2
w =− ĝ2ĝ′ 2

(ĝ2 + ĝ′ 2)2

(
δ(6)g2 − δ(6)g′ 2

)
=
s2
ŵc

2
ŵ

c2ŵ

CHD
2

;

δ(8)s2
w =− ĝ2ĝ′ 2

(ĝ2 + ĝ′ 2)2

(
δ(8)g2 − δ(8)g′ 2

)
− δ(6)s2

w

ĝ2 + ĝ′ 2
(
ĝ2δ(6)g2 + ĝ′ 2δ(6)g′ 2

)
=
s2
ŵc

2
ŵ

2c2ŵ

(
C(2)

H6 +
s2
ŵc

2
ŵ

c2ŵ

C2
HD

2

)
.

(3.20)

The corrections to the overall Z coupling prefactor, gZ , read:

gZ =
ĝ

cŵ

(
1 + δ(6)gZ

v̂2

Λ2
+ δ(8)gZ

v̂4

Λ4

)
,

δ(6)gZ =
1

2

1

ĝ2 + ĝ′ 2
(
ĝ2δ(6)g2 + ĝ′ 2δ(6)g′ 2

)
= −CHD

4
,

δ(8)gZ =
1

2

(
1

ĝ2 + ĝ′ 2
(
ĝ2δ(8)g2 + ĝ′ 2δ(8)g′ 2

)
− (δ(6)gZ)2

)
=

1

4

(
3C2

HD

8
− C(2)

H6

)
.

(3.21)
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The effective interaction term can be expressed as:

LZψ̄ψ = ĝZ ψ̄γ
µ(GZ,ψ

V −GZ,ψ
A γ5)ψ Zµ :

GZ,ψ
V =

1

2
(GZ,ψ

L +GZ,ψ
R ) =

gZ
ĝZ

(
Tψ3
2
−Qψs2

Z

)
; GZ,ψ

A =
1

2
(GZ,ψ

L −GZ,ψ
R ) =

gZ
ĝZ

Tψ3
2
.
(3.22)

Defining the shifts as the difference between the SMEFT coupling and its SM version, the
vector and axial-vector Z-boson couplings are corrected as follows:

δgψV,A =GZ
V,A −GZ,SM

V,A = δ(6)gψV,A
v̂2

Λ2
+ δ(8)gψV,A

v̂4

Λ4
,

δ(6)gψV =δ(6)gZ G
Z,SM
V −Qψδ

(6)s2
w ,

δ(8)gψV =δ(8)gZ G
Z,SM
V −Qψ(δ(8)s2

w + δ(6)gZδ
(6)s2

w) ,

δ(6,8)gψA =δ(6,8)gZ G
Z,SM
A .

(3.23)

On our scenario, the W boson only receives corrections to its couplings stemming from the
overall factor of the weak coupling, g. It therefore maintains its left-handed coupling struc-
ture, proportional to the CKM and PMNS matrices for the quarks and leptons, respectively,
i.e.:

LW±ψ̄′ψ =
ĝ√
2
ψ̄′γµ(G

W±,ψ
V −GW±,ψ

A γ5)ψW±µ ;

G
W±,ψ
V = G

W±,ψ
A =

g

ĝ

V

2
, V = VCKM or VPMNS.

(3.24)

The coupling corrections are therefore given by:

δg
W±,ψ
V,A =

V

2

(√
g

ĝ
− 1

)
≈ δ(6)g

W±,ψ
V,A

v̂2

Λ2
+ δ(8)g

W±,ψ
V,A

v̂4

Λ4
;

δ(6)g
W±,ψ
V,A =

1

4
δ(6)g2; δ(8)g

W±,ψ
V,A =

1

4

(
δ(8)g2 − 1

4
(δ(6)g2)2

)
.

(3.25)

The above coupling shifts, along with the W mass prediction, are sufficient to compute the
impact of our scalar extensions of the SM on the EWPOs. We note, in particular, that
they only depend on the custodial symmetry-violating operators, OHD and O(2)

H6 , which are
only generated in the triplet scalar model, as we show later. This reflects the fact that,
as is well known, this model receives strong constraints from EWPOs, whereas the singlet
model does not. The latter model is most strongly bounded by its modifications of Higgs
boson couplings, which we discuss in the next Subsection.

3.3 Higgs boson couplings

3.3.1 Yukawa couplings

The SM Yukawa interactions generally receive corrections from higher-dimensional opera-
tors of the form:

C
(n)
fH

Λn−4
(H†H)

n−4
2
(
HF̄Lfr

)
+ h.c. , (3.26)
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with n = 6, 8, . . . . The top quark Yukawa coupling is the only relevant interaction for our
purposes, and is modified by OtH and OquH5 . After EWSB, the top quark mass term is

Lmt =

(
−ytvT√

2
+ ∆mt

)
t̄LtR + h.c. , (3.27)

and the shift, ∆mt, can be absorbed by a redefinition of the Yukawa coupling, which then
defines the mass parameter,

y′t = yt −
√

2

vT
∆mt; mt =

y′tvT√
2
. (3.28)

The coupling to the Higgs boson generically receives different direct shifts, ∆yt, and can be
written in terms of the input parameter, mt,

Lht̄t =

(
− yt√

2
+ ∆yt

)
ht̄LtR + h.c. ,

=

(
−mt + ∆mt

vT
+ ∆yt

)
ht̄LtR + h.c. .

(3.29)

To dimension-8, the shifts are:

∆mt

vT
=
CtH

2
√

2

v2
T

Λ2
+
CquH5

4
√

2

v4
T

Λ4
, ∆yt =

3CtH

2
√

2

v2
T

Λ2
+

5CquH5

4
√

2

v4
T

Λ4
. (3.30)

Including also the Higgs field redefinition and the extraction of vT (cf, Eqs. (3.10) and (3.14))
gives the following top Yukawa shifts in terms of the input parameters:

Lht̄t '−
mt

v̂

(
1 + δ(6)yt

v̂2

Λ2
+ δ(8)yt

v̂4

Λ4

)
h t̄LtR + h.c. : (3.31)

δ(6)yt =− CtH
v̂√
2mt

+ ∆(6)

h −
1

2
δ(6)v2

T = CH� −
CHD

4
− CtH

v̂√
2mt

,

δ(8)yt =− CquH5

v̂√
2mt

+ ∆(8)

h −
1

2
δ(8)v2

T − CtH
v̂√
2mt

(
∆(6)

h + δ(6)v2
T

)
+

1

2
δ(6)v2

T

(
∆(6)

h +
3

4
δ(6)v2

T

)
= −CquH5

v̂√
2mt

−
C(2)

H6

4
+

3

2

(
CH� −

CHD
4

)(
CH� −

CHD
4
− CtH

√
2v̂

3mt

)
.

(3.32)

3.3.2 Gauge couplings

The SM-like gauge couplings of the Higgs come from the mass generation mechanism, i.e.
its kinetic term. The hV V couplings are therefore correlated with the particle masses,
and in the SM the two are proportional. The relevant operators have exactly two covari-
ant derivatives and a certain number of Higgs fields: D2H(d−2), where d is the operator
canonical dimension. In the SM, we have H2 ∝ (v + h)2, hence a factor of two between
the mass term and the Higgs couplings. At dimensions 6 & 8, however, these factors are
4 and 6, respectively. This means that, as with the top quark above, the effect cannot be
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fully absorbed into the definition of the gauge boson masses. Furthermore, it leads to an
increasing relative impact of the effective operators on the hV V coupling with respect to
the SM as the operator dimension increases.

As mentioned above, the operators in question do not affect the diagonalisation of the
neutral gauge sector, so the hZZ coupling is proportional to the Z mass eigenvalue of
Eq. (3.7), with an overall correction factor that accounts for the field redefinition for the
Higgs boson:

LhZZ =
(g2 + g′2)vT

4
(1 + ∆hZ)h(1 + ∆h)ZµZµ ,

∆hZ = CHD
v2
T

Λ2
+

3

4

(
C(1)

H6 + C(2)

H6

) v4
T

Λ4
.

(3.33)

Using Eqs. (3.7), (3.10) and (3.14) yields the coupling shifts in terms of the input parame-
ters:

LhZZ '
m2
Z

v̂

(
1 + δ(6)hZ

v̂2

Λ2
+ δ(8)hZ

v̂4

Λ4

)
hZµZµ , (3.34)

δ(6)hZ =
CHD

2
+ ∆(6)

h −
1

2
δ(6)v2

T = CH� +
CHD

4
,

δ(8)hZ =
1

2

(
C(1)

H6 +
C(2)

H6

2
+ 3C2

H� −
9

16
C2
HD −

1

2
CH�CHD

)
.

(3.35)

The analogous expression for the hWW coupling in terms of the inputs, accounting for the
fact that mW is not an input parameter, is:

LhWW =
g2vT

2
(1 + ∆hW ) (1 + ∆h) hWµ

+W
−
µ ,

∆hW =
3

4
(C(1)

H6 − C(2)

H6)
v4
T

Λ4
.

(3.36)

In terms of the input parameters, we have:

LhWW =
2m̂2

W

v̂

(
1 + δ(6)hW

v̂2

Λ2
+ δ(8)hW

v̂4

Λ4

)
hWµ

+W
−
µ ,

δ(6)hW =δ(6)m2
W + ∆(6)

h −
1

2
δ(6)v2

T = CH� −
(

1 +
2c2

ŵ

c2ŵ

)
CHD

4
,

δ(8)hW =
1

2

(
C(1)

H6 −
(

3

2
+
c2
ŵ

c2ŵ

)(
C(2)

H6 + CH�CHD
)

+ 3C2
H�

+

(
c2
ŵ

c3
2ŵ

(10c4
w − 8c2

w + 1) +
3

8

)
C2
HD

2

)
.

(3.37)

3.3.3 Di-Higgs production

The gluon-fusion Di-Higgs production rate can be obtained from the dimension-8 La-
grangian using existing results that employ a general EFT formalism. Inclusive and dif-
ferential production rates have been computed as a function of the following anomalous
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coupling Lagrangian [48, 49], which contains all relevant, derivative-free interactions that
can contribute to the gg → hh amplitude up to one loop:

Lgg→hh = −mttt̄

(
1 + ct

h

v̂
+ c2t

h2

v̂2

)
− c3

m2
H

2v̂
h3 +

g2
s

4π2

(
cg
h

v̂
+ c2g

h2

v̂2

)
GaµνG

aµν . (3.38)

In keeping with the rest of our assumptions, the only fermion-Higgs couplings we consider
are those of the top quark. Besides these, dipole operators ∼ t̄ TAσµνtG

µν
A can contribute

to di-Higgs production starting from dimension-6, and their contributions to gg → hh at
leading order are known. However, along with the gluon contact interactions, these are not
generated in our models so we can safely neglect them, as well as cg and c2g. A generic EFT
predicts in addition trilinear derivative interactions of the Higgs field ∼ h(∂h)2 that can
affect the process of interest, but are not present in Eq. (3.38). However, it turns out that
they can be removed by a suitable non-linear Higgs field redefinition, h → h + ah2, such
that their effect is moved into a redefinition of the above couplings, as well as higher-point
Higgs interactions that are not relevant for gg → hh 1. The appropriate field redefinition
up to dimension-8 is

h→ h+
h2

v

[(
CH� −

CHD
4

)
v2
T

Λ2
− 1

4

(
C(1)

H6 + C(2)

H6 − 12

(
CH� −

CHD
4

)2
)
v4
T

Λ4

]
. (3.39)

Defining the usual decomposition in terms of dimension-6 and -8 components

cx = 1 + δ(6)cx
v̂2

Λ2
+ δ(8)cx

v̂4

Λ4
, (3.40)

we find that:

δ(6)c3 =3

(
CH� −

CHD
4

)
− 2v̂2

m2
H

CH ,

δ(8)c3 =−
C(1)

H6

2
−

3C(2)

H6

4
− 4v̂2

m2
H

CH8 +
3

2

(
CH� −

CHD
4

)(
5

(
CH� −

CHD
4

)
− 4v̂2

m2
H

CH

)
,

(3.41)

where δ(6)ct and δ(8)ct can be identified with the top Yukawa coupling shifts δ(6)yt and δ(8)yt
from Eq. (3.29), and

c2t =c(6)

2t

v̂2

Λ2
+ c(8)

2t

v̂2

Λ2
,

c(6)

2t =− 3

2

CtH
ŷt

+ CH� −
CHD

4
, ŷt ≡

√
2m̂t

v̂
,

c(8)

2t =− 5

2

CquH5

ŷt
− 4

CtH
ŷt

(
CH� −

CHD
4

)
− 1

4

(
C(1)

H6 + C(2)

H6

)
+ 4

(
CH� −

CHD
4

)2

,

(3.42)

where we haved used the fact that δ(6)v2
T = 0 in our case. The dimension-6 parts are

consistent with previous results in the literature [48, 49].
1We note that this field redefinition does not respect the spontaneously broken SU(2) symmetry of the

SM. Nevertheless, it leads to an action that is equivalent for the leading-order predictions of interest to us.
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Beyond dimension-6, the possibility of contact terms involving higher derivatives of
Higgs fields also arises. For example, among the tt̄hh interactions there are terms like
tt̄(∂h)2 starting from dimension-8, and similarly for the gghh contact interaction. Such ef-
fects would induce genuinely new contributions to gg → hh, beyond the effective Lagrangian
of Eq. (3.38) that, to our knowledge, have not been calculated explicitly. This is particularly
relevant in our case, since our scalar models generate O(1)

quH3D2 = (DµH)†(DµH)
(
Q̄tH̃

)
+

h.c. and O(2)

quH3D2 = (DµH)†σa(DµH)
(
Q̄tσaH̃

)
+ h.c., which predict such an interaction

with top quarks proportional to |yt|. We note that their contribution should be straight-
forwardly calculable, since the effective vertex that they introduce has an identical spinor
structure to the SM Yukawa, apart from an additional dependence on the momenta of the
external Higgs bosons. Adding such an effective interaction term to the top quark part of
our effective Lagrangian,

Lhhtt = −mttt̄

(
1 + ct

h

v̂
+ c2t

h2

v̂2
+ c2t,∂

(∂h)2

v̂4

)
, (3.43)

one can check that the ratio of the tt̄hh Feynman rules induced by c2t,∂ and c2t is

Γ2t,∂

Γ2t
= −

c2t,∂

c2t

p3 · p4

v̂2
, (3.44)

where we label the momenta of the two external Higgs bosons by p3 and p4. The form
factors entering the gg → hh amplitudes should therefore be unchanged, and one should be
able to obtain the c2t,∂ contribution from that of c2t, simply rescaling by the above factor,
where p3 · p4 = s

2 −m
2
H . An explicit calculation of such a contribution is beyond the scope

of our current investigation, and we leave it for further work.
This neglect is justified in our study of the singlet and triplet scalar models for the

following reason. In both cases, the relevant Wilson coefficient C(1)

quH3D2 is proportional to
the trilinear coupling of the heavy scalar with a pair of Higgs bosons, κS or κΞ, for the
singlet and triplet, respectively. These are significantly constrained already at dimension-6
by Higgs signal strength measurements and EWPOs, respectively. Indeed, we find that the
impact of di-Higgs cross section measurements is limited to providing additional sensitivity
to other parameters of the scalar potential for the singlet, and is completely negligible in
the triplet case. Assuming that the inclusive di-Higgs rate is dominated by the threshold
region, where s ≈ 4m2

H → p3 · p4 ≈ m2
H , we can roughly estimate the contribution of c2t,∂

by shifting c2t → c2t − c2t,∂(m2
H/v̂

2). In parameter regions of the singlet model where an
interplay between single and di-Higgs data is observed, we found that this approximation
amounts to a 1–2% effect on the di-Higgs production rate. We therefore do not expect such
contributions to have significant impact on the results of the present study, although they
merit future investigation, since they should yield much larger effects in the high-energy
tails of gg → hh.

3.4 Quartic Higgs self-coupling

Further field redefinitions involving higher powers of h: h → h + bh3 + ch4 . . . can be
performed to remove successively higher-point, 2-derivative Higgs self-interactions in favour
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of even higher-point, derivative-free contact interactions, without affecting the lower-point
self-interactions. For example, in order to remove the 2-derivative, 4-point self-couplings
∼ h2(∂h)2, one can set

b =
1

v2
T

[
1

3

(
CH� −

CHD
4

)
v2
T

Λ2
−

(
C(1)

H6 + C(2)

H6

4
− 4

(
CH� −

CHD
4

)2
)
v4
T

Λ4

]
. (3.45)

In this basis, the corrections to the quartic Higgs self-coupling, d4, defined as:

L ⊃ −m
2
H

8v̂2

(
1 + d(6)

4

v̂2

Λ2
+ d(8)

4

v̂4

Λ4

)
h4 , (3.46)

are

d(6)

4 =
50

3

(
CH� −

CHD
4

)
− 12v̂2

m2
H

CH , (3.47)

d(8)

4 =− 5C(1)

H6 −
11C(2)

H6

2
− 32v̂2

m2
H

CH8 + 8

(
CH� −

CHD
4

)(
11

(
CH� −

CHD
4

)
− 9v̂2

m2
H

CH

)
.

(3.48)

However, at dimension-8 and beyond there are four-derivative self-interactions ∼ (∂h)4

that cannot be removed in this way. These would be relevant for triple-Higgs production at
colliders and are generated by operators like C(1)

H4 and C(3)

H4 . Such operators also contribute
to longitudinal vector boson scattering and their coefficients are bounded by recent LHC
measurements at the level of 2–4 TeV−4 [50]. Finally, they are also subject to positivity
bounds [51] arising from basic properties of the S-matrix, if one assumes a UV completion
that can be described by a QFT.

4 Experimental constraints

4.1 Input data

The coupling shifts induced by the set of operators considered can be constrained by the
measurements of EWPOs, Higgs boson signal strengths and multi-Higgs production pro-
cesses. We take these constraints into account via global fits to the underlying model
parameters using the fitmaker framework [11]. We make use of the EWPOs present in
the public version of the code, which include the pseudo-observables measured on the Z
resonance by LEP and SLD [52], together with a combination of pre-2022 W boson mass
measurements by CDF and D0 at the Tevatron and ATLAS at the LHC [53], which we
naively combine in a uncorrelated way with the recent LHCb measurement [54]: 2

{ΓZ , σ0
had., R

0
l , A

l
FB, Al, R

0
b , R

0
c , A

b
FB, A

c
FB, Ab, Ac,MW } . (4.1)

Additionally, we implement a private version of the fitmaker code that incorporates the
latest Higgs signal strength measurements by ATLAS [38, 55] and CMS [39, 56], taken from

2We discuss later some potential implications of the recent CDF measurement [40].
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the respective HEPData records. Finally, for di-Higgs production, we interpret recently pub-
lished upper bounds on the total production rate at the LHC as a measurement, assuming
that the SM value is observed and that the upper bound corresponds to a 95% Confidence
Level (C.L.) one-sided upper bound derived from a Gaussian PDF. The ATLAS and CMS
experiments quote upper bounds of 2.4 [57] and 3.4 [39] times the SM, from which we ex-
tract our approximate signal strengths and 1-σ uncertainties as µhhATLAS = 1 ± 0.907 and
µhhCMS = 1± 1.29.

4.2 Theoretical predictions

Our analysis is simplified by the fact that the operators of interest only lead to shifts of
SM couplings, rather than introducing new Lorentz structures. The predictions for the
EW precision observables in terms of the Z boson coupling shifts of Eq. (3.23) are derived
from known, tree-level expressions in terms of generic vector and axial-vector Z boson
couplings to leptons and quarks, assuming the narrow width approximation for the Z (see,
e.g., Ref. [58]), and expanding out to dimension 8.

For the Higgs boson signal strengths, we similarly assume the narrow-width approx-
imation, decomposing the rates into the production cross-section multiplied by the decay
branching fraction into a given final state. As already mentioned, in our restricted scenario,
gg → h and h → gg/γγ/γZ are only modified by top quark Yukawa coupling shifts (cf.
Eq. (3.32)). For Higgs production in association with a vector boson, we can account for the
modifications by combining the relative shifts of the Higgs coupling to the corresponding
gauge boson, and of its partial width to a given quark-anti-quark channel, which has the
same coupling dependence ∼ ((GqV )2 + (GqA)2)2 as the qq̄ → V h amplitude. For Zh produc-
tion, the contributions from coupling shifts of up and down quarks were weighted by the
relative importance of the uū and dd̄ initial states, computed using Madgraph5_aMC@NLO [59],
assuming the SM hypothesis and using the NNPDF3.1 PDF sets [60]. For Wh production,
this approach neglects the effect of the W mass shift. This should not have any impact
on the sensitivity of Higgs data, since that shift is strongly constrained by the EWPO
dataset. We perform a similar computation for Vector Boson Fusion (VBF) Higgs pro-
duction, which is complicated by the fact that the process is mediated by both W and
Z intermediate bosons. We approximate the modification of this process by splitting the
cross-section intoW - and Z-mediated parts, again using the integrated channel information
obtained with Madgraph5_aMC@NLO. The overall modification is then a weighted rescaling
according to the respective W and Z coupling shifts. This neglects the effect of couplings
shifts on the interference term between the two amplitudes. Furthermore, shifts of the
W mass and W/Z widths are also neglected. Finally, the tt̄h signal strength modifier is
obtained from the top quark Yukawa coupling shift.

Since we neglect all Yukawa couplings besides that of the top, the only other, tree-level
decay rates that we need to compute are those to four fermions via intermediate W and Z
bosons. For these modes, we assume that they proceed via one on-shell and one off-shell
state, i.e., h → W/Zf ′f̄ → 4f . We can therefore combine the rescalings of the relevant
Higgs-W/Z coupling and the fermionic coupling of the off shell-state, as we did for the
V h production processes. The shift of the W mass is taken into account via numerically
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determined dependences derived from the phase space integral for the 3-body decay quoted
in Ref. [61]. Finally, we multiply by the branching fraction correction to the relevant final
state for the on-shell W/Z to obtain the net correction. This approach neglects width
effects in the off-shell leg, as well as interference between crossed diagrams mediated by the
W and Z present in certain channels. Photon-mediated diagrams are also not taken into
account and, although they are generically present at tree level in the SMEFT, the relevant
operators are not generated by the models of interest to us, and are therefore not relevant
for our study.

Finally, the inclusive di-Higgs production rates are obtained as functions of the effective
couplings of Eq. (3.38). Specifically, we make use of the analytic parametrisation published
in Ref. [62], in the form of a quartic polynomial in the effective couplings. We expand this
polynomial in order to isolate the dimension-6 and -8 parts as functions of the parameters
in Eqs. (3.32), (3.41) and (3.42), truncating the remaining terms. We use predictions for the
inclusive signal strengths as inputs to the statistical analysis, neglecting the impact of the
models on the decay branching fractions that may differ for individual di-Higgs channels.
Branching fraction effects are confirmed to be sub-leading with respect to the total cross
section in the relevant regions of parameter space, given the relatively tight constraints on
the former from single-Higgs data.

4.3 Statistical interpretation

Combining the input measurements and the theoretical predictions, we construct a χ2

function:

χ2
(
~θ
)

=
(
~µobs. − ~µth.

(
~θ
))>
·V−1 ·

(
~µobs. − ~µth.

(
~θ
))
, (4.2)

which is used as the log-likelihood for the analysis. Here ~µobs. represents the experimentally-
determined values of the observables, V−1 is the associated inverse covariance matrix for
the dataset, and ~µth. denotes the theoretical predictions for the observables, as functions of
the parameters of interest, ~θ, which in our case are the model parameters appearing via the
Wilson coefficients of the SMEFT. We extract confidence intervals as regions of parameter
space where ∆χ2, defined with respect to the global minimum of the χ2 function, χ2

min., is
below a critical value, χ2

c , which depends on the number of degrees of freedom, np in the
model:

∆χ2
(
~θ
)
≡ χ2

(
~θ
)
− χ2

min. ≤ χ2
c ; χ2

c = 3.84, 5.99, . . . for np = 1, 2, . . . at 95% CL. (4.3)

We also define a profiled log-likelihood for particular parameters of interest as the resulting
χ2 function, having minimised over all other degrees of freedom. We use the same criteria
as above to determine the profiled confidence intervals.

5 Tree-level Matching

Having determined the impacts of the relevant Wilson coefficients on our observables of
interest up to dimension-8, the next step is to derive their values in the single-field extensions
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of the SM considered in this work. To this end, we match the model parameters to the
SMEFT coefficients at tree level, integrate out the scalar fields in a gauge-covariant way
using the Covariant Derivative Expansion (CDE) method [63–65] (see, e.g., [66, 67] for
more recent reviews and applications to the SMEFT). We briefly review the method before
applying it at tree level to our scalar extensions of the SM.

Consider a UV model with a heavy scalar field Φ of mass mΦ that we would like to
integrate out and match to the SMEFT at some high-energy scale, Λ. The action containing
Φ and its interactions with the SM fields ϕ is S[Φ, ϕ], so that the action describing the EFT
at Λ ∼ mΦ is given by:

eiSeff[ϕ] =

∫
DΦeiS[Φ,ϕ] , (5.1)

where Seff[ϕ] contains only the SM fields. The effective action can be computed in the
standard way by expanding Φ around its minimum, Φ = Φc+η, where Φc is determined by
solving the classical equation of motion. Expanding the action S[Φ, ϕ] around this minimum
and computing the integral gives [66]:

Seff[ϕ] ≈ S[Φc] +
i

2
Tr log

(
− δ

2S

δΦ2

∣∣∣
Φ=Φc

)
(5.2)

up to one-loop order. We focus here on the tree-level effective action, which corresponds to
the first term in the equation above, which is given by replacing Φ by the classical field Φc

in S[Φ, ϕ].
A tree-level contribution to the effective action arises only when the UV Lagrangian

L[Φ, ϕ] contains a term that is linear in the heavy field Φ [66]. Hence we consider a
Lagrangian

L[Φ, ϕ] ⊃ η[Φ†(−D2 −m2
Φ − U(x))Φ] + [Φ†B(x) + h.c.] +O(Φ3) (5.3)

for a UV model containing a real (η = 1/2) or complex (η = 1) scalar field, where B(x)

and U(x) are functions of the SM fields ϕ(x). The classical field, Φc, is found by solving
the corresponding equation of motion:

δL[Φ, ϕ]

δΦ
= 0 ⇒ (−D2 −m2

Φ − U(x))Φc = −B(x) +O(Φ2) . (5.4)

Taking the linear approximation yields the solution

Φ(1)
c ≈ −

1

P 2 −m2
Φ − U(x)

B(x) , (5.5)

where Pµ ≡ iDµ is the covariant derivative. Note, however, that mass scales other than
mΦ can also arise in the UV Lagrangian, i.e., within B(x) or in front of the Φ3 interaction
terms. Denoting a generic new physics mass scale by M , one can see that, in the absence
of tadpole terms for Φ, B(x) can be at most O(M) so that, in the linearised solution of
Eq. (5.4), Φ(1)

c is of order 1/M . Substituting Φ(1)
c back into Eq. (5.3) yields the tree-level

effective Lagrangian:

Leff,tree = −ηB†(x)
1

P 2 −m2
Φ − U(x)

B(x) +O
(
(Φ(1)

c )3
)
, (5.6)
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where the substitution should also be performed in terms with higher powers of Φ(1)
c , which

we have omitted here for brevity. One can then perform a CDE to obtain the local operators
that are generated by integrating out the heavy field:

1

P 2 −m2
Φ − U(x)

= −
[
1− 1

m2
Φ

(P 2 − U)

]−1 1

m2
Φ

=

= − 1

m2
Φ

− 1

m2
Φ

(P 2 − U)
1

m2
Φ

− 1

m2
Φ

(P 2 − U)
1

m2
Φ

(P 2 − U)
1

m2
Φ

− ... .
(5.7)

The factor 1/m2
Φ is the inverse of the mass-squared matrix, and may not commute with U ,

so one needs to be careful about the ordering when performing the CDE. It leads to the
following effective Lagrangian in the inverse mass expansion:

Leff,tree = η

(
B†

1

m2
Φ

B +B†
1

m2
Φ

(P 2 − U)
1

m2
Φ

B + ...

)
+O(Φ3

c) . (5.8)

As B and U depend only on the SM fields, the heavy field Φ has been integrated out and
the UV model can be matched to the local operators of a particular SMEFT basis, in which
the effects of the heavy field are encoded in terms scaled by inverse powers of Λ = mΦ.

It turns out that this level of approximation is sufficient to perform the tree-level
matching up to order 1/M2, i.e., dimension-6. This is not immediately obvious, since
potential subleading terms in the solution to the classical equation of motion of order
1/M2 or 1/M3 look like they might generate operators suppressed by 1/M2. Going beyond
the linearised solution relies on additional details of the model not specified in Eq. (5.3),
namely the nature of the self-interactions. If there are none, the linearised solution of
Eq. (5.5) is exact. If a cubic or quartic self-interaction is present, the equation of motion
will include a Φ2 or Φ3 term. A solution can be found iteratively, starting from Φ(1)

c , which
generates subleading terms of order 1/M3 or 1/M5 from the cubic and quartic interactions
respectively. This indicates that a higher-order solution to the classical equation of motion
is needed to obtain the correct matching conditions up to dimension-8, as has also been
shown to be the case for the 1-loop effective action at dimension-6 [68]. In Section 6 we go
through the tree-level exercise explicitly.

Performing calculations in the full UV theory will in general yield predictions that
are more accurate than those obtained using the SMEFT. However, we assume that their
difference can be neglected at the level of the current experimental precision [58]. The
accuracy of the SMEFT depends on the order of the inverse mass expansion in Leff,tree (5.8),
and keeping higher-order terms systematically increases the accuracy of the predictions.
The tree-level matching to dimension-6 has already been considered extensively in the
literature [66, 69–71]. However, the possibility of reaching a higher level of precision in
the SMEFT predictions provides motivation to perform the matching to include higher-
dimensional terms. This will allow us to quantify the validity of the EFT expansion given
the data at hand and more accurately reflect how it translates into bounds on the underlying
model parameters.

In the following Sections we perform the tree-level matching up to dimension-8 for the
singlet and triplet scalar extensions of the SM, deriving the coefficients of the dimension-6
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and -8 operators relevant for our analysis displayed in Tables 1 and 2. We have checked that
the coefficients resulting from matching to dimension-6 are consistent with those obtained in
Ref. [69]. We also perform a validation of a subset of the coefficients by explicit computation
of the hh→ hh scattering amplitude detailed in Appendix A as well as explicit computations
of the shifts to Higgs boson couplings and the W -boson mass prediction in the singlet and
triplet models, respectively.

6 Singlet scalar model

In this Section we consider the SM extended by a single real singlet scalar field S with
hypercharge YS = 0, performing the tree-level matching to the SMEFT up to dimension-8.
A subset of these matching calculations were performed in Ref. [33]. We do not consider one-
loop corrections to the tree-level dimension-6 matching, which have been considered in [68,
72], nor the associated constraints taking into account renormalisation-group evolution
effects [73].

The only possible interactions between S and the SM fields consistent with the SM
gauge symmetry group are the so-called portal interactions between S and a pair of SM
Higgs SU(2) doublets, H†H. Following the conventions of Ref. [69], the corresponding
model Lagrangian terms are:

Ls =
1

2
(DµS)(DµS)− 1

2
M2

SSS − (κs)SH
†H

− (λs)SSH
†H − κS3SSS − (κS4)SSSS ,

(6.1)

where we have included terms describing the triple and quartic self-interactions of the S,
and the S couplings have mass dimensions [κS] = [κS3 ] = 1 and [λS] = [κS4 ] = 0. In general,
a tadpole term linear in S is also permitted by the symmetries of the model. However, it can
be removed by shifting the S field by a constant and redefining the remaining parameters.
Since the field shift does not affect S-matrix elements, physical observables are unchanged
and the two theories are equivalent. We note, however, that in the above representation
the S-field generically obtains a vev and refer the reader to Appendix A for more details.

For future reference, we note that the following constraints must be satisfied in order
for the scalar potential to be bounded from below [74]:

λ, κS4 ≥ 0, |λS| ≥ −4
√
λκS4 . (6.2)

Furthermore, the following constraints can be derived by imposing partial-wave unitarity
of the 2→ 2 bosonic scattering matrix [73]:

|λ| ≤ 8π

3
, |λS| ≤ 4π, |κS4 | ≤

2π

3
. (6.3)

Moreover, the scalar potential generally admits several minima as well as the EW minimum.
We therefore ensure that, for a given point in parameter space, the EW minimum is the
global minimum, which we do by a numerical procedure informed by the discussions in
Refs. [74, 75].
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As the Lagrangian contains an interaction term that is linear in S, there are tree-level
contributions to the effective action. We evaluate these using the CDE method described
in the previous Section. Writing Eq. (6.1) in a form similar to Eq. (5.3):

Ls =
1

2
S(−D2 −M2

S − U)S − SB − κS3SSS − (κS4)SSSS , (6.4)

we have
U = 2(λs)H

†H and B = (κs)H
†H . (6.5)

The equation of motion may be written as:

∆−1S = B + 3(κS3)SS + 4(κS4)SSS , (6.6)

where we have defined the inverse propagator

∆−1 ≡ −D2 −M2
S − U . (6.7)

As discussed in Section 5, to linear order the solution is

S(1)
c = ∆B +O

(
M−3

)
, (6.8)

where M denotes a generic UV mass parameter in the set {MS, κS, κS3}. The higher-order
solution needed to obtain the matching through dimension-8 can be found iteratively from
Eq. (6.8), and is given by

Sc = ∆

[
B + 3κS3 (∆B)2 + 18κ2

S3 ∆
[
(∆B)2

]
∆B + 4κS4 (∆B)3

]
+O

(
M−6

)
, (6.9)

which introduces a dependence on the heavy scalar self-interactions. The square brackets
emphasise that the differential operator ∆ is acting on the entire expression within. The
first additional term is O

(
M−3

)
while the second and third are O

(
M−5

)
. Performing an

inverse mass expansion for Sc and plugging it back in (6.1), we find the following tree-level
effective Lagrangian up to dimension-8:

L(8)
eff.,tree,S =

1

2M2
S

BB +
1

2M4
S

B(P 2 − U)B +
1

2M6
S

B(P 2 − U)(P 2 − U)B +
κS3

M6
S

BBB

+
3κS3

M8
S

BB(P 2 − U)B − κS4

M8
S

BBBB +
9κ2

S3

2M10
S

BBBB +O
(
M−5

)
.

(6.10)

The last term comes from the higher-order solution in Eq. (6.9). Evaluating each term in
Eq. (6.10) and using the SM Higgs equation of motion:

D2H = µ2H − 2λ(H†H)H − y†e(ēl)− yuεik(q̄ku)− y†d(d̄q) (6.11)

to remove higher-order covariant derivatives in order to match the Warsaw basis [1, 2] of
dimension-6 operators and the dimension-8 basis of Ref. [16] yields the Wilson coefficients
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reported in Table 3. Since our basis reduction only involves eliminating dimension-8 oper-
ators, we can safely use the SM equation of motion of Eq. (6.11) to this order, which is not
the case for the triplet model considered in the next Section.

Besides operators of dimension-6 and beyond, integrating out the S field also gener-
ates a dimension-4 (H†H)2 term that shifts the coupling of the quartic potential term,
λ. This effect can be absorbed in the definition of λ after integrating out the heavy field,
and is therefore unobservable. However, if λ appears in the matching at dimension-6, the
redefinition will induce a shift of the matching in terms of the new λ at dimension-8. This
does not occur for the singlet model, but does for the triplet model. In the expressions
for the dimension-6 Wilson coefficients of Table 3, we have retained higher-order terms,
suppressed by µ2/M2

S with respect to the leading contributions, that arise from the appli-
cation of the Higgs equation of motion, Eq. (5.4). The dimensionful parameter, µ2, lowers
the effective dimension of an operator by two units, generating dimension-6 operators from
dimension-8 ones involving D2H. These pieces are genuine dimension-8 contributions and
form a part of the complete O(1/M4) corrections induced by integrating out the S field.
Extending the analysis to dimension-8 therefore involves not only calculating the coefficients
of the dimension-8 operators but also corrections to the matching conditions for those of
dimension-6. In an analysis truncated up to O(1/Λ2), one would not typically include these
terms, however the possibility of including these types of partial higher-order corrections has
been previously considered as part of the so-called “v-improved matching” procedure [76].

In Appendix A, we validate our results obtained using the CDE by calculating the
matched SMEFT amplitude for hh → hh scattering and comparing it with that of the
full theory, expanded to O(1/M4). The EFT reproduces the full theory to dimension-8
only when the higher-order solution to the equation of motion is used and the dimension-8
corrections to the dimension-6 coefficients are taken into account. Modulo the additional
contribution from the higher-order equation of motion, our results agree with a matching
calculation of Higgs operators up to dimension-8 reported in Ref. [33].

Using these results, we can evaluate the dimension-6 and -8 contributions to the nor-
malization of the physical Higgs field (3.10) in the singlet scalar extension of the SM:

∆h = −κ
2
S v̂

2

2M4
S

[
1− 1

M2
S

(3m2
H − λS v̂2)− 3κS v̂

2

4M4
S

(κS + 2κS3)

]
≈ −κ

2
S v̂

2

2M4
S

(
1− 3m2

H

M2
S

− 3κ2
S v̂

2

4M4
S

)
,

(6.12)

and the trilinear and quadrilinear Higgs self-couplings (3.41), (3.47):

c3 =
κ2
S v̂

2

M4
S

[
− 3

2
+

v̂2

m2
H

(
2λS −

2κSκS3

M2
S

)
+

v̂2

M2
S

(
− 3m2

H

v̂2
+ 2λS

(
5− 4λS v̂

2

m2
H

)
− 3κSκS3

M2
S

(
5− 8λS v̂

2

m2
H

)
+

κ2
S

M2
S

(
15

8
− v̂2

m2
H

(
3λS − 4κS4 +

3κS3

M2
S

(6κS3 − κS)

))]
≈ − 3κ2

S v̂
2

2M4
S

(
1 +

2m2
H

M2
S

− 5κ2
S v̂

2

4M4
S

)
,

(6.13)
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Dim - 6
CH − κ2

S

M2
S

(
λS

(
1− 4µ2

M2
S

)
− κSκS3

M2
S

(
1− 6µ2

M2
S

))
CH� − κ2

S

2M2
S

(
1− 4µ2

M2
S

)

Dim - 8

CH8
κ2
S

M2
S

(
2(λS − 2λ)2 − 6κSκS3

M2
S

(λS − 2λ) +
κ2
S

M2
S

(9κ2

S3

2M2
S
− κS4

))
C

(1)
H6

2κ2
S

M2
S

(
2(λS − 2λ)− 3κSκS3

M2
S

)
C

(3)
H4

2κ2
S

M2
S

[ClψH5/CqψH5 ]wx −[yψ]wx
κ2
S

M2
S

(
2(λS − 2λ)− 3κSκS3

M2
S

)
; ψ = u, d, e

[C
(1)
l2ψ2H2/C

(1)
q2ψ2H2 ]wxyz −[yψ]wz[y

†
ψ]yx

κ2
S

4M2
S
; ψ = u, d, e

[C
(2)
l2e2H2/C

(2)
q2d2H2 ]wxyz −[yψ]wz[y

†
ψ]yx

κ2
S

4M2
S
; ψ = d, e

[C
(2)
q2u2H2 ]wxyz [yu]wz[y

†
u]yx

κ2
S

4M2
S

[C
(3)
l2ψ2H2/C

(5)
q2ψ2H2 ]wxyz [yψ]wx[yψ]yz

κ2
S

2M2
S
; ψ = u, d, e

[C
(1)
lequH2 ]wxyz −[ye]wx[yu]yz

κ2
S

2M2
S

[C
(1)
leqdH2 ]wxyz [ye]wx[y

†
d]yz

κ2
S

2M2
S

[C
(1)
q2udH2 ]wxyz [yu]wx[yd]yz

κ2
S

2M2
S

[C
(2)
lequH2 ]wxyz −[ye]wx[yu]yz

κ2
S

2M2
S

[C
(2)
leqdH2 ]wxyz [ye]wx[y

†
d]yz

κ2
S

2M2
S

[C
(2)
q2udH2 ]wxyz −[yu]wx[yd]yz

κ2
S

2M2
S

[C
(5)
lequH2 ]wxyz [ye]wx[y

†
u]yz

κ2
S

M2
S

[C
(3)
leqdH2 ]wxyz [ye]wx[yd]yz

κ2
S

M2
S

[C
(5)
q2udH2 ]wxyz [yd]wx[y

†
u]yz

κ2
S

M2
S

[C
(1)
lψH3D2/C

(1)
qψH3D2 ]wx −[yψ]wx

2κ2
S

M2
S
; ψ = u, d, e

Table 3: Dimension-6 and -8 Wilson coefficients resulting from the tree-level matching
of the singlet scalar model to the SMEFT. Flavour indices are denoted by Roman letters
{w, x, y, z}. The parameters µ2 and λ are the quadratic and quartic coefficients of the Higgs
potential at the EW scale, respectively

d4 =
κ2
S v̂

2

M4
S

[
− 25

3
+

12v̂2

m2
H

(
λS −

κSκS3

M2
S

)
+

v̂2

M2
S

(
− 82m2

H

3v̂2
+ 4λS

(
21− 16λS v̂

2

m2
H

)
− 6κSκS3

M2
S

(
21− 32λS v̂

2

m2
H

)
+

κ2
S

M2
S

(
22− 4v̂2

m2
H

(
9λS − 8κS4 +

3κS3

M2
S

(12κS3 − 3κS)

))]
≈ − κ2

S v̂
2

M4
S

(
25

3
+

82m2
H

3M2
S

− 22κ2
S v̂

2

M4
S

)
,

(6.14)
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In each of the above equations, the final line, indicated by “≈”, corresponds to the case
where all the couplings except κS are assumed to be negligible.

6.1 Constraints on Model Parameters

We see in Table 3 that the only dimension-6 operator coefficients that receive contributions
in the singlet scalar model are CH and CH�. The former can only be constrained by a
measurement of the Higgs self-coupling via, e.g., di-Higgs production, while the latter is
relatively much better constrained via Higgs signal strength measurements. To quantify this
sensitvity from the Higgs datasets, we find at the individual, linear dimension-6 level, that
the coefficients are constrained at 95% Confidence Level (CL) to lie within the following
ranges:

CH� ⊂ [−1.22,−0.055] and CH ⊂ [−3.82, 3.82]

[
TeV−2

]
. (6.15)

This highlights the hierarchy in sensitivity between single and double Higgs production as
well as a preference for negative CH� emerging from the most recent Higgs signal strength
data: the variance-weighted average of all of the Higgs signal strengths input into the fit is
slightly below 1. Since all of the Higgs couplings are shifted proportional to CH� through
the Higgs field redefinition of Eq. (3.10), this is best explained by a negative CH�. The
symmetric limits in CH are an artefact of our assumption that the SM rate was observed
when translating the upper limits into quasi signal strengths for the purposes of our analysis.
Although CH is less well constrained, unlike CH� that only depends on κS, it also depends
on two additional parameters of the scalar potential, namely λS and κS3 . More than that,
it actually requires the presence of at least one of these additional parameters in order to be
generated. We therefore expect di-Higgs data to provide crucial information in pinning down
the singlet model parameters beyond what is possible with only single Higgs measurements.

At dimension-8, a much larger set of Wilson coefficients are generated that could poten-
tially affect a wider class of scattering processes. Focusing first on Higgs-related processes,
the dimension-8 matching yields operators that modify the Yukawa couplings, e.g., OqψH5

as well as O(1)

H6 , an operator similar to OH� that modifies the Higgs boson kinetic term.
A new feature with respect to the dimension-6 matching is that these Wilson coefficients
introduce a dependence of single Higgs data on λS and κS3 . We therefore expect this next
order in the SMEFT expansion to contribute non-trivially and lead to a richer structure of
the bounds on the parameter space.

The octic Higgs operator OH8 is also generated, and introduces for the first time a
dependence on the singlet quartic self-coupling κS4 . This could eventually be probed by
future measurements of triple Higgs production. The remainder of the operators generated
involve four fermion fields and are not relevant for the datasets included in our study,
particularly since we neglect light-quark Yukawa couplings, thereby suppressing all light-
quark operators in this model. The only exceptions are the class of two-derivative Yukawa-
like operators, e.g., O(1)

qψH3D2 , which we have previously discussed in Section 3.3.3, arguing
that their contribution to inclusive di-Higgs production is expected to be suppressed.
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Moving now to fits in the singlet model parameter space, we begin by examining the
dependence on the trilinear SH†H coupling, κS. Since it is linear in the heavy field, this
coupling is essential for generating non-zero tree-level Wilson coefficients, as can be seen
from Table 3, where all coefficients are proportional to κ2

S/M
2
S . In general, the results in

Table 3 are almost completely independent of the sign of κS. The only exception is in
terms proportional to κ3

SκS3 that also involve the singlet self-coupling. The entire set of
results up to dimension-8 are invariant under the simultaneous sign flips, κS → −κS and
κS3 → −κS3 . In our subsequent analysis, we therefore only show half of the accessible
parameter space, represented by κS. In cases where both κS and κS3 are probed, it should
be understood that constraints on the other half of the parameter space can be inferred
from the aforementioned symmetry.

Since the dimension-6 contribution to CH� is negative definite in this model, the single
Higgs data translate into non-zero best-fit values for κS. The constraints in the simplest
case, where only this parameter is assumed to be non-zero, are shown in the left plot of
Fig. 1. In the upper panel, the 95% CL allowed regions for |κS|/MS are shown in green for

1 2 3 4 5
MS [TeV]

0.8
1D8

D6
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i
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Figure 1: (Left plot) The range of |κS|/MS allowed as a function of MS by the current
experimental data. The green shaded area represents the allowed interval at 95% Confi-
dence Level from a dimension-6 analysis including only linear (interference) effects, and
the purple shaded area is from an analysis including also linear dimension-8 contributions
and quadratic dimension-6 contributions. The best fit value is represented by the correspond-
ingly coloured dashed line. The subplot shows the ratio of the dimension-8 and dimension-6
determinations of the upper bounds and best fit points in solid and dashed, respectively.
(Right plot) ∆χ2 as a function of |κS|/MS for MS = 2 TeV. The green (purple) lines in-
dicate the results of a dimension-6 (dimension-8) analysis, while the dashed lines show the
result of excluding the di-Higgs cross-section measurements from the dataset.

the linear dimension-6 analysis, and the dimension-8 counterpart is shown in purple. When
considering only κS at dimension-6, there is a one-to-one mapping between κS/MS and CH�,
so one can reconstruct the expected bounds at dimension-6 by translating the observed
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interval on CH� from Eq. (6.15) into a bound on the Higgs field-redefinition parameter ∆h,
given for our special case in the last line of Eq. (6.12).

The relative impact of including dimension-8 effects is shown in the lower panel, which
plots the ratio of the dimension-8 and dimension-6 determinations of the upper bound as well
as the best-fit point. As expected, the dimension-8 effects are found to be most important
at low masses around and below 1 TeV. Below 500 GeV, they lead to a tighter constraint
on κS. Interestingly, the dimension-8 bound asymptotes to a constant value slightly above
1, which can be understood as due to the relatively large values of |κS|/MS being probed
in that region. As shown in Eq. (6.12), at dimension-8 ∆h receives corrections of order
v̂2/M2

S and v̂2κ2
S/M

4
S , and the latter contribution comes to dominate as κS/MS → MS/v̂.

Fortunately, the upper bounds obtained are relatively far from that limit, remaining within
κS/MS < 1

2MS/v̂. Nevertheless, from the presence of this term one can show that the
asymptotic ratio of the dimension-8 and -6 upper bounds is expected to be 6= 1 in the
large-MS limit, with an exact value that depends on the sensitivity of the Higgs data.

In general, including O(Λ−4) effects can lead to the appearance of additional minima
in the χ2 function. One can immediately see from the expression for ∆h that this will
occur for some large κS value, around where the quantity flips sign. The right plot of Fig. 1
highlights the appearance of such a second minimum in the ∆χ2 forMS = 2 TeV. The green
and purple lines plot the quantity for the dimension-6 and -8 hypotheses respectively. We
also show the impact of the di-Higgs measurements by plotting the ∆χ2 with and without
these data as solid and dashed lines, respectively. On the one hand, this confirms that
current di-Higgs data have no impact in determining the primary allowed region in this
simplified scenario where only κS is switched on. On the other hand, we see that taking
Higgs data alone would lead to the appearance of a second allowed region in the dimension-8
analysis, at large κS values. The di-Higgs data bring sufficient additional information to lift
that second minimum and exclude the associated region of κS, strengthening the validity
of our EFT analysis.

So far, we have assumed that the other singlet scalar couplings, namely the second
Higgs portal coupling λS and the two singlet self-couplings, κS3 and κS4 , all vanish. As
we have discussed, the interplay between single Higgs and di-Higgs data at dimension-6
and dimension-8 is expected to become more interesting as this assumption is relaxed. We
begin by looking at 2-dimensional subspaces, switching on one additional parameter at a
time alongside κS. Due to the fact that the quartic singlet self-coupling, κS4 appears only in
di-Higgs rates and at dimension-8, we find that the data included in our analysis is almost
insensitive to its value. We will therefore focus on λS and κS3 , only varying κS4 in the last
analysis in which we derive profiled bounds on κS.

In Fig. 2 we analyze the constraints on |κS| and λS for MS = 1 TeV and κS3 = κS4 = 0

at the 68% CL (dashed lines) and 95% CL (solid lines), due to Higgs coupling strengths
(upper panels) and also including double-Higgs production (lower panels). In all the panels
we shade in grey the region with λS < 0, which is excluded because there the effective
scalar potential is unbounded from below when κS4 = 0, see Eq. (6.2). We also shade in
red the region where the EW vacuum is not the global minimum of the scalar potential,
denoted for simplicity by the legend “(v, vs) unstable”, though we have not checked whether
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the electroweak vacuum is truly unstable or merely metastable.
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Figure 2: Values of (|κS|/MS, λS) for MS = 1 TeV and κS3 = κS4 = 0 that are allowed at
the 68% CL (dashed lines) and 95% CL (solid lines) by the present Higgs coupling measure-
ments (upper panels) and also including the present constraint in double-Higgs production
(lower panels), as functions of |κS|/MS including only the linear effects of dimension-6 op-
erators (left panels) and including both the quadratic effects of dimension-6 operators and
the linear effects of dimension-8 operators (right panels). The grey shaded regions with
λS < 0 are excluded because the potential is unbounded below, and the blue shaded regions
in the upper part of the lower left panel, i.e., in the linear dimension-6 case, and at large
|κS|/MS in the lower right panel highlight regions where the di-Higgs cross section becomes
negative in that approximation.

We see in the upper left panel of Fig. 2 that in the linear approximation for dimension-
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6 operators the constraint on |κS| due to Higgs coupling strengths is independent of λS,
whereas this constraint on |κS| depends strongly on λS when the quadratic effects of
dimension-6 operators and the linear effects of dimension-8 operators are also included
(upper right panel). On the other hand, we see in the lower left panel of Fig. 2 that the di-
Higgs data also introduce a dependence on λS into the constraint on |κS| even in the linear
dimension-6 approximation, which is accentuated when the quadratic effects of dimension-
6 operators and the linear effects of dimension-8 operators are also included (lower right
panel). We note also in the lower left panel the appearance of a blue shaded region at large
|κS| and positive λS that we disregard in the linear dimension-6 approximation because the
di-Higgs cross section becomes negative in this approximation 3. However, the positivity of
the di-Higgs cross section is much less of an issue when the quadratic effects of dimension-6
operators and the linear effects of dimension-8 operators are also included, as seen in the
lower right panel where the problematic region lies far away from the allowed parameter
space.

Overall, we see that the ‘complete’ analysis including both single and di-Higgs at
dimension-8 yields the strongest constraints, and that they also overlap the least with
the unphysical regions of parameter space. The inclusion of dimension-8 and di-Higgs in-
formation drastically affects the conclusions that can be drawn about the singlet model
compared to the dimension-6 interpretation. In particular, they allow for potentially larger
values of κS, due to the possibility of cancellations with λS.

Fig. 3 shows how the constraints on |κS|/MS as functions of λS vary with MS, again
for κS3 = κS4 = 0. The constraints found at the linear dimension-6 level are shown as
dashed lines and those including quadratic dimension-6 contributions and linear dimension-8
contributions by solid lines. The allowed regions found including only Higgs signal strengths
are shaded green and those found including di-Higgs constraints are shaded purple. The
region shaded grey is excluded by partial-wave unitarity constraints on the Higgs self-
coupling parameter λ: λ ≤ 8π/3, see Eq. (6.3) and Appendix A. As in Fig. 2, the region
where the electroweak vacuum is not stable is shaded red. We note in all the panels
of Fig. 3 significant differences between the regions allowed at the linear dimension-6 and
quadratic dimension-6/linear dimension-8 levels, and concentrate below on the latter, which
are shaded and have solid boundaries.

Comparing the green and purple shaded regions in Fig. 3, we see that they are very
similar forMS = 500 GeV, and are unaffected by the perturbativity and electroweak vacuum
stability constraints. The di-Higgs data serve to rule out the tip of the cancellation region.
There is a greater difference between the green and purple regions whenM = 1 TeV (upper
right panel of Fig. 3), but most of the (green) region that would have been allowed if the
di-Higgs data were neglected is excluded by the electroweak vacuum stability requirement.
Starting from this mass, a significant portion of the boundary of the ‘complete’ analysis for
this mass now overlaps with the theory bounds. As expected, the sensitivity to |κS|/MS

degrades with increasingMS. We can see that the di-Higgs data rule out a second minimum

3This region overlaps extensively with the region where the electroweak vacuum is not the lowest-energy
state, and the region where both conditions apply is shaded dark blue.
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Figure 3: Values of (|κS|/MS, λS) for the indicated values of MS and κS3 = κS4 = 0

that are allowed at the 68% CL (dashed lines) and 95% CL (solid lines) by the present
Higgs coupling measurements (green shading) and also including the present constraint in
double-Higgs production (purple shading) as functions of |κS|/MS including only the linear
effects of dimension-6 operators (dashed lines) and including both the quadratic effects of
dimension-6 operators and the linear effects of dimension-8 operators (solid lines). The
grey shaded regions at large |κS|/MS are excluded by the perturbative unitarity constraint
λ ≤ 8π/3, and the electroweak vacuum is not stable in regions at large |κS|/MS that are
shaded red.

in the |κS|/MS direction for all values of λS where it exists, except for the MS = 500 GeV
case, where some values of λS still allow it.

Finally we note the trend that, at dimension-8, the inclusion of di-Higgs data has an
increasing impact as MS increases. This can be explained by going back to the matching
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results of Table 3. At dimension-6, the λS dependence only enters though di-Higgs data and
the relative importance of including these constraints is independent of MS, which can be
seen by observing the similarity between the dashed purple and green curves in each panel.
The impact of di-Higgs constraints is only significant for large values of λS > 1. Going
to dimension-8 introduces a linear λS dependence in single Higgs rates, while the di-Higgs
dependence can be quadratic, from contributions to C2

H ∼ κ4
Sλ

2
S and CH8 ∼ κ2

Sλ
2
S. At lower

masses, the bounds on κS, λS from single-Higgs data are strong enough that the enhanced
quadratic dependence does not play a big role. Increasing MS yields larger possible values
in this space, allowing for the quadratic λS dependence from di-Higgs to dominate in certain
regions, leading to the significant differences in the bounds.

Fig. 4 shows a corresponding analysis of the Higgs constraints on |κS|/MS as functions
of κS3/MS, now assuming λS = κS4 = 0. Since κS3 is a dimensionful coupling, we choose to
scale it with MS in the same way as we did for κS. The upper and lower bounds in κS3/MS

are chosen at the arbitrary, large value of ±5. Since it is a trilinear coupling, it is subject
to neither stability nor perturbative unitarity bounds derived in the high-energy limit 4.

As in Fig. 2, we see the impact of the constraints on λ from vacuum stability and per-
turbativity (grey shading) and electroweak stability (red shading). We also note in the lower
left panel that large |κS|/MS and negative κS3/MS are disallowed in the linear dimension-6
case because the di-Higgs cross section becomes negative in this approximation (blue shad-
ing). As in the case of λS, the constraint on |κS|/MS from Higgs data is independent of κS3

in the linear dimension-6 approximation (upper left panel), but strongly dependent on κS3

when the quadratic effects of dimension-6 operators and the linear effects of dimension-8
operators are also included (upper right panel). As in Fig. 2, the double-Higgs constraint
introduces κS3 dependence into the constraint on |κS|/MS, which is accentuated when the
quadratic effects of dimension-6 operators and the linear effects of dimension-8 operators
are also included (lower panels). Narrow regions exist in which the effects of both pa-
rameters approximately cancel, leading to much larger potentially allowed values of |κS| or
large, positive values of κS3 . These regions start to overlap with the theoretically forbidden
regions due to EW vacuum stability and perturbative unitarity, respectively.

Fig. 5 illustrates how the features seen in Fig. 4 vary as functions of MS. We see in
Fig. 4 how the cancellation region in the single Higgs data gradually shifts downward in
the (|κS|/MS, κS3/MS) plane with increasing MS, where it also overlaps more and more
with the region in which the EW vacuum is not the global minimum. Furthermore, the
absolute impact of the di-Higgs constraint is minor in the upper panels of Fig. 5, but more
important in the lower panels, for the same reasons as discussed before involving λS, i.e.
a quadratic dependence of di-Higgs rates on κS3 at dimension-8 that becomes increasingly
relevant as larger values are allowed by single-Higgs data. Altogether, this results in the
di-Higgs data being able to rule out a larger and larger part of the cancellation region asMS

increases. Both cases reflect interesting examples of regions in model space where quadratic

4It is, in general, possible to use partial-wave unitarity to bound trilinear couplings [77–79] by avoiding
the high-energy limit. Since the associated bounds are more involved and depend on the full details of the
parameter space, for simplicity we do not include them in our study, although it would be interesting to
determine their impact in future work.
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Figure 4: Values of (|κS|/MS, κS3/MS) for MS = 1 TeV and λS = κS4 = 0 that are allowed
at the 68% CL (dashed lines) and 95% CL (solid lines) by the present Higgs coupling mea-
surements (upper panels) and also including the present constraint in double-Higgs produc-
tion (lower panels) as functions of |κS|/MS including only the linear effects of dimension-6
operators (left panels) and including both the quadratic effects of dimension-6 operators and
the linear effects of dimension-8 operators (right panels). The grey shaded regions are ex-
cluded because λ is nonperturbative. The di-Higgs cross section is negative in the blue region
in the lower left panel.

dimension-6 effects are dominant over their linear dimension-8 counterparts.

Finally, we consider a more general scenario where all of the singlet scalar parameters
are allowed to vary. Since κS is the crucial parameter without which no tree-level effects
would be predicted, we consider the impact of varying the three other parameters on the
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Figure 5: Values of (|κS|/MS, κS3/MS) for the indicated values of MS and λS = κS4 = 0

allowed at the at the linear dimension-6 level (dashed lines) and including quadratic
dimension-6 contributions and linear dimension-8 contributions (solid lines), taking into
account Higgs coupling measurements (green shading) and also including also the present
constraint on double-Higgs production (purple shading). As previously, the grey regions are
excluded by perturbativity constraints on λS, and the red regions are excluded by requiring
the stability of the electroweak vacuum.

derived bounds on κS. From a statistical point of view, such a bound can be seen as a more
robust limit, which is independent of the remaining details of the extended scalar potential.
As we have demonstrated in this Section, there is a significant interplay between the exper-
imental and theoretical bounds on the parameter space. In particular, the relevance of the
theoretical bounds increases as one increases MS. We therefore also include the constraints
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from boundedness, perturbativity, and the requirement that the EW vacuum be the global
one. Specifically, for a given MS we evaluate the full likelihood as a function of the other
parameters and derive a profiled likelihood that depends only on κS, where χ2 has been
minimised over all other directions, subject to the theoretical constraints.

Fig. 6 shows the resulting 95 % CL profiled bounds on |κ̂S|/MS as functions of MS,
where the hat notation denotes our use of a profile likelihood in the remaining parame-
ter space. Dimension-6 intervals are shaded in green, while those determined including
linear dimension-8/quadratic dimension-6 predictions are shaded in purple. The regions
are bounded by solid lines labelled “vS unconstrained” for reasons that will be explained
shortly. The subplot shows the ratio of the dimension-8 and dimension-6 bounds. The first
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Figure 6: Profiled 95 % confidence level bounds on κS/MS as functions of MS at the linear
dimension-6 level (solid green lines & shaded area) and including quadratic dimension-
6 and linear dimension-8 contributions (solid purple lines & shaded area). The bounds
are obtained by minimising the ∆χ2 over all other singlet model parameters, subject to
theoretical constraints from boundedness, perturbativity and stability of the EW vaccuum.
The dashed lines reflect the upper bound obtained when enforcing the additional constrain
that vS ≤MS.

observation to make is that the profiled bounds obtained at dimension-6 level are identical
to the individual ones reported in Fig. 1. This can be understood from the fact that in this
approximation, for a given value of κS, the maximum likelihood point is the one in which
all other parameters are 0. This can be seen in, e.g., Figs. 2 and 4, where the dimension-6
bound on κS is maximal when the accompanying parameter is exactly 0, and only tight-
ens for non-zero values. Physically, this is because CH is the most relevant coefficient for
di-Higgs constraints, since it induces significant deviations in this process while being un-
constrained by single-Higgs rates. However, as previously mentioned, this operator is only
switched on when at least one of λS, κS3 are non-zero, and we have already shown that
di-Higgs bounds are not relevant in determining the primary allowed region when the other
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couplings are assumed to be 0. Hence, one is always in the least-constrained case when
only switching on κS by itself. The theoretical bounds are not found to play any role in the
profiling, as this minimally-constrained point is not subject to any of them.

The story is much changed at the dimension-8 level, since the parametric dependence
of the observables is richer than that we have discussed so far. We begin by noting the
significant changes in the profiled bounds in this approximation, showing a much greater
impact than for the individual case of Fig. 1. The upper bound is increased by nearly a factor
8 at low masses, going down to a factor of around 3 at large masses. Taken at face value,
these results imply that the seemingly robust conclusions that one can draw about κS at the
dimension-6 level are subject to large uncertainties from missing higher orders in the EFT
expansion. One could have guessed that the impact would be large from the appearance of
cancellation regions in the various figures shown previously in this Section. Additionally,
the lack of sensitivity to κS4 from the data has an impact by allowing a wider theoretically-
viable range for a given set of the other parameters. We find that, without the inclusion
of the theoretical bounds, we are not able to find a profiled upper bound on κS. In other
words, using constraints from the data alone leaves flat directions that are only closed by the
theoretical consistency requirements. Even though extreme parameter values are required in
the aforementioned cancellation regions in order to cancel the potentially large effects from
extreme κS values, there is always some narrow space in which the theory constraints can
be satisfied. In many cases this appeared to be quite a fine-tuned region where κS4 . 10−3,
clearly on the edge of the boundary of the theoretically-allowed parameter space. The true
bounds were consequently difficult to determine numerically and our results were obtained
using scipy’s built-in differential evolution algorithm. Since this is a gradient-free sampling
method, there is no absolute guarantee that the upper bounds obtained correspond to the
true global minimum of the profile-likelihood. Nevertheless, the smoothness of our result
as a function of MS gives us some confidence that we have successfully minimised.

We found that the majority of the space in which the cancellations were achieved for
extreme parameter values also corresponded to regions of large singlet vev, vS. As discussed
in Appendix A, the singlet field minimisation condition is a cubic equation in vS that can
admit additional real solutions far from the origin. When present, these often provide
the global minimum of the scalar potential, see Eq. (A.8). In this limit the correction to
the Higgs self-coupling parameter in Eq. (A.12) becomes independent of κS, scaling like
λ2
S/κS4 , making it more likely to satisfy perturbative unitarity, even for very large κS,

especially since κS4 is essentially unconstrained by our analysis. However, one of the main
assumptions of the EFT expansion is that vS is a suppressed quantity with respect to the
EW scale ∼ v2κS/M

2
S , see Eq. (A.9). The vS solutions far from the origin therefore cannot

be approximated by an expansion in the heavy mass scale, 1/M , which would select the
incorrect vS in these cases. The EFT expansion and therefore our experimental bounds are
likely to be invalid in these regions of model space. In these regions of parameter space, the
physical singlet mass receives significant contributions from EW symmetry breaking, and
is consequently quite different from MS. In these scenarios, it is known that the SMEFT
expansion may not converge and a HEFT expansion is more appropriate [33, 80–82].

In order to assess the amount of invalid parameter space, we performed a second con-
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strained profiling, with the additional requirement that |vS| ≤MS. The upper bounds on κ̂S
determined in this case are plotted with dashed lines in Fig. 6. They show that an increas-
ingly large portion of the parameter space seemingly allowed at dimension-8 above MS ≈ 1

TeV corresponds to cases where vS > MS. Even in the dimension-6 analysis, a small slice
of the upper region above MS ≈ 4 TeV is not likely to be well approximated by the EFT.
Nevertheless, interpreting this constraint as an attempt to restrict the parameter space to
regions in which we can rely on the EFT approximation, we can still draw significantly
different conclusions between the dimension-6 and -8 analyses. The observed upper bound
at dimension-8 is significantly modified, and coincides with that obtained at dimension-6
around MS = 3.5 TeV. We therefore conclude that the dimension-8 contributions represent
important corrections in the singlet model interpretation of LHC Higgs data in the SMEFT
framework, even for MS . 1 TeV, as seen in Fig. 6.

6.2 Comparison between the Dimension-6 and -8 Results and the Full Model

Since the goal of going to higher orders in the SMEFT expansion is to provide a better
approximation to the full model, it is instructive to compare dimension-6 and -8 SMEFT
predictions with those of the full model. We use the mixing angle, α, between the sin-
glet field and the neutral component of the Higgs doublet (See Appendix A for a precise
definition) as a proxy for testing the SMEFT approximation 5. It is well known that the
signal strengths for single Higgs production and decay scale like cos2 α. Since mixing with a
gauge-singlet field results in a universal reduction of Higgs couplings, as long as the singlet
mass is greater than half of the Higgs mass (so that the decay channel to a pair of singlets
is kinematically closed) the branching fractions of the Higgs-like scalar remain the same as
in the SM. This means that, in the narrow width approximation, all modifications to the
signal strengths come from the modification of the Higgs production rates, and hence scale
with the square of the global coupling modifier, cosα. As shown in Section 3.3, the coupling
modifications to fermions and gauge bosons predicted by the SMEFT depend on a number
of different Wilson coefficients. The fact that these all coincide with the Taylor-expanded
expression for cosα in the limit of large MS, κS and κS3 :

cosα ≈ 1− κ2
Sv

2

M4
S

(
1

2
− (2λSv

2 −m2
H)

M2
S

− 3κSv
2(κS − 8κS3)

8M4
S

)
, (6.16)

provides an additional validation of our matching results up to dimension-8.
Fig. 7 compares the SMEFT predictions for this global signal strength modifier with

the true values predicted by the full model. Isocontours of a critical value of the mixing
angle, sin2 α = 0.114 are shown for a selected values of the singlet mass parameter, MS.
This critical value corresponds to the maximum value allowed by the Higgs data, i.e., the
value that the mixing angle takes along the 95% C.L. contour of allowed parameter values

5It would also be interesting to use a comparison of di-Higgs production rates to assess further the
SMEFT approximation to the full model, since this process probes higher energies than single Higgs mea-
surements and may also have significant resonant contributions from on-shell scalar production. However,
a complete calculation of the di-Higgs rate in the singlet model parameter space is beyond the scope of this
work and we leave it for future investigations.
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in Figs. 2–5. The upper panels plot the contours in (κS/MS, λS) plane with κS3 , κS4 = 0

for MS = 500 GeV, 1 and 2 TeV, and the lower panels show the corresponding contours in
the (κS/MS, κS3/MS) plane taking λS, κS4 = 0. In each panel the dimension-6 predictions
are shown as green lines, the dimension-8 predictions as purple lines, and the full model
predictions are shown as grey lines. Dashed lines indicate isocontours of cos2 α = 1.114,
where the coupling modifier is shifted by the same amount from the SM value of 1, but
in the wrong direction, reflecting an increase in Higgs couplings. Such a coupling shift is
unphysical from the point of view of Higgs-singlet mixing, which can only reduce Higgs
boson couplings, and is therefore labelled ‘wrong sign’. As in the previous Figures, the EW
vacuum is unstable in the regions shaded red, and the Higgs quartic coupling, λ, becomes
nonperturbative in the regions shaded grey in the lower panels.
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Figure 7: Isocontours of the Higgs-singlet mixing parameter sin2 α = 0.114 in the singlet
scalar extension of the SM obtained at the dimension-6 (green line) and -8 (purple line)
levels compared with those predicted in the full model (grey line), for MS = 500 GeV,
1 and 2 TeV. The upper panels show the prediction in the (κS/MS, λS) plane, assuming
κS3 , κS4 = 0, while the lower panels show the prediction in the (κS/MS, κS3/MS) plane,
assuming λS, κS4 = 0. Dashed lines indicate regions where the Higgs couplings are modified
by an equal magnitude but with the wrong sign (see text for details).

Fig. 7 shows how the independence of the dimension-6 prediction for the mixing angle
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on λS and κS3 is a bad representation of the full model prediction, and how the dimension-8
approximation brings in a dependence on both of these parameters. In the upper panels
the dimension-6 prediction as a function of λS diverges from the full model constraint
by amounts that increase with λS but decrease as MS increases. On the other hand the
dimension-8 prediction is a better approximation to the full model for almost all the allowed
range of λS for MS & 1 TeV.

For each mass, we can see where the dimension-8 effects start to dominate and even-
tually diverge away from the full model prediction, indicating a lack of convergence of the
SMEFT expansion. When MS = 500 GeV the dimension-8 constraint on λS is closer to the
full constraint at small λS, but is a worse approximation than the dimension-6 constraint
already for λS & 0.5. In the lower panels we see that the dimension-8 approximation to
the full model as a function of κS3/MS is better than the dimension-6 constraint for all
positive values, but is worse than the dimension-6 approximation for negative values when
MS . 1 TeV. In general, the agreement between dimension-8 and the full model spans a
wider range of λS and κS3 with increasingMS. Furthermore, the parts of the contours where
the SMEFT convergence fails get pushed further into theoretically forbidden regions with
increasing MS, and by MS = 2 TeV the SMEFT at dimension-8 approximates the Higgs
couplings quite well. In each panel, we can recognise the shapes of the constraints shown
in Figs. 2–5, with the cancellation regions lying in between the solid and dashed contours
at dimension-8.

In order to quantify further the comparison between dimension-6 and -8 predictions
for the Higgs-singlet mixing angle, we can compare the differences over the parameter
space between the EFT approximations at the two expansion orders from the full model.
Specifically we take the absolute value of ratio of the differences between the two EFT
approximations and the full model prediction for cos2 α:

δ =

∣∣∣∣(cos2 α)D8 − (cos2 α)full

(cos2 α)D6 − (cos2 α)full

∣∣∣∣ . (6.17)

If this quantity is less than 1, dimension-8 provides a better approximation to the full
model than dimension-6, while if it is greater than one, the converse is true, which indicates
a non-converging SMEFT expansion. Fig. 8 plots isocontours of the critical value of 1 for
this ratio for values of MS between 500 GeV and 3 TeV in the (κS/MS, λS) plane, assuming
κS3 , κS4 = 0 (left panel) and the (κS/MS, κS3/MS) plane, assuming λS, κS4 = 0 (right
panel). The parameter plane for each mass is subject to the theoretical constraints from
perturbativity and stability depicted, e.g., in Figs. 2–5. When a given line crosses into the
forbidden region, it is drawn with a dotted style. Points marked with a cross indicate that
the line has reached a point where no solution for vS exists in the full model, i.e. the EW
vacuum does not exist.

In the regions labelled by “> 1”, the dimension-8 prediction is further from the full
model than the dimension-6 one, meaning that the SMEFT expansion appears to break
down and we likely cannot trust SMEFT approximations for Higgs coupling modifiers. The
lines tend to lie between the normal and “wrong-sign” dimension-8 predictions in Fig. 7.
For each MS, we can draw similar conclusions to those drawn from Fig. 7 in that, beyond

– 37 –



0 2 4 6 8
| S|
MS

0

2

4

6

8

10

12

S

> 1< 1

>1<1

>
1<

1

>
1<
1

cos2 , S3 = S4 = 0

0 2 4 6 8
| S|
MS

4

2

0

2

4

S3

|MS| > 1< 1

>
1<
1 > 1<1

> 1< 1

> 1< 1

cos2 , S = S4 = 0
MS = 500 GeV
MS = 1 TeV
MS = 1.5 TeV
MS = 2 TeV

MS = 3 TeV
|D8 full
D6 full | = 1

Forbidden
No vS
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(κS/MS, κS3/MS) plane, assuming λS, κS4 = 0. The dotted parts of the lines are excluded
by theoretical constraints and the crosses indicate points beyond which no solution for vS
exists in the full model.

a certain value of λS, the EFT validity is in question for a given value of κS. We note that
the validity criterion is trumped by the theoretical bounds forMS above 1.5 TeV, where the
lines are completely within the forbidden regions. The 3 TeV line in the left panel is outside
the plotted range, and in any case is rendered irrelevant by theoretical bounds. We can
now understand how the constraints we have derived do not accurately reflect the bounds
on the singlet model over the whole parameter planes, highlighting, for each MS, where the
SMEFT approximation fails.

6.3 Modifications of the quartic Higgs coupling

We conclude our study of the singlet model by commenting briefly on the prospects for test-
ing modifications to the quartic self-interaction of the Higgs boson, d4, given in Eq. (6.14).
Although a rather distant prospect, studies have show that this coupling could be con-
strained in the future by measuring triple Higgs production at a 100 TeV proton-proton
collider [42, 83–87] or a high-energy muon collider [88], or by precision measurements of
double-Higgs production at through the loop-induced modifications due to d4 [89–93]. The
projected sensitivities differ in optimism and also depend on the value of the trilinear Higgs
self-coupling, c3. They typically lie in the ballpark of |d4| . 2-20 at hadron colliders while
more promising O(1) sensitivities are expected at high-energy muon colliders.

To explore the scope for modified quartic Higgs interactions given the existing con-
straints on this model, we consider a simplified ‘post-LHC’ scenario that represents the
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projected constraint set by the input dataset at that time on possible triple-Higgs rate
measurements at future colliders. We assume that the current Higgs signal strengths are
already systematics-dominated (which is true in many cases) and keep them fixed to their
current values. Di-Higgs measurements are, however, expected to improve significantly over
the period of future LHC data taking. The ATLAS experiment has published a projected
high-luminosity LHC sensitivity to the total rate based on extrapolations from their re-
cent Run 2 analysis [94]. Assuming a ‘baseline’ scenario for the evolution of systematic
uncertainties, the signal strength is expected to be measured with a relative uncertainty
of -31% and +34%, which represents about a factor 3 improvement over the current mea-
surement. We use this estimated measurement as our projected input data for the di-Higgs
measurement, along with a corresponding projection for the CMS experiment obtained by
improving the uncertainties of the existing CMS measurement by the same factor.

Repeating the fit with the projected di-Higgs data yields moderate improvement in the
prospective 95% C.L. constraints on the parameter space, which are shown in Fig. 9. These
are given for specific values of MS = 500 GeV, 1 TeV and 2 TeV in the (κS/MS, λS) plane
assuming κS3 , κS4 = 0 (left panel), and the (κS/MS, κS3/MS) plane assuming λS, κS4 = 0

(right panel). The lines are colour-coded to indicate the predicted values of |d4| along
them, as per Eq. 6.14, giving an idea of the possible modifications to the Higgs quartic
coupling at the boundary of the allowed region of parameter space. We note that this is
only an approximation of the true triple-Higgs production rate at dimension-8, since the
singlet extension also predicts other, higher-derivative and higher-point interactions, such
as (∂h)4, tt̄(∂h)2 and tt̄h3 that would also affect this process. Notwithstanding, we see
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Figure 9: Contours of the prospective 95% C.L. constraints from HL-LHC measurements
of single- and di-Higgs production in the (κS/MS, λS) plane assuming κS3 , κS4 = 0 (left
panel), and the (κS/MS, κS3/MS) plane assuming λS, κS4 = 0 (right panel) for specific
values of MS = 500 GeV, 1 TeV and 2 TeV, colour coded to indicate the calculated values
of d4.

for the singlet model that the prospective HL-LHC measurements would not exclude the
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possibility that d4 may differ very significantly from the SM value, though we emphasise
that the largest deviations become possible only for relatively low values of MS . 1 TeV
where the SMEFT approximation is generally less reliable. Comparing to Fig. 8, we see
that the very largest deviations occur in regions where the SMEFT expansion does not
appear to converge, e.g., in the upper parts of the MS = 500 GeV line in the left plot or
the lower parts of the 500 GeV and 1 TeV lines on the right plot.

We do not go beyond MS = 2 TeV as the corresponding contours are largely excluded
by theory constraints, although this does not preclude the possibility of significant d4 mod-
ifications within the allowed parameter space for MS > 2 TeV. A more comprehensive
exploration of the parameter space for d4 may be interesting, as there may be points with
large d4 within the allowed region that we have not shown, and we have not considered the
general case where all singlet model parameters are switched on. We have also neglected
the singlet quartic coupling, κS4 , which is very poorly constrained by the existing data. It
is, however, likely that the validity of the SMEFT approximation to triple Higgs production
may be restricted to smaller regions than those we have determined using cos2 α, since the
energy scale of the process is higher than single Higgs production and there is the possi-
bility of resonant enhancements from on-shell singlet production. Indeed, this process has
been found to be interesting in the context of non-minimal scalar extensions of the SM [95].
Nevertheless, these exploratory results suggest that a measurement of the Higgs quartic
coupling could provide an additional, complementary probe of the singlet model parameter
space.

7 Electroweak Triplet Scalar Model

We now move on to study the extension of the SM by a single real electroweak triplet
scalar field Ξ with hypercharge YΞ = 0. The tree-level SMEFT matching of this model to
dimension-6 has been calculated in Refs. [66, 69, 71], and partial dimension-8 results have
been computed in Ref. [21], focusing on operators that modify 3-point interactions between
SM fields. Similarly to the S field, the Ξ field interacts only with the SM Higgs doublet
at the renormalisable level. Following again the conventions of Ref. [69], the full model
Lagrangian is:

LΞ =
1

2
(DµΞa)(DµΞa)− 1

2
M2

Ξ(ΞaΞa)− κΞH
†ΞaσaH+

− λΞ(ΞaΞa)(H†H)− 1

4
ηΞ(ΞaΞa)2 ,

(7.1)

where σa (a = 1, 2, 3) are the three Pauli matrices, and the couplings have the following
mass dimensions [κΞ] = 1 and [λΞ] = [ηΞ] = 0. The potential parameters are subject to
theoretical constraints [78, 96] from boundedness:

λ, ηΞ ≥ 0, |λΞ| ≥ −
√
ληΞ , (7.2)

and perturbative unitarity

|λ| ≤ 4π, |ηΞ| ≤ 4π, |6λ+ 5ηΞ ±
√

(6λ− 5ηΞ)2 + 48λ2
Ξ| ≤ 16π . (7.3)
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In general, the scalar potential can have more than one minimum, and we must ensure that
the EW vacuum is the lowest energy state.

Writing Eq. (7.1) in a similar form to Eq. (6.4) defines the parameters:

Ba = κΞH
†σaH; U = 2λΞH

†H . (7.4)

The CDE procedure proceeds identically to that of the singlet, and is simplified thanks
to the absence of a trilinear self-interaction for the triplet. The solution to the classical
equation of motion is found to be

ΞaC ≈ ∆
[
Ba + ηΞ∆Ba(∆Bb)2

]
+O

(
M−6

)
, (7.5)

including the higher-order term beyond the linearised solution. Performing the inverse
mass expansion and plugging it back into Eq. (7.1), we find the following tree-level effective
Lagrangian up to dimension-8:

L(8)
eff.,tree,Ξ =

1

2M2
Ξ

BaBa +
1

2M4
Ξ

Ba(P 2 + U)Ba +
1

2M6
Ξ

Ba(P 2 − U)(P 2 − U)Ba

− ηΞ

4M8
S

(BaBa)2 +O
(
M−5

)
.

(7.6)

This turns out to give the same result as using the linearised solution to the equation of
motion.

The main difference with respect to the singlet matching to the dimension-6 Warsaw
basis is that a redundant operator, Or = H†H(DµH)†(DµH), is generated that must be
eliminated. This is done most efficiently using a Higgs field redefinition,

H →H
(

1− κ2
Ξ

M4
Ξ

H†H

)
, (7.7)

in such a way that we keep track of the associated corrections out to dimension-8. Alter-
natively, one can make use of the Higgs equation of motion out to dimension-6, along with
an additional correction stemming from the second-order variation of the action [97],

δS

δϕAδϕB
fAfB; ϕ1(2) = H(†), f1 = |H|2H, f2 = (f1)†. (7.8)

We verified that both methods yield the same dimension-8 correction to the low-energy
effective action. For the dimension-8 terms generated by Eq. (7.6), the SM Higgs equation
of motion (6.11) can be used to reduce to the dimension-8 operators defined in Table 2. The
SMEFT Wilson coefficients resulting from the matching of the triplet model at dimension-8
are reported in Table 4. The relevant subset of our results agree with the computation of
Ref. [21].

The other detail that differs slightly from the singlet case is the appearance of the Higgs
self-coupling parameter, λ, in the dimension-6 matching result for CH . Because of the fact
that a correction to this dimension-4 coupling is induced by this model, the λ initially
appearing in the matching result is not the same quantity that is expressed as a function of
the input parameters in Eq. (3.15). The appearance of SM couplings in tree-level matching
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conditions is always a consequence of basis reduction via field redefinitions or employing
equations of motion. This means that any initial (i.e. before basis reduction) contribution
to the coefficient of OH4 generated by the CDE can be absorbed into the definition of λ
without physical consequence. For the triplet, this corresponds to an initial redefintion of

λ→ λ+
κ2

Ξ

2M2
Ξ

. (7.9)

However, subsequent contributions to CH4 generated by the basis reduction lead to the
aforementioned mismatch, requiring a further redefinition of λ that gets propagated to the
Wilson coefficients of our basis. Taking into account the required shift:

λ→ λ− 2µ2κ2
Ξ

M4
Ξ

+
6µ4κ2

Ξ

M6
Ξ

, (7.10)

gives a correction to CH at the dimension-8 level. The results in Table 4 are expressed only
in terms of parameters appearing in the SMEFT Lagrangian, i.e., λ and µ2 are defined as
the low-energy coefficients of OH4 and H†H. As discussed in Section 6, this is not relevant
for the singlet case, since λ only appears in dimension-8 Wilson coefficients, meaning that
all associated corrections occur beyond the order at which we are working. As in the case
of the singlet scalar, we see that the dimension-8 matching also implies corrections to the
dimension-6 coefficients. We detail in Appendix A an analogous calculation of the hh→ hh

amplitude that validates a subset of our results at dimension-8, from which we can draw
some confidence that the remainder of the matching results are reliable.

Finally, we can evaluate the dimension-6 and -8 contributions to the normalization of
the physical Higgs field (3.10) in the triplet scalar extension of the SM:

∆h =
κ2

Ξv̂
2

M4
Ξ

[
1− 1

2M2
Ξ

(3m2
H + λΞv̂

2) +
9κ2

Ξv̂
2

8M4
Ξ

]
≈ κ2

Ξv̂
2

M4
Ξ

(
1− 3m2

H v̂
2

2M2
Ξ

+
9κ2

Ξv̂
2

8M4
Ξ

)
, (7.11)

and also to the trilinear and quadrilinear Higgs self-couplings (3.41, 3.47):

c3 =
κ2

Ξv̂
2

M4
Ξ

[
− 1 +

2λΞv̂
2

m2
H

+
v̂2

M2
Ξ

(
− 3m2

H

v̂2
+ 9λΞ

(
1− 8λΞv̂

2

9m2
H

)
+

2κ2
Ξ

M2
Ξ

(
1− v̂2

m2
H

(
3λΞ −

ηΞ

2

)))]
≈ − κ2

Ξv̂
2

M4
Ξ

(
1 +

3m2
H

M2
Ξ

− 2κ2
Ξv̂

2

M4
Ξ

)
,

(7.12)

d4 =
κ2

Ξv̂
2

M4
Ξ

[
− 22

3
+

12λΞv̂
2

m2
H

+
v̂2

M2
Ξ

(
− 82m2

H

3v̂2
+ 2λΞ

(
41− 32λΞv̂

2

m2
H

)
+

κ2
Ξ

M2
Ξ

(
21− 8v̂2

m2
H

(6λΞ − ηΞ)

))]
≈ − κ2

Ξv̂
2

M4
Ξ

(
22

3
+

82m2
H

3M2
Ξ

− 21κ2
Ξv̂

2

M4
Ξ

)
.

(7.13)

In each of the above equations, the third line, indicated by “≈”, corresponds to the case
where all the couplings except κΞ are assumed to be negligible.
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Dim - 6

CH
κ2

Ξ

M2
Ξ

(
(4λ− λΞ)

(
1− 4µ2

M2
Ξ

)
− 5µ2κ2

Ξ

M6
Ξ

)
CHD −2κ2

Ξ

M2
Ξ

(
1− 4µ2

M2
Ξ

)
CH�

κ2
Ξ

2M2
Ξ

(
1− 4µ2

M2
Ξ

)
[CψH ]wx [yψ]wx

κ2
Ξ

M2
Ξ

(
1− 4µ2

M2
Ξ

)
; ψ = u, d, e

Dim - 8

CH8
2κ2

Ξ

M2
Ξ

(
(2λ− λΞ)2 +

κ2
Ξ

M2
Ξ

(3λΞ − 5λ− ηΞ
8 )
)

C
(1)
H6 − κ4

Ξ

M4
Ξ

C
(2)
H6

4κ2
Ξ

M2
Ξ

(
λΞ − 2λ+

κ2
Ξ

M2
Ξ

)
C

(1)
H4

4κ2
Ξ

M2
Ξ

C
(3)
H4 −2κ2

Ξ

M2
Ξ

[ClψH5/CqψH5 ]wx −[yψ]wx
2κ2

Ξ

M2
Ξ

(
λΞ − 2λ+

κ2
Ξ

2M2
Ξ

)
; ψ = u, d, e

[C
(1)
l2ψ2H2/C

(1)
q2ψ2H2 ]wxyz −[yψ]wz[y

†
ψ]yx

3κ2
Ξ

4M2
Ξ
; ψ = u, d, e

[C
(2)
l2e2H2/C

(2)
q2d2H2 ]wxyz [yψ]wz[y

†
ψ]yx

κ2
Ξ

4M2
Ξ
; ψ = d, e

[C
(2)
q2u2H2 ]wxyz −[yu]wz[y

†
u]yx

κ2
Ξ

4M2
Ξ

[C
(3)
l2ψ2H2/C

(5)
q2ψ2H2 ]wxyz [yψ]wx[yψ]yz

κ2
Ξ

2M2
Ξ
; ψ = u, d, e

[C
(1)
lequH2 ]wxyz [ye]wx[yu]yz

5κ2
Ξ

2M2
Ξ

[C
(1)
leqdH2 ]wxyz [ye]wx[y

†
d]yz

5κ2
Ξ

2M2
Ξ

[C
(1)
q2udH2 ]wxyz −[yu]wx[yd]yz

5κ2
Ξ

2M2
Ξ

[C
(2)
lequH2 ]wxyz [ye]wx[yu]yz

κ2
Ξ

2M2
Ξ

[C
(2)
leqdH2 ]wxyz −[ye]wx[y

†
d]yz

κ2
Ξ

2M2
Ξ

[C
(2)
q2udH2 ]wxyz [yu]wx[yd]yz

κ2
Ξ

2M2
Ξ

[C
(5)
lequH2 ]wxyz [ye]wx[y

†
u]yz

κ2
Ξ

M2
Ξ

[C
(3)
leqdH2 ]wxyz [ye]wx[yd]yz

κ2
Ξ

M2
Ξ

[C
(5)
q2udH2 ]wxyz [yd]wx[y

†
u]yz

κ2
Ξ

M2
Ξ

[C
(2)
lψH3D2/C

(2)
qψH3D2 ]wx −[yψ]wx

4κ2
Ξ

M2
Ξ
; ψ = u, d, e

Table 4: Dimension-6 and -8 Wilson coefficients resulting from the tree-level matching
of the triplet scalar model to the SMEFT. Flavour indices are denoted by Roman letters
{w, x, y, z}. The parameters µ2 and λ are the quadratic and quartic coefficients of the Higgs
potential at the EW scale, respectively.
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7.1 Constraints on Model Parameters

Table 4 shows that the triplet scalar model generates a few more Wilson coefficients at
dimension-6 in addition to CH� and CH , namely the Yukawa operators CψH , ψ = u, d, e and
most importantly the custodial symmetry-violating operator CHD. The latter is commonly
associated to the so-called T -parameter, since it contributes to the Z-boson mass term and
therefore leads to a modified prediction for the W -boson mass as well as shifts in the W -
and Z-boson couplings to the fermion currents with respect to the SM. As a result, the
operator is strongly constrained by EWPOs, which represent by far the most important
bounds on this model. For reference, we note that our dataset constrains the coefficient to
lie within

CHD ⊂ [−0.020, 0.0040] (7.14)

at 95% CL, assuming Λ = 1 TeV. This bound is completely dominated by the EWPOs,
with the addition of single Higgs data modifying the lower and upper boundaries by 1 and
5%, respectively. Even within the EWPO dataset, the bound is dominated by the W -mass
measurement 6, since removing the Z-pole data only loosens the bounds by 10–20%. This
is 1–2 orders of magnitude more sensitive that the bounds on the CH� implied by the single
Higgs data, see Eq. (6.15). The bias towards negative values occurs because the inverse-
variance weighted average of the pre-2022 W -mass measurements lies about 1.2 standard
deviations above the SM prediction of 80.361 GeV used in our analysis, and CHD contributes
linearly to mW with a negative coefficient.

As in the singlet model, most of the dimension-6 Wilson coefficients only depend on κΞ.
From the tight EWPO constraints discussed above, we can expect this quantity to be much
more tightly constrained than the singlet analogue, κS, and consequently for Higgs data to
only have a modest impact on the allowed parameter space. The quartic portal coupling,
λΞ, only appears in CH at the dimension-6 level but, given the strong bounds on κΞ, the
deviations in di-Higgs production are expected to be below the current sensitivity. Overall,
the interplay between the data and the model parameters in the triplet model is somewhat
analogous to that of the singlet with the role of Higgs data being played by the EWPO
and that of di-Higgs being played by single Higgs data. However, judging from the single
operator analyses of CHD, CH� and CH , in this and the previous section, we can estimate
that the relative sensitivity of EWPO to single Higgs is about 10 times better than that
of single to di-Higgs data. This should result in a much milder impact of the less sensitive
dataset (single Higgs in the triplet case) on the overall results.

At the dimension-8 level, several more operators are generated than in the singlet case,
including the custodial symmetry-violating operator O(2)

H6 and an additional four-derivative
quartic Higgs operator O(1)

H4 . We note that new κ4
Ξ/M

4
Ξ -dependent terms are now present

in the matching results, due to the dimension-8 corrections from the dimension-6 reduction
to the Warsaw basis operators. Most importantly, λΞ dependence is introduced into the
EWPOs via C(2)

H6 . This parameter also appears in coefficients relevant for single-Higgs data.

6Pending scrutiny and confirmation of the recent CDF measurement of mW [40], we do not include it
in our nominal analysis.
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Finally, as in the singlet model, the quartic self-coupling of the triplet, ηΞ, appears for the
first time in the octic Higgs operator, OH8 . Since we are not even sensitive to this parameter
in the singlet case, we can be sure that this will also be true for the triplet. We therefore
do not discuss this parameter any further.

The triplet matching results are insensitive to the sign of κΞ, so we report subsequently
results in the positive half of the parameter space. Fig. 10 shows the bounds implied by the
data on the combination |κΞ|/MΞ, assuming the other parameters, λΞ and ηΞ, are set to 0.
Bounds derived at the linear dimension-6 level are shown in green, while bounds obtained
at the quadratic dimension-6 and linear dimension-8 level are shown in purple. The bounds
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Figure 10: The range of |κΞ|/MΞ allowed as a function of MΞ by the current exper-
imental data. The green shaded area represents the allowed interval at 95% Confidence
Level from a dimension-6 analysis including only linear (interference) effects, and the pur-
ple shaded area is from an analysis including also linear dimension-8 contributions and
quadratic dimension-6 contributions. The subplot shows the ratio of the dimension-8 and
dimension-6 determinations of the upper bound.

obtained in the dimension-6 and -8 approximations coincide almost completely, differing
only at the per-mille level. This is also shown in the subplot, where the ratio of the two
upper bounds is exactly 1. Compared to the analogous parameter in the singlet model, κS,
|κΞ|/MΞ is much better constrained thanks to the better precision of the EWPOs compared
to Higgs data. As discussed in the SMEFT case above, the bounds are dominated by the
W -mass measurement.

We now allow for non-zero values of the quartic portal coupling, λΞ and examine the
impact of the data on the 2-dimensional parameter space. In the four panels of Fig. 11
we compare the values of |κΞ|/MΞ that are allowed as functions of λΞ by the EWPOs for
MΞ = 0.5, 1, 2 and 4 TeV assuming ηΞ = 0, at the 68% CL (dashed lines) and 95$ CL
(solid lines), including dimension-6 operators in the linear approximation (green shading
and lines) and including both the quadratic effects of dimension-6 operators and the linear
effects of dimension-8 operators (grey lines). We also show the effects of including the
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present Higgs coupling measurements (purple shading and lines). Regions that do not
satisfy partial-wave unitarity bounds or where the potential is unbounded are shaded in
red. These bounds are obtained in a conservative way, varying over all allowed values of
ηΞ, such that they represent the absolute maximum available region of parameter space. In
the specific case of ηΞ = 0, for example, λΞ would be constrained to be strictly positive,
while non-zero ηΞ can permit small negative λΞ. We see that at the linear dimension-6 level
the constraint on |κΞ|/Λ is independent of λΞ, which only enters in di-Higgs production at
this level. We confirm that the di-Higgs data is not sensitive to this parameter, given the
EWPO constraints. Instead, there is a strong dependence on λΞ when the quadratic effects
of dimension-6 operators and the linear effects of dimension-8 operators are also included,
which arises from a cancellation between the dimension-6 and dimension-8 contributions.
We also note that the effects of including the Higgs coupling measurements at the dimension-
8 level are minor, contributing mainly to rule out a small part of the tip of the cancellation
region for MΞ = 0.5 TeV. Between MΞ = 0.5 and 1 TeV, the tip of this region disappears
above the perturbative limit for λΞ & 4π/

√
3. As MΞ increases, the dimension-8 effects

gradually decouple.

7.2 Comparison between the Dimension-6 and -8 Results and the Full Model

The large differences between the dimension-6 and -8 results signal that the EFT description
may be breaking down in some regions of the parameter space. In order to quantify this,
we compare the two approximations to the full model description, focusing on the mW

prediction that dominates the experimental constraints on the triplet scalar model. As
with the singlet model, the fact that our matched, dimension-8 SMEFT prediction agrees
with the Taylor-expanded full model prediction:

mW

mSM
W

= 1 +
c2
ŵ

c2ŵ

v̂2κ2
Ξ

M4
Ξ

(
1

2
− v̂2

M2
Ξ

(
λΞ +

22c4
ŵ − 25c2

ŵ + 8

8c2
2ŵ

κ2
Ξ

M2
Ξ

))
, (7.15)

provides an additional validation of our matching calculation. Fig. 12 depicts the constraint
from the combined, pre-2022 mW measurements in the (|κΞ|/MΞ, λΞ) plane, for masses of
0.5, 1 and 2 TeV and ηΞ = 0. The constraint is determined by requiring that the mW

prediction lie no more than 2 standard deviations above (solid lines) or below (dashed
lines) the inverse-variance weighted average of the measurements. Constraints obtained
with predictions at the dimension-6 and -8 levels, shown in green and purple, respectively,
are contrasted with the full model prediction in grey.

The shapes of the constraints in the EFT approximations are very similar to those
of the full fits in Fig. 11. The dimension-6 bound does not depend on λΞ, unlike the full
model prediction, whereas a strong dependence is introduced at dimension-8, leading to a
cancellation region that moves up with increasing MΞ. In contrast, while the full model
does display a λΞ dependence, the extreme cancellation displayed in the dimension-8 result
is not present. The dimension-8 approximation very closely reproduces the full model at
moderate λΞ but starts to diverge significantly at larger λΞ and smallerMΞ, namely around
λΞ ∼ 1 for MΞ = 500 GeV and around λΞ ∼ 3 for MΞ = 1 TeV. On the other hand, when
MΞ = 2 TeV the dimension-8 approximation is very accurate for all values of λΞ between
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Figure 11: Values of λΞ for MΞ = 1 TeV and ηΞ = 0 that are allowed at the 68% CL
(dashed lines) and 95% CL (solid lines) by the present electroweak precision observables in-
cluding dimension-6 operators in the linear approximation (green shading and lines), includ-
ing both the quadratic effects of dimension-6 operators and the linear effects of dimension-8
operators (grey shading and lines), and also including the present Higgs coupling measure-
ments (purple shading and lines) as functions of |κΞ|/Λ. The red shaded regions at large
λΞ are excluded by the perturbative unitarity constraint λ ≤ 8π/3, and the boundedness of
the scalar potential. These are determined by allowing for all possible values of ηΞ allowed
by perturbative unitarity and boundedness.

the perturbative upper bound and the stability lower bound, shown as the red lines at
λΞ ' 7 and -1, respectively. We see that, in the dimension-8 approximation, the mW shift
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Figure 12: Contours of constant W -boson mass as a function of |κΞ|/MΞ and λΞ for
MΞ = 500 GeV (left panel) 1 TeV (middle panel) and 2 TeV (right panel), all for
ηΞ = 0. Predictions at the linear dimension-6 level (green lines) are compared to the linear
dimension-8/quadratic dimension-6 level (purple lines) and those from the full model (grey
lines). The contours are plotted to match the 2σ upper (solid lines) and lower (dashed line
in the left panel) bounds from pre-2022 mW measurements.

changes sign for large λΞ, which can be traced back to the negative O(2)

H6 contribution in
Eqs. (3.17) and (3.18) that depends linearly on λΞ (see Table 4). The full model dependence
is such that this never occurs in reality, so this region is not well described by an EFT
expansion to dimension-8. Fortunately the dimension-8 and full model descriptions agree
better with increasing mass, and at MΞ = 2 TeV, the model is faithfully reproduced in this
approximation. We also checked the regions of parameter space over which the dimension-8
predictions for mW are closer to the full model, finding that for MΞ > 850 GeV, the 95%
C.L. contours derived from the global analysis lie completely within these regions. Hence,
although the dimension-8 analysis correctly introduces a λΞ dependence, it is not reliable
for large values of this quartic coupling. For example, for MΞ > 500 GeV, the dimension-8
prediction is worse than the dimension-6 one above λΞ ∼ 2.5.

Fig. 13 shows the profiled 95% CL upper limits on |κΞ|/MΞ as functions of MΞ at
the linear dimension-6 level (green) and at the dimension-8 level (purple), showing also
the ratio between the limits, imposing the aforementioned perturbativity and boundedness
restrictions on λΞ and ηΞ. Compared to the individual constraint shown in Fig. 10, the
profiled result highlights the impact of upgrading the analysis to dimension-8. The spike
in the dimension-8 limit, which reaches κΞ/MΞ ' 0.42 for MΞ ' 900 GeV, arises in the
cancellation region in the upper left panel of Fig. 11, and the dip at larger |κΞ|/MΞ begins
when the tip of this region starts to disappear beyond the perturbativity bound. However,
as we have just discussed, the emergence of such a region is an artefact of the EFT ap-
proximation exaggerating the λΞ dependence of the mW prediction. This suggests that the
EFT interpretation used to obtain this result is not reliable below MΞ ∼ 1 TeV. Above this
mass, dimension-8 effects appreciably loosen the profiled bound, while the linear dimension-
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Figure 13: Profiled 95% CL upper limit on |κΞ|/MΞ as a function of MΞ, where |λΞ| is
varied within the region constrained by perturbative unitarity and boundedness, at the linear
dimension-6 level (green) and at the dimension-8 level (purple). The subplot shows the ratio
between the limits.

6 approximation gradually approaches the dimension-8 value at large MΞ, indicating a nice
convergence of the expansion.

7.3 Interpreting the new CDF mW measurement

Finally, we comment on the recent measurement of mW by the CDF Collaboration [40],
which is in significant tension with previous measurements and the SM prediction. The
scalar triplet model is one of the extensions of the SM that is favoured as a possible scenario
for accommodating the CDF measurement, or at least mitigating this tension. Accordingly,
we have explored the constraints on this model that are imposed at the linear dimension-
6 level and including quadratic dimension-6 effects as well as dimension-8 operators in
Fig. 14. The left panel shows the constraints imposed on the parameter space for MΞ = 1

TeV in the two SMEFT approximations in green and purple, respectively. For reference,
the constraints on the full model when considering only mW measurements are shown in
grey. The middle panel shows how the preferred region at the dimension-8 level evolves for
MΞ ranging between 0.5 and 5 TeV. The right panel shows the analogous preferred region
for the full model, using only the mW measurements as input.

The left panel shows that at the linear dimension-6 level, a non-zero value of |κΞ|/MΞ ∼
0.1 is preferred, whereas at the dimension-8 level the allowed range of |κΞ|/MΞ increases
as λΞ increases from negative values, approaching 0.32 for λΞ ∼ 4π/

√
3. The dimension-8

bounds provide a much better approximation to the full model bounds for λΞ up to around
4, after which they start to diverge and become incompatible with the the true bound above
λΞ = 6. Again, this emphasises the dominance of the mW measurements in the dataset,
since the full model bounds only take those into account. All of the allowed regions coincide
around λΞ ∼ 0, showing that dimension-8 effects are negligible there and only matter for
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Figure 14: Left panel: Values of |κΞ|/MΞ that are allowed as functions of λΞ for
MΞ = 1 TeV and ηΞ = 0 at the 68% CL (dashed lines) and 95% CL (solid lines) by
the present electroweak precision observables including the CDF measurement of mW . We
compare results including dimension-6 operators in the linear approximation (green shading
and lines) , including both the quadratic effects of dimension-6 operators and the linear
effects of dimension-8 operators (purple shading and lines) and the full model constraints
using only the mW measurements (grey shading and lines). Middle panel: Constraints on
|κΞ|/MΞ as functions of λΞ from the present electroweak precision observables including the
CDF measurement of mW , for the indicated values of MΞ and ηΞ = 0 at the 68% CL
(dashed lines) and 95% CL (solid lines) as analyzed including both the quadratic effects of
dimension-6 operators and the linear effects of dimension-8 operators. Right panel: Same
as middle panel, but for the full model and using only the mW measurements as input.

nonzero λΞ. We see from the middle panel that the preferred value of |κΞ|/MΞ scales linearly
withMΞ. The band of allowed |κΞ|/MΞ and λΞ values forMΞ = 0.5 TeV has a similar shape
which is cut off above λΞ ∼ 2, resulting in a spike around |κΞ|/MΞ ∼ 0.2. For values of
MΞ ≥ 2 TeV the allowed band is tilted without a spike in the perturbative range for |λΞ|.
The right panel confirms that the extreme dependence on λΞ introduced at dimension-8
for MΞ < 2 TeV is exaggerated with respect to the full model prediction, which predicts a
linear relationship between |κΞ|/MΞ and λΞ for a fixed modification to mW . Nevertheless,
the dimension-8 conclusions for lower λΞ are likely to be a good approximation of the
constraints on the full model.

Interpreting the new CDF mW measurement at face value could then suggest the pres-
ence of an EW triplet state with non-zero values of κΞ ranging from around 20 GeV for
MΞ = 500 GeV to 2900 GeV forMΞ = 5 TeV. Our analysis has shown that an EFT analysis
of the EWPO data presents a more faithful interpretation in terms of the triplet model when
including dimension-8 effects. It has also quantified the regions of extreme λΞ in which the
convergence of SMEFT expansion appears to break down and a HEFT description is likely
to be more appropriate.
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8 Summary

We have explored in this paper the present and prospective experimental constraints on
singlet and zero-hypercharge triplet scalar field extensions of the Standard Model using the
SMEFT formalism with dimension-6 and -8 operators. As a first step, we computed the
effect on gauge and Higgs interactions of the coefficients of the relevant SMEFT operators,
including both the linear and quadratic contributions of dimension-6 operators and the
linear contributions of dimension-8 operators. Using the CDE method at tree level, we
derived matching expressions for the coefficients of the relevant operators in the singlet
and triplet models, using the Warsaw basis [2] at dimension-6 and the basis of Ref. [16]
at dimension 8. These generically involve corrections for dimension-6 operator coefficients
as well as contributions to dimension-8 Wilson coefficients. We found that, in order to
perform a consistent matching to dimension-8 order using the CDE, it was necessary to
solve the classical equation of motion for the heavy field beyond linear order. Although
linear order is typically sufficient for dimension-6 and most dimension-8 matching results,
in the presence of trilinear scalar self-interactions, higher orders are needed, which result
in an additional contribution to the octic Higgs operator OH8 = (H†H)4. These results
enabled us to include consistently all the O(1/Λ2) and O(1/Λ4) contributions to rates for
physical processes, where Λ is a heavy new physics scale that can be identified with the
scalar mass. We also derived expressions for the model contributions to the deviations of
the Higgs trilinear and quartic couplings from their values in the Standard Model. We
cross-checked our matching results by comparing them with exact expressions for Higgs-
Higgs scattering in both models, as well as expressions for the Higgs-singlet mixing angle
and the W -boson mass in the singlet and triplet models, respectively.

In general, we observed that tree-level dimension-6 matching captures a subset of the
potential parameter dependence of physical observables whose measurements can constrain
such models. Tree-level matching relies on the presence of interaction terms that are linear
in the heavy field. These parameters appear at the lowest-order, dimension-6 matching, and
contribute in a leading way to the Higgs signal strengths and EWPOs for the singlet and
triplet models, respectively. In both models, only modifications to the Higgs self-coupling
via OH = (H†H)3 yield any sensitivity to the other parameters in the scalar potential at the
dimension-6 level. At dimension-8, many more operators are generated and the parametric
dependence is enriched. In particular, matching at this order introduces a dependence on
the additional parameters of the scalar potential beyond the Higgs self-coupling, allowing
for a more interesting interplay between Higgs signal strengths, EWPO and di-Higgs data.

In order to quantify this, we performed a global statistical analysis over the model
parameter space, using the SMEFT framework as a bridge to the data. This allowed us to
confront the two scalar extensions of the SM with a dataset comprising EWPO, Higgs signal
strengths and di-Higgs cross section measurements. Performing this analysis to O(1/Λ2)

and O(1/Λ4) allowed us to quantify the importance of dimension-8 effects and assess the
validity and convergence of the SMEFT approximations. In addition, we compared the
experimentally allowed regions with those allowed by theoretical constraints on the under-
lying model coming from boundedness, perturbative unitarity, and the requirement that
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the EW vacuum be the global minimum of the scalar potential.
We showed how the expectations derived from our matching calculations played out

in the data, demonstrating that the dimension-8 analysis leads to a non-trivial interplay
driven by the balance between two effects. On one side, the dimension-6 effects are the
leading ones, with dimension-8 contributions expected to contribute corrections suppressed
by ∼ v2/Λ2. On the other, the additional parametric dependence is limited to Higgs
self-coupling modifications at dimension-6 order, which is only probed by the relatively
less precise di-Higgs cross section measurements. Moving to dimension-8 order brings a
dependence on these additional parameters into the Higgs signal strengths and EWPO,
which are comparatively much better determined. There is hence a balance between the
relative smallness of dimension-8 effects and the relatively poor experimental precision of
di-Higgs rates with respect to other data.

That said, we did find that di-Higgs data provide important additional information in
the case of the singlet scalar model. At dimension-8 order the Higgs signal strengths alone
yielded flat directions in the parameter space that were efficiently closed by the addition
of di-Higgs rates. In particular, even when considering the linear coupling parameter κS
alone, di-Higgs data served to exclude a region of large κS that would have otherwise
been allowed by Higgs data alone, due to the appearance of a second minimum in the log-
likelihood. Overall, we found that the allowed regions when including di-Higgs data were
much reduced and overlapped significantly less with the theoretically forbidden regions. In
contrast, we found that the EWPO data completely dominated the bounds on the triplet
model parameter space, with Higgs data helping to exclude a very small additional portion
and di-Higgs rates having no impact. Our results would certainly improve with the use
of differential di-Higgs information, at the cost of a more delicate balance with the EFT
validity criterion.

Because of the limited sensitivity of the di-Higgs data, we were unable to place any
meaningful bounds on the quartic self-couplings of the scalar models, which only modify
Higgs self-interactions at tree-level and dimension-8. Nevertheless, since our dimension-8
results lead to a more constraining likelihood over the parameter space, we were able to
obtain profiled bounds on the linear coupling parameters, κS and κΞ, allowing the other
parameters of the scalar potential to vary within the theoretically allowed ranges. As
expected, the significantly different interplay with data at dimension-8 order led to prima
facie very different conclusions on the allowed values, particularly for the singlet model.
This raised the question of the convergence of the SMEFT expansion, given that going
from dimension-6 to -8 led to O(1) or greater changes in the allowed parameter space.
However, we found that much of the parameter space that was still allowed by the data and
theoretical bounds corresponded to regions where the singlet acquired a large vev, vS � v,
in contrast with the SMEFT expectation that this be a suppressed quantity. Repeating
the profiling analysis with the additional requirement that |vS| < MS led to less drastic,
but still significant, differences between the dimension-6 and -8 analyses. In the case of the
triplet field, for MΞ < 900 GeV, we found that the profiled bounds on κΞ were exaggerated
due to an unphysical cancellation in the dimension-8 predictions indicating an unreliable
SMEFT expansion at large λΞ.
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In order to explore further the validity of the SMEFT approximations, we also compared
our SMEFT predictions at different orders with those of the full model. For the singlet, we
used the Higgs-singlet mixing parameter cos2 α, which controls Higgs signal strengths, while
for the triplet we used the mW prediction. We chose these because they are the observables
that best constrain each model. In each case we uncovered the regions of parameter space in
which the dimension-8 predictions represented improvements over dimension-6 ones as well
as regions where they diverged significantly from the full model prediction. In the latter
case, such regions of parameter space are not likely to admit a SMEFT approximation. The
breakdown was found to occur for large values of the quartic portal couplings, λS or λΞ, and
the singlet trilinear coupling, κS3 . For lower cutoff scales, the breakdown occurred earlier
and above cutoff scales of around 2 TeV the dimension-8 predictions were found to give
a much better approximation of the full model within the theoretically allowed parameter
space.

Given the tight constraints from the EWPOs, there is no scope for observable modifi-
cations to Higgs self-couplings in the triplet model. Indeed, even the impact of the single
Higgs data was found to be practically negligible in constraining this scenario. However for
the singlet model, we found an interplay between single and di-Higgs data, and the trilinear
self-coupling measurement already provides useful information in probing this extension of
the SM. We then explored the scope for a modified Higgs quartic interaction in this model,
which could potentially be probed by triple-Higgs production as well as indirectly through
precision di-Higgs measurements at future colliders. By considering a simple ‘post-LHC’
scenario using the projected HL-LHC sensitivities to di-Higgs cross section measurements,
we found that significant deviations to the higgs quartic coupling may be possible within
the allowed parameter space, although the most significant deviations were (unsurprisingly)
observed in the regions where the SMEFT approximation is likely to break down. Within a
restricted region where SMEFT predictions for single Higgs rates can be trusted, deviations
with respect to the SM prediction by a factor of a few seem possible. This suggests that
a more comprehensive analysis over the full parameter space may be interesting, comple-
mented by explicit calculations of di-Higgs and triple-Higgs production rates in the SMEFT
at dimension-8.

Finally we considered the impact of the recent CDF W -mass measurement on the pa-
rameter space of the triplet model, which is known to be one of the possible BSM candidates
that could account for such an anomaly. By comparing to the full model predictions, we
showed how the dimension-8 analysis allowed us to determine more accurately the preferred
regions of parameter space. In particular, the fact that the preferred value of κΞ depends
on λΞ is not captured by the dimension-6 analysis. This occurred up to a point where
the SMEFT expansion became unreliable, in line with our previous conclusions about its
validity.

The extension of phenomenological applications of the SMEFT approach to include
dimension-8 operators is less developed than the corresponding dimension-6 analyses. How-
ever, explorations of the type discussed here may be interesting in other SMEFT sectors,
e.g., in top physics where the constraints on dimension-6 operator coefficients are weaker
and hence the possible contributions of dimension-8 operators may be more accessible. It
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will also be interesting to explore other examples of the possible interplay between present
and future SMEFT explorations of possible new physics beyond the Standard Model.
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A Matching validation: hh→ hh scattering

As a partial validation of the matching results reported in Table 3, we calculate the ampli-
tude for hh→ hh scattering in both the full theory and in the SMEFT framework.

A.1 SMEFT

In the SMEFT framework, the relevant Feynman rules for the cubic and quartic Higgs
interactions in terms of the input parameters, the relevant dimension-6 and -8 operators
and with all momenta incoming, are as follows:
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We use (A.1) and (A.2) to find the following general expression for the hh → hh scatter-
ing amplitude in terms of the SMEFT coefficients to O(1/Λ4), i.e., including contributions
that are quadratic in the dimension-6 operator coefficients and linear in the dimension-8
operator coefficients:
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(A.3)

Where s, t, u are the usual Mandelstam variables and D(s, t, u) is the (s, t, u)-symmetric
Higgs boson propagator combination:

D(s, t, u) =

[
1

s−m2
H

+
1
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H

+
1

u−m2
H

]
. (A.4)

We use this expression to validate the non-linear field redefinitions used to obtain Eqs. (3.41)
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and (3.47), for the modified trilinear and quartic Higgs self couplings in a basis without any
three or four point, two-derivative Higgs self-couplings.

A.2 Singlet scalar

Combining the general expression (A.3) with the matching results of Table 3 to obtain the
hh→ hh amplitude in terms of the singlet model parameters, and the SM input parameters
mH and v̂, we find:
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in the SMEFT.
To calculate the amplitude in the full theory, we start from the singlet scalar Lagrangian

of Eq. (6.1), repeated here for clarity:

Ls =
1

2
∂µS∂µS −

1

2
M2

SS
2 − κSH†HS − λSH†HS2 − κS3S3 − κS4S4 . (A.6)

In order to verify our SMEFT matching calculation, we calculate hh → hh scattering in
this theory taking the EFT limit, i.e., assuming MS, κS, κS3 � v, s, |t|, |u|. Since S has
no quantum numbers, a tadpole term (linear in the field), Ltad. = bSS, is also permitted.
Under a shift of the field by a constant S → S + c, the parameters of the scalar potential
are redefined according to:

µ2 → µ2 − c κS − c2λS ,

bS → bS − cM2
S − 3c2κS3 − 4c3κS4 ,

M2
S →M2

S + 6c κS3 + 12c2κS4 ,

κ2
S → κS + 2c λS ,

κ2
S3 → κS3 + 4c κS4 ,

(A.7)

where all unspecified parameters are unchanged and µ2 is the mass parameter of the SM
Higgs doublet. Since physical observables must remain unchanged under such a field re-
definition, there is an infinite freedom to choose the representation of the scalar singlet
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Lagrangian that yields the same physics. This freedom can be used, e.g., to fix the vev of
S to zero, or to eliminate the tadpole term. The latter choice has implicitly been made in
Eq. (A.6), meaning that S generically obtains a vev, 〈S〉 = vS 6= 0, in this representation. If
the former choice is made, the minimisation conditions to obtain vS = 0 and 〈H〉 = v/

√
2,

fix the value of the tadpole coupling to be bS = −v2κS/2.
In the general case where S obtains a vev, the minimisation conditions read

µ2 = λv2 + vS(κS + vSλS) ,

2vSM
2
S = −v2(κS + 2λSvS)− 6v2

SκS3 − 8v3
SκS4 ,

(A.8)

which can be solved in the EFT limit for

vS = −κSv
2

2M2
S

(
1− v2λS

M2
S

+
3

2

v2κSκS3

M4
S

+ · · ·
)
. (A.9)

After the fields obtain their vevs, there is mass mixing between the excitations about the
ground state, h0 and s0, that is diagonalised by a rotation through a mixing angle α, thereby
defining our two physical scalars:

h ≡ h0 cosα+ s0 sinα , s ≡ s0 cosα− h0 sinα : tan 2α =
2xy

y2 − x2
,

where x = v(κS + 2vSλS) , y = M2
S −m2

H + 6vS(κS3 + 2vSκS4) + v2λS ,

(A.10)

with masses mH and

m2
S,phys = m2

H +
x2 + y2

y
. (A.11)

In the EFT limit, tan 2α ∼ 2κSv
M2
S
, so the state h is mostly comprised of the SM Higgs field,

h0. The Higgs quartic coupling parameter can be written in terms of the other model
parameters as

λ =
1

2v2

(
m2
H +

x2

y

)
. (A.12)

For the purposes of validating our matching calculation, we stick to a parametrisation in
terms of the original Lagrangian parameters rather than a set of physics inputs.

In addition to a new scattering diagram mediated by the heavy state, s, the mixing
between the fields leads to a modification of the trilinear and quartic Higgs self-interactions.
We then expand our expression for the amplitude in inverse powers ofMS, assuming κS and
κS3 to be of order MS, and obtain the same result as the SMEFT calculation in Eq. (A.5).
As an additional validation, we performed the calculation in both representations of the
singlet Lagrangian mentioned above, where vS 6= 0 and vS = 0, respectively. Computing
the required S-field shift to translate from one to the other, we confirmed that the two give
the same result up to dimension 8.
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A.3 Triplet Scalar

Repeating the analysis of the previous Section for the triplet scalar case, we combine the
general expression (A.3) with the matching results of Table 4 to obtain the corresponding
hh→ hh scattering amplitude in terms of the triplet model parameters and the SM input
parameters mH and v̂:

iM =D(s, t, u)

[
9m4

H

v̂2
− 18m4

Hκ
2
Ξ

M4
Ξ

+
36m2

H v̂
2κ2

ΞλΞ

M4
Ξ

− 54m6
Hκ

2
Ξ

M6
Ξ

+
162m4

H v̂
2κ2

ΞλΞ

M6
Ξ

− 144m2
H v̂

4κ2
Ξλ

2
Ξ

M6
Ξ

+
45m4

H v̂
2κ4

Ξ

M8
Ξ

− 144m2
H v̂

4κ4
ΞλΞ

M8
Ξ

+
36v̂6κ4

Ξλ
2
Ξ

M8
Ξ

+
18m2

H v̂
4κ4

ΞηΞ

M8
Ξ

]
+

3m2
H

v̂2
− 22m2

Hκ
2
Ξ

M4
Ξ

+
36v̂2κ2

ΞλΞ

M4
Ξ

− 78m4
Hκ

2
Ξ

M6
Ξ

+
246m2

H v̂
2κ2

ΞλΞ

M6
Ξ

− 192v̂4κ2
Ξλ

2
Ξ

M6
Ξ

− (s2 + t2 + u2)κ2
Ξ

M6
Ξ

+
63m2

H v̂
2κ4

Ξ

M8
Ξ

− 144v̂4κ4
ΞλΞ

M8
Ξ

+
24v̂4κ4

ΞηΞ

M8
Ξ

.

(A.13)

To calculate the amplitude in the full theory, we extend the SM Lagrangian with the
scalar triplet interactions of Eq. (7.1):

LΞ =
1

2
(DµΞa)(DµΞa)− 1

2
M2

Ξ(ΞaΞa)− κΞH
†ΞaσaH+

− λΞ(ΞaΞa)(H†H)− 1

4
ηΞ(ΞaΞa)2 ,

(A.14)

where the fields are defined as

H =
1√
2

(
0

h0 + v

)
, Ξ =

 0

ξ0 + vt
0

 , (A.15)

since we are only interested in the neutral sector for the purpose of this exercise. The triplet
vev contributes to the W -boson mass term:

m2
W =

g2

4
(v2 + 4v2

t ). (A.16)

This, in turn, leads to a relation between the input parameter, GF , which is determined
from the muon decay lifetime, and the scalar vevs.

v2 + 4v2
t =

1√
2GF

= v̂2 ≈ (246 GeV)2. (A.17)

Given this constrain from the input data, the requirement that v2 > 0 restricts the absolute
value of vt to be less than v̂/2. The precisely measured EWPO constrain this quantity to
be much smaller, on the order of a few GeV. The potential has the following minimisation
conditions:

µ2 = v2λ− vtκΞ + v2
t λΞ ,

m2
Ξ =

v2κΞ

2vt
− v2λΞ − v2

t ηΞ ,
(A.18)
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which can be solved for the triplet vacuum expectation value in the EFT limit:

vt =
κΞv

2

2M2
Ξ

(
1− λΞv

2

M2
Ξ

+ · · ·
)

=
κΞv̂

2

2M2
Ξ

(
1− v2

M2
Ξ

(
λΞ +

κ2
Ξ

M2
Ξ

)
+ · · ·

)
. (A.19)

After EWSB, there is mass mixing between the excitations about the ground state, h0 and
ξ0, that can be diagonalised by a rotation through a mixing angle β:

tan 2β =
2vκΞ − 4vvtλΞ

3v2
t ηΞ − 2v2λ+ v2λΞ +M2

Ξ

, (A.20)

thereby defining the two physical scalars:

h ≡ h0 cosβ + ξ0 sinβ , ξ ≡ ξ0 cosβ − h0 sinβ , (A.21)

with masses mH and

m2
ξ = M2

Ξ + λΞv
2 + 3ηΞv

2
t +

v2(κΞ − 2λΞv
2
t )

2

M2
Ξ + λΞv2 + 3ηΞv2

t −m2
H

. (A.22)

The Higgs boson quartic coupling, λ, gets corrected with respect to the SM as follows:

λ =
m2
H

2v2
+

1

2

(κΞ − 2λΞv
2
t )

2

M2
Ξ + λΞv2 + 3ηΞv2

t −m2
H

. (A.23)

We refer the reader to Refs. [96, 98] for more details on the phenomenology of the Triplet
scalar model. In the same way as we did for the singlet model, we computed the hh→ hh

scattering amplitude in the EFT limit out to dimension-8, finding agreement with the
matched amplitude of Eq. (A.13).

B {αEM ,mZ, GF} Input Scheme

The SM Lagrangian parameters g2, g′2, v2
T and λ appearing in this paper have been ex-

pressed in terms of measurable quantities using the {αEM ,mZ , GF } scheme, following the
formalism defined in Ref. [47]. For completeness, we review here the general formalism and
results up to dimension 8.

We define the vector of independent SM parameters as g ≡ {g′2, g2, v2
T , λ} and the

input observables to be O ≡ {αEM ,m2
Z , GF ,m

2
H}, where mH is needed only to fix the value

of λ. Working order by order in the EFT expansion, each On can be expressed as:

On = F (0)
n (g) +

1

Λ2
F (2)
n (g, C) +

1

Λ4
F (4)
n (g, C) + ... , (B.1)

where F (0)
n (g) depends only on the parameters g and represents the SM expression, while

the F (2,4)
n (g, C) are SMEFT corrections that depend in addition on the Wilson coefficients

C. The general solution to the system (B.1) is of the form:

gi = K
(0)
i (O) +

1

Λ2
K

(2)
i (O, C) +

1

Λ4
K

(4)
i (O, C) + ... , (B.2)
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where the leading term is the SM solution, defined by imposing

On = F (0)
n (K(0)(O)) , (B.3)

while the following terms are SMEFT corrections defined, up to dimension 8, as:

K
(2)
i = −(J−1)inF

(2)
n , (B.4)

K
(4)
i = −(J−1)in

[
F (4)
n +

∂F
(2)
n

∂gk
K

(2)
k +

1

2

∂2F
(0)
n

∂gk∂gj
K

(2)
k K

(2)
j

]
, (B.5)

where all the terms are evaluated using SM expressions and J is the Jacobian matrix

Jni =
∂F

(0)
n

∂gi
. (B.6)

Eq. (B.2) allows us to express the parameters g as

gi = ĝi

[
1 +

δgi
ĝi

]
, (B.7)

where ĝi = K
(0)
i (O) is the SM expression in terms of the input observables and δgi represents

the corrections depending on the Wilson coefficients.
At tree level, the input observables On are defined as:

αEM =
1

4π

g2g′2

g2 + g′2
[1 + ∆(6)αEM + ∆(8)αEM ] , (B.8)

m2
Z =

(g2 + g′2)v2
T

4
[1 + ∆(6)m2

Z + ∆(8)m2
Z ] , (B.9)

GF =
1√
2v2

T

[1 + ∆(6)GF + ∆(8)GF ] , (B.10)

m2
H = 2λv2

T [1 + ∆(6)m2
H + ∆(8)m2

H ] , (B.11)

where ∆(6) and ∆(8) represent the dimension-6 and -8 SMEFT corrections, respectively.
Thus, in the notation of Eq. (B.1) one has:

F (0)
αEM

=
1

4π

g2g′2

g2 + g′2
,

1

Λ2
F (2)
αEM

= F (0)
αEM

∆(6)αEM ,
1

Λ4
F (4)
αEM

= F (0)
αEM

∆(8)αEM , (B.12)

and similarly for the other quantities.
To express the parameters g as in Eq. (B.7 ), we first determine the SM solutions ĝi:

ĝ′2 =
4παEM
c2
w

, ĝ2 =
4παEM
s2
w

, v̂2 =
1√

2GF
, λ̂ =

m2
HGF√

2
, (B.13)

where the weak angle θ̂w is defined as

s2
w = sin2 θ̂w ≡

ĝ′2

ĝ2 + ĝ′2
=

1

2

[
1−

√
1− 2

√
2παEM
GFm2

Z

]
. (B.14)
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We can then determine the shifts δgi by computing the Jacobian (B.6),

J =


c4
ŵ/4π s

4
ŵ/4π

v̂2/4 v̂2/4 ĝ2/4c2
ŵ

−1/
√

2v̂4

2λ̂ 2v̂2

 , (B.15)

and the remaining K(2,4) terms (B.4, B.5) in Eq. (B.2).
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