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We analyse the dynamics of a light scalar field responsible for the µ term of

the Higgs potential and coupled to matter via the Higgs-portal mechanism. We

find that this dilaton model is stable under radiative corrections induced by the

standard model particle masses. When the background value of the scalar field

is stabilised at the minimum of the scalar potential, the scalar field fluctuations

only couple quadratically to the massive fields of the standard model preventing

the scalar direct decay into standard model particles. Cosmologically and prior

to the electroweak symmetry breaking, the scalar field rolls down along its effective

potential before eventually oscillating and settling down at the electroweak minimum.

These oscillations can be at the origin of dark matter due to the initial misalignment

of the scalar field compared to the electroweak minimum, and we find that, when the

mass of the scalar field is less than the eV scale and acts as a condensate behaving like

dark matter on large scales, the scalar particles cannot thermalise with the standard

model thermal bath. As matter couples in a composition-dependent manner to the

oscillating scalar, this could lead to a violation of the equivalence principle aboard

satellites such as the MICROSCOPE experiment and the next generation of tests of

the equivalence principle. Local gravitational tests are evaded thanks to the weakness

of the quadratic coupling in the dark matter halo, and we find that, around other

sources, these dilaton models could be subject to a screening akin to the symmetron

mechanism.

http://arxiv.org/abs/2303.14469v1
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I. INTRODUCTION

Dark matter (DM) is a basic constituent of our standard cosmological model. A large

number of astrophysical observations constrain the amount of such a component up to the

percent level. However, there is little information about its nature. Thanks to measurements

of large scale structures, we know that the pressure or kinetic energy of DM is negligible.

In this sense, it is said that DM is cold (CDM). However, there are observations associated

with small scales that challenge this standard approach and emphasise potential issues such

as the cusp-core problem [1–6].

In order to explore the properties of DM from the point of view of particle physics, it

is interesting to study its relation with the electroweak sector. This sector is associated

with the mass generation of elementary particles through the Higgs-mechanism. Indeed, the

electroweak scale is the highest one in the Standard Model (SM) of particles and interactions,

and also corresponds almost to the limit of the energy range that can be probed by present

particle colliders, i.e. current particle experiments only probe energies slightly larger than

the electroweak scale. In addition, this sector suffers from hierarchy problems that need to be

understood better from a theoretical point of view, see for instance [7]. In part motivated by

these issues, a large number of DM models expressed in terms of weakly interacting massive

particles (WIMPs) have been proposed in the last decades. These candidates have the

advantage of being produced in the early Universe with the observed order of magnitude for

the DM abundance through the so-called freeze-out mechanism. However, no experimental

evidence has been found for the existence of WIMPs, see [8] for instance for a recent review.

In this work, we consider an alternative DM model directly related to the electroweak

sector. In our case, DM arises from the coherent oscillations of a light scalar field responsable

for the µ term of the Higgs potential. In this sense, it has similarities with relaxion models,

discussed in Refs. [9–13]. The first proposals about coherent bosonic DM date back to the

late seventies in terms of QCD-axion models [14–20]. In general, a coherent DM framework

can be parameterised, from an effective-field-theory point of view, by the DM particle masses

and its self-interactions [21]. The simplest case relies on a massive oscillating scalar field

without self-interactions [20, 22–25]. This type of generic coherent DM theories are typically

indistinguishable from cold DM in relation to the formation of large-scale structures [23, 26–

32]. However, distinctive features at smaller scales can arise from many different causes
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[1–6, 30, 31, 33–40]. Generically, coherent dark matter requires the DM particle mass to

be less than the eV scale [41]. We will see that the eV scale plays a significant role in our

scenario, e.g screening of the Sun is only valid for masses larger than 10 eV.

As the new scalar field determines the Higgs potential, it is coupled to the SM via the

Higgs-portal. This fact determines its coupling with the ordinary matter content of the

standard model. As such, this light scalar resembles a dilaton field associated with the

breaking of conformal symmetry [42]. As we have commented above, our scenario has

similarities with relaxion models [9–12] although there are notable differences. For instance,

at the electroweak minimum of the dilaton potential, the linear coupling to matter vanishes

and only the quadratic coupling remains. This structure is stable under radiative corrections

and the phenomenological signatures change drastically. For instance, we find that the scalar

DM cannot thermalise with the standard model bath when the DM mass is lower than the

electronvolt scale.

The lack of linear coupling leads to another distinctive feature of the model. Matter

couples naturally with a different strength depending on its nature. Therefore, we analyze

the possible observational constraints associated with violations of the equivalence princi-

ple in experiments such as MICROSCOPE and the prospects for the next generation of

experiments. We find that Solar System constraints are evaded due to the weakness of the

coupling. But in other environments the quadratic coupling induces a screening mecha-

nism reducing the constraints on the parameters of the model [43–46]. In other contexts

the scalar field could behave in ways reminiscent of scalarisation [47]. The constraints on

quadratic couplings of ultra light dark matter fields have recently been thoroughly explored

in Refs. [48, 49].

The paper is arranged as follows. In section II, we introduce the model based on a new

scalar degree of freedom. We describe the low energy action, its stability agains radia-

tive corrections and the coupling of the scalar field to the SM. In section III, we analyze

the cosmological evolution supported by the dynamics of this scalar field. The main phe-

nomenological consequences of the model are studied in section IV. In particular, we discuss

the violation of the equivalence principle and the Eötvös parameter. Finally, we summarize

the main conclusions of our work in section VI.
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II. SCALAR-DEPENDENT µ-TERM.

A. The low energy action

We consider a simple model of electroweak symmetry breaking where one real Higgs field

h gives a mass to one Dirac fermion ψ. This model is meant to reproduce in a toy-model

fashion some aspects of the physics of the electroweak symmetry breaking. We will be

interested in the regime where the scalar field φ is much lighter than the Higgs field h, i.e.

mφ ≪ mh. The Lagrangian of the full theory is given by

L = −1

2
(∂φ)2 − 1

2
(∂h)2 +

µ2(φ)

2
h2 − λ

4
h4 − V (φ)− iψ̄ /∂ψ − λψhψ̄ψ. (1)

The electroweak scale is determined by the µ2(φ) mass term in the broken phase which

depends on the light field φ. As long as µ2(φ) < 0, the Higgs field does not acquire a

vacuum expectation value (vev) and no symmetry breaking occurs. The potential V (φ) is

chosen such that the scalar field induces a change from values where µ2 < 0 to µ2 > 0. In

the following we will assume that as long as µ2 < 0 and large, the µ2 function is mostly

linear and the field massless. More precisely, we write the µ2(φ) term as

µ2(φ) = −Λ2
0 + Λ2φ

f
+M2µI

(

φ

f

)

, (2)

where µI is a subdominant term that we can take to vanish at the transition point

µI(Λ
2
0/Λ

2) = 0. The scales Λ0, Λ and M are lower than the cut-off scale of the model

Λc. We assume that the following hierarchy is realised

v ≪ Λc. (3)

This corresponds to requiring that the electroweak symmetry breaking happens at low energy

compared to the cut-off scale of the theory The scale f determines the dynamics of φ. This

could be for instance the vev of a U(1) breaking field if φ were a pseudo-Goldstone mode.

Notice that we assume that the correction µI is present in the whole range of validity of the

effective field theory. In particular, it does not only appear when the electroweak symmetry

takes place and we will assume that the effective description is valid from inflation down to

lower energies.

We also assume that the field φ couples to the inflaton in the Jordan frame through the

metric

gJµν = A2(φ)gµν , (4)
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where gµν is the Einstein frame metric. This implies that the scalar potential of the scalar

is corrected and becomes [50]

Veff(φ) = V (φ)− T [A(φ)− 1] , (5)

where we choose

A(φ) = 1 +
(φ− φe)

2

2m2
Pl

, (6)

and T is the trace of the energy momentum tensor of the inflaton. During inflation T =

−4Vinf where Vinf is the potential energy leading to a de Sitter phase. This coupling forces

the scalar field to a value φ ≃ φe at the end of inflation, which then provides an initial

condition for the evolution of the field in the post-inflationary universe. Other mechanisms

could be invoked to regulate the early Universe behaviour of the field and slow it down

after inflation. Here we consider this simplified description as a proxy for potentially more

complex mechanisms which are beyond the scope of this paper, see for instance [41]. We

will discuss the cosmological evolution of the model, including the dynamics of the scalar

field during inflation, further in Section III.

B. The Higgs phase

After inflation, the field will evolve until a point where µ2(φ) > 0, and the Higgs field

acquires a large mass compared to that of the scalar field φ, as a result one can ‘integrate

out’ the Higgs field using the classical equations of motion

λh2(φ) = µ2(φ)− λψ
h(φ)

ψ̄ψ. (7)

This method of removing the Higgs degree of freedom is valid as the Higgs-scalar mass

matrix does not have a massless eigenvalue [51]. Let us first work at the classical level by

solving Eq. (7) to lowest order in a perturbative expansion in ψ̄ψ and obtain

h(φ) =
µ(φ)√
λ

− λψ
2µ2(φ)

ψ̄ψ . (8)

At lowest order this gives the vev of the Higgs field as

v =
µ(φ̄)√
λ
, (9)
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where the dilaton field φ is stabilised at φ = φ̄ with a mass mφ. We can also obtain the

effective Lagrangian for φ at the classical level

L = −1

2
(∂φ)2 − V (φ) +

µ4(φ)

4λ
− iψ̄ /∂ψ − λψ

µ(φ)√
λ
ψ̄ψ . (10)

This Lagrangian contains the classical part of the potential for φ

Vclas(φ) = V (φ)− µ4(φ)

4λ
, (11)

which determines the dynamics of φ after electroweak symmetry breaking. In the following,

we will see that the term in µ4 can be neglected.

C. Radiative corrections

A potential for the dilaton field V (φ) is naturally present as it can be induced by radiative

corrections of the Higgs field h. Closing the Higgs loop in the coupling provided by Eq. (1),

i.e. µ2(φ)h2/2, gives :

Vone loop(φ) ⊃
Λ2
c

32π2
µ2(φ) , (12)

where Λc is the scale at which the Higgs quadratic divergence gets cut off. In the spirit of

effective field theories where allowed couplings should be present, we will assume that the

potential for the scalar φ is corrected at the one loop level by the Higgs loop to

V (φ) = V0(φ)− a
Λ2
c

32π2
µ2(φ) , (13)

where a is a dimensionless constant. We will assume that a > 0 in order to ensure that this

contribution to the scalar potential decreases from the symmetric phase to the electro-weak

breaking one. We will also simplify the model by taking V0(φ) = V0 which makes sure that

the vacuum energy vanishes at the minimum of the potential.

There are also logarithmic corrections to the potential. As the mass of the Higgs field

is m2
h = 2µ2(φ) when the electroweak symmetry is broken, the corrections to the scalar

potential are proportional to µ4(φ). At the one loop level this yields for the total effective

potential

Veff(φ) = V (φ)− µ4(φ)

4λ
+
µ4(φ)

16π2
ln

Λ2
c

2µ2(φ)
, (14)

where Λc is the UV renormalisation scale of the Higgs-scalar theory. This is the usual

Coleman-Weinberg correction at one loop calculated in dimensional regularisation [52]. The
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corrections due to the masses of matter particles have the same form. Indeed, the masses

are all proportional to µ(φ) and therefore lead to the same type of one-loop corrections.

Higher order loops should also contribute to the effective potential in µ4 as µ is the only

mass scale in the theory below the cut-off. In Eq. (14) we see that the corrections in µ4

can be incorporated in a redefinition of the self-coupling λ which becomes λ(v) due to the

logarithmic corrections

λ→ λ(v) = λ

(

1 +
λ

4π2
ln

Λ2
c

2λv2

)

, (15)

and similarly for loops coming from matter fields. Loops induced by the scalar field itself

will scale in m4
φ which is assumed to be very small compared to µ4. Hence we neglect the

self-loops of φ in the following and work at the classical level when it comes to the scalar field

φ. The self-coupling will always be taken to be the renormalised one λ(v) at the electro-weak

scale.

In the following, we will focus on a scenario where the scalar field φ evolves cosmologi-

cally towards the minimum φ̄ of the scalar potential and eventually oscillates around this

extremum, such that oscillations are described by ϕ = φ− φ̄. In particular we will focus on

models where

V (φ) = −gΛ2
cµ

2(φ) + V0 , (16)

where g = a
32π2 > 0. The minimum of the scalar potential in the radiation era corresponds

to

∂φµ
2(φ̄) = 0 . (17)

The contribution in −µ4/4λ from the Higgs phenomenon does not change this result and is

always negligible as µ ≪ Λc close to the electro-weak transition.

D. Couplings to bosons

So far we have only considered the coupling of the scalar ϕ to fermions via the Higgs

portal. Couplings to photons and gluons are induced by triangular anomalous diagrams

where massive fermions run in the loop. This affects the low energy theory of the dark

matter field each time a particle of the standard model decouples [42]. This induces an

effective interaction Lagrangian of the type

δL = −αF (E)e
2

4

ϕ2

Λ2
f

FµνF
µν − αG(E)g

2
3

4

ϕ2

Λ2
f

GµνG
µν , (18)
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where αF,G(E) are numerical constants depending on the charges of the decoupled fermions,

i.e. fermions more massive than E, under the electromagnetic U(1) symmetry and the

QCD (Quantum ChromoDynamics) SU(3) group, see for instance [42, 53] for an explicit

discussion1. The coupling constant e and g3 are the electromagnetic and QCD coupling

respectively evaluated at the energy scale E. The sign of the interaction Lagrangian is given

by the sign of the interaction between the scalar and fermions. In the following we will be

interested in the low energy effects of the coupling to photons at energies well below the

electron mass. As a result, the coefficient αF will take into account the decoupling of all

the standard model particles. On the other hand, the coupling to the gluons is relevant to

determining the QCD condensation scale. In this case, αG depends on the decoupling of the

heavy quarks c, b and t. We will return to the consequences of these couplings in Section

VC.

E. Back-reaction

Using the effective Lagrangian, Eq. (10), we can see that in the Higgs phase, when

standard model fermions have acquired a mass, the scalar potential is modified by the

average fermion number

Vmatter(φ) = Veff(φ) +
λψ√
λ
µ(φ)nψ , (19)

where nψ = 〈ψ̄ψ〉 is the fermion number density. This is only valid when µ2 > 0, and we are

in the Higgs phase. When µ2 < 0, the matter effect disappears and the potential is simply

Vno matter(φ) = Veff(φ) . (20)

This back-reaction behaviour is reminiscent of a coupling to the trace of the energy momen-

tum tensor for scalar-tensor theories [50]. Close to the electroweak transition, the matter

term is much smaller than the effective potential as nψ ∼ T 3 where T ∼ v and Λc ≫ v.

This implies that in the vicinity of the electroweak transition, the matter corrections are

negligible.

1 The coefficients are given by αF (E) =
∑N

>
f

i=1
q2i

24π2 , where N>
f is the number of particles and antiparticles

of charges qi which have decoupled at the energy E. Similarly we have αG(E) =
∑N>

f
i=1

T (Ri)

12π2 , where the

fermions are in the representation Ri such that the Lie algebra generators are normalised by Tr(T aT b) =

T (Ri)δ
ab.
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In addition to the coupling in Eq. (10), we could included higher order couplings between

the Higgs field and matter of the type

δL ⊂ − hn

Λn−1
h

ψ̄ψ , (21)

where Λh is a cut-off scale in the Higgs sector. Typically this type of operator leads to a

matter correction to the scalar potential

δVmatter ⊂
vn

Λn−1
h

nψ , (22)

after the electroweak transition. This is always a negligible contribution to the potential at

the electroweak scale for T ∼ v as v ≪ Λh . Λc.

In the following, we will consider models where the field φ can escape the vicinity of the

minimum at φ̄ if the field φ reaches values such as µ2 ≃ −M2 where M is a large scale

taken to be smaller than the cut-off scale Λc. Now the matter back-reaction would stop the

field from jumping over the barrier associated to the potential V (φ) = −gΛ2
cµ

2 if the µ term

were prevented from reaching a large value of order M . We assume that the scale M is the

natural scale M ≫ v of |µ(φ)| far away in field space from the minimum of the potential

where µ(φ̄) ≪ M . In this case, this stopping mechanism would be reminiscent of the

Damour-Nordtvelt effect [43, 44] for the models considered here, whereby the electroweak

scale should be driven close to the zero of µ cosmologically in an attractor fashion. The

higher order terms in Eq. (21) provide a stopping correction to the scalar potential of the

form

δV (φ) ≃ µn(φ)

Λn−1
h

v3 , (23)

where h(φ) = µ(φ)/
√
λ and nψ ≃ v3. This term dominates compared to V (φ) when µ ∼ M

provided
(

M

Λh

)n−2

&
Λ2
cΛh
v3

. (24)

This can be realised if M ≫ Λh where higher and higher corrections to the Higgs portal

would back-react strongly on the dynamics of the dilaton. Of course this is beyond the

realm of the effective field theory set up we have adopted here as the full non-perturbative

series has to be known. The only conclusion we can draw is that a full analysis of the Higgs

sector and its coupling to matter is necessary to probe the large µ2 > 0 region of the theory.

In particular, it is quite likely that after the electroweak phase transition the effects of such
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matter couplings could be efficient enough to stop the dilaton and guarantee that the field

simply oscillates around the minimum where µ ∼ v close to µ = 0. A full discussion of this

issue goes beyond the present paper, and we refer the reader to Ref. [41]. In addition to the

higher order corrections to the Higgs coupling, thermal effects must be taken into account,

as it has been discussed in Ref. [45]. As the coupling of the scalar field is proportional

to the trace of the energy-momentum tensor, it is commonly assumed to vanish during the

radiation dominated epoch in the early universe. However, finite radiative corrections to the

coupling impact generically on the evolution of the field, modifying the allowed region of

its parameter space, changing the abundance of different cosmological relics and producing

early phases of contracting evolution (in the Jordan frame) [45]. In the following, we will

analyse the dynamics of the theory by neglecting these thermal effects, that will be taken

into account in future works.

F. The coupling to matter

The light scalar field φ couples to matter via the Higgs portal. In the Higgs phase where

matter fields acquire a mass, one can expand the light scalar field φ = φ̄ + ϕ to obtain the

resulting interaction between ϕ and matter

Lint = − β

mPl
mψϕψ̄ψ − mψ

2Λ2
f

ϕ2ψ̄ψ , (25)

where we have identified mψ = λψv. The scalar has a Yukawa type coupling

β ≡ mPl

∂φµ(φ)|φ̄√
λv

= 0 (26)

where the Higgs vev v was defined in Eq. (9) and a quadratic coupling

1

2Λ2
f

=
∂2φµ

2µ
= −

m2
φ

4gµ2Λ2
c

, (27)

which is composition independent at the fundamental fermion level, i.e. it depends not on

the fermion species ψ. On the other hand, the coupling to nucleons will depend on the

species and this could induce violations of the equivalence principle. We will investigate this

possibility below.

As a result the light scalar field ϕ whose mass is given by

m2
φ = −

µ2∂2φµ
2

2λ
+ V ′′|φ̄ , (28)
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is stable quantum-mechanically, i.e. there is no decay into two fermions at tree level in

vacuum. The scalar mass is dominated by

m2
φ ≃ −gΛ2

c∂
2
φµ

2 = −2gΛ2
cµ∂

2
φµ , (29)

where the last equality is valid at the minimum where ∂φµ = 0. We will see below how this

mass scale can be much smaller than mh.

In the following we will be interested in ϕ as a candidate for dark matter where ϕ is light,

i.e. mφ . 1 eV [41]. In principle the coupling Eq. (25) could induce the thermal equilibrium

between φ and the standard model fields, eventually leading to the freezing out of the φ

abundance which could then be adjusted to match the present amount of dark matter in

the Universe. But as we will see in Section IIIC, it is not possible for the scalar field in our

model to be in thermal equilibrium with the thermal bath. Another possibility, as mφ is

small, could be that the scalar φ decoupled when relativistic. The remaining abundance of

hot dark matter behaves as Ωφh
2 ≃ 10−3(100

g⋆
)(

mφ

1 eV
), where g⋆ is the number of relativistic

species at decoupling. For very light scalars, the abundance of hot dark matter becomes

negligible.

So the scalar field in our model can only play the role of dark matter in a non-thermal

fashion and decouples from quarks and leptons at the electroweak symmetry breaking. In

this case, decoupling happens before the scalar acquires a mass and therefore causes no issue

with the abundance of dark matter, whether hot or cold. In the following we will consider the

natural situation where the scalar field rolls down along its potential from small values before

oscillating around its minimum. This mechanism is similar to the misalignment mechanisms

used for axion [18, 20, 54–56] or scalar dark matter models such as fuzzy dark matter [25].

The abundance of dark matter in these cases is related to the amplitude of the oscillations

around the minimum.

G. An explicit dilaton model

As we expect fluctuations of the scalar around the minimum of its potential to play the

role of dark matter, we now return to finding the minimum of the scalar potential and

imposing that electroweak symmetry breaking takes place at the scale v. For this, let us

notice that in the radiation dominated era the minimum of the effective potential, Eq. (16)
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with µ defined in Eq. (2), is such that

dµI(y)

dy

∣

∣

∣

∣

ȳ

= − 2Λ2

πM2
, (30)

in terms of the rescaled scalar field y = πφ/(2f) and its vev ȳ. The electroweak scale is

determined by imposing that at the minimum we have µ2(φ̄) = λv2 which implies that

µI(ȳ)− ȳ
dµI
dy

∣

∣

∣

∣

ȳ

=
Λ2

0

M2
+ λ

v2

M2
. (31)

As a typical example we choose a correction to the µ2 term of the axion type where

µI(y) = cos y . (32)

where we have assumed that Λ0 = Λ. The axionic contribution vanishes for y = π/2 so that

the transition from µ2 < 0 to µ2 > 0 takes place where both the linear part of µ2 and µI

vanish. Explicitly we have

µ2(φ) = Λ2

(

φ

f
− 1

)

+M2 cos

(

π

2

φ

f

)

. (33)

We find that Eq. (30) implies that

sin ȳ =
2

π

Λ2

M2
. (34)

The tuning of the electroweak symmetry breaking, Eq. (34), can be satisfied provided

cos ȳ + ȳ sin ȳ = λ
v2

M2
+

Λ2
0

M2
. (35)

This can be easily analysed by expanding the µ2 term around y = π/2 using ȳ = π/2(1+ δ).

This gives

µ2(φ) =
(

Λ2 − π

2
M2
)

δ +
M2

6

(π

2
δ
)3

. (36)

The minimum of the potential is then given by

δ2 = 2

(

2

π

)3(
π

2
− Λ2

M2

)

. (37)

Imposing that µ2(φ̄) = λv2 implies that

δ =
3

2

λv2

Λ2 − π
2
M2

. (38)
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These two conditions, Eqs. (37) and (38), are compatible provided the two scales Λ and M

are related by

Λ2

M2
=
π

2

[

1−
(

3λv2

2
√
2M2

)2/3
]

. (39)

This may appear as a tuning of the potential although we have seen that radiative corrections

preserve the shape of µ2 and therefore the ratio between Λ and M .

Defining

ǫ =

(

3λv2

2
√
2M2

)2/3

, (40)

we find that the value of δ at the minimum of the potential is

π

2
δmin = −

√
2

(

3λv2

2
√
2M2

)1/3

= −
√
2ǫ . (41)

Notice that this extremum is a maximum of µ2. As a result we get a minimum for the scalar

potential and a mass for the scalar field

m2
φ = −g

(π

2

)3

δmin
M2Λ2

c

f 2
. (42)

This mass is reduced compared to the naive expectation of the mass that one might obtain

from considering Eq. (33) and assuming cos(πφ/2f) ∼ 1, which would give

m2
0 = g

π2

4

M2Λ2
c

f 2
. (43)

In fact the mass is reduced by a factor of δmin [9], i.e.

m2
φ = −π

2
δminm

2
0 =

√
2ǫ m2

0 . (44)

The mass m0 is suppressed compared to the cut-off scale by a factor of f . Moreover the

mass of the scalar field mφ in the shallow part of the potential close to the minimum is

reduced a factor of ǫ1/4 which is also small, see Fig. 1. This small mass will eventually be

identified with the mass of the scalar dark matter in the Universe. We are also interested in

the location of the field where the potential vanishes. The potential vanishes where µ2 = 0

corresponding to δ = 0 and also for

π

2
δ0 = −

√
6

(

3λv2

2
√
2M2

)1/3

= −
√
6ǫ . (45)

In the interval between δ0 and the origin, the mass of the field is of order of mφ. In this

region, the potential is very flat as can be seen in Fig. 1.
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III. COSMOLOGICAL EVOLUTION

A. Inflation

During inflation, the electroweak symmetry is preserved and 〈h〉 = 0. The dynamics of

φ are determined by

Veff(φ) = −gΛ2
cµ

2(φ) + 6H2
inf(φ− φe)

2 + V0 . (46)

where the form of the coupling to the inflaton Hubble rate, Hinf , is assumed to be given in

Eq. (6). The large quadratic term due to the coupling to inflation forces φ to be close to φe

and stabilised. The minimum of the effective potential is obtained for

φinf = φe +
gΛ2

c

12H2
inf

∂φµ
2|φ=φinf . (47)

This is of order
φinf − φe

f
∝ gΛ2

cM
2

f 2H2
inf

∼ m2
0

H2
inf

≪ 1 . (48)

which is very small as long as we assume that m0 ≪ Hinf , and in addition we will assume

that Hinf ≪ Λc. In particular this implies that the field does not move at the end of inflation

until the Hubble rate goes down to H ≃ m0 in the post-inflationary era, an expectation

that is confirmed by our numerical solutions, see Figure 3. This is independent of the choice

of φe. Notice that during inflation the mass of the scalar field is m2
inf = 12H2

inf implying

that the field is heavy and no isocurvature fluctuations are generated.

B. Post-inflation evolution

The equation of motion of the scalar field is the Klein-Gordon equation

φ̈+ 3Hφ̇+
dV

dφ
= 0 , (49)

with the specific potential

V (φ) = −gΛ2
cµ

2 + V0 = −gΛ2
c

[

Λ2

(

φ

f
− 1

)

+M2 cos

(

π

2

φ

f

)]

+ V0. (50)

It is useful to change the time variable to τ = m0t, to obtain the reduced equation in the

radiation era

y′′ +
3

2τ
y′ + sin(y) = 1− ǫ , (51)
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ϵ=0.05
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V(y)

FIG. 1. The normalised potential V (y) where y = πφ
2f for ǫ = 0.05. The oscillations of the dark

matter field take place on the flat part of the potential close to the first minimum on the positive

real axis. The field is first stabilised during inflation and then released in the post-inflationary

era when the Hubble rate drops below the mass of the scalar field. The oscillatory behaviour is

guaranteed as long as the potential is not too flat. The mass on the steep part of the potential is

typically 1/
√
ǫ larger than close to the minimum.

where, as before, y = πφ/(2f), ǫ was defined in Eq.(40) and the primes denote derivatives

with respect to the rescaled time τ . This corresponds to the motion of the particle y(τ) in

the potential V (y) = −(1− ǫ)y − cos(y) shown in Fig. 1.

The field starts rolling at the end of inflation, at time τi ≪ 1, with zero velocity. In the

limit τi → 0, there is a regular solution with a Taylor expansion of the form

y(τ) = y0 + y2τ
2 + y4τ

4 + y6τ
6 + . . . (52)

Substituting into the equation of motion gives the coefficients

y2 =
1− ǫ− sin(y0)

5
, y4 =

cos(y0)[−1 + ǫ+ sin(y0)]

90
, . . . (53)

and we can see that the field only moves significantly after a time τ & 1, that is, after

H . m0
2.

2 A more detailed study of the slow roll evolution of the field after the end of inflation can be found in

appendix B.
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FIG. 2. Scalar field trajectories y(τ) = πφ
2f as a function of τ for the initial conditions y0 = 1, 0,

−1, and the smallest associated values of ǫ that ensure the field remains trapped in the first local

minimum.

In this paper, we assume that the field starts near the first positive minimum, located

at y ≃ π/2, that is, −1 . y0 . π/2. Then, for ǫ > 0 not too small, because of the Hubble

friction, the field will remain trapped inside this first shallow potential well and oscillate at

late times around the equilibrium value

ȳ = arcsin(1− ǫ) =
π

2
−

√
2ǫ+ . . . , V ′′(ȳ) =

√
2ǫ+ . . . (54)

We show in Fig. 2 the trajectories obtained for different values of the initial condition y0 with,

in each case, the smallest value of ǫ that keeps the field trapped in the first local minimum.

We see that as y0 is decreased from π/2, the parameter ǫ must increase to enhance the

barrier at the right of the local minimum. However, thanks to the Hubble friction, which

slows down the rolling down the potential, small values of ǫ . 0.1 are sufficient to keep the

field in the local potential well for a reasonably large range of initial conditions, −1 . y0 . 1.

From the definition of ǫ in equation (40) we see that this is guaranteed as long M & 1 TeV.

For larger values of M , ǫ would be smaller and as a result the basin of attraction of the

minimum would shrink.

Writing y = ȳ + π
2
δ, as before, we obtain for the late-time small oscillations the equation

of motion

δ′′ +
3

2τ
δ′ +

√
2ǫ δ = 0 . (55)
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This gives decaying oscillations of the form δ = τ−1/4J±1/4((2ǫ)
1/4τ). As τ ≫ 1 this cor-

responds to harmonic oscillations with an amplitude that slowly decays as τ−3/4 ∝ a−3/2,

where a(τ) is the cosmological scale factor. This gives an energy density ρφ that decays as

a−3, as for dark matter. The potential V (φ) of Eq.(50) reads V (φ̄)+gΛ2
cM

2
√

ǫ/2(y−ȳ)2+. . .
The first local maximum for y > ȳ is for ymax = π/2 +

√
2ǫ + . . . . If the scalar field first

turns around at a value smaller but of the order of ymax, we obtain that at τ ∼ 1/2 the dark

matter density is

H ∼ m0 : ρ ∼ gΛ2
cM

2ǫ3/2 ∼ gλΛ2
cv

2 . (56)

At later times this energy density evolves like cold dark matter and decays as a−3. The

initial dark matter density is then

ρin =
1

2
m2
φφ

2
0 , (57)

which is then red-shifted up to now to become the dark matter density in the present

Universe ρ0.

C. Thermalisation

We can now come back to the thermalisation of the scalar particles and impose that the

scalar is never in equilibrium with the particles of the Standard Model. This requires that

the decoupling temperature Tdec & v. Let us examine this scenario.

The coupling between the scalar and matter is quadratic in the scalar with a coupling

constant 1/Λ2
f of order m2

φ/v
2Λ2

c . In the relativistic regime, the square of the scattering

amplitude φ+ φ→ ψ + ψ behaves like 3

|M|2 ≃
m2
ψ

4Λ4
f

(uv̄)2 , (58)

where in the relativistic regime the external spinors are such that uv̄ ≃ T . The cross section

is of order

σ ≃ |M|2
s

, (59)

where the Mandelstam variable s ≃ T 2, which yields

σ ≃
m2
ψ

128π2Λ4
f

, (60)

3 Note that in this expression v is a spinor, whereas elsewhere in this article v refers to the vacuum

expectation value of the Higgs field.
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which is constant4. In this regime the number of relativistic species is given by g̃⋆ and the

the number density of massive particles reads n ≃ g̃⋆ζ(3)T
3/π2 where g̃⋆ =

∑

bosons g
B
i +

∑

fermions
3
4
gFi and gB,Fi are the degeneracy factors for bosons and fermions. The reaction

rate is therefore

Γ =
g̃⋆ζ(3)

π2
σT 3 ≃

m2
ψ

4Λ4
f

T 3 , (61)

and the Hubble rate is given by

H ≃
√

g⋆π2

30

T 2

mPl
, (62)

where g⋆ =
∑

bosons g
B
i +
∑

fermions
7
8
gFi . The sum is taken over all the particles of the Standard

Model. Equilibrium is maintained when Γ & H which implies

T ≥ Tdec ≃
4Λ4

f

m2
ψmPl

, (63)

where we have taken g̃⋆ ∼ g⋆ ∼ 100.

The scalar is never in thermal equilibrium when Tdec & v. We use this criterion as at

higher temperatures the electroweak transition has not occurred and the dilaton field does

not behave like dark matter. This corresponds to

mψ

2Λ2
f

. (mPlv)
−1/2 , (64)

or more appropriately

mφ

v
.

Λc
mPl

(

m3
Pl

m2
ψv

)1/4

≃ 1013
Λc
mPl

. (65)

where the final approximate equality arises when mψ ∼ GeV corresponding to the b quarks.

Indeed, the most severe constraint comes from the heaviest quark with a mass mψ of a few

GeV’s. As the cut-off scale, Λc, must be larger than one TeV, the bound in Eq. (65) is

always satisfied as soon as mφ . 1 GeV. This is always satisfied, as the range of masses

for which the occupation number of the oscillating scalar is large enough to describe dark

matter is mφ . 1 eV [57]. As a result we conclude that the oscillating dilaton scalar never

thermalises with the standard model and can describe dark matter via the misalignment

mechanism.

4 The cross section is given by σ =
m2

ψ

128π2Λ4

f

s−4m2

ψ

s

√

s−4m2

ψ

s−4m2

φ

. Taking the limit s ∼ T & mψ,mφ, we find

σ =
m2

ψ

128π2Λ4

f

.
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FIG. 3. The normalised y = πφ/2f field as a function of τ for ǫ = 0.01. The blue curve is

the numerical solution. The red one the approximate solution. One can see that the slow roll

approximation is valid for a few Hubble times.

IV. VIOLATION OF THE EQUIVALENCE PRINCIPLE

A. The coupling to matter

The oscillating scalar field around the minimum of the ϕ scalar potential induces a

quadratic coupling to fermions of the type

L ⊃ mψ

2Λ2
f

ϕ2ψ̄ψ , (66)

which implies a universal dependence of the fermion masses

mψ(ϕ) = mψ

(

1− ϕ2

2Λ2
f

)

. (67)

Notice that the coupling to matter tends to destabilise the scalar field like in scalarisation

models [47]. As such the weak equivalence principle is respected at the level of elementary
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particles as each fermion couples universally to the dilaton with a Jordan frame metric

gψµν =

(

1− ϕ2

2Λ2
f

)2

gµν , (68)

where gµν is the Einstein frame metric. On the other hand, as macroscopic matter is com-

posed of atoms themselves comprising a nucleus and electrons, the coupling to a particular

species depends on the number of nucleons A and the number of electrons Z of the material.

This is important as tests of the equivalence principle are carried out with two different

bodies with different numbers of electrons and nucleons. The Klein-Gordon equation for the

scalar ϕ in the presence of matter species A of density ρA now reads

�ϕ = m2
φϕ+

αA(ϕ)

mPl
ρA . (69)

The species-dependent coupling function is defined as

αA(ϕ) = mPlQA
∂ϕmψ(ϕ)

mψ
= −QA

mPl

Λ2
f

ϕ , (70)

where QA is a dimensionless phenomenological coefficient. Concentrating on the contribu-

tions from the fermion masses, QA is given by

QA = Q+ [Q′
A]m̂ + [Q′

A]me
+ [Q′

A]δm , (71)

where the couplings to the average mass of the u and d quarks is [Q′
A]m̂, the coupling to

the electron mass is [Q′
A]me

and the coupling to the u-d mass difference is [Q′
A]δm. They are

tabulated for different metals [48]. The universal coupling Q ≃ 0.093 is also phenomenolog-

ical. Depending on the sign of QA, the model will behave like a symmetron (QA < 0) [46]

or scalarisation [47] (QA > 0). The effects of the coupling to the gluons will be analysed

below.

The field at infinity oscillates as

ϕ∞(t) = ϕ0 cos(mφt) , (72)

and must be regular at the centre of the ball of uniform density ρA, mass MA and radius

RA. These boundary conditions determine the field profile, which takes the form [48]

ϕ = ϕ0 cos(mφt)f±(r/RA) . (73)
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The sign of the charge QA selects either the function f+ or f−, with

QA < 0 : x < 1, f+(x) =
1

cosh u

sinh ux

ux
and for x > 1, f+(x) = 1− 1

x

(

1− tanh u

u

)

,

QA > 0 : x < 1, f−(x) =
1

cosu

sin ux

ux
and for x > 1, f−(x) = 1− 1

x

(

1− tanu

u

)

,

(74)

with

u =

√

|QA|
ρAR2

A

Λ2
f

=

√

|QA|ΦA
6m2

Pl

Λ2
f

, (75)

where we introduced the gravitational potential at the surface of the object, ΦA =

GNMA/RA. In both cases, outside the object we have

r > RA : ϕ = ϕ0

(

1− sA
GNMA

r

)

cos(mφt) = ϕ∞(t)− βA(t)

4πmPl

MA

r
, (76)

where we introduced the couplings sA and βA(t), which are related by

βA(t) =
sAϕ∞(t)

2mPl
. (77)

In the unscreened regime, the couplings that give the amplitude of the fifth force outside of

the objects are

unscreened: |u| ≪ 1, sA =
2QAm

2
Pl

Λ2
f

, βA(t) =
QAmPlϕ∞(t)

Λ2
f

= αA(ϕ(t)) , (78)

and the field is almost constant inside the object. This coupling is the same as the one of a

point particle, i.e. no effect results from the finite size of the object.

On the other hand, in the screened regime associated with large Newtonian potential ΦA,

the couplings are

screened: |u| ≫ 1, sA =
1

ΦA
, βA(t) =

ϕ∞(t)

2mPlΦA
, (79)

and the field shows a steep decay or fast oscillations inside the object. Notice that ob-

jects with large Newtonian potentials tend to be screened, a result reminiscent of screening

mechanisms in modified gravity [58]. We will comment on this analogy below.

The coupling of the scalar to matter differs in the screened and unscreened cases. It is only

species-dependent in the unscreened regime, through the charge QA. On the other hand,

it is object-dependent in the screened regime through the dependence on the Newtonian

potential ΦA. Objects with various Newton potentials have differing trajectories depending

on the couplings βA ∝ 1/ΦA.



22

B. Screened modified gravity

The screening regime and the resulting screening mechanism for the dark scalar is similar

to the symmetron screening mechanism, where the coupling to matter vanishes in regions

of high density. Here and contrary to the symmetron case, the solution outside the object

is the time-varying ϕ∞. The screening criterion |u| ≫ 1 is analogous to the one for all

non-derivative screening mechanisms [58], i.e

|βscreened
A | ≤ |βunscreened

A | : |ϕ∞|
2mPlΦA

≤ mPl|QA||ϕ∞|
Λ2
f

. (80)

This corresponds to requiring that the effective coupling βA is less than the coupling αA

that an unscreened object such as a point particle would experience. For static objects, the

scalar force is proportional to the gradient of the scalar field. Focusing on solar system tests

where the test objects such as the Cassini satellite have very small Newtonian potentials and

behave like point particles in the scalar dark matter background, screening may occur if the

Earth or the Sun themselves are screened. Thus, if the Earth is screened, the field gradient

is suppressed and no deviation from General Relativity will take place in the vicinity of the

Earth. The Cassini bound [59] implies that

〈β⊕αS〉 ≤ 2× 10−5 , (81)

where ⊕ denotes quantities evaluated for the Earth, and S for the satellite, and Q⊕ ∼ 0.1

for a model of the Earth made of silicon and iron, and QS ∼ 0.1 for a metallic satellite. We

have taken the average over the rapid oscillations of the scalar field. This bound depends

on the dark matter density locally ρ0 = m2
φϕ

2
0/2, which is of the order of 106 times the

cosmological matter density. This becomes the numerical constraint

QSρ0
m2
φΦ⊕Λ

2
f

≤ 2× 10−5. (82)

Using equation (75), we see that the Earth is screened provided

Λf
mPl

≪
√

2Q⊕Φ⊕ , (83)

where Φ⊕ ≃ 10−9. For the typical H/He composition of the Sun we have |Q⊙| ≃ 0.15 and

Φ⊙ ∼ 10−6, we see that the Sun is automatically screened if the Earth is screened.
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C. The Eötvös parameter

The contribution to the acceleration of an unscreened body A in the field ϕ due to the

environment is given by

~a ϕA = −βA(ϕ)
mPl

(~∇ϕ+ ~vAϕ̇) , (84)

where ~vA is the non-relativistic velocity of body A. Here we have

βA(ϕ)

mPl

=
QAϕ

Λ2
f

. (85)

The acceleration of the test body A due to the scalar field ϕ generated by a distant massive

body C is then given by

~a ϕA = QA
ϕ2
0

Λ2
f

cos2(mφt)

(

1− sC
GNMC

r

)[

sC
GNMC

r3
~r −mφ~vA

(

1− sC
GNMC

r

)

tan(mφt)

]

.

(86)

This is only the acceleration due to the scalar to which the gravitational acceleration should

be added.

Let us now consider two test bodies A and B at the same location r from a distant object

C, e.g. the two cylinders of the MICROSCOPE experiment aboard a satellite at 710 km

from the Earth in a nearly circular orbit and falling in the terrestrial gravitational field [60].

Then the difference between their accelerations towards the third object C is given by

~a ϕA − ~a ϕB =(QA −QB)
ϕ2
0

Λ2
f

cos2(mφt)

(

1− sC
GNMC

r

)

×
[

sC
GNMC

r3
~r −mφ~v

(

1− sC
GNMC

r

)

tan(mφt)

]

, (87)

where we have taken that the centres of mass of the two objects coincide. We see that the

factor (1 − scGNMC/r) modulates the Newtonian acceleration and vanishes when r = RC ,

the radius of object C, if object C is screened. Hence the violation of the equivalence

principle are maximised for satellite experiments and minimised on the Earth, which must

be screened for usual modified-gravity scenarios to pass terrestrial tests of gravity. There is

an extra modulation when the objects move around C with a common velocity ~v.

We define the Eötvös parameter

ηAB = 2

∣

∣

∣

∣

~aA − ~aB
~aA + ~aB

∣

∣

∣

∣

≃
∣

∣

∣

∣

~a ϕA − ~a ϕB
~aN

∣

∣

∣

∣

, (88)
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where ~aN = −GNMC~r/r
3 is the common Newtonian acceleration of the two bodies. For

quasi-circular orbits and on average this gives

ηAB =
ϕ2
0

2Λ2
f

|QA −QB|sC
(

1− sC
GNMC

r

)

, (89)

where r is the radius of the orbit. If the Earth is screened, then for experiments such as

MICROSCOPE we have sC = s⊕ ≃ 1/Φ⊕ ≃ 109. This implies that

ηAB =
ϕ2
0

Λ2
f

|QA −QB|
Φ⊕

(

1− R⊕

r

)

. (90)

Moreover in this experiment two cylinders of Platinum and Titanium alloys were used with

QTi −Q ∼ −10−2 and QPt −Q ∼ −7.5 10−3 and |QTi −QPt| ∼ 2.9 10−3. As a result we get

a bound from |ηPt−Ti| ≤ 5 10−15 [61] on the amplitude

ϕ0

Λf
≤ 10−10 . (91)

This can be used to put bounds on the parameters of the model as we can write

√
ρ0

mφΛf
≤ 10−10 , (92)

which relates the cut-off of the theory, the mass of the dark matter field and the local density

of dark matter. Fixing the local dark matter density also implies

√

mφΛf > 10−5 GeV , (93)

which correlates the suppression scale of the quadratic coupling to matter and the scalar

mass.

D. Constraints on the dilaton model parameters

1. Unscreened case

For scalar masses below 1 eV, it is straightforward to check that the Earth and the Sun

are both unscreened implying that the scalar field behaves like a nearly massless (when the

range is large enough) field in the solar system with an effective coupling to matter

βA =
QAmPlϕ0

Λ2
f

. (94)
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Using ϕ0 =
√
2ρ0/mφ, the effective coupling is of order

βA ≃ QA

gλ

mφmPl
√
ρ
0

8
√
2v2Λ2

c

∼ 10−24 1

gλ

QA

0.1

mφ

1 eV

(

Λc
1 TeV

)−2

. (95)

This small value of βA guarantees that the MICROSCOPE results are hardly affected by

the scalar field.

Moreover, solar system tests are evaded when the coupling is smaller than the Cassini

bound of order 10−5 for β2
A. This is easily satisfied due to the very small value of the dark

matter density and the smallness of the scalar mass. Therefore, even when the scalar is very

light and the screening mechanism does not operate, the fact that the coupling to matter is

proportional to ϕ0 which is very small implies that the scalar is effectively decoupled from

matter. The coupling becomes large enough to lead to possibly detectable effects only if

locally the density of dark matter were to increase, for example due to the presence of a

dark matter clump, significantly above the dark matter halo density [62]. The investigation

of this possibility is left for future work.

2. Screened Case

To see where in the dilaton parameter space screening might be relevant for terrestrial

and satellite experiments, we start from the quadratic coupling

1

Λ2
f

= −
∂2φµ

2

2µ2
, (96)

where we recall that the linear coupling vanishes as ∂φµ = 0 at the minimum of the potential.

Explicitly we obtain that
1

Λf
=
π3/2

4

M√
λfv

√

−δmin , (97)

or in terms of the scalar mass
1

Λf
=

1

4
√
gλ

mφ

vΛc
. (98)

We get the bound from Eq. (93)

√

gλΛc > 10−13 GeV . (99)

This is always easily satisfied for theories with a cut-off scale larger than the electroweak

scale.



26

As a result, the MICROSCOPE bound can always be respected due to the screening of

the Earth if

mφ > 1.9× 108
√
gλΛc
mPl

GeV . (100)

The lowest admissible cut-off scale from the particle physics point of view is Λc & 10 TeV

which implies that

mφ > 1 keV . (101)

If the Earth were unscreened, the Sun could still be screened itself. This happens typically

when

mφ > 10 eV , (102)

as the Newtonian potential of the Sun is 103 stronger than the Earth’s (but with a scalar

charge that is five times larger). Screening of the Sun would guarantee that the Cassini ex-

periment was insensitive to scalar interactions. In conclusion, we find that screening could

only occur for large scalar masses. Unfortunately, this is not allowed for scalar fields gener-

ating dark matter via the misalignment mechanism. If the scalar dark matter represented

only a fraction of the dark matter density, the constraint on its mass would be relaxed and

therefore one could envisage that the Earth could be screened. In all cases, the dilaton

studied here turns out to be invisible gravitationally. We now turn to other potential probes

of the models under investigation.

V. FURTHER PHENOMENOLOGY

A. Atomic Clocks

Oscillating dark matter fields coupled to matter could lead to changes in atomic structure

[48, 63, 64]. In particular, tiny oscillations in the electron to proton mass ratio could be

detected using atomic clocks. The variation of the atomic frequencies for various atomic

transitions are sensitive to the coupling of the scalar field to particles such as the electrons

and could probe very small couplings for very light scalars of masses less than 10−18 eV. In

our model and in the background of the local dark matter density, the coupling of the scalar
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to matter particles is universal with a value5

β =
mPlϕ0

Λ2
f

, (103)

of order β ≃ 10−24(
mφ

1 eV
) which is very much lower than the expected sensitivity of atomic

clock experiments [48].

B. Large Scale Structure

The coupling of dark matter to baryons in cosmology could lead to an increase in the rate

of growth for baryonic structures. Indeed and as long as the mass of the dark matter scalar

is small enough, structures characterised by their wave number k would be affected as long

as k/a & mφ, where a is the scale factor of the Universe normalised to unity now. Gravity

would be enhanced corresponding to a rescaling of Newton’s constant by a factor (1+2β2(ρ))

where the coupling is β(ρ) = a−3/2β. As this coupling is valid from the electroweak scale

time characterised by a redshift zEW, where a−1 = 1+ z, zEW ≃ v/ΛDE ≃ 1014, we find that

the smallness of the coupling (103) cannot be compensated by the large redshift-dependent

factor. This implies that no effects on the growth of structures is expected.

C. Consequences of the coupling to bosons

The interactions between the light scalar and photons and gluons in equation (18) induce

a dependence of the electromagnetic and the QCD couplings on the scalar field as

1

e2(ϕ)
=

1

e2
+ αFe

2 ϕ
2

Λ2
f

,

1

g23(ϕ)
=

1

g23
+ αGg

2
3

ϕ2

Λ2
f

.

(104)

In the dark matter background this leads to linear couplings to the scalar field proportional

to β. As a result both the fine structure constant and the QCD condensation scale, defined

as the point where the QCD gauge coupling becomes large, become dependent on the scalar

5 The coupling to fermions in [63] di where i labels the different fermions is universal in our model and

equal to
√
2β. The same factor of

√
2 relates also the coupling to the QCD condensate and photons in

the parameterisation of [48, 65] and the couplings (βQCD, βγ), see below.
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field. This leads to contributions to the masses of the nucleons coming from the electromag-

netic and gluonic energies [66, 67]. It turns out that the gluonic contribution dominates as

the masses of nucleons are mostly due to the gluon condensate and we now concentrate on

this effect.

QCD condensation takes place below the c, b, t quark masses in terms of energy scale

at a value around 250 MeV. As a result, we only take into account the quadratic coupling

of the scalar to the gluons when the heavy quarks have been integrated out. Writing the

renormalisation group equation for the QCD coupling between the charm decoupling scale

mc and a lower scale E we have

4π

g23(E)
=

4π

g23(ϕ)
− b3

2π
ln
(mc

E

)

. (105)

The coefficient b3 > 0 is the QCD beta function coefficient due to the gluons and the u, d, s

quarks . The QCD scale is such that g3(ΛQCD) diverges leading to

ΛQCD(ϕ) = mce
−8π2/b3g23(ϕ) ≃ ΛQCD

(

1− 8π2αGg
2
3

b3

ϕ2

Λ2
f

)

, (106)

where in the last term g3 is the QCD coupling at the energy scale mc. The quadratic

dependence of the QCD scale on ϕ2 can be tested using atomic clocks [48] and places the

constraint that for scalar masses mφ . 10−18 eV one must require that Λf & mPl. This is

easily achieved as Λf ≃ vΛc

mφ
where the scalar mass is lower than 10−18 eV and the cut-off

scale above the 10 TeV range.

In the dark matter background, the dependence on the scalar variation δφ of ΛQCD

compared to the dark matter background ϕ0 can be parameterised as

ΛQCD(δϕ) = ΛQCD

(

1 + βQCD
δϕ

mPl

)

, (107)

where

βQCD = −16π2αGg
2
3

b3
β . (108)

As this coupling is also very small and proportional to β, the conclusion that the scalar field

hardly couples to matter and is therefore invisible in gravitational experiments remains6.

Finally the dark matter scalar can also decay to photons where the coupling is induced

at one loop. This can only happen when the scalar field gets a vev, which can occur in

6 The coupling αA in the unscreened case is modified and is not given by (70) anymore [48]. It becomes

αA = QAβ where QA = − 16π2αGg
2

3

b3
+ (0.093 + [Q′

A]m̂ + [Q′

A]me + [Q′

A]δm)(1 +
16π2αGg

2

3

b3
).
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the dark matter halo and also in the early Universe. The decay rate to photons due to due

fermions loops is given by

Γφ→γγ ≃ β2
γ

m3
φ

m2
Pl

, (109)

where βγ = αFe
2mPlϕ0

2Λ2

f

. This is of order

Γφ→γγ ≃ e4
mφρ0
Λ4
f

∼ e4
m5
φρ0

v4Λ4
c

. (110)

This should be much smaller than H0 ∼
√
ρ
0

mPl

, leading to a very weak bound on

mφ .

(

v4Λ4
c

e4mPlρ
1/2
0

)1/5

, (111)

which is always satisfied easily for small mφ . 1 eV. Even in the early Universe where the

constraint on a very slow decay rate is obtained by substituting ρ0 → ρ, we find that the

decay is essentially non-existent. This confirms that dark matter for these models is stable.

VI. CONCLUSION

If we do not take into account the massive sector of neutrinos, the SM of particles and

interactions only has one term with an explicit dimensional parameter. It is the µ term,

which determines the vacuum expectation value of the Higgs field at low energies. In this

work, we have studied the phenomenology associated with a dynamical µ term related to a

new scalar degree of freedom. This field is coupled through the energy-momentum tensor

of the matter content and can be identified with a dilaton associated with the conformal

symmetry breaking of the theory in the matter sector only. We have discussed this framework

by assuming a Higgs singlet and modeling the matter content with a unique fermion field.

Interestingly, when the scalar sector of the model is stabilised at its fundamental state, the

linear coupling of the dilaton to matter disappears. This fact provides a very distinctive

phenomenology for this new scalar degree of freedom, whose main coupling is quadratic.

Another feature that we have explicitly discussed in this work is the stability against radiative

corrections of this model.

After analysing the main theoretical characteristics of this dilaton model, we have studied

its cosmological evolution. The cosmological evolution leads the dilaton to lie close to the

minimum of its potential and the corresponding oscillations are described by an harmonic
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approximation. In this limit, the energy-momentum tensor of the dilaton behaves as DM if

its value can be averaged over many oscillations. In fact, this is what happens and we have

found explicitly that this dilaton can be a candidate for DM. As we have commented, the

dilaton is coupled quadratically to matter, so it is stable. In addition, the strength of its

coupling is typically suppressed, which means that it does not thermalise for a broad range

of the parameter space of the model.

Finally, we have studied the phenomelogical signatures of the model. The quadratic

coupling effectively couples matter to the dilaton in a composition-dependent way. We have

explored signals related to experiments measuring violations of the equivalence principle

aboard satellites such as the MICROSCOPE experiment and future generation of tests

related to this signature. We have found that the quadratic coupling provides naturally a

type of screening mechanism similar to those studied for string motivated frameworks or

symmetron models [43–46]. For masses below the electronvolt, the Sun and other planetary

objects are not screened. Nevertheless, post-Newtonian parameter tests are easily fulfilled

due to the the weakness of the strength of the effective linear coupling, even in the Solar

system. This makes the dilaton invisible. Visibility would be granted if the dark matter

density were locally much larger such as in a dark matter clump. Such clumps could result

from the balance between the quantum pressure and the attraction due to the negative

quartic interaction of the dilaton close to the electroweak minimum. The study of this

possibility is left for future work.
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Appendix A: A possible model

We consider a model with a massive field X of large mass m coupled to the Higgs field

according to the Lagrangian

L = −g′(mX − uH2)2 − λ′Xψ̄HψH , (A1)

where the fermions ψH are charged under a gauge group which condenses in a similar way

to QCD. At energies E ≪ m, we can integrate out the field X according to

X =
uH2

m
, (A2)

implying the Higgs field couples to the gauged fermions as

L = −λ′uH
2

m
ψ̄HψH . (A3)

Assuming that the fermions condense according to

〈ψ̄HψH〉 = Λ3
He

iπ
2

φ

f , (A4)

at a scale ΛH ≪ m, we have at low energy a potential term

L = −2λ′u
Λ3
H

m
H2 cos

π

2

φ

f
, (A5)

of the type used in the main text. We will assume that this transition happens before the

end of inflation so that the cos term is realised as soon as the field evolves at the end of

inflation.

Appendix B: Slow-rolling in the Radiative era

Initially, when the field is released at the end of inflation, the field starts moving slowly.

Let us look for a simplified solution of the Klein-Gordon equation in this regime. We assume

that in this slow roll regime we have

Hφ̇ = αV ′ , (B1)
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where α is nearly constant. This is what would happen in the slow roll regime during inflation

although here α will not be equal to −1/3. Using this ansatz and identifying m2 = V ′′ we

get
φ̈

Hφ̇
= α

m2

H2
− Ḣ

H2
, (B2)

and Ḣ = −3(1+ω)
2

H2 where the equation of state in the radiation era is ω = 1/3. Now using

the Klein-Gordon equation φ̈+ 3Hφ̇+ V ′ = 0 we obtain

m2

H2
α2 +

9 + 3ω

2
α + 1 = 0 . (B3)

This implies that

α =
H2

m2



−9 + 3ω

4
+

1

2

√

(

9 + 3ω

2

)2

− 4
m2

H2



 . (B4)

Obviously, this is only valid when m/H is small enough and varies very slowly. In the slow

roll regime and having initially m/Hinf ≪ 1 implies that

α ≃ − 2

9 + 3ω
= −1

5
. (B5)

When the equation of state is close to −1 during inflation we retrieve that slow-roll is realised

with α = −1/3. During radiation domination the slow roll evolution is governed by

dx

dτ
= −4α

π
τ
(

1− ǫ− sin
π

2
x
)

, (B6)

where we have denoted τ = m0t =
m0

2H
and the potential reads

V (φ) =

(

2

π

)2

m2
0f

2
(π

2
(1− ǫ)(1− x)− cos

π

2
x
)

. (B7)

This differential equation (B6) fails when τ = O(1).

The solution to (B6) with the initial condition x(τ = τi) ≃ xe where the slow roll regime

starts is given by

x(τ) =
4

π
arctan

(

1−
√
2ǫ− ǫ2X

1− ǫ

)

, (B8)

where

X =
a + b

1− ab
, (B9)

and

a = tanh
(α

2

√
2ǫ− ǫ2(τ 2 − τ 2i )

)

, b =
1− (1− ǫ) tan πxe

4√
2ǫ− ǫ2

. (B10)
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The field starts moving when τ ∼ 0.5 corresponding to H ≃ m0.
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JHEP 08, 073 (2018), arXiv:1805.08112 [astro-ph.CO].

[37] E. Armengaud, N. Palanque-Delabrouille, C. Yèche, D. J. E. Marsh, and J. Baur,
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