

Istituto Nazionale di Fisica Nucleare

CP violation in beauty and charm quarks at LHCb

D. Manuzzi on behalf of the LHCb collaboration La Thuile, 27th March 2023

57th Rencontres de Moriond QCD & High Energy Interactions

News from LECO

• *CP* violation (CPV) in **charm**: $^{O}A_{CP}(D^0 \rightarrow K^+K^-)$, September 2022 O Local CPV search in $D^+_{(s)} \rightarrow K^- K^+ K^+$, March 2023

- Direct measurements of the **CKM parameter** γ : • with $B^{\pm} \rightarrow [K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{\mp}]_D h^{\pm}$, September 2022 • with $B^{\pm} \rightarrow [h^+h^-\pi^+\pi^-]_D h^{\prime\mp}$, January 2023 • $h = K, \pi$
- CPV in penguin-mediated decays O Time- and polarisation-dependent analysis of $B_s^0 \rightarrow \phi \phi$ decays, NEW!!!

Rencontres de Moriond, 27th March 2023

[arXiv:2209.03179]

[arXiv:2303.04062]

[arXiv:2209.03692]

[arXiv:2301.10328]

[LHCb-PAPER-2023-001-002]

vielation Pinsaasm

Unique laboratory to study CPV in up-type quarks

Predicted to be small in the Standard Model (SM)

O smallness of involved CKM elements

OSM predictions have to face non-perturbative strong interactions

 $A_{CP} \sim 10^{-4} - 10^{-3}$ [PRD 85 (2012) 034036] [PRD 86 (2012) 036012] [JHEP 05 (2012) 140] [PLB 774 (2017) 235-242] [PRD 75 (2007) 036008]

 Direct CPV observed in March 2019 by LHCb O Measured value challengest first principles QCD calculations \Rightarrow enhancement of QCD rescattering or new physics [PRD 99 (2019) 11, 113001] [JHEP 07 (2019) 020] [JHEP 12 (2059) 104] b

A 23(1

[JHEP 09 (2021) 126] [JHEP 05 (2021) 179] [arXiv:2203.04056]

11.04443v1], [arXiv:2 For review see: [arXiv:20]

Further measurements are needed in the charm sector

Rencontres de Moriond, 27th March 2023

Electroweak-loop diagram:

sh

Rencontres de Moriond, 27th March 2023

$$A_{CP}(D^0 \to K^+ K^-) = + A(D^{*+} \to (D^0 \to K^+ K^-)\pi^+) - A(D^{*+} \to D^0 \to K^- \pi^+) + A(D_s^+ \to \phi\pi^+) - [A(D_s^+ \to \overline{K}^0 K^+) - A(\overline{K}^0)]$$

മ	
Ň	
2	
N	
N	
\bigcirc	
6	
_	
\bigcirc	
S	
\mathbf{O}	

Rencontres de Moriond, 27th March 2023

• Run2 data sample

Dalitz plot divided in 21 bins to enhance sensitivity Opattern of the main resonances is reproduced

 $\blacktriangleright \approx$ const. strong phase

• χ^2 test to compare Dalitz distribution of yields obtained by mass fit in each bin

$$\alpha = \frac{\sum_{i} N^{i}(D_{(s)}^{+})}{\sum_{i} N^{i}(D_{(s)}^{-})} \longrightarrow S_{CP}^{i} = \frac{N^{i}(D_{(s)}^{+}) - \alpha N^{i}(D_{(s)}^{-})}{\sqrt{\alpha(\delta_{N^{i}(D_{(s)}^{+})}^{2} + \delta_{N^{i}(D_{(s)}^{-})}^{2})}} \longrightarrow \chi^{2} = \sum_{i} \frac{1}{\sqrt{\alpha(\delta_{N^{i}(D_{(s)}^{+})}^{2} + \delta_{N^{i}(D_{(s)}^{-})}^{2})}}} \sum_{i} \frac{1}{\sqrt{\alpha(\delta_{N^{i}(D_{(s)}^{+})}^{2} + \delta_{N^{i}(D_{(s)}^{+})}^{2})}}} \sum_{i} \frac{1}{\sqrt{\alpha(\delta_{N^{i}(D_{(s)}^{+})}^{2} + \delta_{N^{i}($$

• Variation of the *Miranda* method: O Not affected by global nuisance asym. O Local nuisance asym. are negligible Checked with simulation and control samples (Cabibbo-favoured $D^+ \to K^- \pi^+ \pi_{\overline{2}} 2.2$

Rencontres de Moriond, 27th March 2023

The angle γ of the UT

• The Unitarity Triangle (UT):

O Geometrical representation of a requirement due to the unitarity of the CKM matrix

Ostringent tests of the SM

CP• The angle γ of the UT O directly measurable in tree-level decays with **interference** between $b \rightarrow cW$ and $b \rightarrow uW$ transitions Several time-independent methods: $R^{\pm} \rightarrow D^{(*)}h^{(*)}$ with **Today** D mixture of D^0 and \overline{D}^0 decaying 1.5 • Time-dependent methods: $B^0 \rightarrow$ excluded area has CL > 0.95 exploiting interference between m 1.0 Combination of measurements fr $sin 2\beta$ • Remarkable SM benchmark to 0.5

ε_K

J

0.0

indirect measurements involving

Rencontres de Moriond, 27th March 2023

The angeviet the UT: ge

• The γ parameter is obtained combining *CP* asymmetries and decay rates ^{B+} ^O Various methods depending on f_D ^O Charm decay parameters as external inputs

$$\Gamma(B^{\pm} \to f_D h^{\pm}) \propto r_D^2 + r_B^2 + 2r_D r_B R_{f_D}$$
Charm mixing
$$-r_D R_{f_D} \psi \bar{c} \cos \delta_D - x \sin \delta_D - x \sin \delta_D + r_B [y \cos(\delta_B \pm \gamma) + z \sin \delta_D + z \sin \delta$$

Rencontres de Moriond, 27th March 2023

Implications workshop 2021 - 22/10/2021

Coherence factors $0.005 R_{f} < 1$, suppresses interference and reduces sensitivity $\Gamma(B^{\pm} \rightarrow \bar{f}_D h^{\pm}) \propto 1 + r_D^2 r_B^2 + 2R_D r_D r_B \cos(\delta_B - \delta_D \pm \gamma)$

$\gamma \text{ with } B^{\pm} \rightarrow [K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{\mp}]_{D} h^{\pm}$

- Superposition of Cabibbo-Favoured and Doubly-Cabibbo-Suppressed *D* decays $\blacktriangleright B^{\pm} \to [K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{\mp}]_D h^{\pm}, B^{\pm} \to [K^{\pm}\pi^{\mp}\pi^{\mp}\pi^{\pm}]_D h^{\pm}, X_h \to D^{*+}[D^0\pi]\mu^-\overline{\nu}_\mu X$
- Global $R_{K3\pi} \approx 0.4$, but in phase-space bins it is larger O 4 bins chosen according to LHCb amplitude analysis **O** increased sensitivity with binned measurement

Results of this analysis (LHCb Run1+Run2):

 $\gamma = (54.8^{+6.0+0.6+6.7}_{-5.8-0.6-4.3})^{\circ}$

stat. syst. ext.

• External inputs:

- ^O Hadronic *D* decay parameters from model-independent determinations by CLEO-c, BES-III, and LHCb
- O Charm mixing parameters by LHCb
- First source of uncertainty now, but **improvements are expected**
 - incoming 20 fb^{-1} of BES-III data
 - LHCb measurement of charm mixing

Rencontres de Moriond, 27th March 2023

[arXiv:2209.03692]

LHCb combination for γ

- Frequentist approach

Includes updated and new measurements

[LHCb-CONF

[LHCb-CONF-2022-003]

$\gamma \text{ with } B^{\pm} \rightarrow [h^{+}h^{-}\pi^{+}\pi^{-}]_{D} h^{-}$

• First study of CPV in $B^{\pm} \rightarrow [K^+ K^- \pi^+ \pi^-]_D h^{\pm}$

• LHCb Run1+Run2 data

Not included in LHCb combination yet

 Integrated analysis for both $K^+K^-\pi^+\pi^-$ and $\pi^+\pi^-\pi^+\pi^$ final states

• Also binned analysis for $K^+K^-\pi^+\pi^-$

- O Charm decay parameters [JHEP 02 (2019) 126] from LHCb amplitude analysis
- change after charm model-independent measurements

Rencontres de Moriond, 27th March 2023

mmetry

arXiv

CP violation in B_{c}^{0} –

• Motivations:

• The SM predicts CPV to be suppressed in this channel O Any CPV enhancement would point to new physics in the B_s^0 mixing or in the penguin-mediated $b \rightarrow s$ decay

• Caveat: angular analysis needed to disentangle the three polarisation states of the $B \rightarrow VV$ decays ► (0, CP even), (||, CP even), (⊥, CP odd)

• Target *CP* observables: $\phi_{s,i}$, $|\lambda_i|$

O The SM predicts no dependance of the *CP* observables on the polarisation

• *CP* phase: $\phi_i = \phi_s^{s\bar{s}s} \approx 0$

• Direct *CP* violation parameter: $|\lambda_i| = |A_i/A_i| = |\lambda| \approx 1$

[Nucl. Phys. B 774 (2007) 64] [PRL 89 (2002) 231803][arXiv:0810.0249] [PRD 80 (2009) 114026] [Nucl. Phys. B 935 (2018) 17] [PRD 96 (2017) 073004]

Rencontres de Moriond, 27th March 2023

2023-001-002

 $|B_{s,H(L)}^{0}\rangle = |B_{s}^{0}\rangle p \pm |\overline{B}_{s}^{0}\rangle q$ $\begin{aligned} A_i &= \langle f_i | H_W | B_s^0 \rangle \\ \overline{A}_i &= \langle f_i | H_W | \overline{B}_s^0 \rangle \end{aligned}$ $\lambda_i \equiv \eta_i \frac{q A_i}{----} =$ $i \in \{0, \parallel, \bot\}$ $\eta_{0,\parallel(\perp)} = \pm$

CP violation in B_{c}^{0} –

• Data:

- $^{\circ}$ Run2 data (6 fb⁻¹)
- Results are then **combined with Run1** measurements (additional 3 fb^{-1})

• Strategy:

- 1. Invariant-mass fit to subtract the background
- 2. Flavour-tagged fit to decay time and helicity angles to get the *CP* observables [details in the backup]

Main experimental challenges:

- O Decay-time resolution ($\approx 40 \text{ fs}$)
- O Flavour-tagging power ($\approx 6\%$)
- O Their calibration

1Cb-PAPER-2023-001-002]

Helicity angles (χ, θ) defined in the previous slide

CP violation in $B_{c}^{0} \rightarrow \phi \phi$

Run1+Run2

$$\phi_s^{s\bar{s}s} = -0.074 \pm 0.069 \,\mathrm{rad}$$

 $|\lambda| = 1.009 \pm 0.030.$

Most precise measurement of time-dependent CPV in penguin-dominated decays of neutral **B** mesons

[LHCb-PAPER-2023-001-002]

No evidence of CPV

in both the polarisation-independent and the polarisation-dependent analyses

Conclusions

- LHCb Run2 data have been providing remarkable insights in both the charm and beauty CPV sectors
 - ^O First evidence of CPV in charm in a single decay channel (3.8σ)
 - O New search for local CPV in charm multi-body decays
 - ^O Uncertainty on γ already below 4°
 - Further improvements are expected with other decay modes and better knowledge of charm hadronic parameters
 - ^O Precise CPV measurements in penguin-dominated B_s^0 decays

 LHCb Upgrade I is expected to improve the measurements in Run3 **O** Higher integrated luminosity O Removal of hardware trigger Higher trigger efficiency, smaller detection asymmetries

Rencontres de Moriond, 27th March 2023

News of the last 6 months

Backup slides

The LHCb experiment

• LHCb is a forward spectrometer, operating at LHC ($\sqrt{s} = 13 \text{ TeV}$) ^O High geometrical in collecting $b\overline{b}$ and $c\overline{c}$ quark pairs O Excellent decay-time resolution, momentum resolution, PID performances

[JINST 3 S08005] [Int. J. Mod. Phys. A 30 (2015)1530022]

Rencontres de Moriond, 27th March 2023

$A_{CP}(D^0 \rightarrow K^+K^-)$: yields and systematics

are also reported.

Source

Fit model

Peaking backgrounds

Secondary decays

Kinematic weighting

Neutral kaon asymmetry

Charged kaon asymmetry

Total

$$C_{D^+}: \mathcal{A}_{CP}(K^-K^+) = [13]$$

 $C_{D_s^+}: \mathcal{A}_{CP}(K^-K^+) = [2]$

Table 2: Systematic uncertainties on $\mathcal{A}_{CP}(K^-K^+)$ for the two calibration procedures C_{D^+} and $C_{D_s^+}$. The total uncertainties are obtained as the sums in quadrature of the individual contributions. Correlations between the systematic uncertainties of the two calibration procedures

$C_{D^+} [10^{-4}]$	$C_{D_s^+} [10^{-4}]$	Corr.
1.1	1.0	0.05
0.3	0.4	0.74
0.6	0.3	
0.8	0.4	—
0.6	1.3	1.00
	1.0	
1.6	2.0	0.28

 $3.6 \pm 8.8 \,(\mathrm{stat}) \pm 1.6 \,(\mathrm{syst})] \times 10^{-4}$ $2.8 \pm 6.7 \,(\text{stat}) \pm 2.0 \,(\text{syst})] \times 10^{-4},$

Table 1: Signal yields and statistical reduction factors arising from the kinematic weighting of the sample for the various decay modes and both calibration procedures.

Decay mode	Signal ₂	yield $[10^6]$	Red.	factor
	\mathcal{C}_{D^+}	$\mathcal{C}_{D_s^+}$	C_{D^+}	$\mathcal{C}_{D_s^+}$
$D^0 \to K^- K^+$	37	37	0.75	0.75
$D^0 \to K^- \pi^+$	58	56	0.35	0.75
$D^+ \to K^- \pi^+ \pi^+$	188		0.25	
$D^+ \to \overline{K}{}^0 \pi^+$	6		0.25	
$D_s^+ \to \phi \pi^+$		43		0.55
$D_s^+ \to \overline{K}{}^0 K^+$		5		0.70

γ with $B^{\pm} \rightarrow [h^{+}h^{-}\pi^{+}\pi^{-}]_{D}h^{'\mp}$: yields

Figure 5: Total bin yields for the (left) $B^{\pm} \to DK^{\pm}$ and (right) $B^{\pm} \to D\pi^{\pm}$ decays. The data are overlaid with the fit projections.

Rencontres de Moriond, 27th March 2023

γ with $B^{\pm} \rightarrow [h^{+}h^{-}\pi^{+}\pi^{-}]_{D}h^{'\mp}$: systematics

Table 5:	Uncertainties	on the	results	of the	binned	analysis.
			ICDUIUD		SIIIICA	

	Uncertainty $(\times 10^2)$					
Source	x_{-}^{DK}	y_{-}^{DK}	x_+^{DK}	y_+^{DK}	$x_{\xi}^{D\pi}$	$y_{\xi}^{D\pi}$
Mass shape	0.02	0.02	0.03	0.06	0.02	0.04
Bin-dependent mass shape	0.11	0.05	0.10	0.19	0.68	0.16
PID efficiency	0.02	0.02	0.03	0.06	0.02	0.04
Low-mass background model	0.02	0.02	0.03	0.04	0.02	0.02
Charmless background	0.14	0.15	0.12	0.14	0.01	0.02
CP violation in low-mass background	0.01	0.10	0.08	0.12	0.07	0.26
Semi-leptonic b -hadron decays	0.05	0.27	0.06	0.01	0.07	0.19
Semi-leptonic charm decays	0.02	0.07	0.03	0.15	0.06	0.24
$D \to K^{\mp} \pi^{\pm} \pi^{+} \pi^{-}$ background	0.11	0.05	0.07	0.04	0.09	0.05
$\Lambda_b^0 \to p D \pi^-$ background	0.01	0.25	0.14	0.04	0.06	0.34
$D \to K^{\mp} \pi^{\pm} \pi^{+} \pi^{-} \pi^{0}$ background	0.30	0.05	0.19	0.07	0.05	0.01
Fit bias	0.06	0.05	0.13	0.02	0.06	0.13
Total LHCb systematic	0.37	0.43	0.34	0.32	0.70	0.57
$c_i,\ s_i$	0.35	3.64	1.74	1.29	0.14	1.10
Total systematic	0.51	3.67	1.78	1.33	0.72	1.24
Statistical	2.87	3.40	2.51	3.05	4.24	5.17

Rencontres de Moriond, 27th March 2023

Table 6: Uncertainties on the results of the phase-space integrated analysis.

	Uncertainty $(\times 10^3)$						
Source	$A_K^{KK\pi\pi}$	$A_{\pi}^{KK\pi\pi}$	$A_K^{\pi\pi\pi\pi}$	$A_{\pi}^{\pi\pi\pi\pi}$	$R_{CP}^{KK\pi\pi}$		
Charmless background	1.2	< 0.1	0.4	< 0.1	13.9		
External parameters	1.0	0.7	1.0	0.7	4.0		
Fixed yield fractions	0.1	< 0.1	0.1	< 0.1	1.3		
Mass shape	0.3	< 0.1	0.2	< 0.1	3.1		
PID efficiency	0.1	< 0.1	0.1	< 0.1	2.5		
Total systematic	1.6	0.7	1.1	0.7	15.1		
Statistical	23.5	5.5	13.3	3.1	24.2		

CP violation in B_{c}^{0} -

• Strategy:

- 1. Invariant-mass fit to subtract the background
- 2. Flavour-tagged fit to decay time and helicity angles to get the *CP* observables

$$\frac{\mathrm{d}^4 \Gamma(t,\vec{\Omega})}{\mathrm{d}t \mathrm{d}\vec{\Omega}} \propto \sum_{k=1}^6 \underline{h_k(t)} \underline{f_k(\vec{\Omega})} \longleftarrow \frac{\mathrm{Functions of the}}{\mathrm{helicity angles}} \quad [\mathrm{JHEP 12} \ (2019) \ 155]$$

$$\underline{h_k(t)} = N_k e^{-\Gamma_s t} \begin{bmatrix} a_k \cosh\left(\frac{\Delta\Gamma_s}{2}t\right) + b_k \sinh\left(\frac{\Delta\Gamma_s}{2}t\right) & N_k, a_k, b_k, c_k, d_k \\ + Qc_k \cos(\Delta m_s t) + Qd_k \sin(\Delta m_s t) \end{bmatrix} \begin{bmatrix} N_k, a_k, b_k, c_k, d_k \\ \text{are functions of} \\ \phi_{s,i} \text{ and } |\lambda_i| \\ Q = \pm 1 \text{ depending on initial } B_s^0 \text{ flavour} \end{bmatrix}$$

• Main experimental challenges:

- O Decay-time resolution ($\approx 40 \text{ fs}$)
- O Flavour-tagging power ($\approx 6\%$)
- O Their calibration

[LHCb-PAPER-2023-001-002]

polarization-independent fit.

Source	$\phi_s^{s\overline{s}s}$ [rad]	$ \lambda $	$ A_0 ^2$	$ A_{\perp} ^2$	$\delta_{\parallel} - \delta_0 [\mathrm{rad}]$	$\delta_{\perp} - \delta_0 [\mathrm{rad}]$
Time resolution	4.9	2.6	0.8	0.8	0.1	3.4
Flavor tagging	4.8	4.7	0.9	1.3	1.2	9.7
Angular acceptance	3.9	4.9	1.4	1.7	4.7	1.2
Time acceptance	2.3	1.7	0.1	0.1	5.6	0.7
Mass fit & factorization	2.2	4.4	1.9	2.3	2.3	2.5
MC truth match	1.1	0.2	0.1	0.1	0.2	0.3
Fit bias	0.8	0.7	0.9	0.3	3.6	0.7
Candidate multiplicity	0.3	0.2	0.1	0.8	0.2	0.1
Total	8.8	8.6	2.7	3.3	8.5	10.7

Table 2: Systematic uncertainties (in units of 10^{-3}) for physics parameters in the

Flavour Tagging at LHCb

Rencontres de Moriond, 27th March 2023

