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1. INTRODUCTION

Magnani has found. two methods for preventing the longitudinal bunch-to-bunch 
instability that occurs in the Booster1) The first is to shake the bunches at 

the synchrotron frequency (Magnani shaking); this modifies the particle distribu­
tion within the bunch, lowering the central density, and results in a bunch shape 
that is more stable. The details are given in Ref. 1. The second method is more 
subtle. The normal phase loop keeps the centre of mass of the five Booster bunches 
from moving with respect to the RF wave, but does not directly affect the relative 
motion of the bunches with respect to one another. Magnani has modified this loop 
so that the input is no longer the centre of mass of the five bunches, but rather 
the location of a single bunch. Thus the loop locks the position of a single bunch 
to the RF wave, but since the other four bunches are not controlled they are quickly 
lost. This is overcome by switching control to bunch 2 after time T, then to bunch 3 
after another time T, and so on. This technique works and is informally known as 
Magnani rotation, although the reason why it works is still a mystery.

It is easy to show that no switching technique can damp the relative motion of 
identical rigid bunches (Section 2). However, if the rigid bunches oscillate with 
slightly different synchrotron frequencies, a small damping of the relative motion 
occurs even with the normal phase loop (Section 3), but the damping time of several 
thousand synchrotron periods is certainly too long to be effective. With Magnani 
rotation, this damping rate can be increased by typically a factor of 3 for certain 
switching speeds (Section 4). This is interesting, but again probably too slow to 
be effective. An unexpected result is that a parametric resonance occurs that 
excites the relative motion for certain switching times (Section 5). The resonances 
are traversed in about 25 msec and produce approximately five e-foldings of the 
relative bunch-to-bunch motion.

It is also possible that Magnani rotation works by shaking the bunches, since 
some shaking is unavoidable while rotating from bunch-to-bunch, and also while 
passing through a parametric resonance.

2. EQUAL BUNCH FREQUENCIES

The equations of motion for two identical rigid bunches are

where φ is the phase difference between RF wave and bunch centre, and Ω is the 
frequency error (the difference between the actual applied frequency of the RF 
wave and its ideal value, which is twice the revolution frequency for two bunches).
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The feedback system controls the value of Ω, based on information about φι, 
φ2, φ1, φ2, which can be sampled in various ways and at various times. The im­
portant point is that the relative motion of the two bunches, φ_ « φ1 - φ2 obeys 
the equation

which does not contain Ω. So for equal bunch frequencies no feedback system that 
controls Ω can affect the relative motion. This is true for any number of bunches.

If one could vary the amplitude or phase of the RF voltage quickly, during the 
time between two bunches passing the RF cavity, then one could act on each bunch 
separately. In this case Ω becomes Ωι for Eq. (1) and Ω2 for Eq. (2). However, 
the bandwidth of the phase loop plus cavity is too narrow for this to occur.

Another possibility is that the frequencies of the two bunches are slightly 
different. A difference of a few percent has been observed before, and would result 
from differences in bunch length or bunch population. Then the relative mode φ_ 
is coupled to the centre of mass or sum mode φ , and the feedback system can work 
on both modes. This is investigated in the next Section.

3. NORMAL PHASE LOOP WITH UNEQUAL BUNCH FREQUENCIES

be the radian frequencies for the two bunches (f = ω∕2π is the frequency in Hz).
Since the difference in bunch frequencies ∆ω ≡ ω - ω is small, δ - ω ∆ω. ForSI S2 , s
the phase loop it is sufficient to take the simple model

where α is a constant related to the loop gain.
For solutions with the time dependence e^ωt, one finds coupled equations for 

^ the sum mode Φ+ = Φι + Φ2 and the difference mode φ_ = φχ - φ2,

which have a unique solution provided
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In the equal frequency limit, δ ÷ 0 and the two undamped roots

while the other two roots are essentially unchanged.

The time constant for this damping is

In this way, we find that a small damping term is added to the difference mode,

(15)

(14)

(13)

(12)

(ID

and keeping only terms of order δ2. For example,

where the coefficient a^ is found by substituting (11) into

A typical value for the Booster is α ≈i 5ω , which results in a fast damping 
— i . ≡ . — 1 ,
ω-jj ≈ 0.0161$ for phase transients and a slower damping ω⅛ ≡ 1.6Tg ^or ra^ial 
transients. Here T is the synchrotron period 2π∕ω . s s

For small δ, the frequencies are shifted,

belong to the difference mode, while the two damped roots

(10)

(9)

(8)

(7)

are associated with the sum mode. Usually α » ω≡, so
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For example, if the bunches differ in frequency by 3Z (∆ω∕ωg = 0.03) and 
α = 5ω$, the damping time for the difference mode is about 35001$, or several 
thousand synchrotron periods. This is much too slow to be useful, which is con­
sistent with the fact that the normal phase loop does not prevent bunch-to-bunch 
motion.

4. MAGNANI ROTATION WITH UNEQUAL BUNCH FREQUENCIES

It is convenient to write the equations of motion as 

and where the auxiliary variable p is related to radial position. This is a fourth­
order system of equations with periodic coefficients. Because the coefficients 
in (17) are piecewise constant, the standard matrix technique can be employed.

The solution from 0 to T can be written as

(18)

where M is a 4 × 4 matrix (see Appendix) and X is the vector

(19)

and after n periods Mn. The stability of the system is governed by the eigenvalues 

of M. Let Λi with i = 1, 4 be the eigenvalues and eigenvectors of M. Since any 
initial vector X(0) can be decomposed into a sum of the four eigenvectors, and 
since after n periods each eigenvector transforms into itself times An, stability 

requires that the magnitude of be less than unity,

Similarly, the transfer matrix for the second time interval T ÷ 2T is M2 and for 
the complete period 0 - 2T,
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then the quantities are analogous to the frequencies used before for the 
system with constant coefficients.

The eigenvalues are determined by computer using the matrix derived in the 
Appendix. We are interested in the damping rate for the difference mode, which 
we designate as S(α, T, δ). This is to be compared with the damping rate δ2∕4αω2 
found for the normal phase loop.

For small δ, S must have the form

since i) it was shown in Section 2 that the damping rate is zero for δ = 0, and 
ii) a first-order term in δ implies that the sign of the frequency difference 
between bunches is important, which is not possible since the bunch labelling 
in Eq. (16) is arbitrary. One could also guess that in the limit of short switch­
ing times T << Ts, the bunches could not distinguish between Magnani rotation and
the normal phase loop, and that in the limit of long switching times T » Ts,
the damping rate should approach zero since the loop would be locked to one bunch
in this case. This is verified by the computer.

The result is plotted in Fig. 1, namely the ratio of the two damping rates, 
Magnani rotation divided by ∆ω2/4α as a function of the switching time T and for 
various loop gains α. One sees that for T less than ⅛Ts, Magnani rotation does 
produce a larger damping rate, especially for large values of α. For somewhat 
longer switching times, regions of weak antidamping are encountered. In the 
Booster, the synchrotron frequency varies from 5 kHz near injection to 2 kHz near 
the end of the acceleration cycle. Therefore, if the switching frequency is

10 kHz or larger, the difference mode remains in the region of enhanced damping 
for the whole cycle, while for somewhat lower switching frequencies, weak anti­
damping is encountered during the early part of the cycle.

Occasionally, the computer generated sharp spikes at certain values of T/Tg. 
At first this was thought to be a computational error, but closer inspection 
showed that it was a parametric resonance excited by the Magnani rotation. These 
sharp resonances are not shown in Fig. 1.

If we define
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5. PARAMETRIC RESONANCE EXCITED BY MAGNANI ROTATION

We write the equations of motion in the form

(23)

with 

where H(t) is the periodic switching function

They can be combined into one fourth-order equation for φ_, 

where D = d∕dt. The RHS can be regarded as a periodic forcing term, which is 
small because it contains the small parameter δ. Resonance occurs if this forcing 
term contains frequencies near to the roots of the LHS, mainly ±ωs since the roots 
of the first bracket are too strongly damped to be excited. Near this resonance, 
D2 ≈ -ω2 and the first bracket in (24) can be replaced by 2αD, so the equation 

reduces to the Hill equation

(26)

where

1, 2, 3, ...

This is the standard form for the Mathieu-Hill equation ,. Resonance occurs when
the forcing frequency is twice the natural frequency ω$, which corresponds to 
the switching times

where the small δ terms have been neglected on the LHS. This can be further 
simplified by keeping only the kt^ term in the Fourier expansion of H(t):
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(27)

The full width of the resonance is 

(28)

and the maximum e-folding rate at the centre is ⅛∆ω^∙ Neither parameter depends 
on the switching time T, loop gain α, or synchrotron frequency, but only on the 
difference in bunch frequencies ∆ω.

The growth and damping rates for the difference mode, including parametric 
resonances, is shown in Fig. 2 for the case α = 5ω and 3Z difference in bunch s
frequencies. Small secondary resonances occur at T/T = 1, 1.5, 2, ..., which can 

2) S
also be derived from Eq. (26) . A close-up of the first resonance region is
shown in Fig. 3. Agreement between the matrix method and the analytic approxi­
mation [Eqs. (25) and following] is extremely good: the differences are too small 

to be seen in Figs. 2 and 3.

For the usual example of 3Z difference in bunch frequencies, the width of 
the first resonance region is 120 Hz, and since the synchrotron frequency in the 
Booster changes by 3 kHz in 600 msec, the resonance region will be crossed in 
24 msec. The e-folding time is about 4 msec, so we expect about five e-foldings 
to occur during this time.
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τ∕τ5

Fig. 2 Growth and damping rates for the difference mode, including 
parametric resonances, for 3Z difference in bunch frequencies 
and α = 5ω .s
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Fig. 3 Close-up of first parametric resonance (k = 1)
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APPENDIX

We wish to find the transfer matrix for Eq. (16). For the time interval
0 ÷ T, the solution has the form

and A, B, C are 2 × 2 matrices.

A is the transfer matrix for bunch 1, which obeys the equations

where si and s2 are the roots of the characteristic equation

(A.5)

Then
C is the transfer matrix for bunch 2 when bunch 1 is not moving, X1 = 0.

(A.6)

or more compactly

(A. 7)

We find

(A. 8)
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where g = √ω2 - δ. We could also write formally

(A.9)

with A(0) » I, C(O)= I, and B(0) = 0.

B is related to A and C. It is convenient to write Eq. (16) for bunch 2 in 
the form

By substituting (A.1) into (A.10) we find 

while differentiating (A.1) yields 

and since t = L2C, we find the differential equation for B,

(A.13)

This can be integrated with the condition B(0) = 0 to give

(A.14)

which is the desired relation. The final result for B can be written in terms of 
the integrals
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The 4 × 4 matrix Mj for the time interval 0 - T is therefore

(A.16)

and the desired matrix for the complete period is M = M2M1.

To check the algebra, the matrix M was also found by numerical integration of 
Eq. (16). For example, starting with the initial vector X(0) = (1, 0, 0, 0) yields 
the final vector X(2T) = (Mu, M21, M31, M<tι), and so on.


