MPS/DL/Note 72-12 9 May 1972

IONIC OSCILLATIONS IN THE SPS

(Prepared for the 1972 CERN Laboratory II Spring Study)

W. Hardt

The growth rate for both the dipole and the quadrupole mode can be described by a few parameters :

$$\mu_{o} = \text{ion } e\text{-folding rate}$$

$$\nu_{o} = \sqrt{\frac{2\nu}{A_{i}}} \frac{c}{a}$$

$$\mu_{o} = \sqrt{\frac{2\nu}{A_{i}}} \frac{c}{a}$$

$$\mu_{o} = \frac{1}{2} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{c}{a}$$

$$\mu_{o} = \frac{1}{2} \frac{$$

$$Q = \begin{cases} Q_{o} & \text{for dipole oscillations} \\ 2Q_{o} & \text{for envelope oscillations} \end{cases}$$

The growth rate is

 $\left(\frac{1}{t}\right)_{g} = \mu_{o} \frac{\eta A_{i}}{2\gamma Q_{o}\omega_{o}} \frac{z}{4+z^{2}}$

 γ = relative energy η = ion production rate

 η is of the order $10^{\,3}/s/\mu$ Torr but slightly energy dependent as can be seen from table I.

GeV _{kin}	.03	.1	.3	1	3	10	30	100
n 10 ³ /s/µTorr	2	1.25	.9	.8	.83	.93	1.15	1.6

Numerical example for the SPS :

 $P = 10^{-7} \text{ Torr; } 10 \text{ GeV/c; } \eta = 93/\text{s; } N = 10^{13} \text{ ppp}$ $v = 2.2 \cdot 10^{-9}; \quad A_i = 14 ; \quad a_o = 15 \text{ mm}$ $\mu_o = 0.35/\mu \text{s ; } \omega_o = 0.27/\mu \text{s ; } Q_o \approx 28$ $\gamma = 10.7 ; \quad z \approx 2 \quad (n = 25 \text{ for dipole mode; } n \approx 53$

for the envelope mode); $\frac{z}{4+z^2} \simeq \frac{1}{4}$ $\left(\frac{1}{t}\right)_g \simeq 0.7/s.$

Since the theory was made for a coasting beam with uniform transverse density, a smaller radius should be taken, so that the growth rate is a little larger than 1/s. It does not change much during the cycle but other modes become the most dangerous ones. For instance at 200 GeV/c we may have $a_0 = 4 \text{ mm}; \mu_0 = 1.3/\mu \text{s}$ and the most dangerous mode numbers are n = 17 for the dipole mode and n = 46 for the envelope mode yielding a growth rate of $\left(\frac{1}{t}\right)_g \approx 0.28/\text{s}$, whereas the previous mode numbers (n = 25 and n = 53) would yield a growth rate of about $\left(\frac{1}{t}\right)_g \approx 0.15/\text{s}$.

This effect does not seem important even at a pressure of $3 \cdot 10^{-7}$ Torr.

References

- H.G. Hereward, The instability of radial betatron oscillations in the CPS, MPS/Int. DL 64-8 (1964).
- H.G. Hereward, P.L. Morton, K.H. Schindl, The effect of ions on the symmetrical throbbing beam mode, IEEE Trans. Part. Acc. Conf. Washington, p. 180 (1969).

Distribution

MST

- Y. Baconnier
- M. Barton
- U. Bigliani
- D. Boussard
- C. Bovet
- M. Cornacchia
- G. Dôme
- I. Gumowski
- G. von Holtey
- K. Hübner
- E. Keil
- K. H. Kissler
- R.D. Kohaupt
- A. Millich
- B. Montague
- C. Pellegrini
- A. Piwinski
- G. Plass
- K.H. Reich
- A. Renieri F. Sacherer
- G. Saxon
- H. Schönauer
- P.H. Standley
- L. Steinbock
- E.J.N. Wilson
- H.O. Wüster
- B. Zotter