PS/OP/Info 92-11 20.2.1992

AAC MONITORING AND OPTIMIZATION OF PBAR ACCUMULATION

Copie des transparents du cours donné aux techniciens d'opération AAC/LEAR le 21.2.1992 par T. Eriksson

Distribution

Section OP/AAC/LEAR AAS LEAS

Fig. 1 HARDWARE LAYOUT

Description of each button of "HP FFT": (Fig. 2)

-"ACW" - <u>AC</u> <u>Wide</u>. This measurement takes place just after the bunch rotation after injection into the AC. The program does not change any parameters in AAC, so ACW can be used during accumulation without affecting the accumulation rate. It can also be run with single shots. A choice of "START AVERAGING IN HP9845" or "READ BACK EACH CYCLE" has to be made before the measurement starts (Fig. 3). With 4.8 sec. production rate, the program will measure 1 out of 2 cycles. The measurement will generate results as follows :

- "AC 5.3" : Beam intensity in AC within 5.3 % momentum spread. To simplify the use of the FFT analyzer, 5.3 % was chosen instead of 6 % (nominal AC acceptance).

- "AC 1.5" : Beam intensity in AC within 1.5 % momentum spread.

- "Eff." : AC 1.5 / AC 5.3 , corresponds to the efficiency of the bunch rotation system.

- "Yield" : "AC 5.3" value divided by beam intensity acquired from a fast beam transformer in the inj. line (TFA 9053). "Yield" appears only when the program is running in "READ BACK EACH CYCLE" mode.

Note: this is not the "real" yield since the bunch rotation, RF etc. is operational. The result may be different from those of yield measurements made with other programs.

Display on HP 3562 after measurement:

Results displayed on terminal:

Top trace shows the integral of the lower trace.

Bottom trace shows the momentum distribution in AC with markers to indicate 1.5 % dp/p.The whole width of the display is 5.3 % dp/p.

x: 63. 3: 2	ALCI 30A-9	SPEC ODDESITY			0. 312.44 2. 412.44 2. 412.44	AC POT		LOG HES SECPT SINC TINC 75m GAPTUP THOUSE ON SC TO THOUSE
Ac Ac	coolin	eined (with	••••••••••••••••••••••••••••••••••••••	AZU Eft	J, AC ≃75°k	رەەررىم	046
(•	AA 2 7			DC 10	TE9912	TE9957	4) TE5389	YTELN E-7
1 1	HU 0.0 4 76	- HU 1.9(97 7 66	') 1.F.F 07	0 07	9 17	g q7	1555	52 4
141	÷.50	0.74 7 78	.99	0.01	2.10 0.70	0.24 Q (Q	1998	48 5
144		0.07 4 A.4	.04 A#	7.11 0 17	2.92 0.40	2.12 Q ()1	1971	52.2
	4.31 1.1 .	+.5+ 	.07 A#	7.14 8 81	2.70	9 99	1919	49.2
	4.47	1.66 	. 01 65	7.01 6 ft	2.62	0 17		48 5
111	1.4 <u>7</u>	1.57	. 64	7.11	2.00 6 51	2.1) 0.71	1449	49 9
	÷ 33	1. (<u>1</u> 	.01	7.41	2.41 0.70	0.91 0.92	1979	
		2.87 	00 	7.10 5.45	7.00	2.44 3 3#	1000	
		: //	6 <u>4</u>	7.10 	2. 33 A 82	7.47	1999 (\$72	72 2 71 1
· • •			62 	8.77	7.43 x ==		1.33 •===	
		<u>.</u>		5.11	7.24	• •	1219 1	_ = =
-1	17 1 7411	YALUES FO	. 187 :	3 SHUES:		• • =	. =	=: =
	<u> </u>	785	83	- 22				•••

cours H=6 Idetemps on temps (1/19)

4=6 XI enu Iso off Sque & offict = -100 we need to drange the offset move! -(Cavity 1 B OK with -55 .

Optimized Dog-Leg BHZ-S US. Lield. There is a problem in PS-RE system - no synchronization botween in Sin 142 synthesizer and RE- The bunches are captured in the 1=6 RE buckets with random plusse;

	AC 5.3	AC 1.5		PS. 17	TF9012•	TF9953	TF5389	YIELD E-7
139	6.15	2.98		11.77	11.92	11.63	2995	52.9
131	6.53	5.29		11.59	11.68	11.39	2878	57.3
172	5.22	5.89	. 81	12.18	11.99	11.52	2194	53.9
133	2.58			11.89	11.93	11.61	2128	21.5
134	5.98	3.57		11.99	12.82	11.67	2868	
135	1.59		. :	11.94	12.12	11.69	2192	13.6
136	6.15	4,52	. 73	12.28	12.19	11.81	2197	52.1
137	6.84	5.93	. 73	12.86	12.22	11.88	2135	57.6
138	6.27	5.19	. 31	12.18	12.13	11.76	2138	53.2
139	6.89	5.68	. 31	12.40	12.52	12.14	2235	56.7
ACHX:	AVERAGE	YALUES	FOR LAST 1	Ø SHOTS:				
	5 59	3 75	58	12.83	12.97	11.71	2189	46.9

Optimization Acus - Vield

PS: Dean intensity

houch length - B. rot sousitive

timing - fine inj. kicher agustements / RF-period jumps

+Cini: Steering before + after target

	••'			
	ritetion using	concreat escillations	pgm. (H	to correct.
	7			
(ollertor:	tinina			
	(correct)			
	(2-partion)			
			: : : : : :	

+C RF Brot: Syuch phase offset

			•	÷	•		•	•	•		•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	-	•		•	•	•	•	•	•	••	•	· 1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
 	:	:									:	:				:	:	:			:	:					:		:			. :		. :			
 																				• • •	••••						••••		•								
			•			•						· /			~	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•
		•		•		•	•		AAL			• •		NO.	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•			- · · -	· · ·			\sim	• •		· · ·	<u>.</u>	•	•		•	•	•	•	•	•	•	•	•	•	· ·		· · · · · · · · · · · · · · · · · · ·	•	•	•	•		•
•							•	•			•		•			•	•	•	•	•	•	•	•		•		•	•		•	•	•	•	•	•		
														•	•		•		•	•	•	•		•	•	•	•				•		•		•		•

timine (offects duration of rotation)

- "ACN" - <u>AC Narrow. Like ACW</u>, only one measurement per cycle is performed. The ACN measurement has only the "READ BACK EACH CYCLE" possibility (Fig. 4). The program will automatically reset the beam request, disable AC h=1 RF timing, disable AC ej.kicker timing and set the timing for the HP 3562 to a later value in order to measure after the AC cooling sequence. Single shots will be asked for by the program until the operator stops it. When it is stopped, all the timings will be re-enabled, reset to initial values and the beam request restored to its initial state. During the measurement, the accumulation will be completely stopped. The measurement rate will be approx. 1 out of 3 cycles with 4.8 sec. accumulation rate. Results generated will be as follows (intensities after the AC cooling sequence) :

- "AC 5.3" : Beam intensity in AC within 5.3 % momentum spread (remaining beam after bunch rot. + AC cooling).

- "AC .18" : As above but within 0.18 % momentum spread (4 eVs).

- "Eff" : AC .18 / AC 5.3 , corresponds approx. to AC cooling efficiency.

Normally, more than 1.5 % dp/p can be taken care of by the AC cooling systems. This explains why the "AC 1.5" value using ACW is sometimes smaller than the values measured using ACN.

To calculate the overall AC efficiency, one can compare the ACN "AC .18" and the ACW "AC 5.3" values.

Display on HP 3562 after measurement :

x=63.6254Hz 0x=1.6254Hz	S. STARTAR
A.B. PTWER SPECI IBANG ONGVID Herry	
Real	L DG ME S
	SHEPT SINE
Ha -1.0 25m HaAC PON SPEC DUNSITY 75H	TIME
TYTE (1454 ATDE05) (Bring GEOrip Have 1. Second BREEL 7. Second BREEL Rent (тнация См. 227
ũ.	
Star Ma AC POR SPEC ODMLTY 78-	

Top trace shows the integral of the lower trace.

Bottom trace shows the momentum distribution in AC with markers at 0.18 % dp/p. Total width = 5.3 %.

Results displayed on terminal:

ACHX: AVERAGE VALUES FOR LAST 10 SHOTS: 3.78 3.70 .97 acquires the beam intensity at the injection orbit just after injection into AA. The AA precooling timing will be changed slightly in order to start cooling 1 sec. later (total cooling time will be 3370 instead of 4370 ms). This has proved to cause only a slight deterioration of the stacking rate when used during accumulation. Measurement rate will be 1 cycle out of 3 with 4.8 sec. production rate.

Results:

- "AC 5.3" : Like "ACW".
- "AC 1.5" : Like "ACW".
- "Eff." : Like "ACW".
- "AA .21" : Beam intensity on AA inj. orbit just after injection.
 dp/p = 0.21 % which corresponds to 4 eVs.
- "Eff." : AA .21 / AC 5.3 , Total efficiency of AC + rebunching and transfer into AA.
- "Yield" : Like "ACW" Yield.

Display of HP 3562 after measurement:

Integral of AC measurement. Markers belong to lower trace.

Integral of AA Inj. beam measurement. Markers of top trace indicates 0.21 % dp/p on lower trace.

Results displayed on terminal:

ACAIX:	AVERAGE	VALUES	FOR LAST	10 SHOTS:		
	4.78	3.54	74	3.50	73	52.19

- "ACAID" - AC to AA Injection Delayed. This measurement is identical to ACAI with the exception of a longer internal delay in the HP 3562 autosequence. This will give us the AA intensity after AA precooling and before RF-displacement into the stack tail. The AA precooling timing will also be slightly different with the end of the cooling sequence 1 sec. earlier. (Total cooling time 3370 instead of 4370 ms.) Measurement rate is 1 cycle out of 4 with 4.8 sec. production rate.

Results:

- "AC 5.3" : Like "ACW".
- "AC 1.5" : Like "ACW".
- "Eff." : Like "ACW".
- "AA .21" : Intensity of beam on AA injection orbit within 0.21 % dp/p (4 eVs) after precooling.
- "Eff." : AA .21 / AC 5.3 .
- "AA .052" : Like "AA .21" but within 0.052 % dp/p (1 eVs).
- "Yield" : Like "ACW" Yield.

This measurement will show the efficiency of the AA precooling. Although 4 eVs will be displaced by RF into the stack tail region, it is favourable to have a smaller momentum distribution since the central part of the distribution will be deposited closer to the stack core.

Display of HP 3562 during measurement (to show a typical distribution):

Top trace shows the integral of the AC measurement.

Bottom trace shows the integral of the AA measurement. The inner markers correspond to 1 eVs and the outer to 4 eVs.

Results displayed on terminal:

ACAIDX:	AVERAGE	YALUES FOR	LAST	10 SHOTS:				
4	. 51	3.37	74	3.88	86	2.83	. 62	48.7

Optimization ACN

AL COOLINg: Delays

- filters - check/adjust sing 1 hand at a time (only "do" ten

ACAL

trousfer AC/AA: Steering twoign xterline (Ace: hiller + Siporae)

injection to AA: use cohevert escillations pyin (L, H, V) - will

correct AC field + phose office for AA RE (L)

Actro

precoding L: velay

- "ACATL" - <u>AC</u> to <u>AA</u> <u>Tail</u> <u>L</u>osses. Measures beam intensities in the AC plus the losses at the high energy side of the stack tail in the AA, i.e. the particles "pushed" out by the RF system if the stack tail or the core cooling systems are too slow. High loss rates can also be caused by malfunctioning of cooling systems used previously in the pbar production sequence (in AC or AA). No parameters such as cooling timing etc. will be altered during the measurement. "READ BACK EACH CYCLE" or "START AVERAGING IN HP9845" are possible (Fig. 3). Repetition rate will be 1 out of 4 cycles with 4.8 sec. production rate.

Results :

- "AC 5.3" : Like "ACW".

- "AC 1.5" : Like "ACW".
- "Eff." : Like "ACW".
- "AA .21" : Intensity within 0.21 % momentum spread just outside the RF deposit area on the high energy (low frequency) side of the stack tail. The RF deposit area corresponds to 0.21 % dp/p, so the "AA .21" value will represent the number of lost particles for one shot.

- "Eff." : AA .21 / AC 5.3 , corresponds to loss rate during one cycle.

- "Yield" : Like "ACW" Yield.

Top trace shows the integral of AC measurement.Markers belong to

bottom trace.

Bottom trace shows momentum distr. in the AA just to the left of the RF-deposit area. Markers from upper trace indicates 0.21 % (4 eVs) dp/p.

Results displayed on terminal:

ACATLX:	AVERAGE	YALUES	FOR LAST	10 SHOTS:		
•	3.87	2.88	. 74	. 98	. 82	41.92

- "ACAT" - <u>AC</u> to <u>AA</u> <u>Tail</u>. Measures the AC efficiencies like "ACW" plus the intensity of the freshly deposited beam in the stack tail area. Only "READ BACK EACH CYCLE" is possible (Fig. 4). Beam requests will be handled automatically like in "ACN". The stack tail cooling will be started 1 sec. later in order to give the HP 3562 enough time to measure before the particles are pulled into the stack tail. Measuring rate is 1 cycle out of 4 with 4.8 sec. production rate. Accumulation will be completely stopped.

Results :

- "AC 5.3" : Like "ACW".
- "AC 1.5" : Like "ACW".
- "Eff." : Like "ACW".
- "AA .21" : Intensity of beam just deposited in stack tail region within 0.21 % dp/p (4 eVs).
- "Eff." : AA .21 / AC 5.3 . Corresponds to the global AC + Transfer + AA cooling + RF-deposit efficiency.
- "AA .052" : Like "AA .21" but within 0.052 % dp/p (1 eVs).

- "Eff." : AA .052 / AC 5.3 .

Display of HP 3562 after measurement:

Top trace shows the integral of the AC measurement.

Bottom trace shows the distribution of the RF-deposited beam in the AA. Markers are at 0.21 % (4 eVs) dp/p. On the right side one can see the outer edge of the stack tail.

Results displayed on terminal:

ACATX: AVERAGE VALUES FOR LAST 10 SHOTS: 4.74 3.61 .76 3.33 .70 2.29 .48 52.07 - "AC5" - Measures <u>AC</u> intensity within 5 % dp/p divided into <u>5</u> slices. using this, one can more exactly measure the dp/p distribution just after injection and bunch rotation.

Results :

- "-2%" : Intensity in the -2,5 to -1,5 % range.
- "-1%" : Intensity in the -1,5 to -0,5 % range.
- "0 %" : Intensity in the -0,5 to +0,5 % range.
- "+1%" : Intensity in the +0,5 to +1,5 % range.
- "+2%" : Intensity in the +1,5 to +2,5 % range.

Results displayed on terminal:

AC5X:	AVERAGE	YALUES	OYER		SHOTS	
		.07	1.55	1.92	.44	58.32
	-27	-17				71ELD E-7

Opfinization ACATL

(lossee from St. tor avea dirring stocking)

Stack core: tunes

ive coding (L, H, V) leloys, attenuators Stack tail cooling (L) ------

Acti

-44 RE : -finadio

precoding L. V. Robucs, etternotous

Fig. 10 Results on monitor after a complete "PERFORM. CHECK" measurement.

Comments:

- 1. Equal to "ACN" AC .18 value divided by "ACW" AC 5.3 value.
- 2. Equal to "ACAI" AA .21 value divided by "ACN" AC .18 value.
- 3. Equal to "ACAID" AA .052 value divided by "ACAI" AA .21 value.
- 4. Equal to "ACAT" AA .21/AA .052 values divided by "ACAID" AA .21/ AA .052 values.

	×.	DicoD	ime Display			
GENERA	L AAC PER	FORMANCE 10	SHOTS FFT AVE	RAGES.	-	
12-18-	19:20		STACK 1.54E11	AC EMITTANO	ES(952)	
	e e	95% EMITTANO	E (p mm mrad)	H: 6 V:	7	
	AT PEAK	AT PEAK	AVERAGE	TOTAL AC EFF.	5.3%	
HOR.	2.2544	2.5	2.7	INJ. TO .18%	COOLED	
VERT.	2.2602	.9	1.5	.94	×	1
				REBUNCHING +	TRANSFER	
PEAK A	T 1855.1	6 kHz		AC TO AA INJ.	IN 4 eVs	
MEAN A	T 1855.1	3 kHz. RMS WI	DTH 106 Hz	.79	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2
	PS.IP	TF9012 TF905	53 TF5309	AA PRECOOLING	EFF.	
	14.11	14.58 14.13	8 2345	INJ. INTO 1	eYs	_
ACU	AC 5.3	AC 1.5 EFF	YIELD E-7	.75		3
	5.96	4.27 .84	35.8	AA RE INJ.TO	ST. TAIL	
arn	AC 5.3	AC 18 FEE	INSS F7/HR	4 eVs 1	aVs	
	4 95	4.76 .96	13	1,10	1-14	4
arat	00 5 3					**
	5 12	4 28 83	2 2 20	74 3.77	-79	
ACATA					FFF	
нснтр				78 2 88 a	59	
ACATI	4.00					
HUHIL				62		
	4.71	3.96 .84	.10		FEF	
		AC 1.5 EFF				
<u> </u>	5.18	4.39	4.19	.80 3.29	-63	
		Read States				

Differences etc - new versions

- Encly slipe is bigglayed.

- Fester, Accu measures every 4,85 cycle

Action was much, uses the same beam all the way through. Delays are introduced in the accululation sequence to give analythe to measure. Does: Acm + Acit +

PET-skunze is use using the trig input. The Synchronization To separate on the NSCO. Some cycles can be skipped.

1991-12-19	-16:25	:51		TACK	2.76E		TRANS	FUR	MERS
		95% El	MITTAN	E, P		30		2 2 1	4.12 1°02
AIE	PEAK	Ala	PEAK				TEGGE	31	4.12
HUK. C.	2001				1-5		TF538	9	2140
									مة بينا المريد
PEAK AT 1	855.08	kHz					RC EM	ITT	AMCE
HEAN AT 1	855.11	kHz,	rms W	DTH 1	36 Hz		12.51	6 Y	<u>* 7</u>
and the second sec							2 26 CC	050	
Alian Aliantian and	in the second	ACAA		20.00	ALN			HUR	
YIELD-shines	1-37.9							777740	
AC 5.3	5.60	1.02		5.67	1.3		5.	01	:.::0
AC 5.3 AC 1.5	5.60 4.25	1.02		5.67 4.34	1.52		5.	01 90	:.÷0 .77
AC 5.3 AC 1.5 AC 5.3	5.60 4.25	1.02		5.67 4.34 4.78	1. A2 7.5		5.	01 90	:, 20 . 7;
AC 5.3 AC 1.5 AC 5.3 AC 18	5.60 4.25	1.02		5.67 4.34 4.78 3.91			5.3.	01 90	:, :::
AC 5.3 AC 1.5 AC 5.3 AC 18 AC 18 AC 18	5.69 4.25 -2.47	1.02	7.53	5.67 4.34 4.78 3.91			5. 3. 1	01 90	
AC 5.3 AC 1.5 AC 5.3 AC 18 AC 18 AC 18 AC 18 AC 18 AC 18	5.60 4.25 -2.47 -2.95	1.02	53 19 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	5.67 4.34 4.78 3.91			5.3.	01 90	
AC 5.3 AC 1.5 AC 5.3 AC 18 AC 18 AA 18 PR 21 PR 21 PR 952	5,60 4,25 2,47 2,95 2,38	1.02 75 75 44 92 42	1. 1. 1. 1. 1. 1. 1. 1. 1.	5.67 4.34 4.78 3.91			5.3.	01 90	
AC 5.3 AC 1.5 AC 5.3 AC 18 AC 18 AC 18 AC 18 PR 21 PR 21 PR 21 PR 21 FT 21	5.60 4.25 2.47 2.95 2.38 2.05	1.02 75 4 4 3 4 3 4 3 5		5.67 4.34 4.78 3.91			5.3.	01 90 	
AC 5.3 AC 1.5 AC 5.3 AC 18 AC 18 AC 18 AC 18 AC 18 AC 18 AC 15 AC 18 AC 15 AC	5.60 4.25 -2.47 2.95 2.38 2.05 1.30	1.02 75 75 74 74 74 74 75 75 75 75 75 75 75 75 75 75 75 75 75		5.67 4.34 4.78 3.91				01 90 	3. 90 7. 0