Results from e^+ measurements at LIL in December 1989

H. Braun (PSI), J. Madsen, A. Riche and L. Rinolfi

Contents

1	Inti	roduction
2	Rep	production and optimization of a former set-up
	2.1	Set back reference values of 25 August 1989
	2.2	Optimization with steering magnets
	2.3	Fluctuations of HIP.UMA 22
	2.4	Phase adjustment
	2.5	Optimum of Uc
	2.6	Increase of MDK03 power
	2.7	Conversion efficiency
	2.8	Conclusions from the measurements of this section
3	Tes	ts related to section 25/26 magnet coils
	3.1	Test of new steering method
	3.2	Test of the sensitivity of ACS25 steering coils
	3.3	Scan of pulsed coil SNP25 current
4	Sca	us of RF-parameter
	4.1	Dependence of e ⁺ -yield from the phase of LINAC V relative to LINAC W .
	4.2	Measurement of LINAC V spectrum
	4.3	Variation of ACS25/26 field strength
5	Det	ermination of LINAC V bunchlength
	5.1	Calculation of the spectra
	5.2	Estimation of the systematic error of the calculation
	5.3	Results

1 Introduction

This note is a summary of some measurements and their results done during several machine developments, which took place between the 4th and 6th of December 1989.

2 Reproduction and optimization of a former set-up

2.1 Set back reference values of 25 August 1989

The LIL performances were measured under the existing settings at the beginning of the session. These settings were achieved during different optimizations and adjustments over the last months. The positron production read at HIP.UMA 22 was $8.0 \cdot 10^8$.

All reference values made on 25 August were set back (see table 1 for RF-parameters). The positron production at IHP.UMA 22 becomes $8.3 \cdot 10^8$ (Fig. 1). Two parameters have to be changed from the reference values:

- i) The phase of modulators, mainly MDK 13.
- ii) The current of VL.DQL152II.

This power supply was changed in order to allow the e-beam deflection with the new mechanism of the target. The resolved conversion efficiency is $3.1 \cdot 10^{-3}$.

2.2 Optimization with steering magnets

In order to compare with the previous measurement and to be sure that the klystron is in saturation the voltage of MDK03 was set to 26.2 kV, which gave a power of 13.3 MW (klystron output reading). The power in MDK 13 was raised to 24.0 MW with a klystron voltage of 35.1 kV (Fig. 2 and 3).

From this point several adjustments with steering dipoles were done. The idea was to vary the current pair by pair for a given plane on an experimental basis and also to try to set the currents close to zero. Fig. 4 gives the horizontal current values. If at the end of LIL-W, the currents are close to nut, upstream and downstream of the target, there are far from small values.

Fig. 5 shows the vertical current values. Except just downstream of the target, almost all values are close to zero. One power supply upstream the target is also different of zero. The geometry downstream the target is probably not very well adjusted. Some efforts should be devoted to this part of the machine. The focussing of the linac was not changed. Fig. 6 gives the current values.

After the optimization of the steering the positron production raised from 8.3 to $12.0 \cdot 10^8$ e^+ per pulse.

2.3 Fluctuations of HIP.UMA 22

During a few minutes, the positron production was recorded. Fig. 7 shows the results. Table 2 summarizes the observation.

signal IIIP.UMA 22	Sigma (10 ⁸)	Delta II (mV)	Delta V (mV)
1	11.9	9.1	- 0.3
2	12.0	8.1	- 0.3
3	12.1	7.8	- 0.3

Table 2:

The vertical position does not change. When Delta II decreases by 1.3 mm, Sigma increases by $2 \cdot 10^7 e^+$. From tab. 2 one gets a short term stability of $\frac{0.2}{12.0} = 0.02$.

2.4 Phase adjustment

With Uc = 1.68 kV on the gun, providing $3.6 \cdot 10^{11} e^-$ at ECM 01, each modulator has been optimized. With phases displayed on figure 8, the positron intensity rises up to $12.4 \cdot 10^8$ (Fig. 9). Only the phase of MDK31 was changed from 214 deg. to 200 deg. Fig. 10 displays the beam profile at the end of LIL-V.

2.5 Optimum of Uc

Fig. 11 shows the variation of UMA 15 and HIP.UMA 22 vs. Uc. The maximum is obtained when Uc = 1.95 kV. With this value, UMA 15 reads $2.5 \cdot 10^{11}e^-$ and HIP.UMA 22 reads $14.3 \cdot 10^9 e^+$ (Fig. 12). A scan with the phase between the prebuncher and the buncher was done. The maximum is always when the phase equals 42 digits.

2.6 Increase of MDK03 power

The maximum intensity on UMA15 and HIP UMA22 is obtained when P(03)=13.8 MW. This klystron output reading is get with a klystron voltage of 26.4kV (Fig.13). It provides $3.0 \cdot 10^{11}e^-$ on UMA 15 and $17.1 \cdot 10^8 e^+$ on HIP 22 unresolved (Fig.14 and 15).

2.7 Conversion efficiency

Fig. 16 displays the measured positrons per pulse resolved which is $12.9 \cdot 10^8$. With slits closed at 17 mm, the energy dispersion is $\pm 1\%$ and the maximum is obtained when the position of the slits is X = +4mm.

The resolved conversion efficiency is $\frac{12.9}{3000} = 0.0043$.

2.8 Conclusions from the measurements of this section

The design value of resolved efficiency is reached. However, a comparison with SLAC value shows that a factor 3 could be gain. A simulation of the positrons production indicates that a factor 5 is missing with a correct geometry downstream the target and a correct value of the focusing solenoid SNP 25. Other studies are proposed to increase the positron production:

- 1. Beam loading in the cavities.
- 2. Transversal positions of solenoids downstream the target.
- 3. Optics of the linacs.
- 1. Systematic check of the LIL-W acceptance for positrons.

3 Tests related to section 25/26 magnet coils

3.1 Test of new steering method

We changed the settings of the correction dipoles on ACS25/26 from the settings in column 1 of tab. 3 to a set of values (column 2 in tab. 3) found with a new method, which uses the 220 MeV electron beam to adjust the coil currents [1]. The positron current dropped from $8.9 \cdot 10^8$ to $5.8 \cdot 10^8$, but could be raised to $8.2 \cdot 10^8$ by readjusting the e^- beam position on the target and some of the ACS25/26 correctors (column 3 of tab. 3). It is remarkable that roughly the same yield can be obtained with two completely different settings of the steering coils.

Corrector	initial val.	val. from [1]	optimized
DHG 251	-4.8 A	-12.5 A	-13.0 A
DHG 252	-17.9 A	-12.0 A	-20.0 A
DHG 261	-19.5 A	-20.0 A	-20.0 A
DHG 262	-9.8 A	-20.0 A	-20.0 A
DVG 251	0.0 A	-9.8 A	-10.0 A
DVG 252	17.4 A	6.8 A	6.8 A
DVG 261	8.8 A	13.0 A	13.0 A
DVG 262	8.3 A	6.0 A	6.0 A
$IIIP22(\cdot 10^8)$	8.9	5.8	8.2

Table 3: Corrector settings for ACS25/26 correctors

3.2 Test of the sensitivity of ACS25 steering coils

The dependence of the energy resolved e^+ current on IIIP22 from the correction coil currents was recorded (Tab. 4). It turned out, that the dependence is not very strong (which may also explains the results of the section before), nevertheless the results are not very precise, since there was a drift of the e^+ yield during the measurements and also a control problem with DVG251.

3.3 Scan of pulsed coil SNP25 current

The resolved e^+ current vs. I_{snp25} was measured. For the results see tab. 5. The variation of the solenoid SNP 25 is still without a big effect on the e^+ production contrarily to what is expected from calculations.

Although it is designed to take a maximum current of 6000 A the optimum yield is obtained at less than half of this current. Switching the solenoid off reduces the yield by a factor of two. Later on it has been shown that the drop is a factor 3 when a fine optimization of the yield was done.

DHG251	DVG251	DHG252	DVG252	1111'22
Λ	Λ	Λ	Λ	108
-1.2	0.0	-18.0	+19.0	7.7
+20.0	0.0	-18.0	+19.0	5.7
-1.2	0.0	-18.0	+10.0	5.1
-1.2	0.0	-18.0	+7.0	3.8
-1.2	10.0	-18.0	+19.0	1.5
-1.2	-10.0	-18.0	+19.0	4.7
-1.2	0.0	+20.0	+19.0	3.5
-1.2	0.0	-18.0	+19.0	6.9

Table 4: Resolved e^+ yield ($\pm 1\%$) for different steering coil settings

I_{SNP25} [A]	HIP22 [-108]
0	2.9
1000	4.9
1500	5.3
2000	5.6
2500	5.8
3000	5.5
3500	5.3

Table 5: HIP22 vs. I_{SNP25} .

4 Scans of RF-parameter

4.1 Dependence of e⁺-yield from the phase of LINAC V relative to LINAC W

The phase of LINAC V was varied relative to the phase of LINAC W by changing the phases MDK03 and MDK13 simultaneously. The value for MDK13 is $MDK03 + 195^{\circ}$ in these measurements. The yield was measured with HIP22 (Fig. 17). The width of collimator HIP.SLII20 was reduced to 17 mm corresponding to a $\pm 1\%$ energy acceptance. For each setting of the phases the position of HIP.SLII20 was optimized for optimum yield. (Remark: The graphical display of the collimator position didn't work satisfactory). On 5th of Dec. a scan over 360° was done. The measurement was redone for the decelerating regime one day later after the machine was optimized for higher e^+ production. It should be mentioned that the steering was done for the decelerating mode and not changed during the measurement, thus the values in the accelerating mode are far away from optimum.

4.2 Measurement of LINAC V spectrum

The energy spectrum of LINAC V was measured for different settings of MDK03 (Fig. 18-21). The value of MDK13 was fixed to 308° during these measurements. The aim of this measurement was to get an estimate of the LINAC V microbunchlength (section 5). For

this measurement the beamloading was reduced by changing the pulse length of the gun from $20 \, nsec$ to $12 \, nsec$. The beam intensity on the target was $1.8 \cdot 10^{11}$ part. p. pulse before the reduction of the pulse length, therefore is in the next section a pulsecharge of $\frac{12}{20} \cdot 1.8 \cdot 10^{11}$ particles assumed.

4.3 Variation of ACS25/26 field strength

The field strength was changed by variation of the power of klystron 25. The e^+ yield showed a strong dependence (Tab. 6). But one has to be careful about this results, the r.f.-phase of klystron 25 which presumably depends strongly on the power, was not checked during these measurements since we ran out of time.

$P_{Kly.25}$	H1P22
MW	108
18.1	8.0
17.4	6.8
18.8	3.5

Table 6: IIIP22 signal for different klystron 25 output powersettings

5 Determination of LINAC V bunchlength

The aim of this chapter is to give an estimate of the bunchlength of Linac V. The Monte-Carlo Simulation of the positron capture system shows that especially in the decelerating mode the LIL positron yield is very sensitive to the bunchlength of Linac V. Therefore a realistic value of the bunchlength is essential to get simulation results which are comparable with measurements. On the other hand a method for the measurement of the bunchlength could be used for its minimization, leading to higher positron yields.

The method described is based on the idea, that the spectrum at the end of Linac V is mainly determined by beamloading and the phase distribution in the bunch at the end of the Linac V buncher. Additionally it is assumed, that the phase motion between the buncher and the end of Linac V is negligible. The limits of this simplification are discussed in Section 5.3. The spectra computed for different bunchlengths are then compared with the measured one, and the computed spectrum which fits best the measured spectrum is assumed to represent the right bunchlength.

5.1 Calculation of the spectra

The energy at the end of the linac depends on the initial phase of the electrons φ according to

$$T = T_0 + \Lambda \cos \varphi \approx T_0 + \Lambda (1 - \frac{\varphi^2}{2}) \tag{1}$$

With $T_0 = \text{kin.}$ energy at the output of the buncher. Since only particles near the crest of the wave are taken into consideration, the approximation in (1) is valid. Assuming a parabolic bunch distribution

$$\frac{dn}{d\varphi} = \begin{cases} \frac{3}{4\sigma} \left(1 - \frac{(\varphi - \varphi_{s})^{2}}{\sigma^{2}} \right) & \text{if } |\varphi - \varphi_{s}| \leq \sigma \\ 0 & \text{otherwise} \end{cases}$$
 (2)

with σ =half bunchlength and φ_s =phase of reference particle. The energy distribution is given by

$$\frac{dn}{dT} = \frac{dn}{d\varphi} \frac{d\varphi}{dT}$$

$$= \frac{3}{4\sigma} \left(1 - \frac{(\varphi - \varphi_s)^2}{\sigma^2}\right) \frac{1}{A\sqrt{2}\sqrt{1 - \frac{T - T_h}{A}}}$$

$$= \frac{3}{4\sigma} \left(1 - \frac{(\sqrt{2}\sqrt{1 - \frac{T - T_h}{A}} - \varphi_s)^2}{\sigma^2}\right) \frac{1}{A\sqrt{2}\sqrt{1 - \frac{T - T_h}{A}}}$$
if $|\sqrt{2}\sqrt{1 - \frac{T - T_h}{A}} - \varphi_s| \le \sigma$

$$= 0 \text{ otherwise}$$
(3)

Evaluating (3) in the case $\varphi - \sigma < 0$ one has to add the two possible values of (3) according to the two possible solutions of the roots.

The spectrum is broadened by beamloading. If the pulse length is very small compared to the filling time of the r.f. sections the spectrum changes according to

$$\frac{dn}{dT_{hL}}(T) = \frac{1}{\Delta T} \int_{T}^{T+\Delta T} \frac{dn}{dT}(\tau) d\tau \tag{4}$$

where the energy spread is approximately given by

$$\Delta T_{b.l.} \approx \frac{\omega_{rf} \, q \, T}{2 \, Q} \sqrt{\frac{r \, L}{P}} \tag{5}$$

(Q=unloaded Quality factor, r=shunt impedance, L=length of a section, P=r.f. pulse power per section, q=charge of the pulse)
Inserting (3) in (4) yields

$$\frac{dn}{dT_{b.l.}}(T) = \frac{1}{\Delta T} \int_{T}^{T+\Delta T} \frac{3}{4\sigma A} \left(1 - \frac{(\sqrt{2}\sqrt{1 - \frac{\tau - T_{b}}{A}} - \varphi_{s})^{2}}{\sigma^{2}}\right) \frac{1}{\sqrt{2}\sqrt{1 - \frac{\tau - T_{b}}{A}}} d\tau$$

$$= \frac{3}{2\sqrt{2}\sigma^{3}} \left[\sigma^{2} - \frac{2}{3}u^{3} + \varphi_{s}\sqrt{2}u^{2} - \varphi_{s}u\right]_{L}^{H} \tag{6}$$

with $L = \sqrt{1 - \frac{T_{low} - T_0}{A}}$, $H = \sqrt{1 - \frac{T_{high} - T_0}{A}}$ and $u = \sqrt{1 - \frac{T - T_0}{A}}$, where the integration limits T_{low} and T_{high} has to be carefully chosen in the different cases caused by the condition in (2) and the condition that T cannot be bigger than $T_0 + A$.

The energy spread of the buncher m_b and the resolution of the spectrometer m_r also acts on the measured spectra. This can be described by a convolution of (4) with a gaussian.

$$\frac{dn}{dT}(T)_{measured} = \frac{1}{\sqrt{2\pi}m} \int_{-\infty}^{+\infty} \frac{dn}{dT_{b.l.}}(\tau) e^{-\frac{(T-\tau)^2}{m^2}} d\tau$$
 (7)

with $m = \sqrt{m_r^2 + m_b^2}$.

5.2 Estimation of the systematic error of the calculation

Hitherto it was assumed, that the phase of the particles is "frozen" between the buncher and the end of Linac V, which is actually wrong. Due to the different momenta of different particles one has different particle velocities. The velocity deviation from the reference particle is given by

$$\frac{dv}{v} = \frac{1}{\gamma^2} \frac{dp}{p} \tag{8}$$

since $v \approx c$ this results in a phase error

$$\Delta\varphi = \frac{\omega L}{c \gamma^2} \frac{\Delta p}{p} \tag{9}$$

the magnitude of the error in the calculation of the energy δT can therefore be estimated

$$\delta T = A \sin \varphi \, \Delta \varphi$$

$$\approx A \varphi \, \frac{\omega L}{c\gamma^2} \, \frac{\Delta p}{p}$$

$$= A \sqrt{2} \sqrt{1 - \frac{T - T_0}{A}} \, \frac{\omega L}{c\gamma^2} \, \frac{\Delta p}{p}$$
(10)

Evaluation of (10) shows, that the error vanishes for particles with the maximum energy. For a worst case estimation one has to take the $\frac{\Delta p}{r}$ and γ values at the end of the buncher. Inserting $\frac{\Delta p}{r} = 0.12$ (from [2] for $50\,nC$ pulse charge), $\gamma = 51$, $T_0 = 26\,MeV$, $L = 24\,m$, $\frac{\omega}{c} = 20\pi\,m^{-1}$ and $A = 194\,MeV$ one gets an error of $\delta T = 2.37\,MeV$ at $T = 217\,MeV$ and $\delta T = 4.33\,MeV$ at $T = 210\,MeV$ for example. Therefore a coincidence between the calculated and the measured spectra is only expected at the high energy end of the spectra.

5.3 Results

In figure 22 the measured spectra (see section 4) are compared to curves computed with (7) for $\sigma=10^\circ$, 20° and 30° . In the computation a total beam loading of 5.5%, $m_r=1.7~MeV$ and $m_b=1~MeV$ is assumed. MDK13 was set to 308° during the measurements. With this adjustment a buncher phase of $MDK03=115^\circ$ corresponds to an acceleration on the crest of the r.f. wave. At the high energy end of the spectra the measured spectra fits best with the curves computed with $\sigma=20^\circ$, therefore a total bunchlength of 40° seems to be a realistic estimate for the bunchlength of Linac V. It should be noted that the ability to vary the phase of one or two sections at the high energy end of the Linac V would allow a much more precise determination of the bunchlength. The systematic error described in section 3 would be drastically reduced, thus allowing a complete reconstruction of the bunch shape by a deconvolution method. The arbitrary assumption of a parabolic bunch shape (chosen to simplify the calculation described above) would be no longer needed.

References

- [1] J. Madsen, "Tests during critical day 30 Nov. 89" CERN Nov. 1989
- [2] P. Prunet, R. Chaput, "LIL front end, description and experimental results", Linear accelerator Conf., Darmstadt 1984

	LIL RF	BEF	EREN	CE S	HEET				8 22 25
	DATE = X	21 ADV	T 148	9 TI	ME = /4	1400	N	AME =	= B. CAHARD
	MDK/KL)	Booster	03	13	25	27	31	35	ĺ
Reading	Peak	0.012	14-4	24	19.7	18.2	19.9	16	MW
	Power Meter	20kg	13.2	24.2	19	18.2	19,2	15.1	MW
	KLY current		170	250	200	206	197	213-	A
	PFN		26,2	35	32,5	32	20	32	&V
	PPi (V)		0.84	0,70	1,2	1,53	1,6	1.7	V
	PKI (V)	1,5	. L	0.66	1,8	2	16	096	V
	LBNV or PSI-1 (V)		0.7	0,9	1,6	0,5	1,85	1,32.	V
(2N values	RF-PHASE	e-	136	323	136	203	230	236	
values		et.	133	34/	20.0	20.0	00.0	20.0	
	T;(*C)		32.3	29 ₋ 8	29 ₋ 8	30.6 30.6	29.0 L9	28.8 28.9	
		29 874	29 901	29885	29 941	29 870		29 937	
	SKLY	29874	29901	29885		29870			
			29 959	29919	1//1	29926	29924	1///	
	SRFP		89959	29919.	1111	2996	29914	17/	
	ERFP		30009	30006		30014	30012		
				30.00b		30.014	30.d2		
	SRFI	e-		19986		£9949	29973		
	Coarse	e+		t 1986		29991			
(fine	e-		50		40	30		
4.5.334	Pilea landi	e+		6	5 6	70	3/	2 5	11.0
LBNV or PSi-1	Pu!se length Base	5-5	4.5	4.5	3.5	4.5	4.5	3.5	μs
K>1-7	0920	: - el J	410	() 3				<u> </u>	
	PBV PHASE		= 4	1 a 43	Boo	ster k	lystra	:v =-	LAT . THOMSON

ALL HEASUREMENTS TO BE MADE IN KLYSTRON GALLERY AND AT ARROY:

Fine = 36

PBV ATTENUATOR

TIMING GUN V CORSE = 80.000

Table 1

LIL UMA

TRAJ. POSTIRONS

							Intens. (E8)		-3645,8	-2388.5	-1929.8	-1874.8	6.4	9.4			5 95
a							ECH I		EC#91	HCH11	MCM12	MCM14	HCH37	HIP99			A ELPS
Vertical	ਰ-'	9	4,	& '	ପ୍.	ထ္	-1.5	-1.1	-1.2	-1-3	-1.2	ιĵ	#	4.	111.1	111.11	8.1
Horizontal(mm) Vertical(mm)	-1.8	4	1.8	9.	.	1.	5.2	- T	1.6	-2 . 1	-5 - 9	6.5	1.	9.	111.1	111.1	4.7
Intersite(E8)	-1985.8	-1898.8	-1853.3	-1874.1	-13.2	3.8	6.1	6.9	6.2	6. 8	2.9	5.8	7.8	7.5	8-8	8.8	ლ დ
Inters	UNT 13 -	UEA 15 -	- 임 문		122 12 50	ඩ \$	88 44 5	UPP 31	왕	C## 33	まる		28 18 18 18 18 18 18 18 18 18 18 18 18 18		HIH 88	HIE 22	HIP 22

					100
		POWER SUPPLIES	FOR LPI	OPERATIO	Ħ
FEC	EQH	OB.NAME	STATUS	CCY	ÁQN
LIL	6	YL.DHG031	0 M	2.58	2.48
LIL	8	YL.DHG032	ON	2.70	2.69
LIL	41	VL.DHZ11	0 M	.69	.70
LIL	43	YL.DHG1199	0 H	50	50
LIL	49	YL.DQS121H	0 M	5.20	5.20
LIL	53	YL.DHZ25	0 M	1.99	1.99
LIL	57	YL.DQS132H	ON	20	20
LIL	63	YL.DQS141H	0 M	6.58	6.56
LIL	65	YL.DHZ14	0 M	5.00	4.99
LIL	67	YL.BSP15	STBY	253.49	.42
LIL	68	YL.DQL152H	ON	-2.99	-3.02
LIL	76	WL.DHG251	0 M	-1.29	-1.17
LIL	78	WL.DHG252	0 N	-18.20	-18.05
LIL	81	WL.DHG261	0 M	-19.49	-19.45
LIL	83	WL.DHG262	ON	-9.99	-9.83
LIL	92	HI.BSH00	0 M	173.50	173.74
LIL	96	WL.DQL272H	0 N	-4.99	-5.02
LIL	98	WL.D@NF271H	XXXXX	-3.19	-3.20
LIL	102	WL.REC27	OH	θ	8
LIL	183	WL.DQL28H	XXXX'	4.88	4.91
LIL	105	HL.DQNF284H	XXXXX	0	9
LIL	187	HL.DeNF292H	XXXXX	Ø	Ð
LIL	110	ML.REC28	0 M	8	9
LIL	112	WL.D@MF302H	XXXXX	Ø	8
LIL	114	WL.DeHF313H	XXXXX	8	Ð
LIL	118	HL.REC30	0 M	8	0
LIL	119	WL.DQNF331H	XXXXX	8	0
LIL	121	WL.D@MF342H	XXXXX	Ð	0
LIL	123	WL.DQNF362H	0 N	1.00	1.00
LIL	126	WL.REC33	014	8	8
LIL	133	HI.BHZ	0 H	386.07	386.19

LIL Horizontal plane

rlo	LOSTI				thank in an en	:
		POWER SUPPLIES	FOR LPI	OPERATION		
FEC	EQN	OB.NAME	STATUS	CCY	AQN	
LIL	7	YL.DYG031	0 M	.28	.20	
LIL	9	YL.DYG032	0 M	.29	.20	
LIL	42	YL.DYT11	OH	50	50	
LIL	44	YL.DYG1199	0 H	8	8	
LIL	47	YL.DQL12Y	0 M	<u> G</u>	8	
LIL	54	VL.DVT25	OM	G .	0	
LIL	55	YL.DQL13¥	ON	g.	0	
LIL	61	YL.DQL14Y	OM	g.	9	
LIL	66	YL.DYT14	0 M	-6.00	-5.99	
LIL	69	VL.DQL153V	0 N	ð	8	
LIL	77	WL.DYG251	ON	8	θ	
LIL	79	WL.DVG252	ON	19.00	18.95	
LIL	82	WL.DVG261	ON	8.99	8.80	
LIL	84	WL.DVG262	0 M	8.50	8.33	
LIL	95	WL.DQL271V	OM	0	0	
LIL	97	WL.DQNM273Y	XXXXX	e	9	
LIL	99	WL.DQNF274V	XXXXX	9 9 9	Ø	
LIL	102		OH		Ø	
LIL	104		XXXXX	g	8	
LIL	186	AL.DONF291V	XXXX	ì.99	2.01	
LIL	110		ON	0	8	
LIL	111	HL.Denf301V	XXXXX	8	8	
LIL	113		XXXXX	.09	.09	
LIL	115	WL.DemF323Y	XXXXX	9	.91	
LIL	118	HL.REC30	014	0	8	
LIL	120	HL.DQNF341V	XXXXX	Ð	0	
LIL	122	WL.D@NF361V	XXXXX	-1.66	-1.00	
LIL	126		OĦ	9	Ø	
LIL	131	HI.BYT00	ON	65.93	65.93	

Lil vertical plane

Fig 5

	POWER SUPPLIES	FOR LPI	OPERATI	OM	
EQH	OB.MAME	STATUS	CC¥	AQN	
1	YL.SMA01	OH	8.99	9.00	
3	YL.SMC02	OH	12.20	12.19	
4	YL.SHDE02	OH	112.9	112.92	
5	YL.SHYU03	0 H	70.10	70.13	
19	YL.SMF11	0 H	113.97	114.02	
11	YL.QSA1212	OH	2.40	2.39	
12	YL.QLA12	0 M	2.70	2.66	
13	YL.0SA1312	0 M	2.40	2.38	
14	YL.@LA13	0 M	2.70	2.65	
15	¥L.QLÁ14	0 M	4.19	4.19	
16	YL.QSA1412	ON	3.39	3.39	
17	VL.QLB1514	0 M	57.00	57.01	
18	VL.QLB1523	OH	53.6	53.56	
36	YL.SHB02	0 N	47.99	48.03	
		OH			
75	•				
88	HL.SML26	014	650.00	649.94	
85	WL.QN#271	OH	96.97	96.97	
87	WL.@N#273	0 N	104.10	104.14	
88	HL.@NFA	OM			
89	HL.QNFB	OH	135.00	135.00	
98 .					
134					
	134591234567899856789991	EQN OB.NAME 1 YL.SNA01 3 YL.SNC02 4 YL.SNDE02 5 YL.SNYU03 10 YL.QSA1212 11 YL.QSA1212 12 YL.QLA12 13 YL.QLA13 14 YL.QLA14 16 YL.QLA14 16 YL.QLB1514 18 YL.QLB1523 36 YL.SNB02 37 HL.QLB2829 37 HL.QLB2829 38 HL.QLA271 39 HL.QLB2829 75 HL.SNL25 80 HL.QLB2829 75 HL.SNL25 80 HL.QNM271 86 HL.QNM272 87 HL.QNM273 88 HL.QNFA 89 HL.QNFB 90 HL.QNFC 91 HL.QNM36	EQN OB.NAME STATUS 1 VL.SNA01 ON 3 VL.SNC02 ON 4 VL.SNDE02 ON 5 VL.SNPU03 ON 10 VL.SNF11 ON 11 VL.QSA1212 ON 12 VL.QLA12 ON 13 VL.QLA12 ON 14 VL.QLA13 ON 15 VL.QLA14 ON 16 VL.QLB1514 ON 17 VL.QLB1514 ON 18 VL.QLB1523 ON 36 VL.SNB02 ON 37 WL.QLB1523 ON 38 WL.QLB271 ON 39 WL.QLB2829 ON 40 WL.QLB2829 ON 40 WL.QLB2829 ON 40 WL.QLB2829 ON 80 WL.SNL25 ON 80 WL.QNM271 ON 80 WL.QNM272 ON 87 WL.QNM273 ON 88 <t< td=""><td>EQN OB.NAME STATUS CCY 1 YL.SNA01 ON 8.99 3 YL.SNC02 ON 12.20 4 YL.SNDE02 ON 112.9 5 YL.SNYU03 ON 70.10 10 YL.SNF11 ON 113.97 11 YL.QSA1212 ON 2.40 12 YL.QLA12 ON 2.70 13 YL.QLA12 ON 2.70 14 YL.QLA13 ON 2.70 15 YL.QLA14 ON 4.19 16 YL.QSA1412 ON 3.39 17 YL.QLB1514 ON 57.00 18 YL.QLB1523 ON 53.6 36 YL.SNB02 ON 47.99 37 HL.SNP25 ON 2501.1 38 HL.QLA271 ON 6.00 39 HL.QLA272 ON 8.98 40 HL.QLB2829 ON 55.00 47.99 37 HL.SNL25 ON 650.00 85 HL.QNM271 ON 6.00 85 HL.QNM271 ON 96.97 86 HL.QNM272 ON 106.5 87 HL.SNL26 ON 650.00 85 HL.QNM273 ON 104.10 88 HL.QNM273 ON 135.99 89 HL.QNFC ON 135.00 90 HL.QNFC ON 128.99</td><td>4 VL.SNDE02 ON 112.9 112.92 5 VL.SNVU03 ON 70.10 70.13 10 VL.SNF11 ON 113.97 114.02 11 VL.QSA1212 ON 2.40 2.39 12 VL.QLA12 ON 2.70 2.66 13 VL.QSA1312 ON 2.40 2.38 14 VL.QLA13 ON 2.70 2.65 15 VL.QLA14 ON 4.19 4.19 16 VL.QSA1412 ON 3.39 3.39 17 VL.QLB1514 ON 57.00 57.01 18 VL.QLB1523 ON 53.6 53.56 36 VL.SNB02 ON 47.99 48.03 37 WL.SNP25 ON 2501.1 2536.26 38 WL.QLA271 ON 6.00 59.93 39 WL.QLB2829 ON 55.00 55.03 75 WL.SNL25 ON 650.00 650.00 80 WL.QNM271 ON 96.97</td></t<>	EQN OB.NAME STATUS CCY 1 YL.SNA01 ON 8.99 3 YL.SNC02 ON 12.20 4 YL.SNDE02 ON 112.9 5 YL.SNYU03 ON 70.10 10 YL.SNF11 ON 113.97 11 YL.QSA1212 ON 2.40 12 YL.QLA12 ON 2.70 13 YL.QLA12 ON 2.70 14 YL.QLA13 ON 2.70 15 YL.QLA14 ON 4.19 16 YL.QSA1412 ON 3.39 17 YL.QLB1514 ON 57.00 18 YL.QLB1523 ON 53.6 36 YL.SNB02 ON 47.99 37 HL.SNP25 ON 2501.1 38 HL.QLA271 ON 6.00 39 HL.QLA272 ON 8.98 40 HL.QLB2829 ON 55.00 47.99 37 HL.SNL25 ON 650.00 85 HL.QNM271 ON 6.00 85 HL.QNM271 ON 96.97 86 HL.QNM272 ON 106.5 87 HL.SNL26 ON 650.00 85 HL.QNM273 ON 104.10 88 HL.QNM273 ON 135.99 89 HL.QNFC ON 135.00 90 HL.QNFC ON 128.99	4 VL.SNDE02 ON 112.9 112.92 5 VL.SNVU03 ON 70.10 70.13 10 VL.SNF11 ON 113.97 114.02 11 VL.QSA1212 ON 2.40 2.39 12 VL.QLA12 ON 2.70 2.66 13 VL.QSA1312 ON 2.40 2.38 14 VL.QLA13 ON 2.70 2.65 15 VL.QLA14 ON 4.19 4.19 16 VL.QSA1412 ON 3.39 3.39 17 VL.QLB1514 ON 57.00 57.01 18 VL.QLB1523 ON 53.6 53.56 36 VL.SNB02 ON 47.99 48.03 37 WL.SNP25 ON 2501.1 2536.26 38 WL.QLA271 ON 6.00 59.93 39 WL.QLB2829 ON 55.00 55.03 75 WL.SNL25 ON 650.00 650.00 80 WL.QNM271 ON 96.97

Lil focusing

LiL U	4A	TDA Y	OOCT TOOMS	1303	15-62-55:	13:18
		TRAJ.	POSITRONS			
.				•		
	te(E8)		l(🖦) Yertica	il(ma)		
UHA 13 -1		-1.6	2			
UHA 15 -1		2	6			
UHA 22 -1		8.	3			
UHA 25 −1	.874.1	.7	9.0			
uha 27	-10.2	2.3	1.7			
UHA 29	5.8	-7.5	.8			
UHA 38	8.8	-1.0	.4	UCU T	ntens.(E8	`
UHA 31	8.6	-1.4	8	mun 1	mas.co	,
				CT71 1014		
UHA 32	8.2	1.1	-2.3		-3634.8	
uha 33	8.5	2	.3			
UHA 34	8.9	7	.7	HCH12	-1924.6	
UHA 35	7.9	-4. 8	-1.5	HCH14	-1883.4	
uha 36	9.8	-1	-1.3	HCH37	8.5	
uha 37	9.8	.6	8	HIP99	12.2	
HIH 00	0.0	111-1	111.1			
HIE 22	3	111.1	111.11			
HIP 22	11.9	9.1	3		5 96	
114 -	1103	J. L	•0	12420	3 30	
ITI EE	4			1989-	12 85 22:	14:48
LIL U	71+1	TRAJ.	POSITRONS			
Intensi	ite(E8)	Horizonta	l(ma) Yertica	1(==)		
UHA 13 -1		-1.6	2			
		 3	- . 6			
UHA 15 -1						
UHA 22 -1		-8	3			
UHA 25 −1		.7	0.0			
UHA 27	-10.2	2.3	1.7			
UHA 29	5.8	-7.8	.8			
UHA 38	8.8	-1.8	.4	HCH I	intens.(B	D C
UHA 31	8.6	-1.4	8			
UHA 32	8.2	1.1	-2.3	ECH01	-3645.8	
UHA 33	8.9	2	.3			
			.7		-1929.0	
UHA 34	8.9	7				
UHA 35	7.9	-4.8			-1887.7	
uha 36	9.4			HCH37		
UHA 37	9.8	.6			12.3	
HIH 98	9.8					
HIE 22	3	111.1	111.11	•		
HIP 22	12.8	8.1	3	NHEA	6 95	
1 Tt 118.1	^			1983-1	2 85 22: 19	5:33
LIL UM	H	TRAJ. P	DSITRONS			
Intensit	o(EB)	Horizontali	(mm) Vertical	()		
UHA 13 -19		-1.6	1	\		
UHA 15 -18		3				
			5			
UHA 22 -18		-8	 3			
UHA 25 −18		.7	9. 9			
uha 27 -	10.2	2.3	1.7			
UHA 29	5.8	-7.8	3.			
UHA 38	8.8	-1.0	.4	HCH In	tens.(E8)	
UHA 31	8.6	-1.4	8			
UHA 32	8.2	1.1		ECH01	-3634.8	
UHA 33	8.9	2		HCH11		
UHA 34	8.9	7		HCH12		
UHA 35	7.9	-4. 8		HCH14		
UHA 36	9.4	-1		HCH37	8.5	
UHA 37	9.8	.6		HIP00	12.2	
HIH 98	0.0	111.1	111.1			
HIF 22 HIP 22	3	111.1 7.8	111.11	NHEAS		

7.8

HIP 22

12.1

-.3

NHEAS 96

0^{H20} 6/12/1989

🛊 File Edif Nodal

MacN	- Klystron	phase control -
MDK27 = WAITING FOR END OF CALIB MDK27 Out = 181 CCV= 180 non ppm STATUS (QUITTANCES) OF MDK27: ALL OK END OF CALIB	LILU=PPM	Read all
MDK31 = WAITING FOR END OF CALIB	○ elec	Read selected === CCU==
MDK31 Out = 212 CCV= 214 non ppm STATUS (QUITTANCES) OF MDK31: ALL OK END OF CALIB		Decrem. / 5
VEV.00	Mdk13	Absol. =
MDKO3 = WAITING FOR END OF CALIB MDKO3 Out = 128 CCV= 128 Positions STATUS (QUITTANCES) OF MDKO3: ALL OK	LILW=non PPM	Refresh CCV
END OF CRLIB	○ Mdk25	===Actuations==
1989-12-06:00:19:44 MDK03 Out = 128 CCV= 128 Positons	○Mdk27	CALIBRATION
MDK13 Out = 322 CCV= 321 Positons MDK25 Out = 127 CCV= 127 non ppm MDK27 Out = 181 CCV= 180 non ppm	○Mdk31	Open Loop
MDK27 Out = 181 CCV= 180 non ppm MDK31 Out = 212 CCV= 214 non ppm MDK35 Out = 235 CCV= 235 non ppm_	○ Mdk35	Close Loop
Tibrico Gart - 200 Gev- 200 Hori ppiil	EXIT	Reset

1989-12-85-32-32

	TRAJ. POST	POSITIRONS	
Intersite(EB)	Horizontal(mm) Vertical(mm)) Vertical	(8)
UMA 13 -1911.1	-1.6	1	
UNA 15 -1895.3	귆"-		
UNA 22 -1858.7	æ	E. 1	
UNA 25 -1879.6	۷.	8.8	
UNA 27 -18.2	6.3	1.7	
	-7.8	-1-3	
UNA 38 8.3	-1.8	4.	WCH Interior (EB)
UMA 31 8.9	-1.4	7	
	1.1	다. 1.1	HIMI -3645.8
UMA 33 8.9	۔۔ 2	e.	HCH11 -2274.7
	2"-	7.	HCH12 -1915.8
(C)	4.6	-t.8	HCH14 -1879.1
36	₩.	-1-2	
UMA 37 18.2	9.	8-1	HIP88 12.5
88	111.1	111.1	
HE 223	111.1	111-11	
HIP 22 12.4	4.9	9	NHE95 95

BEAM PROFILE MEASUREMENT - VL. MSH15

BSP15 = 251.6 A

 $P_{03} = 13.3 \, \text{MW}$

P13 = 24.0 MW

Central Energy 203,82 MeV

Digital Value at 100%

1448 (oct__ 8047)

1000

INTENSITY (UMA mede.)

-124.88 1E8 part.

Number of measurements 100

2*eigma 17.89mm

Gain io .01

Soraper VL. SLV11 (Top) : -18.8(-18.5)

(Bottom) : 18.5(18.5) mm

Aps: 42 max value. Prs: 42

TI LEAST

1984-12-46-48:27:45

}								WCM Intens.(E8)		-5767.1	-3715.2	-3831.9	-2786.4	2.6	14.7			5 95
								E E		H1.481	五年	ECH12	HCH14	HCM37	HIP88			MERS
3 01 5	Vertical	9	8.	9.	.1	1.6	ထ္	4.	9"-	-1.8	1.5	9	9.	-1.1	- " _	111.1	111.11	٦.٦
TRAJ. POSTTRONS	Horizontal(mm) Vertical(mm)	5.5	-1.3	8.8	î,	8 2	-5 <u>.</u> 8	က္	1.2	o .	ત. -	-1.6	4.1	1.	9•	111.1	111.1	6.3
I	Intensite(EB)	-2927.6	2535.8	2412.8	2429-2	-11-9	5.9	9. 2	8.6	8.6	18.8	18.2	9.2	18.7	11-1	8.8	e. -	14.3
ال ال	Intens	UNIT 13 T	UNT 15 1	ผู	į,	124 ES	₹	184 38 184 38		1944 32 1944 32	(MA) 33		1844 355	98 44 0	75 AMU	HIM 688	HIE 22	HIP 22

1989-12-86-88:58:32

ECK 83 PARAMETERS

KLY BODY WATER IN TERP	28.6 oc	THYR. RESERVE YOLTHGE	4.42 ₩
KL BODY WATER OUT TEAP	21.9 oc	THYR. RESERVE CURRENT	14.3 A "
KLY TRINK TEHPERATURE	35.7 oc	THYR. RESERVE POWER	H 6.89
SPARE		THYR. KHEP A I'VE YOLT	28.1 ₩
SPARE		THYR. KEEP ALIVE CUR	284
SPARE		SPARE	
KLY FUCAL. A CURRENT	194.7 A	SPRRE	
KLY FUCAL. B CURRENT	₩ 9 ~ 98	SPARE	
KLY FUCH. C CURRENT	85.1 A	SPARE	
SPARE		SPARE	
KLY HEATER VOLTAGE	28-15 ₹	SPARE	
KLY HEATER CURRENT	28.6 ₽	37-1486	
KLY HEATER POWER	486 4	KLY. RF FURLINED POLICE	13.8 €
SPARE		PFN REF. YOLTHGE	K. 4KY
PREHIGH CLARKEHT	17.3 A	KLYSTRON YOLTRGE	194 KV
KLY ION PUMP VOLTRGE	3.444	KLYSTRON CURRENT	172 A
KLY VACULH PRESSURE 11	1E-8 Torr		
THYR. HEATER WOLTAGE	6.36 V		
THYR. HEATER CURRENT	62.3 A		
THYR. HEATER POWER	397 H		

POSTTRONS
TRAJ.
E E

1989-12-46-81:49:31

	WCM Intens.(E8) ECM81 -5678.7	HCH11 -3741.8 HCH12 -3132.9 HCH14 -3835.8	
Vertical111 1.5	4 6 6	7. 1. 1. 2	4 111.1 111.11 4
Horizontal(ma) Vertical(ma) -1.423 .91 .8 .3 1.7 1.5 -6.16	-1.8 -1.8	-1.2 -3.1	.6 111.1 111.1 8.4
Intensite(EB) A 13 -3182.3 A 15 -2996.1 A 22 -2917.8 A 25 -2948.4 A 27 -13.9 A 29 -13.9	11.3 12.2 12.1	12.51 12.61 12.8	13.8 8.3 6 17.1
Later S	(144) 31 (144) 31 (144) 31		HIP 88

Fig 15 HiP. UMA 22

Analog value 250 mV

Digital value 17.4 10 et

for Uc = 1.95 kV

on the gun

	_	
5	Į	_
く 二二	2	
**	,)
~	_	
-		
	,	

1989-12-46-41:13:37

	Î							HCH Intens. (EB)			HCH11 -3732.4			HCH37 12.5	HIP99 13.1			MMERS 95
ROME	Vertical(mm)	8-8	က္။ ၂	8 6	ღ.	1.5	9*-	4.	₹0 	-1.2	1.2	۲.	9	-1.7	4.	111.1	111.11	ໝ _ື
TRAJ. POSITROMS	Horizontal(mm)	-1.3	ਹ ਾ	1.8	ω.	1.7	-6 .1	-1.8	-1.8	9•	ณ เ	_1 <u>_</u> 2	-3.1	.1	9.	111.1	111.1	4.3
Ī	Intersite(EB)	-3897.8	2991.1	2911.6	2948.4	-13.9	2.6	11.6	12.5	12.5	12.8	13.8	12.8	13.4	14.1	ຕຸ	9-	12.9
ביור	Intere	UNA 13 -	UHA 15	왕	KI	K	お生	88 44 5	UMP 31	(독 왕	188 48A	UFF 34	是 33	38 4HI	184 37		HIE 22	HIP 22

-2678.7	-3732.4	-3128.5	-3831.5	12.5	13.1			28	
		HCH12			HIP88			NATIOS NATIOS	
-1.2	1.2	٧.	9	7-1-7	4.	111.1	111.11	ໝ _ີ	
9.	ଧ୍ୟ "	-1.2	-3.1	.1	9.	111.1	111.1	4.3	
12.5	12.8	13.8	12.8	13.4	14.1	٣	9-1	12.9	

Figure 17: Dependence of energy resolved e^+ yield from the LINAC V phase.

Figure 18: The energy spectra of LINAC V for $MDK03 = 100^{\circ}$ and $MDK03 = 110^{\circ}$

Figure 19: The energy spectra of LINAC V for $MDK03 = 115^{\circ}$ and $MDK03 = 121^{\circ}$

Figure 20: The energy spectra of LINAC V for $MDK03 = 131^{\circ}$ and $MDK03 = 135^{\circ}$

Figure 21: The energy spectra of LINAC V for $MDK03 = 141^{\circ}$ and $MDK03 = 150^{\circ}$

Figure 22: Comparison between calculated and measured spectra