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Abstract. We consider an evolution of anisotropic cosmological model on the

example of the Bianchi type I homogeneous universe. It is filled by the mixture of

matter and dark energy with an arbitrary barotropic equation of state (EoS). The

general solution for this case is found and analyzed. A complete list of possible

future singularities for this model is given. Some new solution were obtained for

a particular EoSs, e.g. for the Bianchi type I ΛCDM homogeneous model. It is

shown that all special cases corresponding to different EoSs have common properties,

provided that now or at another moment of time the Universe is expanding, and

the density of the mixture is positive. Then the evolution always begins with an

anisotropic“Big Bang” which happened a finite time ago. After that the universe is

constantly expanding and in all cases, with rare exceptions, becomes more isotropic.

A particularly strong isotropization is associated with the epoch of inflation. After

its completion, the expansion of the universe becomes almost isotropic, and this

case cannot be distinguished from isotropic by astronomical observations. This fact

allows us to consider an anisotropic cosmological model as a possible candidate for the

description of the observed Universe despite the isotropic pattern of expansion.
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1. Introduction

For almost 90 years astronomers have known that the Universe is expanding in

accordance with Hubble’s law

v = Hr (1)

for far objects e.g. galaxies. Here r is the distance to the object and v is the velocity of

its motion away. The Hubble parameter H depends on time, but not on direction. This
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shows that the modern Universe is isotropic on a large scale. Therefore, cosmologists

prefer to deal with isotropic homogeneous cosmological models, which reduce to three

Friedmann-Lemâıtre-Robertson-Walker (FLRW) ones and their descendants including

the modern ΛCDM model.

It is known that the homogeneity of the Universe is broken because of the density

fluctuations growth. This also leads to the appearance of large-scale galaxy collective

motion or cosmic flows which yield some deviation from the law (1). However, the

assumption that the Universe is and always has been isotropic on a large scale is the

standard in astronomy.

We show that anisotropic cosmological models can also agree well with astronomical

observations. In this case, the Big Bang was highly anisotropic, but during the

inflationary epoch the Universe managed to be isotropized enough that we can not detect

a negligible residual anisotropy of cosmological expansion. The currently properties and

the future of this model practically coincide with the same for the flat ΛCDM model.

However, the differences in the Big Bang type and the very early stages of the Universe

can be significant for some aspects of a present picture of the world.

We demonstrate this possibility using the anisotropic homogeneous cosmological

model Bianchi type I (see the Bianchi classification e.g. in §112 of Landau and Lifshitz,

1971). Using the homogeneous model we simplifies the analysis, reducing the system of

partial differential equations to to the system of ordinary differential equations.

The model of Bianchi type I is the simplest anisotropic one. In addition, it is

spatially flat, which corresponds to the well-known fact that our Universe is spatially

flat or almost spatially flat.

As a by-product, we solve the problem, which is enough interesting for the

relativistic cosmology. We find and analyse the generic solution for the cosmological

model Bianchi type I with matter with arbitrary barotropic equation of state (EoS).

All exact solutions of Einstein equations are valuable in general relativity.

They enable a study of the properties of the corresponding space-times. Some

solutions underlie the modern astrophysical and cosmological conceptions. There

are hundreds of exact solutions in general relativity describing e.g. in the book

(Stephani, Kramer, MacCallum, Hoenselaers and Herlt, 2003).

So many solutions are because one can consider the different structure and type of

a space-time, as well as a matter with a specific equation of state. Scientists consider

solutions with vacuum, cosmological constant, electromagnetic, scalar, vector, spinor or

tensor fields, light radiation, dust matter, matter with pressure, dark energy of different

kinds and combinations of mention above factors. Therefore, the exact solutions with

enough general energy-momentum tensor, which can replace a number of such solutions,

are of particular interest.

In this paper we consider the Bianchi type I model for the case the Universe is

filled by all kinds of matter and dark energy with a total mass density ρ and an effective

pressure p. The barotropic equation of state p(ρ) is general enough to include all the

particular cases most interesting for cosmology. Nevertheless we can describe the Bianchi
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type I model with such matter by a single metric. In the particular cases of certain p(ρ)

it reduces to some well-known metrics. It is demonstrated in Section 3. Some new cases

are studied in Section 4.

The relations between the mass density ρ, cosmological time t and the parameters

of the Universe (size and analogue of the Hubble parameter) is obtained as integrals.

This will enable the cosmologists and astronomers to deal with this solution without

solving the Einstein equations directly as well as they use the Friedmann equations

considering the FLRW homogeneous isotropic cosmological model.

2. Solution of the Einstein equations for the Bianchi type I cosmological

model

The metric of the homogeneous cosmological model of the Bianchi type I in the

synchronous frame has the form

ds2 = dt2 − γik(t)dx
idxk (i = 1, 2, 3). (2)

We use the same definitions and notations as in a well-known book (Landau and Lifshitz,

1971). In particular, the signature (+−−−) is used. We use the system of units in which

G = 1 and c = 1, so the energy density ε coincides with ρ. We use Roman letters as

the indices for spacial coordinates in contrast to (Landau and Lifshitz, 1971) who used

Greek ones. The Greek indices label the four-dimensional coordinates. The coordinate

t = x0 is time-like one, so we exclude the solutions describing strong gravitational waves

(Bondi, 1957), naked singularities (Khalatnikov and Parnovsky, 1978; Parnovsky, 1980)

and other space-times which are not interesting for cosmology (Parnovskii, 1979). We

will use the notation x1 = x, x2 = y, x3 = z.

This space-time is filled with a homogeneous matter with a mass density ρ(t) and

a pressure p(ρ). The synchronous frame of reference is also the co-moving one and the

energy-momentum tensor is diagonal in this frame Tαβ = diag(ρ,−p,−p,−p) = U(α)δαβ
(no summation over the α index in all equations with U(α)). The three-dimensional

spatial Ricci tensor Pab vanishes for Bianchi type I model, so the spatial components of

Einstein equations give us the relations (Landau and Lifshitz, 1971)

Rβ
α = − 1

2
√
γ

d

dt
(
√
γκβ

α) = 8π

(

T β
α − T

2
δβα

)

, γ = det|γαβ|, κβ
α =

dγαγ
dt

γβγ . (3)

The density ρ and therefore the pressure p depend only on cosmological time t. From

(3) we get

καβ =
1

2
√
γ
λαβ − 16πδαβ

∫

(2U(α) − T )dt, (4)

where λαβ is a constant tensor. We can diagonalize it by transformation of the coordinate

system (see details in §103 of textbook by Landau and Lifshitz, 1971). The tensors

κik and γik also get a diagonal form. So, we consider the metric of the homogeneous
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cosmological model of the Bianchi I type in the diagonal form

ds2 = dt2 − e2h1(t)dx2 − e2h2(t)dy2 − e2h3(t)dz2 (5)

without loss of generality.

Let‘s consider the Einstein equations. All their non-diagonal components are

satisfied and the diagonal components give the following conditions

−Ri
i = ḧi + ḣi(ḣ1 + ḣ2 + ḣ3) = 4π(ρ− p), (6)

− R0
0 = ḧ1 + ḧ2 + ḧ3 + ḣ1

2
+ ḣ2

2
+ ḣ3

2
= −4π(ρ+ 3p), (7)

where a dot denotes time derivative. Note that there is no summation over i in the left

side of the equations (6).

Subtracting equations (6) from each other we get after integration

ḣ1 + ḣ1 + ḣ1 = const− ln(ḣ1 − ḣ2) = const− ln(ḣ1 − ḣ3) = const− ln(ḣ2 − ḣ3). (8)

This leads us to

ḣi = ḟ + qie
−3f (i = 1, 2, 3), (9)

where qi are constant quantities having the dimension s−1, 3f = h1 + h2 + h3 and

q1 + q2 + q3 = 0. (10)

The quantity ḟ has a simple physical interpretation. If we denote by V the volume

of the part of the Universe, which borders have fixed spatial coordinates x, y, z, we get

3ḟ = d(ln(V ))/dt. In the isotropic case ḟ corresponds to the Hubble parameter H and

the quantity f to the natural logarithm of the scale factor ln(a).

The values ḣi characterize the time derivatives of the logarithms of the scale factors

along the x, y, z axes. They play a role of “Hubble parameters” along three axis of this

anisotropic model. They are the sum of the general term ḟ corresponding to the isotropic

expansion and the anisotropic term equal to the product of e−3f by the coefficient qi.

So, we can introduce the value

W = e−3f/3ḟ (11)

to describe quantitatively an anisotropy of the model. The factor 1/3 is introduced in

order that W = 1 at the anisotropic “Big Bang”. Decreasing of W means isotropization.

We consider this process in Section 5.4.

Two combinations of (6) and (7) are especially useful, namely

dρ

dt
= −3(ρ+ p)ḟ , (12)

which describes the energy conservation law and

8πρ = 3ḟ 2 − Q

2
e−6f (13)
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with the constant

Q = q21 + q22 + q23 ≥ 0. (14)

In the isotropic case h1 = h2 = h3 and q1 = q2 = q3 = Q = 0 and we deal with

the flat FLRW metric, possibly with the addition of a dark energy of some kind. In

this case (13) means ḟ = H = (8πρ/3)1/2. This trivial case is well studied. One can

find the complete analysis in (Parnovsky, 2015). So, hereafter we will only consider the

anisotropic case with Q > 0.

If ρ + p = 0 we must put ρ = const. This case of the pure cosmological constant

will be considered in Section 3. If ρ+ p 6= 0 we obtain from (12)

f = −1

3

∫

dρ

ρ+ p(ρ)
. (15)

So, we can find the dependence f(ρ) and therefore the inverse relationship ρ(f). We

can substitute ρ(f) into (13) and calculate

t =

∫
(

8π

3
ρ+

Q

6
e−6f

)

−1/2

df, (16)

obtaining the relationship t(f) and the inverse relationship f(t). Thus, we get the

solution of the Einstein equations for our case.

Moreover, after switching to the new time variable f we can present the metric

which realize (5) in this case

ds2 =
6df 2

16πρ+Qe−6f
− e2f

(

e2q1S(f)dx2 + e2q2S(f)dy2 + e2q3S(f)dz2
)

, (17)

S =

∫
(

8π

3
ρe6f +

Q

6

)

−1/2

df. (18)

Together with (15) this gives the generic solution of the Einstein equations in the case

of the Bianchi type I space-time filled with the matter with the arbitrary barotropic

equation of state p(ρ).

Note that equations (15) and (16) give any researcher an opportunity to study the

dependence of the parameters of the model without using the mathematical apparatus

of the GTR. One can say that they play the role of Friedmann equations for the isotropic

FLRW models.

3. Some known particular solutions

If matter is absent and ρ = p = 0 the solution (17,18) reduces to the well-known Kasner

metric (Kasner, 1921)

ds2 = dt2 − t2p1dx2 − t2p2dy2 − t2p3dz2, (19)



The Big Bang could be anisotropic. The case of Bianchi I model 6

where dimensionless indices pi are connected with the qi values by

pi =
1

3
+

(

2

3Q

)1/2

qi. (20)

The Kasner indices satisfy the conditions

p1 + p2 + p3 = 1, p1
2 + p2

2 + p3
2 = 1. (21)

When we reduce the metric to the form (19), we choose a specific scale along the

x, y, z axes. As a result we have W = 1 and Q = 2/3 s−2 for the metric (19).

The solution becomes the Heckmann-Schuking one (Heckmann and Schuking, 1959)

if the dust matter is present with p = 0, ρ = ρ0 exp(−3f) 6= 0 (it is described by (30)

with w = 0). The metric is

ds2 = dt2−a 2
0 t2p1τ 4/3−2p1dx2−b 2

0 t2p2τ 4/3−2p2dy2−c 2
0 t2p3τ 4/3−2p3dz2, τ = t+t0. (22)

The constant t0 can be expressed by formula

t0 =
2Q1/2

3ρ0
. (23)

Note that in system of units we use, Q and ρ0 are measured in s−2. An isotropization

in this model is well-known.

At p = −ρ we deal with the cosmological constant Λ = 8πρ = const > 0. In this

case the metric after some re-scaling has the form

ds2 = dt2 − cosh4/3(λt)
(

u2p1dx2 + u2p2dy2 + u2p3dz2
)

,

u = λ−1 tanh(λt), λ =
(3Λ)1/2

2
. (24)

This space-time has only one singularity at t = 0. It has the Kasner form (18). At large

t (24) tends to the well-known de Sitter metric. It also shows an apparent isotropization.

To make the picture complete we can consider the case Λ < 0, which is popular in

general relativity, although speculative. In this theoretical case

ds2 = dt2 − cos4/3(λt)
(

u2p1dx2 + u2p2dy2 + u2p3dz2
)

,

u = λ−1 tan(λt), λ =
(−3Λ)1/2

2
. (25)

This space-time has a Kasner singularity at t = 0, corresponding to the birth of

the Universe, and another singularity at t0 = π(−3Λ)−1/2, corresponding to the “Big

Crunch”. If t → t0, the metric (25) reaches its asymptotic form, which can be obtained

from (19) by substituting t by t0 − t, pi by p̃i = 2/3 − pi and rescaling the spatial

coordinates. One can see from (20) that p̃i is also a set of Kasner indices. So, both

initial and final singularities are Kasner ones. There is no isotropization in this case.
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4. Some new metrics

4.1. ΛCDM solution for Bianchi type I cosmological model

Let us show how it is easy to obtain an interesting special case from the general equation.

We start with an example of the ΛCDM model, which is usually associated with the

FLRW metric. However, this designation means that the universe is filled with cold

dark matter (CDM), the pressure of which can be neglected and dark energy acting as a

pure cosmological constant. Let us consider a homogeneous Bianchi type I cosmological

model with the energy-momentum tensor being the sum of the tensors for these two

components. For the cosmological constant we have ρΛ = −pΛ = Λ/8π = const > 0 and

for CDM we have ρCDM ∝ V −1 ∝ e−3f = Ae−3f with A = const, pCDM = 0. Here V

is the volume occupied by the constant mass of CDM, which increases as the universe

expands. From (16) we get

t =

∫
(

Λ

3
+

8πA

3
e−3f +

Q

6
e−6f

)

−1/2

df

= (3Λ)−1/2 ln
[

2
√

Λ(Λe6f + 8πAe6f +Q/2) + 2Λe3f + 8πA
]

+ t0. (26)

Here Λ > 0 and t0 = const. If QΛ > 32π2A2 we get

2Λe3f =
√

2QΛ− 64π2A2 sinh
[√

3Λ(t− t0)
]

− 8πA. (27)

The solution for the case Λ < 0 has the form

2Λe3f =
√

64π2A2 − 2QΛ sin
[

√

3|Λ|(t0 − t)
]

− 8πA. (28)

We can easily include the radiation into this model, consider the dark energy with

different equation of state instead of cosmological constant, etc.

4.2. Other examples of new solutions

Consider the model with the matter satisfying the most popular EoS

p = wρ (29)

with w =const. In this case we yield from (15)

ρ = ρ0e
−3(1+w)f , ρ0 = const. (30)

After substitution (30) into (16) we see that at w < −1 i.e. for phantom energy the

integral is finite even if the upper limit of integration becomes infinite. So, f −−−→
t→t0

∞.

This means that volume V becomes infinite in finite time. This is the “Big Rip” case and

it occurs at some time point t0 (Caldwell, Kamionkowski and Weinberg, 2003). One can

consider the asymptotic behaviour of the Universe immediately before the “Big Rip”

i.e. at small ∆t = t0 − t and get f −−−→
t→t0

2 ln(∆t)/[3(1 + w)] + const.
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We can apply other barotropic equations of state to (15). For example p =

w(ρ − ρ0) used by Naidu and Holman (2005) and Balbi, Bruni and Quercellini (2007),

p = p0 + αρ + βρ2 used by Ananda and Bruni (2006) or p = γρ/(1 − βρ) − αρ2

(Capozziello et al, 2005). These equations allow p(ρ) to cross the line p = −ρ between

the domains of the ordinary and the phantom energies. We will consider this possibility

in Section 5.5. Note that the integral (15) can be taken analytically for many equations of

state, which are considered as cosmological models or as toy models, e.g. for generalized

Chaplygin gas.

4.3. Not so directly barotropic equation of state

In many cases cosmologists use equations of state depending from the scale factor of the

Universe a or the redshift z = a0/a(t) − 1, where a0 is the scale factor at the present

time. For the Bianchi type I model we have to use exp(f) instead of a in this equations.

Many EoSs have the form

p + ρ = F (ρ)E(f), (31)

usually

p = w(a)ρ, a = a0 exp(f − f0), (32)

where f0 is the value of f at present time. In this cases (12) provides the relation

between f and ρ in the form

∫

F (ρ)−1dρ = −3

∫

E(f)df. (33)

After substitution ρ(f) into (17,18) we get the metrics for these models.

There are a lot of equations of state in the form (32) from the popular among

cosmologists phenomenological one w = w0 + w1z to w = (1 + z1/τ )−1 for “aether”

(Bielefeld, Caldwell and Linder, 2014). In this case one get

ρ = exp

(

−3

∫

(w(a) + 1)a−1da

)

. (34)

For example, equation w = w0 + w1z provides

ρ = exp [−3 ((1 + w0 − w1)f − w1 exp(f0 − f))] . (35)

5. Analysis of common properties of the Bianchi type I cosmological models

Let us analyze the main properties of the space-time with the metric (17,18). We will

use two additional facts, namely, that at the present time ρ ≥ 0 and that the Universe

is expanding, which corresponds to ḟ > 0.
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5.1. Only expansion

From the (13) we see that the stop of expansion ḟ = 0 can occur only if ρ = 0 and

f → ∞. So the Universe will expand permanently. This can be an eternal expansion

or an expansion till the “Big Rip” or other future singularity. Expansion can stop only

if effective density ρ < 0, which corresponds e.g. to the case of negative cosmological

constant Λ. From (25) one can see that in this case the Universe begin to collapse till

the “Big Crunch” which has the Kasner type.

5.2. “Big Bang”

Looking in the past we see that expansion was not eternal and it have to start from the

“Big Bang”, corresponding to f → −∞. From (16) we can obtain a restriction on the

age of the Universe T within the considered model

T =

∫ f0

−∞

(

8π

3
ρ+

Q

6
e−6f

)

−1/2

df ≤
√

6

Q

∫ f0

−∞

e3fdf =

√

2

3Q
exp(3f0). (36)

As a result, the model requires the “Big Bang” in the past.

Let us investigate the type and properties of this initial cosmological singularity.

Suppose that the Universe is filled with the mixture of different kinds of matter, labeled

by subscript a. All types of matter have the equations of state pa = waρa with different

wa = const and their dependencies on f have the form (30). If all wa < 1 then at

f → −∞ the term with ρ in (16) and the metric (17) becomes a negligible correction

to the main term ∝ exp(−6f). The matter asymptotically fits the vacuum metric (21)

near the “Big Bang” without affecting the Kasner type singularity. Note that the dust

matter, cold or warm dark matter, the radiation, the cosmological constant refer to this

case. The ordinary matter and radiation must satisfy the condition T i
i ≥ 0 (see §34 of

Landau and Lifshitz, 1971) which means wa ≤ 1/3 if ρ > 0.

We can consider theoretically some unknown kind of matter or energy violating

this condition. If wa < 1 it cannot change the solution near the “Big Bang”. But if

there is the exotic matter with wa > 1 among other kinds of matter, it would change

the asymptotic behaviour of metric at f → −∞ to f = 2 ln(t)/[3(1+wa)]+ const. Here

the moment of time t = 0 corresponds to singularity. From (18) we have S ∝ tu with

u = (1− w)/(1 + w) < 0. Solution in this case is anisotropic.

Note, that if the Universe is filled with such exotic matter with w > 1 only then the

model will expand forever and the matter asymptotically fits the vacuum metric (21)

at f → ∞. The presence of such a matter will not affect the model on the late phase of

its evolution because of ρ ≪ O(exp(−6f)) → 0.

5.3. Possible future singularities

We see that the Universe will expand forever or this process will last a finite time and end

in a singularity, which is called a future singularity. For the matter with EoS (29) with
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w < −1 a “Big Rip” is inevitable. Other types of future singularities are also possible.

Their classification was carried out in the paper (Nojiri, Odintsov and Tsujikawa, 2005)

for the isotropic FLRW model. Four possible types were found for the singularities at

t = t0 with finite t0. They include:

• Type I a, ρ, |p| → ∞ (“Big Rip”)

• Type II a → a0; ρ → ρ0; |p| → ∞ (“sudden singularities”)

• Type III a → a0; ρ, |p| → ∞ (it was named “Big Freeze” in (Bouhmadi-López, Gonzalez-Dı́az and Mart́ın-Moruno,

2008))

• Type IV a → a0; ρ, |p| → 0 and higher derivatives of the Hubble parameter H

diverge.

In the case of anisotropic Bianchi I cosmological model we have to use f and ḟ instead

of a and H .

There are some singularities with t0 = ∞, too. The “Little Rip” singularity

(Frampton P.H., Ludwick K.J. and Scherrer, 2011), similar to the “Big Rip”, but with

an eternal expansion is among them.

According to (15) all nontrivial solutions arise if ρ+ p → 0 or ρ+ p → ∞. The list

of possible future singularities for isotropic FLRW model was prepared in (Parnovsky,

2015). We can use some EoS of matter near the singularities of different types from this

paper.

Let us briefly describe the results obtained. If singularity occurs at ρ → ∞ we can

consider either the EoS (29) with w < −1 or the asymptotic form of EoS

ρ+ p −−−→
ρ→∞

−Aρα (37)

with A, α = const. The latter corresponds to the case when w is not constant, but

asymptotically tends to −1 at ρ/p −−−→
ρ→∞

−1. In this case α < 1. The consideration

of more complex asymptotic forms of EoS gives nothing new in comparison with this

EoS. If α < 1 then f ∝ ρ1−α −−−→
ρ→∞

∞, t → t0 + const · f (2α−1)/(2α−2). If 1/2 < α < 1

then t −−−→
ρ→∞

t0 and we deal with the “Big Rip”. At α < 1/2 the integral (16) diverges

and we deal with the “Little Rip” case. If α > 1 we deal with the “Big Freeze” with

f −−−→
ρ→∞

f0 + const · ρ1−α, t −−−→
ρ→∞

t0.

Thus, the future singularities with ρ → ∞ for the anisotropic cosmological Bianchi

type I model are the same as for isotropic FLRW model. It is easy to prove that the

same situation occurs for the sudden singularities with ρ → ρ0 6= 0 and the equation of

state

ρ+ p(ρ) −−−→
ρ→ρ0

C(ρ− ρ0)
µ (38)

with µ, C = const.

To finish the study, consider the last possibility of zero terminal density with the

power-law asymptote of the EoS

ρ+ p −−→
ρ→0

−Dρν (39)
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Table 1. List of possible future singularities for Bianchi I cosmological model

№ Type Nickname EoS ρ0 |p0| p0 + ρ0 f0
t → t0, ∆t = t0 − t → 0

1 I “Big Rip” (29), w < −1 ∞ ∞ −∞ ∞
2 I “Big Rip” (37), 1/2 < α < 1 ∞ ∞ −∞ ∞
3 III “Big Freeze” (37), α > 1 ∞ ∞ −∞ f0
4 II “sudden” (38), µ < 0 ρ0 ∞ −∞ f0
5 IV (39), 0 < ν < 1 0 0 0 f0
6 IV “Big Squeeze” (39), ν < 0 0 ∞ −∞ f0

t → ∞
7 “Little Rip” (37), 0 < α < 1/2 ∞ ∞ −∞ ∞
8 “Little Rip” (37), α < 0 ∞ ∞ 0 ∞

Substituting it into (15) we obtain f −−→
ρ→0

f0 + const · ρ1−ν . If ν > 1 then f −−→
ρ→0

∞.

This case corresponds to the “Little Freeze” case introduced in (Parnovsky, 2015) and

has the same asymptotes. If ν < 1 then f −−→
ρ→0

f0 = const. This is the case in which

the difference between the properties of the isotropic and anisotropic models becomes

essential. The second term in brackets in the integral (16) is proportional to Q and

arise due to the anisotropy of the model. In this case it is the main term and the term

∝ ρ exp(6f), caused by the matter, is negligible.

As a result, t −−→
ρ→0

t0. No “Little Freeze” can exist if 1/2 < ν < 1, it corresponds

to the type IV singularity. The “Big Squeeze” also introduced in (Parnovsky, 2015)

occurs at ν < 0, at 0 < ν < 1/2 we still deal with the type IV singularity. However,

the asymptotic behavior of the anisotropic model differ from the isotropic one. Instead

of asymptotes listed in (Parnovsky, 2015) we get ρ ∝ ∆t1/(1−ν) and f ∝ ∆t. The list

of possible future singularities for Bianchi I cosmological model is presented in Table 1.

The asymptotic behaviour of parameters near future singularities are listed in Table 2.

There are a few minor differences from the isotropic case.

Let me clarify that the existence of such singularities is not obligatory in Bianchi

type I models. They are considered in this section because they are mentioned in the

next subsection, which discusses the extremely important process of isotropization in

the evolution of the universe, described by a metric of Bianchi type I.

5.4. Isotropization

Taking into account (13) we get for the value (11) characterised the anisotropy

W =
(

24πρe6f + 1.5Q
)

−1/2
. (40)

If we choose scales along the spatial axes in such a way that near the “Big Bang” the

metric has the form like the Kasner one, we have Q = 2/3 and W = 1 at ρe6f → 0.
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Table 2. Asymptotic behaviour near future singularities

№ ρ p+ ρ f

1 ∝ ∆t−2 ∝ ∆t−2 f → const− 2/(3|1 + w|) ln(∆t)

2 ∝ ∆t2/(1−2α) ∝ ∆t2α/(1−2α) f ∝ ∆t2(1−α)/(1−2α)

3 ∝ ∆t2/(1−2α) ∝ ∆t2α/(1−2α) f → f0 − const∆t(2α−2)/(2α−1)

4 ρ− ρ0 ∝ ∆t1/(1−µ) ∝ ∆tµ/(1−µ) f → f0 − ḟ0∆t

5 ∝ ∆t1/(1−ν) ∝ ∆tν/(1−ν) f → f0 − ḟ0∆t

6 ∝ ∆t1/(1−ν) ∝ ∆tν/(1−ν) f → f0 − ḟ0∆t

7 ∝ t2/(1−2α) ∝ t2α/(1−2α) f ∝ t2(1−α)/(1−2α)

8 ∝ t2/(1−2α) ∝ t2α/(1−2α) f ∝ t2(1−α)/(1−2α)

The isotropisation requires ρe6f → ∞. It is possible in the cases of f → ∞
corresponding to the eternal expansion up to an infinite scale factor or the “Big Rip”.

Another possibility is the “Big Freeze” with ρ → ∞. Naturally, one can come up with

a model in which a matter with a special EoS expands eternally without isotropisation

due to a very strong decrease in density upon expansion, but this is purely speculative.

A presence of a dust-like matter or radiation excludes this possibility.

Let’s make some quantitative estimates of the change of the W value during the

evolution of the model. We focus on its application to the real Universe. An evolution

started from the anisotropic “Big Bang” similar to the Kasner metric (19) with W = 1.

Immediately or almost immediately, inflationary expansion began. It was caused by a

short-term factor acting like a large effective cosmological constant. Therefore, we can

use the metric (24) with

W =
1

1 + 2 sinh2 λt
(41)

to describe this stage. If the Universe expanded by a factor of K, this value decreased

by approximately K3/2 times. Using the value K = 1026 we estimate the degree of

anisotropy W at the level of 10−78 after inflation. This value is only reduced upon

subsequent expansion within the framework of the ΛCDM model. Obviously, at present

we can not observe such a small residual anisotropy of the Hubble expansion. It

was almost isotropic even at the end of the inflationary epoch. We see that due to

the strongest isotropization at the inflationary stage, the anisotropic universe becomes

practically isotropic.

5.5. Crossing the border between domains of an ordinary matter and a phantom one

If the Universe is filled with a substance with an exotic EoS, corresponding to either

ordinary or phantom matter depending on its density, it could cross the border p = −ρ

between these domains when density changes. Is it possible?

If the intersection occurs at a finite density ρ0, then the EoS near it has an

asymptotic form (38) with µ > 0. If 0 < µ < 1 this corresponds to some finite value
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f = f0 and a finite time t0 according to (15) and (16). So the intersection is possible

and it occurs in a finite time interval.

We can go further and consider an even more exotic case with two points of

intersection of the line p = −ρ and the EoS p(ρ) with asymptotic form near both

intersection points if form (38) with 0 < µ < 1. In this case a closed trajectory in p, ρ

plane that intersects the line p = −ρ at precisely these two points is possible, despite the

Universe expands and f increases constantly. The transition from the ordinary matter

domain to phantom one occurs at a lower density. While the parameters of matter

correspond to the phantom domain, its density increases. Then it crosses the border at

higher density, falls into the domain of an ordinary matter and its density decreases.

If the system then returns to the starting point on the p, ρ plane, i.e. the point of

the first intersection of the boundary of two domains, then in the future it will repeat

its path in cycles with a constant period of f . This can be seen from (12) rewritten as

dρ

df
= −3(ρ+ p). (42)

As a result, we get a cosmological model looking like a solution with changing positive

cosmological constant, which is a periodic function of f . However, its cosmological time

period increases according to (16), tending to some constant value.

What is the basis for the assumption that the trajectory of the system is closed?

Let us assume that there are only two points of its possible intersection on the line

p = −ρ, which we will call points 1 and 2. Point 1 has a greater density than 2.

Consider the trajectory of the system described by the Einstein equations with matter

with barotropic EoS on the p, ρ plane. Let the system pass from the phantom domain

to the ordinary one at point 1, make some path to point 2 inside the domain of ordinary

matter and return to the phantom domain at point 2. Then, most likely, the further

trajectory of the system inside the phantom domain will lead it back to point 1.

Consider two trajectories of the system inside the phantom domain. The first one is

the trajectory after crossing the boundary at point 2, while moving along it, the density

increases. The second is the trajectory along which the system got to point 1, but

after the inversion of the arrow of time direction. When moving along it, the density

decreases. Obviously, these trajectories must intersect at some point. This cannot be a

regular point of a dynamical system. There are two possibilities left. Either the point of

intersection is a singular point of the system lying outside the line p = −ρ, which have

to be a sudden singularity according to Table 1 (this case requires a very specific EoS

for matter and dark energy), or the two trajectories simply coincide. The last option

corresponds to the evolution of the system, automatically returning it from point 2 to

point 1. The same thing happens in the first case, but then the trajectory of the system

passes through a sudden singularity with p → −∞.

At µ > 1 we get f0 = t0 = ∞. This corresponds to the eternal expansion with an

asymptotic approximation of EoS p = −ρ without crossing the border between domains.
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6. Conclusions

We consider the Bianchi type I homogeneous cosmological model with matter with

an arbitrary barotropic equation of state and found a system of ordinary differential

equations (12), (13) relating its parameters, such as cosmological time, the rate of

expansion along different directions, the density and pressure of the matter filling the

universe, including dark matter and dark energy. It give any researcher an opportunity

to study the dependence of the parameters of the model without using the mathematical

apparatus of the general relativity theory. We provide a solution of this system in the

form of integrals (15), (16) and obtain the generic metric (17), (18) for this model. In

the article it is demonstrated how easy it is to obtain a solution for a known EoS, using

the example of the Bianchi type I ΛCDM homogeneous model.

We analyzed the most general properties of this model, characteristic of any kind of

matter that fills the Universe, taking into account two trivial facts: at the some moment,

like now, the matter density is positive and the Universe expands. It turned out that it

must constantly expand, starting from an anisotropic Kasner-like “Big Bang” occurred

some finite time ago. There is no “Big Crunch” at the end. The expansion either lasts

forever or after a finite interval of cosmological time t ends by “Big Rip”. Other types

of future singularities are also possible in the case of special EoS. They are listed in the

tables 1, 2 and are analyzed in the section Section 5.3.

The article introduces a quantitative indicator W of the degree of anisotropy of

the considered cosmological model (11), (40). The evolution of Bianchi I model is

accompanied by isotropization for practically any EoS with a few exceptions, such as

the vacuum Kasner solution and some types of future singularities. The Universe filled

with matter with reasonable EoS becomes more and more isotropic.

In the inflationary epoch the Universe had experienced very strong isotropization

and at the present time its anisotropy is almost imperceptible. This fact allows us to

consider homogeneous anisotropic cosmological model as a possible candidate for the

description of the observed Universe.

Consideration of other homogeneous cosmological models confirms this conclusion.

I plan to write a paper which will present the results of considering isotropization in the

case of other types of Bianchi models.

All this leads us to a conclusion that goes beyond homogeneous models. The

observed high degree of isotropy of the Hubble expansion, albeit distorted by cosmic

flows, may not be a consequence of the isotropy of its birth. A universe that has gone

through an inflationary stage after an anisotropic “Big Bang” can provide the same

pattern of expansion.
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