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Abstract: As part of its HL-LHC upgrade program, the CMS collaboration is replacing its existing
endcap calorimeters with a high-granularity calorimeter (CE). The new calorimeter is a sampling
calorimeter with unprecedented transverse and longitudinal readout for both electromagnetic and
hadronic compartments. Due to its compactness, intrinsic time resolution, and radiation hardness,
silicon has been chosen as active material for the regions exposed to higher radiation levels. The
silicon sensors are fabricated as 20 cm (8”) wide hexagonal wafers and are segmented into several
hundred pads which are read out individually. As part of the sensor qualification strategy, 8” sensor
irradiation with neutrons has been conducted at the Rhode Island Nuclear Science Center (RINSC)
and followed by their electrical characterisation in 2020-21. The completion of this important
milestone in the CE’s R&D program is documented in this paper and it provides detailed account
of the associated infrastructure and procedures. The results on the electrical properties of the
irradiated CE silicon sensors are presented.
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1 Introduction

In the current decade, the Large Hadron Collider [1] (LHC) at CERN will be upgraded to the
High-Luminosity LHC (HL-LHC) [2]. Its instantaneous luminosity is designed to reach at least
five times the LHC’s design value. The increase in both the expected number of pile-up interactions
and the anticipated damage due to the enhanced radiation levels will pose significant challenges to
the LHC experiments.

The CMS [3] collaboration has undertaken an extensive R&D program to upgrade many parts
of the detector. One of the planned upgrades consists of the replacement of the existing endcap
calorimeters with a high-granularity calorimeter (CE) [4]. The new CE will consist of 47 sampling
layers interspersed with absorber plates and will feature close to six million readout channels. For
its compactness, fast signal formation, and acceptable radiation hardness, silicon has been chosen
as one of the active materials. Approximately 600 m2 of it will be deployed in the regions where
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integrated fluences up to 1 × 1016 1-MeV neutron-equivalents per square centimeter (neq/cm2) at
the end of its 10-year operation at the HL-LHC are expected. Prototypes of silicon-based modules
have already been built and were tested with particle beams [5–8].

The silicon sensors will be fabricated as multi-pad, DC-coupled, n-on-p ("p-type"), 8” hexag-
onal wafers with active thicknesses of 120 µm, 200 µm or 300 µm. To assess their anticipated
degradation over the HL-LHC lifetime, irradiation studies are an integral component to the CE’s
R&D efforts. However, the irradiation and electrical characterisation of full 8” silicon sensors are
not trivial due to their large size and the large number of pads. In fact, previous R&D on the CE
silicon sensors’ bulk degradation in terms of their leakage currents and depletion voltages was, thus
far, limited to testing of small, approximately 1 cm2-sized, single-diode test structures [9, 10]. As
part of the CE’s prototyping phase in the last few years, the CMS collaboration has developed the
required infrastructure and procedures for the irradiation and the electrical characterisation of its 8”
silicon sensors. The neutron irradiation was performed at the Rhode Island Nuclear Science Center
(RINSC) which offers the necessary infrastructure to expose such large objects up to∼ 1016 neq/cm2

within a few hours. Afterwards, the ARRAY system [11] was used for the electrical characterisation
of all O(100) pads on the silicon sensors. In order to reduce the fluence-induced leakage current to
measurable levels, the tests were conducted at −40 ◦C.

This paper is structured as follows: section 2 deals with the CE silicon pad sensor prototypes in
terms of their design and the production parameters. Section 3 describes the neutron irradiation of
the 8” wafers at RINSC. The electrical test setup based on the ARRAY system and the measurement
procedure are documented in section 4. Results on the electrical sensor characteristics and their
limitations are discussed in section 5. Finally, the conclusions are given in section 6.

2 Silicon pad sensor prototypes for the CMS endcap calorimeter upgrade

The CMS high granularity calorimeter will be made of more than 600 m2 of planar DC-coupled
silicon pad sensors. Starting from 8” circular wafers, the sensors are diced into hexagons. P-type
doping of their bulk was chosen due to empirical evidence of superior noise performance after
irradiation with respect to n-type doping [12].

The oxygen content of those 8” wafers is reduced with respect to the case of the 6” wafers used
for the CMS and ATLAS trackers which, in principle, could impair the sensor’s radiation hardness.

In this work, the first version prototypes of hexagonal wafer sensors with the so-called low-
density (LD) and high-density (HD) designs were irradiated with neutrons and electrically charac-
terised. Their design is illustrated in figure 1. Each CE silicon sensor is segmented into several
hundred pads that constitute the sensitive units. The majority of those pads are shaped as regular
hexagons which are drawn as cyan-colored pads in figure 1. Special non-hexagonal structures fill
out the sensor periphery. The arrangement of pads on a sensor is enclosed by a set of three guard
rings (grounded, floating, biased) which protect the sensor from currents drawn from its dicing
edges. The LD sensors were produced from physically thinned p-type float zone silicon wafers.
They are segmented into 198 pads, where full hexagonal pads are about 1.2 cm2, and 200 µm or
300 µm in active thickness. LD sensors will be installed in regions of intermediate radiation levels
inside the CE. By contrast, regions with the highest radiation levels will be populated with HD
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(a) (b)

Figure 1. Layout of the tested 8” prototype silicon pad sensors with (a) the low-density (LD) and (b) the
high-density (HD) design. Regular-sized hexagonal pads are depicted in cyan. Edge and corner pads populate
the sensor periphery. Six (LD), respectively twelve (HD), regular, small hexagonal pads on the sensor are
dedicated for energy calibration with minimum ionising particles up to the end of life. The colour coding
highlights the different pad geometries. The sensor guard rings are not shown.

sensors whose active thickness is 120 µm. HD sensors are segmented into 444 pads (full hexagon
pad size: 0.5 cm2) and are produced by epitaxial growth.

As it is foreseen for the final design, p-stop structures were added to all the tested prototype
silicon sensors in this work in order to limit the accumulation of electrons on the Si/SiO2 interface
after exposure to high radiation levels which otherwise could form a conduction channel, effectively
shorting adjacent pads. Those structures were either bound to the single pads (individual p-stop) or
shared between neighboring ones (common p-stop), representing two options under consideration
for the CE. In addition, the tested prototype sensors differed in their flatband voltage (pre-irradiation
value of either −2 V or −5 V). Unless explicitly stated otherwise, all other production parameters,
such as doping concentrations and the production process for the oxide material, were identical for
all prototype sensors discussed in this paper.

Prior to irradiation, the sensors had been electrically qualified and proper functionality could
be verified. In particular, full depletion was achieved around 40 V for 120 µm sensors, 120 V for
200 µm sensors, and 280 V for 300 µm sensors. Moreover, per-pad leakage currents of the non-
irradiated sensors did not exceed a few nA, and the total currents at room temperatures between
20–24 ◦C over the full sensor remained well below 100 µA for (absolute) bias voltages up to 850 V.

In general, exposure of silicon sensors to radiation causes displacement damage to the silicon
lattice which affects both the leakage currents and the depletion voltages. While the bulk-dominated
leakage current density increases proportionally with the fluence, the expected increase of the
depletion voltage (for p-type sensors) is non-trivial and its quantification, like it is done e.g. in
refs. [13, 14], is beyond the scope of this work.

– 3 –
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Figure 2. (a) Schematic of the beam port sample delivery system at RINSC. (b) The view into the beam port
used for these irradiation studies. (c) The sample delivery cylinder that contains the sensor-holding hockey
pucks and (d) dry ice for cooling of the silicon sensors in the beam port during and after irradiation.

3 Irradiation at the Rhode Island Nuclear Science Center

3.1 Rhode Island Nuclear Reactor

The Rhode Island Nuclear Science Center (RINSC) houses a 2 MW, light-water cooled, pool-type
reactor in Narragansett, Rhode Island, USA. Its core consists of fuel assemblies moderated with
a combination of graphite and beryllium. The fuel is plate type U3Si2, cladded with aluminum,
enriched to less than 20 % Uranium-235.

The reactor beam port was used as a sample delivery system because it was the only reactor
access point large enough to fit a full-sized CE sensor. The beam port in question had not previously
been used for experiments, only for facility-related work. A sketch of the beam port and a photo of
its inside are shown in figure 2. It measures about 4 m from its opening to the termination near to the
reactor core, and it can accommodate samples with diameters of up to 20 cm and with depths up to
90 cm. A shutter assembly is located 3 m from the opening of the beam port, which must be raised
to allow for the insertion of the samples and closed prior to the start of operations. A 85 cm-long
lead plug serves as a radiation shield that has to be inserted into the opening of the beam port prior
to the start of the irradiation.

– 4 –
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Figure 3. (a) Sample containers (’hockey puck’) designed to hold CE silicon sensors for neutron irradiation
at RINSC. Wood (oak), acrylic, and PEEK were the puck materials that were experimented with. (b) An 8”
high-density CE prototype silicon sensor inside an acrylic puck covered with a Kapton™ foil.

3.2 Irradiation of CE silicon sensor prototypes

Given the constraints of the beam port system at RINSC, a dedicated sample delivery method had
to be developed for irradiating CE silicon sensors. This new sample delivery allows for:

• positioning sensors as close to the reactor core as possible;

• protecting them from physical damage during the loading, irradiation, and unloading;

• keeping the irradiated sensors at low temperatures during and after the irradiation;

• monitoring the temperature of the samples inside the beam port.

Two compatible pieces of hardware were manufactured: a sensor container, referred to as a "hockey
puck", and a sample delivery cylinder (see figure 2). The former is used to protect, orient, and
store the sensors during the irradiation while the latter is used to protect and locate the hockey puck
inside the beam port. The cylinder is made from 6061 aluminum and has an outer(inner) diameter
of 19.8 cm(19.1 cm), allowing for a snug fit of the cylinder inside the beam port and a smooth
insertion and removal of the hockey pucks. Three different hockey puck materials were considered
(see figure 3): oak, acrylic, and PEEK. They differ in their mechanical properties with respect to
temperature and humidity fluctuations, in their activation, radiation hardness and overall cost. As
a practical compromise between these factors, acrylic was found most suitable for irradiation up to
fluences of 5 × 1015 neq/cm2, and PEEK material suitable for higher fluences. The usage of oak
was eventually discarded because of its unfavorable tendency to absorb moisture. The puck base
has an outer diameter of 18.6 cm that allows for a smooth fit inside the cylinder. The interior of the
puck is milled out in the profile of the silicon sensors with an additional clearance of 1 mm. With
these constraints the thinnest sections of the wall of the puck are slightly over 1 mm thick.

Kapton™ foils were used to separate sensors in a stack such that no sensors were in direct
contact with any metallic surfaces (cf. figure 3). In addition, antistatic foam was used for covering
the top and bottom of the sensor-Kapton™ stack serving as a cushion against the walls inside the
puck. After preparation of the puck, the latter was inserted into the delivery cylinder.

In general, the silicon sensors should be kept at low temperatures during the irradiation in
order to limit unwanted thermal annealing. For this purpose, the rest of the delivery cylinder

– 5 –



2
0
2
3
 
J
I
N
S
T
 
1
8
 
P
0
8
0
2
4

0 1 2 3 4 5 6 7 8
Time after insertion (h)

60−

40−

20−

0

20

40

C
)

°
T

em
pe

ra
tu

re
 in

 p
uc

k 
(

Duration of irradiation

15 min

76 min

Start

End

Dry ice evaporated

Start

End

Dry ice evaporated
Insertion

Room temperature

Figure 4. Representative temperature recordings during two of the RINSC irradiation rounds of CE prototype
silicon sensors. The time when the irradiation was started and when it ended is indicated. The increase of
the temperature towards its plateau coincides with the sublimation of the dry ice inside the delivery cylinder.

was filled with 15-18 kg of dry ice (2). In order to monitor the temperature, PT1000 resistance
temperature detectors (RTD) were inserted into the puck, at the front and back faces, to record
the temperature throughout the irradiation for assessment of the expected sensor annealing during
irradiation. Representative temperature recordings from two irradiation rounds of different duration
are shown in figure 4. During irradiation, the temperature rose significantly, eventually reaching
temperatures ranging from a few 10 ◦C to 100 ◦C. In fact, it was found that most of the dry ice
sublimated. Only after shutdown of the reactor, the temperature decreased again. As a result,
the annealing of the silicon sensors inside the beam port was not negligible. The corresponding
annealing time at 60 ◦C, cf. ref. [13], varied between a few minutes to a few hundred minutes for
all sensors irradiated at RINSC in 2020-21 up to ∼ 1016 neq/cm2. After 24 h in the beam port after
irradiation, the cylinder’s activation levels had decayed sufficiently, it could be safely extracted, and
transferred into a storage freezer.

3.3 Fluence assessment

In addition to the sensors, mechanical packing material, and temperature sensors, each puck con-
tained a number of reference samples for measuring the fluence achieved during an irradiation
round. Two different objects were found appropriate for measuring the fluences during this cam-
paign: silicon diodes, which were studied for usage in the D0 experiment [15], and ultrapure iron
foils. The diodes were included inside the puck as close to the sensors as possible by encasing them
in small plastic bags and taping them to the inside faces of the puck. By contrast, the iron foils were
attached to the exterior of the cylinder for ease of removal and gamma spectroscopy measurements.
The latter were performed at RINSC after irradiation for derivation of the integrated fluence. In
addition, CV and IV measurements of the irradiated diodes were performed at Brown University
to assess the depletion voltage, the associated dark current and ultimately the fluence assuming
the literature value for the current-related leakage current rate of (3.99 ± 0.03) × 10−17 A/cm at
20 ◦C [13]. The reference silicon diodes are most useful for the lower to medium range of the
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Figure 5. A low-density CE silicon pad sensor right before connecting to the switch- and probe-card based
ARRAY system at CERN. The probe station was closed and continuously flushed with dry air during the
testing to prevent the formation of ice during low-temperature operation.

targeted fluences, where their depletion voltage was well within the measurement range (< 1000 V).
For higher fluences, full depletion of the silicon diodes could not be reached, and the gamma ray
spectra derived from the iron foils are considered more reliable. Table 1 in appendix A shows the
estimated actual fluences from those reference samples. In order to improve the accuracy of the
fluence assessment, future irradiations will include iron foils inside the puck as well as additional
silicon test structures.

4 Electrical characterisation of neutron-irradiated silicon pad sensors

The experimental setup and the electrical characterisation procedure of neutron-irradiated CE silicon
pad sensors are presented in this section. The following paragraphs describe two similar setups
installed at CERN and Texas Tech University, which were used to obtain the results reported in this
paper. Since the majority of the results are based on the CERN setup, its specifics are elaborated in
the following.

4.1 ARRAY- and cold-chuck based setup at CERN

At CERN, the S200FA probe station produced by Wentworth Laboratories Ltd. was used for the
electrical characterisation of neutron-irradiated silicon pad sensors. Its chuck (Systems att, C200-
40 model) is temperature-controlled down to −40 ◦C. Apart from a Keithley 2410 power supply,
a Keithley 6487 picoammeter, and a Keysight E4980A LCR-meter, all relevant components were
installed inside the probe station, see figure 5.

– 7 –
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The silicon sensors were first placed on the chuck and then connected to the probe- and switch-
card based ARRAY system that is described in detail in ref. [11]. The contact between the probe
card and the pads was realised with spring-loaded pins. Through-holes in the cards and the probe
station’s microscope enabled sufficient sensor-to-probe card alignment. Also, the sensor’s grounded
guard ring was accessible via a dedicated contact pad and could be connected with dedicated pins on
the probe card. The high voltage from the power supply was provided to the chuck and with it to the
sensor’s backside. Two probe cards specific for the LD and HD sensor layouts have been designed
and manufactured. The switch card was operated with a bias resistance (Rbias) of 1 MΩ and a high
voltage resistance (RHV) of 12 kΩ, see ref. [11] (figure 9). In this configuration, the ARRAY system
is designed to safely withstand total leakage currents up to 2 mA and per-pad currents up to 10 µA.

Since these limits would have been exceeded by a few orders of magnitude at room temperature,
cooling the neutron-irradiated sensors down to−40 ◦C hereby reducing the leakage current by almost
three orders of magnitude with respect to room temperature was imperative. The spatial variation
of the C200-40 chuck temperature profile at this temperature amounts to ±0.5 ◦C, cf. appendix B,
whereas fluctuations with time were found to be negligible. For the purpose of preventing the
formation of ice, the probe station was continuously flushed with dry air.

With total currents at the order of O(1 mA), the voltage drop at RHV for the testing of neutron-
irradiated sensors corresponded to a few volts and was corrected for. Per-pad leakage currents were
measured with the picoammeter, whereas total currents were measured directly with the power
supply. The LCR meter was operated at a frequency (fLCR) of 2 kHz for the inference of the
per-pad impedance. This particular frequency was chosen to minimise the error associated to the
capacitance that is derived from it [11].

4.2 Characterisation procedure

After connecting the sensor to the probecard, per-pad leakage currents as a function of the bias
voltage for all pads on a given sensor were measured (IV). This was followed by a per-pad capacitance
vs. bias voltage assessment (CV). After each iteration over all pads at a fixed bias voltage, voltages
were incremented in varying steps between 50-100 V up to 850 V, whereby the exact choice
depended on the measurement type (IV/CV) and on the thickness of the sensor. Although not
applicable for the results shown in this work, it should be noted that a given measurement sequence
was aborted if the total leakage current exceeded 2 mA. Similarly, individual pads whose leakage
currents exceeded 5 µA were not measured any further and in particular were excluded from the
subsequent CV. These compliance limits prohibited large voltage drops inside the test circuitry,
minimising the risk of damage to the ARRAY system.

The entire characterisation sequence was fully automatised as a LabVIEW-based program
(HexDAQ version 1.5.1 [16]). Including voltage ramps and settling times, the IV(CV) measurements
of low-density sensors in this work took about 1.5 h(2.5 h), whereby the duration is proportional to
the number of voltage steps (10-15 here). The duration was about twice as long for high-density
sensors due to the higher number of pads. In order to quantify the potential performance benefit
via annealing, silicon sensors were warmed up to 60 ◦C inside the probe station. After a total of
80 min at this temperature 1, the sensor’s depletion voltage is expected to be minimal [17] and the

1Corresponding to about three years at 0 ◦C.
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Figure 6. (a) Total leakage currents after irradiation (without additional thermal annealing) for two represen-
tative example sensors. Currents were measured at −40 ◦C (Itot, −40 ◦C) and at different effective bias voltages
(Ubias). (b) Per-pad leakage currents normalised to the area of full hexagonal pads as a function of the bias
voltage for different pads with different geometries on one example sensor.

studied sensors were cooled again to −40 ◦C. IV and CV characterisations were conducted before
and after additional annealing.

5 Results

The results of the electrical characterisation of the neutron-irradiated CE silicon pad sensor proto-
types are presented in this section. Section 5.1 focuses on the discussion of leakage currents (IV)
whereas section 5.2 addresses the capacitance (CV) and depletion voltage assessments. Section 5.3
offers a discussion on the drawn conclusion.

5.1 Leakage current

The total leakage current, interpreted as the dark current of a full silicon sensor, is defined as the
current flowing through the high-voltage resistor RHV (cf. figure 2 in [11]). As it is shown for
two prototype sensors in figure 6(a), the total leakage current did not break down and stayed well
below the ARRAY system’s compliance of 2 mA for the irradiated sensors discussed in this paper.
Irreversible discharges are undesired but occurred for a handful of sensors where the total leakage
current suddenly increased and exceeded the 2 mA limitation. One half of those instances could
be traced back to mechanical damages, e.g. induced during the transport or sensor handling, and
the other half hinted at the presence of a minor flaw in the CE silicon sensor design. The latter
ultimately lead to a design modification with which the risk of discharges in the future should be
minimised2. Results of the affected sensors are not discussed further in this paper.

Figure 6(b) shows the per-pad leakage current as a function of the effective bias voltage for
adjacent pads of various sizes on a low density sensor irradiated up to ∼ 1.9 × 1015 neq/cm2.
The data demonstrate that, in good approximation, the leakage current of a pad scales with its

2More than 50 prototype sensors with the improved design have been characterized with voltages up to 850 V in the
meantime. None have shown discharges thus far.
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Figure 7. (a) IV-curves of a representative full hexagonal pad for different annealing durations for a 200 µm
low-density prototype sensor irradiated to approximately 2.4×1015 neq/cm2. (b) Decrease of the per-pad
leakage current (𝑈bias = 600 V) as a function of the annealing time (tannealing) at 60 ◦C.

volume. The relative increase from 600 V to 800 V remains well below 150 % meeting the vendor
specifications.

The IV curves after different annealing times are shown for a representative pad in figure 7(a).
For bias voltages beyond full depletion, per-pad leakage currents at 600 V are reduced systematically
by 25 % after 80 min at 60 ◦C, cf. figure 7(b). Given the simultaneous reduction in the depletion
voltage, cf. figure 10(b), leakage currents around full depletion are even further reduced.

The expected relationship between the per-pad leakage current density and the fluence was
observed. The proportionality for current densities at a bias voltage of 600 V, which is well above full
depletion for all investigated sensors (except for the 300 µm sensors irradiated to 13.5×1014neq/cm2),
and extrapolated to −30 ◦C is displayed in figure 8. As expected [18], the current-related damage
rate (𝛼) is found to be independent on the tested material properties investigated in this work. The
numerical result for𝛼 scaled to room temperature is𝛼600V(20 ◦C) = (3.2 ± 0.2 ± 0.6)×10−17 A/cm.
The central value is about 20 % less than what is reported in ref. [13]. A possible explanation could
be a systematic overestimation of the fluence at the RINSC irradiation facility. Follow-up studies
in this regard are anticipated in the mid-term future.

After correction for the chuck temperature non-uniformity, per-pad leakage current densities
across a sensor at a fixed voltage still vary by∼ 10 %. The associated current profiles are present both
before (cf. figure 9(a) to 9(c)) and after additional annealing (cf. figure 9(d) to 9(f)). Furthermore,
they are consistent between sensors that had been irradiated simultaneously in the same puck.
Among others, a plausible explanation for this observation could be the presence of a fluence profile
within the beam port at RINSC that can be approximated as a Gaussian with a width of 𝜎 ∼ 10 cm.

5.2 Capacitance and depletion voltage

The measured per-channel impedance is open-corrected by subtracting the impedance of the AR-
RAY system. Subsequently, the sensor pad capacitance is computed assuming an underlying serial
connection to the measurement circuitry. Due to the finite mobility of the sensor defects, the
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Figure 9. Per-pad leakage currents interpolated to an effective bias voltage of 600 V for three representative
sensors from different irradiation rounds before (a-c) and after additional annealing (d-f). Red- or white-
colored edge pads correspond to well-understood measurement effects, e.g. insufficient contact between the
pogo pins and the pads.
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Figure 10. (a) Reciprocal-squared capacitance (𝐶−2
pad) as a function the bias voltage of a representative

full hexagonal pad for different annealing durations for a 200 µm low-density prototype sensor irradiated to
approximately 2.4×1015 neq/cm2. (b) Relative decrease of the depletion voltage estimate (𝑈dep) as a function
of the additional annealing time (tannealing) at 60 ◦C for a subset of full pads.

frequency at which the impedance is measured may, in principle, have sizeable impact on the
derived capacitance and on the depletion voltages, cf. ref. [19]. The impedance measurement was
conducted at 𝑓LCR = 2 kHz. Experimental follow-up indicated an impact of 2 % on the asymptotic
capacitance and a 10 % reduction of the depletion voltage when decreasing 𝑓LCR to 500 Hz, which
have no implication on the following discussion.

The depletion voltage for each pad is assessed from the saturation of its squared reciprocal
capacitance (𝐶−2) of a pad with respect to the bias voltage (𝑉). It is defined as the intersection of
a straight-line fitted to the rising part of the 𝐶−2 vs. 𝑉 curve with a line fitted to its plateau. Prior
to additional annealing, such a plateau could not always be reached within the tested bias voltage
range, see for example the black line in figure 10(a). After additional annealing to 80 min at 60 ◦C,
the estimated depletion voltage has been reduced by about a third with respect to the case without
annealing, cf. figure 10(b).

The per-pad capacitance after irradiation is found to scale well with the area of the pad, cf.
figure 11(a).

Deviations from this scaling amount to less than 5 %, suggesting a slight dependence of the
inter-pad capacitances on the pad geometries.

Figure 11(b) illustrates that the estimated depletion voltages depend primarily on the associated
thickness of the depleted zone. The estimated per-pad depletion voltage across the sensor is shown
in figure 12(a). Those estimates exhibit positive correlation with the leakage currents, taken as
proxy for the fluence, cf. figure 12(b). In fact, the obtained correlation coefficient from this analysis
is positive for all tested sensors where full depletion could be reached. This can be interpreted as
further evidence for the presence of a fluence profile inside the beam port during irradiation.

5.3 Discussion

The neutron irradiation induced leakage currents are consistent both qualitatively and quantitatively
with previous R&D on irradiated silicon sensors. They are also found to be independent of
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Figure 11. (a) Area-normalised capacitances as a function of the bias voltage for different pads with different
geometries on a example LD sensor. (b) Normalised squared-inverse capacitances as a function of the bias
voltage to estimate the sensor depletion voltage of a central pad from different irradiation rounds. Full
depletion was achieved at bias voltages around 40 V for 120 µm sensors, 120 V for 200 µm sensors, and
280 V for the 300 µm sensors before irradiation.
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Figure 12. (a) Per-pad depletion voltage estimates for a 200 μm LD example sensor irradiated to
1.9×1015 neq/cm2, and (b) their correlation to the per-pad leakage current, used as proxy for the deliv-
ered fluence.

the silicon fabrication process (flatband voltage, p-stop layout). Furthermore, unchanged end-
capacitances and reduced depletion voltages after beneficial annealing are qualitatively consistent
with previous findings.

The findings presented in this paper with the first prototypes of CE silicon sensors, i.e. hexagonal
sensors and fabricated with a new 8” process, irradiated to fluences corresponding to the end of
lifetime of HL-LHC are in full support of the radiation-hardness of their general design. By
implication, RINSC could be qualified as a valid facility for neutron irradiation of 8” silicon sensors
for the first time. However, more accurate studies on the electrical sensor properties after neutron-
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irradiation would need to incorporate the systematic uncertainty on the effective annealing during
irradiation, that is due to the temperature evolution and its potential lateral profile inside the reactor’s
beam port. Similarly, an accurate assessment of the actual fluence at each pad would have to address
the neutron flux profile, for whose existence this work provides first evidence.

6 Conclusion

An essential component of the silicon sensors’ prototyping for the CMS highly granular endcap
calorimeter upgrade (CE) is the experimental verification of the radiation hardness in terms of
their electrical properties, i.e. leakage currents, capacitances and depletion voltages. RINSC
is one of the few locations world-wide that offers the infrastructure for the irradiation of large
structures compatible with CE’s 8”-wide silicon pad sensors. Given that parts of the necessary
infrastructure have not been used in this experimental capacity, the irradiation was non-trivial and
specific preparations had to be made. After irradiation, the probe- and switch card-based ARRAY
system [11] was used for the first time for the electrical characterisation of neutron-irradiated silicon
sensors at CERN and at Texas Tech University. In order to protect the test system from currents that
would exceed its specifications, the neutron-irradiated sensors were cooled down to −40 ◦C during
the tests.

The preparation and execution of the neutron-irradiation at RINSC and the electrical charac-
terisation of the irradiated sensors at cold temperatures using the ARRAY system was explained in
this paper. Evidence for specific properties of the RINSC irradiation facility such as a non-uniform
flux profile across the 8” wafer and for non-negligible sensor annealing due to insufficient cooling
during irradiation was reported.

For the planned CMS CE upgrade, the findings in this work are encouraging as they confirm
the overall expected radiation hardness of the prototype silicon sensors. In particular, their leakage
current densities are found to scale proportionally with the fluence, independent of the properties of
the tested production process variations. It is reconfirmed that annealing the sensors up to 80 min
at 60 ◦C has beneficial impact on the electrical properties by lowering the dark current and the
depletion voltages by O (10 %). Despite the tested sensors being prototypes, the insights from
their characterisation can be considered representative for the final version. Therefore, the results
reported in this work may serve as reference for the expected electrical performance and degradation
of CE’s silicon sensors towards the end of their lifetime at HL-LHC.
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A Irradiation rounds and fluences

See table 1.

Table 1. Irradiation duration and estimated integrated fluences for the neutron-irradiation at RINSC of CE
prototype silicon sensors discussed in this work. A comparison to leakage currents of silicon test structures
irradiated at the JSI TRIGA reactor [20] indicate an uncertainty on the fluence estimates of about 20 %.

Date No. sensors Thickness Duration Fluence (1014 neq/cm2) Reference
26 Aug 20 4 300 𝜇m 13 min 7.1 Si diodes
20 Oct 20 4 120 𝜇m 180 min 110.0 Fe foils
28 Jan 21 4 200 𝜇m 38 min 23.5 Si diodes
11 Feb 21 4 120 𝜇m 38 min 16.5 Si diodes

01 March 21 4 300 𝜇m 23 min 13.5 Si diodes
11 March 21 4 120 𝜇m 76 min 50.0 Fe foils
15 April 21 4 300 𝜇m 15 min 8.2 Si diodes
06 May 21 2 200 𝜇m 38 min 19.0 Si diodes

B Temperature uniformity of the systems att C200-40 cold chuck

The leakage current in silicon devices dependends on the temperature. For the investigated sensors
in this work, the current is mainly generated in the bulk for which the temperature (𝑇) and current
(𝐼) are related by eq. (B.1) [21], where 𝐸eff = 1.21 eV is the effective gap energy and 𝑘𝑏 denotes the
Boltzmann constant.

𝐼

𝑇2 · exp
𝐸eff

2 · 𝑘𝑏 · 𝑇
≡ const. (B.1)

The validity of this temperature scaling law applied for the CE silicon pad sensors in the relevant
temperature range has been verified and is illustrated in figure 13. Notably, a change by 1 ◦C impacts
the current by more than 10 %. Variations of the temperature across the actively cooled-down chuck,
and with it across the sensor, may mimic neutron fluence profiles as in figure 9. Thus, they should
be identified and corrected for.

In this work, the temperature non-uniformity of the cold chuck at CERN (C200-40 model
produced by Systems att) could be estimated from leakage current data of neutron-irradiated sensors.
By comparing per-pad currents (𝐼𝑖 ( 𝑗 ,𝑘 ) ) at a fixed bias voltage between the symmetry locations 𝑖,
𝑗 , 𝑘 , described below, temperature differences 𝛿𝐼𝑖 ( 𝑗 ) ,𝑘 can be calculated according to eq. (B.2).
For this purpose, one of the neutron-irradiated low-density sensors was characterised three times at
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Figure 13. Leakage currents as a function of the bias voltage for an example sensor measured at −40 ◦C,
−35 ◦C, −30 ◦C, and scaled to −35 ◦C using eq. (B.1).

(a) (b) (c)

Figure 14. (a) Temperature differences derived from per-pad leakage currents between symmetric locations
of a representative neutron-irradiated CE silicon sensors on the cold chuck at CERN. (b) Determined profile
of temperature differences, modelled as a two-dimensional gaussian, across the sensor surface. (c) Closure
check: derived temperature differences after accordingly correcting the measured per-pad leakage currents.

0◦, 120◦, and 240◦ rotation. The precision in repeating the sensor placement on the chuck can be
neglected with respect to the size of the pads.

𝛿𝐼𝑖 ( 𝑗 ) ,𝑘

𝐼𝑘
=
𝛿𝑇𝑖 ( 𝑗 ) ,𝑘

𝑇𝑘
·
(
2 + 𝐸eff

2 · 𝑘𝑏 · 𝑇𝑘

)
, 𝑇𝑘 B 𝑇ref (B.2)

Figure 14(a) shows the hereby computed chuck temperature differences. The determined variation
is consistent with the ±0.5 ◦C non-uniformity as specified by the chuck producer. Assuming a
reference temperature of 𝑇ref ≡ −40 ◦C, a two-dimensional gaussian parameterisation bound to
[−0.5 ◦C, 0.5 ◦C] is fitted to reproduce the temperature differences 𝛿𝐼𝑖 ( 𝑗 ) ,𝑘 . The result of the fit is
shown in figure 14(b). The hereby constructed map of chuck temperature differences is input to
correct the measured per-pad leakage currents using eq. (B.1). As a closure check, the re-application
of eq. (B.2) on the temperature-corrected dataset demonstrates the applicability of this particular
chuck temperature model as shown in figure 14(c).
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