
J
C
A
P
0
8
(
2
0
2
3
)
0
1
1

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Light axiodilatons: matter couplings,
weak-scale completions and
long-distance tests of gravity
Philippe Brax,a,b C.P. Burgessb,c,d,e and F. Quevedof
aInstitut de Physique Theórique, Université Paris-Saclay,
CEA, CNRS, F-91191 Gif-sur-Yvette Cedex, France
bCERN, Theoretical Physics Department,
Genève 23, Switzerland
cDepartment of Physics & Astronomy, McMaster University,
1280 Main Street West, Hamilton ON, Canada
dPerimeter Institute for Theoretical Physics,
31 Caroline Street North, Waterloo ON, Canada
eSchool of Theoretical Physics, Dublin Institute for Advanced Studies,
10 Burlington Road, Dublin, Ireland
fDAMTP, University of Cambridge,
Wilberforce Road, Cambridge, CB3 0WA, U.K.

E-mail: phbrax@gmail.com, cliffmacpi@gmail.com, f.quevedo@damtp.cam.ac.uk

Received February 13, 2023
Revised May 1, 2023
Accepted May 12, 2023
Published August 10, 2023

Abstract. We consider the physical implications of very light axiodilatons motivated by a
novel mechanism to substantially reduce the vacuum energy proposed in arXiv:2110.10352.
We address the two main problems concerning the light axiodilaton that appears in the
low-energy limit, namely that the axion has a very low decay constant fa ∼ eV (as read from
its kinetic term) and that the dilaton is subject to bounds that are relevant to tests of GR
once ρvac . 10−80M4

p . We show that eV scale axion decay constants need not be a problem
by showing how supersymmetric extra dimensions provide a sample unitarization for axion
physics above eV scales for which non-anomalous matter/axiodilaton couplings can really
have gravitational strength, showing how naive EFT reasoning can mistakenly overestimates
axion interactions at eV. When axions really do couple strongly at eV scales we identify the
dimensionless interaction in the UV completion that is also O(1), and how axion energy-loss
bounds map onto known extra-dimensional constraints. We find a broad new class of exact
exterior solutions to the vacuum axiodilaton equations and knowledge of axiodilaton-matter
couplings also allows us to numerically search for interior solutions that match to known
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exterior solutions that can evade solar-system tests. We find no examples that do so, but
also identify potential new candidate mechanisms for reducing the effective dilaton-matter
coupling to gravitating objects without also undermining the underlying suppression of ρvac.
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1 Introduction

When spinless particles are found to be very light they are usually Goldstone bosons for broken
symmetries, at least approximately. Broadly speaking, there are two classes of Goldstone
boson that arise in this way, depending on whether or not the underlying symmetry is compact
or noncompact.

For compact symmetries the dimensionless Goldstone field, a, behaves as an angular
variable that parameterizes a periodic direction in the scalar target space whose period
(conventionally) is 2π, and the approximate symmetry corresponds to shifts a → a + c for
constant c (or their nonabelian generalizations) as happens for axions. Scale transformations
τ → λτ for constant λ (which can of course be regarded as shifts for the field ln τ) are simple
examples of noncompact symmetries, for which the Goldstone direction is not periodic.

Supersymmetry often bundles these two types of scalars together into complex combi-
nations,1 T = 1

2(τ + ia), with the scaling and compact symmetries assembled into a larger
SL(2, R) group

iT → ic1T + c2
ic3T + c4

with c1c4 − c2c3 = 1 . (1.1)

Such scalars are rife in low-energy string vacua because these turn out to be riddled with scale,
shift and duality symmetries on very general grounds [1]. Mathematically such a complex

1We here follow supergravity practice and call the real part of any such a field a ‘dilaton’ and call its
imaginary part an ‘axion’.
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scalar parameterizes the coset space SL(2, R)/U(1) and the symmetry implies their kinetic
term takes the form

Lkin = −
√
−g zM2

p

∂T ∂T
(T + T )2 = −

√
−g zM2

p

(∂τ)2 + (∂a)2

4τ2 , (1.2)

where the Planck mass is related to Newton’s constant by M−2
p = 8πGN and the order-unity

constant turns out to be z = 3 in the cases of interest encountered below.
Normally the study of these scalars is regarded as being a purely theoretical exercise,

relevant only at very high energies where supersymmetry might play a role. However
recent developments [2–4] — raise the possibility that they might survive to low energies if
supersymmetry survives less broken in the gravitational sector than in the particle-physics
sector (as indeed might be expected given that gravity naturally couples more weakly to any
supersymmetry breaking sector). If so, axio-dilatons could be light enough to have practical
implications for astrophysics and cosmology, whose potential possibilities and problems both
hinge on the target-space interactions implied by (1.2).

A perceived drawback of these models is their apparent need for UV completion at very
low (eV) scales; a very practical obstruction to assessing their viability (such as whether they
can survive the many constraints — e.g. energy-loss bounds — that arise at higher energies).
A purpose of this paper is to identify a natural class of UV completions, showing in particular
how they can be used to explore high-energy constraints. This also allows us to clarify how
the axiodilaton couples to ordinary matter, and what these interactions imply for tests of GR
and other constraints. Along the way we find a broad new class of solutions to the axio-dilaton
field equations.

Before summarizing these results we first briefly recap the relevant features of [2, 3] that
we think motivate their study and define the problems that needs resolving.

The Yoga scenario. Consider first the Yoga scenario of reference [2]. In these models
supersymmetry survives below the weak scale, but only in the gravity sector. The idea
is to exploit the way this restricts how gravity responds to particle energies. The model
borrows a universal feature common to the known string compactifications: an accidental
and approximate classical scaling symmetry for which a complex field like T contains the
dilaton τ . Corrections to scaling occur because the lagrangian arises as a series in powers
of 1/τ , and the core idea behind the model exploits a general mechanism2 that ensures that
these corrections first contribute to the scalar potential at one order higher in 1/τ than one
would naively expect. The scenario explores how large τ can be and whether this suppression
can be signficant enough to be useful for the cosmological constant problem [10, 11].

Although present for other reasons, the accidental scale invariance also makes τ couple
to Standard Model fields only through a Brans-Dicke type [12–15] rescaling of the metric
LSM = LSM(g̃µν , ψ), where ψ denotes a generic Standard Model field and g̃µν = A2(τ) gµν
with A ∝ τ−1/2. Because of this the Higgs vev is proportional to τ−1/2 in the Einstein
frame (for which Mp is τ -independent), and so the same is also true for all ordinary particle
masses:3 mi/Mp ∝ τ−1/2. Neutrino masses can (but need not) be an exception: if they

2For aficionados: the structure of the potential arises because accidental scale invariance gives the leading
terms a no-scale form [5, 6], whose breaking leaves the potential unusually shallow because of the ‘extended
no-scale structure’ mechanism described in [1] (and first discovered within string compactifications in [7–9]).

3The QCD scale ΛQCD 'Me−c/αs(M) also scales as τ−1/2 when the reference UV mass scales likeM ∝ τ−1/2,
ensuring all masses for ordinary (non-neutrino SM) particles scale in the same way.
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depend quadratically4 on the Higgs vev they instead satisfy mνa/Mp ∝ τ−1. These scalings
are broadly consistent with mi being at TeV scales and mνa at sub-eV scales (up to small
dimensionless Yukawa couplings) if Mp is the fundamental reference scale and τ ∼ 1028. The
electroweak and neutrino-mass hierarchies are also set by whatever physics fixes the size of τ .

Like everything else, the scalar potential for τ arises as a series5 in 1/τ . In Planck units
it has the form

V (τ) = V2
τ2 + V3

τ3 + V4
τ4 + · · · , (1.3)

where supersymmetry of the gravity sector implies [18–22] V2 arises as the perfect square

V2 ∝ |wX |2 , (1.4)

for some quantity wX , and so is strictly non-negative. This first term is also not particularly
small, since its dependence on τ is consistent with the size that would be expected for a
generic vacuum-energy contribution, m4, given that m ∝ τ−1/2.

So far nothing particularly remarkable has happened. But because the dominant term
(for large τ) is a square, it likes to be minimized at zero if it should depend on another
‘relaxation’ field,6 χ, for which wX(χ) = 0 has a solution for χ = χ0. In practice V2 typically
is not minimized precisely at zero because the presence of higher powers of 1/τ tend to drag
χ away from the zero of V2 (e.g. V3 turns out to be linear in wX). Instead χ is minimized
where wX ∝ 1/τ , and so the minimum occurs where V2 ∼ 1/τ2 and V3 ∼ 1/τ , making the
potential at the minimum order Vmin ∼ 1/τ4 once χ is minimized. The ‘natural relaxation’ as
χ seeks its minimum gives these ‘Yoga’ models their name.

Remarkably the resulting dependence on τ is consistent with Vmin ∼ v4 with energy scale
v ∼ m2/Mp where m ∼Mp/

√
τ is a typical Standard Model scale; the seed of an explanation

for the famous numerology that the observed Dark Energy density is v ∼M2
TEV /Mp. Although

relating all three of the electroweak, neutrino and Dark Energy hierarchies to the size of one
field τ is tantalizing, why should τ be so large at its minimum? It is here that the dependence
of Vi on ln τ plays a role, with [2] showing how reasonable choices for this dependence can
easily produce minima with τmin ∼ 1028 given hierarchies amongst the parameters in Vi that
are only order ln τmin ∼ 65.

It is of course the supersymmetry breaking masses Λs & 10TeV of any heavy superpart-
ners of SM particles that are the most dangerous from the vacuum-energy point of view, and
the main tension driving these models is to arrange parameters so that these superpartners
can be heavy enough to have escaped detection while keeping a lid on the size of Vmin. In the
best examples found in [2] the vacuum energy turns out to be

Vmin ∼
Λ4
s

τmin(ln τmin)5 , (1.5)

and so Vmin ∼ 10−93M4
p if Λs ∼ 10TeV and τmin ∼ 1028. In this expression the suppression

by 1/τmin is a consequence of the ‘extended no-scale structure’ mechanism [1, 7–9] mentioned
above, and the powers of ln τmin are an accidental consequence of the stabilization mechanism

4This is true if e.g. neutrino masses arise from the unique dimension-five SMEFT interaction of [16, 17],
directly suppressed by 1/Mp rather than another τ -dependent mass.

5Quantum breaking of scale invariance also allows the coefficients Vi to depend logarithmically on τ .
6V2 vanishing dynamically resembles how charged scalars often seek the zeros of D-terms in supersymmet-

ric models.
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used for τ [2]. Although impressively small, this is not (yet) as small as the observed value:
10−120M4

p .
Improving on this is not our focus here however; we instead address the two main

phenomenological problems implied by the Yoga framework, with a goal of identifying what
the main remaining obstacles are (and hopefully suggesting model-building directions to
overcoming them). We consider in turn the two issues that seemed in [2] the most pressing:
small axion decay constant and the dilaton’s implications for tests of General Relativity (GR).
Our conclusions are again mixed.

The axion problem. The target-space interactions seen in (1.2) appear to contain a
problem when τmin is as large as required for the other hierarchies. Because the axion kinetic
term is M2

p (∂a)2/τ2 it predicts at face value the present-day axion decay constant to be
fa ∼Mp/τmin. This makes fa similar in size to v and mν (of order the eV scale) for the value
τmin ∼ 1028.

This could be a problem if this is the scale the controls axion couplings to ordinary
matter, and this is indeed what might be naively expected because once canonically normalized
(a := faa) the lagrangian

Lax = −f
2
a

2 ∂µa ∂
µa− ∂µa Jµ + · · · (1.6)

would predict non-renormalizable derivative axion-matter couplings of size f−1
a ∂µa J

µ. Such
terms only make sense in an EFT that computes observables at energy E in powers of E/fa.
Although it is tempting to conclude that the axion must be ‘strongly coupled’ at these scales,
what really happens is the derivative expansion breaks down for E & fa and so the real size
of the couplings must be understood in the UV completion that intervenes at eV energies.
Such a completion is also required to see whether the model is consistent with any constraints
on axion physics (e.g. energy-loss bounds) that involve energies above eV scales.

The point of view taken in [2] is to agree that a UV completion must intervene at
energies of order fa, but to put aside the question of what this is in order to sort out the other
naturalness and phenomenological issues that can be addressed at energies below eV scales.
This is already nontrivial because Yoga model cancellations can be traced parametrically
as functions of τ , despite a full treatment of UV sensitivity requiring access to weak-scale
energies. The viability of cancelling both τ−2 and τ−3 terms within V can be addressed purely
at low energies, as can other phenomenological issues like solar system tests and cosmology.

We revisit the issue of UV completion in section 2 below, using extra dimensional models
to pin down axion couplings more precisely.7 We consider three types of axions in such models,
and we argue that one type of them can couple to ordinary matter with only gravitational
strength (as do most KK modes) even though the kinetic term has the form (1.2) with τ as
large as 1028. The error in the naive estimate based on the lagrangian of (2.1) or (2.4) is to
assume that the ∂µaJµ term of (2.4) is independent of τ , which the UV completion shows
need not be true (at least for non-gauge interactions).8

7See also [23], that more broadly addresses to how UV naturalness issues — like the quality problem — are
manifested for axions in extra-dimensional models that are not tied to a large extra-dimensional scenario.

8QCD-style axion-gauge couplings to dark gauge fields are possible (but not required) in this case, and
would arise with strength 1/fa.
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The Brans-Dicke problem. The other problem starts with the observation that small
Vmin implies the dilaton τ is light:9 m2

τ ∼ Vmin/M
2
p . If Vmin can be made small enough

to describe the Dark Energy, the τ mass is of order the present-day Hubble scale. Once
Vmin . 10−80M4

p we have m−1
τ & 10 km, making the dilaton relevant to tests of GR and

searches for new long-range forces. Furthermore, because particle masses are proportional to
τ−1/2 the dilaton necessarily couples to matter as does a Brans-Dicke-like scalar, and does so
with gravitational strength. Surely it must already be ruled out by such tests?

Possibly. As described in [3], the derivative interactions between τ and a contained
in (1.2) complicate the predictions for tests of GR, provided that the axion a is also light
enough to mediate a long-range force and also couples weakly to matter. To the extent
that these couplings source the axion field and reduce the dilaton field they can help evade
detection because observations are sensitive to the Weyl factor A appearing in g̃µν = A2gµν
and this does not depend on the axion. To good approximation the axion field drops out of
test-particle motion and so its presence tends to be missed by observational constraints. To
decide whether this escape mechanism is actually employed by real systems requires matching
exterior solutions to the solutions within the source’s interior (something that we address in
this article), and this in turn requires more information about how the axiodilaton couples
to matter.

So what’s new? This brings us to the purpose of the paper you are now reading. Lack of
information about axiodilaton-matter couplings at ordinary energies obstructs progress on
both of the above problems. We therefore first identify UV completions that can be valid up to
electroweak scales, doing so by pursuing the suggestion made in [2] that large extra dimensions
could intervene at eV scales. If so, only two dimensions can be this large10 without already
having been detected,11 and even these can only be this large without escaping detection if all
Standard Model particles are trapped on a 4D space-filling brane situated somewhere within
the two large dimensions [24, 25, 27–29].

Indeed the entire framework wherein nonsupersymmetric Standard Model physics couples
to a supersymmetric gravity sector is naturally captured in this framework if the Standard
Model brane badly breaks supersymmetry but the extra-dimensional bulk is otherwise su-
persymmetric. In this case supersymmetry in the gravity sector is only broken by boundary
conditions and the lightest gravitino is expected to have a mass of order the Kaluza Klein
(eV) scale (in agreement with the gravitino mass m3/2 that was also found in a purely 4D way
within the Yoga setup). Extra dimensions also provide a microscopic interpretation for the
large value for τ : it encodes the large volume of the extra dimensions:12 V2 ∼ (ML)2 ∼ 1028

where L is the extra-dimensional radius and M the 6D gravity scale.
In this way of thinking the natural UV extension of Yoga models is supersymmetric

large extra dimensions (SLED), which was indeed initially proposed [30] with Dark Energy
density in mind. Much is known about UV sensitivity in this framework and can be carried

9Indeed this size is generic for any gravitationally coupled scalar that acquires its mass from V , so light
scalars could be common if the potential’s minimum is small.

10More dimensions than the minimal two can arise (as usual) provided they only do so above TeV energies.
11Recently, motivated by some swampland conjectures, an interesting dark energy proposal was put for-

ward [26], for which the case is made for a single large extra dimension rather than two. It is not clear how, in
this scenario, loops of Standard Model particles are cancelled to keep the cosmological constant small, but it
may be interesting to explore any potential connection with our proposal.

12Ref. [2] provided arguments why the simplest connection between τ and V2 could have problems, and
section 2.2 below addresses why these need not be fatal.
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over in whole cloth to Yoga models. For instance UV scales do not gravitate as in 4D, with
UV on-brane contributions typically curving the transverse extra dimensions rather than
the four on-brane dimensions visible to brane-bound cosmologists [30–36]. Supersymmetry
of the gravity sector (the bulk) similarly suppresses UV contributions from other branes or
from elsewhere in the extra-dimensional bulk [37–41]. The requirement that Standard Model
particles live on a 4D space-filling brane also means that most non-gravitational predictions
go through as in four dimensions, and so are as captured by the Yoga-model lagrangian even
at energies above eV scales. It is only for high-energy gravitational processes that the full
extra-dimensional machinery is really required.

We find several interesting consequences of this UV picture. As remarked elsewhere [42–
44] axions are generic in supersymmetric extra-dimensional models, for example arising as
KK modes for the 2-form gauge fields that commonly appear as part of the extra-dimensional
graviton supermultiplet. Section 2 revisits how extra dimensions unitarize axion interactions,
sometimes leaving them with gravitational-strength interactions with ordinary matter despite
the apparent breakdown of the E/fa expansion at eV scales.

Our main line of inquiry asks what kinds of UV matter couplings can ameliorate the
Brans-Dicke and axion problems described above. In particular, we test whether the interior
solutions suggested by the simplest axion-matter couplings actually match to the exterior
solutions found in [3] that evade solar system tests of gravity. We identify conditions that
the axion-matter couplings must satisfy in order for this to happen, and report on extensive
numerical searches for successful solutions using the simplest types of axion-matter couplings,
none of which is ultimately successful but which also identify new ways in which axion-matter
couplings can act to suppress the effective dilaton charges of macroscopic objects.

In one promising approach it is a chameleon-type mechanism for the axion that gets
transferred by axio-dilaton self-interactions to reduce the apparent dilaton charge. But we do
not yet have a mechanism that would evade all bounds and so we still consider it an open
challenge to find a way for the Yoga relaxation mechanism to evade solar-system constraints.
Our search suggests several further directions for how to find phenomenologically successful
couplings, and regard this type of model building to be a constructive reformulation of the
cosmological constant problem since it leads to directions that have not yet been fully explored.
Given the magnitude of the original problem (dark energy), recasting research along these
lines seems worthwhile.

The rest of the paper is organized as follows. Section 2 shows how the axiodilaton
lagrangian arises by explicit dimensional reduction of extra-dimensional models and how such
models provide a natural framework for exploring their properties at scales E & fa. It is also
argued how the large values required for τ can be plausibly achieved within this framework if
two extra dimensions are larger than the others and close to their upper allowed size since in
this case the two large dimensions have volume (in fundamental units) V2 ∼ 1028.

Section 2.1 then identifies three ways (S-type, T -type and Φ-type) axions can arise
from the particularly rich case of extra-dimensional two-form fields, BMN , that are generic to
supersymmetric models. Their possible couplings to on-brane (Standard Model) degrees of
freedom are computed by direct dimensional reduction, and this shows why the T -type axion
can have low-energy matter couplings proportional to F−1 with effective decay constant13

F ∼Mp rather than fa. The naive strong-coupling argument given above based on (1.6) is
13Having UV physics intervene with only weak couplings is not uncommon for EFTs [45], and underlines

why it can be perverse to call the breakdown of the low-energy expansion ‘strong coupling’ (as is sometimes
done in the literature).
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mistaken in this case because it is naive about how factors of the large volume V2 appear in
the interaction terms at low energies.

Higher-dimensional gauge symmetries turn out to preclude these Planck-suppressed
T -axion/matter couplings from including QCD-like axion-gauge interactions. The other two
types of axions can couple to QCD, and Φ-type axions in principle can do so with an effective
decay constant that can be large enough to play a role in the strong CP problem. The natural
size for S-type axion/matter couplings really is 1/fa, as it happens, but such couplings need
not be present. It is not implausible for such models to have dark (bulk) gauge sectors and
axions can couple to these with strength 1/fa. These match to O(1) dimensionless effective
couplings within the higher-dimensional UV completion.

The remaining sections then pivot to using this framework to explore several phenomeno-
logical issues, with section 3 focussing on higher energy issues that require the UV completion.
This section argues that inclusive axion energy-loss bounds generically coincide with the
standard extra-dimensional energy loss constraints that require the scale of 6D gravity to
be above tens of TeV, and discusses which kinds of predictions depend on extra-dimensional
details and which do not. The 4D Yoga-model perspective turns out also to help understand
why SLED models were promising but ultimately not completely successful in accounting for
the Dark Energy density, and why Yoga models might do better.

Section 4 turns to the core phenomenological problems these models face: constraints
coming from solar-system tests of gravity in scenarios where Vmin is low enough that the
dilaton becomes light enough to mediate a macroscopically long-range force. It does so
under the assumption that the vacuum does not break the axion shift symmetry (though the
matter-axion couplings within a gravitating source might). We find a broad new class of exact
solutions to the classical axiodilaton field equations external to a source, including those that
are not rotationally invariant and so that can capture effects like multipole moments. We use
these solutions to show why shift symmetry breaking by matter-axion couplings is a necessary
condition for modifying the effective dilaton-matter couplings along the lines proposed in [3],
and match these to a broad class of numerically generated interior solutions to see if effective
matter-dilaton couplings can evade detection. We do not identify any that succeed in doing
so. Our results are summarized in section 5 and an appendix contains an analytic limit for
the interior solutions that complements our numerical searches in the main text.

2 UV completions

This section explores the types of axion couplings that are inherent in UV completions that
involve supersymmetric large extra dimensions, and why they resolve the problems associated
with decay constants in the eV regime. We identify two main types of axion structure that
emerge (T -type and S-type axions) and show why both lead to physical modes that in
reality couple only with gravitational strength.14 The section closes with a discussion of why
extra-dimensional models can avoid the constraints discussed in [2] that naively seemed to
preclude there being extra-dimensional UV completions.

14In general string compactifications there are several possibilities worth exploring in more detail, depending
if the axion comes from a complex structure or Kähler modulus, from 2,3,4-forms and in IIB from the original
10D axion. It also depends on having the Standard Model on branes of different dimensionalities. See for
instance [46, 47].
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2.1 Axion unitarization

Axions whose kinetic terms have the form (1.2) with τ ' τmin ∼ 1028 seem to imply a
low-energy axion/matter lagrangian of the form

Lax = −f
2
a

2 ∂µa ∂
µa− ∂µa Jµ + · · · (2.1)

with Jµ being a collection of lowest-dimension currents built from SM particles and decay
constant fa = Mp/τmin ∼ 1 eV. If required to be gauge invariant the currents Jµ first arise
with mass dimension 3 involving either fermions or the Higgs doublet:

JµF = ψγµgFψ and JµH = igH
[
(DµH∗)H−H∗(DµH)

]
, (2.2)

for some Dirac/flavour matrix gF and Higgs coupling gH .
In the case of gauge bosons the lowest-dimension operators are not gauge invariant, but

in some circumstances these can also be used to build gauge invariant interactions. The two
lowest-dimension contributions of this type consist of the gauge potential Aµ and the Hodge
dual of the Chern-Simons form ωµνλ. For abelian fields15 these take the explicit form

JµA = gAA
µ and JµC = gC

2 ε
µνλρAνFλρ . (2.3)

Interactions like ∂µa JµA can come as parts of (∂µa + gAAµ)(∂µa + gAA
µ) and so arise when

the axion shift symmetry is gauged. Their presence indicates gauge-field mass acquisition
through the Stueckelberg mechanism. The Chern-Simons interaction is similarly seen to be
gauge invariant by integrating by parts to rewrite ∂µa JµC as proportional to a εµνλρFµνFλρ.
Such interactions represent anomalies in global axion shift symmetries or contributions to
anomaly cancellation if the axion shift symmetry is gauged. The Chern-Simons current JµC
has straightforward generalization to nonabelian gauge fields.

Once expressed in terms of the canonically normalized field a = faa we have

Lax = −1
2 ∂µa ∂

µa− 1
F
∂µaJ

µ , (2.4)

with F = fa. When Jµ has dimension (mass)3 this is a nonrenormalizable interaction which
standard EFT reasoning argues should be interpreted as part of a low-energy derivative
expansion. Because the dimensionless expansion is in E/fa this interpretation breaks down at
energies E & fa ∼ 1 eV, invalidating use of this low-energy EFT at higher energies. Something
must intervene at or below fa to enable predictions at ordinary energies and we here argue
that two large extra dimensions provide a simple and plausible example of what this could be.
This section focusses specifically on how the above argument changes if the UV completion at
these scales is extra-dimensional and shows why in this case a more reliable estimate for the
size of axion-matter couplings reveals them to be Planck suppressed.

The point is most easily made using an explicit example, so consider the specific instance
where the axion arises as a low-energy mode of an antisymmetric Kalb-Ramond field BMN

within two extra dimensions. This system is known to produce the required SL(2, R)-invariant
form for the axio-dilaton lagrangian used in [2, 3].

15For simplicitly we write explicitly only the abelian case, but the nonabelian generalization is straightforward.
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Axiodilatons from extra dimensions. Consider first how axions arise from higher-
dimensional 2-form gauge potentials, BMN . For concreteness’ sake we do so assuming two
large extra dimensions, though we also distinguish how axion properties differ if they arise
from other smaller dimensions. For simplicity take the extra-dimensional metric to have the
following product form:

ds̃2 = g̃MN dxMdxN = V
(0)
2
V2

gµν(x) dxµdxν + V2 ĝmn(y) dymdyn , (2.5)

where the metric ĝmn satisfies
∫

d2y
√
ĝ = M−2 so that V2 = (ML)2 is the extra-dimensional

volume L2 in units of a UV scale M . In practice M is the extra-dimensional Planck scale,
related to the 4D Planck scale by

M2
p = M4L2 = M2V(0)

2 , (2.6)

where V(0)
2 denotes the volume’s present-day value, since V2 (and L) are low-energy 4D fields

that can vary in space and time. For two large extra dimensions M ∼ 10TeV and V(0)
2 ∼ 1028,

which we will see is ultimately the origin of the large vev for the field τ . The factor V(0)
2 /V2

in (2.5) ensures the metric gµν is the 4D Einstein-frame metric, and does so without changing
overall units (because V(0)

2 /V2 = 1 at present).
There are three ways that an axion can arise from a 2-form field in this kind of setup:

1. It can be the zero-mode of the purely extra-dimensional components Bmn(x, y) =
b(x)ωmn(y), where ωmn ∝ ε̂mn is proportional to the volume form for the two large
extra dimensions built from the metric ĝmn. We call this the T -type universal axion.

2. It can be the zero-mode of purely extra-dimensional component, Bab(x, y, z) =
Φ(x, y)ωab(z), within some smaller higher dimensions beyond the six written explicitly
in (2.5) (such as could happen if the 6D theory were the low-energy limit of a 10- or
11-dimensional string vacuum). In this case ωab is a harmonic form within these smaller
extra dimensions. Such an axion appears in the 6D theory directly as a 6D scalar whose
zero-mode Φ(x, y) = b(x) in the compactification to four dimensions is the axion of the
4D world, and whether such field arise in a given compactification to 6D is a model
dependent issue. We call these the Φ-type axions.

3. It can arise as the zero-mode of the purely four-dimensional part Bµν(x, y) = bµν(x),
which in four dimensions dualizes to a scalar with Hµνλ = ∂µbνλ + · · · ∝ εµνλρ∂ρa. We
call this ‘dual’ axion the ‘S-type’ universal axion to distinguish it from the previous
two cases.

The harmonic form appearing in items 1 and 2 usually satisfies a quantization condition for
which

∮
C
ω is a pure number when integrating over a 2-cycle C, and so ωab ∝ V−1

C where VC
is the dimensionless volume of C. For T -type axions this means ωmn = kε̂mn with k ∝ V−1

2 .
Two facts are central to fixing the size of axion-matter couplings. First, ordinary

matter must be trapped on a 4-dimensional brane in order for the large extra dimensions
to have escaped experimental observation [24, 25, 27–29]. Second, the kinetic energy of a
higher-dimensional 2-form potential often involves more than these four brane dimensions;
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for concreteness we focus on the 2-form field that lives in the gravity supermultiplet and so
which lives in the full extra-dimensional ‘bulk’:

Skin = −
MD−4

(D)
2 · 3!

∫
dDx

√
−g̃(D) e

−2sHMNPH
MNP , (2.7)

where M(D) is a UV scale (equal to M in 6D) g̃(D) denotes the D-dimensional determinant
of the higher-dimensional metric g̃MN within the extra-dimensional Einstein frame and
HMNP = ∂MBNP + (cyclic) is the Kalb-Ramond field strength. Here s is the 6D dilaton that
often also arises as part of the higher-dimensional gravity supermultiplet.

The relevance of these two facts is easiest to see for item (1) above, where b arises from
Bmn in the two large extra dimensions. To start with, dimensionally reducing the D = 6
version of (2.7) gives the b kinetic term, including the following dependence on s and V2:

M4
∫

d2y
√
−g̃(6) e

−2sg̃µν g̃mng̃pq∂µBmp∂νBnq ∝M2V(0)
2
√
−g e−2sV−2

2 gµν∂µb ∂νb . (2.8)

This is consistent with the axion kinetic term √−gM2
p (∂b)2/τ2 of (1.2) with τ = V2 e

s.

Axion-matter couplings. To couple b to matter in the 6D effective theory we require a
generally covariant and gauge invariant interaction that couples HMNP to matter localized on
a space-filling 4D brane, containing in particular the components Hµmn 3 ∂µBmn. A term
linear in H that contains ∂µb can be built in a covariant way using the 6D Hodge dual ?H,
pulled back to the brane and wedged with a matter current Jµ:

Sint =
∫

Σb
ht(s) ?H ∧ J , (2.9)

where ht(s) allows for a possible dependence on the dilaton. Notice J cannot here be a
Chern-Simons current as in (2.3) because Sint in this case is not gauge invariant.

Isolating the contribution involving ∂µb and absorbing dimensionless numerical factors
into the current Jµ leads to the following dependence on V2 and s:√

−g̃(4) ht(s) g̃µν ε̃mn(yb) ∂µBmn(x, yb)Jν(x) = V(0)
2
√
−g ht(s)V−2

2 gµν∂µb(x)Jν(x) , (2.10)

where yb is the extra-dimensional brane position and ε̃mn is the extra-dimensional volume
form built using the metric g̃mn. Combining kinetic and interaction terms gives — for the
special case ht(s) = e−2s — the following terms in the 4D Einstein-frame effective action

Seff =
∫

d4x
√
−g

M2
p

τ2

[
(∂b)2 + ∂µbJ

µ

M2

]
(2.11)

where τ := V2 e
φ as before.

Canonically normalizing by rescaling b = Mp b/τmin — with τmin = 〈τ〉 ∝ V(0)
2 — then

produces a lagrangian of the form (2.4) but with

F ∼ M2τmin
Mp

∼Mp , (2.12)

rather than fa. As is typical for bulk fields, each KK mode within Bmn couples with
gravitational strength. The error leading to the earlier conclusion F = fa lies in ignoring the
V2 dependence that the interaction also inherits from the higher-dimensional metric.
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For the Φ-type fields, the situation is more model dependent since they may or may not
be localized on the brane (depending on the brane dimensionality), couplings to Chern-Simons
currents (as in (2.3)) can be gauge invariant and the coupling to matter may be stronger
(because the volume VC of the relevant cycle can be much smaller). Contrary to the T type
axion (whose absence of a Chern-Simons coupling requires it to be an ALP), Φ-type axions
may be QCD-like.

The story for the S-field axion is interestingly different, with strong matter couplings
just as the naive argument suggests, but in this case for the scalar theory that is dual to the
one obtained by dimensional reduction. The volume-dependence of the dimensionally reduced
kinetic term is

Skin 3 −
M4

2 · 3!M2
p

∫
d4x
√
−g e−2s V2

2 hµνλh
µνλ , (2.13)

where hµνλ = ∂µbνλ + (cyclic). To dualize we impose (in 4D Einstein frame) the Bianchi
identity dh = Ω using a Lagrange-multiplier field a; supplementing (2.13) with

Sbi = 1
3!

∫
d4x
√
−g a εµνλρ

(
M2 ∂µhνλρ − Ωµνλρ

)
. (2.14)

Here Ω is a gauge-invariant closed 4-form — i.e. one that satisfies dΩ = 0 — built from gauge
fields and the metric — that typically lives in the bulk as does BMN . In practice we are
mostly interested in the case Ω = F ∧ F for F a gauge field strength, though for bulk fields
this is a dark gauge sector.

Lowest-dimension couplings to matter currents localized on a 4D brane have the form

Sint =
∫

Σb
hs(s) H ∧ J , (2.15)

where hs(s) again allows for a possible dependence on the dilaton. In this case gauge invariance
allows J to be a Chern-Simons current as in (2.3) but only if the dimensionless coupling
function hs(s) = hs0 is s-independent.

The functional integral of Skin +Sbi with respect to hµνλ and a is equivalent to integrating
Skin with respect to bµν because the integral over a imposes the Bianchi identity, and so allows
the integral over hµνλ to be traded for one over bµν . The dual result is obtained by instead
performing these integrals in the opposite order; first performing the gaussian integral over
hµνλ (see [23] for details). The result for the dual lagrangian then becomes

Sdual = −
∫

d4x
√
−g

[
M2
p

2V2
2
e2sDµaD

µa + 1
3! a ε

µνλρΩµνλρ

]
, (2.16)

where Dµa = ∂µa + hs(s) e−2sV2
2Jµ/M

2
p . When hs is a constant the kinetic term again has

the form (1.2): √−g (∂a)2/σ2, but this time with σ = V2 e
−s.

We note in passing that this kinetic term combines with the kinetic term for b found
in (2.11) and the kinetic terms for the fields τ = V2 e

s and σ = V2 e
−s (obtained from the

6D Einstein action and dilaton kinetic term) into the form (1.2); a form captured by the
low-energy 4D supergravity Kähler potential

K/M2
p = − ln(S + S)− ln(T + T ) = − ln(στ) = −2 lnV2 (2.17)

where S = 1
2(σ + ia) and T = 1

2(τ + ib). These kinetic terms reveal that both types of axions
have the form (1.2): with naive decay constants, fa = Mp/σ and fb = Mp/τ , and so both are
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eV in size when V2 ∼ 1028, consistent with how the 4D EFT breaks down at the order eV
Kaluza-Klein scale associated with large dimensions.

An important difference between (2.16) and our earlier examples is that interaction
terms like aF ∧ F or (2.15) do not involve the metric and so does not contain hidden factors
of V2. As a result the naive argument for the size of F is in this case correct: comparing the
kinetic and interaction terms reveals the physical coupling has the form of (2.4) with strength
F = fs = Mp/σ. This time the theory (2.16) does have order-unity couplings at E = fs. In
the UV completion these match to dimensionless couplings like hs0 appearing in interactions
like (2.15).

2.2 Large τ from asymmetric compactifications

The possibility these models UV complete at eV energies to supersymmetric large dimensions
was considered in [2], though on first inspection this seemed difficult to do, at least within
the context of Type IIB supergravity. In this section we sketch why we no longer regard the
perceived difficulties described in [2] to be a problem.16

The root of the problem described in [2] was this: phenomenology prefers a 4D Kähler
potential of the form K = −3 ln(τ + · · · ) where τ ∼ 1028. We would like to build such a τ
from the basic hierarchy of the (at most) two large dimensions that must arise up to TeV
energies if extra dimensions are already to become relevant at eV energies.17 At first sight
the numerology is promising because taking 1/L ∼ 1 eV and a fundamental extra-dimensional
UV scale Ms ∼ 100TeV implies the dimensionless length scales are MsL = 1014 and so
the dimensionless extra-dimensional 2D volume is V2 = (MsL)2 = 1028. Since dimensional
reduction in 6D implies M2

p = M2
s V2 the volume V2 cannot be much larger than this without

Ms becoming too small (or L becoming too large) to have been missed in experiments.
The perceived difficulty arose once the precise connection is made between V2 and τ . In

very many cases the low-energy Kähler potential found by dimensional reduction is given by
an expression like (2.17), with

K = −2 lnV , (2.18)

but if this is identified with K = −3 ln τ it implies τ = V2/3 (making τ ∼ 1018 at most — and
so too small — given V ∼ V2 . 1028).

We now argue why some compactifications seem likely to evade this problem. To do
so it is useful to consider the size of the moduli that are encountered when compactifying
higher-dimensional theories on tori. For instance toroidal compactifications of 6D supergravity
on a 2-torus give a Kähler potential of the form

K = − ln(stu) , (2.19)

(plus possibly other moduli) where s ∝ L1L2e
−s and t ∝ L1L2e

s can be as given above (where
Li are the lengths of the torus’ two fundamenal cycles), while u is the torus’ complex-structure
modulus and so is proportional to L1/L2. (2.19) agrees with (2.17) in the simplest case where
L1 = L2 = L and so u is order unity, but also suggests that we could get what we want if
there were other fields (like u) that were of the same size as s and t.

16Since our purpose here is only to identify mechanisms, we do not try to construct a fully modulus-stabilized
theory (as would be required if we were to push the upper UV limit up past the weak scale into the fullly 10D
string regime).

17Warping was also explored as a potential additional source of hierarchy in [2].
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To see where such fields might come from, for concreteness’ sake consider extending into
the far UV to include two more extra dimensions (as part of a fuller 10 dimensional theory18),
compactified on the product of two 2-tori,19 In many situations such compactifications generate
Kähler potentials for the geometrical moduli of the form

K = − ln(S + S)−
2∑
i=1

ln(Ti + T i)−
2∑
i=1

ln(Ui + U i) . (2.20)

The fields S, Ti and Ui have different expressions in terms of the underlying length scales
in different kinds of geometries, but we assume the ti = Ti + T i depend on the volume
moduli for each torus (as found above for t and the volume of the single torus in 6D) and
that the ui = Ui + U i are the complex-structure moduli of the two 2-tori. If we denote the
toroidal radii for the two tori by (L1, L2) and (L3, L4), then their volume moduli scale with
lengths as t1 ∝ L1L2 and t2 ∝ L3L4 while the complex-structure moduli are u1 ∝ L1/L2 and
u2 ∝ L3/L4.

We now ask how big K can be if only two of the dimensions have a large length L and
the rest have the much smaller length `. Consider first the simplest case where both sides
of one of the 2-tori is much bigger than both sides of the other 2-torus: L1 = L2 = L and
L3 = L4 = `. In this case t1 ∼ L2 and t2 ∼ `2 while the ui are both order unity. Assuming
s ∝ L2 as before the argument of the logarithm in K has size

s

( 2∏
i=1

ti

)( 2∏
i=1

ui

)
∝ L2(L2`2)(1) = L4`2 (Case I) , (2.21)

and so K = − ln(st1t2u1u2) ∼ −3 ln(L4/3). This is a specific instance of the generic situation
discussed above, where τ ∼ V2/3

2 ∼ L4/3.
But if we instead assume L1 = L3 = L and L2 = L4 = ` then we have t1 ∼ t2 ∼ L` and

u1 ∼ u2 ∼ L/`. In this case we instead have

s

( 2∏
i=1

ti

)( 2∏
i=1

ui

)
∝ L2(L`)2

(
L

`

)2
= L6 (Case II) , (2.22)

for which K = − ln(st1t2u1u2) ∼ −3 ln(L2) and so τ ∼ V2 ∼ L2 ∼ 1028 can be possible.
We can be explicit in toroidal orientifold models of type IIA and IIB string compactifica-

tions as discussed in chapter 12 of [69]. Denoting the radii of each of the three 2-tori by Riα
with i = 1, 2, 3 labelling each of the three 2-tori and α = x, y labelling the two coordinates of
each torus, we have for type IIA:

ti = RixR
i
y, s = e−sR1

xR
2
xR

3
x, ui = e−sRixR

j
yR

k
y , i 6= j 6= k 6= i (2.23)

and for type IIB:

ti = e−sRjxR
j
yR

k
xR

k
y , s = e−s, ui =

Riy
Rix

, i 6= j 6= k 6= i (2.24)

18See for instance the discussion on the expressions for the string dilaton, Kähler and complex structure
moduli in toroidal compactifications of the different string theories in [69].

19Tori should just be regarded as illustrative here, whose purpose is simply to show concretely how other
large moduli might arise given only two large dimensions. In practice extensions further into the UV are
likely to involve compactifications on other geometries, possibly with similar Kähler potentials, but with more
explicit modulus stabilization (see e.g. [70]).
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In each case if we fix Rix = R3
y = ` and R1

y = R2
y = L � ` then the argument of the

logarithm becomes s
(∏2

i=1 ti
) (∏2

i=1 ui
)
∝ L6 ∝ V3 as desired. Although it is encouraging

that multiple moduli can be in principle sufficiently large in this way, a full 10D provenance
also requires a demonstration that this can be achieved in a concrete construction that
stabilizes all moduli (which goes beyond the scope of this paper).

In order to have the no-scale structure on which Yoga-model success relies we would
require any unfixed moduli to appear in the Kähler potential as K = −3 lnF where F is
a homogeneous degree-one function under identical rescalings of all the moduli [1, 71]. It
is simplest if this occurs with F = T + T depending only on a single field (as was chosen
in [2]), but it can also happen when more than one field is involved,20 such as if F = (stu)1/3

corresponding to the case (2.19).
No-scale moduli also cannot appear in (and so be fixed by) the superpotential or the

D-term potential, leaving their energetics to be determined by the Kähler potential using RG
stabilization as was done for τ in [2]. Any other moduli are assumed to be stabilized in a
supersymmetric way, such as by allowing them to appear in the superpotential. For instance,
in the above example we might imagine that this is done so that t2 and u2 are stabilized
supersymmetrically, with 〈t2〉 = λt = (MsL)(Ms`) and 〈u2〉 = λu = L/`. Then by rescaling
the remaining unfixed fields by T := λtT1 and U := λuU1 the correct extra-dimensional shape
is obtained if RG stabilization is chosen to ensure 〈s〉 ∼ 〈t〉 ∼ 〈u〉 are all order V2 ∝ L2.
Alternatively one could imagine supersymmetrically fixing all moduli except one (T1, say),
and redefining the remaining modulus by T 3 ∝ T1 with numerical coefficient chosen to contain
the vevs of the fixed moduli: 〈s〉, 〈t2〉, 〈ui〉.

If more than one modulus survives into the low-energy theory each would contain
potentially dangerous matter couplings: in the above example these also would come with a
Kähler potential of the form K = − ln[(S + S)(T + T )(U + U) − k + · · · ] with s = S + S,
t = T + T and u = U + U to be RG-stabilized at size L2 (we have verified that this structure
preserves the low-energy Yoga-type suppressions found in [2]). But because all Standard
Model particles have masses proportional to e−K/6, in such a framework all three of the
fields s, t and u would couple to Standard Model particles as Brans-Dicke scalars with large
coupling constants. They also turn out to be very light, raising the threat that each could be
ruled out by precision tests of GR within the solar system.

Remarkably, however, each dilaton also comes with its own axionic partner and because
the leading target-space metric is derived from K = − ln(stu) it is a product metric built
from three independent copies of the SL(2, R) invariant metric that leads to the kinetic
terms given in (1.2). As a result the screening mechanism of [3] can in principle be applied
to each multiplet separately, providing they can have the required axion-matter couplings,
potentially allowing all three to evade detection in solar-system tests of GR. Although these
more complicated multi-modulus examples might remain viable, in what follows we focus
purely on the case where only a single axiodilaton pair survives at low energies.

3 Axio-dilaton phenomenology above eV energies

The above picture provides the framework required for investigating physical questions
involving energies above the eV scale. These include in particular constraints on axiodilaton

20If several no-scale fields are involved homeopathic suppression of dilaton couplings would be required for
all of them.
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Figure 1. Constraints on axion-electron and axion-photon couplings from various astrophysical
observations and lab searches [75, 76]. Reproduced with permission from [75]. CC BY-NC 4.0.

properties that rely on the modelling of the interiors of stars and macroscopic sources, since
these often involve environments hotter than eV scales.

3.1 Relevance to axion constraints

In a nutshell, we have seen that the two model-independent S and T axions can couple
to ordinary matter, with S doing so with strength 1/fa and T doing so with gravitational
strength 1/Mp. Extra-dimensional gauge invariance also forbids a direct QCD-like coupling
to the T -type axion.

Because axion-matter couplings as strong as 1/fa would have been detected, couplings
of the form (2.15) must be forbidden in the UV completion; any S-type axion found at low
energies within a viable Yoga model must be an ALP and not directly couple to brane-localized
Standard Model fields. Low-energy T -type axions are also predicted to be ALPs and are
automatically photo-phobic, but can couple to other ordinary fields with strength 1/Mp.

A compilation of constraints on the electron and photon couplings for such ALPs is
shown in figure 1, from which we also see that ALPs with gravitational strength F−1 ∼
M−1
p ∼ 10−18 GeV couplings are largely unconstrained. Figure 2 provides several fairly

strong constraints for gravitationally coupled axions coming from gravitational-wave and
pulsar observations. The constraints coming from black hole super-radiance [114–120] provide
constraints that are largely independent of coupling strength F−1 or f−1

a , but do so only for
a specific mass window. The constraints labelled ‘pulsars’ and ‘GW170817’ apply for a wide
range of masses right down to F−1 ∼ 1/Mp [121, 122], but these rely more specifically on the
existence of axion couplings to QCD and so would not directly apply for S-type or T -type
ALPs. These must be revisited however should the light S- or T -type axions mix appreciably
with another type of axion that does couple to QCD.

3.2 Constraints with large dimensions

Energy-loss bounds like the ones appearing in the figures build on the observation that
weakly coupled particles provide an efficient way for astrophysical bodies to radiate away
their energy. The bounds come from requiring this process not be so efficient that it would
prevent such objects surviving long enough to have been detected with the properties they
are observed have.
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Figure 2. Constraints on axion decay constant vs mass, showing in particular the constraints on
very light Planck-coupled axions derived in [114–122]. (Figure taken from [75, 76]. Reproduced with
permission from [75]. CC BY-NC 4.0.).

The UV completion is essential to understanding these bounds because the energies
involved (such as for red giants or supernovae) are typically much greater than the eV-sized KK
scales associated with its onset. For a mode coupling strength 1/F with F ∼M2L ∼Mp the
emission rate for any specific KK mode of energyM � E � 1/L is ΓE ∼ (E3/F2) ∼ (E3/M2

p )
is at present not observable.

Energy-loss bounds are nevertheless important for extra dimensional models because of
the enormous available phase space into which energy can be lost. These constrain the extra-
dimensional UV scale M because the density of states for momenta much higher than the KK
scale is dn/d2k ∼ L2 and so the total emission rate up to a maximum energy M � Q� 1/L
is of order

Γtot ∼
∫
E<Q

d2k

(dΓ
dn

) dn
d2k
∼
∫
E<Q

d2k L2
(
E3

F 2

)
∼ Q5

M4 . (3.1)

Careful evaluation of the emission rate into extra dimensions in this way imposes significant
constraints on the scale M in the extra dimensions for large-dimension models (for which
Q� 1/L even at MeV scales) [27, 49–57], leading for supersymmetric extra dimensions to
constraints of order21 M & 20TeV [58–62]. Yoga models satisfy these constraints because for
them the extra-dimensional scale is (by design) higher than this.

Early-universe cosmology. A well-known complication of large-dimensional models is
that the gravitational response of cosmology to ordinary matter should be cast within an
extra-dimensional framework right up until relatively recently. For extra dimensions at eV
scales a 4D description along the lines given in the Yoga-model cosmologies described in [2]
should suffice for temperatures at and below an eV, ensuring that extra-dimensional UV
completions play no role starting around recombination.

21Indeed it is because these constraints were this high that energy-loss signals of extra dimensions were
unlikely in the E < 14TeV collisions at the LHC.
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In principle the physics of earlier epochs could require fully evolving within the 6D
gravitational response of the UV theory, but this also might not be strictly necessary depending
on the universe’s earlier history. Unfortunately very little is known about cosmological solutions
to the full 6D field equations (see however [77] for fully 6D explorations of inflationary
dynamics). This also complicates fully analysing the origins of primordial fluctuations, and
so in particular whether late-time isocurvature perturbations [78–89] are necessarily present
(whose observed absence [90] constrains theories with light scalars present at late times).

Broad circumstances under which cosmology might remain effectively 4-dimensional are
considered in [27], who argue that complicating extra-dimensional effects (like energy loss into
the extra dimensions) can conceivably be neglected up to temperatures above those relevant to
Big Bang Nucleosynthesis (BBN). Care must also be taken to ensure that extra-dimensional
KK modes cannot decay into SM degrees of freedom (such as photons) at late times, since
doing this excessively can ruin the success of standard Hot Big Bang cosmology (for a review
see [91]). We here also assume such arguments apply, justifying use of a 4D framework.

3.3 Relationship to SLED models

We see that Yoga models are very similar to earlier SLED models in their implications for
UV (above eV scale) phenomenology. They resemble one another strongly because the details
of the geometry of the two large extra dimensions are largely irrelevant for applications to
energies much larger than an eV. For modes with energies Q� 1/L wavelengths λ ∼ 1/Q
are so short that an expansion in powers of λ/L converges extremely quickly, and predictions
can become indistinguishable from the L→∞ limit.

It is the low-energy predictions that do depend more sensitively on extra-dimensional
geometry, such as the mass spectrum of the lightest moduli and the energetics that generates
their scalar potential (and stabilize their expectation values). It is there that we should seek
differences between Yoga and SLED models, and indeed we argue that it is the absence of the
Yoga mechanism’s no-scale structure and relaxation mechanisms that ultimately precluded
SLED models from giving lower vacuum energies than they did.

To see how this works it is useful to imagine a framework within which both Yoga
and SLED models are particular limits. For these purposes it is useful to work within the
concrete example of gauged chiral 6D supergravity [73, 74], within which SLED models explore
vacua described by deformations of the explicit solutions of [72] for which the presence of a
background Maxwell field, 〈Fmn〉, stabilizes the extra dimensions into deformed 2-spheres
(‘rugby ball’ geometries). The effective four-dimensional supergravity described by these
solutions is as given in [92], and involves complex S and T moduli, much as described above
in section 2.1 where L is the sphere’s radius modulus and s is the 6D dilaton.

It is useful to think of the Salam-Sezgin solution to be a deformation of the toroidal
compactifications that are more appropriate in the limit 〈Fmn〉 = 0, in which we would expect
there to be an additional complex modulus, U , associated with the toroidal complex structure.
From the 4D point of view we should imagine that the energy associated with the nonzero
Maxwell flux introduces a dependence of the superpotential on U in such a way that 〈U〉
can be fixed at a supersymmetric mimimum, found by solving DUW = 0. The Maxwell
flux also introduces a Fayet-Iliopoulos term that stabilizes T at a supersymmetric point [92],
leaving only S free to parameterize a flat direction along which W = 0 and so supersymmetry
remains unbroken. The low-energy 4D supergravity describing this last flat direction is not a
no-scale model.
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For the Yoga mechanism we might instead choose to leave all three moduli unfixed by W
and by D-term potentials, so that they can provide a nonsupersymmetric no-scale limit whose
flat direction is lifted (and moduli stabilized at much larger values) by the RG mechanism
described in [2]. The simplest 2-torus — with two similarly large sides L1 ∼ L2 ∼ L— predicts
S, T ∝ L2 and U ∼ O(1) and so gives τ (identified by equating (2.18) to −3 ln τ) is too small,
but this can be alleviated using constructions along the lines described in section 2.2.

This perspective shows why the Salam-Sezgin based SLED story never in practice led to
a sufficiently small vacuum energy [93–98] and why the Yoga model does better. But it also
shows why the successes of the SLED story in accounting for the small size of UV quantum
corrections [32–41] should also apply to Yoga models: vacuum energies on the brane act to
curve the extra dimensions and not the dimension seen in cosmology, and supersymmetry
suppresses UV contributions from the bulk. Yet the localization of SM particles on the brane
also explains why many 4D inferences about their properties (e.g. τ -dependence of masses)
remains reliable despite the presence of extra dimensions. In this sense Yoga models capture
the best of both the 4D and 6D perspectives.

4 Long-range forces: shift-symmetric vacuum

We now change gear and use the above insights into axiodilaton-matter couplings to examine
more closely the implications of the above types of axio-dilaton/matter couplings for very
low-energy phenomenology. In particular we focus on the parameter regime for which
Vmin . 10−80M4

p , for which the dilaton Compton wavelength exceeds 10 km and so bounds
on gravitational strength Brans-Dicke forces become a problem, clarifying the role of axion
shift symmetry and the low-energy role of the relaxon field χ.

Our interest in particular is to use the knowledge of matter-axion couplings to model
the interior solutions for gravitating sources, and see whether the bound-evading exterior
solutions of [3] are actually generated. The discussion proceeds differently depending on
whether or not the axion shift symmetry is broken by the vacuum so we consider these two
options separately, restricting in this section to the case where the vacuum preserves the
SL(2, R) invariance of the leading order axiodilaton field equations.

4.1 New exterior solutions

We start by constructing a new broad class of solutions to the axiodilaton field equations,
extending the spherically symmetric solutions found in [3] to include a broad class of solutions
with less symmetry. To this end we explore the semiclassical implications of the action

L = −
√
−g M2

p

[R
2 + 3

4

(
∂µτ ∂µτ + ∂µa ∂µa

τ2

)]
+ Lm , (4.1)

where Lm = Lm(g̃µν , a, ψ) is the matter lagrangian density, in which ψ is a generic matter
field and g̃µν = A2(τ) gµν with A = τ−1/2. The corresponding axiodilaton field equations are

�τ − 1
τ

(
∂µτ ∂

µτ − ∂µa ∂µa
)
− τ T

3M2
p

= 0 , �a− 2
τ
∂µτ ∂

µa + τ2A
3M2

p

= 0 , (4.2)

and
Rµν + 3

2τ2

(
∂µτ ∂ντ + ∂µa ∂νa

)
+ 1
M2
p

(
Tµν −

T

2 gµν

)
= 0 , (4.3)
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where we write T = gµνT
µν with

Tµν := 2√
−g

(
δSm
δgµν

)
ψ,a

and A := 2√
−g

(
δSm
δa

)
ψ,g̃µν

. (4.4)

As is easy to verify directly, the field equations are equivalent to divergence relations

DµJ
µ
(a) = − A3M2

p

, DµJ
µ
(s) = (T − aA)

3M2
p

and DµJ
µ
(n) = (a2 − τ2)A− 2aT

3M2
p

, (4.5)

for the following three currents

Jµ(a) = ∂µa

τ2 , Jµ(s) = ∂µτ

τ
+ a ∂µa

τ2 and Jµ(n) = (τ2 − a2)
τ2 ∂µa− 2a

τ
∂µτ . (4.6)

In particular these are all conserved in regions where Tµν = A = 0, reflecting the classical
SL(2, R) invariance enjoyed by the axio-dilaton part of the action (4.1).

Previous sections tell us that the leading microscopic axion/matter couplings have the
form

Lm 3 −
√
−g ∂µaJ µ (4.7)

with currents J µ as given in (2.2) and (2.3). This implies A = 2DµJ µ and so the first of (4.5)
implies the combination Jµ := Jµ(a) + 2

3(J µ/M2
p ) satisfies

DµJ
µ = Dµ

(
Jµ(a) + 2J µ

3M2
p

)
= 0 (4.8)

even in the presence of matter. This is Noether’s theorem at work because (4.7) preserves the
invariance under constant axion shifts: a→ a + c.

For the Chern-Simons interactions given in (2.3) the current J µ in (4.7) is not gauge
invariant, although DµJ µ is (and is nonzero). In this case gauge invariance is more transparent
if we write Lam in the form

Lam =
√
−g aDµJ µ . (4.9)

Broken shift symmetry then obstructs finding a gauge-invariant current Jµ satisfying (4.8).

General class of exterior solutions. We next derive a broad class of exact solutions
to the classical scalar equations exterior to a source that extend the weak-field spherically
symmetric ones found in [3] and the strong-field spherically symmetric solutions of [99] (see
also [100] for an independent discussion).

We first notice that the currents (4.6) imply that for any constant α

Jµ(s) − αJ
µ
(a) = ∂µ[τ2 + (a− α)2]

2τ2 , (4.10)

reflecting the important role played in [3] by semicircles τ2 + (a − α)2 = β2 that are the
geodesics of the target space metric ds2 = (dτ2 + da2)/τ2. This suggests the ansatz

τ = β

coshX and a = α+ β tanhX , (4.11)
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with α and β constants and X = X(x) a general function of position and time. This ansatz
implies the axion current becomes

Jµ(a) = ∂µa

τ2 = ∂µX

β
and so ∂µ

(√
−gJµ(a)

)
=
√
−g �X
β

, (4.12)

which shows �X = 0 suffices to guarantee conservation of Jµ(a) (as (4.5) shows is true whenever
A = 0). But (4.10) and (4.11) together imply Jµ(s) = αJµ(a) so Jµ(s) is also conserved. Similarly

Jµ(n) = ∂µX

β

[
β2

cosh2X
− (α+ β tanhX)2 + 2β(α+ β tanhX) tanhX

]
=
(
β2 − α2

β

)
∂µX ,

(4.13)
and so �X = 0 also suffices to ensure conservation of Jµ(n) (as must hold whenever T = A = 0).

It follows that the ansatz (4.11) promotes any solution of �X = 0 to a solution of the
axio-dilaton equations (4.2) exterior to sources (where A = Tµν = 0). All that is required to
obtain a full solution then is to solve the Einstein equations (4.3). Using

∂τ = −β sinhX
cosh2X

∂X and ∂a = − β

cosh2X
∂X (4.14)

allows the derivation of the identity τ−2(∂µτ∂ντ + ∂µa ∂νa) = ∂µX ∂νX, and so (4.3) becomes

Rµν + 3
2 ∂µX ∂νX + 1

M2
p

[
Tµν −

1
2 g

λρTλρ gµν

]
= 0 . (4.15)

In the absence of sources we can therefore take any solution of the coupled Einstein/Klein-
Gordon equations and promote it into a solution of the full Einstein-axiodilaton equations.

Multipole solutions. Specializing to static solutions on a flat spacetime metric, in spherical
coordinates (r, θ, ξ) the general solution to ∇2X = 0 is

X(r, θ, ξ) =
∞∑
`=0

∑̀
m=−`

(
a`mr

` + b`m
r`+1

)
Y`m(θ, ξ) (4.16)

for spherical harmonics Y`m(θ, ξ) and arbitrary constants a`m and b`m. Requiring τ to be
finite and nonzero at spatial infinity then implies a`m = 0 for all ` 6= 0. Further assuming
axial symmetry (independence of ξ) then sets all coefficients to zero when m 6= 0, leading to a
standard multipole form

X(r, θ) = a0 +
∞∑
`=0

b`
r`+1 P`(cos θ) . (4.17)

The integration constants appearing in this solution can be read off from the radial
components of the currents just outside the source, as usual. For instance the radial flux of
the current Jµ(a) at r = R is given — cf. (4.12) — by

R2Jr(a)(R, θ) = R2
(
∂rX

β

)
r=R

= −
∞∑
`=0

(`+ 1) b`
βR`

P`(cos θ) , (4.18)

from which all of the b`’s can be read off by equating the θ-dependence of both sides.
Spherical symmetry corresponds to ` = 0, for which the above agrees with the spherically

symmetric solutions given in [3] if we define b0 = βγ and a0 = δ so that X = δ + (βγ/r) and
the leading far-field behaviour is given by

τ = β

coshX = τ∞

[
1− βγ

r
tanh δ + · · ·

]
and a = a∞ −

β2γ

r cosh2 δ
+ · · · . (4.19)
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Test-particle motion. The above solutions determine the motion of test particles, which for
weak axion/matter couplings move along geodesics of the Jordan-frame metric g̃µν = A2gµν =
gµν
√
τ∞/τ . Constraints coming from measurements of test-particle motion are therefore

conveniently described by parameterizing this metric in terms of post-Newtonian parameters.
For the above spherically symmetric solutions the relevant PPN parameters turn out to

be [3]
γPPN = 1− 2λeff tanh δ

1 + 2λeff tanh δ , (4.20)

and22

βPPN = 1 + 4λeff tanh δ + 4λ2
eff

(1 + 2λeff tanh δ)2 = 1 + 4λ2
eff

(cosh δ + 2λeff sinh δ)2 , (4.21)

where λeff is defined by
βγ =: −4λeffGM (4.22)

with M =
∫

d3x ρ (for Einstein-frame energy density ρ ' −T ) being the leading Newtonian
contribution to the gravitational (and inertial) mass in Einstein frame. Agreement with
solar-system tests requires both |βPPN − 1| . 10−5 and |γPPN − 1| . 10−4 and these combined
tell us that λeff . 10−5 largely independent of the value of δ.

Brans-Dicke theory [12–15] can be defined as a massless and canonically normalized
scalar field sBD that couples minimally to gravity in Einstein frame but couples to matter
through the metric g̃µν = A2gµν with A = exp(gφBD/Mp). The parameter g defines the
Brans-Dicke coupling.23 Using A = τ−1/2 and (4.1) reveals ln τ to be a Brans-Dicke scalar
(at least in the absence of the axion, to leading order in 1/τ) with coupling g2 = 1

6 .
Eqs. (4.20) and (4.21) go over to standard Brans-Dicke results in the limit δ →∞ and

λeff → g2, but the observation made in [3] is that there is no a priori reason λeff and δ
obtained from the solution exterior to a source need agree with g2 = 1

6 and δ → ∞ when
both axion and dilaton are present. They in general differ because λeff is given in terms of
the integration constants β and γ by (4.22) and these (and δ) must be obtained by matching
to an interior solution at r = R, just outside the source’s surface. For instance, integrating
the DµJ

µ
(a) and DµJ

µ
(s) equations of (4.5) through the interior of the source leads to

γ = R2
(
∂ra

τ2

)
r=R

= − 1
3M2

p

∫ R

0
dr r2A(r) , (4.23)

and
γα = R2

(
∂rτ

τ
+ a ∂ra

τ2

)
r=R

= − 1
3M2

p

∫ R

0
dr r2

[
ρ(r) + a(r)A(r)

]
, (4.24)

while β2 = τ2(R) + [a(R)− α]2. An equivalent (and often more useful) way to rewrite (4.24)
combines it with (4.23) to give

γ
(
a(R)− α

)
= −R2

(
∂rτ

τ

)
r=R

= 1
3M2

p

∫ R

0
dr r2

[
ρ(r) +

(
a(r)− a(R)

)
A(r)

]
. (4.25)

22In principle βP P N is sensitive to 1/r2 contributions to g̃tt, which in PPN formulations is written g̃tt =
−1 + 2U − 2βP P NU

2 + · · · where U is the Newtonian potential. We quote here the prediction of [3] for
monopole sources because in practice a dipole contribution to the dilaton coming from the ` = 1 term of (4.17)
is indistinguishable from a very small but nonzero dipole moment for the gravitating source in U .

23In our conventions g is related to the conventional Brans-Dicke parameter ω by 2g2 = (3 + 2ω)−1.
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Of course just because a theory has a potential escape route from dangerous observations
doesn’t mean that it necessarily uses it. Saying more about how Yoga models fare once
compared to e.g. solar system tests requires knowing more about A, and so partially relies
on the UV completion above eV scales provided here since these are required to formulate
matter-axion interactions within astrophysical environments. We pursue interior solutions
further in section 4.3 but first pause to describe constraints/opportunities that require only
the solutions given above and in [2], to do with observable effects associated with τ providing
position-dependent masses to ordinary particles.

4.2 Mass variation

A signature prediction of these models is that all non-neutrino SM particle masses are
proportional to τ−1/2, while neutrino masses plausibly vary like τ−1. Any spatial or temporal
variation of τ implies a similar variation of these masses relative to the Planck scale (which
in Einstein frame is fixed). Because all masses scale in the same way all non-neutrino mass
ratios remain independent of spacetime position.

We here estimate the magnitude of these mass variations, within the solar system and in
cosmology. For bodies within the solar system we use the above explicit external solutions in
the weak-field limit, since these anchor the dilaton profile for all bodies to a common reference
value τ∞ at spatial infinity.

Variation between the surfaces of different celestial objects. Consider first the
variation between particle masses on the surface of different celestial objects, such as by
comparing spectral lines on the surface of the Sun and on the surface of the Earth. Using
βγ = −4λeffGM the external dilaton solution given in (4.19) becomes

1
τ(r) = 1

β
cosh

[4λeffGM

r
− δ

]
' 1
τ∞

[
1− 4λeffGM

r
tanh δ + · · ·

]
, (4.26)

and so the change in a particle’s mass between the surfaces of the sun and the earth (say)
would be

m(R�)−m(R⊕)
m(R⊕) =

√
τ(R⊕)
τ(R�) − 1 ' 2λeff

[(
GM

R

)
⊕
−
(
GM

R

)
�

]
tanh δ . (4.27)

Given that (GM/R)⊕ ∼ 10−10 and (GM/R)� ∼ 10−6 and solar system tests require λeff .
10−5, we see that masses on the surface of the Sun are smaller than those on the Earth at
most by about 1 part in 1011. It seems unlikely that spectral lines on the solar surface will
soon be measured with sufficient accuracy to test this.

Variation with altitude on Earth. Mass variation with position near the Earth’s surface
is more likely to be testable (given the current precision of atomic clocks being 1 part in 1016).
An estimate of the mass difference due to a change of height h above the Earth’s surface is

m(R+ h)−m(R)
m(R) =

√
τ(R)

τ(R+ h) − 1 ' 2λeffh

R

(
GM

R

)
tanh δ . (4.28)

This is at most order 10−18 for an altitude h/R⊕ ∼ 10−3 above sea level on Earth (the altitude
of Colorado, say) given that (GM/R)⊕ ∼ 10−10. Although beyond the reach of current atomic
clocks, it might become measurable in the not too distant future if λeff tanh δ is close to its
upper bound.
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Variation inside gravitating bodies. An estimate of the variation between masses at
the center and surface of a gravitating body cannot be done using only exterior solutions,
and requires solving the field equations in the presence of nonzero energy and axion-source
density. A conservative estimate for the size of these mass variations interior to the Earth is
obtained by assuming that it is unsuppressed by factors of λeff and is similar to the naive
Brans-Dicke result:

m(R)−m0
m0

=
√

τ0
τ(R) − 1 = O

(
GM

R

)
(4.29)

which is order 10−10 (or 10−6) between the Earth’s (or Sun’s) centre and surface, for example.
Although it seems unlikely to be able to determine ordinary particle masses accurately

enough at the centre of the Earth (or other bodies) to test (4.29), the fact that neutrino
masses can scale differently with τ than masses of ordinary matter means that this variation
might conceivably alter the details of matter-dependent neutrino oscillations within the Sun or
Earth. This might be hoped to be relevant for resonant oscillations, since resonance requires
small neutrino mass differences, ∆m2

ν , to coincide with equally small matter-induced energies,
GFneEν . Unfortunately although this could change the depth at which a resonance occurs it
is unlikely to remove a resonance entirely, making it difficult to observe.

4.3 Interior solutions and matching

The simplest case assumes the vacuum preserves both the SL(2, R) and shift symmetries,
leaving open whether the couplings to matter also do so. In this case the equations of motion
governing the fields outside the source are those described above — cf. eqs. (4.2) and (4.3)
and the open question is how axiodilaton-matter couplings within a source’s interior source
these solutions.

Brans-Dicke limit. We start by examining more carefully the Brans-Dicke limit A → 0 in
which the source does not couple at all to the axion. Denoting radial derivatives by primes,
the A → 0 limit of (4.23) implies

γ = R2
(
a′

τ2

)
r=R

= − 1
3M2

p

∫ R

0
dr r2A(r)→ 0 , (4.30)

while (4.25) instead says

γ
(
a(R)− α

)
= −R2

(
τ ′

τ

)
r=R
→ 1

3M2
p

∫ R

0
dr r2 ρ(r) = 2GM

3 , (4.31)

with the last equality defining M . Because the right-hand side is fixed this implies a(R)− α
must diverge as γ →∞.

But λeff is determined from (4.22) by the product βγ where β2 = τ2(R) + [a(R)− α]2,
and so

λeff = − βγ

4GM = 1
4GM

[
γ2τ2(R) + γ2[a(R)− α]2

]1/2
→ 1

6 (4.32)

as expected, after using (4.31) and assuming γ τ(R) → 0. The question is whether the
A-dependence of (4.23) and (4.25) can reduce this result.
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Unbroken shift symmetry inside the source. Now comes a key observation: the
constant γ vanishes for spherically symmetric configurations if the axion/matter couplings
inside the source preserve the axion’s shift symmetry. To see why, recall from section 4.1 that
A = 2DµJ µ when linear axion-matter couplings are shift-symmetric, which for spherically
symmetric configurations on flat space implies r2A = (r2J )′ for J = 2J r. The conservation
law (4.8) in this case then states that the radial flux of the current Jµ is r-independent:

(
r2Jr

)′
=
[
r2
(
a′

τ2 + J
3M2

p

)]′
= 0 (4.33)

both inside and outside the source. But this means the radial flux must vanish because
boundedness of the current implies r2Jr → 0 as r → 0 deep within the interior. But
γ = r2Jr = r2a′/τ2 for r > R (outside the source) so it follows that γ must also strictly vanish.

Of course this does not mean that there is no axion field external to a source that couples
to the axion in a shift-symmetric way. What it means is that shift-symmetric couplings
generate higher multipole moments than the monopole, and so are not spherically symmetric.
Although this means that the exterior solution obtained by matching from the interior has
nonzero constants like b` in e.g. (4.17), the key ‘monopole’ constant γ vanishes. Because
of this the exterior scalar fields fall off too quickly in powers of 1/r to affect the prediction
for the PPN parameters, and consequently cannot help suppress predictions relative to the
Brans-Dicke result.

This puts a premium on axion-matter couplings that break the shift symmetry, something
that only happen for Φ-type axions, at least withing the candidate interactions in the UV
completions24 described in section 2. In principle such axions can also mix with the lower-mass
counterparts, so in what follows we pursue the possibility that the axiodilaton could have
shift symmetry breaking couplings to matter in order to see what this might imply for dilaton
couplings. We first consider the case where matter couplings within a gravitating source break
shift symmetry without the vacuum outside the source also doing so — something that would
not be appropriate limit if shift symmetry is broken by the QCD anomaly, but which can
arise once the axion potential is subject to the relaxon dynamics in Yoga models (whose full
discussion we are exploring but whose discussion we defer to future work).

Broken shift symmetry within the source. We next examine the case where the axion
shift symmetry is broken by the matter-axion couplings but is not broken in the vacuum.

For concreteness we assume the axion source density to be proportional to the energy
density

A = ε ρ (4.34)

for a coefficient ε that is itself in general axion-dependent; often a periodic function of b
should a discrete subgroup of shifts remain unbroken. If the axion is a pseudoscalar then
CP conservation would predict ε(−a) = −ε(a) and so in particular ε = 0 when a = 0 for
any macroscopic object [101]. This implies any axionic charge is necessarily suppressed by
CP-violating couplings, and so ε ∼ 10−17 − 10−19 if it is the Standard Model that provides
the CP violation [102, 103]. Although ε can be larger than this if new physics provides the
CP violation the experimental absence of a neutron electric dipole moment make it likely that
ε . 10−10 [104].

24Φ type axions can acquire QCD-like couplings through for example
∫
B ∧ F ∧ F on-brane interactions,

such as can arise in anomaly cancellation in higher dimensions.
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The generic problem in this framework is to find ε such that |λeff | is much smaller than
its Brans-Dicke value of 1

6 . What makes this difficult is (4.32), which implies

∣∣∣λeff
∣∣∣ ≥ |γ[a(R)− α]|

4GM , (4.35)

together with (4.25), which with (4.34) implies

γ
(
a(R)− α

)
= 8πG

3

∫ R

0
dr r2ρ(r)

[
1 +

(
a(r)− a(R)

)
ε(r)

]
. (4.36)

Small values for λeff require a significant cancellation within the square bracket of (4.36),
which is difficult for several reasons:

• First, (4.36) shows that |λeff | ≥ 1
6 whenever [a(r)− a(R)]ε(r) is positive. When this is

true the presence of the axion makes the source-dilaton coupling relevant to tests of
gravity larger rather than smaller.

• Second, it can be shown that [a(r)− a(R)]ε(r) ≥ 0 whenever ε(r) has a definite sign
(positive or negative) because (4.23) and the boundary condition a′(0) = 0 imply
a(r)− a(R) then has the same sign as ε(r). This observation is borne out by the explicit
interior solutions that are found analytically in appendix A, which are derived under the
assumption that the axio-dilaton varies only very slowly over the interior of the source.

Suppression of the effective dilaton coupling therefore requires ε to change sign within the
source and requires the axion to vary quickly within the interior. We have searched this part of
parameter space by evaluating the interior solutions numerically, seeking a functional form for
ε that allows |λeff | to be small, with particular interest in configurations where [a(r)−a(R)]ε(r)
can negative. Figure 3 shows a representative example of one such a numerical solution,
chosen so that ε changes sign multiple times near the source’s surface.

We have so far neither found an example with |λeff | < 1
6 and — although the numerical

evidence suggests it — have not yet been able to prove that this is impossible.

5 Conclusions

In this article we study the phenomenological aspects of an axion-dilaton system that appears
generically in string and supergravity theories as real and imaginary parts of scalar components
of gravitationally coupled chiral superfields or moduli. Recent studies suggest the potential
importance of these fields to be active for late-time cosmology and address important questions,
such as the relation between the scales of dark energy, neutrino masses and electroweak
symmetry breaking, if they happen to be light enough [2]. In particular the presence of the
light axion partner of the dilaton was suggested to provide a new mechanism to potentially
screen dilaton couplings to standard model matter — axion homeopathy [3] –that could help
to evade the observational problems of Brans-Dicke scalars.

We examine both IR and UV aspects of these theories in turn.

UV implications. In the UV side we address the following issues:

• Axion UV coupling problem. The large value of the dilaton field τ ' 1028 that provides
the observed hierarchies of scale also apparently gives rise to a very low axion decay
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Axio-dilaton properties as a function of r/R, showing the two input functions (a) ρ(r) and
(b)A(r) = ερ together with the calculated outputs (c) λeff(r), (d) a(r), (e) log τ(r), (f) [a(r)−a(R)]A(r),
(g) α(r), (h) β(r) and (i) γ(r). Here γ(r) and α(r) are found by evaluating (4.23) and (4.24) at an
arbitrary radius (rather than r = R) while β2(r) := τ2(r)+[a(r)−α(r)]2 and λeff(r) = −β(r)γ(r)/4GM
with M = 4π

∫ R

0 r2ρ(r) dr. These must (and do) approach the constants α, β, γ and λeff exterior to
the source. For this example λeff ' −0.168, although other choices give positive λeff .

constant: f ∼ eV. This suggests strongly coupled axion dynamics at low enough
energies to be dangerous. We explore the breakdown of EFT methods at eV scales by
embedding into a concrete UV completion at these scales in terms of a higher dimensional
supersymmetric theory with two very large extra dimensions. The supersymmetry of the
gravity sector in this case arises because the extra-dimensional bulk is supersymmetric,
and this is consistent with the Standard Model sector not being supersymmetric up
to TeV scales if it is situated on a supersymmetry breaking brane (as is common in
standard brane-world scenarios). Axions arise in this framework as KK modes for bulk
antisymmetric tensor fields, BMN , and we verify that dimensional reduction reproduces
the SL(2, R)-invariant kinetic terms whose presence predicts small f (and so the need
for UV completion).

• Axion unitarization. The UV completion allows us to identify the real coupling strength
of each axionic mode, to compare with the naive EFT expectation. We find in all
cases that individual axion states couple only with 4D Planck strength and so are not
strongly coupled at any energies below TeV scales. We identify several different ways
this happens, focussing on two in particular: ‘S-type’ axions are dual to the universal
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4-dimensional antisymmetric tensor Bµν and ‘T -type’ axions come from components
Bmn in the two large directions of an asymmetric compactification. We find that the
naive EFT coupling estimate for T -type axion-matter interaction gives F ∼Mp rather
than F ∼ f once carefully done. The naive estimate for couplings of the S-type axion
in this case is correct — F ∼ f — but the UV theory instead produces its dual bµν
which is only weakly coupled (again with Planck strength).

• UV observational bounds. Having a description at up to TeV energies allows a discussion
of axion production and energy-loss bounds, and we find that these generally coincide
with standard energy-loss constraints for higher-dimensional models. They need not
pose a problem provided that the 6D gravity scale is above several tens of TeV. This
automatically also ensures that collider signals are too small to have yet been seen.

• Microscopic origin of scales. In the UV theory the large size of the dilaton field τ arises
from the large size of the extra-dimensional volume in units of the 6D gravitational scale.
Ref. [2] argues that the naive correspondence between them τ ' V2/3 cannot be valid
because it would imply unrealistically small string and Kaluza-Klein scales. Ref. [2]
proposed addressing this issue using stringy tools such as asymmetric compactifications,
warped factors and superpotential tuning. We here provide a different mechanism in
which additional factors of volume are contributed by 6D-dilaton and complex structure
moduli, motivated by string-inspired examples. We leave for the future extending the
theory about TeV scales through a proper string embedding including stabilization of
all other moduli.

• Yoga vs SLED Scenarios. The UV completion we suggest is very similar to the
scenario of supersymmetric large extra dimensions scenario (SLED) since in both cases
Standard Model physics is localized on nonsupersymmetric branes within two large and
comparatively supersymmetric extra dimensions. Because of this Yoga models inherit
SLED properties at energies larger than the eV threshold and shares their nice UV
properties (such as a decoupling of large on-brane UV scales from 4D spatial curvature).
However at low energies the accidental low-energy symmetries of the Yoga scenario leads
to smaller scalar potentials than were found in SLED models, suggesting that SLED
scenarios might improve if moduli were stabilized to exploit the low-energy extended
no-scale structure that Yoga models build in.

IR implications. In the IR we find

• New class of background solutions. We find a broad new class of solutions for the coupled
axio-dilaton and Einstein field equations that apply outside a gravitating object. These
solutions promote an arbitrary solution of a Klein-Gordon field coupled to gravity into a
full solution of the Einstein-axiodilaton equations. We use these to extend the solutions
found in [3] beyond spherical symmetry to include the general multipole expansion in
the weakly gravitating regime. It is the underlying SL(2, R) symmetry of the equations
that allows such a general analytic result. We also explore solutions in the interior of
the macroscopic object and match it to exterior solutions.

• Breaking of shift symmetry. We show that dilaton-matter couplings are not screened by
axion-matter couplings if these do not break the axion shift symmetry within matter.
If matter couplings do not break the axion shift symmetry then only higher multipole
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moments arise for the external axion field and we show why these fall off too quickly to
contribute to the PPN parameters γPPN and βPPN and so leave the standard Brans-Dicke
result that is experimentally ruled out.

• Numerical exploration of axio-dilaton response. We numerically explore solutions
when shift symmetry is broken by axion-matter couplings without also being broken
in the vacuum. We find constraints the axion coupling that are necessary (but not
sufficient) conditions for reducing apparent dilaton couplings to matter. We numerically
explore axio-dilaton response to macroscopic gravitating sources for a wide class of
axion-matter couplings, finding no examples that successfully suppress the effective
dilaton-matter coupling.25

Both very light axions and very light dilaton fields have been considered over the years
for applications to astrophysics and late time cosmology. We find that considering both at the
same time — particularly with the SL(2, R)-invariant target-space interactions — offers an even
richer phenomenology that paradoxically evades some of the bounds each could individually
suffer from separately. The fact that the required interactions also appear naturally in
supersymmetric field and string theories only adds to their potential relevance. They bring
many surprises: smaller vacuum energies and rich and unusual long-distance response. We
leave further studies, addressing screening mechanisms and including cosmological implications
to a future publication [126]

Although the suppression mechanism underlying Yoga models does allow smaller than
usual vacuum energies, they so far seem to founder because the light scalars they imply seem to
be ruled out by tests of gravity within the solar system. We believe the model-building issues
needed to evade these tests are likely easier to solve than has been the cosmological constant
problem itself, and although we have found a number of new ways in which axiodilaton-matter
couplings can interestingly suppress how the dilaton couples to gravitating objects,26 none yet
have completely allowed solar system tests to be evaded. We find many more possibilities in
the model-building of axiodilaton response to macroscopic objects than seem to be available
as alternatives to understanding the cosmological constant problem. We hope Yoga models
will prove to be a small step in the thousand-mile journey towards solving the puzzle of how
the vacuum gravitates.
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25In [3] interior solutions were left for future work. Here, we are including interior solutions and so far have
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26These include mixing of S, T and Φ type axions and the interplay of their matter interactions with those
of the Yoga model’s relaxon field.
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A Slowly varying interior solutions

This appendix considers the simplest model for interior axion-matter couplings in order to
illustrate in a solvable situation precisely how axion-matter couplings modify naive Brans-
Dicke expectations and to identify more clearly how weak couplings approach the Brans-Dicke
limit. Throughout it is important to remember that the sources ρ(r) and A(r) are also in
general functions of the two scalar fields τ and a, and so are in particular generically position
dependent. The limit of an incompressible medium (with constant energy density) makes the
most sense for weakly gravitating objects in the Jordan frame.

Matching. As described in the main text, the general exterior solution (4.11) is characterized
by four integration constants (α, β, γ and δ). Two of these (γ and α) are determined by the
interior properties of the source through the matching conditions (4.23) and (4.24), reproduced
for convenience here:

γ = R2
(
∂ra

τ2

)
r=R

= − 1
3M2

p

∫ R

0
dr r2A(r) , (A.1)

and
γα = R2

(
∂rτ

τ
+ a ∂ra

τ2

)
r=R

= − 1
3M2

p

∫ R

0
dr r2

[
ρ(r) + a(r)A(r)

]
, (A.2)

where r = R is the radius of the source’s surface. Using (A.1) in (A.2) allows it to be rewritten
as

γ
[
a(R)− α

]
= −R2

(
∂rτ

τ

)
r=R

= 1
3M2

p

∫ R

0
dr r2

[
ρ(r) + [a(r)− a(R)]A(r)

]
. (A.3)

It turns out that if A(r) has a definite sign then a(r < R)−a(R) has the same sign as A — as
can be seen from (A.6) below assuming the spherically symmetric initial condition r2∂ra = 0
at r = 0) — and so eq. (A.3) implies γ[a(R)− α] = 2

3GM(1 + ∆) with ∆ ≥ 0.
The other two constants (β and δ) are determined by the values taken by the exterior

fields, τ? = τ(r?) and a? = a(r?), at any fixed exterior reference radius r? — such as
asymptotically at infinity (r? = ∞) or near the surface of the source (r? = R). Any such
values determine the semicircle on which the exterior solution lies, so β is determined by

β =
[
τ2
? + (a? − α)2

]1/2
, (A.4)

while δ can be found from either of the following two conditions:

τ? = β

cosh δ and a? = α+ β tanh δ . (A.5)

Interior field equations. Consider first a spherically symmetric ansatz that breaks shift
symmetry, possibly down to a discrete subgroup (as would be true in particular if it is the
QCD anomaly that breaks the shift symmetry). An unbroken discrete symmetry implies
physics is periodic under a→ a+2π, with for instance ρ(a+2π) = ρ(a) and A(a+2π) = A(a).
It can be useful to define ε(a, τ) := A(a, τ)/ρ, and in the case where a is a pseudoscalar ε
must be CP-violating and this implies ε is even under a→ −a.
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In this case for r < R the spherically symmetric axion field equation (4.2) is the
differential version of (A.1):

∂r

(
r2∂ra

τ2

)
= − r

2A
3M2

p

, (A.6)

and the equation expressing conservation for Jµs in eq. (4.5) is similarly

∂r

[
r2
(
∂rτ

τ
+ a ∂ra

τ2

)]
= − r2

3M2
p

(ρ+ aA) (A.7)

and so

∂r

(
r2∂rτ

τ

)
= −∂r

(
r2a ∂ra

τ2

)
− r2

3M2
p

(ρ+ aA) = − r2ρ

3M2
p

−
(
r∂ra

τ

)2
, (A.8)

where the last equality uses (A.6).
We also require the metric equations and for weakly gravitating systems we can write

the Einstein-frame metric as gtt ' −[1 + 2Φ(r)] where the Einstein equations imply Φ satisfies

∇2Φ ' 4πGρ = ρ

2M2
p

, (A.9)

and so when ρ = M δ3(r) we have the boundary condition n · ∇Φ ' GM where M :=
∫

d3r ρ,
and so Φ ' −GM/r exterior to a spherically symmetric source. This shows for weak fields
that the gravitational (ADM) mass agrees with the inertial mass in Einstein frame, with

M :=
∫

d3x ρ = 4π
∫ R

0
dr r2ρ(r) . (A.10)

M is not the gravitational mass, Mg = M̃ , as measured using the motion of orbiting
test bodies, since this is instead given by the 1/r term in the Jordan-frame metric component
g̃tt ' −[1− 2GM̃/r + · · · ]. Given the large-r expansion of τ given in (4.19),

τ = β

coshX = τ∞

[
1− βγ

r
tanh δ + · · ·

]
, (A.11)

we see that

− g̃tt = −A2gtt = −τ∞
τ
gtt =

(
1 + βγ

r
tanh δ + · · ·

)(
1− 2GM

r
+ · · ·

)
(A.12)

and so
M̃ 'M

(
1− βγ

2GM tanh δ
)

= M (1 + 2λeff tanh δ) (A.13)

which uses the definition (4.22): λeff = −βγ/(4GM).

Frame-dependence of the equation of state. Before comiting to an equation of state
for the interior it is useful to distinguish how the sources are related to one another in Jordan
and Einstein frames. In particular, incompressibility is most naturally postulated in Jordan
frame if the physics responsible comes from ordinary particles.
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Using the definitions Tµν = (2/√−g)(δSm/δgµν) and T̃µν = (2/
√
−g̃)(δSm/δg̃µν) for the

Einstein- and Jordan-frame stress tensors, together with g̃µν = A2gµν implies
√
−g̃ = A4√−g

and so
T̃µν = A−6Tµν , T̃µ

ν = A−4Tµ
ν , T̃µν = A−2Tµν , (A.14)

where indices are raised and lowered using the corresponding metric. Similarly the Jordan-
and Einstein-frame fluid 4-velocities satisfy g̃µνŨµŨν = gµνU

µUν = −1 and so Ũµ = A−1Uµ.
Finally, defining energy density and pressure in both frames using Tµν = (p+ ρ)UµUν + p gµν

and T̃µν = (p̃+ ρ̃)ŨµŨν + p̃ g̃µν we see the Jordan- and Einstein-frame pressure and energy
density are related by27 p̃ = A−4p and ρ̃ = A−4ρ. In particular, equation of state parameters
like w = p̃/ρ̃ = p/ρ are the same in both frames and incompressible fluids in Jordan frame
have constant ρ̃ and so

ρ = ρ̃A4 = ρ̃

(
τ∞
τ

)2
∝ τ−2 . (A.15)

Interior solutions with broken shift symmetry. Eqs. (A.6) and (A.8) can be solved
for the internal profiles τint(r) and aint(r) by changing variables to u as defined by

u2 := 2GMr2

R3 for which 0 < r < R implies 0 < u2 <
2GM
R
� 1 , (A.16)

and writing ρ(r) = [3M/(4πR3)]ρ̂(u) where ρ̂ is dimensionless and is normalized to satisfy∫
d3x ρ̂ = 4

3πR
3. In terms of this, and writing A = ε ρ, eqs. (A.6) and (A.8) become

∂u

(
u2∂ua

τ2

)
= −u2ερ̂ , (A.17)

and

∂u

(
u2∂uτ

τ

)
+
(
u ∂ua

τ

)2
= −u2ρ̂ . (A.18)

In principle ρ̂ is fixed by solving the matter field equations expressing hydrostatic
equilibrium (which, for gravitationally bound systems, can involve a feedback on the local
gravitational potential Φ). We take the simplest situation: where the Jordan-frame density is
constant (incompressible material) — and so ρ̂ = (τref/τ)2, with

∫
d3x τ−2 =: 4

3πR
3τ−2

ref — as
also is the proportionality function ε. Then eqs. (A.17) and (A.18) become

∂u
(
u2∂ua

)
− 2u2∂uτ ∂ua

τ
= −u2ετ2

ref , (A.19)

and

∂u

(
u2∂uτ

τ

)
+
(
u ∂ua

τ

)2
= −

(
uτref
τ

)2
. (A.20)

Because u is always small within a weakly gravitating source slowly varying solutions
can be found as a series in powers of u, which starts at order u2 because smoothness at the

27Notice that scale factors are related by ã = Aa and so JF and EF particle densities satisfy ñã3 = na3

and so ñ = A−3n. Then the equation of state for dust becomes ρ̃ = m̃ñ in JF and ρ = mn in EF and the
consistency of these with ρ̃ = A−4ρ implies m = m̃A, precisely as required if m̃ were independent of τ and
m ∝ τ−1/2 ∝ A.
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origin requires the first radial derivative to vanish at r = u = 0. So for 0 < r < R we seek
solutions of the form:

τint = τ0
(
1 + c2u

2 + · · ·
)

and aint = a0 + a2u
2 + · · · , (A.21)

in which case eqs. (A.19) and (A.20) imply c2 = −1
6(τref/τ0)2 and a2 = −1

6τ
2
refε(a0, τ0), so

aint = a0 −
ετ2

refGM

3R

(
r

R

)2
+ · · · and τint = τ0

[
1− GMτ2

ref
3Rτ2

0

(
r

R

)2
+ · · ·

]
. (A.22)

This allows us to compute τref as a function of τ0, M and R using

1
τ2

ref
= 3

4πR3

∫
d3x

1
τ2

int
= 3
R3

∫ R

0
dr r2

τ2
int(r)

' 1
τ2

0

(
1 + 2GMτ2

ref
5Rτ2

0

)
, (A.23)

and so τref ' τ0 up to GM/R corrections.
Using these to match to the exterior solutions τ = β/ coshX and a = α+ tanhX, with

X = (βγ/r) + δ, the constants γ and α become

γ = R2
(
∂raint
τ2

int

)
r=R
' −2GM

3 ε(a0) , (A.24)

and
γα = R2

(
∂rτint
τint

+ aint ∂raint
τ2

int

)
r=R
' −2GM

3 − 2GM
3 ε(a0) a(R) . (A.25)

Eliminating γ from these last two gives

α ' a(R) + 1
ε(a0) . (A.26)

Notice that these solutions ensure a(r)− α is a periodic function of a0 everywhere outside
the source.

β and δ are determined using continuity with the exterior solutions, leading to

τ(R) = τ0

(
1− GM

3R + · · ·
)

= β sech
(
βγ

R
+ δ

)
, (A.27)

and
a(R) ' a0 −

ε(a0)GM
3R + · · · = α+ β tanh

(
βγ

R
+ δ

)
. (A.28)

These imply that the radius of the semicircle defined by the fields at r = R is (using (A.26))

β =
[
τ2(R) + [a(R)− α]2

]1/2
'
[
τ2

0

(
1− 2GM

3R

)
+ 1
ε2(a0)

]1/2
. (A.29)

Together with (A.24) eq. (A.29) gives the effective Brans-Dicke parameter, through the relation

λeff = − βγ

4GM = β

6 ε(a0) ' 1
6

[
1 + τ2

0 ε
2(a0)

(
1− 2GM

3R

)]1/2
. (A.30)

This approaches the naive Brans-Dicke coupling λeff → 1
6 (for all a0) if ε→ 0 with all other

fields fixed basically because (A.29) implies β → 1/ε in this limit. Notice also that λeff
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is strictly larger than its Brans-Dicke value and only starts to differ appreciably from it
once ε(a) & 1/τ0.

The value of δ is then found using, for instance

a(R)− α = − 1
ε(a0) = β tanh

(
βγ

R
+ δ

)
= − 6λeff

ε(a0) tanh
(4λeffGM

R
− δ

)
, (A.31)

and so tanh δ ' 1/(6λeff) (which is smaller than unity because λeff ≥ 1
6). Given these

integration constants the fields at infinity are given in terms of τ0 and a0 (or vice versa) by

1
τ∞

= cosh δ
β

and a∞ = α− β tanh δ . (A.32)
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