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Abstract: We consider the physical implications of very light axiodilatons motivated by a novel

mechanism to substantially reduce the vacuum energy proposed in arXiv:2110.10352. We address

the two main problems concerning the light axiodilaton that appears in the low-energy limit, namely

that the axion has a very low decay constant fa ∼ eV (as read from its kinetic term) and that

the dilaton is subject to bounds that are relevant to tests of GR once ρvac <∼ 10−80M4
p . We show

that eV scale axion decay constants need not be a problem by showing how supersymmetric extra

dimensions provide a sample unitarization for axion physics above eV scales for which non-anomalous

matter/axiodilaton couplings can really have gravitational strength, showing how naive EFT reasoning

can mistakenly overestimates axion interactions at eV. When axions really do couple strongly at eV

scales we identify the dimensionless interaction in the UV completion that is also O(1), and how axion

energy-loss bounds map onto known extra-dimensional constraints. We find a broad new class of exact

exterior solutions to the vacuum axiodilaton equations and knowledge of axiodilaton-matter couplings

also allows us to numerically search for interior solutions that match to known exterior solutions

that can evade solar-system tests. We find no examples that do so, but also identify potential new

candidate mechanisms for reducing the effective dilaton-matter coupling to gravitating objects without

also undermining the underlying suppression of ρvac.
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1 Introduction

When spinless particles are found to be very light they are usually Goldstone bosons for broken

symmetries, at least approximately. Broadly speaking, there are two classes of Goldstone boson that

arise in this way, depending on whether or not the underlying symmetry is compact or noncompact.

For compact symmetries the dimensionless Goldstone field, a, behaves as an angular variable

that parameterizes a periodic direction in the scalar target space whose period (conventionally) is 2π,

and the approximate symmetry corresponds to shifts a → a + c for constant c (or their nonabelian

generalizations) as happens for axions. Scale transformations τ → λτ for constant λ (which can of

course be regarded as shifts for the field ln τ) are simple examples of noncompact symmetries, for

which the Goldstone direction is not periodic.

Supersymmetry often bundles these two types of scalars together into complex combinations,1

T = 1
2 (τ + ia), with the scaling and compact symmetries assembled into a larger SL(2, R) group

iT → ic1T + c2
ic3T + c4

with c1c4 − c2c3 = 1 . (1.1)

1We here follow supergravity practice and call the real part of any such a field a ‘dilaton’ and call its imaginary part

an ‘axion’.
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Such scalars are rife in low-energy string vacua because these turn out to be riddled with scale, shift and

duality symmetries on very general grounds [1]. Mathematically such a complex scalar parameterizes

the coset space SL(2, R)/U(1) and the symmetry implies their kinetic term takes the form

Lkin = −
√
−g zM2

p

∂T ∂T
(T + T )2

= −
√
−g zM2

p

(∂τ)2 + (∂a)2

4τ2
, (1.2)

where the Planck mass is related to Newton’s constant by M−2
p = 8πGN and the order-unity constant

turns out to be z = 3 in the cases of interest encountered below.

Normally the study of these scalars is regarded as being a purely theoretical exercise, relevant only

at very high energies where supersymmetry might play a role. However recent developments [2–4] –

raise the possibility that they might survive to low energies if supersymmetry survives less broken in

the gravitational sector than in the particle-physics sector (as indeed might be expected given that

gravity naturally couples more weakly to any supersymmetry breaking sector). If so, axio-dilatons

could be light enough to have practical implications for astrophysics and cosmology, whose potential

possibilities and problems both hinge on the target-space interactions implied by (1.2).

A perceived drawback of these models is their apparent need for UV completion at very low (eV)

scales; a very practical obstruction to assessing their viability (such as whether they can survive the

many constraints – e.g. energy-loss bounds – that arise at higher energies). A purpose of this paper is

to identify a natural class of UV completions, showing in particular how they can be used to explore

high-energy constraints. This also allows us to clarify how the axiodilaton couples to ordinary matter,

and what these interactions imply for tests of GR and other constraints. Along the way we find a

broad new class of solutions to the axio-dilaton field equations.

Before summarizing these results we first briefly recap the relevant features of [2, 3] that we think

motivate their study and define the problems that needs resolving.

The Yoga scenario

Consider first the Yoga scenario of reference [2]. In these models supersymmetry survives below the

weak scale, but only in the gravity sector. The idea is to exploit the way this restricts how gravity

responds to particle energies. The model borrows a universal feature common to the known string

compactifications: an accidental and approximate classical scaling symmetry for which a complex field

like T contains the dilaton τ . Corrections to scaling occur because the lagrangian arises as a series

in powers of 1/τ , and the core idea behind the model exploits a general mechanism2 that ensures

that these corrections first contribute to the scalar potential at one order higher in 1/τ than one

would naively expect. The scenario explores how large τ can be and whether this suppression can be

signficant enough to be useful for the cosmological constant problem [7, 8].

Although present for other reasons, the accidental scale invariance also makes τ couple to Standard

Model fields only through a Brans-Dicke type [9–12] rescaling of the metric LSM = LSM(g̃µν , ψ), where

ψ denotes a generic Standard Model field and g̃µν = A2(τ) gµν with A ∝ τ−1/2. Because of this

the Higgs vev is proportional to τ−1/2 in the Einstein frame (for which Mp is τ -independent), and

so the same is also true for all ordinary particle masses:3 mi/Mp ∝ τ−1/2. Neutrino masses can

2For aficionados: the structure of the potential arises because accidental scale invariance gives the leading terms a

no-scale form [5], whose breaking leaves the potential unusually shallow because of the ‘extended no-scale structure’

mechanism described in [1] (and first discovered within string compactifications in [6]).
3The QCD scale ΛQCD ' Me−c/αs(M) also scales as τ−1/2 when the reference UV mass scales like M ∝ τ−1/2,

ensuring all masses for ordinary (non-neutrino SM) particles scale in the same way.
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(but need not) be an exception: if they depend quadratically4 on the Higgs vev they instead satisfy

mνa/Mp ∝ τ−1. These scalings are broadly consistent with mi being at TeV scales and mνa at sub-eV

scales (up to small dimensionless Yukawa couplings) if Mp is the fundamental reference scale and

τ ∼ 1028. The electroweak and neutrino-mass hierarchies are also set by whatever physics fixes the

size of τ .

Like everything else, the scalar potential for τ arises as a series5 in 1/τ . In Planck units it has the

form

V (τ) =
V2

τ2
+
V3

τ3
+
V4

τ4
+ · · · , (1.3)

where supersymmetry of the gravity sector implies [14–18] V2 arises as the perfect square

V2 ∝ |wX |2 , (1.4)

for some quantity wX , and so is strictly non-negative. This first term is also not particularly small,

since its dependence on τ is consistent with the size that would be expected for a generic vacuum-energy

contribution, m4, given that m ∝ τ−1/2.

So far nothing particularly remarkable has happened. But because the dominant term (for large

τ) is a square, it likes to be minimized at zero if it should depend on another ‘relaxation’ field,6 χ,

for which wX(χ) = 0 has a solution for χ = χ0. In practice V2 typically is not minimized precisely at

zero because the presence of higher powers of 1/τ tend to drag χ away from the zero of V2 (e.g. V3

turns out to be linear in wX). Instead χ is minimized where wX ∝ 1/τ , and so the minimum occurs

where V2 ∼ 1/τ2 and V3 ∼ 1/τ , making the potential at the minimum order Vmin ∼ 1/τ4 once χ is

minimized. The ‘natural relaxation’ as χ seeks its minimum gives these ‘Yoga’ models their name.

Remarkably the resulting dependence on τ is consistent with Vmin ∼ v4 with energy scale v ∼
m2/Mp where m ∼ Mp/

√
τ is a typical Standard Model scale; the seed of an explanation for the

famous numerology that the observed Dark Energy density is v ∼ M2
TEV /Mp. Although relating all

three of the electroweak, neutrino and Dark Energy hierarchies to the size of one field τ is tantalizing,

why should τ be so large at its minimum? It is here that the dependence of Vi on ln τ plays a role, with

[2] showing how reasonable choices for this dependence can easily produce minima with τmin ∼ 1028

given hierarchies amongst the parameters in Vi that are only order ln τmin ∼ 65.

It is of course the supersymmetry breaking masses Λs >∼ 10 TeV of any heavy superpartners of SM

particles that are the most dangerous from the vacuum-energy point of view, and the main tension

driving these models is to arrange parameters so that these superpartners can be heavy enough to

have escaped detection while keeping a lid on the size of Vmin. In the best examples found in [2] the

vacuum energy turns out to be

Vmin ∼
Λ4
s

τmin(ln τmin)5
, (1.5)

and so Vmin ∼ 10−93M4
p if Λs ∼ 10 TeV and τmin ∼ 1028. In this expression the suppression by

1/τmin is a consequence of the ‘extended no-scale structure’ mechanism [1, 6] mentioned above, and

the powers of ln τmin are an accidental consequence of the stabilization mechanism used for τ [2].

Although impressively small, this is not (yet) as small as the observed value: 10−120M4
p .

Improving on this is not our focus here however; we instead address the two main phenomenological

problems implied by the Yoga framework, with a goal of identifying what the main remaining obstacles

4This is true if e.g. neutrino masses arise from the unique dimension-five SMEFT interaction of [13], directly sup-

pressed by 1/Mp rather than another τ -dependent mass.
5Quantum breaking of scale invariance also allows the coefficients Vi to depend logarithmically on τ .
6V2 vanishing dynamically resembles how charged scalars often seek the zeros of D-terms in supersymmetric models.

– 3 –



are (and hopefully suggesting model-building directions to overcoming them). We consider in turn

the two issues that seemed in [2] the most pressing: small axion decay constant and the dilaton’s

implications for tests of General Relativity (GR). Our conclusions are again mixed.

The axion problem

The target-space interactions seen in (1.2) appear to contain a problem when τmin is as large as

required for the other hierarchies. Because the axion kinetic term is M2
p (∂a)2/τ2 it predicts at face

value the present-day axion decay constant to be fa ∼ Mp/τmin. This makes fa similar in size to v

and mν (of order the eV scale) for the value τmin ∼ 1028.

This could be a problem if this is the scale the controls axion couplings to ordinary matter, and

this is indeed what might be naively expected because once canonically normalized (a := faa) the

lagrangian

Lax = −f
2
a

2
∂µa ∂

µa− ∂µa Jµ + · · · (1.6)

would predict non-renormalizable derivative axion-matter couplings of size f−1
a ∂µa J

µ. Such terms

only make sense in an EFT that computes observables at energy E in powers of E/fa. Although it is

tempting to conclude that the axion must be ‘strongly coupled’ at these scales, what really happens

is the derivative expansion breaks down for E >∼ fa and so the real size of the couplings must be

understood in the UV completion that intervenes at eV energies. Such a completion is also required

to see whether the model is consistent with any constraints on axion physics (e.g. energy-loss bounds)

that involve energies above eV scales.

The point of view taken in [2] is to agree that a UV completion must intervene at energies of

order fa, but to put aside the question of what this is in order to sort out the other naturalness

and phenomenological issues that can be addressed at energies below eV scales. This is already

nontrivial because Yoga model cancellations can be traced parametrically as functions of τ , despite a

full treatment of UV sensitivity requiring access to weak-scale energies. The viability of cancelling both

τ−2 and τ−3 terms within V can be addressed purely at low energies, as can other phenomenological

issues like solar system tests and cosmology.

We revisit the issue of UV completion in §2 below, using extra dimensional models to pin down

axion couplings more precisely7. We consider three types of axions in such models, and we argue

that one type of them can couple to ordinary matter with only gravitational strength (as do most

KK modes) even though the kinetic term has the form (1.2) with τ as large as 1028. The error in

the naive estimate based on the lagrangian of (2.1) or (2.4) is to assume that the ∂µaJ
µ term of

(2.4) is independent of τ , which the UV completion shows need not be true (at least for non-gauge

interactions).8

The Brans-Dicke problem

The other problem starts with the observation that small Vmin implies the dilaton τ is light:9 m2
τ ∼

Vmin/M
2
p . If Vmin can be made small enough to describe the Dark Energy, the τ mass is of order

the present-day Hubble scale. Once Vmin <∼ 10−80M4
p we have m−1

τ
>∼ 10 km, making the dilaton

7See also [19], that more broadly addresses to how UV naturalness issues – like the quality problem – are manifested

for axions in extra-dimensional models that are not tied to a large extra-dimensional scenario.
8QCD-style axion-gauge couplings to dark gauge fields are possible (but not required) in this case, and would arise

with strength 1/fa.
9Indeed this size is generic for any gravitationally coupled scalar that acquires its mass from V , so light scalars could

be common if the potential’s minimum is small.
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relevant to tests of GR and searches for new long-range forces. Furthermore, because particle masses

are proportional to τ−1/2 the dilaton necessarily couples to matter as does a Brans-Dicke-like scalar,

and does so with gravitational strength. Surely it must already be ruled out by such tests?

Possibly. As described in [3], the derivative interactions between τ and a contained in (1.2)

complicate the predictions for tests of GR, provided that the axion a is also light enough to mediate a

long-range force and also couples weakly to matter. To the extent that these couplings source the axion

field and reduce the dilaton field they can help evade detection because observations are sensitive to

the Weyl factor A appearing in g̃µν = A2gµν and this does not depend on the axion. To good

approximation the axion field drops out of test-particle motion and so its presence tends to be missed

by observational constraints. To decide whether this escape mechanism is actually employed by real

systems requires matching exterior solutions to the solutions within the source’s interior (something

that we address in this article), and this in turn requires more information about how the axiodilaton

couples to matter.

So what’s new?

This brings us to the purpose of the paper you are now reading. Lack of information about axiodilaton-

matter couplings at ordinary energies obstructs progress on both of the above problems. We therefore

first identify UV completions that can be valid up to electroweak scales, doing so by pursuing the

suggestion made in [2] that large extra dimensions could intervene at eV scales. If so, only two

dimensions can be this large10 without already having been detected11, and even these can only be

this large without escaping detection if all Standard Model particles are trapped on a 4D space-filling

brane situated somewhere within the two large dimensions [20, 22, 23].

Indeed the entire framework wherein nonsupersymmetric Standard Model physics couples to a

supersymmetric gravity sector is naturally captured in this framework if the Standard Model brane

badly breaks supersymmetry but the extra-dimensional bulk is otherwise supersymmetric. In this case

supersymmetry in the gravity sector is only broken by boundary conditions and the lightest gravitino

is expected to have a mass of order the Kaluza Klein (eV) scale (in agreement with the gravitino

mass m3/2 that was also found in a purely 4D way within the Yoga setup). Extra dimensions also

provide a microscopic interpretation for the large value for τ : it encodes the large volume of the extra

dimensions:12 V2 ∼ (ML)2 ∼ 1028 where L is the extra-dimensional radius and M the 6D gravity

scale.

In this way of thinking the natural UV extension of Yoga models is supersymmetric large extra

dimensions (SLED), which was indeed initially proposed [24] with Dark Energy density in mind.

Much is known about UV sensitivity in this framework and can be carried over in whole cloth to Yoga

models. For instance UV scales do not gravitate as in 4D, with UV on-brane contributions typically

curving the transverse extra dimensions rather than the four on-brane dimensions visible to brane-

bound cosmologists [24–26]. Supersymmetry of the gravity sector (the bulk) similarly suppresses UV

contributions from other branes or from elsewhere in the extra-dimensional bulk [27]. The requirement

that Standard Model particles live on a 4D space-filling brane also means that most non-gravitational

predictions go through as in four dimensions, and so are as captured by the Yoga-model lagrangian

10More dimensions than the minimal two can arise (as usual) provided they only do so above TeV energies.
11Recently, motivated by some swampland conjectures, an interesting dark energy proposal was put forward [21], for

which the case is made for a single large extra dimension rather than two. It is not clear how, in this scenario, loops

of Standard Model particles are cancelled to keep the cosmological constant small, but it may be interesting to explore

any potential connection with our proposal.
12Ref. [2] provided arguments why the simplest connection between τ and V2 could have problems, and §2.2 below

addresses why these need not be fatal.
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even at energies above eV scales. It is only for high-energy gravitational processes that the full extra-

dimensional machinery is really required.

We find several interesting consequences of this UV picture. As remarked elsewhere [28] axions

are generic in supersymmetric extra-dimensional models, for example arising as KK modes for the 2-

form gauge fields that commonly appear as part of the extra-dimensional graviton supermultiplet. §2

revisits how extra dimensions unitarize axion interactions, sometimes leaving them with gravitational-

strength interactions with ordinary matter despite the apparent breakdown of the E/fa expansion at

eV scales.

Our main line of inquiry asks what kinds of UV matter couplings can ameliorate the Brans-Dicke

and axion problems described above. In particular, we test whether the interior solutions suggested

by the simplest axion-matter couplings actually match to the exterior solutions found in [3] that evade

solar system tests of gravity. We identify conditions that the axion-matter couplings must satisfy in

order for this to happen, and report on extensive numerical searches for successful solutions using

the simplest types of axion-matter couplings, none of which is ultimately successful but which also

identify new ways in which axion-matter couplings can act to suppress the effective dilaton charges of

macroscopic objects.

In one promising approach it is a chameleon-type mechanism for the axion that gets transferred

by axio-dilaton self-interactions to reduce the apparent dilaton charge. But we do not yet have a

mechanism that would evade all bounds and so we still consider it an open challenge to find a way

for the Yoga relaxation mechanism to evade solar-system constraints. Our search suggests several

further directions for how to find phenomenologically successful couplings, and regard this type of

model building to be a constructive reformulation of the cosmological constant problem since it leads

to directions that have not yet been fully explored. Given the magnitude of the original problem (dark

energy), recasting research along these lines seems worthwhile.

The rest of the paper is organized as follows. §2 shows how the axiodilaton lagrangian arises by

explicit dimensional reduction of extra-dimensional models and how such models provide a natural

framework for exploring their properties at scales E >∼ fa. It is also argued how the large values

required for τ can be plausibly achieved within this framework if two extra dimensions are larger than

the others and close to their upper allowed size since in this case the two large dimensions have volume

(in fundamental units) V2 ∼ 1028.

§2.1 then identifies three ways (S-type, T -type and Φ-type) axions can arise from the particu-

larly rich case of extra-dimensional two-form fields, BMN , that are generic to supersymmetric models.

Their possible couplings to on-brane (Standard Model) degrees of freedom are computed by direct

dimensional reduction, and this shows why the T -type axion can have low-energy matter couplings

proportional to F−1 with effective decay constant13 F ∼Mp rather than fa. The naive strong-coupling

argument given above based on (1.6) is mistaken in this case because it is naive about how factors of

the large volume V2 appear in the interaction terms at low energies.

Higher-dimensional gauge symmetries turn out to preclude these Planck-suppressed T -axion/matter

couplings from including QCD-like axion-gauge interactions. The other two types of axions can couple

to QCD, and Φ-type axions in principle can do so with an effective decay constant that can be large

enough to play a role in the strong CP problem. The natural size for S-type axion/matter couplings

really is 1/fa, as it happens, but such couplings need not be present. It is not implausible for such

models to have dark (bulk) gauge sectors and axions can couple to these with strength 1/fa. These

13Having UV physics intervene with only weak couplings is not uncommon for EFTs [29], and underlines why it can

be perverse to call the breakdown of the low-energy expansion ‘strong coupling’ (as is sometimes done in the literature).
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match to O(1) dimensionless effective couplings within the higher-dimensional UV completion.

The remaining sections then pivot to using this framework to explore several phenomenological

issues, with §3 focussing on higher energy issues that require the UV completion. This section argues

that inclusive axion energy-loss bounds generically coincide with the standard extra-dimensional energy

loss constraints that require the scale of 6D gravity to be above tens of TeV, and discusses which kinds

of predictions depend on extra-dimensional details and which do not. The 4D Yoga-model perspective

turns out also to help understand why SLED models were promising but ultimately not completely

successful in accounting for the Dark Energy density, and why Yoga models might do better.

§4 turns to the core phenomenological problems these models face: constraints coming from solar-

system tests of gravity in scenarios where Vmin is low enough that the dilaton becomes light enough to

mediate a macroscopically long-range force. It does so under the assumption that the vacuum does not

break the axion shift symmetry (though the matter-axion couplings within a gravitating source might).

We find a broad new class of exact solutions to the classical axiodilaton field equations external to a

source, including those that are not rotationally invariant and so that can capture effects like multipole

moments. We use these solutions to show why shift symmetry breaking by matter-axion couplings

is a necessary condition for modifying the effective dilaton-matter couplings along the lines proposed

in [3], and match these to a broad class of numerically generated interior solutions to see if effective

matter-dilaton couplings can evade detection. We do not identify any that succeed in doing so. Our

results are summarized in §5 and an appendix contains an analytic limit for the interior solutions that

complements our numerical searches in the main text.

2 UV completions

This section explores the types of axion couplings that are inherent in UV completions that involve

supersymmetric large extra dimensions, and why they resolve the problems associated with decay

constants in the eV regime. We identify two main types of axion structure that emerge (T -type and

S-type axions) and show why both lead to physical modes that in reality couple only with gravita-

tional strength 14. The section closes with a discussion of why extra-dimensional models can avoid

the constraints discussed in [2] that naively seemed to preclude there being extra-dimensional UV

completions.

2.1 Axion unitarization

Axions whose kinetic terms have the form (1.2) with τ ' τmin ∼ 1028 seem to imply a low-energy

axion/matter lagrangian of the form

Lax = −f
2
a

2
∂µa ∂

µa− ∂µa Jµ + · · · (2.1)

with Jµ being a collection of lowest-dimension currents built from SM particles and decay constant

fa = Mp/τmin ∼ 1 eV. If required to be gauge invariant the currents Jµ first arise with mass dimension

3 involving either fermions or the Higgs doublet:

JµF = ψγµgFψ and JµH = igH

[
(DµH∗)H−H∗(DµH)

]
, (2.2)

14In general string compactifications there are several possibilities worth exploring in more detail, depending if the

axion comes from a complex structure or Kähler modulus, from 2,3,4-forms and in IIB from the original 10D axion. It

also depends on having the Standard Model on branes of different dimensionalities. See for instance [30, 31].
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for some Dirac/flavour matrix gF and Higgs coupling gH .

In the case of gauge bosons the lowest-dimension operators are not gauge invariant, but in some

circumstances these can also be used to build gauge invariant interactions. The two lowest-dimension

contributions of this type consist of the gauge potential Aµ and the Hodge dual of the Chern-Simons

form ωµνλ. For abelian fields15 these take the explicit form

JµA = gAA
µ and JµC =

gC
2
εµνλρAνFλρ . (2.3)

Interactions like ∂µa J
µ
A can come as parts of (∂µa+gAAµ)(∂µa+gAA

µ) and so arise when the axion shift

symmetry is gauged. Their presence indicates gauge-field mass acquisition through the Stueckelberg

mechanism. The Chern-Simons interaction is similarly seen to be gauge invariant by integrating by

parts to rewrite ∂µa J
µ
C as proportional to a εµνλρFµνFλρ. Such interactions represent anomalies in

global axion shift symmetries or contributions to anomaly cancellation if the axion shift symmetry is

gauged. The Chern-Simons current JµC has straightforward generalization to nonabelian gauge fields.

Once expressed in terms of the canonically normalized field a = faa we have

Lax = −1

2
∂µa ∂

µa− 1

F
∂µaJ

µ , (2.4)

with F = fa. When Jµ has dimension (mass)3 this is a nonrenormalizable interaction which standard

EFT reasoning argues should be interpreted as part of a low-energy derivative expansion. Because

the dimensionless expansion is in E/fa this interpretation breaks down at energies E >∼ fa ∼ 1 eV,

invalidating use of this low-energy EFT at higher energies. Something must intervene at or below fa
to enable predictions at ordinary energies and we here argue that two large extra dimensions provide

a simple and plausible example of what this could be. This section focusses specifically on how the

above argument changes if the UV completion at these scales is extra-dimensional and shows why in

this case a more reliable estimate for the size of axion-matter couplings reveals them to be Planck

suppressed.

The point is most easily made using an explicit example, so consider the specific instance where

the axion arises as a low-energy mode of an antisymmetric Kalb-Ramond field BMN within two extra

dimensions. This system is known to produce the required SL(2, R)-invariant form for the axio-dilaton

lagrangian used in [2, 3].

Axiodilatons from extra dimensions

Consider first how axions arise from higher-dimensional 2-form gauge potentials, BMN . For con-

creteness’ sake we do so assuming two large extra dimensions, though we also distinguish how axion

properties differ if they arise from other smaller dimensions. For simplicity take the extra-dimensional

metric to have the following product form:

ds̃2 = g̃MN dxMdxN =
V(0)

2

V2
gµν(x) dxµdxν + V2 ĝmn(y) dymdyn , (2.5)

where the metric ĝmn satisfies
∫

d2y
√
ĝ = M−2 so that V2 = (ML)2 is the extra-dimensional volume

L2 in units of a UV scale M . In practice M is the extra-dimensional Planck scale, related to the 4D

Planck scale by

M2
p = M4L2 = M2V(0)

2 , (2.6)

15For simplicitly we write explicitly only the abelian case, but the nonabelian generalization is straightforward.
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where V(0)
2 denotes the volume’s present-day value, since V2 (and L) are low-energy 4D fields that can

vary in space and time. For two large extra dimensions M ∼ 10 TeV and V(0)
2 ∼ 1028, which we will

see is ultimately the origin of the large vev for the field τ . The factor V(0)
2 /V2 in (2.5) ensures the

the metric gµν is the 4D Einstein-frame metric, and does so without changing overall units (because

V(0)
2 /V2 = 1 at present).

There are three ways that an axion can arise from a 2-form field in this kind of setup:

1. It can be the zero-mode of the purely extra-dimensional components Bmn(x, y) = b(x)ωmn(y),

where ωmn ∝ ε̂mn is proportional to the volume form for the two large extra dimensions built

from the metric ĝmn. We call this the T -type universal axion.

2. It can be the zero-mode of purely extra-dimensional component, Bab(x, y, z) = Φ(x, y)ωab(z),

within some smaller higher dimensions beyond the six written explicitly in (2.5) (such as could

happen if the 6D theory were the low-energy limit of a 10- or 11-dimensional string vacuum). In

this case ωab is a harmonic form within these smaller extra dimensions. Such an axion appears

in the 6D theory directly as a 6D scalar whose zero-mode Φ(x, y) = b(x) in the compactifica-

tion to four dimensions is the axion of the 4D world, and whether such field arise in a given

compactification to 6D is a model dependent issue. We call these the Φ-type axions.

3. It can arise as the zero-mode of the purely four-dimensional part Bµν(x, y) = bµν(x), which in

four dimensions dualizes to a scalar with Hµνλ = ∂µbνλ + · · · ∝ εµνλρ∂
ρa. We call this ‘dual’

axion the ‘S-type’ universal axion to distinguish it from the previous two cases.

The harmonic form appearing in items 1 and 2 usually satisfies a quantization condition for which
∮
C
ω

is a pure number when integrating over a 2-cycle C, and so ωab ∝ V−1
C where VC is the dimensionless

volume of C. For T -type axions this means ωmn = kε̂mn with k ∝ V−1
2 .

Two facts are central to fixing the size of axion-matter couplings. First, ordinary matter must be

trapped on a 4-dimensional brane in order for the large extra dimensions to have escaped experimental

observation [20, 22, 23]. Second, the kinetic energy of a higher-dimensional 2-form potential often

involves more than these four brane dimensions; for concreteness we focus on the 2-form field that

lives in the gravity supermultiplet and so which lives in the full extra-dimensional ‘bulk’:

Skin = −
MD−4

(D)

2 · 3!

∫
dDx

√
−g̃(D) e

−2sHMNPH
MNP , (2.7)

whereM(D) is a UV scale (equal toM in 6D) g̃(D) denotes theD-dimensional determinant of the higher-

dimensional metric g̃MN within the extra-dimensional Einstein frame and HMNP = ∂MBNP + (cyclic)

is the Kalb-Ramond field strength. Here s is the 6D dilaton that often also arises as part of the

higher-dimensional gravity supermultiplet.

The relevance of these two facts is easiest to see for item (1) above, where b arises from Bmn in

the two large extra dimensions. To start with, dimensionally reducing the D = 6 version of (2.7) gives

the b kinetic term, including the following dependence on s and V2:

M4

∫
d2y
√
−g̃(6) e

−2sg̃µν g̃mng̃pq∂µBmp∂νBnq ∝M2V(0)
2

√
−g e−2sV−2

2 gµν∂µb ∂νb . (2.8)

This is consistent with the axion kinetic term
√
−gM2

p (∂b)2/τ2 of (1.2) with τ = V2 e
s.
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Axion-matter couplings

To couple b to matter in the 6D effective theory we require a generally covariant and gauge invariant

interaction that couples HMNP to matter localized on a space-filling 4D brane, containing in particular

the components Hµmn 3 ∂µBmn. A term linear in H that contains ∂µb can be built in a covariant

way using the 6D Hodge dual ?H, pulled back to the brane and wedged with a matter current Jµ:

Sint =

∫
Σb

ht(s)
?H ∧ J , (2.9)

where ht(s) allows for a possible dependence on the dilaton. Notice J cannot here be a Chern-Simons

current as in (2.3) because Sint in this case is not gauge invariant.

Isolating the contribution involving ∂µb and absorbing dimensionless numerical factors into the

current Jµ leads to the following dependence on V2 and s:√
−g̃(4) ht(s) g̃

µν ε̃mn(yb) ∂µBmn(x, yb)Jν(x) = V(0)
2

√
−g ht(s)V−2

2 gµν∂µb(x)Jν(x) , (2.10)

where yb is the extra-dimensional brane position and ε̃mn is the extra-dimensional volume form built

using the metric g̃mn. Combining kinetic and interaction terms gives – for the special case ht(s) = e−2s

– the following terms in the 4D Einstein-frame effective action

Seff =

∫
d4x
√
−g

M2
p

τ2

[
(∂b)2 +

∂µbJ
µ

M2

]
(2.11)

where τ := V2 e
φ as before.

Canonically normalizing by rescaling b = Mp b/τmin – with τmin = 〈τ〉 ∝ V(0)
2 – then produces a

lagrangian of the form (2.4) but with

F ∼ M2τmin

Mp
∼Mp , (2.12)

rather than fa. As is typical for bulk fields, each KK mode within Bmn couples with gravitational

strength. The error leading to the earlier conclusion F = fa lies in ignoring the V2 dependence that

the interaction also inherits from the higher-dimensional metric.

For the Φ-type fields, the situation is more model dependent since they may or may not be

localized on the brane (depending on the brane dimensionality), couplings to Chern-Simons currents

(as in (2.3)) can be gauge invariant and the coupling to matter may be stronger (because the volume

VC of the relevant cycle can be much smaller). Contrary to the T type axion (whose absence of a

Chern-Simons coupling requires it to be an ALP), Φ-type axions may be QCD-like.

The story for the S-field axion is interestingly different, with strong matter couplings just as the

naive argument suggests, but in this case for the scalar theory that is dual to the one obtained by

dimensional reduction. The volume-dependence of the dimensionally reduced kinetic term is

Skin 3 −
M4

2 · 3!M2
p

∫
d4x
√
−g e−2s V2

2 hµνλh
µνλ , (2.13)

where hµνλ = ∂µbνλ + (cyclic). To dualize we impose (in 4D Einstein frame) the Bianchi identity

dh = Ω using a Lagrange-multiplier field a; supplementing (2.13) with

Sbi =
1

3!

∫
d4x
√
−g a εµνλρ

(
M2 ∂µhνλρ − Ωµνλρ

)
. (2.14)
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Here Ω is a gauge-invariant closed 4-form – i.e. one that satisfies dΩ = 0 – built from gauge fields and

the metric – that typically lives in the bulk as does BMN . In practice we are mostly interested in the

case Ω = F ∧ F for F a gauge field strength, though for bulk fields this is a dark gauge sector.

Lowest-dimension couplings to matter currents localized on a 4D brane have the form

Sint =

∫
Σb

hs(s) H ∧ J , (2.15)

where hs(s) again allows for a possible dependence on the dilaton. In this case gauge invariance allows

J to be a Chern-Simons current as in (2.3) but only if the dimensionless coupling function hs(s) = hs0
is s-independent.

The functional integral of Skin + Sbi with respect to hµνλ and a is equivalent to integrating Skin

with respect to bµν because the integral over a imposes the Bianchi identity, and so allows the integral

over hµνλ to be traded for one over bµν . The dual result is obtained by instead performing these

integrals in the opposite order; first performing the gaussian integral over hµνλ (see [19] for details).

The result for the dual lagrangian then becomes

Sdual = −
∫

d4x
√
−g

[
M2
p

2V2
2

e2sDµaD
µa +

1

3!
a εµνλρΩµνλρ

]
, (2.16)

where Dµa = ∂µa + hs(s) e
−2sV2

2Jµ/M
2
p . When hs is a constant the kinetic term again has the form

(1.2):
√
−g (∂a)2/σ2, but this time with σ = V2 e

−s.

We note in passing that this kinetic term combines with the kinetic term for b found in (2.11) and

the kinetic terms for the fields τ = V2 e
s and σ = V2 e

−s (obtained from the 6D Einstein action and

dilaton kinetic term) into the form (1.2); a form captured by the low-energy 4D supergravity Kähler

potential

K/M2
p = − ln(S + S)− ln(T + T ) = − ln(στ) = −2 lnV2 (2.17)

where S = 1
2 (σ + ia) and T = 1

2 (τ + ib). These kinetic terms reveal that both types of axions have

the form (1.2): with naive decay constants, fa = Mp/σ and fb = Mp/τ , and so both are eV in size

when V2 ∼ 1028, consistent with how the 4D EFT breaks down at the order eV Kaluza-Klein scale

associated with large dimensions.

An important difference between (2.16) and our earlier examples is that interaction terms like

aF ∧ F or (2.15) do not involve the metric and so does not contain hidden factors of V2. As a result

the naive argument for the size of F is in this case correct: comparing the kinetic and interaction

terms reveals the physical coupling has the form of (2.4) with strength F = fs = Mp/σ. This time

the theory (2.16) does have order-unity couplings at E = fs. In the UV completion these match to

dimensionless couplings like hs0 appearing in interactions like (2.15).

2.2 Large τ from asymmetric compactifications

The possibility these models UV complete at eV energies to supersymmetric large dimensions was

considered in [2], though on first inspection this seemed difficult to do, at least within the context of

Type IIB supergravity. In this section we sketch why we no longer regard the perceived difficulties

described in [2] to be a problem.16

The root of the problem described in [2] was this: phenomenology prefers a 4D Kähler potential of

the form K = −3 ln(τ + · · · ) where τ ∼ 1028. We would like to build such a τ from the basic hierarchy

16Since our purpose here is only to identify mechanisms, we do not try to construct a fully modulus-stabilized theory

(as would be required if we were to push the upper UV limit up past the weak scale into the fullly 10D string regime).
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of the (at most) two large dimensions that must arise up to TeV energies if extra dimensions are already

to become relevant at eV energies.17 At first sight the numerology is promising because taking 1/L ∼ 1

eV and a fundamental extra-dimensional UV scale Ms ∼ 100 TeV implies the dimensionless length

scales are MsL = 1014 and so the dimensionless extra-dimensional 2D volume is V2 = (MsL)2 = 1028.

Since dimensional reduction in 6D implies M2
p = M2

sV2 the volume V2 cannot be much larger than

this without Ms becoming too small (or L becoming too large) to have been missed in experiments.

The perceived difficulty arose once the precise connection is made between V2 and τ . In very

many cases the low-energy Kähler potential found by dimensional reduction is given by an expression

like (2.17), with

K = −2 lnV , (2.18)

but if this is identified with K = −3 ln τ it implies τ = V2/3 (making τ ∼ 1018 at most – and so too

small – given V ∼ V2 <∼ 1028).

We now argue why some compactifications seem likely to evade this problem. To do so it is

useful to consider the size of the moduli that are encountered when compactifying higher-dimensional

theories on tori. For instance toroidal compactifications of 6D supergravity on a 2-torus give a Kähler

potential of the form

K = − ln(stu) , (2.19)

(plus possibly other moduli) where s ∝ L1L2e
−s and t ∝ L1L2e

s can be as given above (where Li are

the lengths of the torus’ two fundamenal cycles), while u is the torus’ complex-structure modulus and

so is proportional to L1/L2. (2.19) agrees with (2.17) in the simplest case where L1 = L2 = L and so

u is order unity, but also suggests that we could get what we want if there were other fields (like u)

that were of the same size as s and t.

To see where such fields might come from, for concreteness’ sake consider extending into the far

UV to include two more extra dimensions (as part of a fuller 10 dimensional theory18), compactified

on the product of two 2-tori,19 In many situations such compactifications generate Kähler potentials

for the geometrical moduli of the form

K = − ln(S + S)−
2∑
i=1

ln(Ti + T i)−
2∑
i=1

ln(Ui + U i) . (2.20)

The fields S, Ti and Ui have different expressions in terms of the underlying length scales in different

kinds of geometries, but we assume the ti = Ti + T i depend on the volume moduli for each torus

(as found above for t and the volume of the single torus in 6D) and that the ui = Ui + U i are the

complex-structure moduli of the two 2-tori. If we denote the toroidal radii for the two tori by (L1, L2)

and (L3, L4), then their volume moduli scale with lengths as t1 ∝ L1L2 and t2 ∝ L3L4 while the

complex-structure moduli are u1 ∝ L1/L2 and u2 ∝ L3/L4.

We now ask how big K can be if only two of the dimensions have a large length L and the rest

have the much smaller length `. Consider first the simplest case where both sides of one of the 2-tori

is much bigger than both sides of the other 2-torus: L1 = L2 = L and L3 = L4 = `. In this case

17Warping was also explored as a potential additional source of hierarchy in [2].
18See for instance the discussion on the expressions for the string dilaton, Kähler and complex structure moduli in

toroidal compactifications of the different string theories in [37].
19Tori should just be regarded as illustrative here, whose purpose is simply to show concretely how other large moduli

might arise given only two large dimensions. In practice extensions further into the UV are likely to involve compactifi-

cations on other geometries, possibly with similar Kähler potentials, but with more explicit modulus stabilization (see

e.g. [38]).
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t1 ∼ L2 and t2 ∼ `2 while the ui are both order unity. Assuming s ∝ L2 as before the argument of

the logarithm in K has size

s

(
2∏
i=1

ti

)(
2∏
i=1

ui

)
∝ L2(L2`2)(1) = L4`2 (Case I) , (2.21)

and so K = − ln(st1t2u1u2) ∼ −3 ln(L4/3). This is a specific instance of the generic situation discussed

above, where τ ∼ V2/3
2 ∼ L4/3.

But if we instead assume L1 = L3 = L and L2 = L4 = ` then we have t1 ∼ t2 ∼ L` and

u1 ∼ u2 ∼ L/`. In this case we instead have

s

(
2∏
i=1

ti

)(
2∏
i=1

ui

)
∝ L2(L`)2

(
L

`

)2

= L6 (Case II) , (2.22)

for which K = − ln(st1t2u1u2) ∼ −3 ln(L2) and so τ ∼ V2 ∼ L2 ∼ 1028 can be possible.

We can be explicit in toroidal orientifold models of type IIA and IIB string compactifications as

discussed in chapter 12 of [37]. Denoting the radii of each of the three 2-tori by Riα with i = 1, 2, 3

labelling each of the three 2-tori and α = x, y labelling the two coordinates of each torus, we have for

type IIA:

ti = RixR
i
y, s = e−sR1

xR
2
xR

3
x, ui = e−sRixR

j
yR

k
y , i 6= j 6= k 6= i (2.23)

and for type IIB:

ti = e−sRjxR
j
yR

k
xR

k
y , s = e−s, ui =

Riy
Rix

, i 6= j 6= k 6= i (2.24)

In each case if we fix Rix = R3
y = ` and R1

y = R2
y = L � ` then the argument of the logarithm

becomes s
(∏2

i=1 ti

)(∏2
i=1 ui

)
∝ L6 ∝ V3 as desired. Although it is encouraging that multiple moduli

can be in principle sufficiently large in this way, a full 10D provenance also requires a demonstration

that this can be achieved in a concrete construction that stabilizes all moduli (which goes beyond the

scope of this paper).

In order to have the no-scale structure on which Yoga-model success relies we would require any

unfixed moduli to appear in the Kähler potential as K = −3 lnF where F is a homogeneous degree-one

function under identical rescalings of all the moduli [1, 39]. It is simplest if this occurs with F = T +T
depending only on a single field (as was chosen in [2]), but it can also happen when more than one

field is involved,20 such as if F = (stu)1/3 corresponding to the case (2.19).

No-scale moduli also cannot appear in (and so be fixed by) the superpotential or the D-term

potential, leaving their energetics to be determined by the Kähler potential using RG stabilization as

was done for τ in [2]. Any other moduli are assumed to be stabilized in a supersymmetric way, such as

by allowing them to appear in the superpotential. For instance, in the above example we might imagine

that this is done so that t2 and u2 are stabilized supersymmetrically, with 〈t2〉 = λt = (MsL)(Ms`)

and 〈u2〉 = λu = L/`. Then by rescaling the remaining unfixed fields by T := λtT1 and U := λuU1

the correct extra-dimensional shape is obtained if RG stabilization is chosen to ensure 〈s〉 ∼ 〈t〉 ∼ 〈u〉
are all order V2 ∝ L2. Alternatively one could imagine supersymmetrically fixing all moduli except

one (T1, say), and redefining the remaining modulus by T 3 ∝ T1 with numerical coefficient chosen to

contain the vevs of the fixed moduli: 〈s〉, 〈t2〉, 〈ui〉.
20If several no-scale fields are involved homeopathic suppression of dilaton couplings would be required for all of them.
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If more than one modulus survives into the low-energy theory each would contain potentially

dangerous matter couplings: in the above example these also would come with a Kähler potential of

the form K = − ln[(S + S)(T + T )(U + U) − k + · · · ] with s = S + S, t = T + T and u = U + U to

be RG-stabilized at size L2 (we have verified that this structure preserves the low-energy Yoga-type

suppressions found in [2]). But because all Standard Model particles have masses proportional to

e−K/6, in such a framework all three of the fields s, t and u would couple to Standard Model particles

as Brans-Dicke scalars with large coupling constants. They also turn out to be very light, raising the

threat that each could be ruled out by precision tests of GR within the solar system.

Remarkably, however, each dilaton also comes with its own axionic partner and because the leading

target-space metric is derived from K = − ln(stu) it is a product metric built from three independent

copies of the SL(2, R) invariant metric that leads to the kinetic terms given in (1.2). As a result

the screening mechanism of [3] can in principle be applied to each multiplet separately, providing

they can have the required axion-matter couplings, potentially allowing all three to evade detection

in solar-system tests of GR. Although these more complicated multi-modulus examples might remain

viable, in what follows we focus purely on the case where only a single axiodilaton pair survives at

low energies.

3 Axio-dilaton phenomenology above eV energies

The above picture provides the framework required for investigating physical questions involving ener-

gies above the eV scale. These include in particular constraints on axiodilaton properties that rely on

the modelling of the interiors of stars and macroscopic sources, since these often involve environments

hotter than eV scales.

3.1 Relevance to axion constraints

In a nutshell, we have seen that the two model-independent S and T axions can couple to ordinary

matter, with S doing so with strength 1/fa and T doing so with gravitational strength 1/Mp. Extra-

dimensional gauge invariance also forbids a direct QCD-like coupling to the T -type axion.

Because axion-matter couplings as strong as 1/fa would have been detected, couplings of the form

(2.15) must be forbidden in the UV completion; any S-type axion found at low energies within a

viable Yoga model must be an ALP and not directly couple to brane-localized Standard Model fields.

Low-energy T -type axions are also predicted to be ALPs and are automatically photo-phobic, but can

couple to other ordinary fields with strength 1/Mp.

A compilation of constraints on the electron and photon couplings for such ALPs is shown in Fig. 1,

from which we also see that ALPs with gravitational strength F−1 ∼ M−1
p ∼ 10−18 GeV couplings

are largely unconstrained. Fig. 2 provides several fairly strong constraints for gravitationally coupled

axions coming from gravitational-wave and pulsar observations. The constraints coming from black

hole super-radiance [60] provide constraints that are largely independent of coupling strength F−1 or

f−1
a , but do so only for a specific mass window. The constraints labelled ‘pulsars’ and ‘GW170817’

apply for a wide range of masses right down to F−1 ∼ 1/Mp [61, 62], but these rely more specifically

on the existence of axion couplings to QCD and so would not directly apply for S-type or T -type

ALPs. These must be revisited however should the light S- or T -type axions mix appreciably with

another type of axion that does couple to QCD.
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Figure 1: Constraints on axion-electron and axion-photon couplings from various astrophysical ob-

servations and lab searches [42, 43].

Figure 2: Constraints on axion decay constant vs mass, showing in particular the constraints on very

light Planck-coupled axions derived in [60–62]. (Figure taken from [42, 43].)

3.2 Constraints with large dimensions

Energy-loss bounds like the ones appearing in the Figures build on the observation that weakly coupled

particles provide an efficient way for astrophysical bodies to radiate away their energy. The bounds

come from requiring this process not be so efficient that it would prevent such objects surviving long

enough to have been detected with the properties they are observed have.

The UV completion is essential to understanding these bounds because the energies involved (such

as for red giants or supernovae) are typically much greater than the eV-sized KK scales associated
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with its onset. For a mode coupling strength 1/F with F ∼ M2L ∼ Mp the emission rate for any

specific KK mode of energy M � E � 1/L is ΓE ∼ (E3/F2) ∼ (E3/M2
p ) is at present not observable.

Energy-loss bounds are nevertheless important for extra dimensional models because of the enor-

mous available phase space into which energy can be lost. These constrain the extra-dimensional UV

scale M because the density of states for momenta much higher than the KK scale is dn/d2k ∼ L2

and so the total emission rate up to a maximum energy M � Q� 1/L is of order

Γtot ∼
∫
E<Q

d2k

(
dΓ

dn

)
dn

d2k
∼
∫
E<Q

d2k L2

(
E3

F 2

)
∼ Q5

M4
. (3.1)

Careful evaluation of the emission rate into extra dimensions in this way imposes significant constraints

on the scale M in the extra dimensions for large-dimension models (for which Q� 1/L even at MeV

scales) [22, 33], leading for supersymmetric extra dimensions to constraints of order21 M >∼ 20 TeV

[34]. Yoga models satisfy these constraints because for them the extra-dimensional scale is (by design)

higher than this.

Early-universe cosmology

A well-known complication of large-dimensional models is that the gravitational response of cosmology

to ordinary matter should be cast within an extra-dimensional framework right up until relatively

recently. For extra dimensions at eV scales a 4D description along the lines given in the Yoga-model

cosmologies described in [2] should suffice for temperatures at and below an eV, ensuring that extra-

dimensional UV completions play no role starting around recombination.

In principle the physics of earlier epochs could require fully evolving within the 6D gravitational

response of the UV theory, but this also might not be strictly necessary depending on the universe’s

earlier history. Unfortunately very little is known about cosmological solutions to the full 6D field

equations (see however [44] for fully 6D explorations of inflationary dynamics). This also complicates

fully analysing the origins of primordial fluctuations, and so in particular whether late-time isocurva-

ture perturbations [45] are necessarily present (whose observed absence [46] constrains theories with

light scalars present at late times).

Broad circumstances under which cosmology might remain effectively 4-dimensional are consid-

ered in [22], who argue that complicating extra-dimensional effects (like energy loss into the extra

dimensions) can conceivably be neglected up to temperatures above those relevant to Big Bang Nu-

cleosynthesis (BBN). Care must also be taken to ensure that extra-dimensional KK modes cannot

decay into SM degrees of freedom (such as photons) at late times, since doing this excessively can ruin

the success of standard Hot Big Bang cosmology (for a review see [47]). We here also assume such

arguments apply, justifying use of a 4D framework.

3.3 Relationship to SLED models

We see that Yoga models are very similar to earlier SLED models in their implications for UV (above

eV scale) phenomenology. They resemble one another strongly because the details of the geometry of

the two large extra dimensions are largely irrelevant for applications to energies much larger than an

eV. For modes with energies Q� 1/L wavelengths λ ∼ 1/Q are so short that an expansion in powers

of λ/L converges extremely quickly, and predictions can become indistinguishable from the L → ∞
limit.

21Indeed it is because these constraints were this high that that energy-loss signals of extra dimensions were unlikely

in the E < 14 TeV collisions at the LHC.
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It is the low-energy predictions that do depend more sensitively on extra-dimensional geometry,

such as the mass spectrum of the lightest moduli and the energetics that generates their scalar potential

(and stabilize their expectation values). It is there that we should seek differences between Yoga and

SLED models, and indeed we argue that it is the absence of the Yoga mechanism’s no-scale structure

and relaxation mechanisms that ultimately precluded SLED models from giving lower vacuum energies

than they did.

To see how this works it is useful to imagine a framework within which both Yoga and SLED models

are particular limits. For these purposes it is useful to work within the concrete example of gauged

chiral 6D supergravity [41], within which SLED models explore vacua described by deformations of

the explicit solutions of [40] for which the presence of a background Maxwell field, 〈Fmn〉, stabilizes

the extra dimensions into deformed 2-spheres (‘rugby ball’ geometries). The effective four-dimensional

supergravity described by these solutions is as given in [48], and involves complex S and T moduli,

much as described above in §2.1 where L is the sphere’s radius modulus and s is the 6D dilaton.

It is useful to think of the Salam-Sezgin solution to be a deformation of the toroidal compact-

ifications that are more appropriate in the limit 〈Fmn〉 = 0, in which we would expect there to be

an additional complex modulus, U , associated with the toroidal complex structure. From the 4D

point of view we should imagine that the energy associated with the nonzero Maxwell flux introduces

a dependence of the superpotential on U in such a way that 〈U〉 can be fixed at a supersymmetric

mimimum, found by solving DUW = 0. The Maxwell flux also introduces a Fayet-Iliopoulos term that

stabilizes T at a supersymmetric point [48], leaving only S free to parameterize a flat direction along

which W = 0 and so supersymmetry remains unbroken. The low-energy 4D supergravity describing

this last flat direction is not a no-scale model.

For the Yoga mechanism we might instead choose to leave all three moduli unfixed by W and by

D-term potentials, so that they can provide a nonsupersymmetric no-scale limit whose flat direction

is lifted (and moduli stabilized at much larger values) by the RG mechanism described in [2]. The

simplest 2-torus – with two similarly large sides L1 ∼ L2 ∼ L – predicts S, T ∝ L2 and U ∼ O(1)

and so gives τ (identified by equating (2.18) to −3 ln τ) is too small, but this can be alleviated using

constructions along the lines described in §2.2.

This perspective shows why the Salam-Sezgin based SLED story never in practice led to a suf-

ficiently small vacuum energy [49] and why the Yoga model does better. But it also shows why the

successes of the SLED story in accounting for the small size of UV quantum corrections [26, 27] should

also apply to Yoga models: vacuum energies on the brane act to curve the extra dimensions and not

the dimension seen in cosmology, and supersymmetry suppresses UV contributions from the bulk.

Yet the localization of SM particles on the brane also explains why many 4D inferences about their

properties (e.g. τ -dependence of masses) remains reliable despite the presence of extra dimensions. In

this sense Yoga models capture the best of both the 4D and 6D perspectives.

4 Long-range forces: shift-symmetric vacuum

We now change gear and use the above insights into axiodilaton-matter couplings to examine more

closely the implications of the above types of axio-dilaton/matter couplings for very low-energy phe-

nomenology. In particular we focus on the parameter regime for which Vmin <∼ 10−80M4
p , for which

the dilaton Compton wavelength exceeds 10 km and so bounds on gravitational strength Brans-Dicke

forces become a problem, clarifying the role of axion shift symmetry and the low-energy role of the

relaxon field χ.
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Our interest in particular is to use the knowledge of matter-axion couplings to model the interior

solutions for gravitating sources, and see whether the bound-evading exterior solutions of [3] are

actually generated. The discussion proceeds differently depending on whether or not the axion shift

symmetry is broken by the vacuum so we consider these two options separately, restricting in this

section to the case where the vacuum preserves the SL(2, R) invariance of the leading order axiodilaton

field equations.

4.1 New exterior solutions

We start by constructing a new broad class of solutions to the axiodilaton field equations, extending the

spherically symmetric solutions found in [3] to include a broad class of solutions with less symmetry.

To this end we explore the semiclassical implications of the action

L = −
√
−g M2

p

[
R
2

+
3

4

(
∂µτ ∂µτ + ∂µa ∂µa

τ2

)]
+ Lm , (4.1)

where Lm = Lm(g̃µν , a, ψ) is the matter lagrangian density, in which ψ is a generic matter field and

g̃µν = A2(τ) gµν with A = τ−1/2. The corresponding axiodilaton field equations are

�τ − 1

τ

(
∂µτ ∂

µτ − ∂µa ∂µa
)
− τ T

3M2
p

= 0 , �a− 2

τ
∂µτ ∂

µa +
τ2A
3M2

p

= 0 , (4.2)

and

Rµν +
3

2τ2

(
∂µτ ∂ντ + ∂µa ∂νa

)
+

1

M2
p

(
Tµν −

T

2
gµν

)
= 0 , (4.3)

where we write T = gµνT
µν with

Tµν :=
2√
−g

(
δSm
δgµν

)
ψ,a

and A :=
2√
−g

(
δSm
δa

)
ψ,g̃µν

. (4.4)

As is easy to verify directly, the field equations are equivalent to divergence relations

DµJ
µ
(a) = − A

3M2
p

, DµJ
µ
(s) =

(T − aA)

3M2
p

and DµJ
µ
(n) =

(a2 − τ2)A− 2aT

3M2
p

, (4.5)

for the following three currents

Jµ(a) =
∂µa

τ2
, Jµ(s) =

∂µτ

τ
+

a ∂µa

τ2
and Jµ(n) =

(τ2 − a2)

τ2
∂µa− 2a

τ
∂µτ . (4.6)

In particular these are all conserved in regions where Tµν = A = 0, reflecting the classical SL(2, R)

invariance enjoyed by the axio-dilaton part of the action (4.1).

Previous sections tell us that the leading microscopic axion/matter couplings have the form

Lm 3 −
√
−g ∂µaJ µ (4.7)

with currents J µ as given in (2.2) and (2.3). This implies A = 2DµJ µ and so the first of (4.5) implies

the combination Jµ := Jµ(a) + 2
3 (J µ/M2

p ) satisfies

DµJ
µ = Dµ

(
Jµ(a) +

2J µ

3M2
p

)
= 0 (4.8)
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even in the presence of matter. This is Noether’s theorem at work because (4.7) preserves the invariance

under constant axion shifts: a→ a + c.

For the Chern-Simons interactions given in (2.3) the current J µ in (4.7) is not gauge invariant,

although DµJ µ is (and is nonzero). In this case gauge invariance is more transparent if we write Lam
in the form

Lam =
√
−g aDµJ µ . (4.9)

Broken shift symmetry then obstructs finding a gauge-invariant current Jµ satisfying (4.8).

General class of exterior solutions

We next derive a broad class of exact solutions to the classical scalar equations exterior to a source

that extend the weak-field spherically symmetric ones found in [3] and the strong-field spherically

symmetric solutions of [50] (see also [51] for an independent discussion) .

We first notice that the currents (4.6) imply that for any constant α

Jµ(s) − αJ
µ
(a) =

∂µ[τ2 + (a− α)2]

2τ2
, (4.10)

reflecting the important role played in [3] by semicircles τ2 + (a− α)2 = β2 that are the geodesics of

the target space metric ds2 = (dτ2 + da2)/τ2. This suggests the ansatz

τ =
β

coshX
and a = α+ β tanhX , (4.11)

with α and β constants and X = X(x) a general function of position and time. This ansatz implies

the axion current becomes

Jµ(a) =
∂µa

τ2
=
∂µX

β
and so ∂µ

(√
−gJµ(a)

)
=

√
−g �X
β

, (4.12)

which shows �X = 0 suffices to guarantee conservation of Jµ(a) (as (4.5) shows is true whenever A = 0).

But (4.10) and (4.11) together imply Jµ(s) = αJµ(a) so Jµ(s) is also conserved. Similarly

Jµ(n) =
∂µX

β

[
β2

cosh2X
− (α+ β tanhX)2 + 2β(α+ β tanhX) tanhX

]
=

(
β2 − α2

β

)
∂µX , (4.13)

and so �X = 0 also suffices to ensure conservation of Jµ(n) (as must hold whenever T = A = 0).

It follows that the ansatz (4.11) promotes any solution of �X = 0 to a solution of the axio-dilaton

equations (4.2) exterior to sources (where A = Tµν = 0). All that is required to obtain a full solution

then is to solve the Einstein equations (4.3). Using

∂τ = −β sinhX

cosh2X
∂X and ∂a = − β

cosh2X
∂X (4.14)

allows the derivation of the identity τ−2(∂µτ∂ντ + ∂µa ∂νa) = ∂µX ∂νX, and so (4.3) becomes

Rµν +
3

2
∂µX ∂νX +

1

M2
p

[
Tµν −

1

2
gλρTλρ gµν

]
= 0 . (4.15)

In the absence of sources we can therefore take any solution of the coupled Einstein/Klein-Gordon

equations and promote it into a solution of the full Einstein-axiodilaton equations.
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Multipole solutions

Specializing to static solutions on a flat spacetime metric, in spherical coordinates (r, θ, ξ) the general

solution to ∇2X = 0 is

X(r, θ, ξ) =

∞∑
`=0

∑̀
m=−`

(
a`mr

` +
b`m
r`+1

)
Y`m(θ, ξ) (4.16)

for spherical harmonics Y`m(θ, ξ) and arbitrary constants a`m and b`m. Requiring τ to be finite and

nonzero at spatial infinity then implies a`m = 0 for all ` 6= 0. Further assuming axial symmetry

(independence of ξ) then sets all coefficients to zero when m 6= 0, leading to a standard multipole form

X(r, θ) = a0 +

∞∑
`=0

b`
r`+1

P`(cos θ) . (4.17)

The integration constants appearing in this solution can be read off from the radial components

of the currents just outside the source, as usual. For instance the radial flux of the current Jµ(a) at

r = R is given – c.f. (4.12) – by

R2Jr(a)(R, θ) = R2

(
∂rX

β

)
r=R

= −
∞∑
`=0

(`+ 1)
b`
βR`

P`(cos θ) , (4.18)

from which all of the b`’s can be read off by equating the θ-dependence of both sides.

Spherical symmetry corresponds to ` = 0, for which the above agrees with the spherically sym-

metric solutions given in [3] if we define b0 = βγ and a0 = δ so that X = δ + (βγ/r) and the leading

far-field behaviour is given by

τ =
β

coshX
= τ∞

[
1− βγ

r
tanh δ + · · ·

]
and a = a∞ −

β2γ

r cosh2 δ
+ · · · . (4.19)

Test-particle motion

The above solutions determine the motion of test particles, which for weak axion/matter couplings

move along geodesics of the Jordan-frame metric g̃µν = A2gµν = gµν
√
τ∞/τ . Constraints coming

from measurements of test-particle motion are therefore conveniently described by parameterizing this

metric in terms of post-Newtonian parameters.

For the above spherically symmetric solutions the relevant PPN parameters turn out to be [3]

γPPN =
1− 2λeff tanh δ

1 + 2λeff tanh δ
, (4.20)

and22

βPPN =
1 + 4λeff tanh δ + 4λ2

eff

(1 + 2λeff tanh δ)2
= 1 +

4λ2
eff

(cosh δ + 2λeff sinh δ)2
, (4.21)

where λeff is defined by

βγ =: −4λeffGM (4.22)

22In principle βPPN is sensitive to 1/r2 contributions to g̃tt, which in PPN formulations is written g̃tt = −1 + 2U −
2βPPNU2 + · · · where U is the Newtonian potential. We quote here the prediction of [3] for monopole sources because

in practice a dipole contribution to the dilaton coming from the ` = 1 term of (4.17) is indistinguishable from a very

small but nonzero dipole moment for the gravitating source in U .
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with M =
∫

d3x ρ (for Einstein-frame energy density ρ ' −T ) being the leading Newtonian contri-

bution to the gravitational (and inertial) mass in Einstein frame. Agreement with solar-system tests

requires both |βPPN − 1| <∼ 10−5 and |γPPN − 1| <∼ 10−4 and these combined tell us that λeff <∼ 10−5

largely independent of the value of δ.

Brans-Dicke theory [9–12] can be defined as a massless and canonically normalized scalar field

sBD that couples minimally to gravity in Einstein frame but couples to matter through the metric

g̃µν = A2gµν with A = exp(gφBD/Mp). The parameter g defines the Brans-Dicke coupling.23 Using

A = τ−1/2 and (4.1) reveals ln τ to be a Brans-Dicke scalar (at least in the absence of the axion, to

leading order in 1/τ) with coupling g2 = 1
6 .

Eqs. (4.20) and (4.21) go over to standard Brans-Dicke results in the limit δ →∞ and λeff → g2,

but the observation made in [3] is that there is no a priori reason λeff and δ obtained from the solution

exterior to a source need agree with g2 = 1
6 and δ → ∞ when both axion and dilaton are present.

They in general differ because λeff is given in terms of the integration constants β and γ by (4.22) and

these (and δ) must be obtained by matching to an interior solution at r = R, just outside the source’s

surface. For instance, integrating the DµJ
µ
(a) and DµJ

µ
(s) equations of (4.5) through the interior of the

source leads to

γ = R2

(
∂ra

τ2

)
r=R

= − 1

3M2
p

∫ R

0

dr r2A(r) , (4.23)

and

γα = R2

(
∂rτ

τ
+

a ∂ra

τ2

)
r=R

= − 1

3M2
p

∫ R

0

dr r2
[
ρ(r) + a(r)A(r)

]
, (4.24)

while β2 = τ2(R) + [a(R)−α]2. An equivalent (and often more useful) way to rewrite (4.24) combines

it with (4.23) to give

γ
(
a(R)− α

)
= −R2

(
∂rτ

τ

)
r=R

=
1

3M2
p

∫ R

0

dr r2
[
ρ(r) +

(
a(r)− a(R)

)
A(r)

]
. (4.25)

Of course just because a theory has a potential escape route from dangerous observations doesn’t

mean that it necessarily uses it. Saying more about how Yoga models fare once compared to e.g. solar

system tests requires knowing more about A, and so partially relies on the UV completion above

eV scales provided here since these are required to formulate matter-axion interactions within as-

trophysical environments. We pursue interior solutions further in §4.3 but first pause to describe

constraints/opportunities that require only the solutions given above and in [2], to do with observable

effects associated with τ providing position-dependent masses to ordinary particles.

4.2 Mass variation

A signature prediction of these models is that all non-neutrino SM particle masses are proportional to

τ−1/2, while neutrino masses plausibly vary like τ−1. Any spatial or temporal variation of τ implies a

similar variation of these masses relative to the Planck scale (which in Einstein frame is fixed). Because

all masses scale in the same way all non-neutrino mass ratios remain independent of spacetime position.

We here estimate the magnitude of these mass variations, within the solar system and in cosmology.

For bodies within the solar system we use the above explicit external solutions in the weak-field limit,

since these anchor the dilaton profile for all bodies to a common reference value τ∞ at spatial infinity.

23In our conventions g is related to the conventional Brans-Dicke parameter ω by 2g2 = (3 + 2ω)−1.
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Variation between the surfaces of different celestial objects

Consider first the variation between particle masses on the surface of different celestial objects, such

as by comparing spectral lines on the surface of the Sun and on the surface of the Earth. Using

βγ = −4λeffGM the external dilaton solution given in (4.19) becomes

1

τ(r)
=

1

β
cosh

[
4λeffGM

r
− δ
]
' 1

τ∞

[
1− 4λeffGM

r
tanh δ + · · ·

]
, (4.26)

and so the change in a particle’s mass between the surfaces of the sun and the earth (say) would be

m(R�)−m(R⊕)

m(R⊕)
=

√
τ(R⊕)

τ(R�)
− 1 ' 2λeff

[(
GM

R

)
⊕
−
(
GM

R

)
�

]
tanh δ . (4.27)

Given that (GM/R)⊕ ∼ 10−10 and (GM/R)� ∼ 10−6 and solar system tests require λeff <∼ 10−5, we

see that masses on the surface of the Sun are smaller than those on the Earth at most by about 1 part

in 1011. It seems unlikely that spectral lines on the solar surface will soon be measured with sufficient

accuracy to test this.

Variation with altitude on Earth

Mass variation with position near the Earth’s surface is more likely to be testable (given the current

precision of atomic clocks being 1 part in 1016). An estimate of the mass difference due to a change

of height h above the Earth’s surface is

m(R+ h)−m(R)

m(R)
=

√
τ(R)

τ(R+ h)
− 1 ' 2λeffh

R

(
GM

R

)
tanh δ . (4.28)

This is at most order 10−18 for an altitude h/R⊕ ∼ 10−3 above sea level on Earth (the altitude of

Colorado, say) given that (GM/R)⊕ ∼ 10−10. Although beyond the reach of current atomic clocks, it

might become measurable in the not too distant future if λeff tanh δ is close to its upper bound.

Variation inside gravitating bodies

An estimate of the variation between masses at the center and surface of a gravitating body cannot be

done using only exterior solutions, and requires solving the field equations in the presence of nonzero

energy and axion-source density. A conservative estimate for the size of these mass variations interior

to the Earth is obtained by assuming that it is unsuppressed by factors of λeff and is similar to the

naive Brans-Dicke result:
m(R)−m0

m0
=

√
τ0
τ(R)

− 1 = O
(
GM

R

)
(4.29)

which is order 10−10 (or 10−6) between the Earth’s (or Sun’s) centre and surface, for example.

Although it seems unlikely to be able to determine ordinary particle masses accurately enough

at the centre of the Earth (or other bodies) to test (4.29), the fact that neutrino masses can scale

differently with τ than masses of ordinary matter means that this variation might conceivably alter

the details of matter-dependent neutrino oscillations within the Sun or Earth. This might be hoped

to be relevant for resonant oscillations, since resonance requires small neutrino mass differences, ∆m2
ν ,

to coincide with equally small matter-induced energies, GFneEν . Unfortunately although this could

change the depth at which a resonance occurs it is unlikely to remove a resonance entirely, making it

difficult to observe.
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4.3 Interior solutions and matching

The simplest case assumes the vacuum preserves both the SL(2, R) and shift symmetries, leaving open

whether the couplings to matter also do so. In this case the equations of motion governing the fields

outside the source are those described above – c.f. eqs. (4.2) and (4.3) and the open question is how

axiodilaton-matter couplings within a source’s interior source these solutions.

Brans-Dicke limit

We start by examining more carefully the Brans-Dicke limit A → 0 in which the source does not

couple at all to the axion. Denoting radial derivatives by primes, the A → 0 limit of (4.23) implies

γ = R2

(
a′

τ2

)
r=R

= − 1

3M2
p

∫ R

0

dr r2A(r)→ 0 , (4.30)

while (4.25) instead says

γ
(
a(R)− α

)
= −R2

(
τ ′

τ

)
r=R

→ 1

3M2
p

∫ R

0

dr r2 ρ(r) =
2GM

3
, (4.31)

with the last equality defining M . Because the right-hand side is fixed this implies a(R) − α must

diverge as γ →∞.

But λeff is determined from (4.22) by the product βγ where β2 = τ2(R) + [a(R)− α]2, and so

λeff = − βγ

4GM
=

1

4GM

[
γ2τ2(R) + γ2[a(R)− α]2

]1/2
→ 1

6
(4.32)

as expected, after using (4.31) and assuming γ τ(R)→ 0. The question is whether the A-dependence

of (4.23) and (4.25) can reduce this result.

Unbroken shift symmetry inside the source

Now comes a key observation: the constant γ vanishes for spherically symmetric configurations if the

axion/matter couplings inside the source preserve the axion’s shift symmetry. To see why, recall from

§4.1 that A = 2DµJ µ when linear axion-matter couplings are shift-symmetric, which for spherically

symmetric configurations on flat space implies r2A = (r2J )′ for J = 2J r. The conservation law (4.8)

in this case then states that the radial flux of the current Jµ is r-independent:(
r2Jr

)′
=

[
r2

(
a′

τ2
+
J

3M2
p

)]′
= 0 (4.33)

both inside and outside the source. But this means the radial flux must vanish because boundedness

of the current implies r2Jr → 0 as r → 0 deep within the interior. But γ = r2Jr = r2a′/τ2 for r > R

(outside the source) so it follows that γ must also strictly vanish.

Of course this does not mean that there is no axion field external to a source that couples to

the axion in a shift-symmetric way. What it means is that shift-symmetric couplings generate higher

multipole moments than the monopole, and so are not spherically symmetric. Although this means

that the exterior solution obtained by matching from the interior has nonzero constants like b` in

e.g. (4.17), the key ‘monopole’ constant γ vanishes. Because of this the exterior scalar fields fall off

too quickly in powers of 1/r to affect the prediction for the PPN parameters, and consequently cannot

help suppress predictions relative to the Brans-Dicke result.
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This puts a premium on axion-matter couplings that break the shift symmetry, something that

only happen for Φ-type axions, at least withing the candidate interactions in the UV completions24

described in §2. In principle such axions can also mix with the lower-mass counterparts, so in what

follows we pursue the possibility that the axiodilaton could have shift symmetry breaking couplings to

matter in order to see what this might imply for dilaton couplings. We first consider the case where

matter couplings within a gravitating source break shift symmetry without the vacuum outside the

source also doing so – something that would not be appropriate limit if shift symmetry is broken by

the QCD anomaly, but which can arise once the axion potential is subject to the relaxon dynamics in

Yoga models (whose full discussion we are exploring but whose discussion we defer to future work).

Broken shift symmetry within the source

We next examine the case where the axion shift symmetry is broken by the matter-axion couplings

but is not broken in the vacuum.

For concreteness we assume the axion source density to be proportional to the energy density

A = ε ρ (4.34)

for a coefficient ε that is itself in general axion-dependent; often a periodic function of b should a

discrete subgroup of shifts remain unbroken. If the axion is a pseudoscalar then CP conservation

would predict ε(−a) = −ε(a) and so in particular ε = 0 when a = 0 for any macroscopic object

[52]. This implies any axionic charge is necessarily suppressed by CP-violating couplings, and so

ε ∼ 10−17 − 10−19 if it is the Standard Model that provides the CP violation [53]. Although ε can

be larger than this if new physics provides the CP violation the experimental absence of a neutron

electric dipole moment make it likely that ε <∼ 10−10 [54].

The generic problem in this framework is to find ε such that |λeff | is much smaller than its Brans-

Dicke value of 1
6 . What makes this difficult is (4.32), which implies∣∣∣λeff

∣∣∣ ≥ |γ[a(R)− α]|
4GM

, (4.35)

together with (4.25), which with (4.34) implies

γ
(
a(R)− α

)
=

8πG

3

∫ R

0

dr r2ρ(r)
[
1 +

(
a(r)− a(R)

)
ε(r)

]
. (4.36)

Small values for λeff require a significant cancellation within the square bracket of (4.36), which is

difficult for several reasons:

• First, (4.36) shows that |λeff | ≥ 1
6 whenever [a(r)− a(R)]ε(r) is positive. When this is true the

presence of the axion makes the source-dilaton coupling relevant to tests of gravity larger rather

than smaller.

• Second, it can be shown that [a(r)− a(R)]ε(r) ≥ 0 whenever ε(r) has a definite sign (positive or

negative) because (4.23) and the boundary condition a′(0) = 0 imply a(r) − a(R) then has the

same sign as ε(r). This observation is borne out by the explicit interior solutions that are found

analytically in Appendix A, which are derived under the assumption that the axio-dilaton varies

only very slowly over the interior of the source.

24Φ type axions can acquire QCD-like couplings through for example
∫
B ∧ F ∧ F on-brane interactions, such as can

arise in anomaly cancellation in higher dimensions.
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Suppression of the effective dilaton coupling therefore requires ε to change sign within the source

and requires the axion to vary quickly within the interior. We have searched this part of parameter

space by evaluating the interior solutions numerically, seeking a functional form for ε that allows |λeff |
to be small, with particular interest in configurations where [a(r)−a(R)]ε(r) can negative. Fig. 3 shows

a representative example of one such a numerical solution, chosen so that ε changes sign multiple times

near the source’s surface.

We have so far neither found an example with |λeff | < 1
6 and – although the numerical evidence

suggests it – have not yet been able to prove that this is impossible.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Axio-dilaton properties as a function of r/R, showing the two input functions (a) ρ(r)

and (b) A(r) = ερ together with the calculated outputs (c) λeff(r), (d) a(r), (e) log τ(r), (f) [a(r) −
a(R)]A(r), (g) α(r), (h) β(r) and (i) γ(r). Here γ(r) and α(r) are found by evaluating (4.23) and

(4.24) at an arbitrary radius (rather than r = R) while β2(r) := τ2(r) + [a(r) − α(r)]2 and λeff(r) =

−β(r)γ(r)/4GM with M = 4π
∫ R

0
r2ρ(r) dr. These must (and do) approach the constants α, β, γ and

λeff exterior to the source. For this example λeff ' −0.168, although other choices give positive λeff .

5 Conclusions

In this article we study the phenomenological aspects of an axion-dilaton system that appears gener-

ically in string and supergravity theories as real and imaginary parts of scalar components of grav-

itationally coupled chiral superfields or moduli. Recent studies suggest the potential importance of
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these fields to be active for late-time cosmology and address important questions, such as the relation

between the scales of dark energy, neutrino masses and electroweak symmetry breaking, if they happen

to be light enough [2]. In particular the presence of the light axion partner of the dilaton was suggested

to provide a new mechanism to potentially screen dilaton couplings to standard model matter – axion

homeopathy [3] –that could help to evade the observational problems of Brans-Dicke scalars.

We examine both IR and UV aspects of these theories in turn.

UV implications

In the UV side we address the following issues:

• Axion UV coupling problem. The large value of the dilaton field τ ' 1028 that provides the

observed hierarchies of scale also apparently gives rise to a very low axion decay constant: f ∼
eV. This suggests strongly coupled axion dynamics at low enough energies to be dangerous.

We explore the breakdown of EFT methods at eV scales by embedding into a concrete UV

completion at these scales in terms of a higher dimensional supersymmetric theory with two

very large extra dimensions. The supersymmetry of the gravity sector in this case arises because

the extra-dimensional bulk is supersymmetric, and this is consistent with the Standard Model

sector not being supersymmetric up to TeV scales if it is situated on a supersymmetry breaking

brane (as is common in standard brane-world scenarios). Axions arise in this framework as

KK modes for bulk antisymmetric tensor fields, BMN , and we verify that dimensional reduction

reproduces the SL(2, R)-invariant kinetic terms whose presence predicts small f (and so the

need for UV completion).

• Axion unitarization. The UV completion allows us to identify the real coupling strength of each

axionic mode, to compare with the naive EFT expectation. We find in all cases that individual

axion states couple only with 4D Planck strength and so are not strongly coupled at any energies

below TeV scales. We identify several different ways this happens, focussing on two in particular:

‘S-type’ axions are dual to the universal 4-dimensional antisymmetric tensor Bµν and ‘T -type’

axions come from components Bmn in the two large directions of an asymmetric compactification.

We find that the naive EFT coupling estimate for T -type axion-matter interaction gives F ∼Mp

rather than F ∼ f once carefully done. The naive estimate for couplings of the S-type axion

in this case is correct – F ∼ f – but the UV theory instead produces its dual bµν which is only

weakly coupled (again with Planck strength).

• UV observational bounds. Having a description at up to TeV energies allows a discussion of axion

production and energy-loss bounds, and we find that these generally coincide with standard

energy-loss constraints for higher-dimensional models. They need not pose a problem provided

that the 6D gravity scale is above several tens of TeV. This automatically also ensures that

collider signals are too small to have yet been seen.

• Microscopic origin of scales. In the UV theory the large size of the dilaton field τ arises from the

large size of the extra-dimensional volume in units of the 6D gravitational scale. Ref. [2] argues

that the naive correspondence between them τ ' V2/3 cannot be valid because it would imply

unrealistically small string and Kaluza-Klein scales. Ref. [2] proposed addressing this issue using

stringy tools such as asymmetric compactifications, warped factors and superpotential tuning.

We here provide a different mechanism in which additional factors of volume are contributed by

6D-dilaton and complex structure moduli, motivated by string-inspired examples. We leave for
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the future extending the theory about TeV scales through a proper string embedding including

stabilization of all other moduli.

• Yoga vs SLED Scenarios. The UV completion we suggest is very similar to the scenario of super-

symmetric large extra dimensions scenario (SLED) since in both cases Standard Model physics

is localized on nonsupersymmetric branes within two large and comparatively supersymmetric

extra dimensions. Because of this Yoga models inherit SLED properties at energies larger than

the eV threshold and shares their nice UV properties (such as a decoupling of large on-brane UV

scales from 4D spatial curvature). However at low energies the accidental low-energy symmetries

of the Yoga scenario leads to smaller scalar potentials than were found in SLED models, sug-

gesting that SLED scenarios might improve if moduli were stabilized to exploit the low-energy

extended no-scale structure that Yoga models build in.

IR implications

In the IR we find

• New class of background solutions. We find a broad new class of solutions for the coupled axio-

dilaton and Einstein field equations that apply outside a gravitating object. These solutions

promote an arbitrary solution of a Klein-Gordon field coupled to gravity into a full solution of

the Einstein-axiodilaton equations. We use these to extend the solutions found in [3] beyond

spherical symmetry to include the general multipole expansion in the weakly gravitating regime.

It is the underlying SL(2, R) symmetry of the equations that allows such a general analytic

result. We also explore solutions in the interior of the macroscopic object and match it to

exterior solutions.

• Breaking of shift symmetry. We show that dilaton-matter couplings are not screened by axion-

matter couplings if these do not break the axion shift symmetry within matter. If matter

couplings do not break the axion shift symmetry then only higher multipole moments arise for

the external axion field and we show why these fall off too quickly to contribute to the PPN

parameters γPPN and βPPN and so leave the standard Brans-Dicke result that is experimentally

ruled out.

• Numerical exploration of axio-dilaton response. We numerically explore solutions when shift

symmetry is broken by axion-matter couplings without also being broken in the vacuum. We

find constraints the axion coupling that are necessary (but not sufficient) conditions for reducing

apparent dilaton couplings to matter. We numerically explore axio-dilaton response to macro-

scopic gravitating sources for a wide class of axion-matter couplings, finding no examples that

successfully suppress the effective dilaton-matter coupling25.

Both very light axions and very light dilaton fields have been considered over the years for appli-

cations to astrophysics and late time cosmology. We find that considering both at the same time –

particularly with the SL(2, R)-invariant target-space interactions – offers an even richer phenomenol-

ogy that paradoxically evades some of the bounds each could individually suffer from separately. The

fact that the required interactions also appear naturally in supersymmetric field and string theories

25In [3] interior solutions were left for future work. Here, we are including interior solutions and so far have not

found the matching that effectively screens the Brans-Dicke field couplings to matter. We leave for future work a more

complete study of screening mechanisms.
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only adds to their potential relevance. They bring many surprises: smaller vacuum energies and rich

and unusual long-distance response. We leave further studies, addressing screening mechanisms and

including cosmological implications to a future publication [66]

Although the suppression mechanism underlying Yoga models does allow smaller than usual vac-

uum energies, they so far seem to founder because the light scalars they imply seem to be ruled out by

tests of gravity within the solar system. We believe the model-building issues needed to evade these

tests are likely easier to solve than has been the cosmological constant problem itself, and although

we have found a number of new ways in which axiodilaton-matter couplings can interestingly suppress

how the dilaton couples to gravitating objects,26 none yet have completely allowed solar system tests

to be evaded. We find many more possibilities in the model-building of axiodilaton response to macro-

scopic objects than seem to be available as alternatives to understanding the cosmological constant

problem. We hope Yoga models will prove to be a small step in the thousand-mile journey towards

solving the puzzle of how the vacuum gravitates.
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A Slowly varying interior solutions

This appendix considers the simplest model for interior axion-matter couplings in order to illustrate

in a solvable situation precisely how axion-matter couplings modify naive Brans-Dicke expectations

and to identify more clearly how weak couplings approach the Brans-Dicke limit. Throughout it is

important to remember that the sources ρ(r) and A(r) are also in general functions of the two scalar

fields τ and a, and so are in particular generically position dependent. The limit of an incompressible

medium (with constant energy density) makes the most sense for weakly gravitating objects in the

Jordan frame.

Matching

As described in the main text, the general exterior solution (4.11) is characterized by four integration

constants (α, β, γ and δ). Two of these (γ and α) are determined by the interior properties of the

source through the matching conditions (4.23) and (4.24), reproduced for convenience here:

γ = R2

(
∂ra

τ2

)
r=R

= − 1

3M2
p

∫ R

0

dr r2A(r) , (A.1)

and

γα = R2

(
∂rτ

τ
+

a ∂ra

τ2

)
r=R

= − 1

3M2
p

∫ R

0

dr r2
[
ρ(r) + a(r)A(r)

]
, (A.2)

26These include mixing of S, T and Φ type axions and the interplay of their matter interactions with those of the

Yoga model’s relaxon field.
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where r = R is the radius of the source’s surface. Using (A.1) in (A.2) allows it to be rewritten as

γ
[
a(R)− α

]
= −R2

(
∂rτ

τ

)
r=R

=
1

3M2
p

∫ R

0

dr r2
[
ρ(r) + [a(r)− a(R)]A(r)

]
. (A.3)

It turns out that if A(r) has a definite sign then a(r < R)− a(R) has the same sign as A – as can be

seen from (A.6) below assuming the spherically symmetric initial condition r2∂ra = 0 at r = 0) – and

so eq. (A.3) implies γ[a(R)− α] = 2
3GM(1 + ∆) with ∆ ≥ 0.

The other two constants (β and δ) are determined by the values taken by the exterior fields,

τ? = τ(r?) and a? = a(r?), at any fixed exterior reference radius r? – such as asymptotically at infinity

(r? = ∞) or near the surface of the source (r? = R). Any such values determine the semicircle on

which the exterior solution lies, so β is determined by

β =
[
τ2
? + (a? − α)2

]1/2
, (A.4)

while δ can be found from either of the following two conditions:

τ? =
β

cosh δ
and a? = α+ β tanh δ . (A.5)

Interior field equations

Consider first a spherically symmetric ansatz that breaks shift symmetry, possibly down to a discrete

subgroup (as would be true in particular if it is the QCD anomaly that breaks the shift symmetry).

An unbroken discrete symmetry implies physics is periodic under a → a + 2π, with for instance

ρ(a + 2π) = ρ(a) and A(a + 2π) = A(a). It can be useful to define ε(a, τ) := A(a, τ)/ρ, and in the

case where a is a pseudoscalar ε must be CP-violating and this implies ε is even under a→ −a.

In this case for r < R the spherically symmetric axion field equation (4.2) is the differential version

of (A.1):

∂r

(
r2∂ra

τ2

)
= − r

2A
3M2

p

, (A.6)

and the equation expressing conservation for Jµs in eq. (4.5) is similarly

∂r

[
r2

(
∂rτ

τ
+

a ∂ra

τ2

)]
= − r2

3M2
p

(ρ+ aA) (A.7)

and so

∂r

(
r2∂rτ

τ

)
= −∂r

(
r2a ∂ra

τ2

)
− r2

3M2
p

(ρ+ aA) = − r2ρ

3M2
p

−
(
r∂ra

τ

)2

, (A.8)

where the last equality uses (A.6).

We also require the metric equations and for weakly gravitating systems we can write the Einstein-

frame metric as gtt ' −[1 + 2Φ(r)] where the Einstein equations imply Φ satisfies

∇2Φ ' 4πGρ =
ρ

2M2
p

, (A.9)

and so when ρ = M δ3(r) we have the boundary condition n · ∇Φ ' GM where M :=
∫

d3r ρ, and

so Φ ' −GM/r exterior to a spherically symmetric source. This shows for weak fields that the

gravitational (ADM) mass agrees with the inertial mass in Einstein frame, with

M :=

∫
d3x ρ = 4π

∫ R

0

dr r2ρ(r) . (A.10)

– 29 –



M is not the gravitational mass, Mg = M̃ , as measured using the motion of orbiting test bodies,

since this is instead given by the 1/r term in the Jordan-frame metric component g̃tt ' −[1−2GM̃/r+

· · · ]. Given the large-r expansion of τ given in (4.19),

τ =
β

coshX
= τ∞

[
1− βγ

r
tanh δ + · · ·

]
, (A.11)

we see that

− g̃tt = −A2gtt = −τ∞
τ
gtt =

(
1 +

βγ

r
tanh δ + · · ·

)(
1− 2GM

r
+ · · ·

)
(A.12)

and so

M̃ 'M
(

1− βγ

2GM
tanh δ

)
= M (1 + 2λeff tanh δ) (A.13)

which uses the definition (4.22): λeff = −βγ/(4GM).

Frame-dependence of the equation of state

Before comiting to an equation of state for the interior it is useful to distinguish how the sources

are related to one another in Jordan and Einstein frames. In particular, incompressibility is most

naturally postulated in Jordan frame if the physics responsible comes from ordinary particles.

Using the definitions Tµν = (2/
√
−g)(δSm/δgµν) and T̃µν = (2/

√
−g̃)(δSm/δg̃µν) for the Einstein-

and Jordan-frame stress tensors, together with g̃µν = A2gµν implies
√
−g̃ = A4√−g and so

T̃µν = A−6Tµν , T̃µ
ν = A−4Tµ

ν , T̃µν = A−2Tµν , (A.14)

where indices are raised and lowered using the corresponding metric. Similarly the Jordan- and

Einstein-frame fluid 4-velocities satisfy g̃µνŨ
µŨν = gµνU

µUν = −1 and so Ũµ = A−1Uµ. Finally,

defining energy density and pressure in both frames using Tµν = (p + ρ)UµUν + p gµν and T̃µν =

(p̃ + ρ̃)ŨµŨν + p̃ g̃µν we see the Jordan- and Einstein-frame pressure and energy density are related

by27 p̃ = A−4p and ρ̃ = A−4ρ. In particular, equation of state parameters like w = p̃/ρ̃ = p/ρ are the

same in both frames and incompressible fluids in Jordan frame have constant ρ̃ and so

ρ = ρ̃A4 = ρ̃
(τ∞
τ

)2

∝ τ−2 . (A.15)

Interior solutions with broken shift symmetry

Eqs. (A.6) and (A.8) can be solved for the internal profiles τint(r) and aint(r) by changing variables to

u as defined by

u2 :=
2GMr2

R3
for which 0 < r < R implies 0 < u2 <

2GM

R
� 1 , (A.16)

and writing ρ(r) = [3M/(4πR3)]ρ̂(u) where ρ̂ is dimensionless and is normalized to satisfy
∫

d3x ρ̂ =
4
3πR

3. In terms of this, and writing A = ε ρ, eqs. (A.6) and (A.8) become

∂u

(
u2∂ua

τ2

)
= −u2ερ̂ , (A.17)

27Notice that scale factors are related by ã = Aa and so JF and EF particle densities satisfy ñã3 = na3 and so

ñ = A−3n. Then the equation of state for dust becomes ρ̃ = m̃ñ in JF and ρ = mn in EF and the consistency of these

with ρ̃ = A−4ρ implies m = m̃A, precisely as required if m̃ were independent of τ and m ∝ τ−1/2 ∝ A.
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and

∂u

(
u2∂uτ

τ

)
+

(
u ∂ua

τ

)2

= −u2ρ̂ . (A.18)

In principle ρ̂ is fixed by solving the matter field equations expressing hydrostatic equilibrium

(which, for gravitationally bound systems, can involve a feedback on the local gravitational potential

Φ). We take the simplest situation: where the Jordan-frame density is constant (incompressible

material) – and so ρ̂ = (τref/τ)2, with
∫

d3x τ−2 =: 4
3πR

3τ−2
ref – as also is the proportionality function

ε. Then eqs. (A.17) and (A.18) become

∂u

(
u2∂ua

)
− 2u2∂uτ ∂ua

τ
= −u2ετ2

ref , (A.19)

and

∂u

(
u2∂uτ

τ

)
+

(
u ∂ua

τ

)2

= −
(uτref

τ

)2

. (A.20)

Because u is always small within a weakly gravitating source slowly varying solutions can be found

as a series in powers of u, which starts at order u2 because smoothness at the origin requires the first

radial derivative to vanish at r = u = 0. So for 0 < r < R we seek solutions of the form:

τint = τ0

(
1 + c2u

2 + · · ·
)

and aint = a0 + a2u
2 + · · · , (A.21)

in which case eqs. (A.19) and (A.20) imply c2 = − 1
6 (τref/τ0)2 and a2 = − 1

6τ
2
refε(a0, τ0), so

aint = a0 −
ετ2

refGM

3R

( r
R

)2

+ · · · and τint = τ0

[
1− GMτ2

ref

3Rτ2
0

( r
R

)2

+ · · ·
]
, (A.22)

This allows us to compute τref as a function of τ0, M and R using

1

τ2
ref

=
3

4πR3

∫
d3x

1

τ2
int

=
3

R3

∫ R

0

dr
r2

τ2
int(r)

' 1

τ2
0

(
1 +

2GMτ2
ref

5Rτ2
0

)
, (A.23)

and so τref ' τ0 up to GM/R corrections.

Using these to match to the exterior solutions τ = β/ coshX and a = α + tanhX, with X =

(βγ/r) + δ, the constants γ and α become

γ = R2

(
∂raint

τ2
int

)
r=R

' −2GM

3
ε(a0) , (A.24)

and

γα = R2

(
∂rτint

τint
+

aint ∂raint

τ2
int

)
r=R

' −2GM

3
− 2GM

3
ε(a0) a(R) . (A.25)

Eliminating γ from these last two gives

α ' a(R) +
1

ε(a0)
. (A.26)

Notice that these solutions ensure a(r)− α is a periodic function of a0 everywhere outside the source.

β and δ are determined using continuity with the exterior solutions, leading to

τ(R) = τ0

(
1− GM

3R
+ · · ·

)
= β sech

(
βγ

R
+ δ

)
, (A.27)
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and

a(R) ' a0 −
ε(a0)GM

3R
+ · · · = α+ β tanh

(
βγ

R
+ δ

)
. (A.28)

These imply that the radius of the semicircle defined by the fields at r = R is (using (A.26))

β =
[
τ2(R) + [a(R)− α]2

]1/2
'
[
τ2
0

(
1− 2GM

3R

)
+

1

ε2(a0)

]1/2

. (A.29)

Together with (A.24) eq. (A.29) gives the effective Brans-Dicke parameter, through the relation

λeff = − βγ

4GM
=
β

6
ε(a0) ' 1

6

[
1 + τ2

0 ε
2(a0)

(
1− 2GM

3R

)]1/2

. (A.30)

This approaches the naive Brans-Dicke coupling λeff → 1
6 (for all a0) if ε→ 0 with all other fields fixed

basically because (A.29) implies β → 1/ε in this limit. Notice also that λeff is strictly larger than its

Brans-Dicke value and only starts to differ appreciably from it once ε(a) >∼ 1/τ0.

The value of δ is then found using, for instance

a(R)− α = − 1

ε(a0)
= β tanh

(
βγ

R
+ δ

)
= − 6λeff

ε(a0)
tanh

(
4λeffGM

R
− δ
)
, (A.31)

and so tanh δ ' 1/(6λeff) (which is smaller than unity because λeff ≥ 1
6 ). Given these integration

constants the fields at infinity are given in terms of τ0 and a0 (or vice versa) by

1

τ∞
=

cosh δ

β
and a∞ = α− β tanh δ . (A.32)
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