CERN Accélérateur de science

If you experience any problem watching the video, click the download button below
Download Embed
Preprint
Report number arXiv:2303.11346 ; TIF-UNIMI-2023-9 ; CERN-TH-2023-042
Title Determining probability density functions with adiabatic quantum computing
Author(s) Robbiati, Matteo (CERN ; Milan U. ; INFN, Milan) ; Cruz-Martinez, Juan M. (CERN) ; Carrazza, Stefano (CERN ; Milan U. ; INFN, Milan ; Technol. Innovation Inst., UAE)
Imprint 2023-03-20
Number of pages 7
Note 7 pages, 3 figures
Subject category hep-ph ; Particle Physics - Phenomenology ; quant-ph ; General Theoretical Physics
Abstract A reliable determination of probability density functions from data samples is still a relevant topic in scientific applications. In this work we investigate the possibility of defining an algorithm for density function estimation using adiabatic quantum computing. Starting from a sample of a one-dimensional distribution, we define a classical-to-quantum data embedding procedure which maps the empirical cumulative distribution function of the sample into time dependent Hamiltonian using adiabatic quantum evolution. The obtained Hamiltonian is then projected into a quantum circuit using the time evolution operator. Finally, the probability density function of the sample is obtained using quantum hardware differentiation through the parameter shift rule algorithm. We present successful numerical results for predefined known distributions and high-energy physics Monte Carlo simulation samples.
Other source Inspire
Copyright/License preprint: (License: arXiv nonexclusive-distrib 1.0)



 


 Notice créée le 2023-03-22, modifiée le 2024-06-27


Fichiers:
Télécharger le document
PDF