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A thermo-fluid dynamic numerical model for the simulation of the first-order and second-order phase 
transitions in superfluid helium (He II) is presented. The model is based on a Finite Volume Method 
algorithm for transient multidimensional problems. The method is also intended to simulate the 
conjugate heat transfer between helium and solids, which required the implementation of customized 
boundary conditions to replicate the Kapitza resistance and superfluid partial slip. The implemented 
governing equations for He II constitute an advanced version of an existing single-fluid model, which 
is herein newly derived with a more generalized conductive heat power law. The vapor-He I phase 
change is addressed through an explicit calculation of the volume fractions of the helium mixture and by 
introducing surface tension forces. An algorithm for fixed non-uniform orthogonal grids is conceptualized 
to deal with the lambda transition. The model is validated against data collected during clamped heat 
flux experiments in a rectangular cross-section channel of a high aspect ratio. The experiments were 
conducted both above and below the lambda temperature at atmospheric pressure with the channel in 
horizontal and vertical positions. The comparison with the data showed satisfactory agreement in the 
temperature profiles.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Particle accelerators play a central role in the advancement of 
fundamental physics research. In circular accelerators such as the 
Large Hadron Collider (LHC) at CERN, the trajectory of the parti-
cle beams must be bent with magnetic fields. For this purpose, 
the LHC utilizes superconducting dipole magnets. A cooling sys-
tem of superfluid helium (He II) ensures the superconducting state 
by maintaining the magnets at temperatures below 2 K [1]. How-
ever, the confined structures surrounding the dipole coils hinder 
the cooling process [2]. If the magnets lose the superconductive 
properties during a magnet quench, the energy dissipated is such 
that helium undergoes drastic thermodynamic changes. Being able 
to simulate numerically these phenomena is then important for 
the proper design of a magnet and its protection.

He II is used as a thermal vector because of its extraordi-
nary heat extraction capability. The thermal conductivity of He II 
depends strongly on the magnitude of heat currents potentially 
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present. In the heat flux range of magnet cooling applications, the 
He II thermal conductivity is even larger than the one of metals, 
being then several orders of magnitude higher than for He I. The 
one-dimensional steady-state heat transport in He II is determined 
by

dT

dx
= − f (T , p)qn, (1)

where T is the temperature, q is the heat flux, and f (T , p) is 
known as heat conductivity function. The coefficient n depends on 
the temperature and ranges from 3 to about 4 around Tλ [3–5]. 
Some authors used 3.4, which is a good approximation in the 
range of temperatures between 1.7 K and Tλ [6]. In particular, Sato 
et al. performed a series of experiments at steady-state conditions 
to derive an accurate correlation for the heat conductivity function 
for n = 3.4 [7].

The present work focuses on the numerical modeling of the 
double phase transition occurring in He II when subjected to heat 
flux higher than the critical value at atmospheric pressure. Above 
this critical heat flux (lambda heat flux) ‘colored at atmospheric 
pressure, He II undergoes the so-called λ-transition and turns into 
normal subcooled liquid helium (He I) [8]. If the heat flux is also 
higher than the peak nucleate boiling value, He I vaporizes and 
le under the CC BY-NC-ND license 
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forms a helium vapor film that blankets the heating surface. Since 
the peak nucleate boiling heat flux is significantly lower than the 
lambda heat flux, if He II undergoes λ-transition the heat flux is 
large enough to trigger the He I-vapor phase change too [8], re-
sulting in a stable triple-phase phenomenon [9,10].

The λ-transition is characterized by the absence of latent heat 
of vaporization and a discontinuity of certain thermophysical prop-
erties such as the specific heat capacity. As such, the He II-He 
I phase change is a second-order phase transition according to 
the Ehrenfest classification [11]. This classification associates each 
transition type with a specific order, which is determined by the 
lowest derivative of the Gibbs free energy that shows a discontinu-
ity at the transition point. Since entropy is a first-order derivative 
of the Gibbs free energy, first-order transitions exhibit an entropy 
discontinuity, which implies the presence of latent heat. It follows 
that the He I-vapor phase change belongs to this category. On the 
other hand, second-order transitions are not isothermal processes 
and the temperature dependence of entropy is continuous, like in 
the case of the λ-transition. These types of transitions are discon-
tinuous in the specific heat, which is a second-order derivative of 
the Gibbs free energy. At atmospheric pressure, the second-order 
and first-order transitions occur respectively at around 2.17 K (λ-
point) and 4.2 K (saturation point). Some thermophysical prop-
erties vary substantially across the λ-transition. For instance, the 
specific heat of helium at the λ-point is more than seven times 
higher than at 2.2 K [8].

The numerical modeling of the helium phase transitions in 
multidimensional domains is a rarely approached subject in sci-
entific research. The variations of several orders of magnitude in 
the thermophysical properties between the different phases of he-
lium represent a severe obstacle for the convergence stability of 
numerical simulations. For this reason, not many sources with re-
gards to this topic can be found in the literature. Some authors 
attempted at simulating one or both phase transitions with dif-
ferent assumptions to simplify the problem. Hama and Shiotsu 
constructed a two-dimensional model to simulate film boiling on 
a vertical plate [12]. They assumed the solid surface temperature 
as uniform, negligible thickness of the vapor film, and steady con-
vection mechanism in the vapor phase. Noda et al. developed a 
one-dimensional model for forced flow applications using empiri-
cal formulae for the friction force and zero heat conduction in the 
two-phase region (He I-vapor mixture) [13]. Okamura et al. de-
veloped a two-dimensional finite element model to simulate the 
λ-transition in natural convection [14]. The models implementing 
also conjugate heat transfer with solids are even scarcer. Mao et 
al. utilized an adaptive mesh algorithm to resolve the λ-front in 
one-dimensional cable-in-conduit conductors [15]. They neglected 
convection effects, gravity, He I heat conduction, and solid heat 
conduction in the He II region.

In the present work, both the second-order and first-order 
phase transitions are dealt with. Due to the peculiar character-
istics of superfluid helium, it was decided to utilize as a base 
solver the open-source C++ toolbox OpenFOAM® [16], which en-
sures versatility and freedom to modify the existing modules in 
order to overcome the difficulties imposed by He II physics. The 
present solver, which for simplicity will be addressed as heliumCht-
Foam from now on, is based on the Finite Volume Method (FVM) 
and is capable of simulating the helium-solid thermal interaction 
via a conjugate heat transfer algorithm. Taking into account the 
complexity associated with a double phase transition, it was de-
cided to partly simplify the problem by considering orthogonal 
grids only. Moreover, as the intention is to carry out simulations 
in multi-dimensions, the solution algorithm is designed for fixed 
non-uniform grids in order to avoid the extra computational time 
that an adaptive mesh code would require to refine high gradient 
areas.
2

2. He II single-fluid model

He II can be thought of as a mixture of two fluid components: 
a normal component that behaves like a classical viscous fluid and 
carries all the thermal energy; a superfluid component that has 
no entropy and no viscosity [17]. Each of them is associated with 
a velocity that is independent of the other. The normal fluid is 
characterized by the density ρn and the superfluid by ρs , which 
are related to the total density ρ of the liquid by

ρ = ρn + ρs. (2)

The mass flux density of He II thus can be expressed as

ρv = ρnvn + ρsvs, (3)

where vn and vs are the velocities of the normal and superfluid 
components respectively. As the normal component is the energy 
carrier of He II, the conductive heat flux q in Eq. (1) is equal to

q = ρsT vn = ρssT vns, (4)

where s is the specific entropy and vns is the relative velocity be-
tween the fluid components. Because of the two-motion nature of 
He II, a zero net mass flow does not imply that the fluid is static. 
Instead, from Eq. (3) follows that the two components can still flow 
in opposite directions giving rise to an internal convection known 
as counterflow. The counterflow mechanism contributes to the 
thermo-mechanical effect — a phenomenon for which establishing 
a temperature gradient in He II causes a pressure difference and 
vice versa [18]. If the relative velocity vns is below a certain critical 
value (i.e., very low heat flux), the fluid mechanics of He II is well 
represented by Landau’s two-fluid model [19], which comprises 
one momentum equation per fluid component. Above the critical 
value, quantum vortices arise in the fluid and the superfluid com-
ponent enters the turbulent regime [20]. The quantum turbulence 
is caused by a viscous-like mechanism between the superfluid and 
normal components of He II. This mechanism produces a force 
called mutual friction force [21]. Since the mutual friction force 
affects significantly the thermo-fluid dynamics of He II, it is neces-
sary to include it in the two-fluid model to come up with a general 
system of equations that characterizes He II macroscopically. This 
system is constituted by the Hall-Vinen–Bekharevich–Khalatnikov 
(HVBK) equations [22,23]. The HVBK equations can be consid-
ered as a generalization of Landau’s two-fluid model involving also 
quantum turbulence.

Various authors used numerical methods to obtain steady-state 
and transient solutions of the HVBK equations for different prob-
lems [24–27]. However, the numerical solution of a set of govern-
ing equations that includes two momentum equations may result 
in high computational time depending on the size of the mesh. If 
a pressure-correction method is used, the complexity of the model 
increases even further because of the need to modify the segre-
gated algorithm [28]. Since this work aims at multidimensional 
simulations, it was decided to simplify the two-fluid model to ob-
tain a single-fluid momentum equation that considers He II as a 
whole fluid. Over the years, some authors faced the problem with 
a similar approach. Kashani et al. modified the energy equation to 
take the counterflow into account in one-dimensional forced flow 
problems [29]. Ramadan and Witt derived a total fluid equation for 
natural convection problems by neglecting the thermo-mechanical 
and mutual friction terms, the effect of which was included in 
the energy equation [30]. Bottura and Rosso derived a set of one-
dimensional compressible equations for He II in terms of primi-
tive variables instead of conserved quantities [31]. Kitamura et al. 
found a way to neglect the superfluid momentum equation by in-
cluding additional terms in the total fluid equation [32]. In this 
work, the latter approach is adopted and modified.
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For sufficiently high heat fluxes (i.e., engineering applications of 
He II), the superfluid dynamics is largely determined by the mutual 
friction force and thermo-mechanical effect, which prevail over the 
other terms by several orders of magnitude [32]. Similarly to what 
was done by Kitamura et al., the superfluid component momentum 
equation can be simplified then to

AGMρnvn
ns = −s∇T , (5)

where the LHS and RHS are the mutual friction force and thermo-
mechanical term respectively; AGM is the Gorter-Mellink coeffi-
cient, a He II property that depends on the temperature as AGM ∝
T 3. Eq. (5) can be rearranged into

vns = −
(

s

AGMρn ‖∇T ‖n−1

) 1
n ∇T , (6)

where the temperature gradient has been linearized. We can relate 
vs to vns and v through Eq. (3) and the definition of vns:

vs = v − ρn

ρ
vns. (7)

Substituting Eq. (6) into Eq. (7) yields

vs = v +
(

sρn−1
n

AGMρn ‖∇T ‖n−1

) 1
n

∇T . (8)

Similarly, for vn:

vn = v −
(

sρn
s

AGMρnρn ‖∇T ‖n−1

) 1
n ∇T . (9)

Let us write the total fluid momentum equation in its compressible 
form:

∂

∂t
(ρnvn + ρsvs) + ∇ · (ρnvn ⊗ vn + ρsvs ⊗ vs)

= μ

[
∇2vn + 1

3
∇ (∇ ·vn)

]
− ∇p + ρg, (10)

where t is time, p is the pressure, g is the gravitational accelera-
tion, and μ is the dynamic viscosity. By substituting Eqs. (8) and 
(9) into Eq. (10) and rearranging we obtain

∂

∂t
(ρv) = − ∇ · (ρv ⊗ v) + μ

[
∇2v + 1

3
∇ (∇ ·v)

]
− ∇p + ρg

− μρs

ρ
M

[
∇2 (∇T ) + 1

3
∇

(
∇2T

)]

− ∇ ·
[
ρnρs

ρ
M2∇T ⊗ ∇T

]
,

(11)

where

M ≡
(

s

AGMρn ‖∇T ‖n−1

) 1
n

, (12)

which may be considered as a momentum diffusivity per unit of 
temperature increase. As such, it is a measure of the rate of the 
mass transfer due to a temperature gradient. Under the assump-
tion (5), Eq. (11) has the great advantage of modeling He II fluid 
dynamics without taking into account singularly the velocity field 
of each fluid component. This is achieved because of the last two 
terms on the RHS of Eq. (11), which are additional contributions 
to the ordinary Navier-Stokes equations. Since these two additional 
terms are not velocity dependent, they are computed explicitly by 
taking the temperature field of the previous time step.
3

A complete set of governing equations requires also the equa-
tions of continuity and energy. The continuity equation can be 
written as

∂ρ

∂t
+ ∇ · (ρv) = 0. (13)

The energy equation can be expressed in terms of the enthalpy as 
[33]

∂

∂t
(ρh) + ∇ · (ρvh) + ∂

∂t
(ρK ) + ∇ · (ρvK )

= ∂ p

∂t
− ∇ ·q + ρv ·g, (14)

where h is the specific enthalpy and K is the kinetic energy. Com-
bining Eq. (4) with Eq. (6) and substituting the temperature gradi-
ent with the enthalpy gradient provides an expression for the heat 
flux q in Eq. (14):

q = kef f

cp
∇h, (15)

where the pressure dependence of the thermophysical properties 
has been neglected. The latter assumption is justified by the case 
studies of this research, that is, heat driven phase change phenom-
ena associated with low pressure variations. The property kef f can 
be considered as the effective thermal conductivity of He II and 
reads

kef f ≡
(

1

f (T , p)‖∇T ‖n−1

) 1
n

, (16)

where the heat conductivity function is computed with Sato’s em-
pirical function [7].

Eqs. (13), (11), and (14) constitute the set of single-fluid gov-
erning equations of heliumChtFoam. This set of equations differs 
from Kitamura’s one essentially in the value of n, in its use, and 
in the variable of the energy equation. In the derivation of their 
model, Kitamura et al. set n = 3 in the main assumption (Eq. (5)), 
as this is the value that emerges from the theoretical formulation 
of the two-fluid model. However, as explained in Section 1, the 
value of n varies according to the temperature. It is worth observ-
ing that the condition n �= 3 has been applied in the past to the 
He II heat transport but never to the fluid transport [4–6]. Never-
theless, the exponent n originates from the mutual friction term 
in the superfluid momentum equation and, as such, it must influ-
ence the fluid transport too. Therefore, in this work, the derivation 
of the single-fluid equations has been generalized for an arbitrary 
exponent n, whose usage has been extended to the momentum 
equation as well as the energy equation. Moreover, the energy 
equation has been formulated in terms of a state function in place 
of the temperature. The latter modification represents a benefit in 
terms of numerical treatment of the first-order phase transition, as 
will be clear in the next section.

3. Phase change modeling

The He II model just presented must be modified to include 
helium multiphase phenomena. In this section, modifications and 
additional modules due to the second-order and first-order phase 
transitions are presented.

3.1. Second-order phase transition

As described in Sec. 1, the phase transition between He II and 
He I is of second-order and hence it is not associated with latent 
heat. Therefore, the change from one phase to the other occurs in-
stantaneously once Tλ is reached. The superfluid volume fraction 
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Fig. 1. Schematic representation of the lambda front in two adjacent control vol-
umes of a two-dimensional non-uniform grid.

αI I , thus, takes the form of a Boolean parameter that defines ex-
actly the presence of either He II or another phase. Moreover, since 
the density is continuous across the λ-transition [8], no additional 
tension force is required at the interface. The critical subject about 
the λ-transition pertains, instead, to the discontinuity of the spe-
cific heat and thermal conductivity at the λ-point. In this subsec-
tion, a novel algorithm designed to face this issue in fixed grids is 
formulated and discussed. The algorithm is constructed specifically 
for the FVM, in alignment with the structure of heliumChtFoam. 
In the FVM, the computational domain is subdivided into a pre-
defined number of cells called control volumes that constitute the 
computational grid. Each control volume is characterized by a cen-
troid and a finite number of bounding faces that define the shape 
of the cell. The centroids of the control volumes coincide with the 
computational locations where the governing equations are solved 
for the variables.

3.1.1. Effective thermal conductivity correction algorithm
As seen in Sec. 2, the effective thermal conductivity of He II 

kef f depends also on the temperature gradient (see Eq. (16)). This 
dependency is valid as long as the local temperature is below 
the λ-point. If the second-order phase transition occurs though, 
a front separating the two phases appears in the computational 
domain. Due to the considerable difference in the thermal conduc-
tivity between the two phases, the temperature gradient changes 
drastically at the location of the λ-front. The gradient calculation 
in the mesh cells located across the front carries an intrinsic er-
ror due to the way the gradient is numerically approximated. The 
source of the error can be identified with the linear interpolation 
of the temperature at the face separating the cells, which will be 
described later in this section. In this case, a correction of kef f is 
needed to take into account this error.

The approach presented here is based on the interfacial heat 
transfer between He I and He II at the λ-front. The main goal is 
to identify the actual location of the front in order to correct the 
temperature gradient field and consequently kef f . As a reference 
for the equations, let us consider the case displayed in Fig. 1, in 
which the λ-front is situated in an arbitrary location between the 
centers of two adjacent cells in the computational domain. The 
first step is to define the heat flux qI I through the He II phase 
from Eq. (1):

qI I = −
(

1

f (T , p)

Tλ − T P

γ ‖d‖
) 1

n

, (17)
4

where d is the distance vector between the two cell centers, Tλ is 
the temperature at the λ-point, and γ is a coefficient whose value 
is between 0 and 1. The subscript P refers to the centroid of the 
owner cell, from which the surface normal vector (S f in Fig. 1) 
points outward. From the point of view of the neighbor cell with 
centroid N , S f will then point inward. Let us consider a fictitious 
heat flux qI I, f ict between the cell centers that does not take into 
account the change in temperature steepness across the front like 
it would be computed without correction:

qI I, f ict = −
(

1

f (T , p)

T N − T P

‖d‖
) 1

n

, (18)

where the subscript N refers to the center of the neighbor cell. The 
heat flux qI I can be expressed as a function of qI I, f ict :

qI I = γ − 1
n qI I, f ict

(
Tλ − T P

T N − T P

) 1
n

, (19)

which has to be equal to the heat flux through the He I phase qI , 
defined as

qI = −kI
Tλ − T N

(1 − γ )‖d‖ , (20)

where kI is the thermal conductivity of He I. Equating (19) and 
(20) yields

1 − γ

γ
1
n

= kI

qI I, f ict ‖d‖ (T N − Tλ)

(
T N − T P

Tλ − T P

) 1
n

. (21)

Eq. (21) is a nonlinear equation that can be solved numerically 
for the parameter γ . A simplified version of this approach was 
formulated by Noda et al. [34], who obtained an expression for 
n = 3 suitable for the finite difference method.

In order to correct the temperature gradient, it is useful to 
recall how the gradient field is computed numerically. The most 
popular method derives from a corollary of the Gauss theorem 
stating that the integral of the gradient of a scalar quantity φ over 
a volume V is equal to the surface integral of the flux through the 
closed surface S surrounding that volume:∫
V

∇φdV =
∮
S

φdS. (22)

Eq. (22) can be numerically approximated as [35]:

(∇φ)P = 1

V P

N f (P )∑
f =1

φ f S f , (23)

where N f (P ) refers to the total number of the faces of the control 
volume with centroid P . The value of the conserved quantity at the 
face center φ f needs to be computed through linear interpolation 
between the centroid values of the cells sharing the face:

φ f = λ f φP + (
1 − λ f

)
φN , (24)

where the coefficient λ is a geometric factor that determines the 
weight of the cell center values depending on the shape of the 
cells:

λ f = S f ,N

S f ,N + S f ,P
, (25)

where the factors S f are scalars defined as

S f ,P = ∥∥S f ·CP f
∥∥ , (26a)

S f ,N = ∥∥S f ·C f N
∥∥ . (26b)
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The vectors C represent the distance between the face center and 
the centroid of a cell.

From Eq. (23) it follows that the gradient calculation requires 
the value of the flux through the cell face. Eq. (24) tells us that the 
value of the temperature at the face center T f ,l can be computed 
via linear interpolation between the center values of the cells shar-
ing the face:

T f ,l = λ f ,l T P + (
1 − λ f ,l

)
T N , (27)

where the subscript l refers to the way the face center value is 
calculated (i.e., linearly interpolated), and the coefficient λ f ,l is the 
geometric factor computed with Eq. (25). Therefore, the tempera-
ture at the face center has to be modified to properly calculate the 
flux. For this purpose, let us make a further adjustment to Eq. (21). 
Since the gradients use a linear interpolation scheme, the heat flux 
qI I, f ict can be computed as well as

qI I, f ict = −kef f , f ict
T f ,l − T P∥∥CP f

∥∥ , (28)

where kef f , f ict is calculated using the temperature gradient before 
the application of the correction algorithm. Substituting Eq. (28)
into (21) yields

1 − γ

γ
1
n

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∥∥CP f
∥∥

‖d‖
kI

kef f , f ict

T N −Tλ

T f ,l−T P

(
T N −T P
Tλ−T P

) 1
n
,

for T P < Tλ < T N , (a)∥∥C f N
∥∥

‖d‖
kI

kef f , f ict

T P −Tλ

T f ,l−T N

(
T N −T P
T N −Tλ

) 1
n
,

for T N < Tλ < T P . (b)

(29)

Eq. (29a) refers to the case of the example in Fig. 1, whereas 
Eq. (29b) refers to the case in which the neighbor cell is in He II. 
These equations are solved iteratively using the Newton-Raphson 
method for nonlinear equations [36]. The coefficient γ ranges al-
ways between 0 and 1 for any value of the RHS of Eq. (29). The 
convergence of the Newton-Raphson method applied to Eq. (29) is 
always guaranteed for any value of the RHS and any arbitrary pos-
itive initial guess. The tolerance selected for the method is 10−5, 
which is also chosen as the initial guess value. Moreover, due to 
the structure of Eq. (29), the method converges in few iterations 
regardless of the sought value of γ . These statements are demon-
strated via calculus analysis, which can be found in Appendix A.

Once obtained γ , the exact location of the λ-front is known too, 
and it is possible to compute the corrected face center tempera-
ture. The idea consists in interpolating between temperature values 
within the liquid phase that crosses the face location, so that the 
numerical approximation involves just a region where the gradi-
ent is pretty much constant. Therefore, Eqs. (27) and (25) must be 
updated. For the case in which T P < Tλ < T N (see Fig. 1), the up-
dated factors S f that determine the new λ f read

S f ,P =
{ ∥∥S f ·CP f

∥∥ , for γ ‖d‖ >
∥∥CP f

∥∥ , (a)∥∥S f · (CP f − γ d
)∥∥ , for γ ‖d‖ <

∥∥CP f
∥∥ , (b)

(30)

and

S f ,N =
{ ∥∥S f · (γ d − CP f

)∥∥ , for γ ‖d‖ >
∥∥CP f

∥∥ , (a)∥∥S f ·C f N
∥∥ , for γ ‖d‖ <

∥∥CP f
∥∥ . (b)

(31)

The face center temperature is finally computed as

T f =
{

λ f T P + (
1 − λ f

)
Tλ, for γ ‖d‖ >

∣∣CP f
∣∣ , (a)

λ f Tλ + (
1 − λ f

)
T N , for γ ‖d‖ <

∣∣CP f
∣∣ . (b)

(32)

It is easily verifiable that, for γ ‖d‖ that tends to 
∥∥CP f

∥∥, T f tends 
to Tλ from both sides of the face. Similarly it is done for the case in 
which T N < Tλ < T P . At last, the temperature gradient is updated 
using Eq. (23), and the He II properties (Eqs. (12) and (16)) are 
corrected accordingly.
5

3.1.2. Specific heat treatment
Another characteristic of the λ-transition is the discontinuity 

of the specific heat capacity at the λ-point. As known, the spe-
cific heat appears as part of the thermal diffusivity in the energy 
equation. The flux associated with the diffusion term in the energy 
equation requires the value of the diffusivity at the face shared by 
two adjacent cells. The face value is computed via linear interpo-
lation between the cell centroids value. Let us consider again the 
case in Fig. 1. If the λ-front is located between the two cells, the 
interpolation of the specific heat at the face shared by those cells 
would result in an incorrect value due to the lambda discontinu-
ity. Depending on the location of the front, interpolating between 
two values before and beyond the “λ” diverging peak may greatly 
underestimate the face value. Therefore, the specific heat inter-
polation must be corrected in those faces. Since these faces are 
the same ones treated in the previous subsection, the correction 
is simply achieved by using the algorithm presented before. Once 
the face temperature T f (Eq. (32)) is updated, the specific heat is 
re-computed as a function of T f .

Since the main variable in the energy equation herein presented 
is the enthalpy, the temperature must be derived consequently by 
means of the specific heat capacity. In OpenFOAM®, a Newton-
based iterative algorithm is utilized for this purpose. However, the 
convergence of this method is strongly affected by the temperature 
dependence of the specific heat. In the case of He II, the algorithm 
diverges once Tλ is reached because of the specific heat discon-
tinuity. Therefore, this algorithm was substituted with a method 
that interpolates values from an enthalpy-temperature table.

3.2. First-order phase transition

The first-order phase transition between subcooled He I and 
helium vapor is an ordinary phase change associated with vapor-
ization/condensation. As such, it involves a latent heat of vaporiza-
tion at the saturation point and interface phenomena due to high 
gradients in density across the two media. Various numerical mod-
els for multiphase phenomena are available in the literature. For 
compressible liquid/gas mixtures like in this case, one of the most 
popular groups of methods utilizes the Euler-Euler model [37], in 
which both the dispersed and continuous phases are considered 
as continua, and a phase fraction parameter determines the vol-
ume percentage occupied by each phase in a control volume. Many 
Euler-Euler solvers have been developed over the years. The most 
complex one is the two-phase model, which treats the phases sep-
arately and thus solves a distinct set of governing equations per 
phase. Due to this separation, additional terms describing the mo-
mentum transfer between the phases are needed. The two-phase 
model is typically chosen when the interaction surface between 
phases is very large, which usually happens for turbulent flows in 
macro-scale systems (e.g., bubble columns). In thin channels, as in 
the context of this study, the flow is mainly laminar and the dis-
persed phase is for the most part markedly separated from the 
continuous one [38]. Another type of Euler-Euler model is gener-
ally referred to as interface tracking method [39], which aims at 
resolving accurately the interface between the phases. Unlike the 
two-phase model, in this method, a single set of governing equa-
tions is solved for all the phases. The thermophysical and transport 
properties are averaged at each computational cell using the vol-
ume fraction of each phase. A separate transport equation for the 
volume fraction is solved at each iteration in order to advect the 
front and track its location. The interface tracking methods are 
commonly utilized for immiscible phases (e.g., water-air mixture), 
when the motion of the free surface is a key aspect.

For the simulations of this study, the helium mixture is treated 
as a whole and hence a single set of equations is solved. Since in 
this case the formation of helium vapor in a liquid helium chan-
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nel is a result of a heat-driven phase change, the volume fraction 
is explicitly calculated from the mixture enthalpy and density in-
stead of solving a transport equation, similarly to Voller’s enthalpy 
method for fixed grids [40,41]. This allows circumventing the addi-
tional implicit partial differential equation for the volume fraction, 
thus decreasing the computational effort. This approach is possible 
owing to an energy equation expressed in terms of a state function 
(i.e., enthalpy) instead of temperature.

3.2.1. Thermophysical properties calculation
In isothermal problems, the common approach for the calcu-

lation of the thermophysical properties of a mixture consists of 
evaluating the portion of a volume occupied by a phase in order 
to weigh the property value among all the phases present in that 
volume. This requires the implicit solution of an additional trans-
port equation to obtain the evolution of the mixture front over 
time. The problem under investigation, instead, involves unsteady 
thermodynamic conditions of the same fluid, which can be advan-
tageously exploited to derive volume and mass fractions. Rather 
than tracking the front location, thus, heliumChtFoam computes 
explicitly the volume fraction αI of the vapor-He I mixture as a 
function of the density:

αI = min

[
max

(
ρ − ρv

ρl − ρv
,0

)
,1

]
, (33)

where the subscripts v and l stand for the saturated conditions of 
vapor and liquid respectively. The total fluid density ρ is computed 
through the empirical compressibility factor Z :

ρ = p

Z(h)RT
, (34)

where R is the specific gas constant. The compressibility factor Z is 
extracted as a function of the enthalpy from the database HEPAK®

[42], as all other properties. Since the two phases can coexist at 
saturation, αI ranges from 0 (saturated vapor) to 1 (saturated liq-
uid) depending on the vicinity to the saturated states. However, 
the total density of the fluid ρ does not always lie between the 
saturation values. The “min” and “max” functions are then neces-
sary to ensure that αI is bounded between physical quantities. The 
mass fraction Y I is simply calculated as

Y I = min

[
max

(
h − hv

hl − hv
,0

)
,1

]
. (35)

The temperature for hl ≤ h ≤ hv is fixed to the saturation value 
Tsat .

The thermophysical properties at Tsat are weighed between the 
values at saturation as a function of αI and Y I . In particular, the 
transport properties (i.e., viscosity and thermal conductivity) are 
computed as

μsat = αIμl + (1 − αI )μv , (36a)

ksat = αIkl + (1 − αI )kv , (36b)

while the specific heat capacity as

cp,sat = Y I cp,l + (1 − Y I ) cp,v . (37)

Since αI and Y I are derived explicitly, the code is provided with 
pre-weighed properties that are interpolated at run time depend-
ing on the local enthalpy. At T �= Tsat , the properties take the 
values corresponding to the only phase present in the control vol-
ume. The equivalent temperature steps chosen for the interpolating 
tables vary between 0.25 mK (nearby the λ-point) and 50 mK (far 
from the λ-point).
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3.2.2. Surface tension
When a liquid is in contact with a gas, the liquid molecules 

at the interface are attracted by cohesion forces towards the bulk 
fluid. The adhesion force acting between molecules of a different 
phase is usually much lower than the cohesion force, leaving a 
net inward force that tends to contract the liquid. Because of the 
liquid contraction, a pressure jump arises across the interface. The 
surface, thus, experiences a tension force Fσ that is proportional to 
the pressure jump. In this work, the continuum surface force (CSF) 
model proposed by Brackbill et al. [43] is adopted for the calcu-
lation of Fσ . Under the assumption of a constant surface tension 
coefficient σ , the CSF model estimates the pressure jump as

	p = σκ, (38)

where κ is the curvature of the interface and is defined as the 
divergence of the interface unit normal vector:

κ = −∇ ·
( ∇αI

‖∇αI‖
)

. (39)

The surface tension force is then

Fσ = ρ

ρsat
σκ∇αI , (40)

where ρsat is the density averaged between the liquid and vapor 
saturation values. The condition Fσ �= 0 is satisfied just on the 
surface, where the volume fraction varies depending on the en-
thalpy. Moreover, the CSF model interprets the surface tension as a 
continuous volumetric force acting across the entire interface pro-
portionally to the local total density. This proportionality allows 
thinning the interface without further numerical treatment of the 
front.

4. Boundary conditions

The peculiar physics of He II has impacts also on the conditions 
that must be set at the boundaries of a computational domain. In 
particular, two especially useful conditions pertain to the conjugate 
heat transfer at the interface with a solid part and the velocity of 
the fluid at the walls. These boundary conditions will be presented 
in the next subsections.

4.1. Kapitza heat transfer

When a heat flux is established through two different materi-
als that are in contact, a thermal boundary resistance takes place 
between them. This resistance depends on the inverse of the tem-
perature and hence it is usually negligible in the majority of the 
cases. In He II though, below the λ-point the temperature is low 
enough to make this resistance considerably important in the heat 
transfer mechanism between helium and a solid. This phenomenon 
results in a significant temperature jump across the solid-helium 
interface, which was first observed by Kapitza [44]. The heat ex-
change between the two media is strongly affected by the resulting 
Kapitza conductance hK . The Kapitza conductance is dependent on 
the materials involved and their surface characteristics. For this 
reason, the temperature dependence of hK is usually obtained ex-
perimentally for each material, and the resulting heat flux takes 
the form [45,8]

q =
{

aI I T mI I
b (Ts − Tb) , for 	T 
 T , (a)

aI
(
T mI

s − T mI
b

)
, for 	T ≈ T , (b)

(41)

where a and m are empirical coefficients that depend on the solid 
material, Tb is the bath temperature of liquid helium, and Ts is the 
temperature of the solid surface.
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Numerically, the thermal resistance can be imposed by consid-
ering a virtual layer between the He II and solid regions with a 
thermal resistance 1/hK . Equating the heat fluxes through the vir-
tual layer and He II regions leads to the following temperature 
boundary condition for a generic computational cell with centroid 
P in the helium domain:

T f = hK C P f

hK C P f + kef f
T f ,nb + kef f

hK C P f + kef f
T P , (42)

where T f ,nb is the temperature at the interface between the solid 
and virtual layer regions, while the other parameters can be inter-
preted using Fig. 1 as a reference. The Kapitza conductance hK is 
derived from Eq. (41) similarly to [46]:

hK = max

(
aI I T mI I

b ,aI

T mI
f ,nb − T mI

b

T f ,nb − Tb

)
. (43)

The thermal behavior of the heater is described by the ordinary 
energy equation for solids:

ρ
∂h

∂t
= ρ∇ · (β∇h) + Q , (44)

where β is the thermal diffusivity of the solid.

4.2. Superfluid slip

The common velocity boundary condition for an ordinary vis-
cous fluid in contact with a wall is the no-slip condition, which 
simply sets the velocity of the fluid equal to zero. However, super-
fluid helium exhibits a wall slip behavior to a certain extent. From 
the theory of superfluid dynamics it emerges that, while the nor-
mal component of He II exerts a drag force on a solid body, the 
superfluid component moves with zero viscosity along the solid 
surfaces [47,48]. Indeed, as mentioned in Section 1, the superfluid 
component is inviscid and hence able to move tangentially to the 
walls. On the other hand, the normal component behaves like an 
ordinary fluid and remains static at the walls. This situation may 
be represented by a partial-slip condition of the total fluid [32]. 
The total fluid velocity at the walls is determined by imposing Eq. 
(9) equal to zero:

v‖ = ρs

ρ
M∇T‖. (45)

The velocity component v⊥ normal to the wall is obviously set to 
zero. The tangential component v‖ is obtained by removing the 
normal component from the temperature gradient:

∇T‖ = ∇T − (∇T ·n)n, (46)

where n is the normal vector with respect to the wall. Eq. (45)
is in agreement with the theory of He II, stating that the super-
fluid component is oppositely directed with respect to the heat 
flux. This can be verified by setting Eq. (3) to zero and substituting 
it into Eq. (4).

4.3. Superfluid boundary conditions in multiphase helium

Within the temperature range of helium vapor at ambient pres-
sure, the fluid and solids are fully in thermal contact, and the 
Kapitza heat transfer mechanism is negligible. Furthermore, a vis-
cous fluid without superfluid traits such as He I does not ex-
perience wall slip on solid surfaces. Nevertheless, the boundary 
conditions implemented in heliumChtFoam that are proper of He 
II do not require any modification due to the way they are for-
mulated. More specifically, Eq. (43) allows the Kapitza resistance 
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to fade away as the solid surface temperature gradually increases. 
This fade-out process starts when the Kapitza conductance for high 
differences in temperature (see Eq. (41b)) overcomes the one for 
low differences (see Eq. (41a)), which does not depend on the 
solid temperature. As the solid temperature increases because of 
the volumetric heat generation, the Kapitza resistance diminishes 
until the resulting temperature jump with helium is negligible. By 
the time the helium in contact with the heater turns into vapor, a 
perfect thermal contact between the two media is achieved.

The superfluid wall slip simply ceases to exist at Tλ , when the 
superfluid density becomes zero (see Eq. (45)) and hence a no-slip 
condition is imposed at the boundary. Moreover, the parameter M , 
which is also present in the superfluid slip equation, is automat-
ically updated with the corrected temperature gradient field (see 
Sec. 3.1.1), resulting in the right value also at the boundaries where 
the λ-front intersects a wall. Consequently, the boundary condi-
tions presented in this section adjust accordingly to represent the 
appropriate circumstances even in presence of phase changes.

5. Solution algorithm

The governing equations presented in Sec. 2 must be modified 
to account for multiphase phenomena. The continuity equation 
(Eq. (13)) remains essentially unchanged. The momentum equa-
tion (Eq. (11)) must include the surface tension force (Eq. (40)). 
Moreover, the parameter M must be updated with the corrected 
temperature gradient ∇T ∗ (see Sec. 3.1.1), where ∗ identifies the 
corrected field. At Tλ , the superfluid terms in the momentum 
equation simply vanish as they all are proportional to the super-
fluid density, which becomes zero at the λ-transition. The energy 
equation (Eq. (14)) must comprise the conductive heat flux of He I 
and helium vapor too. Eq. (15) becomes then

q = kHe

c∗
p

∇h, (47)

where c∗
p is the corrected specific heat capacity (see Sec. 3.1.2) and 

the thermal conductivity of helium kHe is defined as

kHe =

⎧⎪⎪⎨
⎪⎪⎩

k∗
ef f , for T < Tλ, (a)

kI , for Tλ ≤ T < Tsat, (b)
ksat, for T = Tsat, (c)
kvap, for T > Tsat, (d)

(48)

where kI and kvap are the thermal conductivities of subcooled He 
I and superheated helium vapor respectively, whereas ksat is com-
puted with Eq. (36b). The effective thermal conductivity of He II 
k∗

ef f is updated with the corrected temperature gradient field ∇T ∗
(see Sec. 3.1.1). The other thermophysical properties are set up sim-
ilarly to Eq. (48).

The governing equations for multiphase helium are solved in a 
novel solution algorithm for transient conjugate heat transfer prob-
lems and compressible fluids in multidimensional domains. Fig. 2
represents the flow chart of heliumChtFoam with the modifications 
implemented for superfluid helium and its phase transitions with 
respect to the ordinary PIMPLE algorithm for compressible fluids 
[35]. The PIMPLE algorithm is an advanced version of the PISO 
(Pressure-Implicit with Splitting of Operators) algorithm, which is 
characterized by a single outer loop iteration. The solution algo-
rithm starts by updating the current time and variables from the 
previous time step. The first outer loop iteration is then initiated 
by computing explicitly the superfluid and normal volume frac-
tions. For the first iteration, the continuity equation is solved to 
compute the new density field. If the momentum predictor step is 
requested, the momentum equation is solved before the pressure 
correction loop. In the present work, the latter step is skipped as 
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Fig. 2. heliumChtFoam PIMPLE algorithm. Single outer corrector in the case of PISO.

the physical phenomena involved are not advection-driven. The en-
ergy equation is then solved and the resulting enthalpy is used to 
update the thermophysical properties and superfluid helium pa-
rameters. At this point, if the temperature reaches the λ-point 
anywhere in the domain, the correction algorithm presented in 
Sec. 3.1.1 is activated in order to identify the exact location of the 
λ-front. As described previously, the front location is utilized to 
correct the temperature gradient and, consequently, the superfluid 
fields k∗

ef f and M∗ . If He II does not undergo the λ-transition, the 
correction algorithm is skipped and the inner loop is initiated. This 
loop is the classic pressure correction loop, where the pressure and 
momentum equations are solved iteratively until the attainment of 
velocity and pressure fields that satisfy the mass conservation. The 
subscript th in ρth serves to differentiate the thermodynamic den-
sity computed as a function of the enthalpy (Eq. (34)) from the 
one obtained by solving the continuity equation. After the last cor-
rector iteration, the final density field is stored and the thermal 
conductivity field kHe is assembled. A diffusion equation (Eq. (44)) 
is then solved sequentially for each solid part present in the do-
main. The solution of the diffusion equations marks the end of 
an outer loop iteration, which, in the case of a PIMPLE algorithm, 
is repeated to facilitate the convergence stability and strengthen 
8

the coupling between fluids and solids. After the last outer loop, 
the fields are stored and the time marches forward. The whole se-
quence is repeated until the steady state.

6. Model validation

The severe non-linearity of the He II equations excludes the 
possibility to obtain analytical solutions for problems in which the 
impact of the temperature dependence of the properties is signif-
icant. For this reason, it was decided to validate heliumChtFoam
against other models and data from both the literature and exper-
iments conducted for this study. This section reports such compar-
isons for both He II and multiphase helium cases.

The simulations involving He II only were obtained through the 
PISO algorithm with three inner-loop iterations. For simulations 
involving solid parts or multiple phases, the PIMPLE algorithm 
(Fig. 2) was chosen instead. The setting comprises three inner-loop 
and ten outer-loop iterations to strengthen the coupling between 
the solid and helium solutions of the segregated algorithm and 
withstand the strong density variations associated with the first-
order phase transition. The transient problem was solved using the 
Crank-Nicolson scheme with a blending factor of 0.9 [49]. Since 
this scheme may be unstable in certain problems, the blending 
factor increases its robustness by weighing the result with the 
pure implicit Euler scheme. As the following study cases are not 
advection-dominated, both the divergence and gradient terms were 
discretized with the central-difference scheme. The interpolated 
values between cell centroids were computed linearly. The linear 
systems of algebraic equations were solved with different methods 
depending on the unknown variable [49]: preconditioned conju-
gate gradient (PCG) method for the continuity equation; general-
ized geometric-algebraic multi-grid (GAMG) solver for the pressure 
equation; Gauss-Seidel for the momentum and energy equations. 
The solid diffusion equations were solved with the PCG method 
for symmetric matrices. The simulations were run in parallel uti-
lizing 36 CPUs.

6.1. Single phase He II

The He II model was validated against data from both the 
benchmark steady-state experiment of Srinivasan and Hoffman 
[50] and a rectangular channel experiment conceived for this 
study. The comparisons of this sub-section regard He II only.

6.1.1. Srinivasan and Hoffman’s tube experiment
Srinivasan and Hoffman conducted steady-state experiments in 

a 1 m long tube with an inner diameter of 3 mm. The He II is 
heated up at the center of the tube. The temperature is recorded 
at eight locations, which are 10 cm far from each other (starting at 
10 cm from both sides of the tube). The tests that are within the 
interest of this study were carried out in stagnant conditions with 
a power deposition of 0.145 W and 0.205 W.

In order to compare heliumChtFoam to other models on equal 
terms, a one-dimensional uniform mesh constituted by 200 cells 
was chosen as the computational domain for this validation, in ac-
cordance with the simulations of Bottura and Rosso [31]. The time 
step was set to be adaptive such that the Courant–Friedrichs–Lewy 
number was always less than the unit. Since the experiment was 
originally conceived for forced flow tests, the apparatus was unable 
to maintain a stable temperature at the inlet and outlet of the tube 
at stagnant conditions. Therefore, it was decided to simulate only 
the region between the first and last sensors. Consequently, the 
temperature at the domain boundaries was set to the one mea-
sured by those sensors at the steady state. The initial temperature 
was assumed to be uniform in the whole domain and equal to 
the lowest boundary temperature. The pressure was fixed to the 
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Fig. 3. He II temperature profiles comparison between heliumChtFoam (solid line) 
and data from Srinivasan and Hoffman’s tube experiment (markers) [50]. The simu-
lations by Bottura and Rosso [31], and Ng et al. [24] are also shown as dashed and 
dash-dotted line respectively.

experimental one (i.e., atmospheric pressure). Since the domain 
boundaries do not correspond to physical confines for the fluid, a 
possible backflow must be taken into account and hence two dif-
ferent conditions are imposed on the velocity depending on the 
flux direction: zero gradient if the flux points outward; pressure-
dependent if the flux points inward. It is convenient to refer to this 
boundary condition as the inlet-outlet velocity condition from now 
on. The fluid was assumed to be initially static. The heat load was 
applied as a volumetric heat generation in the two central cells of 
the domain. The steady state was reached after 80 s and 150 s of 
simulated time for 0.205 W and 0.145 W respectively.

Fig. 3 shows the comparison between the computed temper-
ature distribution along the tube by the present code and the 
data of the aforementioned experiments by Srinivasan and Hoff-
man [50]. The temperature profiles obtained by Bottura and Rosso 
[31], and Ng et al. [24] are also displayed in the figure. The set 
of governing equations of Bottura and Rosso’s model is in terms 
of pressure, velocity, and temperature. They utilized a friction fac-
tor to model the viscous force, and the theoretical derivation of 
the heat conductivity function. Ng et al. used the classic two-fluid 
model with a double momentum equation. As it is clear from the 
figure, heliumChtFoam is in very good agreement with the experi-
ments.

6.1.2. Rectangular cross-section channel experiment
The experimental setup consists of a rectangular cross-section 

channel of high aspect ratio [51]. The channel is 14 cm long, 5 cm 
wide, and 0.5 mm thick. The experiment was conducted at atmo-
spheric pressure in a superfluid helium bath, where the channel 
setup was submerged. Since the free surface of the helium bath 
was only 40 cm above the channel location, the hydrostatic head 
was neglected in the simulations. One aperture of the channel is 
closed with a Manganin® heating strip as thick as the channel, 
while the opposite aperture is kept open to the bath (see Fig. 4). 
The channel is enclosed by thick stainless steel plates (i.e., 2 cm 
thick) that insulate thermally the He II contained in the chan-
nel from the bath. The steel plates were machined to ensure the 
smoothness of the surfaces in contact with helium. An insulating 
2 cm thick G10 plug is situated behind the heater to achieve high 
thermal and electrical insulation for the heater. The relative po-
sition of all the pieces is fixed by several stainless steel screws 
covered with vacuum grease, which does not crack at cryogenic 
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conditions. The vacuum grease is also inserted in the space be-
tween the plates to prevent superfluid leaks. The channel setup 
is equipped with nine bare chip Cernox® CX-1050-BC temperature 
sensors with a sapphire base for a fast thermal response. Eight of 
them are distanced 1.5 cm from each other along the centerline of 
the channel, and the closest sensor to the heater is 1.5 cm far from 
it. The farthest sensor from the heater is then 2 cm far from the 
aperture of the channel exposed to the bath. The ninth tempera-
ture sensor is situated behind the heater, inside the G10 plug. The 
channel was also equipped with two Kulite® cryogenic miniature 
ruggedized pressure transducers of the CTL-190 (M) series. These 
sensors revealed negligible pressure variations during the experi-
ments, which justifies the assumption on the enthalpy definition 
in Eq. (15).

The experiment is a clamped heat flux test, in which the heater 
releases a constant heat load into the channel. The test was con-
ducted at a bath temperature of 1.8 K and a 23.6 kW/m2 heat 
flux. The computational geometry is a three-dimensional rectan-
gular slab that resembles the shape of the channel filled with He 
II. The slab is subdivided into structured orthogonal uniform con-
trol volumes, which constitute a mesh of 27 × 103 cells (150 along 
the channel length and 36 along its width). The walls of the slab 
that correspond to the helium in contact with the stainless steel 
plates are kept adiabatic, while at the heater location the Neu-
mann boundary condition is applied with the value of the heat 
flux. At the walls, the superfluid slip condition (see Sec. 4.2) is 
applied for the velocity, while the pressure gradient is velocity 
dependent and derived by inverting the semi-discretized momen-
tum equation [52]. Since the latter pressure boundary condition 
is commonly used for walls, where the velocity is defined, it will 
be referred to as the fixed flux pressure condition from now on. 
The temperature and pressure at the open side of the channel are 
fixed to the bath one, while the velocity is computed through the 
inlet-outlet condition.

Fig. 5 shows the transient evolution of the temperature pro-
file since the application of the clamped heat flux. The simulations 
agree satisfactorily to the data with a discrepancy of 0.38%, 0.21%, 
and 0.15% at 0.3 s, 0.7 s, and steady state respectively.

6.2. Phase transitions

As explained in Sec. 1, if the heat flux applied overcomes 
both the lambda and peak nucleate boiling heat fluxes, a helium 
triple-phase configuration establishes in the channel. This section 
reports the simulations of triple-phase phenomena in the exper-
imental channel setup described in Sec. 6.1.2. Since the thermal 
time constant of helium vapor is comparable to the one of the 
components of the channel setup, it is essential for predicting the 
correct thermal behavior to include in the computation the solid 
parts surrounding the helium slab. However, considering the size 
of the steel plates with respect to the channel, a three-dimensional 
model of the setup would require a substantial computational 
effort. Therefore, despite the algorithm can be applied to three-
dimensional problems, the phase change modules were tested in 
a two-dimensional domain that represents the cross-section of 
the setup at its centerline (i.e., 2.5 cm from the sides). The two-
dimensional assumption is legitimized by the high aspect ratio of 
the channel.

6.2.1. Mesh tests
The mesh used for the simulations is a two-dimensional struc-

tured non-uniform grid with fully orthogonal control volumes. 
Since the mesh is fixed, it is of interest to investigate how the 
simulated steady-state location of the λ-front varies with the grid 
size. The domain created for these tests is shown in Fig. 6 with 
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Fig. 4. Experimental channel setup.
Fig. 5. Transient temperature profiles comparison between heliumChtFoam and data 
from an experiment in the horizontal 0.5 mm thick channel at a bath temperature 
Tb = 1.8 K and a heat flux q = 23.6 kW/m2. The steady state is achieved after 8 s.

the real relative proportions of the sub-domains. The geometri-
cal model includes both stainless steel plates, the G10 heater plug, 
the Manganin® heater, and the helium channel. The thermophysi-
cal properties of these materials were taken from CryoComp® [53]. 
The initial temperature of the entire system was set to 2.15 K, 
while the pressure of the fluid was set to the atmospheric one. 
As for the boundary conditions, at the walls the pressure is deter-
mined by the fixed flux condition, whereas the velocity is either 
computed through the superfluid slip condition for He II or zero 
for the other helium phases. The temperature at the bath and all 
external solid walls is fixed to the initial value. At the interfaces 
between helium and solids, the Kapitza condition is applied. Due 
to the lack of Kapitza resistance experimental data for the mate-
rials herein utilized, the empirical parameters were chosen similar 
to the as-received copper values [8]. As explained in Sec. 4.3, the 
Kapitza resistance tends naturally to zero as the temperature of the 
solid increases. Therefore, helium vapor results in perfect thermal 
contact with the solid. At relatively high heat fluxes, the Kapitza 
resistance between solids (e.g., heater and plug) is negligible [45], 
and hence neglected in this study. A volumetric heat generation 
was applied in the heater domain and equivalent to 5 kW/m2 at 
the interface with the helium channel. An adaptive time step was 
used to ensure that the Courant number was always below the 
10
unit. The latter choice is particularly helpful in multiphase prob-
lems involving stagnant fluids as it shortens the time step only 
when needed, that is, in case a phase change associated with high 
variations in density occurs. In this case, a large time step is main-
tained as long as He II is the only fluid present in the channel. 
When vapor is generated, the significant density change causes a 
velocity increment, which shortens the time step to stabilize the 
computation.

With the exception of the heater, the grids of the solid compo-
nents of the domain are all non-uniform with increasing cell size 
from the helium interface to the external boundaries, where the 
cells get as large as 5 mm for the steel plates and 2 mm for the 
G10 plug. Close to the helium slab, the cell size is 20 μm. The 
heater domain is constituted by uniform cells of around 23 μm. 
The channel thickness is subdivided into 11 cells, while the num-
ber of cells along its length is the varying parameter of this study. 
Four different grids were tested at the aforementioned conditions. 
Fig. 7 shows the cell size dependence of the λ-front position at 
the steady state as a normalized value with respect to the chan-
nel length. Despite the finest grid is forty times smaller than the 
coarsest one, the front position varies only within few percentage 
points, indicating that the correction algorithm for fixed grids (see 
Sec. 3.1.1) performs adequately. The slight non-monotonous behav-
ior of the finest grid point is due to the small fluctuations of the 
λ-front because of the fluid motions.

The cell size chosen for the following simulations, which is 
indicated in Fig. 7, seemed to be a good compromise between ac-
curacy and computational cost. To further decrease the numerical 
effort, it was decided to split the channel domain into two parts. 
The half next to the heater is discretized with the cell size chosen 
in this section, while the other half is non-uniform with increas-
ing cell size towards the bath. Moreover, the channel thickness is 
split into 30 non-uniform cells. The final mesh is constituted by 
more than 67 × 103 hexahedra in the helium domain and more 
than 3 × 105 hexahedra in total with 5 degrees of freedom per 
computational cell.

6.2.2. Multi-region channel simulations
The simulations conducted for comparison with the experimen-

tal tests utilize a fixed temperature boundary condition at the 
interface between the G10 plug and the heater with the value 
measured at steady-state by the sensor installed in the plug (i.e., 
ninth sensor). As the thermal time constant of the heater is very 
low because of its size and thermal conductivity, fixing the tem-
perature of the heater to its peak value since the beginning of the 
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Fig. 6. Computational domain for the phase transitions simulations. The length coordinates are in meters.
Fig. 7. Normalized λ-front position with respect to the channel length for grids of 
different cell longitudinal sizes.

Fig. 8. Transient temperature profiles comparison between heliumChtFoam and data 
from an experiment in the downward vertical channel at a bath temperature Tb =
3.4 K and the heater at 13.4 K.

transient is a reasonable assumption. The other boundary condi-
tion settings are the same as in Sec. 6.2.1.

Before simulating the double phase change, it is useful to focus 
at first on the first-order phase transition only. For this purpose, an 
experiment was conducted with the channel in vertical position 
with the helium bath above the λ-point. In this experiment, the 
11
Fig. 9. Transient temperature profiles comparison between heliumChtFoam and data 
from an experiment in the downward vertical channel at a bath temperature Tb =
2.15 K and the heater at 21.6 K.

heater, which is situated above the helium slab, reaches a temper-
ature of 13.4 K, while the bath is maintained at 3.4 K. Fig. 8 shows 
the comparison between the simulated temperature profiles and 
data. The temperature rises sharply next to the heater and reaches 
almost instantaneously the peak value, which is slightly lower than 
the heater temperature for two reasons: the profile is probed along 
the interface with the steel plate that houses the sensors, where 
the temperature is less than the centerline of the channel; the 
fixed temperature is imposed behind the heater. The increase is so 
abrupt that any effect of the latent heat of vaporization is barely 
visible at the beginning of the transient. The boiling front advances 
slowly and, as it moves downstream, a plateau at the saturation 
temperature arises. Eventually, the front stops just below the loca-
tion of the closest sensor to the heater. Although the temperature 
profile achieves the steady state after 50 s, the considerable gra-
dient nearby the heater persists. The inset in Fig. 8 zooms in on 
the zone far from the heating surface, where the gradient is much 
lower. Although the simulated profile underestimates the tempera-
ture increment in helium vapor, it predicts satisfactorily the overall 
distribution with a relative error of 11.3 %.

A similar experiment was carried out in He II, with the bath 
at 2.15 K and the heater reaching 21.6 K at the steady state. The 
comparison with heliumChtFoam is displayed in Fig. 9. The temper-
ature rises immediately above the saturation and lambda points. 
The resulting profiles share some features with the previous case. 
The temperature gradient is very high close to the heater, while it 
drops significantly beyond the λ-front. Both fronts develop slowly 
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Fig. 10. Helium three-phase evolution in the downward vertical channel at a bath temperature Tb = 2.15 K and the heater at 21.6 K. The length coordinates are in meters.
Fig. 11. Simulated thermal conductivity at the centerline of the downward vertical 
channel at a bath temperature Tb = 2.15 K and the heater at 21.6 K.

until a stable configuration is reached after 50 s. However, the 
plateau at the boiling point is almost absent in this case, indicating 
that the presence of the λ-front thins the boiling front. The inset 
shows a good agreement with the data downstream in the channel. 
The simulation underestimates once again the steady-state profile. 
Considering the temperature measured by the two closest sensors 
to the heater, the λ-front must lie between these sensors, indicat-
ing an acceptable estimation of its position by the model. Fig. 10
shows the volume fraction distribution in the channel at four mo-
ments of the simulation. The channel was magnified ten times 
in its thickness to favor a better visualization of the results in 
post-processing. It is clear how the vapor phase arises quickly at 
the beginning of the transient and expands downstream. The He 
I phase thickens in time but constitutes always a small portion of 
the channel between the vapor and He II phases. The fast onset 
12
of film boiling reduces the He II-He I transformation rate, limiting 
then the expansion of the He I phase. Fig. 11 shows the thermal 
conductivity (Eq. (48)) of the fluid in the same study case. The 
change of several orders of magnitude within the same substance 
is impressive and proper of the triple-phase phenomenon in he-
lium. The value is maximum in He II next to the bath boundary, 
where the temperature gradient is minimum. It mildly decreases 
towards the λ-front, where the value drops significantly down to 
the He I range. Another small temperature reduction characterizes 
the phase change to helium vapor, where the minimum value is 
reached. The thermal conductivity of vapor increases towards the 
heater as a function of the temperature.

Another experiment in similar conditions was conducted with 
the channel in its horizontal orientation. In this case, the heater 
reaches a temperature of 22.7 K. Fig. 12 shows the comparison of 
the simulated temperature profiles with the data. The profiles are 
quite similar to the vertical orientation case, except the gradient is 
lower in vapor and He I. Since the lighter fluid phase is no longer 
gravity-driven towards the heater, the vapor expands further to-
wards the bath. As a consequence, the λ-front propagates farther 
and exceeds the closest sensor to the heater at the steady state. As 
the inset shows, the profiles in He II are well predicted, particularly 
in the early moments of the test and despite the presence of the 
vapor phase. The overall temperature is slightly underestimated, 
with a satisfactory relative error of 7.9 %. This is more evident in 
Fig. 13, which shows the temperature evolution at the location of 
the three closest sensors to the heater. The simulated evolution is 
also in delay with respect to the data. However, the increase rate 
is well captured by the model. The underestimation might be due 
to the measured heater temperature, which may be lower than 
the actual one because of the location of the measurement. The 
volume fraction fields of this simulation are presented in Fig. 14, 
where the channel thickness is again magnified ten times. As in 
the previous case, the vapor is soon generated and grows slowly 
throughout the channel. However, the He I phase is visibly thicker 
than the vertical case. Another difference pertains to the shape of 
the boiling front, which appears tilted due to the effect of gravity. 
The same phenomenon is not observable, instead, for the λ-front, 
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Fig. 12. Transient temperature profiles comparison between heliumChtFoam and data 
from an experiment in the horizontal channel at a bath temperature Tb = 2.15 K 
and the heater at 22.7 K.

Fig. 13. Temperature evolution comparison between heliumChtFoam and data from 
the three closest sensors to the heater in the horizontal channel experiment at a 
bath temperature Tb = 2.15 K and the heater at 22.7 K. The distances between the 
heater and the sensors TS1, TS2, and TS3 are 1.5 cm, 3 cm, and 4.5 cm respectively. 
The linestyle of the simulation (colored) matches the measurement (black) for each 
sensor. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

where the density gradient is very small and hence the interface is 
unaffected by buoyancy forces.

7. Conclusion

The following points summarize the conclusions of this study:

• A numerical model benchmarking validated a modified ver-
sion of the single-fluid model for He II with a typical relative 
error of the transient temperature profiles below 1 %. This 
model, which is a FVM-based multidimensional code, com-
prises a generalized conductive heat power law, whose usage 
is extended to the momentum equation as well as the en-
ergy equation. The model includes also a customized super-
fluid partial slip boundary condition that captures the correct 
thermo-fluid dynamic behavior of He II at the walls.

• A segregated-like conjugate heat transfer module linked to 
the He II model enables simulating properly the thermal re-
lationship between He II and solids through the usage of 
a customized Kapitza resistance boundary condition, which 
smoothly switches from a regime characterized by low helium-
solid temperature differences to a regime where the tempera-
ture difference is comparable to the bath temperature.
13
• By combining the heat transfer equations of He I and He II, 
it is possible to derive a nonlinear equation for the λ-front 
position in fixed non-uniform orthogonal computational grids. 
The solution of this equation via the iterative Newton-Raphson 
method showed consistent and fast results.

• The comparison of data collected during He I experiments at 
moderate heat flux with a multiphase numerical model for 
boiling phenomena revealed good accuracy of the model with 
a relative error of the transient temperature profiles around 
10 %. This model exploits the enthalpy dependence of the 
thermophysical properties to derive mass and volume fractions 
explicitly without tracking the vapor-He I interface. The model 
also implements a continuum surface force module for the cal-
culation of the surface tension forces acting on the mixture 
interface.

• The comparison of data collected during He II experiments 
at moderate heat flux with a multiphase numerical model 
for triple-phase phenomena revealed good accuracy of the 
model with a relative error of the transient temperature pro-
files around 10 %. The model is based on a modified PIMPLE 
algorithm, which includes the module for the identification of 
the λ-front location. This additional module allows to correct 
at the λ-front the He II fields that depend on the temperature 
gradient. The predicted λ-front position varies weakly with the 
size of the control volumes.

• The triple-phase numerical model simulates satisfactorily the 
propagation of the phase change fronts. The channel portion 
occupied by the He I phase resembles the one observed in the 
experiments of the non-confined channel. The simulations re-
vealed that the saturation interface between vapor and He I 
is thinner if boiling occurs in an environment initially consti-
tuted by He II only.

Nomenclature

Romans letters

C distance vector between cell centroid and face, m
d distance vector, m
Fσ surface tension force, N m−3

g gravitational acceleration vector, m s−2

n normal vector, m
q heat flux vector, W m−2

S surface normal vector, m2

v velocity vector, m s−1

a empirical coefficient, -
AGM Gorter-Mellink coefficient, m s kg−1

c specific heat capacity, J kg−1 K−1

f heat conductivity function, m5 K W−3

h specific enthalpy, J kg−1

hK Kapitza conductance, W m−2 K−1

j mass flux, kg s−1 m−2

K kinetic energy, J kg−1

k thermal conductivity, W m−1 K−1

M momentum diffusive-like parameter of superfluid helium, 
m2 s−1 K−1

N number of cell faces, -
n conductive heat power law coefficient, -
p pressure, Pa
Q source/sink function, -
q heat flux, W m−2

R specific gas constant, J K−1 mol−1

S surface scalar, m2

s specific entropy, J kg−1 K−1

T temperature, K
t time, s
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Fig. 14. Helium three-phase evolution in the horizontal channel at a bath temperature Tb = 2.15 K and the heater at 22.7 K. The length coordinates are in meters.
V volume, m3

v velocity, m s−1

x position coordinate, m
Y mass fraction, -
Z compressibility factor, -

Greek letters

α volume fraction, -
β thermal diffusivity, m2 s−1

γ weighing coefficient, -
κ interface curvature, m−1

λ geometric factor, -
μ dynamic viscosity, Pa s
φ scalar quantity, -
ρ density, kg m−3

σ surface tension coefficient, N m−1

Superscripts

∗ new iteration, corrected

Subscripts

λ lambda point, lambda transition related
b bath
ef f effective
f cell face
f ict fictitious
He helium
I reference to He I
I I reference to He II
l saturated liquid, linearly interpolated
N neighbor cell centroid
14
n normal fluid component
ns relative or mutual action between the two fluid compo-

nents
P owner cell centroid
p constant pressure
s superfluid component, solid surface
sat saturation conditions
v saturated vapor
vap superheated vapor

Acronyms

CSF Continuum Surface Force
FVM Finite Volume Method
LHS Left-Hand Side
RHS Right-Hand Side
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Appendix A. Correction algorithm analysis

It is interesting to make a few considerations about the appli-
cability and efficiency of the Newton-Raphson method to this par-
ticular problem. Since all the parameters on the RHS of Eqs. (29a)
and (29b) are known at each time step, let us group them into a 
coefficient B , which is always non-negative. Let us consider then 
the following function:

f (γ ) = Bγ
1
n + γ − 1. (A.1)

We are interested in finding the root γ0 of f (γ ), which will be 
the result of the nonlinear equation. The Newton-Raphson method 
searches for the roots of a given function by iteratively computing 
its tangent at a spot that is closer to the root at each iteration. The 
convergence of this method strongly depends on the initial guess 
value. For example, the presence of an inflection point between the 
guess value and the root might make the method diverge. There-
fore, it is important to choose a proper guess value γg that ensures 
convergence regardless of the location of the λ-front and hence the 
value of B . Let us first calculate the first derivative of f (γ ):

f ′(γ ) = d f (γ )

dγ
= 1 + B

n
γ

1−n
n . (A.2)

Thus, f ′(γ ) is always positive for any B , which means that f (γ )

has no stationary point, and that the minimum and maximum pos-
sible values of γ0 can be determined through the following limits:

lim
B→0

[ f (γ ) = 0] ⇒ γ0 = 1, (A.3a)

lim
B→+∞ [ f (γ ) = 0] ⇒ lim

B→+∞

[
γ

1
n + γ

B
− 1

B
= 0

]
⇒ γ0 = 0. (A.3b)

As initially expected, the values of γ0 range from 0 to 1 for any B .
In the Newton-Raphson method, the new guess value γg,new is 

calculated at each iteration as follows:

γg,new = γg − f (γg)

f ′(γg)
. (A.4)

When the difference between γg,new and γg is below a pre-defined 
tolerance tol, the loop is stopped. Because of the degree of Eq. 
(A.1), γg has to be always non-negative for f (γg) to be computed 
numerically. Moreover, for γg that tends to 0, f ′(γ ) tends to infi-
nite, giving rise to a floating point error. This means that γg,new at 
each iteration has to be always positive:

γg,new > 0 ⇒ γg <

[
n

(n − 1) B

]n

. (A.5)

For B tending to infinite, γg tends to 0, which means that above a 
certain value Btol such that

f (tol) = 0 ⇒ Btol = 1 − tol

tol
1
n

, (A.6)
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γg will be less than the tolerance value, making the loop pointless. 
Therefore, for B ≥ Btol , γ0 is set to tol. When B < Btol , if tol is also 
used as the initial value for γg , then Eq. (A.5) requires that

tol <

[
n

(n − 1) B

]n

⇒ Bmax = n

(n − 1) tol
1
n

, (A.7)

where Bmax is the maximum value of B that allows the use of tol
as initial value for γg . It is thus necessary that Btol ≤ Bmax , which 
imposes the following condition on tol:

tol ≥ 1

1 − n
. (A.8)

Since n is either equal to 3 or 3.4, Eq. (A.8) is always met regard-
less of the desired order of accuracy for the algorithm.

The inequality (A.5) sets a condition on the initial guess value 
to properly initiate the loop. However, this is not enough to en-
sure the convergence of the algorithm. In order to check so, let us 
calculate the second derivative of f (γ ) as

f ′′(γ ) = d2 f (γ )

dγ 2
= B (1 − n)

n2
γ

1−2n
n . (A.9)

Considering the possible values of n, it is clear that f ′′(γ ) is always 
non-positive. This means that f ′′(γ ) never changes sign and hence 
f (γ ) has no inflection point. Therefore, as long as the condition in 
(A.5) is satisfied, the loop will surely converge to the root.

As a last consideration, it is useful to qualitatively estimate the 
convergence speed of the algorithm depending on the value of γ0. 
Let us analyze how the first guess γg = tol could affect the number 
of iterations needed to reach convergence through the following 
limits:

lim
B→Btol

[ f (γ ) = 0] ⇒ γ0 � γg, (A.10a)

lim
B→0

[
f ′(γ )

] ⇒ f ′(γ ) = 1. (A.10b)

The limit (A.10a) indicates that the greater B , the closer the root to 
the initial guess. Whereas the second limit implies that for B tend-
ing to small values, the tangent of the curve tends to a constant 
value, pointing immediately to an area nearby the root. Therefore, 
in the limiting cases, the convergence seems to be facilitated.

Appendix B. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .cpc .2021.108275.
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