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1 Introduction

Precision measurements of important observables in QCD and QED [1–5] require precision
predictions through higher-order corrections. For many measurements at current and future
colliders these are corrections up to three-loop order or even higher. The application of these
corrections to the data allows precision predictions of fundamental parameters of the Stan-
dard Model of elementary particle physics. The underlying theoretical calculations require
the development of efficient technologies to calculate the Feynman integrals contributing to
the respective order needed. In this paper we describe a method, which allows to perform
the inverse Mellin transform for massless and single-mass problems in these higher-order
calculations. The method is instrumental in cases, where Mellin space representations
cannot easily be derived. The method can also be applied in the presence of more scales,
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leading to more involved iterated alphabets, however. Also the non-first-order-factorizing
equations become more involved due to real-valued parameters, additional cuts, etc.

For massive operator matrix elements (OMEs), massless off-shell operator matrix
elements or Wilson coefficients, a central variable t can be identified, in which the differential
equations of the respective master integrals are formulated. In the case of the OMEs this
variable emerges through the resummation of the local composite operators into linear
propagators and in the case of the Wilson coefficients it is the ratio t = 2p.q/Q2 of two
kinematic invariants. Here q2 = −Q2 denotes the virtuality of the process, q = l−l′, with the
initial state lepton (l), final state lepton (l′), and nucleon momentum (p). The corresponding
series are formal Taylor series with t ∈ R and can be interpreted as generating functions.

While the variable t emerges naturally in the case of Wilson coefficients, it has to be
considered an auxiliary variable in the case of OMEs. At the end of the calculation one
would like to perform the principal transformation

t→ ±1
x
, (1.1)

where x = Q2/(2p.q) denotes the first Bjorken variable. As we will outline below, special
care is necessary because of the occurrence of δ(1−x) and of +-distributions [6–8] in x-space
and one finally would like to consider different regions in x. In the case of deep-inelastic
scattering this is x ∈ [0, 1].

In previous calculations we have already made use of generating functions in t. However,
in those cases we performed a formal Taylor expansion in which the Nth Mellin moment
arises as the coefficient of the expansion term tN . In many cases it is possible to obtain
the Mellin space result analytically [9–27]. One possibility is to calculate a large number of
moments for the master integrals, assemble them into moments for the physical quantity that
is being calculated, guess recurrences for them [28–30] and finally solve those recurrences
using the algorithms of the package Sigma [31, 32]. Calculating moments for the master
integrals is often mathematically easier than computing them analytically.1 For certain
calculations we were able to push the number of moments that we could generate to
O(15000) [33].

In the present paper we advocate for a complementary method. The method applies
to massless, single and two-mass corrections of single scale quantities, like anomalous
dimensions, massless and massive Wilson coefficients in deep-inelastic scattrering, or other
single scale hard processes at different colliders, for a survey see e.g. [5]. We will further
detail these aspects for the different cases dealt with below.

As a starting point the master integrals all have to be solved in analytic form in terms of
the auxiliary variable t, including also eventual non first-order factorizing cases, which leads
to iterated non-iterative integrals, see refs. [34–36] in general. Integrals of this kind are
iterations over letters, which are given as integrals in which the integration variable cannot be

1In this way, we could compute the three-loop anomalous dimension (∆)γ(2)
qg (N) in a massive environment,

despite the fact that the master integrals contain elliptic structures, in refs. [19, 20]. As expected the elliptic
structures cancel up to the 1/ε terms in the final result, which is not evident by looking at the solutions of
individual master integrals. Here ε = D − 4 denotes the dimensional parameter.
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transferred to the integral boundaries only. The expressions in the variable t still have to be
considered as a mathematical representation close to Mellin N -space. We will then construct
the representations of the integrals in the Bjorken variable x by analytic continuation. This
method has already been applied in one of our recent calculations [37] in the case of iterated
integrals. In the present paper we will not treat OMEs in the two-mass case although the
same method applies. Many of the contributions leading to iterated integrals have been
calculated, cf. [23–26]. These integrals depend also on the real-valued mass ratio m2

c/m
2
b

of the charm and bottom quark mass and the alphabet is square-root valued.
The massive and massless OMEs are obtained from scattering amplitudes after per-

forming the light-cone expansion [38–44]. Physically they are defined at integer values of
the Mellin variable N only. The set of all Mellin moments encodes the complete analytic
information, cf. [45]. The corresponding x-space expressions, e.g. [46–50], are related via a
Mellin transform

M[f(x)](N) =
∫ 1

0
dxxN−1f(x) (1.2)

to the former ones and have to be considered rather a derived quantity in general.2 The
inverse Mellin transform is given by

f(x) = 1
2πi

∫ c+i∞

c−i∞
ds x−sM[f(x)](s), (1.3)

where the integration contour surrounds all singularities of M[f(x)](s) in the complex
plane. It will be shown below that the functions in x-space may have definitions on subsets
or supersets of the interval x ∈ [0, 1] only, cf. [25, 26] at intermediate steps, and require
(various) distribution valued regularizations.

In this paper we apply the method outlined above to integrals contributing to the
massless and massive OMEs and massless Wilson coefficients to three-loop order and
illustrate it by characteristic examples for the different function spaces. The calculation of
these building blocks is of central importance for single-scale hard scattering cross sections
in pp, ep and e+e− processes to three-loop order in QCD and QED. These results form
also the basis of precision measurements of the strong coupling constant αs(M2

Z) [52–55],
the value of the charm quark mass [56], and precision determinations of the twist-2 parton
distribution functions [57] at colliders such as HERA [58], the LHC, and facilities planned
for the future, such as EIC [59, 60], LHeC [61, 62], and the FCC [63].

The paper is organized as follows. In section 2 we discuss the basic method for the
inverse Mellin transform. In section 3 we show how to use our proposed method on different
classes of iterated integrals, such as harmonic polylogarithms [64], generalized harmonic
polylogarithms [65–67], cyclotomic harmonic polylogarithms [68], and iterated integrals
containing square root valued letters [69]. In section 4 we investigate the case where also
iterated non-iterative integrals are present, [34–36]. In section 5 we comment on ways
of efficient numerical representations of the results in x-space and section 6 contains the
conclusions. Some technical aspects are given in the appendices.

2Curiously, in the massless case, the corresponding lowest order functions were known about 50 years
earlier before Mellin space representations have been considered [45], which founded the method of equivalent
photons, [51].
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2 The method

The Feynman rules for the local operator insertions are given in [22, 70] up to three-loop
order. The operator matrix elements (OMEs) are proportional to (∆.p)N , with p the
through flowing momentum, ∆ a light-like vector and N the Mellin index, which is given
by an even or odd integer, depending on the physical problem. Furthermore, the crossing-
relations [1, 71] determine the range of the values N ≥ N0, N,N0 ∈ N\{0}. One may resum
all operator insertions by introducing an auxiliary parameter t in terms of a formal Taylor
series. For the simplest operator insertion one e.g. finds [72]

∞∑
k=0

tk(∆.p)k = 1
1− t∆.p , t ∈ R. (2.1)

The more involved operator insertions result in related structures, always leading to products
of effective propagators as given in eq. (2.1). Respecting the crossing relations one has,
more generally,

∞∑
k=0

tk(∆.p)k 1
2[1± (−1)k] = 1

2

[ 1
1− t∆.p ±

1
1 + t∆.p

]
. (2.2)

This representation has the advantage that the information on the operators is now fully
contained in propagators and one may use the integration-by-parts (IBP) relations [73–78]
without specifying the different operator structures for each value of N , which grow rapidly
in size for growing N .

The complete OMEs or the Wilson coefficients have a definite crossing behaviour, i.e.

A+(N) = 1
2 [1 + (−1)N ]A(N), or B−(N) = 1

2 [1− (−1)N ]B(N), (2.3)

with
A(N) = M[A(x)](N), B(N) = M[B(x)](N), (2.4)

and either only even or odd moments contribute. In t-space one obtains

Ã(t) =
∞∑
N=1

tNA+(N) =
∫ 1

0
dx

t2x

1− t2x2A(x), or (2.5)

B̃(t) =
∞∑
N=1

tNB−(N) =
∫ 1

0
dx

t

1− t2x2B(x), (2.6)

where
Ã(t) = Ã(−t), B̃(t) = −B̃(−t). (2.7)

Structures of the kind of eq. (2.2) also emerge in normal Feynman diagram calculations,
such as for sub-system scattering processes or Wilson coefficient functions [27, 79]. Here
the role of the parameter t is taken by the fraction

t = 2p.q
Q2 . (2.8)
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Let us get back to eq. (2.2), where the light-like vector ∆ has been introduced. By
deriving the OMEs in the light-cone expansion [38–44], cf. [1, 71], in Fourier-space their Nth
moment scales also with 1/xN , cf. e.g. eqs. (52,53) of ref. [71]. Therefore, the situation is the
same as in the case of the Wilson coefficients. The resummed OMEs behave mathematically
very similar to the forward Compton amplitude Tµν [27, 79] and one may formally use the
relation

Wµν = 1
π

ImTµν , ∀t ∈ R. (2.9)

Here Wµν is the hadronic tensor. For the present application Wµν is the final function
depending on the Bjorken variable x, while Tµν contains the variable t. The imaginary part
in (2.9) results from the monodromy of the iterated, or iterated non-iterative integrals [34, 35]
around t = 1, t = −1, and complex valued contributions of other kind by setting

t = ±1
x
. (2.10)

This way the result in x-space can be obtained. Because of even and odd moments being
present in intermediate results, one has to consider also the case t = −1/x, according to
the cuts in the forward Compton amplitude, cf. [1–5]. In the case of iterated integrals,
the monodromy is described by the Drinfeld-Knizhnik-Zamolodchikov [80–83] equations
and related equations. Special care has to be taken in the case of distribution-valued
contributions in x-space, cf. section 2.1.

In eq. (2.9) only the main cut is considered, since all hadronic cut–(final) states are
summed over. This relation applies also to the individual Feynman diagrams and the
associated scalar integrals. Equivalently, one may consider the associated (subtracted)
dispersion relations, cf. [71], also known as Kramers-Kronig relation [84, 85] or Källen-
Lehmann representation [86–88].

In the following, we will elaborate on the extraction of the x-space representation by
analytic continuation of the generating function expressed in t. Let us consider a function
F (N) which has the representation

F (N) =
∫ 1

0
dxxN−1[f(x) + (−1)N−1g(x)], (2.11)

with f(x) = g(x) = 0, for x ∈ R, x < 0, x > 1. Terms of this kind appear e.g. in the flavor
non-singlet anomalous dimensions [21, 89, 90].

Its t-representation is then given by

F̃ (t) =
∞∑
N=1

tNF (N) =
∫ 1

0
dx′

[
tf(x′)
1− tx′ + tg(x′)

1 + tx′

]
. (2.12)

For the physical variable x ∈ [0, 1] one finds

F̃

(
t = 1

x

)
=
∫ 1

0
dx′

[
f(x′)
x− x′

+ g(x′)
x+ x′

]
, (2.13)

F̃

(
t = −1

x

)
=
∫ 1

0
dx′

[
− f(x′)
x+ x′

+ g(x′)
x′ − x

]
. (2.14)
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We can use the Sochocki formulae [6–8, 91]3

lim
δ→0+

1
ξ ± iδ

= P
1
ξ
∓ iπδ(ξ) (2.15)

with P Cauchy’s valeur principale [93], to replace the denominators in (2.13), (2.14) with
ξ = x± x′ and obtain

− 1
2πiDiscxF̃

(1
x

)
= lim

δ→0+

1
π

ImF̃
( 1
x− iδ

)
=
∫ 1

0
dx′f(x′)δ(x− x′) = f(x), (2.16)

1
2πiDiscxF̃

(
−1
x

)
= lim

δ→0+

1
π

ImF̃
(
− 1
x+ iδ

)
=
∫ 1

0
dx′g(x′)δ(x− x′) = g(x). (2.17)

One therefore may reconstruct

f(x) + (−1)N−1g(x) = 1
2πi

[
−DiscxF̃

(1
x

)
+ (−1)N−1DiscxF̃

(
−1
x

)]
. (2.18)

One realizes that the branch of the solution that scales proportional to (−1)N introduces a
monodromy at the point t = −1, which has to be accounted for. Similarly, one may consider
branches which scale more generally as rN , r ∈ R, introducing a monodromy at a t = 1/r,
which has to be handled accordingly and will lead to x-space representations with support
different from x ∈]0, 1[. For single iterated integrals and Feynman diagrams this has been
already observed in the case of the massive pure singlet and two-mass OMEs. However, in
the physical amplitude these contributions outside of the physical region canceled and one
was left with the usual support x ∈ [0, 1].

We illustrate our method with the following example,

F̃ (t) = H0,1,−1(t) + 2H0,0,−1(t), (2.19)

where H~a(t) are harmonic polylogarithms [64]. The Mellin space expression, corresponding
to the coefficient of tN , reads

M[F (x)](N) = (−1)N−1

N3 − S−1(N)
N2 (2.20)

describing the expansion coefficients of (2.19)

F̃ (t) = 2t+ 7t3

54 + t4

48 + 59t5

1500 + t6

80 + 379t7

20580 + 107t8

13440 +O(t9). (2.21)

Here S~a(N) denotes the harmonic sums [94, 95]

Sb,~a(N) =
N∑
k=1

(sign(b))k

k|b|
S~a(k), S∅ = 1, b, ai ∈ Z\{0}, N ∈ N\{0}. (2.22)

One obtains the following functions in (2.18)

f(x) = − ln(2)H0(x) (2.23)

g(x) = − ln(2)H0(x)− 1
2ζ2 + 1

2H2
0(x) + H0,−1(x). (2.24)

3These relations can also be derived by using residue theory, cf. [92], see appendix A.
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Let us likewise consider the functions with definite crossing relations

F (x) = [1 + (−1)N−1]s(x) + [1− (−1)N−1]a(x), (2.25)

and resum its Mellin transform into F̃ (t),

F̃ (t) =
∞∑
N=1

tNM[F (x)](N)

=
∫ 1

0
dx′x′N−1

[
2ts(x′)

1− t2x′2 + 2t2x′a(x′)
1− t2x′2

]
,

=
∫ 1

0
dx′x′N−1

[
t

1− tx′ (s(x
′) + a(x′)) + t

1 + tx′
(s(x′)− a(x′))

]
. (2.26)

One obtains the combinations

s(x) + a(x) = − 1
2πiDiscxF

(1
x

)
, s(x)− a(x) = 1

2πiDiscxF
(
−1
x

)
. (2.27)

In cases which are free of the factor (−1)N−1 in x-space it is sufficient to consider F̃ (t = 1/x)
since the monodromy around t = −1 does not play a role. Most of the cases discussed
below receive, however, contributions form both terms. On the other hand, it is evident
that in the case that either s(x) or a(x) vanish, one of the equations (2.27) is sufficient to
determine the respective distribution.

The strategy to apply eq. (2.18) is now to first analytically calculate the master integral
in terms of iterated non-iterative integrals in the variable t, describing the resummed
Mellin-space representation. This is done by solving the corresponding systems of lin-
ear ordinary differential equations over arbitrary bases of master integrals, as has been
described in ref. [96]. The iterated non-iterative integrals are then found by solving the
homogeneous solutions in terms of higher transcendental functions and the application of
Euler-Lagrange [97–99] variation of the constant. This is followed by the transformation
t→ ±1/x and applying (2.18), leading to another analytic iterated non-iterative integral.
These integrals now depend on the Bjorken variable x, which is identical to the momentum
fraction variable z in collinear factorization [100] for twist-2 operators and forward scat-
tering that we deal with in the present paper. All expressions in t-space are understood
as generating functions (2.2), the Nth expansion coefficient of which is the corresponding
Mellin moment. In principle one can derive from sequences of theses moments the recurrence
of the N -space quantities, cf. [18, 28–30].

Concrete master integrals were derived in different projects [16, 21, 22, 27, 37, 101]
which were obtained by using e.g. the packages Reduze 2 [102, 103] and Crusher [104]. We
note that the Mellin N result for each contributing power in N can be directly obtained
by expanding in t. We will demonstrate our new method of directly obtaining the x-space
expression from the generating function in t on different function classes which arose in the
aforementioned projects in sections 3 and 4.
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In calculating massless and massive OMEs different alphabets forming iterated and
iterated non-iterative integrals were revealed. The words formed out of these alphabets
encode the whole information of the respective Quantum Field Theory,4 like other alphabets
provide the basic building blocks for languages and other structures [106, 107]. The simplest
one is formed by the harmonic polylogarithms (HPLs) [64] and its subsets, the classical [108–
110] and Nielsen polylogarithms [111–114]. These are followed by generalized harmonic
polylogarithms [65–67], cyclotomic polylogarithms [68], and specific root-valued alphabets
obtained in Mellin inversions of finite binomial and inverse central binomial sums [37, 69].
All these alphabets lead to iterated integrals, for which shuffle algebras [115, 116] lead to a
reduction of the respective representation.

In massive problems at three-loop order also 2F1-letters occur, cf. e.g. [36], which are
no iterated integrals anymore. They can be dealt with in terms of iterated non-iterative
integrals, however. Going even to higher orders, more and more of these structures will
occur. They are characterized e.g. as solutions of differential equations, which do not
factorize at first order. The 2F1-letters are related to complete elliptic integrals [117, 118] of
specific (irrational) functions in t and to modular forms [119–121]. We also note that among
square-root letters one may have those, leading to incomplete elliptic integrals, cf. [122].
These cases, however, are iterated integrals. We remark, that transformations like (2.10)
also connect splitting functions with argument x ∈ [0, 1] to fragmentation functions with
x ∈ [1,∞), cf. [123]. In sections 3 and 4 we will demonstrate the present method for the
different classes of functions mentioned above and illustrate it by a series of examples.

In the next section we describe the separation of the different distribution-valued
contributions in x-space directly from the t-space representation in section 2.1, and the
property of conjugation, which relates different master integrals and can be used to decrease
the number of master integrals which have to be calculated, in section 2.2.

2.1 Distributions in x space

In inclusive physical (single-scale) processes there occur two distribution-valued contribu-
tions,

δ(1− x),
(

lnk(1− x)
1− x

)
+
, k ∈ N, with ln(1− x) = −H1(x), (2.28)

where Ha(x) denotes a harmonic polylogarithm [64]. They describe the soft region x→ 1
or N → ∞. Both distributions emerge from the behaviour of the generating function at
t = 1. Ideally one would like to separate these contributions in t-space already, since their
x-space structure is known, such that finally only the regular part needs to be calculated in
x space. The Mellin transform of the distributions read

M[δ(1− x)](N) = 1, (2.29)

M
[(

fa(x)
1− x

)
+

]
(N) =

∫ 1

0
dx
xN−1 − 1

1− x fa(x), (2.30)

4One may call these alphabets also the genetic code of the micro cosmos, cf. [105].
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which is the option PlusFunctionDefinition → 1 of the package HarmonicSums [64, 67–
69, 94, 95, 115, 116, 124–134]. For the separation of the distribution we will consider
fa(x) = Hk

1(x), k ∈ N, for definiteness. Details of the decomposition in the δ,+ and regular
contribution are given in appendix A.

One expands the analytic solution G(t) around t = 1 as

G(t) ' 1
1− ta0 +

∞∑
k=1

ak
Hk

1(t)
t− 1 + Ĝreg(t), (2.31)

with Ĝreg(t) = O
(
(t− 1)0) and Ĝreg(t) does not result in a distribution in x-space. By this

one obtains the leading terms contributing to the distributions. To obtain the complete
distributions in x-space one subtracts from G(t) the following distribution-generating terms,
with the coefficients ak (2.32)–(2.38), etc., leaving Greg(t), a modified form of Ĝreg(t).

In this way, one identifies the leading terms in the t-representation. The distribution-
valued contributions are obtained by the following replacements

δ(1− x)← t

1− t , (2.32)[ 1
1− x

]
+
← t

t− 1H1(t), (2.33)[H1(x)
1− x

]
+
← t

t− 1

[1
2H2

1(t) + H0,1(t)
]
, (2.34)[

H2
1(x)

1− x

]
+
← t

t− 1

[1
3H3

1(t) + 2H1(t)H0,1(t) + 2H0,0,1(t)− 2H0,1,1(t)
]
, (2.35)

[
H3

1(x)
1− x

]
+
← t

t− 1

[
1
4H4

1(t) + 3H2
1(t)H0,1(t) + 6H1(t)H0,0,1(t)− 6H1(t)H0,1,1(t)

+ 6H0,0,0,1(t)− 6H0,0,1,1(t) + 6H0,1,1,1(t)
]

(2.36)

[
H4

1(x)
1− x

]
+
← t

t− 1

[
1
5H5

1(t) + 4H3
1(t)H0,1(t) + 12H2

1(t)H0,0,1(t)− 12H2
1(t)H0,1,1(t)

+ 24H1(t)H0,0,0,1(t)− 24H1(t)H0,0,1,1(t) + 24H1(t)H0,1,1,1(t) + 24H0,0,0,0,1(t)

− 24H0,0,0,1,1(t) + 24H0,0,1,1,1(t)− 24H0,1,1,1,1(t)
]

(2.37)

[
H5

1(x)
1− x

]
+
← t

t− 1

[
1
6H6

1(t) + 5H4
1(t)H0,1(t) + 20H3

1(t)H0,0,1(t)− 20H3
1(t)H0,1,1(t)

+ 60H2
1(t)H0,0,0,1(t)− 60H2

1(t)H0,0,1,1(t) + 60H2
1(t)H0,1,1,1(t)

+ 120H1(t)H0,0,0,0,1(t)− 120H1(t)H0,0,0,1,1(t) + 120H1(t)H0,0,1,1,1(t)
− 120H1(t)H0,1,1,1,1(t) + 120H0,0,0,0,0,1(t)− 120H0,0,0,0,1,1(t)

+ 120H0,0,0,1,1,1(t)− 120H0,0,1,1,1,1(t) + 120H0,1,1,1,1,1(t)
]
, etc. (2.38)
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In the substitution one shall start from the largest power k in eq. (2.28). One notices that
the coefficients of the formal Taylor series of these expressions are the same as the values of
the Mellin moments of the distributions at the l.h.s.5

2.2 Conjugation

In the calculation of single-scale master integrals finally expressed in the variable x in
momentum fraction space, one observes, in quite a series of cases, the so-called conjugation
relation. In Mellin N -space it reads, cf. [94],

f̂2(N, ε) ≡ f̂C1 (N, ε) = −
N∑
k=1

(−1)k
(
N

k

)
f̂1(k, ε), (2.39)

for the functions f̂1(N, ε) and f̂2(N, ε), at all orders in the dimensional parameter ε. One
may phrase this relation in x-space directly with

f̂(N, ε) = M[f(x, ε)](N) ≡
∫ 1

0
dx xN−1 f(x, ε), (2.40)

yielding
f2(x, ε) = − x

1− xf1(1− x, ε), for x ∈ [0, 1[. (2.41)

The conjugation relation obeys

[f̂C(N)]C = f̂(N), [fC(x)]C = f̃(x). (2.42)

The most simple example is
SC1 (N) = 1

N
, (2.43)

reading in x-space (
− x

1− x

)C
= 1. (2.44)

Some of the master integrals are even self-conjugate. It is useful to study a large number
of moments of all master integrals first, to find those which are conjugate to others, since
their direct calculation can be avoided by using eq. (2.41). This has been done also for the
massive OME A

(3)
Qg [18].

3 Iterated integrals

Iterated integrals G(a1, . . . , ak; t) are defined over an alphabet A

A = {f1(t), . . . , fm(t)} (3.1)

of letters fk(t) which are analytic functions of t. They are given by

G(b,~a; t) =
∫ t

0
dx1fb(x1)G(~a;x1). (3.2)

5We remark that Mathematica and HarmonicSums have partly different implementations of cuts.

– 10 –



J
H
E
P
0
6
(
2
0
2
3
)
0
6
2

If one of the letters fk(t) behaves like ck/t, ck ∈ C\{0} the integral
∫ x

0 dt fk(t) needs a
regularization given by

G(k;x) :=
∫ x

ε
dt fk(t) + H0(ε), (3.3)

which leads to regulators ∝ lnl(ε) that have to cancel in the final expression. Examples are

G(0;x) :=
∫ x

ε
dt

1
t

+ H0(ε) = H0(x), (3.4)

G
(√

1 + x

x
;x
)

:=
∫ x

ε

dy

y

√
1− y + H0(ε) = −2 + 2

√
1− x+ 2 ln(2)

+ ln(1−
√

1− x)− ln(1 +
√

1− x). (3.5)

These regularizations are necessary for the letter 1/t contributing to the harmonic polyloga-
rithms and to several other alphabets.

The iterated integrals obey the recurrent differential equation

1
fb(t)

d

dt
G(b,~a; t) = G(~a; t), (3.6)

which can be iterated to yield a first-order-factorizing differential equation for G(b,~a; t)
itself, [

d

dt

1
fak−1(t)

d

dt
. . .

1
fa1(t)

d

dt

]
G(~a; t) = fak

(t). (3.7)

One may now perform the transformation t→ 1/x, which yields−x2 d

dx

(−x2)
fak−1

(
1
x

) d

dx
. . .

(−x2)
fa1

(
1
x

) d

dx

G
(
~a; 1
x

)
= fak

(1
x

)
. (3.8)

The boundary conditions for the solution of (3.8) are known by G(~a; t = 1). From
F̃ (t) = G (~a; t) one obtains from (3.8) ˜̃F (x) = G (~a; 1/x) and

F (x) = 1
π

Im ˜̃F (x), (3.9)

and similarly for t→ −1/x. In this way, all the corresponding calculations for the iterated
integrals can be performed. In various applications we will derive also the differential
equations for the respective G-functions of the variable ±1/x, to extract the imaginary part.

3.1 Harmonic polylogarithms

Harmonic polylogarithms [64] are the simplest entities in single-scale higher-loop calculations
in QCD and QED. Advanced examples where they appear and are sufficient to express the
final results are the massless three-loop Wilson coefficients [27, 79]. The alphabet is given by

AHPL =
{
f0(x) = 1

x
, f1(x) = 1

1− x, f−1(x) = 1
1 + x

}
. (3.10)
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The HPLs are defined by6

Hb,~a(x) =
∫ x

0
dyfb(y)H~a(y), fc ∈ AHPL, H0,. . . ,0︸ ︷︷ ︸

k

(x) := 1
k! lnk(x), (3.11)

in the H~b(x)-notation. We consider the functions7

F̃1(t) = H0,0,1(t), (3.12)
F̃2(t) = H0,1,−1,0,1(t). (3.13)

For the first function the transformations t→ ±1/x yields

F1

(
t = 1

x

)
= −2ζ2H0(x) + 1

6H3
0(x) + H0,0,1(x) + iπ

2 H2
0(x), (3.14)

F1

(
t = −1

x

)
= ζ2H0(x) + 1

6H3
0(x)−H0,0,−1(x), (3.15)

and one obtains
F1(x) = 1

2H2
0. (3.16)

Here, (3.15) does not contribute. The Mellin transform of F1(x) is

M[F1(x)](N) = 1
N3 , (3.17)

which describes the t-series expansion of F̃1(t),

F̃1(t) =
∞∑
N=1

tN

N3 . (3.18)

Similarly, one obtains F2(x)

F2(x) = F2a(x) + (−1)N−1F2b(x), (3.19)

with

F2a(x) =−4Li4
(1

2

)
− 1

6 ln4(2)+ln2(2)ζ2+ 103
40 ζ

2
2 +H0,−1,0,1−

1
24H4

0−
1
2H2

0H0,1−H0,−1H0,1

+H0[2H0,0,1+H0,0,−1+H0,1,−1]−3H0,0,0,1−3H0,0,0,−1+2H0,0,−1,1+ 1
2 ln(2)ζ2H0

+ 1
4ζ2H2

0+ 1
2ζ2H0,1+ 3

2ζ3H0, (3.20)

F2b(x) =−
[
−1

2 ln(2)H0−
1
4H2

0+ 1
2H0,−1−

1
4ζ2

]
ζ2, (3.21)

where we set H~a(x) ≡ H~a. The Mellin transform of F2(x) is given by

M[F2(x)](N) = − 1
N5 +

(
(−1)N

N3 − S−1
N2

)
S−2 + S−2,−1

N2 , (3.22)

6The summary-index notation used e.g. in [64], e.g. writing the index 2 for {0, 1}, is not used here.
7The labels 0, 1, and -1 refer to the usual HPL letters.
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with the convention S~a(N) ≡ S~a. The first terms of the series of F̃2(t) read

F̃2(t) = t3

18 + t4

64 + 67t5

3600 + 11t6

1296 + 9619t7

1058400 + 7117t8

1382400 +O(t9), (3.23)

in accordance with (3.22). The constants are all multiple zeta values [135]. In this case the
package HarmonicSums provides the corresponding transformation.

3.2 Cyclotomic harmonic polylogarithms

The first letters of the cyclotomic alphabet read [68]

Acycl =
{1
x

}
∪
{

1
1− x,

1
1 + x

,
1

1 + x+ x2 ,
x

1 + x+ x2
1

1 + x2 ,
x

1 + x2 ,
1

1− x+ x2 ,

x

1− x+ x2 , . . .

}
. (3.24)

Here the highest numerator power of x is given by Euler’s totient function of the polynomial
number, the denominators are formed by the cyclotomic polynomials8 and AHPL ⊂ Acycl
holds. The cyclotomic polylogarithms are defined by

H{c1,d1},{ai1 ,bi1},...,{aik
,bik
}(x) =

∫ x

0
dyf{c1,d1}(y)H{ai1 ,bi1},...{aik

,bik
}(y), (3.25)

where c1, ai,k label the cyclotomic polynomial and d1, bik denote the degree of the numerator
powers. Here and in the following we are referring to G-functions, always related to the
alphabet discussed in the respective section.

In physics applications cyclotomic polylogarithms were generated by the third, fourth,
and sixth cyclotomic polynomial, see e.g. [72, 96, 101, 136–139]. They also appear while
calculating OMEs and Wilson coefficients for even/odd moments separately [21, 22, 27].

We consider the following example

F̃3(t) = 1
3(1− t)t1/3 G

[
ξ1/3

1− ξ ; t
]

(3.26)

= 1
1− t

(
−1 + t−1/3

3
(
H1(t1/3) + 2H{3,0}(t1/3) + H{3,1}(t1/3)

))
. (3.27)

The first terms of its series expansion around t = 0 read

F̃3(t) = t

4 + 11t2

28 + 69t3

140 + 1037t4

1820 + 4603t5

7280 + 94737t6

138320 + 1111267t7

1521520 + 5860639t8

7607600 +O(t9).
(3.28)

As the next step, one has to separate the distribution-valued terms first by expanding
around t = 1. One finds the distributions

a1

[ 1
1− x

]
+

+ a0δ(1− x); a1 = −1
3 , a0 = 1

18
[√

3π + 9(−2 + ln(3))
]

(3.29)

8One may also study iterated integrals given by quadratic forms, cf. [134].
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and has to subtract t/(t − 1)[−a0 + a1H1(t)], before converting to the regular term in x

space. Finally one obtains

F3(x) = −1
3

[ 1
1− x

]
+

+ 1
18
[√

3π + 9(−2 + ln(3))
]
δ(1− x) + 1− x4/3

3(1− x) (3.30)

and for the Mellin transform the following cyclotomic sum

M[F3(x)](N) =
N∑
k=1

1
1 + 3k , (3.31)

describing the pattern in (3.28). The transformation implies the contribution of cyclotomic
constants, like π, ln(3) etc., cf. [68].

3.3 Generalized harmonic polylogarithms

The alphabet for this class of integrals is given by [67]

AgHPL =
{ 1
x− a

}
, a ∈ C. (3.32)

For single-scale OMEs one has a ∈ Z or Q. Alternatively, for a, bi ∈ R we can also use the
notation

H
a,~b

(x) =
∫ x

0
dy fa(y)H~b(y) , with fa = 1

|a| − sgn(a)x (3.33)

In this notation, for example, f−2 = 1/(2 + x) and f2 = 1/(2 − a). Note that for a > 0
this differs from the notation in eq. (80) by an overall sign. Obviously, this is a natural
generalization of the notation of HPLs. If general real-valued quantities like mass-ratios or
other quantities are present one extends to a ∈ C. Moreover, AHPL ⊂ AgHPL holds. In the
massive OMEs they appeared first in the pure singlet case [16] and they contribute also to
higher topologies [72, 101].

The letters which can imply imaginary parts under the transformation t→ ±1/x are
the ones for a ∈ R, |a| ≥ 1. Here, the support of the imaginary part is usually not the
interval [0, 1], as one sees already in the following examples.9 By defining

γ1 = 1
1− 2x (3.34)

we consider the following functions

F̃4(t) = G
( 1

2−y ; t
)
, (3.35)

F̃5(t) = t

t−1

[
H0,0,0,1 (t)+2G(γ1,1,1,2; t)

]
, (3.36)

F̃6(t) = t

t−1

[
H0,0,0,1 (t)+2G(1,γ1,1,2; t)+2G(γ1,1,1,2; t)+4G(γ1,γ1,1,2; t)

]
. (3.37)

9Integrals defining G-functions with singularities in x ∈ [0, 1] are dealt with applying Cauchy’s valeur
principale [93].
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Here the index-labels 1 and 2 refer to 1/x and 1/(1− x), respectively. The first terms of
their series expansions read

F̃4(t) = t

2 + t2

8 + t3

24 + t4

64 + t5

160 + t6

384 + t7

896 + t8

2048 +O(t9), (3.38)

F̃5(t) =−t2− 33t3

16 −
4525t4

1296 −
116929t5

20736 −
117630361t6

12960000 −
63963307t7

4320000 −
85154778809t8

3457440000
+O(t9), (3.39)

F̃6(t) =−t2− 41t3

16 −
6685t4

1296 −
199729t5

20736 −
227246761t6

12960000 −
411349121t7

12960000 −
1792733759681t8

31116960000
+O(t9). (3.40)

In x-space one obtains

F4(x) = θ

(1
2 − x

)
, (3.41)

F5(x) = − 1
1− x

{
θ(1− x)

[
1
24
(
4 ln3(2)− 2 ln(2)π2 + 21ζ3

)
−H2,0,0(x)

]

− θ(2− x) 1
24
(
4 ln3(2)− 2 ln(2)π2 + 21ζ3

)}
, (3.42)

F6(x) = − 1
1− x

{
θ(1− x)

[
ln3(2)

6 + 1
12
(
− 6 ln2(2) + π2)H2(x)− 1

8ζ3

+ H2,2,0(x)
]

+ θ(2− x)
[
− ln3(2)

6 + 1
12
(
6 ln2(2)− π2)H2(x) + 1

8ζ3

]}
, (3.43)

with θ the Heaviside function. Here regularizations at x = 1 are necessary. The transforma-
tions used for the functions F4,5,6 are not part of the package HarmonicSums.

If different letters of the kind 1/(x− a), a ∈]0, 1], contribute, there are several cuts
contributing to the G-functions, which need a closer consideration. The Mellin transform of
the functions F5(6)(x) have to be performed using the support x ∈ [0, 2],

M̃a[f(x)](N) =
∫ a

0
dxxN−1f(x), a ∈ R, (3.44)

where the +-prescription reads

M̃+,b
a [g(x)](N) =

∫ a

0
dx(xN−1 − bN−1)f(x), a, b ∈ R, (3.45)

and applies to b = 1 here.
The following Mellin transforms are obtained,

M[F4(x)](N) = 2−N

N
, (3.46)

M̃+,1
2 [F5(x)](N) = −S1,3

(
2, 1

2

)
(N − 1), (3.47)

M̃+,1
2 [F6(x)](N) = −S1,1,2

(
2, 1, 1

2

)
(N − 1). (3.48)
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They are in accordance with (3.38)–(3.40). The generalized harmonic sums are given by [67]

Sb,~a(c, ~d)(N) =
N∑
k=1

ck

kb
S~a(~d)(k), b, ai ∈ N\{0}, c, di ∈ C\{0}. (3.49)

Let us finally note that the generalized harmonic polylogarithms which occurred in this
section can be expressed in terms of harmonic polylogarithms if we allow for the arguments
x/2 and 1− x,

H2(x) = −H−1(1− x) + ln(2), (3.50)

H2,0,0(x) = 1
2

[
[−H−1(1− x) + ln(2)]H2

0(x)− 2H0(x)H0,1

(
x

2

)
+ 2H0,0,1

(
x

2

)]
, (3.51)

H2,2,0(x) = 1
2 ln2(2)H0(x) + 1

2H2
−1(1− x)H0(x) +

[
− ln(2)H0(x) + H0,1

(
x

2

)]
H−1(1− x)

− ln(2)H0,1

(
x

2

)
+ H0,1,1

(
x

2

)
. (3.52)

3.4 Square root valued alphabets

Square-root valued alphabets extend those of the previous sections by

Asqrt =
{
h1,h2,h3,h4,h5,h6, . . .

}

=
{

1
x
,

1
1−x,

1
1+x,

√
1−x
x

,
√
x(1−x), 1√

1−x
,

1
√
x
√

1±x
,

1
x
√

1±x
,

1√
1±x
√

2±x
,

1
x
√

1±x/4
, . . .

}
, (3.53)

cf. [69]. For massive OMEs in the single-mass case theses structures appeared first in Agg,Q
at three-loop order [15, 37], see also [101].

Let us consider the following G-functions,

F̃7(t) = G (4; t) (3.54)
F̃8(t) = G (4, 2; t) (3.55)
F̃9(t) = G (4, 1, 2, 2; t) , (3.56)

where the index-labels are those of (3.53). Note that G(4;t) has a trailing letter that is
singular in the limit t→ 0. It therefore requires the regularization prescription described in
eq. (3.3). The functions in eqs. (3.54)–(3.56) have the following series expansions

F̃7(t) = − t2 −
t2

16 −
t3

48 −
5t4

512 −
7t5

1280 −
7t6

2048 −
33t7

14336 −
429t8

262144 +O(t9), (3.57)

F̃8(t) = t− t3

72 −
t4

96 −
71t5

9600 −
31t6

5760 −
3043t7

752640 −
2689t8

860160 +O(t9), (3.58)

F̃9(t) = t2

8 + t3

72 −
t5

480 −
881t6

414720 −
1747t7

967680 −
4561t8

3096576 +O(t9). (3.59)
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In x-space one obtains

F7(x) = 1− 2(1− x)(1 + 2x)
π

√
1− x
x
− 8
π

G
(
5;x

)
, (3.60)

F8(x) = − 1
π

[
4(1− x)3/2

√
x

+ 2(1− x)(1 + 2x)
√

1− x
x

[H0 + H1]

+ 8[G
(
5, 2;x

)
+ G

(
5, 1;x

)
]
]
, (3.61)

F9(x) = − 1
π

{
−
[
16(1 + x) +

(
8(1 + x) + 4(1 + x)H1

+ 2(1 + 2x)H0,1

)
H0 + 2(1 + x)H2

0 + 1
3(1 + 2x)H3

0 + 8(1 + x)H1

+ 2(1 + x)H2
1 − 2(1 + 2x)H0,0,1 + 2(1 + 2x)H0,1,1

]
(1− x)

√
1− x
x

+
(

12(1− x)(1 + x)
√

1− x
x

+ 6(1− x)(1 + 2x)
√

1− x
x

H0 + 36G
(
5;x

)
+ 24G

(
5, 1;x

))
ζ2 +

(
2(1− x)(1 + 2x)

√
1− x
x

+ 8G
(
5;x

))
ζ3 − 32G

(
5;x

)
− 16G

(
5, 2;x

)
− 16G

(
5, 1;x

)
− 12G

(
5, 2, 2;x

)
− 12G

(
5, 2, 1;x

)
− 12G

(
5, 1, 2;x

)
− 12G

(
5, 1, 1;x

)
− 8G

(
5, 1, 2, 1;x

)
− 8G

(
5, 1, 2, 2;x

)
− 8G

(
5, 1, 1, 1;x

)
− 8G

(
5, 1, 1, 2;x

)}
. (3.62)

The Mellin transforms of the above examples for general values of N will also contain
cyclotomic harmonic sums [68] and central binomial terms [69]. The inversion to x-space has
been performed by solving differential equations. The corresponding Mellin transforms read

M[F7(x)](N) = −21−2N

N2

(
2N − 2
N − 1

)
, (3.63)

M[F8(x)](N) = −
(2N
N

)
22N−1N(2N − 1)S{2,−3,1}(N) (3.64)

M[F9(x)](N) =
(2N
N

)
22N

[
16
(
− 1− 4N − 32N2 + 16N3 + 16N4)

(−1 + 2N)4(1 + 2N)3 +
4S3
{2,1,1}(N)

3N(−1 + 2N)

+
(
−

16
(
− 1− 8N + 4N2)

(−1 + 2N)3(1 + 2N)2 −
4S{2,1,2}(N)
N(−1 + 2N)

)
S{2,1,1}(N)

−
16(2 +N)(−1 + 8N)S2

{2,1,1}(N)
15N(−1 + 2N)2(1 + 2N) −

4S{1,0,1},{2,1,1},{2,1,1}(N)
N(−1 + 2N)

−
16(−2 +N)(1 + 8N)S{2,1,2}(N)

15N(−1 + 2N)2(1 + 2N) +
64S{2,1,1},{2,1,1}(N)

15N(−1 + 2N)

+
4S{1,0,1},{2,1,2}(N)
N(−1 + 2N) +

8S{2,1,3}(N)
3N(−1 + 2N)

]
, (3.65)
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and agree with the coefficients of the expansions (3.57)–(3.59). Here the cyclotomic sums are

S{a1,a2,a3},{~b1,~b3,~b3}(N) =
N∑
k=1

1
(a1k + a2)a3

S{~b1,~b3,~b3}(k). (3.66)

Note that for root-valued iterated integrals letters containing factors

(1± t)α, α ∈ R, (3.67)

may imply the occurrence of an imaginary part after transforming t→ ±1/x, which gen-
eralizes the case of the letter 1/(1± t) in the previous classes of functions. Furthermore,
for more general root valued letters, cf. [69], also other cuts need to be considered.

In very simple cases the integrals defining G-functions lead to known functions, cf. [37]
for a series of examples. In particular at higher depth also special constants contribute,
which can be calculated using methods for infinite binomial sums [69, 140, 141].

4 Iterated non-iterative integrals

Beyond the purely iterated integrals, there are also integrals, which cannot be written in
this way. Instead of iterated integrals over alphabets of rational or irrational functions,
the respective letters are given by higher transcendental functions which are themselves
defined by at least one definite integral. Its x-dependence comes from an argument of the
integrand and cannot be transformed to only the boundary of the integral. The simplest
cases of this kind found in physics applications seem to be so-called 2F1-solutions. In
the case we consider in the following it turns out that the hierarchy of master integrals
is such that the 2F1-solutions occur only in the seeds and the other master integrals are
given by first-order iterations over them. For this reason we called these integrals iterated
non-iterative integrals [34, 35]. This class also covers a wide range of concrete cases which
occur in Feynman diagram calculations such as Abel integrals [142], K3 surfaces [143, 144],
and Calabi-Yau motives [145, 146], see also refs. [147, 148]. We will first consider the
basic 2F1-solutions emerging in the massive OME AQg, find solutions of the corresponding
master integrals in a Laurent expansion in ε, and derive the x-space representation for
these non-iterative master integrals in section 4.1. In section 4.2 we describe the principal
method to iteratively determine higher master integrals, which depend on 2F1-solutions in
their inhomogeneous part.

4.1 2F1 solutions

We consider the six master integrals leading to 2F1-solutions and contributing to the massive
OME A

(3)
Qg, cf. [70]. They are given by

F1(t) = 1
(2π)3D

∫∫∫
dDk1 d

Dk2 d
Dk3

D1D4D6D7D10
, (4.1)

F2(t) = 1
(2π)3D

∫∫∫
dDk1 d

Dk2 d
Dk3

D2
1D4D6D7D10

, (4.2)
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F3(t) = 1
(2π)3D

∫∫∫
dDk1 d

Dk2 d
Dk3

D3
1D4D6D7D10

, (4.3)

F4(t) = 1
(2π)3D

∫∫∫
dDk1 d

Dk2 d
Dk3

D2D3D6D7D10
, (4.4)

F5(t) = 1
(2π)3D

∫∫∫
dDk1 d

Dk2 d
Dk3

D2
2D3D6D7D10

, (4.5)

F6(t) = 1
(2π)3D

∫∫∫
dDk1 d

Dk2 d
Dk3

D3
2D3D6D7D10

, (4.6)

and the propagators read

D1 = k2
1 −m2 , D2 = (k1 − p)2 −m2 , (4.7)

D3 = k2
2 −m2 , D4 = (k2 − p)2 −m2 , (4.8)

D6 = (k1 − k3)2 −m2 , D7 = (k2 − k3)2 −m2 , (4.9)
D10 = 1− t(∆.k1) , (4.10)

with m a heavy quark mass. The three integrals F4,5,6(t) are related to F1,2,3(t), respectively,
by conjugation and, therefore, do not need to be calculated by solving the associated
differential equations. The remaining system of three first-order differential equations can
be decoupled by OreSys [149–151] into one differential equation of order o = 3 and two
differential relations for the other functions Fk(t), k ∈ {1, 2, 3}. The original system of
differential equations has the following coefficient matrix

M1(t, ε) =


−1
t − 1

1−t 0
0 − 1

t(1−t) −
2

1−t
0 2

t(8+t)
1

8+t

+ ε


− 1

2t 0 0
0 − 1

2t 0
− (1−t)

2t(8+t)

[
1 + 7ε

4 + 3ε2

8

]
2(13−4t)−ε(7+11t)

8t(8+t)
16+5t

2t(8+t)


(4.11)

and it is given by

d

dt

 F1(t, ε)
F2(t, ε)
F3(t, ε)

 = M1(t, ε)

 F1(t, ε)
F2(t, ε)
F3(t, ε)

+

R1(t, ε)
R2(t, ε)
R3(t, ε)

+O(ε), (4.12)

where the inhomogeneities are

R1(t,ε) = 1
t(1−t)ε3

[
16− 68

3 ε+
(59

3 +6ζ2

)
ε2+

(
−65

12−
17
2 ζ2+2ζ3

)
ε3
]
+O(ε), (4.13)

R2(t,ε) = 1
t(1−t)ε3

[
8− 16

3 ε+
(4

3 +3ζ2

)
ε2+

(14
3 −2ζ2+ζ3

)
ε3
]
+O(ε), (4.14)

R3(t,ε) = 1
12t(8+t)ε3

[
−192+8ε−8

(
4+9ζ2

)
ε2+

(
68+3ζ2−24ζ3

)
ε3
]
+O(ε). (4.15)

The functions Fi(t, ε) are expanded into a Laurent series in ε,

Fi(t, ε) =
∞∑

k=−3
Fi,k(t)εk. (4.16)
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We first solve the homogeneous system after the decoupling for one of the functions Fi is
performed. Then the differential equations will be solved by using the method presented
in ref. [96] looping up in the dimensional parameter ε. Here also decoupling is used,
cf. refs. [150, 151].

Concerning the simplicity of the solution structure, it is important for which of the
functions one decouples first. If one chooses F1, see appendix B, a more complicated
structure is obtained than starting with F3. The former case is structurally closer to the
solution found in ref. [36]. In appendix B we show the lengthy expression of the solution
F1(t) up to O(ε−1), which is given by G-functions containing 2F1-letters in a spurious
manner. Actually, a much more compact solution, free of 2F1-letters, is obtained, as will
be shown in eq. (4.29). The reason for this is, that the original 3 × 3 system has been
transformed into a third-order differential equation without factorizing into a first-order
and a second-order system first and solving first the first-order equation.

One is generally advised to solve first the differential equations of the first-order
sub-systems.10 If we decouple for the solution of F3(t) using OreSys first we obtain the
homogeneous differential equation

F′1(t) + 1
t
F1(t) = 0. (4.17)

The other solutions appear only in the inhomogeneity. The particular solution of the
homogeneous equation is

g̃0(t) = 1
t
. (4.18)

Further, the homogeneous differential equation of F3(t) is now given by

F′′3(t) + (2− t)
(1− t)tF

′
3(t) + 2 + t

(1− t)t(8 + t)F3(t) = 0, (4.19)

while the solution F2(t) is a function of F3(t) and its derivatives. In this way, the 3 × 3
system decouples into a first-order and a second-order system. In general, one is advised to
find all first-order solutions through decoupling of the complete system first.

The Heun equation [154–156] (4.19) has singularities at t0 ∈ {−8, 0, 1,∞}. They
will transform into x0 ∈ {−1/8, 0, 1,∞} and one therefore expects that the series around
x = 0 has a convergence radius r < 1/8, which has consequences for the final numerical
representation. Eq. (4.19) has the advantage that there are no singularities in x ∈]0, 1[,
unlike the case of the elliptic solutions in [36], eqs. (3.18, 3.19), or eqs. (B.4), (B.5), providing
an easier way to perform the analytic continuation.

The pair of particular solutions of the homogeneous equation eq. (4.19) is given by

g̃1(t) = 2
(1− t)2/3(8 + t)1/3 2F1

[ 1
3 ,

4
3

2 ;− 27t
(1− t)2(8 + t)

]
, (4.20)

g̃2(t) = 9
√

3Γ2(1/3)
8π

1
(1− t)2/3(8 + t)1/3 2F1

[ 1
3 ,

4
3

2
3

; 1 + 27t
(1− t)2(8 + t)

]
, (4.21)

10In Mellin space the package Sigma [31, 32] always factorizes first all first-order factors. This is generally
not the case for decoupling algorithms [149] implemented in OreSys [150, 151]. However, one can investigate
differential equation decoupling using e.g. the algorithm [152, 153] available in Maple.
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with the Wronskian

W (t) = 1− t
t2

. (4.22)

The normalization of g̃2(t) has been chosen in such a way that the Wronskian is free of
transcendental constants. Note that the parameters of the 2F1-functions are not the same
as in eqs. (B.4), (B.5). In the solutions also the functions g̃′1(2)(t) are contributing, while
higher derivatives are expressed using eq. (4.19). The functions g̃1(2)(t) are discontinuous at
t = 1,

lim
t→1−

Re[g̃1(t)] = 3
√

3
2π , lim

t→1−
Re[g̃2(t)] = 9

8 , (4.23)

lim
t→1+

Re[g̃1(t)] = −3
√

3
4π , lim

t→1+
Re[g̃2(t)] = −9

4 , (4.24)

lim
t→1−

Im[g̃1(t)] = 0, lim
t→1−

Im[g̃2(t)] = −9
√

3
8 , (4.25)

lim
t→1+

Im[g̃1(t)] = − 9
4π , lim

t→1+
Im[g̃2(t)] = 0. (4.26)

This requires to consider the cases t < 1 and t > 1 separately.
The solutions Fi(t) of the 3×3 system up to O(ε0) can be expressed as iterated integrals

over the alphabet

A2 =
{

1
t
,

1
1− t ,

1
8 + t

, g̃1, g̃2,
g̃1
t
,
g̃1

1− t ,
g̃1

8 + t
,
g̃′1
t
,
g̃′1

1− t ,
g̃′1

8 + t
,
g̃2
t
,
g̃2

1− t ,
g̃2

8 + t
,
g̃′2
t
,
g̃′2

1− t ,

g̃′2
8 + t

, tg̃1, tg̃2

}
(4.27)

of length 19. Later we will refer to G-functions also for x ∈ [0, 1]. The corresponding
alphabet is obtained by setting t → 1/x and partial fractioning. For technical reasons
additional regularization may become necessary later because of the small-t behaviour of
these letters.

In the G-functions below the respective letter is denoted by its position in A2. One
might express g̃′2 by

g̃′2 = 1
g̃1

[
g̃2g̃
′
1 + 1

t2
− 1
t

]
, (4.28)

which we will not apply, however, since g̃1 would appear in the denominator, which is
technically more difficult in some representations.

The system relates to all solutions Fi(t) through the inhomogeneities. At higher order
in ε all solutions obtain G-functions containing 2F1-dependent letters. We first compute
the functions Fi(t) in the region t ∈ [0, 1−]. The initial conditions are set at t = 0. From
these solutions one can calculate the associated analytic expansion around x = 1.
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To O(ε0) the solutions read

F1(t) = 8
ε3

[
1+ 1

t
H1(t)

]
− 1
ε2

[
1
6(106+t)+ (9+2t)

t
H1(t)+ 4

t
H0,1(t)

]

+ 1
ε

{
1
12(271+9t)+

[
71+32t+2t2

12t + 3ζ2
t

]
H1(t)+ (9+2t)

2t H0,1(t)+ 2
t
H0,0,1(t)

+3ζ2

}
+ 1
t

{
6696−22680t−16278t2−255t3−62t4

864t +
(
9+9t+t2

)
g̃1(t)

[
31ln(2)

16

+ 1
144

(
265+31π(−3i+

√
3)
)
+ 3

8 ln(2)ζ2+ 1
24
(
10+π(−3i+

√
3)
)
ζ2−

7
4ζ3

]

+G(18, t)
[
−93ln(2)

16 + 1
48
(
−265−31π(−3i+

√
3)
)
+
(
−9ln(2)

8

+ 1
8
(
−10−π

(
−3i+

√
3
)))

ζ2+ 21
4 ζ3

]
+G(16; t)

[
31
4 + 3

2ζ2+
(
9+9t+t2

)
(

31
36 + ζ2

6

)
g̃1(t)

]
+G(13; t)

[
−31

36−
1
6ζ2+

(
9+9t+t2

)(655
648 + 25ζ2

108

)
g̃1(t)

]

+G(4; t)
[
−155ln(2)

8 − 5
72
(
265+31π(−3i+

√
3)
)
+
(
−15ln(2)

4

− 5
12
(
10+π

(
−3i+

√
3
)))

ζ2+ 35
2 ζ3−

7
24
(
9+9t+t2

)
g̃2(t)

]
+G(7; t)

[
31ln(2)

16

+ 1
144

(
265+31π(−3i+

√
3)
)
+
(

3ln(2)
8 + 1

24
(
10+π

(
−3i+

√
3
)))

ζ2−
7
4ζ3

−
(
9+9t+t2

)(655
648 + 25ζ2

108

)
g̃2(t)

]
+G(10; t)

[
−279ln(2)

16 + 1
16
(
−265

−31π(−3i+
√

3)
)
+
(
−27ln(2)

8 − 3
8
(
10+π

(
−3i+

√
3
)))

ζ2+ 63
4 ζ3

− 31
36
(
9+9t+t2

)
g̃2(t)− 1

6
(
9+9t+t2

)
ζ2g̃2(t)

]
−
(

31
4 + 3ζ2

2

)
H0(t)

−
(

1
144

(
809+564t+75t2+4t3

)
+ 1

4(23+3t)ζ2−ζ3

)
H1(t)−

(
1
24
(
71

+24t−3t2
)
+ 3ζ2

2

)
H0,1(t)− 1

4(9+2t)H0,0,1(t)−H0,0,0,1(t)+ 1
4(63+4t)ζ3

+
(
12−45t−46t2+3t3

)
ζ2

8t −
(

31
36 + ζ2

6

)(
9+9t+t2

)
g̃2(t)

+
(

155
18 + 7

24
(
9+9t+t2

)
g̃1(t)+ 5ζ2

3

)
G(5; t)+

(
9+9t+t2

)(259
81 + 14ζ2

27

)
g̃2(t)
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×G(8; t)−
(
9+9t+t2

)(259
81 + 14ζ2

27

)
g̃1(t)G(14; t)+

(
31
12 + ζ2

2

)
G(19; t)

− 1
6
(
9+9t+t2

)
g̃2(t)G(4,2; t)− 35

12G(4,5; t)−
(

3275
324 + 125ζ2

54

)
G(4,13; t)

+
(

2590
81 + 140ζ2

27

)
G(4,14; t)−

(
155
18 + 5ζ2

3

)
G(4,16; t)+ 1

6
(
9+9t+t2

)
g̃1(t)

×G(5,2; t)+ 35
12G(5,4; t)+

(
3275
324 + 125ζ2

54

)
G(5,7; t)−

(
2590
81 + 140ζ2

27

)
G(5,8; t)

+
(

155
18 + 5ζ2

3

)
G(5,10; t)+ 1

24
(
9+9t+t2

)
g̃2(t)G(6,2; t)+ 7

24G(7,5; t)

+
(

655
648 + 25ζ2

108

)
G(7,13; t)−

(
259
81 + 14ζ2

27

)
G(7,14; t)+

(
31
36 + ζ2

6

)
G(7,16; t)

+ 7
8
(
9+9t+t2

)
g̃2(t)G(8,2; t)− 21

8 G(10,5; t)−
(

655
72 + 25ζ2

12

)
G(10,13; t)

+
(

259
9 + 14ζ2

3

)
G(10,14; t)−

(
31
4 + 3ζ2

2

)
G(10,16; t)− 1

24
(
9+9t+t2

)
g̃1(t)

×G(12,2; t)− 7
24G(13,4; t)−

(
655
648 + 25ζ2

108

)
G(13,7; t)+

(
259
81 + 14ζ2

27

)
G(13,8; t)

−
(

31
36 + ζ2

6

)
G(13,10; t)− 7

8
(
9+9t+t2

)
g̃1(t)G(14,2; t)+ 21

8 G(16,4; t)

+
(

655
72 + 25ζ2

12

)
G(16,7; t)−

(
259
9 + 14ζ2

3

)
G(16,8; t)+

(
31
4 + 3ζ2

2

)
G(16,10; t)

− 7
8G(18,5; t)−

(
655
216 + 25ζ2

36

)
G(18,13; t)+

(
259
27 + 14ζ2

9

)
G(18,14; t)

−
(

31
12 + ζ2

2

)
G(18,16; t)+ 7

8G(19,4; t)+
(

655
216 + 25ζ2

36

)
G(19,7; t)−

(
259
27

+ 14ζ2
9

)
G(19,8; t)+

(
31
12 + ζ2

2

)
G(19,10; t)+ 5

3[G(5,4,2; t)−G(4,5,2; t)]

+ 5
12[G(4,12,2; t)−G(5,6,2; t)]+ 35

4 [G(4,14,2; t)−G(5,8,2; t)]

+ 1
6[G(7,5,2; t)−G(13,4,2; t)]+ 1

24[G(13,6,2; t)−G(7,12,2; t)]

+ 1
4
(
9+9t+t2

)
[g̃2(t)G(8,1,2; t)−g̃1(t)G(14,1,2; t)]+ 3

2[G(16,4,2; t)−G(10,5,2; t)]

+ 7
8[G(13,8,2; t)−G(7,14,2; t)]+ 3

8[G(10,12,2; t)−G(16,6,2; t)]

+ 63
8 [G(10,14,2; t)−G(16,8,2; t)]+ 1

2[G(19,4,2; t)−G(18,5,2; t)]

– 23 –



J
H
E
P
0
6
(
2
0
2
3
)
0
6
2

+ 1
8[G(18,12,2; t)−G(19,6,2; t)]+ 21

8 [G(18,14,2; t)−G(19,8,2; t)]

+ 5
2[G(4,14,1,2; t)−G(5,8,1,2; t)]+ 1

4[G(13,8,1,2; t)−G(7,14,1,2; t)]

+ 9
4[G(10,14,1,2; t)−G(16,8,1,2; t)]+ 3

4[G(18,14,1,2; t)−G(19,8,1,2; t)]
}

+O(ε), (4.29)

F2(t) = 8
ε3 + 1

ε2

[
−1

3(34+t)+ 2(1−t)
t

H1(t)
]

+ 1
ε

[
116+15t

12 +3ζ2−
(1−t)(8+t)

3t H1(t)

− 1−t
t

H0,1(t)
]

+ 992−368t+75t2−27t3

144t +(1−t)
((

43+10t+t2
)

12t H1(t)+ (4−t)
4t

×H0,1(t)+ 3ζ2
4t H1(t)

)
+t
[

31ln(2)
16 + 1

144
(
265

+31π
(
−3i+

√
3
))

+
(

3ln(2)
8 + 1

24
(
10+π

(
−3i+

√
3
)))

ζ2−
7
4ζ3+ 7

24G(5; t)

+
(

655
648 + 25ζ2

108

)
G(13; t)−

(
259
81 + 14ζ2

27

)
G(14; t)+

(
31
36 + ζ2

6

)
G(16; t)

+ 1
6G(5,2; t)− 1

24G(12,2; t)− 7
8G(14,2; t)− 1

4G(14,1,2; t)
]
[−g̃1(t)

+(8+t)g̃′1(t)]+t
[
−31

36−
1
6ζ2−

7
24G(4; t)−

(
655
648 + 25ζ2

108

)
G(7; t)+

(
259
81

+ 14ζ2
27

)
G(8; t)−

(
31
36 + ζ2

6

)
G(10; t)− 1

6G(4,2; t)+ 1
24G(6,2; t)+ 7

8G(8,2; t)

+ 1
4G(8,1,2; t)

]
[−g̃2(t)+(8+t)g̃′2(t)]+ (1−t)

2t H0,0,1(t)+
(
16−49t+9t2

)
ζ2

12t

+ζ3+O(ε), (4.30)

F3(t) = 1
ε2

[10
3 −

t

6

]
+ 1
ε

[
−31

6 + 3t
8 −

(1
3−

1
6t−

t

6

)
H1(t)

]
+
[

3
4 ln(2)g̃1(t)

+ 1
12
(
10+π(−3i+

√
3)
)
g̃1(t)− g̃2(t)

3 + 25
54[g̃1(t)G(13; t)−g̃2(t)G(7; t)]

+ 28
27[g̃2(t)G(8; t)−g̃1(t)G(14; t)]+ 1

3[g̃1(t)G(16; t)−g̃2(t)G(10; t)]
]
ζ2+ 31

8 ln(2)g̃1(t)

+ 1
72
(
265+31π(−3i+

√
3)
)
g̃1(t)− 7

2ζ3g̃1(t)− 31g̃2(t)
18 + 31

18[g̃1(t)G(16; t)

−g̃2(t)G(10; t)]+ 7
12[g̃1(t)G(5; t)−g̃2(t)G(4; t)]+ 655

324[g̃1(t)G(13; t)−g̃2(t)G(7; t)]

+ 518
81 [g̃2(t)G(8; t)−g̃1(t)G(14; t)]+ 1

3[g̃1(t)G(5,2; t)−g̃2(t)G(4,2; t)]
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+ 1
12[g̃2(t)G(6,2; t)−g̃1(t)G(12,2; t)]+ 7

4[g̃2(t)G(8,2; t)−g̃1(t)G(14,2; t)]

+ 1
2[g̃2(t)G(8,1,2; t)−g̃1(t)G(14,1,2; t)]+O(ε). (4.31)

The pole terms of the solutions are free of 2F1-dependent letters both in t and in x-space. We
checked numerically that the imaginary parts of F1(t), F2(t) and F3(t) vanish for t ∈ [0, 1].

We now transform to x-space via (2.9) and obtain integral representations in the
physical region x ∈ [0, 1]. The corresponding alphabet is obtained as a transformation of A2.
In these master integrals only the cut in t ∈ [1,∞) contributes. Furthermore, regularizations
at x = 0, 1 are necessary in some cases. We first end up with a representation in terms
of G-functions of x and a number of special constants. At the point x = 1 the x- and
t-expressions agree. Since the expressions are rather voluminous, we will not show these
expressions here but derive analytic expansions around x = 0, 1/2 and x = 1, which have a
more uniform structure. The corresponding series can be extended to very high orders.

Both the functions g̃1,(2)(t) are complex for t > 1. We replace t = 1 + y and take the
imaginary part. The transformation (1.1) introduces new constants given by G-functions
at main argument one. They can be calculated as described in section 4.2. By expanding
around y = 0 one can obtain the series expansion of the master integrals in the variable
1− x = y/(1 + y). In general one expects the structure11

∞∑
k=−1

L∑
l=0

âk,l(1− x)k lnl(1− x). (4.32)

In the present examples the logarithmic contributions do not contribute, cf. (4.38)–(4.40).
One retains a number of terms by which a given precision in the region x ∈ [1/2, 1] is
obtained.

In a similar way one proceeds to obtain an expansion around x = 0 and x = 1/2,
respectively. For the associated differential equations the boundary conditions now known
at x = 1 are used to obtain the solutions around x = 0 and x = 1/2. In both cases new
constants are contributing. They are at most two-fold integrals, cf. section 4.2, and are
calculated numerically to high precision, in the cases they are no known numbers.

The series expansion around x = 0 is given by

1
x

∞∑
k=0

S∑
l=0

b̂k,lx
k lnl(x). (4.33)

Here also G-constants at x = 1 contribute. Furthermore, we will need expansions around
x = 1/2,

∞∑
k=0

ĉk,l

(1
2 − x

)k
(4.34)

and further G-constants at x = 1/2 contribute. The expansion coefficients are given in
appendix C.

11In the numerical representations we normally use 20 digits.
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One obtains

F1(x) = 8x
ε3 −

1
ε2 (2+9x−4xH0)+ 1

ε

[ 1
12x [2+32x+(71+36ζ2)x2]− 1

2(2+9x)H0+xH2
0

]
+F(0)

1 (x)+O(ε), (4.35)

F2(x) =− 1
ε2 2(1−x)+ 1

ε
(1−x)

[(1+8x)
3x −H0

]
+F(0)

2 (x)+O(ε), (4.36)

F3(x) = 1
ε

(1−x)2

6x +F(0)
3 (x)+O(ε). (4.37)

For the expansion around x = 1 one obtains

F(0),1
1 (x) =

∞∑
k=0

c1
1,k(1− x)k. (4.38)

F(0),1
2 (x) =

∞∑
k=1

c1
2,k(1− x)k. (4.39)

F(0),1
3 (x) =

∞∑
k=2

c1
3,k(1− x)k. (4.40)

Correspondingly one obtains for the expansions around x = 0 and x = 1/2

F(0),0
1 (x) = c0

1,−1,1
ln x
x

+ c0
1,−1,0

1
x

+
∞∑
k=0

[c0
1,k,0 + c0

1,k,1 ln(x) + c0
1,k,2 ln2(x) + c0

1,k,3 ln3(x)]xk,

(4.41)

F(0),0
2 (x) = c0

2,−1,1
ln x
x

+ c0
2,−1,0

1
x

+
∞∑
k=0

[c0
2,k,0 + c0

2,k,1 ln(x) + c0
2,k,2 ln2(x)]xk, (4.42)

F(0),0
3 (x) = c0

3,−1,1
ln x
x

+ c0
3,−1,0

1
x

+
∞∑
k=0

[c0
3,k,0 + c0

3,k,1 ln(x) + c0
3,k,2 ln2(x)]xk, (4.43)

and

F(0),1/2
1 (x) =

∞∑
k=0

c
1/2
1,k

(1
2 − x

)k
, (4.44)

F(0),1/2
2 (x) =

∞∑
k=0

c
1/2
2,k

(1
2 − x

)k
, (4.45)

F(0),1/2
3 (x) =

∞∑
k=0

c
1/2
3,k

(1
2 − x

)k
. (4.46)

After the transformation (1.1) is performed, the expressions for the master integrals contain
a series of constants. They can be calculated as G-functions numerically. The Mellin
moments of the master integrals are given as ζ-values, which have been calculated by
different methods [18] up to N = 2000. These provide further numerical precision tests.
We computed from the obtained x-space representations the first 10 Mellin moments, of
the master integrals, and agree. Furthermore, we have compared the analytic results to
numerical results in x-space which we obtained by solving the associated first-order system
of differential equations numerically with the method applied in refs. [157, 158] and found
agreement.
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4.2 Iterating on the 2F1–solutions at first order

After having solved all non-first-order-factorizing cases in analytic form, the other master
integrals contributing to the system spanning a physical problem are of first order and can
now be integrated, since the respective inhomogeneities are successively obtained. At every
order one has to solve an equation of the following form

y(1)(t) + r(t)y(t) = h(t), (4.47)

yielding [159]

y(t) = exp
(
−
∫
dtr(t)

)[
C +

∫
h(t) exp

(∫
dtr(t)

)
dt

]
. (4.48)

The constant C is fixed inserting a special value for t. Since the rational functions can
be partial fractioned allowing for complex constants the exponential factors in (4.48) will
become rational functions again. In the case of Kummer-Poincaré iterated letters [160–166]
for r(x) one obtains

y(t) = 1
t− a

[
C +

∫
dth(t)(t− a)

]
. (4.49)

In the massive OME A
(3)
Qg the master integrals outside of the two sectors that are related to

2F1 solutions all fulfill first-order-factorizing differential equations of the form

y′(x) + A

x− b
y(x) = h(x), (4.50)

which have the solution

y(x) = (b− x)−A
[
CbA +

∫ x

0
dy(a− y)Ah(y)

]
. (4.51)

For half-integer constants A one obtains root-valued letters, correspondingly. The inhomo-
geneity h(t) has itself an (iterated) integral representation down to the 2F1-solutions. The
further iteration adds one more iterated letter to the G-function from the left.

As we saw above, in the present case the 2F1-type letters appear in the G index words
next to each other, while, otherwise, letters are contributing forming iterated integrals.
E.g. in the case of Kummer-Poincaré letters one may write their iterated integral from the
right. Accordingly, one may partially integrate from the left. The result is then a linear
combination of two-fold integrals. As an example, let us consider the integral

Φ(x) = G({2,Φ1,Φ2, 1, 2};x)

=
∫ x

0

dx1
1− x1

∫ x1

0
dx2Φ1(x2)

∫ x2

0
dx3Φ2(x3)

∫ x3

0

dx4
x4

∫ x4

0

dx5
1− x5

=
∫ x

0

dx1
1− x1

∫ x1

0
dx2Φ1(x2)

∫ x2

0
dx3Φ2(x3)Li2(x3)

= − ln(1− x)
∫ x

0
dx1Φ(x1)

∫ x1

0
dx2Φ(x2)Li2(x2)

+
∫ x

0
dx1 ln(1− x1)Φ(x1)

∫ x1

0
dx2Φ(x2)Li2(x2). (4.52)
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Here the functions Φ1(2)(x) denote the respective 2F1-letters. The transformation t→ 1/x
and the series expansion around x = 1 will introduce a series of constants G(a1, . . . , ak; 1).
To compute them, the previously discussed integral representations can be used for the
numerical integration, provided the numerical representations of the respective iterated
integrals are known, cf. e.g. [167–173]. This representation holds up to the terms O(ε0).
More involved structures will appear in higher-order terms in ε for the master integrals.

5 Numerical representations

In the following we would like to make some brief remarks on possible numerical representa-
tions of the different functions we discussed. For harmonic polylogarithms there are efficient
numerical programs to high weight, cf. [167–173]. Generalized harmonic polylogarithms can
be calculated using the Hölder convolution [65], cf. [172]. In some applications, cf. [14, 16],
the generalized harmonic polylogarithms can be grouped to HPLs H~a(1− 2x) in the final
result.12 As we have seen in section 3.3, for individual integrals Heaviside functions occur
in x-space. They relate different +-functions to their Mellin transform. In ref. [16] the
respective contributions canceled in the final (physical) expression, such that the Mellin
transform is the usual one on support x ∈ [0, 1].

There are also codes for cyclotomic harmonic polylogarithms [173]. They can also be
transformed into generalized harmonic polylogarithms using complex representations. In
the case of the emergence of root-valued letters one will first try to rationalize as much as
possible [122, 174–176]. This can also be done using procedures of HarmonicSums. However,
normally some of the root-valued structures will remain. Moreover, the contributing iterated
integrals may be numerous over longer alphabets, cf. e.g. [37]. In this case one may first
separate eventual distribution-valued terms. The remaining regular term, to be calculated
for the interval x ∈ [0, 1], can be analytically expanded into Taylor series expansions
modulated by logarithmic terms around x = 0 and x = 1, to high precision. This also
requires the power series expansion of the analytic continuation of the letters depending on
g̃1,(2)(t) around x = 0 and 1. In general, depending on the convergence radius of these series,
further series expansions inside the interval [0, 1] may become necessary. The convergence
radius of the corresponding series expansion around a point is limited by the position of the
closest singularity of the differential equation of the respective closed form solution. This
singularity may lie outside the support for which the series expansion is intended, see e.g.
the discussion in section 4.1.

6 Conclusions

We have devised an algorithm to compute the inverse Mellin transform to Bjorken x-space
directly from the resummation of the local operators from even or odd values of Mellin
N , respectively, into propagators containing a continuous auxiliary variable t ∈ R. The
differential equations for the master integrals in this variable are either solved in terms of
iterated or iterated non-iterative integrals. The results in Bjorken x-space are obtained by

12In other applications, e.g. in massive QED, different but similar objects contribute, cf. [177].
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taking the imaginary part of the function after its analytic continuation t→ ±1/x. The
latter operation can be performed by solving the differential equations for the iterated non-
iterative integrals. In the case of only iterated integrals, general analytic implementations
exist for different classes of functions.

Let us comment on those master integrals, which also receive contributions due to 2F1
letters. At higher order in ε, starting with O(ε0) the first 2F1 letters and at even higher
orders in ε additional 2F1 letters will appear in the respective G-functions. The constants
contributing in the final x-space expressions are G-functions at x = 1, by expanding around
x = 0 and G-functions at x = ξ by expanding around x = ξ, ξ ∈ [0, 1]. The expressions
in Mellin space for fixed values of N are obtained by formal Taylor expansions of the
analytic results in the parameter t. We also discussed numerical representations in x-space.
Our calculations were checked against a series of Mellin moments of the master integrals,
which were computed using different methods. The present method allows to calculate the
small-x behaviour of the considered quantities directly, which is not easily possible from the
N -space expressions. On the other hand, N -space expressions allow to extract the large-x
behaviour, provided the corresponding difference equations can be solved analytically in
the limit N →∞.

A Details of the analytic continuation

In the following we derive (2.16), (2.17) by using the residue theorem and discuss the
separation of the distribution-valued contributions in x-space.

By using the representation of the Mellin transform (1.2) one obtains the following
relation between f̃(t) and f(x),

f̃(t) =
1∫

0

dx′ t

1− tx′ f(x′) . (A.1)

Here we consider for f(x) a regular function. Upon inserting the relation t = 1/x, we get

f̃

(1
x

)
=

1∫
0

dx′ f(x′)
x− x′

. (A.2)

In order to extract f(x) from f̃(t = 1/x), we can localize the integration around the pole at
x′ = x by calculating the discontinuity of f̃ across the branch cut induced by this pole,

Disc
x

f̃

(1
x

)
= lim

δ→0+

[
f̃

( 1
x+ iδ

)
− f̃

( 1
x− iδ

)]

= lim
δ→0+

 1∫
0

dx′ f(x′)
x+ iδ − x′ −

1∫
0

dx′ f(x′)
x− iδ − x′

 . (A.3)

The position of the poles in the first and second term is shown in figure 1(a). Equivalently,
we can deform the integration contours in the first and second term. The contour for the
first term is shown in blue and for the second term in red in figure 1(b). Since the straight
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x′

0 1

x+ iδ

x− iδ

(a)

x′

0 1x

(b)

x′

0 1x

(c)

Figure 1. Illustration of the integration contours involved in extracting f(x) from f̃(t): (a) inte-
gration contour for f̃(1/x) (blue) and the position of the poles in the discontinuity; (b) equivalent
deformed contours to compute the discontinuity of f̃(1/x) (in blue for the first term and in red for
the second term); (c) effective integration contour for the discontinuity of f̃(1/x).

sections of the contours cancel out, only the circular contour shown in figure 1(c) remains
to be evaluated. Thus, we find with the help of the residue theorem

Disc
x

f̃

(1
x

)
= lim

δ→0

∮
|x′−x|=δ

dx′ f(x′)
x− x′

= −2πi f(x) . (A.4)

Note that the sign arises due to the form of the denominator. Therefore, we can obtain
f(x) from f̃(t) via

f(x) = −1
2πi Disc

x
f̃

(1
x

)
, (A.5)

which leads to the relations (2.16), (2.17).
We turn now to the separation of the distribution-valued contributions. We first

consider the Mellin-transform of a typical distribution in x-space, f(x), x ∈ [0, 1], occurring
in QCD calculations,

M[f(x)](N) =
∫ 1

0
dxxN−1f(x)

=
∫ 1

0
dxxN−1

[
fδδ(1− x) + [f+(x)]+ + freg,1(x) + (−1)N−1freg,2(x)

]
. (A.6)

Here f+(x) is a linear combination of the functions Hk
1(x)/(1− x), k ∈ N. The generating

function in t-space is then obtained by

F̃ (t) =
∫ 1

0
dx′
{

t

1− tδ(1− x
′)fδ +

[
t

1− tx′ −
t

1− t

]
f+(x′)

+ t

1− tx′ freg,1(x′) + t

1 + tx′
freg,2(x′)

}
. (A.7)

The distribution-valued parts can be integrated directly, cf. (2.32)–(2.38), with the first
contributing x-space distributions and their t-space representation are given in section 2.1.
These contributions are subtracted from F̃ (t). One then obtains

F̃reg(t) =
∫ 1

0
dx′
[

t

1− tx′ freg,1(x′) + t

1 + tx′
freg,2(x′)

]
. (A.8)
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freg,1(x) and freg,2(x) are reconstructed by forming

1
π

ImF̃reg,1

(
t = 1

x− i0

)
= 1
π

Im
∫ 1

0
dx′

1
x− x′ − i0 freg,1(x′) = freg,1(x), (A.9)

− 1
π

ImF̃reg,2

(
t = − 1

x− i0

)
= 1
π

Im
∫ 1

0
dx′

1
x− x′ − i0 freg,2(x′) = freg,2(x), (A.10)

with x ∈ [0, 1].

B The solution after first decoupling for F1(t)

If one decouples the system of differential equations (4.12) for F1(t) the solution of eq. (B.1)
up to O(1/ε) is obtained as follows. For the homogeneous differential equation in the limit
ε→ 0 one obtains after the substitution F1(t) = f1(t)/t

f
(3)
1 (t)− 2(4 + 5t)

t(1− t)(8 + t)f
(2)
1 (t) + 4

t(1− t)(8 + t)f
(1)
1 (t) = 0 (B.1)

and

F2(t) = 342− 105t− t2

12t + (1− t)(9 + 2t)H1(t)
2t2 + 2(1− t)H0,1(t)

t2
+ 6ζ2

t
− (1− t)F1(t)

t

− (1− t)F′1(t) , (B.2)

F3(t) = −54 + 111t+ 52t2 + 3t3

24t2 − (1− t)2(−5 + 2t)H1(t)
4t3 + (1− t)2H0,1(t)

t3
− 3ζ2

2t

+ (1− t)2F′1(t)
t

+ 1
2(1− t)2F′′1(t) , (B.3)

if one decouples for F1(t) first.
We consider the homogeneous solution of the second-order differential equation in

g(t) = f (1)(t) in the limit ε→ 0. The initial conditions are provided by the moments of the
corresponding master integral, to which the Taylor expansions around t = 0 have to match.

Eq. (B.1) is a Heun differential equation [154–156], which has the following 2F1-solutions

g1(t) = i2
√√

3π t
2(8 + t)2

(4− t)4 2F1

[ 4
3 ,

5
3

2 ; z(t)
]
, (B.4)

g2(t) = i2
√√

3π t
2(8 + t)2

(4− t)4 2F1

[ 4
3 ,

5
3

2 ; 1− z(t)
]
, (B.5)

with
z(t) = 27t2

(4− t)3 , (B.6)

cf. ref. [36].13 For the analytic continuations to be carried out in the following it is very
important to have closed form solutions, such as the above 2F1-solutions at hand.

13The structure of (B.4), (B.5) follows due to the relation α+ β + 1 = 2γ;α, β > 0 for the corresponding
2F1 function (B.15). We thank C.G. Raab for this remark.
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The Wronski determinant [178] to a differential equation

y(n)(t) + p1(t)y(n−1)(t) + p2(t)y(n−2)(t) . . .+ pn(t)y(t) = 0 (B.7)

is given by

W (t) = W (0) exp
[
−
∫ t

0
p1(t)

]
=

∣∣∣∣∣∣∣∣
y1(t) . . . yn(t)
...

...
y

(n−1)
1 (t) . . . y(n−1)

n (t)

∣∣∣∣∣∣∣∣ , (B.8)

where yi(t) are the n independent solutions of (B.7). The Wronskian of the solutions (B.4),
(B.5) reads

W (t) = t(8 + t)
(1− t)2 . (B.9)

One may reduce higher-order derivatives of g1,(2)(t) by using their differential equations.
One thus obtains combinations of g1,(2) and g′1,(2)(t). Furthermore, one has

g′1(t) = i31/4√π
[
64 t(2 + t)(8 + t)

(4− t)5 2F1

[ 4
3 ,

5
3

2 ; z(t)
]

+ 60 t
3(8 + t)3

(4− t)8 2F1

[ 7
3 ,

8
3

3 ; z(t)
]]
, (B.10)

g′2(t) = i31/4√π
[
64 t(2 + t)(8 + t)

(4− t)5 2F1

[ 4
3 ,

5
3

2 ; 1− z(t)
]

+ 60 t
3(8 + t)3

(4− t)8 2F1

[ 7
3 ,

8
3

3 ; 1− z(t)
]]
.

(B.11)

The above solutions have already been calculated in ref. [36], up to a factor ix2/
√

2, by
changing variables to

t→ 1− 9
x2 . (B.12)

One may relate the latter functions further to complete elliptic integrals of the first and
second kind, K(z1(x)),K(1− z1(x)),E(z1(x)) and E(1− z1(x)), with z1(x) = −16z3/[(x+
1)(x− 3)3], as has been outlined in ref. [36] in detail, by transforming the hypergeometric
functions and using triangle relations [179, 180]. Here the particular structure of the
function z(t) has a deeper meaning in the modular structure of these solutions, cf. [36].
The solutions in terms of complete elliptic integrals have been applied in the first analytic
calculation of the three-loop ρ-parameter of the Standard Model [181], which had been
calculated semi-analytically in [182] before.14 The emergence of the 2F1-solutions in the
present context is related to contributions of the so-called two-loop massive sun-rise integral,
related also to the kite-integral, on which a very extensive literature exists. It dates back
to [184], cf. also refs. [185–191].15

In the present calculation we will use the 2F1-representation (B.4), (B.5) but not the
representation due to complete elliptic integrals, since the number of higher transcendental
functions is smaller and we would not really benefit from particular properties of the elliptic

14Later in [183], the results of [36, 181] have been confirmed.
15For further references see the extensive surveys given in refs. [147, 148, 192].
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integrals. We now transform the solutions (B.4), (B.5) by t→ 1/x for complex variables.
One obtains

G1(x) = g1

(1
t

)
=
i2
√√

3π(1 + 8x)2

(1− 4x)4 2F1

[ 4
3 ,

5
3

2 ;− 27x
(1− 4x)3

]
, (B.13)

G2(x) = g2

(1
t

)
=
i2
√√

3π(1 + 8x)2

(1− 4x)4 2F1

[ 4
3 ,

5
3

2 ; (1− x)(1 + 8x)2

(1− 4x)3

]
. (B.14)

The integral representation of the hypergeometric function

2F1

[
α β

γ
; z
]

= Γ(γ)
Γ(β)Γ(γ − β)

∫ 1

0
dttβ−1(1−t)γ−β−1(1−zt)−α, Re(γ) > Re(β) > 0 (B.15)

shows that G1(x) is purely imaginary for x ∈
[
0, 1

4

]
, while this is the case for G2(x) for

x ∈
[

1
4 , 1
]
. At the boundaries one obtains

ReG2(0) = ReG1(1) = −33/4√π, (B.16)

ImG1(0) = ImG2(1) = 2
√√

3π, (B.17)
lim

x→(1/4)−
ReG1 (x) = lim

x→(1/4)+
ReG2 (x) = 0, (B.18)

lim
x→(1/4)+

ReG1 (x) = lim
x→(1/4)−

ReG2 (x) = − 33/4

21/3π3/2 Γ3
(1

3

)
, (B.19)

lim
x→(1/4)−

ImG1 (x) = lim
x→(1/4)+

ImG2 (x) = 22/331/4

π3/2 Γ3
(1

3

)
, (B.20)

lim
x→(1/4)+

ImG1 (x) = lim
x→(1/4)−

ImG2 (x) = − 31/4

21/3π3/2 Γ3
(1

3

)
, (B.21)

with the new constant Γ(1/3). The functions G1(2)(x) are discontinuous at x = 1/4 and
have the following behaviour around x = 1 and x = 0, respectively,

ImG1(x) = 33/4
√
π

[
−3

2
1

1− x + ln(1− x)
]
− 33/4

2π [−3 + 4 ln(3)] +O((1− x)1), (B.22)

ImG2(x) = 33/4
√
π

[
− 1

6x + ln(x)
]

+ 1
31/4 2

√
π

+O(x1). (B.23)

The discontinuities disappear again in the inhomogeneous solutions, cf. also ref. [36].
Let us now go back to the t-space representation and solve the three inhomogeneous

differential equations for Fk(t). The following alphabet contributes

A1 = {1,2,a1, . . . ,a16}=
{

1
t
,

1
1−t ,g1(t), g1(t)

t
,
g1(t)
1−t ,

g1(t)
8+t ,

g′1(t)
t

,
g′1(t)
1−t ,

g′1(t)
8+t ,

g′′1(t)
t

,g2(t),

g2(t)
t

,
g2(t)
1−t ,

g2(t)
8+t ,

g′2(t)
t

,
g′2(t)
1−t ,

g′2(t)
8+t ,

g′′2(t)
t

}
. (B.24)
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We obtain for F1(t) up to O(ε−1)

F1(t) =

8
ε3

[
1+ 1

t
H1(t)

]
+ 1
ε2

[
−1

6(106+t)− 9+2t
t

H1(t)− 4
t
H0,1(t)

]

+ 1
ε t

{
1

128(1−t)

[
−2654t+

(
2302−44t−224(−1+t)H0,1(t)

)
H1(t)−95(1−t)H1(t)2

+16(36+t)H0,1(t)+256H0,0,1(t)−256tH0,0,1(t)−448H0,1,1(t)+448tH0,1,1(t)
]

+i
[
− 1

96 4√3
√
π

(
1109+27ln(2)

(
125+24ζ2

)
+144ζ2

)
G(a1; t)− 1

32
(
125

+24ζ2
) 4√3
√
πG(a9; t)

]
+ 1

64

(
161+18ζ2

)
G(a1,a10; t)+ 11539G(a1,a11; t)

20736

−
(33713

20736 + 9ζ2
32

)
G(a1,a12; t)− 269

128G(a1,a13; t)− 733
576G(a1,a14; t)

−
(23939

1152 + 9ζ2
4

)
G(a1,a15; t)− 1

64
(
161+18ζ2

)
G(a9,a2; t)− 11539G(a9,a3; t)

20736

+
(33713

20736 + 9ζ2
32

)
G(a9,a4; t)+ 269

128G(a9,a5; t)+ 733
576G(a9,a6; t)+

(23939
1152

+ 9ζ2
4

)
G(a9,a7; t)+ 12845G(a1,a10,2; t)

18432 + 371
648G(a1,a11,2; t)− 20629G(a1,a12,2; t)

165888

− 283
128G(a1,a13,2; t)− 371

144G(a1,a14,2; t)− 4315G(a1,a15,2; t)
2304 − 43

64G(a1,a16,2; t)

− 12845G(a9,a2,2; t)
18432 − 371

648G(a9,a3,2; t)+ 20629G(a9,a4,2; t)
165888 + 283

128G(a9,a5,2; t)

+ 371
144G(a9,a6,2; t)+ 4315G(a9,a7,2; t)

2304 + 43
64G(a9,a8,2; t)+ 137

512G(a1,a10,1,2; t)

+ 37
162G(a1,a11,1,2; t)− 1625G(a1,a12,1,2; t)

41472 − 133
128G(a1,a13,1,2; t)− 37

36G(a1,a14,1,2; t)

− 85G(a1,a15,1,2; t)
1152 − 137

512G(a9,a2,1,2; t)− 37
162G(a9,a3,1,2; t)+ 1625G(a9,a4,1,2; t)

41472

+ 133
128G(a9,a5,1,2; t)+ 37

36G(a9,a6,1,2; t)+ 85G(a9,a7,1,2; t)
1152

}
+O(ε0). (B.25)

It is the first order in which the homogeneous 2F1-solutions seems to contribute. Here we
refer to the letters of alphabet A1, eq. (4.27), and up to depth four G-functions, containing
2F1-letters contribute. The expression reduces, however, to (4.29) for the pole terms, if one
first decouples for F3(t), which is difficult to see a posteriori. We have compared the first
ten Taylor coefficients of both representations and they agree. In (B.25) even some HPLs
emerge, which are not present in (4.29).
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C The expansion coefficients of series representations

The first expansion coefficients in eqs. (4.38)–(4.40) are given by

c1
1,0 = −11.16958740964 , c1

1,1 = 2.109346617266 ,
c1

1,2 = 0.936851756584 , c1
1,3 = 0.286064880707 ,

c1
1,4 = 0.127032314586 , c1

1,5 = 0.063499317190 ,
c1

1,6 = 0.034750073376 , c1
1,7 = 0.021455163556 ,

c1
1,8 = 0.015822146627 , c1

1,9 = 0.014262405540 ,
c1

1,10 = 0.014967991102 ,

(C.1)

c1
2,1 = −2.217839692102 , c1

2,2 = −0.718697587104 ,
c1

2,3 = −0.370323781129 , c1
2,4 = −0.189000503072 ,

c1
2,5 = −0.084433691142 , c1

2,6 = −0.016330161839 ,
c1

2,7 = 0.031991333568 , c1
2,8 = 0.068481112319 ,

c1
2,9 = 0.097368528228 , c1

2,10 = 0.121096539717 ,

(C.2)

c1
3,2 = 0.390651206448 , c1

3,3 = 0.322358345756 ,
c1

3,4 = 0.295156359854 , c1
3,5 = 0.281300038991 ,

c1
3,6 = 0.273875311020 , c1

3,7 = 0.270132738635 ,
c1

3,8 = 0.268709892411 , c1
3,9 = 0.268837838844 ,

c1
3,10 = 0.270043649148 .

(C.3)

The coefficients of eqs. (4.41)–(4.43) read

c0
1,−1,1 = −1

6 , c0
1,−1,0 = −3

4 , c0
1,0,0 = 11

4 −
3
4ζ2 ,

c0
1,0,1 = 29

6 , c0
1,0,2 = 5

4 , c0
1,1,0 = −113

16 −
27
8 ζ2 + 5ζ3 ,

c0
1,1,1 = 83

24 + 3
2ζ2 , c0

1,1,2 = −3
8 , c0

1,1,3 = −5
6 ,

c0
1,2,0 = −79

12 , c0
1,2,1 = 3 , c0

1,3,0 = 19
4 ,

c0
1,3,1 = −9

4 , c0
1,3,2 = −3 , c0

1,4,0 = −7613
720 ,

c0
1,4,1 = 143

12 , c0
1,4,2 = 5 , c0

1,5,0 = 64103
2400 ,

c0
1,5,1 = −891

20 , c0
1,5,2 = −18 ,

(C.4)
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c0
2,−1,1 = −1

3 , c0
2,−1,0 = −5

4 , c0
2,0,0 = 1

2 −
3
4ζ2 ,

c0
2,0,1 = 13

6 , c0
2,0,2 = 5

4 , c0
2,1,0 = 1

4 + 3
4ζ2 ,

c0
2,1,1 = −10

3 , c0
2,1,2 = 7

4 , c0
2,2,0 = 49

12 ,

c0
2,2,1 = −3

2 , c0
2,2,2 = −3 , c0

2,3,0 = −65
6 ,

c0
2,3,1 = 27

2 , c0
2,3,2 = 6 , c0

2,4,0 = 6493
240 ,

c0
2,4,1 = −225

4 , c0
2,4,2 = −21 , c0

2,5,0 = −32837
400 ,

c0
2,5,1 = 5199

20 , c0
2,5,2 = 87 ,

(C.5)

c0
3,−1,1 = −1

6 , c0
3,−1,0 = −3

8 , c0
3,0,0 = 1

2 ,

c0
3,0,1 = −7

6 , c0
3,1,0 = 9

8 , c0
3,1,1 = 7

12 ,

c0
3,1,2 = −3

2 , c0
3,2,0 = −13

3 , c0
3,2,1 = 6 ,

c0
3,2,2 = 3 , c0

3,3,0 = 259
24 , c0

3,3,1 = −30 ,

c0
3,3,2 = −21

2 , c0
3,4,0 = −451

15 , c0
3,4,1 = 153 ,

c0
3,4,2 = 48 , c0

3,5,0 = 7017
80 , c0

3,5,1 = −3369
4 ,

c0
3,5,2 = −249 .

(C.6)

The above rational constants have been determined using PSLQ [193, 194]. They do
structurally agree with those of aPS,(3)

Qq of ref. [14], which is related to a(3)
Qg by color rescaling

with CA/CF in the leading term [195], where CF = (N2
C − 1)/(2NC), CA = NC and NC = 3

for Quantum Chromodynamics.16 In the expansion of F3(x) no ζ-terms seem to contribute
for the first 100 terms in x, while F2(x) depends on ζ2 and F1(x) also on ζ3. The master
integrals contributing to a(3)

Qg may in principle also depend on ζ4 and B4, cf. [70], eq. (4.10).
Finally, one obtains for the coefficients of eqs. (4.44)–(4.46)

c
1/2
1,0 = −9.834184787511 , c

1/2
1,1 = 3.355232766926 ,

c
1/2
1,2 = 1.701654239373 , c

1/2
1,3 = 0.933416116957 ,

c
1/2
1,4 = 0.891822658934 , c

1/2
1,5 = 1.440452967512 ,

c
1/2
1,6 = 3.207281678902 , c

1/2
1,7 = 7.783359303513 ,

c
1/2
1,8 = 18.79614079037 , c

1/2
1,9 = 44.28851410206 ,

c
1/2
1,10 = 101.8245323374 ,

(C.7)

16Similar analytic patterns have been observed for the massive three-loop form factor [196].
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c
1/2
2,0 = −1.348611882678 , c

1/2
2,1 = −3.320927437135 ,

c
1/2
2,2 = −1.536412632474 , c

1/2
2,3 = −0.267319762707 ,

c
1/2
2,4 = 2.269831457716 , c

1/2
2,5 = 7.982990699375 ,

c
1/2
2,6 = 20.82740039869 , c

1/2
2,7 = 49.17055989829 ,

c
1/2
2,8 = 110.6955042191 , c

1/2
2,9 = 242.5826709616 ,

c
1/2
2,10 = 522.6300919150 ,

(C.8)

c
1/2
3,0 = 0.173692073146 , c

1/2
3,1 = 0.986776221633 ,

c
1/2
3,2 = 2.415478375577 , c

1/2
3,3 = 4.469951985772 ,

c
1/2
3,4 = 8.772564418720 , c

1/2
3,5 = 17.62005543760 ,

c
1/2
3,6 = 35.78474174591 , c

1/2
3,7 = 73.07722039062 ,

c
1/2
3,8 = 149.6247109869 , c

1/2
3,9 = 306.6679998469 ,

c
1/2
3,10 = 628.6136390924 .

(C.9)
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