Recent highlights of top-quark cross section and properties measurements with the ATLAS detector at the LHC

Lake Louise Winter Institute '23

Michael James Fenton obo the ATLAS collaboration

University of California, Irvine mjfenton@uci.edu

February 19, 2023 Chateau Lake Louise, Canada

< (□) ト < 三 ト

Introduction

Participants at the 2022 ATLAS Top Workshop in Valencia, Spain

- There are many recent results from the top group in ATLAS!
 - Since last years LLWI: 20 papers, 4 CONF notes, and 3 PUB notes
 - I cannot cover them all...
- For top+X, see talk by Knut right after me 🙂

イロト イポト イヨト イヨー

I have been tasked to cover **6** analyses in the next 12 minutes, so hang on tight for a whistle stop tour of top quark cross-sections and properties $\overset{}{\longrightarrow}$

Why do measurements of top quark processes?

• Also a major background to many interesting SM and exotic searches

- Not always well described in current MC generators
- \rightarrow Precision measurements crucial input to MC tuning efforts!

Michael Fenton (UCI)

Top Cross-Section

Michael Fenton (UCI)

DQC

ヘロト ヘロト ヘヨト ヘヨト

Top Cross-Section

13.6TeV tt XSec CONF Note

- $\bullet~\text{Use}~1.2\text{fb}^{-1}$ of 13.6 TeV data from 2022
- Serves as an extensive validation of the upgraded detector!
 - Conservative uncertainties are used to cover the preliminary nature of object calibrations, background predictions, luminosity measurement, etc
- Profile-likelihood fit method to extract cross-section and *b*-tagging efficiency simultaneously

• Standard Model Prediction: $\sigma_{t\bar{t}} = 924^{+32}_{-40} \text{ pb}$

- Fit result: $\sigma_{t\bar{t}} = 830 \pm 12 (\text{stat}) \pm 27 (\text{syst}) \pm 86 (\text{lumi}) \text{ pb} = 830 \text{ pb} \pm 11\%$
 - $\epsilon_b = 0.553 \pm 0.007 (\text{stat}) \pm 0.005 (\text{syst}) \pm 0.001 (\text{lumi})$
- ightarrow consistent within 1σ with SM

$t\bar{t}/Z$ XSec Ratio @ 13.6 TeV CONF Note

- Some uncertainties eg luminosity - can cancel when measuring **ratios** of cross-sections
 - Also sensitive to PDFs
- Utilise *ee* and μμ Z decays: orthogonal to *e*μ *tt* selection
- Consistency between fills, lepton channels
- Consistent with SM to 1σ , total uncertainty 4.7%

The same strategy was followed for an early Run II measurement as well as at 7 and 8 TeV

Michael Fenton (UCI)

7TeV tt Xsec 2212.00571

- Most precise ever measurement of top cross-section by using machine learning
- Select single lepton events and separate backgrounds with a 3-dimensional support vector machine based event classifier

- Profile likelihood fit to 3D SVM output
- Result: $\sigma_{t\bar{t}} = 168.5 \pm 0.7(\text{stat})^{+6.2}_{-5.9}(\text{syst})^{+3.4}_{-3.2}(\text{lumi}) \text{ pb} = 168.5 \text{pm} \pm 4\%$
 - SM prediction: $\sigma_{t\bar{t}} = 177^{+10}_{-11}$ pb
- Limited by luminosity uncertainty, lepton ID/trigger, and signal modelling

13 TeV s-chan Single Top XSec 2209.08990

Top Properties

Michael Fenton (UCI)

2 February 19, 2023 10/16

590

ヘロト ヘロト ヘヨト ヘヨト

Michael Fenton (UCI)

Recent highlights of top-quark cross section and prope

February 19, 2023 11 / 16

• Result: 172.63 \pm 0.20(stat) \pm 0.67(syst) \pm 0.37(recoil) GeV

- Limited by previously unaccounted for systematic uncertainty due to recoil effects of colored objects in top decays
- Other significant uncertainties from $t\bar{t}$ modelling, jet reconstruction and color reconnection

- (Monte-Carlo) Mass extracted via template fit to $m_{\ell b}$
- lep-*b*-jet pairing with DNN using event kinematics as inputs
- Top quark mass a crucial SM parameter stability of the universe depends on it!

13 TeV Top Mass 2022-058

W polarisation 2209.14903

- Polarisation of *W*-boson from top decay comes from *Wtb* vertex structure
- \bullet Longitudinal, left-, and right-handed fractions extracted from polar angle in the W rest frame with χ^2 fit
- $t\bar{t}$ Reconstruction in dilepton channel with neutrino-weighting technique

W polarisation 2209.14903

Search for Charged Lepton Flavor Violation 2023-001

- Charged lepton flavor is conserved in the SM; but recent (now superceded...) LHCb results made searches for violation of the symmetry very interesting
- Search for interactions like $\mu \tau qt$ diagrams involving top production/decay
 - eg some models with leptoquarks predict $BR(t
 ightarrow \mu au q) \simeq 10^{-6}$
- Interpret in EFT and set limits on Wilson Coefficients
 - Sensitive to 2Q2L operators that are highly unconstrained to date

- Set overall limit of $BR(t
 ightarrow \mu au q) < 11 imes 10^{-7}$
- Statistically limited, $t\bar{t}$ modelling and fake muons also significant

See further: measurement of BR(tau)/BR(mu) from 2020 $\langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Box \rangle$

Search for Charged Lepton Flavor Violation 2023-001

	95% CL upper limits on Wilson coefficients						$c/\Lambda^2~[{ m TeV}^{-2}]$	
	$c_{lq}^{-(ijk3)}$	$c_{eq}^{(ijk3)}$	$c_{lu}^{(ijk3)}$	$c_{eu}^{(ijk3)}$	$c_{lequ}^{1(ijk3)}$	$c_{lequ}^{1(ij3k)}$	$c_{lequ}^{3(ijk3)}$	$c_{lequ}^{3(ij3k)}$
Previous (u) [22]	12	12	12	12	26	26	3.4	3.4
Expected (u)	0.47	0.44	0.43	0.46	0.49	0.49	0.11	0.11
Observed (u)	0.49	0.47	0.46	0.48	0.51	0.51	0.11	0.11
Previous (c) [22]	14	14	14	14	29	29	3.7	3.7
Expected (c)	1.6	1.6	1.5	1.6	1.8	1.8	0.35	0.35
Observed (c)	1.7	1.6	1.6	1.6	1.9	1.9	0.37	0.37

	$95\%~{ m CL}~{ m upper}~{ m limits}~{ m on}~{ m BR}(t o\mu au q)~~(imes~{10}^{-7})$							
	$c_{lq}^{-(ijk3)}$	$c_{eq}^{(ijk3)}$	$c_{lu}^{(ijk3)}$	$c_{eu}^{(ijk3)}$	$c_{lequ}^{1(ijk3)}$	$c_{lequ}^{1(ij3k)}$	$c_{lequ}^{3(ijk3)}$	$c_{lequ}^{3(ij3k)}$
Expected (u)	4.6	4.2	4.0	4.5	2.5	2.5	5.8	5.8
Observed (u)	5.1	4.6	4.4	5.0	2.8	2.8	6.4	6.4
Expected (c)	54	51	51	52	35	35	61	61
Observed (c)	60	56	56	57	38	38	68	68

Conclusion

- Top quark measurements are a vibrant industry at the LHC
- Limitations are usually from Monte-Carlo modelling and jet reconstruction
- New techniques, such as deep learning, are pushing the boundary of sensitivity
- Most measurements so far are consistent with the Standard Model I

イロト イロト イヨト イ

Backup

Michael Fenton (UCI)

Recent highlights of top-quark cross section and prope

2 February 19, 2023 17/16

990

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

b-tag counting method for Run3 Xsec

$$N_1 = L\sigma_{t\bar{t}}\epsilon_{e\mu} 2\epsilon_b (1 - C_b \epsilon_b) + N_1^{\rm bkg}$$
⁽¹⁾

$$N_2 = L\sigma_{t\bar{t}}\epsilon_{e\mu}C_b\epsilon_b^2 + N_2^{\rm bkg}$$
⁽²⁾

$$C_{b} = \epsilon_{bb} / \epsilon_{b}^{2} = \frac{4N^{t\bar{t}}N_{2}^{t\bar{t}}}{\left(N_{1}^{t\bar{t}} + 2N_{2}^{t\bar{t}}\right)^{2}}$$
(3)

 C_b is a correlation factor to correct for kinematic dependence of the two b's in each $t\bar{t}$ event, N_X is the number of events with X b-tags, and $\epsilon_{e\mu}$ is the efficiency for selecting $e\mu$ events.

 $\epsilon_b,$ the b-tagging efficiency, is then floated in the fit and measured simultaneously with $\sigma_{t\bar{t}}.$

イロト イヨト イヨト

Run3 XSec Uncertainties

Pre-fit impact on R $\theta = \hat{\theta} + \Delta \theta$ ti/z $\Delta R_{.}$ $\theta = \hat{\theta} - \Delta \theta$ -0.03-0.02-0.01 0 0.01 0.02 0.03 Post-fit impact on R : $\theta = \hat{\theta} + \Delta \hat{\theta}$ tt/Z $\hat{\theta} = \hat{\theta} - \Delta \hat{\theta}$ ATLAS Preliminary √s = 13.6 TeV, 1.2 fb⁻¹ -- Nuis Param Pull 7 ME+PS b-tagging eff. (b, NP 0) Luminosity Muon trigger SF (syst.) tt modelling PS PDF4I HC39 Single top norm. Mis-ID norm. eu 1b tł ESR Single top DSvsDR (eµ) PDF4LHC02 PDF4LHC16 PDF4I HC35 PDF4LHC04 PDF4I HC15 PDF4I HC37 Electron identification SE PDF4LHC36 PDF4LHC19 PDF4LHC22 deed and and and and and -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 (A A)/AA

	Category	Uncert. [%]			
		$\sigma_{t\bar{t}}$	$\sigma_{Z \to \ell \ell}^{m_{\ell \ell} > 40}$	$R_{t\bar{t}/Z}$	
$t\bar{t}$	$t\bar{t}$ parton shower/hadronisation	0.6	0.2	0.7	
	$t\bar{t}$ scale variations	0.5	0.1	0.5	
Ζ	Z scale variations	0.2	2.9	2.9	
Bkg.	Single top modelling	0.6	< 0.01	0.6	
	Diboson modelling	0.1	< 0.01	0.5	
	Mis-Id leptons	0.6	< 0.01	0.6	
Lept.	Electron reconstruction	1.6	2.3	1.1	
	Muon reconstruction	1.3	2.4	0.3	
	Lepton trigger	0.2	1.3	1.1	
Jets/tagging	Jet reconstruction	0.2	< 0.01	0.2	
	Flavour tagging	1.9	< 0.01	1.9	
	PDFs	0.5	1.4	1.3	
	Luminosity	10.3	9.6	1.3	
	Systematic Uncertainty	10.8	10.7	4.4	
	Statistical Uncertainty	1.5	0.1	1.5	
	Total Uncertainty	11	10.7	4.7	

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Michael Fenton (UCI)

February 19, 2023 19 / 16

Э

7TeV XSec Uncertainties & SVM Inputs

Number	Feature	Divided by
1	$E_{\rm T}^{\rm miss}$ [GeV]	250
2	$\phi(E_{\rm T}^{\rm miss})$ [radians]	2π
3	Lepton E [GeV]	400
4	Lepton p_{\parallel} [GeV]	400
5	Lepton p_z [GeV]	400
6	Mass(lepton+jets) [GeV]	750
7	Fox–Wolfram moment 1	1
8	Fox–Wolfram moment 2	1
9	Fox-Wolfram moment 3	1
10	Fox–Wolfram moment 4	1
11	Fox–Wolfram moment 5	1
12	Sum all jets E _T [GeV]	500
13	Sum all jets E [GeV]	750
14	Sum all jets p_{\parallel} [GeV]	750
15	Sum all jets p_{\perp} [GeV]	750
16	Sum all jets p_z [GeV]	750
17	$H_{\rm T}$ [GeV]	500
18	<i>p</i> -tensor eigenvalue 1	1
19	p-tensor eigenvalue 2	1
20	Number of jets	10
21	Number of <i>b</i> -tags	10

s-chan Uncertainties

Source	$\Delta \sigma / \sigma$ [%]	Pre-fit impact on µ:	Δμ
tī nomuliestien		$\Box \theta = \hat{\theta} + \Delta \theta \Box \theta = \hat{\theta} - \Delta \theta -0.2 - 0$	1.15-0.1-0.05 0 0.05 0.1 0.15 0.2
tt normansation tf shape modelling	+24/-17 $\pm 18/-15$	Post-fit impact on µ:	
PS & had	$\pm 12/-10$	$\theta = \hat{\theta} + \Delta \hat{\theta}$ $\theta = \hat{\theta} - \Delta \hat{\theta}$ A7	LAS
ME/PS matching	$\pm 10/-8$	Vs	= 13 TeV, 139 fb ⁻¹
have	< 1	- INUIS. Farain. Fuil	
s-channel modelling	+18/-8	tt normalisation	-
PS & had.	+18/-8	s-channel PS & had.	
ISR/FSR	+3/-1	JES flavour composition -	
Jet energy resolution	+18/-12	IER affective NP 1	
Jet energy scale	+18/-13		
MC statistics	+13/-11	ιι μ _R snape	
Flavour tagging	+12/-10	tť PS & had.	••••
W+ jets normalisation	+11/-8	tf ME/PS matching	
PDFs	+10/-9	W+jets normalisation	
tt	+10/-9	7 (SB bin 17)	
s-channel	±1	IER offective NR 7 (rest term)	
t-channel	±1	JER ellective NP 7 (rest term)	
	±1	JES pileup µ offset	
t-channel modelling	±6	tĨ PDF NP 5	
PS & nad.	±5	W+jets µ _B shape	•
W ista w /w share	±4	btag B NP 2	
$W + \text{Jets } \mu_r / \mu_f \text{ snape}$	+6/-5	v (SB bin 15)	
Pile-up	+0/-3 +5/-3		
Luminosity	+4/-3	btag B NP 21	
tW modelling	+1/-2	JES η intercalib. modelling	
PS & had.	+1	γ (SR bin 16)	•
tt overlap	+1	t-channel PS & had.	••••••••••••••••••••••••••••••••••••••
ISR/FSR	±1	IFR effective NP 2	
Missing transverse momentum	±1		
Multijet shape modelling	±1	-2 -1	1.5 -1 -0.5 0 0.5 1 1.5 2
Other detector sources	±1		(θ̂-θ ₀)/Δθ
Systematic uncertainties	+42/-34		-
Statistical uncertainty	±8		
Michael Fenton (UCI)		Recent highlights of top-quark cross section and p	rope February

February 19, 2023 21/16

Э

DQC

Top Mass Uncertainties

	$m_{\rm top} [{\rm GeV}]$		
Result	172.63		
Statistics	0.20		
Method	0.05 ± 0.04		
Matrix-element matching	0.35 ± 0.07		
Parton shower and hadronisation	0.08 ± 0.05	Uncertainty	Δm_{\star} [GeV]
Initial- and final-state QCD radiation	0.20 ± 0.02		
Underlying event	0.06 ± 0.10	Absolute in situ JES	0.23 ± 0.02
Colour reconnection	0.29 ± 0.07	Relative in situ JES	0.12 ± 0.02
Parton distribution function	0.02 ± 0.00		
Single top modelling	0.03 ± 0.01	Flavour Composition	0.00 ± 0.02
Background normalisation	0.01 ± 0.02	Flavour Response	0.00 ± 0.02
Jet energy scale	0.38 ± 0.02	Thavour Response	0.00 ± 0.02
b-jet energy scale	0.14 ± 0.02	Pile-up	0.26 ± 0.02
Jet energy resolution	0.05 ± 0.02	AFII non-closure	0.10 ± 0.02
Jet vertex tagging	0.01 ± 0.01	AI'II IIOII-CIOSUIE	0.10 ± 0.02
b-tagging	0.04 ± 0.01	Punch Through	0.00 ± 0.02
Leptons	0.12 ± 0.02	Total	0.28 ± 0.02
Pile-up	0.06 ± 0.01	Total	0.38 ± 0.02
Recoil effect	0.37 ± 0.09		
Total systematic uncertainty (without recoil)	0.67 ± 0.05		
Total systematic uncertainty (with recoil)	0.77 ± 0.06		
Total uncertainty (without recoil)	0.70 ± 0.05		
Total uncertainty (with recoil)	0.79 ± 0.06		

590

<ロト < 回 > < 回 > < 回 > < 回 >

Recoil Scheme for Top Mass

- "Recently discovered" systematic effect in top MC
 - First gluon emission from top decay products straightforward
 - Second emission has am ambiguity on how the colored object should recoil

Credit: P. Skands

- Default is to the other colored object ie the *b*-quark
 - $\bullet\,$ Results in too little out of cone radiation \rightarrow narrower mass peak
- "Better" scheme recoils against the top quark itself
 - More out of cone radiation
 - But setup is untuned and therefore probably over-estimates the effect
 - $\rightarrow\,$ for now, take full difference as uncertainty
 - → long term, switch to recoilToTop as default and tune this setup to data, or switch to more modern shower like VINCIA

Color Reconnection 2209.07874

- Monte-Carlo generators use the leading-color approximation
 - Dealing with overlapping phase space with MPI then requires poorly understood color reconnection models
 - This is now a leading uncertainty in measurements of top mass!
- $\rightarrow\,$ Unfold variables sensitive to these effects to aid in MC tuning

- Sherpa (no CR) has the worst agreement as expected
- Nominal Pythia does best, but not able to exclude any CR models
 - Dominant uncertainties from track and jet reconstruction
 - These distributions will be valuable components of future tuning efforts

W polarisation Uncertainties

Category	σ_{f_0}	$\sigma_{f\!L}$	$\sigma_{f_{ m R}}$	
Detector m	odelling			≥ 0.2
Jet reconstruction Flavour tagging Electron reconstruction Muon reconstruction $E_{\rm T}^{\rm miss}$ (soft term) Pile-up	$\begin{array}{c} 0.008\\ 0.003\\ 0.003\\ 0.003\\ < 10^{-3}\\ 0.002 \end{array}$	0.004 0.001 0.002 0.003 0.002 0.002	$\begin{array}{c} 0.010\\ 0.001\\ 0.002\\ <10^{-3}\\ <10^{-3}\\ <10^{-3}\end{array}$	$v_{s} = 0.15$ $v_{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$
Luminosity Signal and backgr	0.001	0.001 delling	< 10 ⁻³	
tī production PDF Single top production Other background	$\begin{array}{c} 0.011 \\ 0.002 \\ < 10^{-3} \\ 0.002 \end{array}$	0.005 0.001 0.002 0.001	$\begin{array}{c} 0.010 \\ < 10^{-3} \\ < 10^{-3} \\ < 10^{-3} \end{array}$	-0.15 -0.2 Jet Sig. modelling PDF Bkg. modelling Electron E ^{mss} Muon Pileup D-Tag Bkg. norm Lumi JVT
Total systematic uncertainty Data statistical uncertainty Total uncertainty	0.014 0.005 0.015	0.008 0.003 0.008	0.014 0.002 0.014	-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 parton level cos(0*)

590

< ロ ト < 回 ト < 三 ト < 三 ト</p>