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Abstract

We propose that the mass of the η′ meson is a particularly sensitive probe of the

properties of finite energy density hadronic matter and quark gluon plasma. We

argue that the mass of the η′ excitation in hot and dense matter should be small,

and therefore that the η′ production cross section should be much increased relative

to that for pp collisions. This may have observable consequences in dilepton and

diphoton experiments.
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1 Introduction

One of the great mysteries in the quark model was why there is no ninth Goldstone

boson whose mass is somewhere between that of the pion and the kaon. Roughly

stated, the problem is that in the limit of massless quarks, the quark model has a

U(3) chiral symmetry. This chiral symmetry, when broken, predicts the existence

of 9 massless Goldstone bosons. In nature, however, there are only 8 light mesons.

The problem is resolved by the Adler-Bell-Jackiw U(1) anomaly [1]-[3]: the

U(1) part of the U(3) symmetry is explicitly broken by interactions. It is possible to

show explicitly that instantons [4, 5] dynamically induce the U(1) chiral symmetry

breaking. This results in giving the ninth Goldstone boson a mass. The would–be

ninth Goldstone boson is presumably the η′, which has a mass of nearly one GeV.

As the density of matter is increased, it is expected that the effects induced

by the tunneling between different topological vacua of QCD will rapidly disappear

[6]-[11]. Let us briefly recall the origin of this belief, based on the example of the

instanton solution realizing this tunneling. The amplitude T of the tunneling tran-

sition, calculated in the quasiclassical approximation of instanton configurations,

is

Tinstanton ∼ e−SE ∼ e−2π/αS , (1)

where SE is the Euclidean action of the instanton solution. It is expected that the

effects of finite energy density will make αS density dependent such that for large

energy densities

αS ∼ 24π

(33 − 2Nf ) ln(ǫ/Λ4)
, (2)

where ǫ is the energy density and Λ ∼ 200 MeV. As the energy density increases, the

effects of instantons rapidly decrease. Note that Λ4 ∼ 200 MeV/fm3 is a relatively

low energy density.

We therefore expect that as the energy density of hadronic matter is increased,

the mass of the η′ will be a rapidly falling function of energy density. In the quark
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gluon plasma, we expect that excitations with the quantum numbers of the η′

will become almost mass–degenerate, modulo current quark mass corrections, with

excitations with quantum numbers of the octet of pseudoscalar Goldstone bosons.

This is manifest in the quark model since there will be no penalty for making an

isospin singlet configuration of quarks relative to an isotriplet configuration.

The plan of this paper is as follows. In Section 2 we recall the mechanism

responsible for the large mass of the η′ in QCD, and argue about the properties

of the η′ at high densities. In Section 3 we discuss the dynamics of η′ production

and annihilation in hot and dense matter. In Section 4 we discuss several expected

signals of the proposed enhancement of η′ production in dense matter and claim

possible experimental evidence in favor of our scenario.

2 Axial anomaly, ghost, and η
′ at high densities

Consider a quark–antiquark pseudoscalar flavor–singlet field

|η0〉 =
1√
3
|ūu+ d̄d+ s̄s〉 . (3)

The divergence of the corresponding flavor–singlet axial current acquires an anoma-

lous part, due to the interaction with gluon fields, which does not disappear in the

chiral limit m→ 0 of massless quarks:

∂µJ0
5µ = 2i

∑

f

mf q̄fγ5qf + 2Nf
g2

16π2
Tr
(

GµνG̃
µν
)

. (4)

This anomalous part may be written as the full divergence of the gauge–dependent

topological current

Kµ = 2Nf
g2

16π2
ǫµνλρTr

(

GνλAρ
)

, (5)

so that in the chiral limit one has the Adler–Bardeen relation

∂µJ0
5µ = ∂µKµ . (6)
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It is possible to introduce a new axial current

J5µ = J0
5µ −Kµ , (7)

which is explicitly conserved in the chiral limit.

∂µJ5µ = 2i
∑

f

mf q̄fγ5qf (8)

The corresponding charge

Q5 =

∫

d3xJ50 , (9)

is naively expected to be conserved. Since this charge is the generator of the U(1)A

symmetry, and this symmetry is not observed in the hadron spectrum (no parity

doublets exist), we have to presume that the symmetry is spontaneously broken.

This would lead to the appearance of a nearly massless Goldstone boson field (3).

In nature, however, the physical η′ meson has a large mass of almost one GeV and

therefore cannot be considered a Goldstone boson.

To check if the charge (9) is really conserved, one can integrate the divergence of

the current J5µ over Euclidean 4–space. After the spatial integration is performed,

the result can be represented as

∫ +∞

−∞

dt
dQ5

dt
= 2Nfν[G] , (10)

where

ν[G] = 2Nf
g2

32π2

∫

d4x Tr
(

GµνG̃
µν
)

(11)

is the so–called topological charge. It is equal to zero in Abelian theories, but in

QCD ν[G] 6= 0: the one–instanton solution, for example, yields ν[G] = 1. Therefore

the charge (9) is not a conserved quantity, and going from (Euclidean) t = −∞ to

t = +∞ it changes by

∆Q5 = 2Nfν[G] . (12)

Therefore the existence of non–trivial topological solutions explicitly breaks the

U(1)A symmetry, resulting in the vanishing of the corresponding Goldstone mode.
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As we have already mentioned in the Introduction, the instanton density van-

ishes in the high energy density limit as g2 = 4παS → 0. We therefore expect that

in dense matter the ensemble averaged axial charge Q5 will be conserved.

d〈Q5〉
dt

= 0 (13)

If the U(1)A symmetry is still spontaneously broken at very high densities, it would

imply the return of the ninth Goldstone boson!

Even though the arguments presented above explain on a qualitative level why

the physical η′ is not a Goldstone excitation, and under what circumstances can it

again become one, it is instructive for our purposes to establish the actual relation

between the properties of the vacuum and the mass of the η′. To do this we follow

the approach developed by Witten [12] and Veneziano [13]. They noticed that the

non–vanishing of the topological charge (11) implies the existence of an unphysical

massless pole, introduced earlier by Kogut and Susskind [14], in the correlator of the

topological current (5). Such a pole means the existence of a massless excitation,

or “ghost”, which should reflect some fundamental symmetry of the theory. As

was shown by Dyakonov and Eides [15], the origin of this excitation in QCD is

the periodicity of the potential energy of the vacuum with respect to the collective

coordinate

X =

∫

d3xK0(x) . (14)

The potential barriers separating different vacua are penetrable, by instantons for

example, and the massless ghost just corresponds to this degree of freedom in the

theory. If one introduces the propagator 〈aαaβ〉 of the ghost field aα, the residue of

the ghost contribution λ can be defined as

〈0|KαKβ|0〉 = λ4 〈0|aαaβ|0〉 , (15)

so that as q2 → 0

qαqβ〈0|KαKβ |0〉 = 〈0|νν|0〉 = −λ4 6= 0. (16)

5



Note that, apart from the ghost contribution, the propagator of the topological

current also contains the normal gluon part.

The field (3) can now mix with the ghost, the amplitude of mixing being of

order λ2/fη′ , where fη′ is the η′ decay constant. As a result of this mixing the

physical η′ acquires an additional mass

∆m ≃ λ2/fη′ , (17)

so that the mass of the η′ does not vanish in the chiral limit.

m2
η′ = m2

0 + (∆m)2 (18)

The mass of the bare η′ field (3) can simply be estimated in the free quark model

as

m2
0 =

1

3
(2m2

K +m2
π) . (19)

At high energy densities we expect that the density of instantons will diminish, the

ghosts will disappear, and the η′ will be (almost) entirely described by the field (3),

whose mass will then be given by (19) and equal to m0 ≃ 400 MeV.

Of course in nature the situation is likely to be a bit more complicated. In-

deed, the mass eigenstates in the isosinglet channel are not the η and η′, but the

nonstrange and strange states |ηNS〉 = |ūu+ d̄d〉/
√

2 and |ηS〉 = |s̄s〉. These states

can only mix if one allows for intermediate gluon states. The extreme assumption

that the only allowed gluonic states are non-perturbative ghost-like states would

lead to the conclusion that at high densities, when ghosts disappear, the physical

isosinglet excitations will be ηNS and ηS. Their masses will then be m2
NS = m2

π

and m2
S = 2m2

K − m2
π; mS ≃ 700 MeV. However, normal gluonic states certainly

contribute, and we expect that the states ηNS and ηS will mix even at high densities,

even though this mixing will probably not yield the states with the η and η′ quark

wave functions. We expect also that as a consequence of the effects discussed above

the η − η′ mixing will be strongly dependent on energy density, and the physical η
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mass will decrease too. Nevertheless, since the topological and perturbative gluonic

effects are very difficult to separate, for the sake of argument we will assume in the

rest of this paper that the η′ quark content at any density is given by (3).

3 Dynamics

Production cross sections for light mesons are typically of the order predicted by

the Hagedorn model,

σi ∼ gi(M/2π)3/2 e−M/TH , (20)

when the particle mass is large compared to TH ∼ 160 MeV. The quantity gi is the

number of internal degrees of freedom of the i’th particle species. For pions this

same model gives

σπ ∼ gi/π
2 . (21)

Using this rather simple model we see that the expected cross section of η′ produc-

tion is quite small, ση′/σπ0 ∼ 2 × 10−2.

Now suppose that the η′ is made in a dense environment. Here we expect that

the mass of the η′ is small, and the particle ratio Nη′/Nπ0 ∼ 1. If the η′ becomes a

Goldstone boson we might get a factor of up to 50 enhancement in the production

cross section! This should of course be considered only as an absolute upper bound

for the enhancement; the strange quark mass effects (see (19)) result in a more

moderate enhancement factor of 16, and if the η′ at high densities becomes an |s̄s〉
state according to the scenario described at the end of the previous section the

enhancement factor will be equal to a relatively modest value of 3.

After an η′ is produced it must survive subsequent hadronic interactions until

it has escaped the matter. The η′ lifetime in vacuum is about 1000 fm/c; if there

were no interactions with surrounding particles, it would certainly survive the time

it takes for the hadronic matter produced in heavy ion collisions to dissipate.
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It is amazing that the results presented in the previous Section imply that the

η′ should decouple from high density matter and therefore most likely cannot be

absorbed. To see this, we will follow the line of reasoning developed in refs. [16]

and [17].

Let us first note that the Adler–Bardeen relation (6), and an analog of the

PCAC for the η′ field,

η′(x) =
1

m2
η′f2

η′

∂µJ0
5µ , (22)

suggest the existence of a relation between the matrix elements of the η′ field and

of the topological charge (11). With this in mind, we consider a nonsymmetric

matrix element of the topological current (5) between some hadronic states1. For

definiteness we consider nucleons explicitly here. It has the following general form:

〈p′|Kν |p〉 = ū(p′)[γνγ5G1(q
2) + qνγ5G2(q

2)]u(p) , (23)

where q = p−p′, ū, u are the nucleon wave functions, and G1,2 are the form factors.

Consider the matrix element 〈0|∂νKν |N̄N〉 in the cross channel. Saturating it by

the η′ pole, one obtains

q2G2(q
2) = 〈0|ν|η′〉 1

q2 −m2
η′

〈η′|N̄N〉 , (24)

where the last matrix element is just the η′ coupling constant gη′NN . The first

matrix element can be evaluated by using the Lehmann–Symanzik–Zimmerman

reduction formula in the following form:

〈0|ν|η′〉 =

∫

d4xeiq·x(−∂4
x +m2)〈0|T{νη′(x)}|0〉

= −
−q2 +m2

η′

m2
η′f2

〈0|T{νν}|0〉 . (25)

As q2 → 0 we get, from (24), (25) and (16), that

q2G2(q
2) ∼ λ4gη′NN

m2
η′fη′

= fη′gη′NN , (26)

1In principle, one can consider the matrix elements taken over the ensemble as a whole.

8



where at the last step we used the relation mη′ ≃ λ2/fη′ , valid in the chiral limit

(see (17), (18)).

In the absence of ghosts, which we expect is the case in high density matter, the

form factor G2(q
2) does not possess a zero–mass pole, and the l.h.s. of (26) is equal

to zero at q2 = 0. Therefore, since fη′ 6= 0, we are led to the conclusion that at

high densities the coupling of the η′ vanishes and it decouples from (nonGoldstonic)

matter. A parallel discussion for the coupling of an η′ with two ρ mesons [18] can

be given with a similar conclusion.

Next, consider moderate to low energy density matter where pions are the most

abundant constituents. Then we need to know the cross section for the annihilation

reaction π+ + η′ → π+ + ρ0, which is exothermic, and the isospin-related cross

sections. The rate can be calculated in the low temperature limit using a low

energy effective Lagrangian.

The cross section for π(p1)+η
′(p2) → π(p′1)+ρ(p

′

2) is dominated by the exchange

of a ρ-meson in the t-channel. The ρππ vertex is well-known, and the η′ρρ vertex

is the anomalous one [19, 20]. The matrix element is

M = gη′ρρ p2α p
′

2β ǫ
αβντ

[

− gµν

q2 −m2
ρ

+
qµqν

(q2 −m2
ρ)m

2
ρ

]

gρππ (p1 + p′1)
µ ετ (p

′

2) , (27)

where q = p′1 − p1. The total cross section for one charge configuration works out

to be

σ0(s) =
g2
ρππg

2
η′ρρ

16πp2
cm

{

(t+ − t−) +
(

t+ + t− − 2m2
ρ

)

ln

(

m2
ρ − t−

m2
ρ − t+

)

+

(t+ − t−)

(m2
ρ − t−)(m2

ρ − t+)

[

−m2
ρ(t+ + t−) +m4

ρ +m2
π(m2

η′ −m2
ρ)

2/s
]

}

. (28)

Here t+ and t− are the kinematic limits of t.

From the decay rate for ρ→ ππ we know that g2
ρππ/4π = 2.90. From the decay

rate for η′ → ργ [21], together with vector meson dominance [19, 20], we get gη′ρρ

= 3.96 × 10−3/MeV or, more usefully, g2
η′ρρ = 6.10 mb. It may be noted that this
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value is consistent with that predicted by gauging the Wess-Zumino term, which is

gη′ρρ =
g2
ρππ

16π2fπ

(√
6 cos θP +

√
3 sin θP

)

,

where θP is a pseudoscalar mixing angle with a value of about −20 ± 5 degrees

[19, 20, 22].

The annihilation cross section vanishes at threshold and rises monotonically

with s. Although thermal averaging can be done numerically to obtain the rate, we

shall be content with the following simple estimate. For a collision between an η′

and a pion the average value of s at temperature T is easily found to be

〈s〉 = (mη′ +mπ)2 + 6mη′T .

At T = 150 MeV,
√

〈s〉 = 1.44 GeV. At this value, σ0 = 2.6 mb. The mean free

path l for η′ annihilation is estimated from

l−1 =
∑

ij

σijni = 2σ0n , (29)

where the sum is over all channels, n is the total pion number density, and σ0 is

evaluated at the average
√
s. For temperatures comparable to or greater than the

pion mass the number density is approximately 0.365 T 3. At T = 150 MeV the

mean free path for annihilation is 12 fm. It gets even bigger as the temperature

decreases. Since the η′ decouples near the phase transition temperature, where the

present estimate is not valid, we may conclude that η′s will not annihilate to any

appreciable degree at any temperature during the expansion.

It might seem paradoxical to argue that the η′ decouples at high density yet

is produced in roughly equal abundance with the pion. Actually, there is no para-

dox. Suppose that quark gluon plasma is formed initially. When it hadronizes, all

Goldstone bosons will be produced in roughly equal numbers by condensation of

the quark and gluon fields. Suppose that high density hadronic matter is formed

initially, not quark gluon plasma. Then the initial state is formed via meson produc-

tion in elementary nucleon-nucleon collisions. Many pions will be produced. In this
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environment, the η′ mass will be low. Since there is no suppression of transitions

among the Goldstone bosons themselves, the η′ mesons will come to, or at least

approach, chemical equilibrium with pions, kaons and η mesons.

4 Signals

During the expansion and cooling phase, the η′ propagates in the background field

of the surrounding hadronic matter. This background field increases the η′ mass as

the hadronic matter becomes more dilute. Due to energy conservation, any motion

of the η′ relative to this medium will be damped, and the η′ will come to rest. As

a consequence, the η′ will be strongly coupled to any collective flow of matter, and

the pT distribution of η′ may be strongly distorted relative to that in pp collisions.

When the matter is at high energy density there will be mixing between the

collective excitations which will become the η and η′ in the vacuum, so an enhance-

ment of the η′ will lead to an enhancement of the η too. In addition, an important

decay mode of the vacuum η′ is into η with a branching ratio of 65%, leading to an

enhancement of η after the breakup of hadronic matter occurs.

There are several places where one might see the effects of the return of the ninth

Goldstone boson. First, one might study low mass dileptons in the region above the

π0 Dalitz pairs and below the ρ. If the η′/π0 ratio is enhanced, there would be an

enhancement due to the η′ → e+e−γ decay mode. In Figure 1 we display the data

as measured in the CERES experiment [23]; the paucity of dileptons in the mass

region between the π0 and the ρ was also seen by the HELIOS experiment [24]. The

contributions from measured and assumed abundances of π0, η, ρ, ω, η′ and φ are

shown explicitly taking into account the acceptance and resolution of the detector.

In Figure 2 we have scaled the computed η′ contribution by 50 and 16, corresponding

to the ratios η′/π0 = 1 and 0.3, where the latter value arises from taking into account

the strange quark mass effects - see (19). To these were added the contributions
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from the other mesons. With the enhancement factor of 50 the result is a little too

big in the region between 50 and 250 MeV, exceeding two data points by about

two standard deviations. Otherwise the representation of the data is very good.

With the enhancement factor of 16 there is also a good representation, although

the curve consistently falls below the data points by about one standard deviation

between 350 and 850 MeV. We have made no attempt to compute the effects due

to a changing shape of the pT spectrum caused by collective flow. Distortions of

the pT spectrum folded into detection biases might have the effect of artificially

enhancing or suppressing the η′ contribution. Additional contributions come from

dileptons produced in hadron-hadron collisions during the expansion and cooling

phase, which help to fill-in not only the mass region between 2mπ and mρ but also

the region between the φ and the J/ψ mesons [25].

We should caution the reader that a big enhancement of η′ production would

probably cause a suppression of direct production of other mesons due to energy

conservation. For example, if the only mesons produced were the η′ and the neutral

and charged pions, and if η′/π0 was increased from 0.02 to 1, then the total number

of outcoming pions, including those from η′ decay, would approximately double. It

would be a good exercise to refit the abundances of all the mesons with this effect

taken into account. Of course, the total number of mesons could still increase,

with the required energy coming from a decrease in the average momentum of the

particles. This ties in with the problem of distortion of the pT spectrum due to

collective flow.

Perhaps the most convincing demonstration of the return of the η′ would be a

direct measurement. This might be possible for the two photon decay mode, espe-

cially if the production cross section is as strongly enhanced as we suggest. It would

be important to have a simultaneous direct measurement of the η since we expect

an enhancement there too. In fact, some enhancement of the η/π0 ratio in cen-

tral S+Au collisions was indeed observed experimentally by the WA80 experiment
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[26]. In minimum bias events the ratio was measured to be 0.29±0.13, consistent

with proton-proton collisions. In central collisions the ratio was measured to be

0.54±0.14. Both are integrated ratios from pT = 0 to 1 GeV/c. Since the branching

ratio of η′ into η is about 65%, an enhancement of η′/π0 = 1 is close to being ruled

out (but recall the caveats about energy conservation and pT distortion mentioned

above). An enhancement of η′/π0 = 0.3 is more consistent with this data and more

theoretically likely.

We should emphasize that unlike the case for the ρ meson, and to a lesser degree

for the ω and φ, the η′ and the η mesons almost always decay after the surrounding

hadronic matter has blown apart. Therefore one cannot expect to directly see the

effect of the mass shift of the η′ or the η meson: the only effect will be due to an

enhanced production cross section.
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Figure Captions

Figure 1: Yield of low mass dileptons as measured by CERES [23]. Included in the

plot are their assumed resonance contributions. The heavy shaded area is the result

of summing all these contributions, including estimated uncertainties.

Figure 2: The two curves are the result of multiplying the assumed η′ constribution

in Figure 1 by factors of 16 and 50, and adding the other contributions.
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