CERN Accelerating science

002850861 001__ 2850861
002850861 005__ 20240326052229.0
002850861 0248_ $$aoai:cds.cern.ch:2850861$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002850861 0247_ $$2DOI$$9APS$$a10.1103/PhysRevD.107.073005$$qpublication
002850861 037__ $$9arXiv$$aarXiv:2302.10965$$chep-ph
002850861 037__ $$9arXiv:reportnumber$$aFERMILAB-PUB-23-063-T
002850861 037__ $$9arXiv:reportnumber$$aNUHEP-TH/23-01
002850861 037__ $$9arXiv:reportnumber$$aCERN-TH-2023-024
002850861 035__ $$9arXiv$$aoai:arXiv.org:2302.10965
002850861 037__ $$9arXiv:reportnumber$$aUSTC-ICTS/PCFT-23-06
002850861 035__ $$9Inspire$$aoai:inspirehep.net:2635475$$d2024-03-25T12:35:17Z$$h2024-03-26T03:15:59Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d
002850861 035__ $$9Inspire$$a2635475
002850861 041__ $$aeng
002850861 100__ $$aBrdar, [email protected]$$uCERN$$vTheoretical Physics Department, CERN, Esplande des Particules, 1211 Geneva 23, Switzerland
002850861 245__ $$9APS$$aNeutrino magnetic moment portal and supernovae: New constraints and multimessenger opportunities
002850861 246__ $$9arXiv$$aThe Neutrino Magnetic Moment Portal and Supernovae: New Constraints and Multimessenger Opportunities
002850861 269__ $$c2023-02-21
002850861 260__ $$c2023-04-01
002850861 300__ $$a8 p
002850861 500__ $$9arXiv$$a8 pages, 6 figures
002850861 520__ $$9APS$$aWe scrutinize the hypothesis that gauge singlet fermions—sterile neutrinos—interact with Standard Model particles through the transition magnetic moment portal. These interactions lead to the production of sterile neutrinos in supernovae followed by their decay into photons and active neutrinos which can be detected at <math display="inline"><mi>γ</mi></math>-ray telescopes and neutrino detectors, respectively. We find that the nonobservation of active neutrinos and photons from sterile-neutrino decay associated to SN1987A yields the strongest constraints to date on magnetic-moment-coupled sterile neutrinos if their masses are inside a 0.1–100 MeV window. Assuming a near-future galactic supernova explosion, we estimate the sensitivity of several present and near-future experiments, including Fermi-LAT, e-ASTROGAM, DUNE, and Hyper-Kamiokande, to magnetic-moment-coupled sterile neutrinos. We also study the diffuse photon and neutrino fluxes produced in the decay of magnetic-moment coupled sterile neutrinos produced in all past supernova explosions and find that the absence of these decay daughters yields the strongest constraints to date for sterile neutrino masses inside a 1–100 keV window.
002850861 520__ $$9arXiv$$aWe scrutinize the hypothesis that gauge singlet fermions -- sterile neutrinos -- interact with Standard Model particles through the transition magnetic moment portal. These interactions lead to the production of sterile neutrinos in supernovae followed by their decay into photons and active neutrinos which can be detected at $\gamma$-ray telescopes and neutrino detectors, respectively. We find that the non-observation of active neutrinos and photons from sterile-neutrino decay associated to SN1987A yields the strongest constraints to date on magnetic-moment-coupled sterile neutrinos if their masses are inside a $0.1-100$ MeV window. Assuming a near-future galactic supernova explosion, we estimate the sensitivity of several present and near-future experiments, including Fermi-LAT, e-ASTROGAM, DUNE, and Hyper-Kamiokande, to magnetic-moment-coupled sterile neutrinos. We also study the diffuse photon and neutrino fluxes produced in the decay of magnetic-moment coupled sterile neutrinos produced in all past supernova explosions and find that the absence of these decay daughters yields the strongest constraints to date for sterile neutrino masses inside a $1-100$ keV window.
002850861 540__ $$3preprint$$aarXiv nonexclusive-distrib 1.0$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/
002850861 540__ $$3publication$$aCC BY 4.0$$fSCOAP3$$uhttps://creativecommons.org/licenses/by/4.0/
002850861 542__ $$3publication$$dauthors$$g2023
002850861 595__ $$aCERN-TH
002850861 65017 $$2arXiv$$aastro-ph.HE
002850861 65017 $$2SzGeCERN$$aAstrophysics and Astronomy
002850861 65017 $$2arXiv$$ahep-ph
002850861 65017 $$2SzGeCERN$$aParticle Physics - Phenomenology
002850861 690C_ $$aCERN
002850861 690C_ $$aARTICLE
002850861 700__ $$ade Gouvêa, André[email protected]$$uNorthwestern U.$$vNorthwestern University, Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, Illinois 60208, USA
002850861 700__ $$aLi, [email protected]$$uPCFT, Hefei$$uUSTC, Hefei$$vPeng Huanwu Center for Fundamental Theory, Hefei, Anhui 230026, China$$vInterdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026, China
002850861 700__ $$aMachado, Pedro [email protected]$$uFermilab$$vParticle Theory Department, Fermilab, P.O. Box 500, Batavia, Illinois 60510, USA
002850861 773__ $$c073005$$mpublication$$n7$$pPhys. Rev. D$$v107$$xPhys. Rev. D 107, 073005 (2023)$$y2023
002850861 8564_ $$uhttps://lss.fnal.gov/archive/2023/pub/fermilab-pub-23-063-t.pdf$$yFermilab Library Server
002850861 8564_ $$82429004$$s41263$$uhttps://cds.cern.ch/record/2850861/files/exclusion.png$$y00000 2$\sigma$ constraints and future sensitivity for the transition magnetic moment $d$ as a function of sterile neutrino mass $M_N$.
002850861 8564_ $$82429005$$s10484$$uhttps://cds.cern.ch/record/2850861/files/diffuse_neutrino.png$$y00005 Diffuse neutrino flux from sterile neutrino decays compared to the flux sensitivity of KamLAND and Super-Kamiokande.
002850861 8564_ $$82429006$$s938664$$uhttps://cds.cern.ch/record/2850861/files/2302.10965.pdf$$yFulltext
002850861 8564_ $$82429007$$s30341$$uhttps://cds.cern.ch/record/2850861/files/DecayGeometry.png$$y00001 Sterile neutrino decay geometry.
002850861 8564_ $$82429008$$s14348$$uhttps://cds.cern.ch/record/2850861/files/photonflux.png$$y00002 Photons flux (at the Earth) from sterile neutrino decay, for $\Delta t <223$~s (solid) and $\Delta t <3600$~s (dashed).
002850861 8564_ $$82429009$$s13604$$uhttps://cds.cern.ch/record/2850861/files/fluxes.png$$y00004 Thermal active neutrino spectrum (blue) relative to that of  sterile neutrinos (red, green) produced through the magnetic moment portal. See text for details.
002850861 8564_ $$82429010$$s12769$$uhttps://cds.cern.ch/record/2850861/files/diffuse_gamma.png$$y00003 Diffuse photon flux from sterile neutrino decays compared to the extragalactic photon background measured by COMPTEL \cite{Strong:1994} (green) and EGRET \cite{Hunter:1997} (purple); for more data in this energy regime see \cite{Caputo:2021rux}.
002850861 8564_ $$82451389$$s666067$$uhttps://cds.cern.ch/record/2850861/files/Publication.pdf$$yFulltext
002850861 8564_ $$82453369$$s650781$$uhttps://cds.cern.ch/record/2850861/files/939287b765aa1db562b40c29e0c376d4.pdf$$yFulltext from Publisher
002850861 960__ $$a13
002850861 980__ $$aARTICLE